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Abstract: In a 2019 paper “Polynomial monads and delooping of mapping spaces”,
Batanin and De Leger have introduced an extension of Grothendieck homotopy
theory from the category of small categories to the category of polynomial mon-
ads. As an application (among other), they provided a new proof of a famous
Tourchin-Dwyer-Hess theorem on explicit double loop space of mapping spaces
between the associativity operad and an arbitrary reduced multiplicative operad.

In this thesis we generalize Batanin-De Leger results to a sequence of polyno-
mial monads produced by iteration of the Baez and Dolan +-construction (the so
called opetopic sequence). For the n-th element of the opetopic sequence, we in-
troduce the monads called k-dimensional bimodules, 0 ≤ k ≤ n, which generalize
the notions of bimodules and infinitesimal bimodules over the associative operad
for non-symmetric operads. The 0-dimensional bimodules are a sequence of cat-
egories of opetopes, with each the full subcategory of the next, which generalizes
the simplicial category ∆ and the dentroidal category of planar trees Ωp.

We show that an explicit double looping of the corresponding mapping space
exists for any n ≥ 2, where n = 2 corresponds to the classical case. We provide a
further reduceness condition under which the third looping of the mapping space
has an explicit expression. We hope this result will be useful for constructing
novel models of embedding spaces of manifolds.
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Introduction
Let Emb(R1,Rn) be the space of embeddings of R1 → Rn with compact support
(equal to the canonical embedding outside a compact set), the so called space of
long knots. It was shown by Sinha [2009] using Goodwille calculus that for n ≥ 4,
there is a weak equivalence (which we denote ∼ in this text)

Emb(R1,Rn) ∼ holim∆C•

where Cn is a Fulton-MacPherson completion of the configuration space of n
points. In Sinha [2006], it is furthermore shown that

Emb(R1,Rn) ∼ holim∆K∗

where Emb(R1,Rn) is the homotopy fiber of the inclusion of Emb(R1,Rn) to the
space of immersions (embeddings with intersections allowed), K is the desym-
metrisation of the Kontsevich operad [Kontsevich, 1999] and K∗ its associated
cosimplicial object.

Polynomial monads were introduced in Kock et al. [2010]. It was proved in
Gambino and Kock [2013] that the category of finitary polynomial monads is
equivalent to the category of Σ-free colored operads in Set. Finitary polynomial
monads may have algebras in any symmetric monoidal category (E ,⊗, e) (Batanin
and Berger [2017], see also the Section 1.1.3). For any finitary polynomial monad
P , there always exists a special P -algebra, which has the monoidal unit e of E
for each color i ∈ I of P . We denote this algebra ζP (or simply ζ if there is no
confusion). If (E ,⊗, e) is a cartesian symmetric monoidal category, then ζP is the
terminal algebra of P .

For a model category C, let MapC(−,−) be the homotopy mapping space in
C. Turchin [2014] and Dwyer and Hess [2012] have proved that if a multiplica-
tive non-symmetric X operad in topological spaces or simplicial sets is reduced
(meaning X0 ∼ X1 ∼ 1), then

holim∆X∗ ∼ Ω2MapNOp(ζ, X)

where Ω denotes the loop space (over the base point given by the map ζ → X
from the structure of multiplicative operad). These results together provide an
explicit model of Emb(R1,Rn) as a double loop space.

Now Turchin and Dwyer-Hess theorem proceeds in two steps

ΩMapNOp(ζ, X) ∼ MapBimod(ζ, X) if X1 ∼ 1
ΩMapBimod(ζ, X) ∼ MapIBimod(ζ, X) if X0 ∼ 1

where Bimod, resp. IBimod are bimodules, resp. infinitesimal bimodules over
the associativity operad and we skip writing down the forgetful functors. The
result follows from the category of infinitesimal bimodules being equivalent to the
category of cosimplicial objects and MapIBimod(ζ, X) ∼ holim∆X.

Batanin and De Leger [2019] used the fact that non-symmetric operads, their
bimodules and infinitesimal bimodules are algebras of particular polynomial mon-
ads to give a more categorical proof of the preceding results, using their extension
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of Grothendieck homotopy theory to the category of polynomial monads, via the
machinery of internal algebra classifiers introduced in Batanin and Berger [2017].

In the terminology of Kock et al. [2010], the polynomial monad for non-
symmetric operads is the second iteration of the Baez-Dolan +-construction [Baez
and Dolan, 1998]. If we continue to iterate the +-construction, we obtain the so
called opetopic sequence of polynomial monads. The goal of this thesis is to gen-
eralize the results of Turchin [2014], Dwyer and Hess [2012] and Batanin and De
Leger [2019] to higher elemens of the opetopic sequence.

In the first chapter, we recall the preliminaries and known results about poly-
nomial monads, opetopic sequence and their homotopy theory.

In the second chapter, for the n-th iteration of the +-construction, we in-
troduce the category of (k, n)-bimodules Bimodk,n, 0 ≤ k ≤ n. They generalize
bimodules, resp. infinitesimal bimodules over ζ for non-symmetric operads, which
are Bimod1,2, resp. Bimod0,2. Moreover, we introduce small categories ΩRn , such
that for a monoidal category E , Bimod0,n+1(E) are the presheaves [ΩRn , E ]. They
generalize the categories ∆ for n = 1 and Ωp (the dendroidal category of planar
trees) for n = 2. We have injections of full subcategories ΩRn → ΩRn+1 . We
construct their colimit ΩR∞ and identify its objects with the stable opetopes of
Kock et al. [2010].

In the third chapter, we investigate the possible delooping. The aim is to find
a reduceness condition C on a simplicial (k, n)-bimodule X equipped with a map
ζ → X such that

ΩMapBimodk,n(ζ, X) ∼ MapBimodk−1,n(ζ, X) if X satisfies C

where we again skip writing down the forgetful functors. It is shown that for the
first two deloopings (from n to n − 1 to n − 2), the reduceness conditions are
straightforward generalizations to the ones for non-symmetric operads. We then
show that for any n ≥ 2, there are (n− 3, n)-bimodules δ∗τn such that

ΩMapBimodn−2,n(ζ, X) ∼ MapBimodn−3,n(ζ, X) if MapBimodn−3,n(δ∗τn, X) ∼ 1

In particular δ∗τ3 can be understood as a functor α : Ωp → SSet assigning to a
planar tree the set of 2-dimensional strata, to which the tree separates the plane.
By adjunction, the reduceness condition above is equivalent to

Map[∫ α,SSet](1, π∗X) ∼ holim∫ απ∗X ∼ 1

where ∫ α is the Grothendieck construction of α and π : ∫ α → Ωp the canonical
projection.

The proof that this condition is satisfied for the higher “desymmetrizations” of
symmetric operads, which have multiplicative structure (in particular the Kontse-
vich operad), will be published in a joint paper with Florian De Leger containing
the results of this thesis.
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1. Preliminaries

1.1 Polynomial monads
Definition 1.1. Let CI be the product of a category C indexed by the set I.
For X ∈ CI and i ∈ I, Xi will be the component of X with the index i.

Consider a general oriented multidigraph (equivalently a span in Set) given
by the diagram

I
s←− B

t−→ I

where I is the set of vertices, B is the set of edges, s is the source map and t is
the target map. It induces a functor G : SetI → SetI given in the i-th component
for i ∈ I by

G(X)i =
∑︂
b∈B

t(b)=i

Xs(b)

It turns out that the structure of a category on this graph (the composition of
morphisms and units) corresponds to a monad structure on G, with the associa-
tive and unit laws corresponding precisely to the monadic laws [Gambino and
Kock, 2013]. This motivates the following, more general definition.

1.1.1 Polynomial functors
Definition 1.2 (Gambino and Kock [2013]). A polynomial is a diagram of sets
of the form

I
s←− E

p−→ B
t−→ I

A polynomial functor given by the this diagram is the composition t!p∗s
∗, where

• s∗ is the restriction of s (given by s∗(X)e = Xs(e)),

• p∗ is the right adjoint of p∗ (given by p∗(X)b = ∏︁
e∈p−1(b) Xe)

• t! is the left adjoint of t∗ (given by t!(X)i = ∑︁
b∈t−1(i) Xb).

In total,

t!p∗s
∗(X)i =

∑︂
b∈t−1(i)

∏︂
e∈p−1(b)

Xs(e)

Hence the name “polynomial”.
The set I will be called colors, B will be called operations and E will be called

marked operations. s will be called source map, t target map and p middle map.
The polynomial is called finitary if p−1(b) is finite for all b ∈ B. All polyno-

mials considered here will be finitary.
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An element b ∈ B can be pictured as a corolla, with the edges above in
a bijective correspondence with p−1(b), each decorated by ik = s(ek) for the
corresponding ek ∈ p−1(b); they will be called input edges. The edge bellow is
decorated by t(b); it will be called an output edge. b ∈ B can be thought of as a
“multimorphism” having i1, . . . , in as sources and t(b) as a target.

An element of E can be pictured similarly, but with one input edge marked.
The map p forgets the marked edge.

i2 ↦→
s

j

b

i2 i2 ∗
. . . in

↦→
p

j

b

i2 i2 . . . in

↦→
t

j

Remark. It is possible to consider more general polynomials where the target set
J may be different from I. We will not do it here.

Construction 1.3. Let F be a polynomial functor given by I ← E → B → I
and G a polynomial functor given by I ← D → C → I. Their composition G ◦F
is isomorphic to a polynomial functor given by

I
s←− (C ◦B)∗ p−→ C ◦B

t−→ I

where C ◦B is the set of two level trees of the form

c

b1

. . .

. . . bn

. . .

with c ∈ C, b1, . . . , bn ∈ B being represented by decorated corollas as above, such
that the target of bk is ik for k = 1, . . . , n. The target of this tree is the target
of c. (C ◦ B)∗ is the set of such trees with one input edge marked. The map s
returns the color of the marked edge and p forgets the mark.

Proof. G ◦F (X)i = ∑︁
c∈t−1

G (i)
∏︁

d∈p−1
G (c)

∑︁
b∈t−1

F (sG(d))
∏︁

e∈p−1
F (b) XsF (e), where sP , pP ,

tP are the source, middle and target map for the polynomial functor P . Distribu-
tivity for sums and products in Set gives the sought isomorphism.

We will denote by 1 the terminal object in SetI (1 in every component). For
a polynomial functor P given by I ← E

p−→ B
t−→ I,

P (1)i =
∑︂

b∈t−1(i)

∏︂
e∈p−1(b)

1 ≃ t−1(i)

So if B is considered an element of SetI by Bi = t−1(i), then P (1) ≃ B ∈ SetI .

Definition 1.4. A natural transformation is called cartesian if all the naturality
squares are pullbacks.

Proposition 1.5. Cartesian natural transformations between polynomial func-
tors P ′ ⇒ P correspond to the following diagrams between their respective poly-
nomials
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E ′ B′

I I

E B

⌟
v

where the middle square is a pullback.

Proof. Because the middle square is a pullback, for b′ ∈ B′, the source image of
its fiber of the middle map is the same as of v(b′).

Since B ≃ P (1), B′ ≃ P ′(1), we have the pullback P ′(X) ×P ′(1) P (1) ≃
P ′(X)×B′ B whose i-th component is ∑︁

b∈t−1(i)
∏︁

e∈p−1(v(b)) Xs(e) = P (X)i because
the sources of fibers are the same. This gives a natural transformation P ′(X)→
P (X). Using the pullback lemma, one can show that it is cartesian.

On the other hand, such natural transformation gives a map P ′(1) → P (1)
which by the above yields the pullback square in the given diagram.

Remark. By the preceding proposition, to give a cartesian natural transformation
between polynomial functors, it suffices to give a map v : B′ → B such that for
every b′ ∈ B′ the sources of fibers of b′ are the same as for v(b′).

1.1.2 Monads
Definition 1.6 (Gambino and Kock [2013]). A polynomial monad is a monad
whose underlying functor P is polynomial and the natural transformations 1⇒ P ,
P ◦ P ⇒ P are cartesian.

If the functor P is given by the polynomial I ← E → B → I, the polynomial
monad structure corresponds to the following diagrams:

(B ◦B)∗ B ◦B

I I

E B

⌟
I I

I I

E B

⌟

The map B ◦ B → B can be understood as a composition of operations. The
middle square being a pullback ensures that the colors of the input edges of the
two level tree in B ◦B must correspond to the colors of inputs of its composition.
The unit map gives a distinguished operation ui ∈ B with unary fiber for each
i ∈ I, called unit. The unit law says they indeed act as units during composition.
The associative law says it doesn’t matter in which order we do the composition.

In general, this means than any tree composed of corollas of operations of B
can be contracted to a unique operation of B, by pluging units and using the
monadic composition.

b1

b2

b4

b3

↦→ b1

b2

u b4

u

u

b3

u

↦→ b
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Example (Batanin and Berger [2017], Section 9.1). A small category C is a poly-
nomial monad, where I are objects of C, B are morphisms of C and the middle
map is identity. The monadic composition is the composition of morphisms in C
and the monadic units are the identities.

Since operations for categories all have unary fibers, categories can be thought
of as linear monads. In this sense, polynomial monads are a generalization of
categories.
Example (Batanin and Berger [2017], Section 9.2). The free monoid monad is a
monad for the “geometric series” functor ∑︁

n∈N Xn. It is given by the polynomial

1← Ltr∗ → Ltr→ 1

where Ltr is the set of linear trees - the trees where every vertex has one input
edge (which are in bijection with N (including 0)) given by the number of vertices)
and Ltr∗ are linear trees with one vertex marked. The middle map forgets the
marked vertex.

∗ →

Example (Batanin and Berger [2017], Section 9.2). The non-symmetric operad
monad is given by the following polynomial

N← Ptr∗ → Ptr→ N

where Ptr is the set of planar trees, Ptr∗ are planar trees with one vertex marked,
the source map returns the number of input edges into the marked vertex, the
middle map forgets the mark and the target map returns the number of input
edges of the whole tree.

It is shown in the subsequent section that these monads are the first interations
of the Baez-Dolan +-construction starting from the identity monad

1← 1→ 1→ 1

.

Definition 1.7 (Gambino and Kock [2013]). For a polynomial monad P given
by the polynomial I ← E → B → I and a polynomial monad Q given by the
polynomial J ← D → C → J , a cartesian morphism from P to Q is be the
following commutative diagrams

I E B I

J D C J

⌟

where the middle square is a pullback and the vertical maps are compatible with
the monadic composition and units.

Finitary polynomial monads and cartesian morphisms form a category Poly.
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1.1.3 Algebras
Let E be a cocomplete symmetric monoidal category and let P be a finitary
polynomial functor. We can construct a functor P E : EI → EI by a similar
formula as in the case of Set:

P E(X)i =
∑︂

b∈t−1(i)

⨂︂
e∈p−1(b)

Xs(e)

If P has a structure of a polynomial monad, this induces a monad on EI . We will
call P -algebras in E the algebras of this induced monad.

Explicitly, it is given by a collection Ai ∈ E for each i ∈ I, along with, for
each b ∈ B, the map

mb :
⨂︂

e∈p−1
n (T )

Ae → Atn(T ) (1.1)

satisfying associativity and unitarity conditions
We will denote the category of P E -algebras and P E -algebra morphisms AlgP (E).

Definition 1.8. Let ζP be the P E -algebra, which is the unit of E in every com-
ponent. Where the index is clear, we will just write ζ.

Remark. In all categories considered here, ζ will also be the terminal P -algebra.
Example. When a small category C is considered as a linear monad, the category
of C-algebras is the category of covariant presheaves [C, E ].
Example. Algebras of the free monoid monad are monoids in the monoidal cate-
gory E .
Example. Algebras of the non-symmetric operad monad are the non-symmetric
E-operads. That is an object An for each n ∈ N, along with morphisms Ak ⊗
An1 ⊗ · · ·⊗Ank

→ An1+···+nk
and e→ A1 (where e is the unit of E) satisfying the

corresponding associativity and unit conditions.

1.2 Baez-Dolan +-construction for polynomial
monads

The +-constuction was originally introduced by Baez and Dolan [1998] as a way to
formalize the composition of higher-dimensional operations arising in the theory
of higher categories. Later in Kock, Joyal, Batanin, and Mascari [2010], it was
defined for polynomial monads and shown that they are a natural setting for this
construction. The definition given here follows this paper.

Informally, for a polynomial monad P , the monad P + has as colors the oper-
ations B of P and as operations the compositions of operations of P .

Definition 1.9 (Kock et al. [2010]). Let P be a polynomial monad given by:

I
s←− E

p−→ B
t−→ I

The monad P + is given by the following polynomial:

B ← tr(B)∗ → tr(B)→ B

8



where tr(B) (called P -trees) is the set of trees composed of corollas of the opera-
tions B and edges decorated by I. In other words, they are trees whose vertices
are decorated by the elements of b ∈ B and edges by i ∈ I, with each having pre-
cisely one output edge decorated with t(b) and input edges with a correspondence
to the elements e ∈ p−1(b), each being decorated with s(e). The decorations of
inputs and outputs must match.

The set tr(B)∗ is the set of P -trees with one vertex marked. The source
returns the decoration of the marked vertex, the middle map forgets the marking
and the target returns the monadic composition of this tree or the unit of i ∈ I if
the tree is just a free living edge decorated by i - it is where the monadic structure
of P is used.

The monadic composition is given by insertion of decorated trees to marked
points.

b2 ↦→ b1

b2

b4

b3∗

↦→ b1

b2

b4

b3

↦→ b

1.2.1 Opetopic sequence
Definition 1.10. Let I be the identity polynomial monad given by the polyno-
mial

1← 1→ 1→ 1

where all map identities.

Claim 1.11 (Kock et al. [2010]). I+ is the free monoid monad.

Proof. The set tr(1) is the set of trees composed of unary vertices, with each
vertex and edge labeled by 1. Those are exactly the linear trees.

Definition 1.12. For a polynomial monad P , let P +n be the monad resulting
from applying the +-construction on P n times.

Claim 1.13 (Kock et al. [2010]). I+2 is the non-symmetric operad monad.

Proof. Linear trees are in bijection with N given by the number of vertices. So
for each n ∈ N, there is one possible marking of the vertex with n input edges.
Moreover, the vertices of a linear tree are canonically linearly ordered. As the
input edges of a vertex of tr(Ltr) correspond to the vertices of the linear tree
which marks this vertex, this gives the linear order of input edges for each vertex.
That means the tree is planar.

Definition 1.14. The colors of the polynomial monad I+n will be called In. Its
operations (which are the colors of I+(n+1)) will be called Bn.

The sequence In for n ∈ N is called opetopic sequence and it elements are
called opetopes [Baez and Dolan, 1998].

To work represent them, Kock et al. [2010] introduce a notion of a constellation
and zoom complex.
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We will call a nesting a finite collection of non-intersecting circles or dots,
which consists either of a single dot, or has a large circle containing everything
else. To every nesting, we can associate a tree, whose vertices correspond to the
circles, leaves to the dots and a vertex or a leaf is above another vertex v if the
corresponding circle or a dot is inside the circle corresponding to v.

For a polynomial monad P , we will call a P -constellation a tree decorated
with operations of P in an appropriate manner, along with a nesting over it,
whose dots are the vertices of the tree and the vertices and edges contained in
every circle form a subtree. Although this is a rather geometric way to think
about constellations, they can be defined in purely combinatorial terms, as in
Kock et al. [2010]. We will call the set of P -constellations const(P ).
Example. The constellations of the free monoid monad correspond to planar trees.

a b c d e

a b

c d e

For a constellation, we define its target as the underlying tree. For a circle
in a constellation, we define its source as the subtree inside this circle, where all
circles inside it are contracted into a vertex (using the monadic composition).
Theorem 1.15 (Kock et al. [2010], Theorem 3.6). There is a bijection const(P ) ≃
tr(P +) compatible with the source and target maps.
Proof. Given a constellation, assign to it the associated tree of the underlying
nesting; decorate each vertex with the source of the corresponding circle and
each input edge with the source of the corresponding dot (as a vertex of a tree in
tr(P )) or the target of the circle corresponding to the vertex above it.

Given a tree T ∈ tr(P +), consider its target, which is a tree t(T ) ∈ tr(P ).
Each vertex of T is decorated with tree, which is inserted during the monadic
composition to obtain t(T ); draw a circle around it. This yields a constellation
and these maps are mutually inverse.

For details, see Kock et al. [2010].

Constellations are a graphical way to represent the operations of P +2. For the
further iterations of the +-construction, we can use the fact that a constellation
corresponds to a tree in tr(P +) and have yet another constellation on this tree.

A zoom is a pair of constellations X ⇝ Y such that the nesting of the former
corresponds to the underlying tree of the later. A zoom complex is a sequence of
zooms X1 ⇝ · · ·⇝ Xn.

An opetope can be represented by a zoom complex like this one (note there is
always the top circle containing the whole tree that we skip drawing, correspond-
ing of the root of the next tree):

a b c d e
α

β

γ

a b

c

δ

d e β γ

α

δ

⇝ ⇝ ⇝
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In total, between the elements Xk ⇝ Xk+1 of the zoom complex, we have the
correspondences:

Xk Xk+1
vertices leaves
circles vertices

underlying tree target
sources of circles sources

1.2.2 Stable opetopes
Construction 1.16 (Suspension of opetopes). For all n ∈ N, we will inductively
construct injective maps of sets Σn : In → In+1 which induce maps of polynomial
monads for opetopes

In B∗n Bn In

In+1 B∗n+1 Bn+1 In+1

Σn

⌟
Σn+1 Σn

So all the vertical maps are injections compatible with targets and sources.

1. Σ0 : I0 → I1 is the unique map between singleton sets

2. Σ1 : I1 → I2 maps the single element to the linear tree with one vertex

3. T ∈ In is a tree with vertices decorated by In−1 and edges decorated by
In−2; replace each decoration b of a vertex by Σn−1b and i of an edge by
Σn−2i. Since Σk for k < n are compatible with targets and sources, this
decoration is again compatible. Directly by this definition, Σn preserves
targets and sources.

Σ0 and Σ1 are injections, so inductively, each Σn maps a distinct tree into a
distinct tree and it is an injection as well.

Remark. Kock et al. [2010, Section 4] define suspension of opetopes equivalently
in terms of zoom complexes as prepending a new in front of the zoom complex,
raising indices of all of its components.

Definition 1.17 (Kock et al. [2010]). Let I∞ be the colimit of the sequence of
maps Σn for n ∈ N, called stable opetopes.

So I∞ is a set of opetopes of all dimensions, where we identify two opetopes
if one is a suspension of the other.

1.3 Homotopy theory of algebras of polynomial
monads

1.3.1 Internal algebras and classifiers
Definition 1.18. Let P be a polynomial monad and A a P -algebra in the cate-
gory of small categories (a so called categorical P -algebra). An internal P -algebra
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is a lax-mophism from the terminal P -algebra 1 to A, i.e. a functor f and a natural

transformation ϕ

P (1) P (A)

1 A

P (f)

ϕ

f

satisfying appropriate coherence conditions

[Batanin and Berger, 2017].

Theorem 1.19 (Batanin and Berger [2017], Theorem 5.4). For a polynomial
functor P with the polynomial monad structure given by the unit η and multipli-
cation µ, there is a categorical P -algebra P P , called an absolute classifier of P ,
such that for every categorical P -algebra A, there is a natural bijection

1→lax A
P P → A

i.e. the internal P -algebras in A correspond to (strict) P -algebra morphisms
P P → A.

P P is given by the truncated simplicial bar resolution of the terminal P -
algebra:

P (1) P 2(1) P 3(1)P η

µ

P !
P µ

µP

P 2!

where ! : P (1)→ 1 is the unique map.

For the proof, see Batanin and Berger [2017].
Let P be given by the polynomial I ← E → B

t−→ I. Then P P is a collection of
categories indexed by i ∈ I and the objects of P P are P (1) ≃ B as an element of
SetI where Bi = t−1(i) for i ∈ I. Thus the objects correspond to the operations
B. In the component i ∈ I, the objects are the operations with the target i.
The morphisms are given by the set of operations of P 2(1), i.e. two level trees
composed by the elements of B. The source of the morphism is the monadic
composition of this tree and the target is the decoration of the root vertex.

b

b1 b2 b3

: →
b

The morphisms can be thought of as the opposite of plugging in operations
of P into an opperation of P . The composition of morphism given by P 3(1) P µ−→
P 2(1) ensures that doing this twice is the same as plugging in the composition of
the plugged in operations.

By definition, the categorical algebra P P has a universal internal algebra
e : 1 → P P by which it is freely generated. The components of e pick up and
object e(i) in each category P P (i) for i ∈ I. This object is the terminal object of
P P (i).
Example. The absolute classifier of the free monoid monad is the augmented
simplex category ∆a of finite ordinals and order-preserving maps. The universal
internal algebra is the ordinal [0].

12



Example. The absolute classifier for the non-symmetric operad monad is the non-
symmetric categorical operad of planar trees, where in the component n ∈ N, the
objects are trees with n inputs and the morphisms are generated by contractions
of internal edges and insertion of a vertex to an edge. The universal internal
algebra is given by the corolla in each component.

Definition 1.20. Let f : S → P be a cartesian map of polynomial monads and
let f ∗ : AlgP (Cat)→ AlgS(Cat) be the corresponding restriction functor. Let A
be a categorical P -algebra. An internal S-algebra in A is a lax mophism from
the terminal S-algebra to f ∗(A).

Theorem 1.21 (Batanin and Berger [2017], Theorem 5.10). Let f : S → P be
a cartesian map between polynomial monads, where P has the polynomial monad
structure given by the unit η and multiplication µ. There is a categorical P -
algebra P S, called a relative classifier of S in P , such that for every categorical
P -algebra A, there is a natural bijection

1 →lax f ∗(A)
P S → A

i.e. internal S-algebras in A correspond to (strict) P -algebra morphisms P S → A.
P S is given by the truncated simplicial bar resolution of the terminal S-algebra:

Pϕ!(1) Pϕ!S(1) Pϕ!S
2(1)P η

µ◦P f

P !
P µS

µP◦P fP

P S!

where ϕ is the underlying map on collections induced by f , ϕ! is the left adjoint
its restriction functor ϕ∗, ! : ϕ!S(1)→ 1 is the unique map and µS is the monadic
composition for S.

For the proof, see Batanin and Berger [2017].
The objects of P S are again the operations of P , but for each input edge, with

its color i, in addition decorated by j such that ϕ(j) = i, representing the source
color. The morphisms are given by two level trees, where the root is decorated by
an operation of P with edges colored tihs way and other vertices by operations
of S (where the colors of edges are compatible). The target of the morphism is
the decoration of the root and the source is given by first mapping every vertex
into an operation of P by f and then applying the monadic composition.

b

c1 c2 c3

: →
b

Proposition 1.22 (Batanin and De Leger [2019], Proposition 4.6). Let f : S →
P be a map of polynomial monads and let f! be the left adjoint to f ∗. Then
f!(SS) ≃ P S.

Proof. For an S-algebra A, by universal properties of classifiers,

AlgP (P S, A) ≃ AlgS(SS, f ∗(A))

where AlgP (−,−) denotes the categorical hom-set of P -algebras.

13



Proposition 1.23 (Batanin and De Leger [2019], Proposition 4.7). A commuta-
tive square of maps of polynomial monads

A B

C D

f

g F

G

induces a map between the classifiers Gf : CA → G∗(DB) functorial with respect
to horizontal pasting of squares.

Proof. By adjunction, such a map corresponds to a map G!(CA)→ DB. But by
the Proposition 1.22, G!(CA) ≃ G!(g!(AA)) ≃ DA and we have a map DA → DB

induced by f .

1.3.2 Homotopically cofinal maps of polynomial monads
Let SSet be the category of simplicial sets and let P be a polynomial monad. We
will denote AlgP (SSet) (or simply AlgP if no confusion can arise) the simplicial
P -algebras. It was proven in Batanin and Berger [2017] that simplicial P -algebras
form a simplicial model category, with the model structure transfered from the
projective model structure on the collections of simplicial sets along the forgetful
functor UP : AlgP (SSet)→ SSetI (where I is the set of colors of P ).

If A is a categorical P -algebra, we obtain a simplicial P -algebra N(A) by
taking the nerve in each component.

The following theorem establishes an important connection between the ho-
motopy theory of algebras and the theory of internal algebra classifiers:

Theorem 1.24 (Batanin and Berger [2017], Corollary 8.4). Let f : S → P be
a map of polynomial monads and P S the corresponding relative clasifier. Then
N(P S) is a cofibrant simplicial P -algebra and moreover, there is a weak equiva-
lence

Lf!(ζ) ∼ N(P S)

where Lf! is the left derived functor of f!.

For a model category M and its objects X, Y , let MapM(X, Y ) be the ho-
motopy mapping space between X and Y . If M is a simplicial model category,
it can be calculated as M(cof(X), fib(Y )), where M denotes the simplicial hom
and cof and fib denote the cofibrant, resp. fibrant replacement.

Using classifiers, Batanin and De Leger [2019] proved the following general-
ization of Quillen Theorem A for small categories:

Theorem 1.25 (Batanin and De Leger [2019], Theorem 5.3). In the following
diagram of maps of polynomial monads

S T

R

P

f

h
g

ϕ

14



if N(RS) → N(RT ) is a weak equivalence then N(P S) → N(P T ) is a weak
equivalence.

Proof. N(P S) ≃ (ϕ ◦ h)!(N(SS)) ≃ ϕ!(N(RS)), analogously for N(P T ). So for a
fibrant P -algebra X, N(P S)→ N(P T ) induces a morphism of simplicial homs

AlgP (ϕ!(N(RS)), X)← AlgP (ϕ!(N(RT )), X)

which by adjunction corresponds to a morphism

AlgR(N(RS), ϕ∗(X))← AlgR(N(RT ), ϕ∗(X))

Because N(RS), N(RT ) are cofibrant and ϕ∗(X) is fibrant, it is a weak equiva-
lence, so N(P S)→ N(P T ) is a weak equivalence as well.

Corollary 1.26 (Batanin and De Leger [2019], Corollary 5.5). For a map of
polynomial monads f : S → T , the following statements are equivalent:

1. N(T S) is contractible

2. For any commutative triangle of polynomial monads
S T

R

f

h
g

N(RS)→ N(RT ) is a weak equivalence.

3. For any triangle as above and a simplicial R-algebra X, f induces a weak
equivalence

MapAlgS
(ζ, h∗(X))→ MapAlgT

(ζ, g∗(X))

Proof. 1⇒ 2: In the diagram

S T

T

R

f

f

id

g

N(T S) → N(T T ) is a weak equivalence because T T has terminal object. The
result follows from the Theorem 1.25.

2⇒ 1 follows by taking R = T and g = id since N(T T ) is contractible.
2⇔ 3: MapAlgS

(ζ, h∗(X)) can be computed as the simplicial hom

AlgS(cof(1), h∗(X)) ∼ AlgR(N(RS), X)

by adjunction and Lh!(1) ∼ N(RS). Analogously

AlgT (cof(1), g∗(X)) ∼ AlgR(N(RT ), X)

. So the induced map between mapping spaces for any X is a weak equivalence
iff N(RS)→ N(RT ) is a weak equivalence.

Using this result, to prove a weak equivalence of mapping spaces, one can
show contractibility of the nerve of the relative classifier, which is often more
tractable.

Definition 1.27. A map f : S → T between polynomial monads is called homo-
topy cofinal if the equivalent conditions of the preceding Corollary are satisfied.
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1.3.3 Formal delooping
For a polynomial monad P , let P∗ be a monad for pointed P -algebras, so AlgP∗ ≃
ζ/AlgP . Similarly, let P∗∗ be a monad fo double pointed P -algebras - AlgP∗∗ ≃
ζ ⊔ ζ/AlgP .

There is a map of monads u : P → P∗ whose restriction u∗ “forgets the point”.
There is also a map U : P∗∗ → P∗ whose restriction U∗ “doubles the point”.

Overall this data give a pushout of monads over P∗:

P P∗

P∗ P∗∗

u

u
⌟

To prove the following theorem about delooping by Batanin and De Leger
[2019], one needs this square to induce a homotopy pushout of classifiers.

Definition 1.28 (Batanin and De Leger [2019]). A commutative square of poly-
nomial monads below is called homotopically cofinal if for any map of polynomial
monads D → R the square of nerves of classifiers induced by Proposition 1.23 is
a homotopy pushout square.

A B

C D

f

g F

G

N(RA) N(RB)

N(RC) N(RD)

N(Rf )

N(Rg) N(RF )

N(RG)

Theorem 1.29 (Batanin and De Leger [2019], Theorem 8.1). Suppose P∗ is a
polynomial monad and the corresponding pushout square of monads over P∗ is
homotopically cofinal. For a simplicial P∗-algebra X, there is a weak equivalence
of simplicial sets

ΩMapAlgP
(ζ, u∗(X))→ MapAlgP∗∗

(ζ, U∗(X))

where ΩMapAlgP
(ζ, u∗(X)) is the loop space with the base point given by the map

ζ → X from the P∗-algebra X.

Proof. By the assumption, we have a homotopy pushout of nerves of classifiers
over P ∗. Assume X is fibrant (otherwise take its fibrant replacement). We get a
homotopy pullback of simplicial sets

AlgP∗(N(P P∗∗
∗ ), X) AlgP∗(N(P P∗

∗ ), X)

AlgP∗(N(P P∗
∗ ), X) AlgP∗(N(P P

∗ ), X)

By adjunctions

AlgP∗(N(P P∗∗
∗ ), X) ∼ MapP∗∗(1, U∗(X))

AlgP∗(N(P P
∗ ), X) ∼ MapP (1, u∗(X))

AlgP∗(N(P P∗
∗ ), X) ∼ MapP∗(1, X) ∼ 1
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where the contractibility of MapP∗(1, X) follows from the fact that the terminal
P∗-algebra is also the initial object.

So this square is exactly the homotopy pullback square giving the loop space.

1.3.4 Algebras with chosen points
Let P be a polynomial monad with the set of colors I and let J ⊆ I. Let IdK be
the identity polynomial on SetK . The inclusion J → I yields a map of polynomial
monads i : IdJ → IdI .

Let now Id+J be a monad with a “chosen point” in each component, given by

J ← J
p−→ J × {0, 1} → J

where p(j) = (j, 1) and (j, 0) is a nullary map for j ∈ J . Let now P+J be the
pushout of polynomial monads

IdJ IdI P

Id+J P+J

i η

⌜

where η is the unit of P . Its algebras are the algebras of P along with a chosen
point for each j ∈ J . We will call them J-pointed P -algebras.

The following formal fibration sequence theorem is a slight generalization of
a Theorem 8.3 from Batanin and De Leger [2019].

Theorem 1.30. Let X be a J-pointed simplicial P -algebra. If the square above
is homotopy cartesian, there is a fibration sequence

MapAlgP+J
(ζ, X)→ MapAlgP

(ζ, X)→
∏︂
j∈J

fib(Xj)

where fib(Xj) is a fibrant replacement of Xj and we skip the notation of a forgetful
functor from J-pointed P -algebras to P -algebras.

Proof. By the assumption, we have a homotopy pushout of nerves of classifiers
over P+J . Assume X is fibrant (otherwise take its fibrant replacement); since we
work with projective model structure on P -algebras, Xi is a fibrant simplicial set
for i ∈ I. We get a homotopy pullback of simplicial sets

AlgP+J
(N(P P+J

+J ), X) AlgP+J
(N(P P

+J), X)

AlgP+J
(N(P Id+J

+J ), X) AlgP+J
(N(P IdJ

+J ), X)

By adjunction

AlgP+J
(N(P IdJ

+J ), X) ∼ AlgIdJ
(N(IdIdJ

J ), i∗η∗X) ∼ MapAlgIdJ
(ζ, i∗η∗X) ∼

∏︂
j∈J

Xj
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since AlgIdJ
are just collections indexed by J . Similarly

AlgP+J
(N(P Id+J

+J ), X) ∼ AlgId+J
(N(IdId+J

+J ), γ∗X)

where γ : Id+J → P+J . By the description given by the Theorem 1.21, the
classifier IdId+J

+J is in each component a category with two objects 0, 1 and an
arrow 0 → 1. Its nerve is thus a pointed simplicial interval and the simplicial
hom above is in each component the space of path from the chosen point, which
is contractible.

Now by adjunction, the space in the upper right corner of the homotopy
pullback square is weakly equivalent to MapAlgP

(ζ, X).

A direct consequence is the following.

Corollary 1.31. Let X be a J-pointed P -algebra satisfying the assumption of the
preceding theorem, such that Xj is contractible for each j ∈ J . Then

MapAlgP+J
(ζ, X) ∼ MapAlgP

(ζ, X)
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2. Higher dimensional bimodules
To generalise the results from Batanin and De Leger [2019] to n-th iteration of
the +-construction, we need a notion of k-dimensional bimodules for 0 ≤ k ≤ n.
Bimodules, resp. infinitesimal bimodules for non-symmetric operads are going to
be special cases for n = 2, k = 1, resp. k = 0.

For what follows, let I+n be given by the polynomial

In
sn←− B∗n

pn−→ Bn
tn−→ In

Definition 2.1. Let ζn be the I+n-algebra ζI+n .

2.1 k-dimensional sets of vertices
Recall that T ∈ Bn is a tree, whose vertices are decorated by Bn−1 and edges by
In−1 in a compatible way. Recall also that its vertices are in a 1-to-1 correspon-
dence with the elements of p−1

n (T ). For a subset of its vertices, we will associate
a tree in Bn−1 and a corresponding subset of vertices of this tree.

Construction 2.2 (↓-construction). For a T ∈ Bn and V ⊆ p−1
n (T ), construct

T ↓ ∈ Bn−1 and V ↓ ⊆ p−1
n−1(T ↓) in the following way:

Assume all the vertices of T not in V are contracted (otherwise use the
monadic composition to contract them), as well as that the root is not in V
(otherwise add a unit as the new root). Let T ↓ be the decoration of the root
vertex. By the +-construction, there is a bijection between the vertices of T ↓ and
the incoming edges to the root in T .

Let V ↓ be the set of vertices of T ↓ with the corresponding edges connected to
the vertices of V . We will say V covers V ↓.

Note that if V doesn’t contain any pair of vertices lying on a path, the ↓-
construction gives a bijection between V and V ↓.

T ↓

i j

T

i

j

T ↓

Definition 2.3. For T ∈ Bn, V ⊆ p−1
n (T ) and 0 ≤ k ≤ n, we will define the

property of V being k-dimensional by induction on n− k:

1. V is n-dimensional if V = p−1
n (T ), i.e. if it contains every vertex of T .

2. V is k dimensional for k < n if it does not contain any pair of vertices lying
on a path and V ↓ ⊆ p−1

n−1(T ↓) given by the Construction 2.2 is k dimensional
in T ↓ ∈ Bn−1.

So V is k-dimensional if by applying the Construction 2.2 (n − k)-times, we
get a bijective correspondence between V and all vertices in a tree in Bk.
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Remark. If we consider T ∈ Bn as a constellation (via the Theorem 1.15), the
↓-construction amounts to contracting white circles to white vertices and erasing
other circles.
Remark. Let V be an (n − 1)-dimensional subset of T ∈ Bn. Since there are no
vertices of V lying above each other and V covers every vertex of the tree which
decorates the root vertex, there must be precisely one white vertex lying on each
path from root to leaf in T .

Definition 2.4. Let T ∈ Bn, V ⊆ p−1
n (T ) be k-dimensional and U ⊆ V be

(k − 1)-dimensional for 0 < k ≤ n. That means vertices of V are in a bijective
correspondence with all vertices of a tree T̃ ∈ Bk. Moreover, the vertices of U
correspond to a (k − 1)-dimensional set of vertices Ũ of T̃ . By the preceding
remark, every path from root to leaf in T̃ crosses a vertex in Ũ .

We will call vertices below U (or U−), resp. vertices above U (or U+) the
subset of vertices of V such that the corresponding vertices of T̃ are all the ones
lying below, resp. above Ũ .

T ↓

T T ↓

Remark. Since 0-dimensional sets of vertices have to be in a bijective correspon-
dence with vertices in a tree in B0 and there is precisely one tree with one vertex,
they are precisely the singleton sets of vertices.
Remark. The singleton set containing the root vertex is k-dimensional for every
0 ≤ k ≤ n, since the iterations of the ↓-construction always yield trees with only
one vertex.

2.2 Polynomial monads for (k, n)-bimodules
Recall that an I+n-algebra A is given by a collection of Ai for i ∈ In, along with,
for each T ∈ Bn, a multiplication morphism⨂︂

i∈p−1
n (T )

Ai → Atn(T ) (2.1)

satisfying the associativity and unit conditions.
We are now going to define k-dimensional ζn-bimodules as algebras of certain

polynomial monad. We can think of the multiplication for their algebras as the
preceding one, but where everything outside a k-dimensional set of vertices is
replaced by a unit (represeting the bimodule action of ζn, which is unit in every
component). That means, for each T ∈ Bn and a k-dimensional set of vertices
V ⊆ p−1

n (T ), there will be a multiplication morphism⨂︂
i∈V

Ai → Atn(T ) (2.2)
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Definition 2.5. Let Bimodk,n be the polynomial monad given by the polynomial

In ← B∗k,n → Bk,n → In

where Bk,n is the set of trees of Bn with vertices colored by two colors: white
(representing the bimodule) and black (representing the action of ζn), with the set
of white vertices k-dimensional, factored by the equivalence contracting the black
vertices and adding or removing black units (the operations of ζn can always
be uniquely contracted). We can always take a canonical representative of an
equivalence class, where the black vertices are maximally contracted and the
units removed.

B∗k,n is the same, but with one white vertex marked and the middle map
forgets the marking. The source and the target maps are the same as for I+n.
The monadic composition is given by inserting the given tree into a white vertex
(and contracting all black vertices for the canonical representative).

Definition 2.6. The algebras of Bimodk,n will be called (k, n)-bimodules, or
just k-dimensional bimodules where n is clear, and denoted Bimodk,n.

It is straightforwrad to see that the algebras of k-dimensional bimodules have
the multiplication morphisms described above.
Remark. Bimodn,n ≃ I+n, since in Bn,n, the set of white vertices is n-dimensional,
meaning every vertex is white and they are just the trees in Bn.
Example. For n = 2, the 1-dimensional bimodules are usually called simply ζ-
bimodules for a non-symmetric operads and 0-dimensional weak or infinitesimal
ζ-bimodules [Batanin and De Leger, 2019]. The notion given here is a direct
generalisation of these.

Definition 2.7. We define ζk,n = ζBimodk,n .

2.3 0-dimensional bimodules as categories
Since the operations of 0-dimensional bimodules B0,n are trees where the set of
white vertices is 0-dimensional, there is precisely one white vertex. So all the
operations are unary, meaning these polynomial monads are actually categories.

Definition 2.8. Let ΩRn be the category given by the linear monad Bimod0,n+1.

That means for the category of (0, n + 1)-bimodules in the category E ,

Bimod0,n+1(E) ≃ [ΩRn , E ]

The objects of the category ΩRn are the trees In+1 = Bn. From the description
of the polynomial monad, we can see the morphisms are generated by the active
part, corresponding to black vertices above the white vertex, i.e. the blowing up
of vertices (opposite of contraction)

T

S

:

T

→

S
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or deletion of a unary vertex

T

S

:

T

→ S

and the inert part, corresponding to the white vertex above a black vertex,
i.e. the inclusion of a subtree.

T

:

T

→

T

Proposition 2.9. The subcategory of active morphisms of ΩRn has a different
connected component for each target S ∈ In−1, which is isomorphic to the opposite
of the component of the absolute classifier (I+n)I+n indexed by S.
Proof. The active part doesn’t chang the target. The rest follows from the de-
scription of the classifiers in the Theorem 1.19.

Example. ΩR0 is the terminal category.
Example. ΩR1 is isomorphic to the simplicial category ∆. Its objects can be
considered as linear trees.
Example. ΩR2 is isomorphic to the category Ωp, the so called dendroidal category
of planar trees [Moerdijk and Toën, 2010].
Proposition 2.10. The opetope suspension maps Σn : In → In+1 extend to fully
faithful functors ΩRn−1 → ΩRn.
Proof. We know Σn is injective on objects. Since the morphisms are trees in
Bn = In+1 with vertices of two colors, apply Σn+1 to them, preserving the colors;
as it is an injective map, we have an injection on morphisms.

Now consider one of the generating morphisms given above in ΩRn between
objects which are suspensions of some objects of ΩRn−1 . As every vertex of these
trees is decorated by a suspension of an element of In−2, this morphism is a
suspension of a morphism of ΩRn .
Definition 2.11. Let ΩR∞ be the colimit of the sequence of functors Σn for
n ∈ N.

The objects of ΩR∞ are the stable opetopes I∞. For two trees from S ∈ Im

and T ∈ In representing the elements of I∞, m < n, we take suspensions of S
enought times to get S ′ ∈ In. Now the set of morphisms between S and T in ΩR∞

is in bijection with the set of morphisms between S ′ and T in ΩRn . In particular,
the morphisms of ΩR∞ have an active-inert factorization system.
Remark. Moerdijk and Weiss [2007] introduced the dendroidal category Ω, whose
objects are abstract trees and the morphisms are generated by blowing vertices
up, deletion of unary vertices and inclusion of subtrees. For every n, there is a
functor ΩRn → Ω, which forgets the decorations of the trees. These maps form
a cone over Ω and hence, we obtain a funcor ΩR∞ → Ω. We are going to study
this functor in a future work.
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3. Delooping
Recall that an algebra of Bimodk,n

∗ is (k, n)-bimodule A along with a map ζ → A.
Similarly, for an algebra of Bimodk,n

∗∗ , there are two such maps.
Explicitly, Bimodk,n

∗∗ is given by

In ← (B∗k,n)∗∗ → (Bk,n)∗∗ → In

where (Bk,n)∗∗ is a set of trees of Bk,n, where further assign to some white vertices
gray color of type 1 or 2 (representing the distinguished operations given by two
maps from ζk,n), factored by the equivalence retation generated by contractions
of a tree with only black vertices without type and gray vertices of the same type
(1 or 2), where the set of gray vertices is k-dimensional, to a gray corolla of this
type (since the operations of ζk,n bimodules can always be uniquely contracted).
(B∗k,n)∗∗ is the same with one white vertex marked.

Bimodk,n
∗ is similar, but with gray vertices only of one type.

The category of algebras of Bimodk,n
∗∗ will be denoted Bimodk,n

∗∗ .

Construction 3.1. For k < n, to each equivalence class of a tree T ∈ (Bk,n)∗∗,
we will assign a canonical representative where the gray vertices are contracted
as much as possible, except when in some subtree, the empty set of vertices is
k-dimensional - these subtrees are equivalent to same ones with black vertices.

T can be pictured as a constellation, i.e. a tree in In with circles, where each
circle is either black, white or gray of type 1 or 2. No white or gray circles can
be inside each other, since they correspond to a k-dimensional set of vertices.
Moreover, black circles without type inside black or gray circles can be erased
(which corresponds to contraction of black vertices without type or to a tree
where the root is gray).

We will show this tree is equivalent to the one where the gray circles are the
maximal possible. If k = n− 1 and there are gray circles of the same type above
each other, insert a black circle containing them both and contract them to one
gray circle - the set of gray vertices there is (n− 1)-dimensional. For k < n− 1,
let R be the set of vertices of T that have above them vertices from at least
two colors from white, gray 1 or gray 2 circles. Let c be a gray circle. By the
opposite of contraction, we can add a black circle without type that contains all
the vertices above c and all the vertices below, up to some vertex from R; if there
is another branch going from those vertices, it shall be contained in the circle as
well. Then it can be contracted to a gray circle of the same color as c.

Now, if the empty set of vertices inside a gray circle is k-dimensional, the
subtree inside this circle decorates a vertex of T and this vertex is equivalent to
a black one with the same decoration, so we can change the circe to a black one
and erase it (contracting the black vertex of T ).

Here is an illustration for the case (n, k) = (3, 1):

2
1 1 2

→

1 1 2

→

1 2
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Remark. For a tree in (Bn,n)∗∗, one can obtain the canonical representative by
simply contracting all gray vertices of the same type and removing gray units,
yielding a terminal object of the category above.

We want to use the Theorem 1.29. For that, we neet to show its assumption.

Lemma 3.2. For all 0 ≤ k ≤ n, the square

Bimodk,n Bimodk,n
∗

Bimodk,n
∗ Bimodk,n

∗∗

is homotopically cofinal.

Proof. Batanin and De Leger [2019] give a proof of this statement for non-
symmetric operads, which is Bimod2,2. We follow their argument, replacing
the planar trees with the trees in Bk,n.

So by the general result from the Theorem 1.29, we have for X ∈ Bimodk,n
∗

(0 < k ≤ n) the following weak equivalence

ΩMapBimodk,n(ζ, u∗(X)) ∼ MapBimodk,n
∗∗

(ζ, U∗(X))

where u and U are defined as in the Theorem 1.29.

3.1 Cofinality
We will now show that there is a homotopically cofinal map to Bimodk,n

∗∗ from
the monad where in operations, white vertices are confined to some (k − 1)-
dimensional subset. This is the crucial step in going from k-dimensional subsets
to (k − 1)-dimensional subsets.

Definition 3.3. For 0 ≤ k < n, let Bimodk,n
⊙ be the polynomial monad given

by

In ← (B∗k,n)⊙ → (Bk,n)⊙ → In

where (Bk,n)⊙ is a subset of (Bk+1,n)∗∗ satisfying the following condition: if the
(k + 1)-dimensional set of white and gray vertices is non-empty, there is a k-
dimensional subset such that all vertices below are gray of type 1 and all vertices
above are gray of type 2.

The category of algebras of Bimodk,n
⊙ will be denoted Bimodk,n

⊙ .
Our aim is to prove the following.

Theorem 3.4. There map of polynomial monads given by inclusion of sets

Bimodk−1,n
⊙ → Bimodk,n

∗∗

is homotopically cofinal.
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For the proof, we will closely follow what is done in Batanin and De Leger
[2019]. We will prove a somehow more general statement.

Definition 3.5. Let Bimodk,n
•→•←• be a polynomial monad for cospans of k-

dimensional bimodules A→ C ← B. Explicitly, it is given by the polynomial

{A, B, C} × In ← (B∗k,n)•→•←• → (Bk,n)•→•←• → {A, B, C} × In

where the elements of (Bk,n)•→•←• are the trees of Bk,n equipped with a label
in {A, B, C} called target label and for each white vertex a label in {A, B, C}
called source label such that if the target label is A, resp. B, then each source
label must be A, resp. B. (B∗k,n)•→•←• is the same, but with one vertex marked.
The middle map forgets the marking and source and target maps are given by
the source and target maps of Bimodk,n, along with the corresponding source or
target label.

We also have a version where the vertices with the label C are confined to
some (k − 1)-dimensional subset, below which are only vertices of B and above
which are only vertices of A.

Definition 3.6. Let Bimodk−1,n
•+• be the polynomial monad with the same de-

scription as Bimodk,n
•→•←•, but with a restriction on the set of operations: there

must be a (k−1)-dimensional subset of white vertices such that all white vertices
below it have label B and all white vertices above it have label A.

We are going to show the following.

Theorem 3.7. The map of polynomial monads given by inclusion of sets

Bimodk−1,n
•+• → Bimodk,n

•→•←•

is homotopically cofinal.

We have a commutative square of polynomial monads

Bimodk−1,n
•+• Bimodk,n

Bimodk,n
•→•←• Bimodk,n

id

u

where the horizontal maps are given by projections forgetting the labels. By the
Proposition 1.23, this induces a map of classifiers

F : (Bimodk,n
•→•←•)Bimodk−1,n

•+• → (Bimodk,n)Bimodk,n

To simplify notation, we will write X and Y for the domain and codomain of F .
By the description in the Theorem 1.21, in each component of X , the objects

are the operations of Bimodk,n
•→•←• and morphisms correspond to nested trees

with two levels of nesting, with circles labeled by A, B or C in a compatible way.
The source of the morphism is given by removing the circles and contracing black
vertices and the target by contracting the circles.
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B

A C

B
C

:
B A C

→
B C

In particular, there are morphisms with turn vertices with the label A or B to
a vertex with the label C. We will need them in the proof and that is why we need
to assume that in the (k−1)-dimensional set in the definition of Bimodk,n

•+• there
can be also vertices with labels A or B. We will then get cofinality Bimodk,n

⊙
and not for Bimodk,n - there would be no such morphisms.
Y is similar, but without the labels. F forgets the labels. It is an absolute

classifier, so it has a terminal object and its nerve is contractible. To show that the
nerve of X is contractible (meaning the corresponding map is homotopy cofinal),
we will prove that F induces a weak equivalence of nerves.

By the Quillen theorem A for small categories [Quillen, 1973], this is the case
if for any y ∈ Y , the comma category y/F is contractible.

Definition 3.8. For a functor F : C → D and y ∈ D, we will denote by by Fy

the fiber of F over y (the full subcategory of objects x ∈ C such that F (x) = y).
A functor f : C → D is smooth if for all y ∈ D, the canonical functor

Fy → y/F is a weak equivalence between nerves.

For every y ∈ Y , the fiber Fy is contractible, since it has a terminal object - y
with every white vertex with the same label as the target label. So it is enought
to prove that F is smooth. For that, we will use the Cisinski lemma.

Lemma 3.9 (Cisinski [2006], Proposition 5.3.4). A functor F : C → D is smooth
if and only if for all maps f : y0 → y1 in D and objects x1 in C such that
F (x1) = y1, the lifting category of f over x1 C(x1, f), whose objects are ar-
rows g : x → x1 with F (g) = f and the morphisms are commutative triangles
x x′

x1

g

g′
with the horizontal arrow from Fy0, has contractible nerve.

Proof of the Theorem 3.7. Let f : y0 → y1 be a map in (a component of) Y , x1
an object of X such that F (x1) = y1 and consider the lifting category X (x1, f).
It is isomorphic to the product of the lifting categories X (xv

1, f v), where v ranges
over white vertices of y1, xv

1 is the corolla around the vertex v with the color of
v in x1 and f v : yv

0 → yv
1 is the contraction to the corolla yv

1 around v from its
preimage under f .

So to prove that every lifting category is contractible, it suffices to show it for
the case when y1 is a corolla. If its label is A or B, the label in the sources must
be the same and the lifting category is the terminal category. Now assume the
label is C. The morphisms in the lifting category just change the labels of white
vertices of y0 - that is why we need to have this kind of morphism.

By the ↓-construction 2.2, the white vertices of y0 correspond to all vertices
of a tree y′0 ∈ Bk. The labels must be such that there is (k − 1)-dimensional set
with all vertices below having label B and all vertices above label A - otherwise,
we wouldn’t be able to contract it to a corolla by the operations from Bimodk,n

•+•.
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Proceed by induction on number of white vertices of y′0. If there is none, X (x1, f)
is the terminal category, thus contractible. Now for a general y0, let B be the full
subcategory of trees where the root of y′0 has label B and A the full subcategory
where everything above the root has label A. The union of A and B is the full
subcategory, the intersection is the terminal category and A is a cospan. B is
isomorphic to the product of analogous categories for the subtrees above the root
of y′0, which are contractible by induction. So X (x1, f) is contractible as well.

Proof of the Theorem 3.4. Let Z be the classifier for the map in the Theorem 3.4
and XC be the subcategory of X for objects with the target label C. There is a
map E : XC → Z that factors the trees by the defining equivalence of Bimodk,n

∗∗ .
We are again going to use the Cisinski lemma 3.9 to prove that E is smooth.

Consider a map f : y0 → y1 in (a component of) Z and x1 ∈ XC such that
E(x1) = y1. So y1 is obtained from x1 by bimodule contratcion of vertices with
labels A or B. f can be represented as a nested tree T ; blow up everything in T
outside the circles in the opposite way as x1 is contracted to y1 to obtain a tree
T ′. Now the objects of XC(x1, f) correspond to nested trees, same as T outside
the circles, where there is a zigzag of contractions between subtrees in their circles
and the subtrees in the circles of T ′. The morphisms are such contractions. So
XC(x1, f) is the product of fibers ES for subtrees S in the circles in T .

Let ET be a fiber of T , E ′T be ET factored by those generating equivalences
of (Bk,n)∗∗ where the k-dimensional set in nonempty and πT : ET → E ′T the
projection onto it. By the Construction 3.1, the fibers of πT have terminal objects,
so they are contractible. Let now g : y0 → y1 be a morphism in E ′T turning a
subtree Q with the empty set of vertices k-dimensional to a gray subtree and
x1 an object of ET such that πT (x1) = y1. The lifting category ET (x1, g) has
again a terminal object, where the source of the lift of g is x1 with the subtree
corresponding to Q turned black. So πT is smooth and induces a weak equivalence
of nerves.

But E ′T has an initial object (the class where there are no gray subtrees with
the empty set of vertices k-dimensional). In conclusion, E is smooth and by the
same reasoning as before, E induces a weak equivalence of nerves.

3.2 First two deloopings
Definition 3.10. For b ∈ Bn, we mean by its arity the cardinality of the fiber
p−1

n (b). By the +-constuction, this is equivalent to the number of vertices when
T is considered as an I+n-tree.

Specifically, i ∈ In = Bn−1 is unary if |p−1
n−1(i)| = 1, i.e. as an I+n tree, i

is a corolla with single vertex. Similarly, i is nullary if |p−1
n−1(i)| = 0, i.e. as an

I+n-tree, i is a free living edge without vertices.

Proposition 3.11. The category Bimodn−1,n
⊙ is isomorphic to the category of

(n− 1, n)-bimodules with a chosen point in each i ∈ In = Bn−1 unary.

Proof. By the +-construction, whe have a free living edge in Bn decorated by the
target of i whose target is i. The empty set of vertices there is n-dimensional,
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so it is also an operation of Bimodn−1,n
⊙ - in pictures, we will color it red. This

represents the chosen point in the component i.
Now, the operations of Bimodn−1,n

⊙ consist of trees of white vertices and gray
vertices of type 1 and 2, such that there is a (n − 1)-dimensional set with all
vertices below it gray of type 1 and all vertices above it gray of type 2.

Let T be an operation of Bimodn−1,n
⊙ . The preceding means every path from

root to leaf either crosses a white vertex, or there is an edge where gray vertices
change from type 1 to type 2 (or the whole path is gray of the same type - in
that case, choose the edge above the leaf for type 1 and below root for type 2).
Consider the tree T̃ , which is T with white vertices on these edges - its set of
white vertices is thus (n − 1)-dimensional, so it is an operation of Bimodn−1,n.
Now substitute the red edges into those vertices.

We see the set of operations is the same as when we add the free living edges
representing the chosen points in the unary components (which we color red).

By the description above, the constant operations of Bimodn−1,n
⊙ (where no

vertex is white) correspond to decompositions of the target tree into subtrees
(given by the decorations of gray vertices of type 2).

T1 T2 T3 T4

: T1

T2
T3

T4

Let Fk,n be the free algebra functor - left adjoint to the forgetful functor
to collections Uk,n : Bimodk,n → SSetIn . Let e1 be the collection indexed by
In, which is 1 in every component indexed by a unary tree and ∅ elsewhere. Let
σn = Fn−1,n(e1). The preceding proposition says having an algebra of Bimodn−1,n

⊙
is the same an algebra X of Bimodn−1,n, along with a map of collections e1 →
U(X). By adjunction, this means

Bimodn−1,n
⊙ ≃ σn/Bimodn−1,n

σn is, by the previous proposition, in component T the set of decomposition of T
into subtrees, with the natural (n− 1)-dimensional bimodule composition.

Theorem 3.12. For n ≥ 2 and X ∈ AlgI+n
∗

, if Xi is contractible for each
i ∈ In = Bn−1 unary, we have a delooping

ΩMapBimodn,n(ζ, X) ∼ MapBimodn−1,n(ζ, X)

where we skip writing down the forgetful functors.
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Proof. By the Theorems 1.29 and 3.4, ΩMapAlgI+n
(ζ, X) ∼ MapBimodn−1,n

⊙
(ζ, X)

where the forgetful functors are skipped. In order for the Corollary 1.31 to apply,
the square in its assumption needs to be homotopically cofinal. Batanin and De
Leger [2019] give a proof for the case Bimod1,2. We follow the same argument
in our case. The result follows from the Proposition 3.11 and Corollary 1.31.

Proposition 3.13. The category Bimodn−2,n
⊙ is isomorphic to the category of

(n− 2, n)-bimodules with a chosen point in each i ∈ In = Bn−1 nullary (each free
living edge).

Proof. Consider a trunk (a tree with no leaves) in Bn with a black vertex. Its
target is a free living edge, i.e. some i nullary. The empty set of its vertices is
(n − 1)-dimensional, so it is an operation of Bimodn−2,n

⊙ - in pictures, we will
color it red. It represents the chosen point in the component i.

The empty set of vertices being (n− 1)-dimensional also means this trunk is
equivalent to a trunk with a gray vertex of type 1 or 2 (see the Construction 3.1).

Now for a tree T ∈ Bn, we are in a similar situation as in the previous
proposition, but for a tree T ↓ ∈ Bn−1 obtained by the ↓-construction 2.2, which
also assigns its vertices white or gray colors. It means every path in T ↓ from root
to leaf either crosses a white vertex, or there is an edge where gray vertices change
from type 1 to type 2 (or the whole path is gray of the same type - we deal with it
the same way as before). Now consider a tree T̃

↓ ∈ Bn−1, which is T ↓ with white
vertices inserted inside those edges. T is equivalent a tree in Bn with the root
decorated by T̃

↓, the edges corresponding to the added white vertices connected
to red trunks and the edges corresponding to the other vertices connected to the
same vertices as in T .

This shows Bimodn−2,n
⊙ has the same operations as when we add trunks

representing chosen points in each nullary component, which replace units in T ↓

by red free living edges.

T T ↓

By the description above, the constant operations of Bimodn−2,n
⊙ (where no

vertex is white) correspond to cuts of the target tree on every path from root
edge to a leaf edge.

:

Let e0 be the collection indexed by In, which is 1 in every component indexed
by a nullary tree and ∅ elsewhere. Let τn = Fn−2,n(e0) - the algebra freely
generated by 1 in nullary components. In component T , it is the set of cuts
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of T as above with the natural (n − 1)-dimensional bimodule composition. By
adjunction as before, the preceding proposition says

Bimodn−2,n
⊙ ≃ τn/Bimodn−2,n

Theorem 3.14. For n ≥ 2 and X ∈ Bimodn−1,n
∗ , if Xi is contractible for each

i ∈ In = Bn−1 nullary, we have a delooping

ΩMapBimodn−1,n(ζ, X) ∼ MapBimodn−2,n(ζ, X)

where we skip writing down the forgetful functors.

Proof. By the same virtue as in the proof of the Theorem 3.12, we can use the
Corollary 1.31, along with the Proposition 3.13.

Using the Theorems 3.12 and 3.14 together, for X multiplicative (n, n)-bimodule,
if Xi is contractible for every i unary and nullary, we have a double delooping

Ω2MapBimodn,n(ζ, X) ∼ MapBimodn−2,n(ζ, X)

Corollary 3.15 (Turchin [2014], Dwyer and Hess [2012]). For a multiplicative
non-symmetric operad X such that X1 and X0 are contractible,

Ω2MapNOp(ζ, X) ∼ holim∆X

where we skip writing down the forgetful functors.

Proof. Apply the Theorems 3.12 and 3.14 for n = 2, since the (2, 2)-bimodules
are non-symmetric operads, Bimod0,2 is the small category ΩR1 = ∆ and

MapAlg∆
(ζ, X) ∼ holim∆X

3.3 Third delooping
For n ≥ 3 and k < n−2, we no longer get a characterisation of Bimodk,n

⊙ in terms
of bimodules with chosen points in some components.

Proposition 3.16. An operation of Bimodn−3,n
⊙ can be characterised as a tree

T from Bn with black and white vertices, where black vertices can be assumed to
be contracted, allong with the following data:

Applying the ↓-construction 2 times to get a tree T ↓↓ ∈ Bn−2, we never get
two white vertices lying on the path and there is a distinguished set of edges E of
T ↓↓ such that if white units were added on these edges, the set of white vertices
would become (n− 3)-dimensional.

Proof. If T is an operation of Bimodn−3,n
⊙ , we are in a similar situation in T ↓↓

as before: E is the set of edges that connect gray vertices of different types, or
root edge if the root is gray of type 2, or leaf edge if the leaf is of type 1.

In the opposite direction, having a choice of edges E in the tree T ↓↓, color
the vertices below by gray of type 1 and the above by type 2. Let T̃

↓ be T ↓ with
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black vertices contracted. ↓-construction gives a correspondence of edges above
the root of T̃

↓ and vertices in T ↓↓; insert units on the edges corresponding to
gray vertices and expand the tree back the same way it was contracted from T ↓.
Add vertices to T which replace those units with free living edges and color them
accordingly, yielding a tree T ′ ∈ (Bn−3,n)⊙.

Construction 3.1 ensures that every T with the choice of edges E is equivalent
to the maximal representative of its equivalence class.

T T ↓ T ↓↓

By the description above, the constant operations of Bimodn−3,n
⊙ (where no

vertex is white) correspond to cuts of the target of the target tree on every path
from root edge to a leaf edge. So it is a similar situation as before, but one level
below.
Construction 3.17. There is a map of polynomial monads δk,n : Bimodk,n →
Bimodk,n−1 for k < n given by the diagram

In B∗k,n Bk,n In

In−1 B∗k,n−1 Bk,n−1 In−1

tn−1
⌟

(−)↓ tn−1

where tn−1 is the target map and the map (−)↓ is given by Construction 2.2 from
the definition of the k-dimensional set of vertices; by definition, the set of white
vertices in the image is k-dimensional, so the map is well defined.

To avoid clutter, we will omit the indices and just write δ.
So the algebra δ∗τn−1 is in the component T the set of cuts of tn−1(T ) and

the Proposition 3.16 says
Bimodn−2,n

⊙ ≃ δ∗τn−1/Bimodn−2,n

According to a general theorem of De Leger [2022][Theorem 4.13], for X ∈
δ∗τ/Bimodn−2,n, there is a fibration sequence

Mapδ∗τ/Bimodn−2,n(1, X)→ MapBimodn−2,n(1, X)→ MapBimodn−2,n(δ∗τ, X)
where we skip writing down the forgetful functors. Note we don’t have to assume
δ∗τ to be cofibrant, since according to Batanin and Berger [2017], algebras for
the polynomial monads considered form a left proper model category, so thanks
to Rezk [2002, Proposition 2.7], a weak equivalence α → β induces a Quillen
equivalence of the slice categories over them.

So contractibility of the last space of the fibration sequence would yield the
third delooping.

Unfortunately, for further delooping, one cannot apply the construction from
the preceding proposition, since we cannot replace units by free living edges for
the tree T ↓↓. We can only modify the tree one level below, in limited ways.
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3.4 The case n = 3
Recall that the category ΩR2 = Bimod0,3 is the category Ωp, i.e. the category,
whose objects are planar trees and morphisms are generated by the active part,
which is blowing up of vertices (the opposite of contraction) or deleting a unary
vertex, and the inert part, which are inclusions of subtrees.

Denote by α the presheaf δ∗τ2 ∈ Bimod0,3 = [Ωp, SSet]. By the Proposition
3.16, Bimod0,3

⊙ are the α-pointed presheaves α/[Ωp, SSet]. α assigns to a tree
T a cut in its target, which for a linear tree is just a single edge. Because the
leaves of T correspond to the vertices of its target, α can be pictured as assigning
spaces between leaves, which is in bijection with 2-dimensional strata generated
by emedding the planar tree in the plane.

a b c d

α
↦→ {a, b, c, d}

Let ∫ α be the Grothendieck construction of α, i.e. the category, whose objects
are pairs (T, t) with T an object of Ωp and t ∈ α(T ) and morphisms (T, t)→ (S, s)
given by each f : T → S in Ωp such that α(f)(T ) = S.

According to De Leger [2022][Theorem 4.13], for X ∈ α/[Ωp, SSet], as in the
previous section, there is a fibration sequence

Mapα/[Ωp,SSet](1, X)→ Map[Ωp,SSet](1, X)→ Map[Ωp,SSet](α, X)

where we skip writing down the forgetful functors. By adjunction, the rightmost
space is equivalent to

Map[∫ α,SSet](1, π∗X) ∼ holim∫ απ∗X

where π : ∫ α→ Ωp is the projection given by the Grothendieck construction. So
in order to have the third delooping, we need to have this space contractible.

3.4.1 Contractibility of homotopy limit over ∫ α

Definition 3.18. Let b be set of morphisms in Ωp which blow up the trunk, i.e.
maps in the active part of Ωp which only add a nullary vertex.

→

Let X be a presheaf in [Ωp, SSet]. Florian De Leger has proven that if image
of every map in b has a retraction, i.e. there is a map r such that r◦X(s) = id for
every s ∈ b, then holim∫ αX ∼ X , where denotes the component of the trunk -
the tree with one vertex and no leaves. The proof constructs an explicit homotopy
in this homotopy limit. It will be published in our joint paper containing the
results of this thesis.

Here, we give just an argument why such result is plausible.
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Proposition 3.19. For X ∈ [Ωp, SSet], if every map which is the image of
blowing up of a trunk has a retraction, every natural transformation α ⇒ X
is uniquely determined by the map ∗ = α → X .

In other words, the natural (in X) morphism

Hom[Ωp,SSet](α, X)→ HomSSet(1, X )

is an injection.

Proof. Label the 2-strata left to right by numbers from 0. So αT = n, where n is
the number of strata of T and n is the set {0, . . . , n− 1}. Note the active part of
Ωp does not change the value of α. For trees whose number of strata is n, there
is a unique active map from the corolla of n− 1 inputs.

Now suppose we have a map 1→ X . Consider a corolla Cn with n−1 inputs
and C ′n having in addition a trunk in every strata. There are n maps from the
trunk to it, which determine the value of αC′

n
= n → XC′

n
. Since blowing up

trunks has a retraction, this determines αCn = n → XCn . The active map from
Cn to any tree T with n− 1 leaves determines αT = n→ XT .

1 n n

X XC′
n

XCn

3.4.2 Desymmetrizations of symmetric operads
Batanin and Berger [2017, Definition 9.4] introduce the monad S, whose algebras
are symmetric operads. It is given by the polynomial

N← Otr∗ → Otr→ N

where Otr are isomorphism classes of ordered rooted trees [Batanin and Berger,
2017, Section 13.3]. Each such isomorphism class has a unique representative by
a planar rooted tree with a linear order on its leaves.

Otr∗ are ordered rooted trees with one vertex marked. The monadic composi-
tion is given by inserting the tree into the marked vertex, reordering the subtrees
above the marked vertex so that they match the linear order of the leaves of the
inserted tree.

We will denote by SOp the category AlgS .

Construction 3.20 (Desymmetrization). For every n > 0, there is map I+n →
S, given by the diagram

In B∗n Bn In

N Otr∗ Otr N

|−|
⌟

o |−|
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where |i| is the cardinality of the fiber p−1
n−1(i) for i ∈ In = Bn−1 (which by the +-

constuction is the number of vertices of i if i is considered as an I+n−1-tree). The
map o is given by choosing for each i ∈ In a linear order on p−1

n−1(i), inducing a
linear order on the incoming edges of each vertex of an In-tree b ∈ Bn. Moreover,
since its leaves are in a bijective correspondence with the fiber of its target, this
induces a linear order on them. So we get an ordered rooted tree.

Denote by desn the restriction functor SOp = AlgS → AlgI+n induced by this
map, which we will call n-desymmetrization.

In particular, for a X ∈ SOp and T ∈ In, desn(X)T = X|T |.
Remark. des2 is the classical desymmetrization of symmetric operads to non-
symmetric operads.

Proposition 3.21. Let O be a symmetric operad such that its 3-desymmetrization
des3(O) is multiplicative and O∗ the presheaf in [Ωp, SSet] induced by des3(O).
Then the image of every morphism of b under O∗ has a retraction.

Proof. Let s : T → T be a map in b. As an operation of Ωp = Bimod0,3, it is
given by a tree b ∈ Bn with two colors of the form

T

. . .

O∗(s) is induced by the morphism of symmetric operads o(b), where o is the map
from the Construction 3.20.

O|T | ⊗O2 → O|T |+1 = O
|T |

There is also the following map for the symmetric operad O:

O
|T |
⊗O0 → O|T |

. . .

Precomposition with the map 1 → O0 (given by the multiplicative structure
on des3(O)) in the second component yields the sought retraction.

Since for the 2-desymmetrization of Kontsevich operad K [Kontsevich, 1999],
we get the result [Sinha, 2006]

Emb(R1,Rn) ∼ holim∆(des2K)∗

we expect its analogues in opetopic context to be also significant regarding the
applications in geometry. Specifically, we conjecture that des3K has a multiplica-
tive structure, so the preceding results apply to it. Its geometric meaning remains
an open question.

34



Conclusion
We have defined Bimodk,n for n ∈ N, 0 ≤ k ≤ n, which generalize bimodules,
resp. infinitesimal bimodules for non-symmetric operads. We showed that in the
cases k = n− 1 or k = n− 2, analogous delooping results hold as in the Turchin-
Dwyer-Hess theorem. Already for k = n−3, the reduceness condition turned out
to be more complex and we still don’t have full understanding of what it means
geometrically. For k ≤ n− 4, the conditions require further investigation.

The hope is that there is always an algebra αk,n ∈ Bimodk,n such that

Bimodk,n
⊙ ≃ αk,n/Bimodk,n

meaning the αk,n is representing a sort of obstruction for the delooping to be
possible. It can also be suspected that these algebras stabilize, meaning that
αk,n = (δ∗)n−mαk,m, where δ is the map given by the Construction 3.17, however
this is completely hypothetical at this stage. We have seen this behavior with
αn−2,n = τn and αn−3,n = δ∗αn−2,n−1. Unfortunately, the argument seems to
break at k = n− 4.

As there are non-symmetric operads coming from the study of configuration
spaces, we expect to be able to construct algebras of I+n that have significance to
their geometry. We conjecture to have the result of triple delooping for the higher
desymmetrization of the Kontsevich operad, but the question of its geometric
meaning remains open.

The properties of the introduced categories ΩRn for n ∈ N ∪ {∞} also open
some paths for future research. On one hand, there is a relationship to the the
dendroidal category Ω of Moerdijk and Weiss [2007] made explicit by the maps
ΩRn → Ω forgetting the labels. On the other hand, there are various notions of
categories of opetopes and opetopic sets, introduced in Baez and Dolan [1998] and
investigated for example in Cheng [2004]. In future, we would like to examine their
relation to presheaves on ΩRn (satisfying certain properties) and the potential of
utilizing them as models of weak n-categories. In particular, as opetopes are
certain trees, they are amenable for a straightforward computer representation.

The results of this thesis are going to be submitted to a journal in a joint
article with Florian De Leger.
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