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Abstract: We study the application of the QR decomposition in the theory of
Green elastic solids with emphasis on transversely isotropic materials such as
fiber-reinforced materials. We provide a methodology, how to use the QR de-
composition to describe materials with general fiber orientation including curved
fibers. We then focus on the so-called conjugate stress / strain basis model, and we
show that for isotropic materials the model is equivalent to the standard model of
Green elastic solid. We also provide a methodology, how to describe transversely
isotropic materials using the QR decomposition. Next, we consider the popular
standard reinforcing material model with spatially-varying fiber directions and
fiber stiffnesses, and we perform numerical experiments in various geometries.
To our best knowledge, our implementation is the first implementation of numer-
ical solvers for QR based models with spatially-varying fiber directions. Finally,
we compare the results for the conjugate stress / strain model with the results
for the standard model of Green elasticity and linear elasticity.
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Introduction

Elasticity and matrix decompositions
The most frequently studied response of continuous solid bodies is arguably the
elastic response. The elastic response can be vaguely characterized as the ”ability
of a deformed material body to return to its original shape and size when the
forces causing the deformation are removed” (Bri [2022]).

The mathematical study of elastic response starts in 1660 by English polymath
Robert Hooke (1635–1703) who formulated Hooke law for the one dimensional re-
sponse of elastic solids. An important landmark in the research of the elastic solids
is the discovery of Doyle-Ericksen formula, which effectively describes the fully
three-dimensional response of elastic solids to finite deformations. The Doyle-
Ericksen formula gives a relation between a thermodynamic potential (Helmholtz
free energy), the deformation and the Cauchy stress tensor. The elastic solid
materials wherein the stress is given as a derivative of a potential with respect to
a deformation measure are referred to as the Green elastic solids or hyperelastic
solids.

The description of material response is then fully encoded in the chosen for-
mula for the potential. Traditionally, the potential is written as a function of
the standard invariants of the left Cauchy–Green tensor, and the deformation
gradient is traditionally decomposed using the polar decomposition. The polar
decomposition splits the deformation gradient into an orthogonal matrix (rota-
tion) and a symmetric positive definite matrix (stretch), hence it allows one to
make the material response independent of rigid body rotations.

Some aspects of the traditional approach are however not convenient in prac-
tice. In particular, Criscione [2004] has shown that the use of principal ma-
trix invariants is not optimal from the perspective of experimental analysis as
it may lead to an experimental error propagation. Furthermore, the description
of anisotropic materials with standard pseudo-invariants might be clumsy and
inconvenient.

As an alternative to the standard polar decomposition of deformation gradi-
ent, one might also use other matrix decompositions such as the QR decompo-
sition. The QR decomposition splits the deformation gradient into a product of
an orthogonal matrix (rotation) and an upper-triangular matrix (stretch), and in
continuum mechanics context it has been first investigated by McLellan [1976].
Recently the use of QR decomposition has been revisited by Srinivasa [2012],
who has argued that the QR decomposition indeed addresses the aforementioned
issues related to the use of standard polar decomposition.

In this thesis we study the applications of the QR decomposition in the elas-
ticity and compare it with the standard theory of Green elastic solids and the
linear elasticity. We focus on the model presented in Erel and Freed [2017], which
uses the QR decomposition of the deformation gradient to model anisotropic pla-
nar materials (such as biological membranes). We study the equivalence of both
approaches to Green elasticity and, in particular, we investigate the possibility
of numerical solution of governing equations arising in material models based on
the QR decomposition.
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Thesis outline
The thesis is divided into four chapters. The first chapter provides an overview
of both matrix decompositions as well as theirs physical interpretation.

The second chapter is devoted to the standard theory of Green elastic solids
and linear elasticity. We introduce both theories and specify, how they describe
transversely isotropic materials (e.g. fiber-reinforced materials). We also briefly
discuss both problems mentioned above, i.e. the propagation of measurement
errors and the description of anisotropic materials.

In the third chapter we finally focus on the QR decomposition. We provide
a way how we can handle transversely isotropic materials with axis of symmetry,
which is not straight. Then we study the conjugate stress / strain basis model
presented in Erel and Freed [2017]. We show, that for isotropic materials, the
model is equivalent to the standard model of Green elastic solid. Furthermore we
show, how we can describe transversely isotropic materials in this framework.

The last chapter contains numerical experiments. We perform numerical com-
putations with all three mentioned models (standard Green elasticity, linear elas-
ticity and conjugate stress / strain basis model) and compare the results. All com-
putations are performed with the so-called standard reinforcing material, which
is a popular example of transversely isotropic material.
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1. Matrix decompositions
QR decomposition can be used to solve systems of linear equations and it is a
basis for QR algorithm, which is used to compute eigenvectors and eigenvalues
of matrices. It is direct and important consequence of Gram-Schmidt process.

History of Gram-Schmidt process dates back to the 18th century to the French
polymath Pierre-Simon Laplace (1749 - 1827) who used it on a least square prob-
lem. It was however the article Zur Theorie der linearen und nichtlinearen In-
tegralgleichungen published in 1907 by German mathematician Erhard Schmidt
(1876 - 1959) which popularized this orthonormalization technique. In the article,
focused on study of integral equations, the author mentions that the technique
was already used in paper Über die entwickelung reeler funktionen in reihen mit-
telstder methode der kleinsten quadrate published in 1883 by Danish actuary and
mathematician Jørgen Pedersen Gram (1850 - 1916).1 Nowadays Gram-Schmidt
process is a part of standard curriculum of linear algebra courses.

This chapter introduces both polar and QR decompositions. We compare
them and present a way, how we can interpret both decompositions.

1.1 Notation
In this section we define basic concepts and notation that we use (unless men-
tioned otherwise).

Real numbers are denoted as R and Rm×n denotes a matrix with m rows
and n columns. Scalars are marked with italic letters, vector with bold letters
and tensors with double struck letters.

Transposition of a matrix A is denoted as A⊤ and A−1 means an inverse matrix
of A (assuming it exists). A transposed inverse matrix is marked as A−⊤. Deter-
minant of a square matrix A is denoted as detA, TrA denotes a trace of A and its
cofactor is marked as cof A, which is defined as cof A = (detA)A−⊤. An identity
matrix is denoted as I and zero matrix as O.

An inner product of vectors a and b is denoted as a · b. Standard Euclidean
norm of a vector is marked as ∥a∥. By tensor product of two vectors we mean
a ⊗ b := ab⊤. We use the following inner product on a space of matrices:
A : B = Tr

(︂
A⊤B

)︂
. This inner product leads directly to the Frobenius norm

∥A∥ :=
√︂

Tr (A⊤A).
The symbol u means displacement, deformation gradient is denoted as F,

spatial velocity gradient as L, left and right Cauchy-Green strain tensors as B
and C. Cauchy stress tensor is marked as T, Kirchhoff stress tensor as S and first
Piola-Kirchhoff stress tensor as TR.

Helmholtz free energy is marked as ψ, entropy as S, internal energy as U and
work as W .

Density is denoted as ρ. Bulk modulus is denoted as K, P-wave modulus as
M , Young modulus as E, Poisson ratio as ν, shear modulus as G and Lamé’s
parameter as λ.

1Informations taken from Leon et al. [2013].
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The subscript R is used to denote quantities in the reference configuration,
i.e. ρR means the density in the reference configuration.

We use the Einstein summation convention. That it, the repeated index in a
single expression (that is not used elsewhere) implies summation over that index.
We do not distinguish between the lower and upper indices of vectors and tensors.
Remark. In matrix analysis, orthogonal matrices are usually denoted by Q and
upper triangular matrices by R. However in continuum mechanics R typically
means a rotation, which is an orthogonal matrix, which causes a conflict in no-
tation.

There are two ways how to solve this problem. One possibility is to denote
the QR decomposition of the deformation gradient as F = Q˜︁F. This is used for
example in Srinivasa [2012] or Erel and Freed [2017].

Another possibility is to denote the QR decomposition as F = RU . This is
used for example in Freed et al. [2019], where the term ”Laplace stretch” for the U
was coined. In this work we use the this variant.

1.2 Polar decomposition
The polar decomposition is a useful tool in the continuum mechanics. It allows
us to decompose the deformation gradient F to a rotation R and stretch U. The
matrix R is a unitary matrix with determinant equal to 1. This means that the
matrix preserves volume and thus can be interpreted as a rotation. The matrix U
is a symmetric positive definite matrix. Since R preserves a volume, any changes
in the shape must be induced by the matrix U. The polar decomposition thus
allows us to ”filter out” the rotation to get the stretch, which is most of the time
of our interest.

Theorem 1 (Polar decomposition). Let A ∈ Rn×n be such that detA > 0. Then
there exist unique symmetric positive definite matrices U and V and an orthogonal
matrix R, detR = 1 such that

A = RU,

A = VR.

Proof. Let ˜︁V˜︁D˜︁U be the singular value decomposition of A. Then ˜︁V and ˜︁U are
orthogonal matrices and ˜︁D is a diagonal matrix with positive elements on the
main diagonal. We can then define U,V and R in the following way:

U = ˜︁U⊤ ˜︁D˜︁U,
V = ˜︁V˜︁D˜︁V⊤,

R = ˜︁V˜︁U.
Then A = RU = VR, U and V are symmetric and positive definite (because ˜︁D has
positive elements on its diagonal) and R is a proper orthogonal matrix, because
detA = detR detU and detA, detU > 0, which implies that detR = 1.

The only thing that remains to show is the uniqueness. It is sufficient to
prove the uniqueness of U and V, because we then can set R to be equal to AU−1.
Let RU and R′U′ be two distinct polar decompositions of A. Then A⊤A = U⊤U =
U2 = U′⊤U′ = U′2. Since U and U′ are positive definite, we can write U =

√
A⊤A
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and U′ =
√
A⊤A. However the square root of a positive definite matrix is unique,

which implies U = U′. The uniqueness of V can be shown in a similar way.

In the continuum mechanics setting, the polar decomposition is closely related
to the left and right Cauchy strain tensors B and C:

B = FF⊤ = VR (VR)⊤ = VV⊤ = V2,

C = F⊤F = (RU)⊤
RU = U⊤U = U2.

An advantage of the polar decomposition is that once we know it in one basis,
it is easy to compute in another basis. Let Q be an orthogonal matrix. Then the
polar decomposition of a matrix F′ = QFQ⊤ has the following form:

F′ = QRUQ⊤ = QRQ⊤QUQ⊤ = R′U′.

1.3 QR decomposition
The polar decomposition is not the only way how we can decompose the deforma-
tion gradient into a rotation and a strain, as we can use the QR decomposition.
The QR decomposition factors a matrix to a product of an orthogonal matrix
and an upper triangular matrix. Thus using the QR decomposition we can de-
compose the deformation gradient F to the rotation R and the stretch U , which
is sometimes called the Laplace stretch.

One advantage of using the QR decomposition instead of the polar decompo-
sition, is that the Laplace stretch U is nothing else than Cholesky factorization
of a right Cauchy-Green strain tensor C:

C = F⊤F = (RU)⊤RU = U⊤U . (1.1)

Contrary to the polar decomposition, it is not easy to transform the QR decom-
position into another basis.

1.3.1 Gram-Schmidt process
The QR decomposition is nothing else than an application of the Gram-Schmidt
process on a matrix. The process is a method, how to orthonormalize a set of
vectors. It takes a finite and linearly independent set of vectors and returns a set
of vectors, that are mutually orthonormal and span the same space as the vectors
before the orthonormalization.

If u1, . . . ,un are linearly independent vectors, then the Gram-Schmidt process
can be written in the following way:

1. v1 = u1
∥u1∥ ,

2. wk = uk −∑︁k−1
i=1 (uk · vi) vi k = 1, . . . , n,

3. vk = wk

∥wk∥ .

The vectors v1, . . . ,vn are the resulting orthonormal vectors.
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Theorem 2 (QR decomposition). Let A ∈ Rn×n be an invertible matrix. Then
there exist an orthogonal matrix Q and an upper triangular matrix R with positive
elements on its diagonal, such that A = QR. These matrices are unique.

Proof. Let us denote column vectors of the matrix A by u1, . . . ,un. Now we
can use the Gram-Schmidt process to get the orthonormal vectors v1, . . . ,vn and
unnormalized orthogonal vectors w1, . . . ,wn. Then we can write

uk = v1 · ukv1 + . . .+ vk−1 · ukvk−1 + ∥wk∥vk.

This can be written in a matrix in the following way:

(u1| . . . |un) = (v1| . . . |vn)

⎛⎜⎜⎜⎜⎝
∥w1∥ v1 · u2 . . . v1 · un

0 ∥w2∥ . . . v2 · un
... ... . . . ...
0 0 . . . ∥wn∥

⎞⎟⎟⎟⎟⎠ .

It remains to prove the uniqueness. Let A = QR = Q′R′ be two distinct
QR decompositions of the matrix A. Then Q⊤Q′ = RR′−1 =: B. This matrix is
orthogonal and upper triangular. This implies that B11 = 1 and Bk1 = 0, k =
2, . . . , n. Due to the orthonormality of the column vectors, we see that B21 = 0.
But also Bk2 = 0, k = 3, . . . , n. This means that B22 = 1, because the upper
triangular matrices R and R′ (and therefore also B) have positive elements on the
diagonal (this can be seen from the construction). Using an induction and the
same reasoning, we conclude that B = I.

1.3.2 QR decomposition in two dimensions
The case of two dimensions is trivial enough that the analytic formulas for the
QR decomposition of the deformation gradient have a very simple form:

F = RU , (1.2a)

R =
(︄

cos θ sin θ
− sin θ cos θ

)︄
, (1.2b)

U =
(︄
a aγ
0 b

)︄
, (1.2c)

where

sin θ = −F21√︂
F 2

11 + F 2
21

, (1.3a)

cos θ = F11√︂
F 2

11 + F 2
21

, (1.3b)

a =
√︂
F 2

11 + F 2
21, (1.3c)

b = F11F22 − F12F21√︂
F 2

11 + F 2
21

, (1.3d)

γ = F11F12 + F21F22

F 2
11 + F 2

21
. (1.3e)
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Since U is by (1.1) also Cholesky factorization of C, we can also write its
elements in terms of elements of C:

a =
√︂
C11,

γ = C12

C11
,

b =
√︄
C22 − C2

12
C11

.

Because U is upper triangular matrix, it is easy to compute its inverse (which
is also upper triangular) and the right Cauchy-Green strain tensor C:

U−1 =
(︄

1
a

−γ
b

0 1
b

)︄
, (1.4)

C = U⊤U =
(︄
a2 a2γ
a2γ a2γ2 + b2

)︄
. (1.5)

Principal invariants2 of C can be expressed in terms of elements of Laplace
stretch U :

I1(C) = TrC = Tr
(︂
U⊤U

)︂
= a2

(︂
1 + γ2

)︂
+ b2, (1.6a)

I3(C) = detC = det
(︂
U⊤U

)︂
= a2b2. (1.6b)

1.4 Geometrical interpretation of polar and QR
decompositions

Both matrix decompositions serve the similar manner. That is, to decompose the
deformation gradient into the rotation and the strain, as both decompositions
results in product of the orthogonal matrix and either symmetric positive defi-
nite or upper triangular matrix. Thus we would expect that we can physically
interpret them in a similar way. The orthogonal matrices R and R can of course
be interpreted as rotations, as they both preserve volume.

The interpretation of U (or V) and U is a little bit more complicated. We
provide the interpretation only in three dimensions, as the case of two dimensions
is analogous.

1.4.1 Polar decomposition
To interpret the polar decomposition of the deformation gradient, we have to
perform the diagonalization of U (or V). Let Q⊤DQ be the diagonalization of U.
Since U is symmetric positive definite, the matrix Q is orthogonal and all eigenval-
ues of U (elements on the diagonal of D) are positive. Thus we can interpret U as
performing a rotation Q, then performing a stretch D and then finally performing
a rotation Q⊤. The matrix V can be interpreted in the similar way.

2for precise definition of principal invariants see Definition 1
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1.4.2 QR decomposition
To interpret the Laplace stretch U , we have to decompose it into a product of
the following three matrices:

U =

⎛⎜⎝a aγ aβ
0 b bα
0 0 c

⎞⎟⎠ =

⎛⎜⎝a 0 0
0 b 0
0 0 c

⎞⎟⎠
⎛⎜⎝1 0 β

0 1 α
0 0 1

⎞⎟⎠
⎛⎜⎝1 γ 0

0 1 0
0 0 1

⎞⎟⎠ =: ΛUαβUγ.

Denoting the standard Cartesian basis as e1, e2 and e3, we can see, that the
Laplace stretch U first performs a simple shear in the e1 −e3 plane by γe1, then a
shear in the e1 −e2 plane by βe1 +αe2 and finally a stretch in all three directions.
This is shown in the Figure 1.1.

Remark. Sometimes a convention U =

⎛⎜⎝a γ β
0 b α
0 0 c

⎞⎟⎠ is used. This can be seen for

example in Paul and Freed [2020].
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Figure 1.1: Interpretation of the Laplace stretch U . First, two shears are applied
and then a stretch in all three directions.
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2. Standard theory of elasticity
In what follows we mostly focus on transversely isotropic materials, which are
symmetric about an axis that is normal to the plane of isotropy. A typical
example of such material is a material that is reinforced by fibers. These materials
are composed of fibers and matrix material, in which the fibers are present. We
assume that at each point there is a matrix material and a fiber (which is infinitely
thin) at the same time. The fibers are assumed to be aligned in along a family
of curves, which may not consist of straight lines.

We start by describing the theory of principal matrix invariants including the
representation theorems. Some basic technical results, such as formulae for the
derivatives of invariants with respect to the matrix, can be found in Appendix A.

Then we proceed with the theory of Green elastic solids. We summarize the
theory for isotropic materials and we also introduce the model of fiber-reinforced
materials presented in Spencer [1972]. Then we proceed with the theory of linear
elasticity. We derive formulas for general anisotropic, transversely isotropic and
fully isotropic material in two dimensions.

The end of this chapter is devoted to analysis of problems of the standard
theory. Namely the propagation of measurement errors and the description of
anisotropic materials. We discuss these problems and mention, how the QR
decomposition can solve then.

2.1 Principal matrix invariants
Some quantities (for example energy) should not depend on observer. In other
words, if two different people look at the same object at the same time, they
should observe the same thing. Therefore we look for some quantity that is
preserved even when we change the basis. We cannot simply take elements of
a matrix, because they depend on a choice of basis. There are many of these
quantities that satisfy out requirements, but the most important are the so-called
principal invariants.
Definition 1 (Principal invariants). Let A ∈ R3×3 be a matrix. We define the
principal invariants I1, I2 and I3 of A in the following way:

I1(A) = TrA,

I2(A) = 1
2
[︂
(TrA)2 − Tr

(︂
A2
)︂]︂

= Tr (cof A) ,

I3(A) = detA.

These invariants satisfy our requirements, because Ii
(︂
QAQ⊤

)︂
= Ii(A) for any

orthogonal matrix Q, thanks to the cyclic property of trace and the fact, that
det (AB) = detA detB.

The notion of matrix invariants directly leads to a definition of an isotropic
function, which formalizes the reasoning done at the beginning of this section.
Definition 2 (Isotropic function). Let φ : R3×3 → R be a scalar function of a
tensor variable. The function φ is called isotropic, if and only if φ(QAQ⊤) = φ(A)
holds for every matrix A ∈ R3×3 and every proper orthogonal matrix Q ∈ R3×3.
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A tensor function of a tensor variable f : R3×3 → R3×3 is called isotropic,
if and only if f(QAQ⊤) = Qf(A)Q⊤ holds for every matrix A ∈ R3×3 and every
proper orthogonal matrix Q ∈ R3×3.

It is important to know, how we can represent isotropic function. The follow-
ing theorem answers this question.

Theorem 3 (Representation of isotropic functions). A scalar function of a tensor
variable φ : A ∈ R3×3

sym → R, where A is a symmetric matrix, is isotropic if and
only if it can be expressed as a function of the principal invariants of A.

A tensor function of a tensor variable f : A ∈ R3×3
sym ↦→ B ∈ R3×3

sym, where A and
B are symmetric matrices, is isotropic if and only if it has a representation of the
following form:

f(A) = φ0I + φ1A + φ2A
2,

where {φi}3
i=0 are scalar functions of the principal invariants of A.

Proof. The proof for the first part can be found for example in Truesdell and Noll
[2004]. The proof for the second part can be found in Rivlin and Ericksen [1997]
and Spencer [1971].

Remark. In case of two dimensions, only two invariants are sufficient, as the third
invariant can be expressed as a function of the other invariants. Furthermore if
f is an isotropic tensor function, then it has a form f = φ0I + φ1A, as the term
with A2 can be expressed using Caley-Hamilton theorem in terms of I and A.

There is a nontrivial relation between the principal invariants of a diagonal-
izable matrix and its eigenvalues. Let A be a 3 by 3 diagonalizable matrix and
denote by λ1, λ2 and λ3 its eigenvalues. If we denote U−1DU the diagonalization of
A and use the cyclic property of a trace and the fact, that det(AB) = detA detB,
then we get

I1(A) = Tr (U−1DU) = Tr (D) = λ1 + λ2 + λ3,

I3(A) = det
(︂
U−1DU

)︂
= detD = λ1λ2λ3,

I2(A) = Tr cof
(︂
U−1DU

)︂
= Tr

[︃
detD

(︂
U−1DU

)︂−⊤
]︃

= Tr
[︂
U⊤

(︂
detDD−1

)︂
U−⊤

]︂
= Tr

(︂
detDD−1

)︂
= λ2λ3 + λ1λ3 + λ1λ2.

Unsurprisingly, there is a connection to a characteristic polynomial of a ma-
trix.

det(A − µI) = det
(︂
U−1DU − µU−1U

)︂
= detU−1 det (D − µI) detU

= −
3∑︂
i=1

(µ− λi) = −µ3 + (λ1 + λ2 + λ3)µ2

− (λ1λ2 + λ2λ3 + λ3λ1)µ+ λ1λ2λ3

= − µ3 + (TrA)µ2 − (Tr cof A)µ+ detA

We see, that we can easily switch from the description in terms of invariants
to the description in terms of eigenvalues. This however does not mean that both
descriptions are equally suitable, because one form can be much simpler than the
another.
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2.2 Green elastic solid
Green elastic material is a material that does not produce entropy in mechanical
processes. Therefore it is a model of ideal elastic behavior. Common examples
include rubber or biological tissues. It is well known, that the formula for Cauchy
stress tensor of the Green elastic solid, known as Doyle-Ericksen formula, can be
written in the following way:1

T = 2ρR√
detB

∂ψ(B)
∂B

B, (2.1)

where ρR is density in the reference configuration, B = FF⊤ is left Cauchy-Green
tensor and ψ is Helmholtz free energy depending on B.

The free energy describes how the material stores energy. Therefore if the solid
is isotropic, then the free energy also should be isotropic. Thus ψ is an isotropic
function and, using Representation Theorem 3, it can be written as a function of
invariants: ψ(B) = ψ (I1(B), I2(B), I3(B)). Using the chain rule we get

T = 2ρR√
detB

(︄
∂ψ

∂I1

∂I1

∂B
+ ∂ψ

∂I2

∂I2

∂B
+ ∂ψ

∂I3

∂I3

∂B

)︄
B

Now we can use Theorem A.1 to obtain

T = 2ρR√
detB

(︄
∂ψ

∂I1
I + ∂ψ

∂I2
((TrB)I − B) + ∂ψ

∂I3
(detB)B−1

)︄
B

= 2ρR√
detB

(︄
∂ψ

∂I1
B + ∂ψ

∂I2
((TrB)B − B2) + ∂ψ

∂I3
(detB)I

)︄

= 2ρR√
detB

[︄
∂ψ

∂I3
det(B)I +

(︄
∂ψ

∂I1
+ ∂ψ

∂I2
TrB

)︄
B − ∂ψ

∂I2
B2
]︄
.

Thus we see, that the Cauchy stress tensor is also an isotropic function. An
alternative variant, where B2 is, using the Cayley-Hamilton theorem, expressed
in terms of I,B,B−1, can also be used.

Sometimes it is useful to assume, that ψ depends on the right Cauchy-Green
strain tensor C = F⊤F instead of B. This assumption leads to the following form:

T = 2ρR√
detC

F
∂ψ(C)
∂C

F⊤.

This is equivalent to the previous formula (2.1), because Ii(C) = Ii(B), i = 1, 2, 3
and

FIF⊤ = B,

FCF⊤ = FF⊤FF⊤ = B2,

FC−1F⊤ = FF−1F⊤F−⊤ = I.

1For derivation see e.g. Gurtin et al. [2010].
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2.2.1 Requirements on free energy
There are several requirements on the free energy. First, imagine that we stretch
out material to infinity. Then the energy stored in the material should also be
infinite. Thus we require ψ → ∞ as detF → ∞.

Now consider a situation, in which we compress the material into a single
point. Then the stored energy also should be infinite. Therefore we require that
ψ → ∞ as detF → 0+.

2.3 Spencer’s model of fiber-reinforced material
In the previous section, we have discussed a theory of isotropic Green elastic
solid. In this section we expand this theory to allow fiber-reinforced materials.
An extensive theory of fiber-reinforced materials can be found in Spencer [1972].
Basic overview can also be found in Holzapfel [2000].

To introduce fibers into our material, we have to know their direction. This
fiber direction is defined by a unit vector A in reference configuration, which is
at each point tangent to the direction of fibers.

Helmholtz free energy ψ of isotropic material depends only on invariants I1, I2
and I3. In case of fiber-reinforced materials, the free energy must depend also
on some other expressions, which depends on the fiber direction. Spencer [1972]
introduced the so-called pseudo-invariants I4 and I5 on which ψ also depends:

I4(C,A) = A · CA, (2.2a)
I5(C,A) = A · C2A. (2.2b)

The pseudo-invariant I4 is equal to the square of stretch λ = ∥FA∥ in the
fiber direction A.

A · CA = FA · FA = λ2.

Now, with the help of Theorem A.2, we can write the formula for the Cauchy
stress tensor:

T = 2ρR√
detC

F
∂ψ(C)
∂C

F⊤

= 2ρR√
detC

F

(︄
∂ψ

∂I1

∂I1

∂C
+ ∂ψ

∂I2

∂I2

∂C
+ ∂ψ

∂I3

∂I3

∂C
+ ∂ψ

∂I4

∂I4

∂C
+ ∂ψ

∂I5

∂I5

∂C

)︄
F⊤

= 2ρR√
detC

[︄
∂ψ

∂I3
det(C)I +

(︄
∂ψ

∂I1
+ ∂ψ

∂I2
TrC

)︄
B − ∂ψ

∂I2
B2

+ ∂ψ

∂I4
A ⊗ A + ∂ψ

∂I5
(A ⊗ CA + CA ⊗ A)

]︄
.

(2.3)

2.4 Linear elasticity
Equations, that are used mechanics of solids, are highly nonlinear, which means,
that they are difficult to solve. However if the strain is small, we can use simplified
theory called linear elasticity. The idea is to linearise the equations with respect
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to some small quantity. For small strains an appropriate choice is displacement,
thus we assume, that the norm of displacement u is small:

∥∇u∥ ≪ 1.

Since the deformation gradient F can also be computed as

F =I + ∇u,

we see, that F is close to identity.
Using the gradient of displacement, we can define the linearized strain tensor

(also called infinitesimal strain tensor or small strain tensor) as

� = 1
2
(︂
∇u + (∇u)⊤

)︂
.

From the definition we see, that � is symmetric.
For the rest of the thesis, we focus for simplicity only on two dimensional

problems. Therefore we only provide the description of the linear elasticity only
in two dimensions. The case of three dimensions is however analogous.

2.4.1 Elasticity tensor
We are looking for a linear constitutive equation, that would allow us to compute
stress from strain and vice versa. In linear elasticity we do not distinguish between
Cauchy, Kirchhoff or first Piola-Kirchhoff stress tensors, since the reference and
current configurations are almost the same. There is just one stress tensor, which
we will denote by �, that is symmetric.

When it comes to the stress-strain relation, a great place to start is Hooke’s
law. It can be generalized to

τij = Cijklϵkl i, j = 1, 2, (2.4)

where Cijkl are elements of a fourth-order tensor with 16 independent elements
called elasticity tensor.

From (2.4) we see, that the elasticity tensor Cijkl must be symmetric in indices
i and j and also in indices k and l, because both � and � are symmetric. This
reduces the number of independent elements to 9. Furthermore the elasticity
tensor must be symmetric with respect to index pairs ij and kl, since the � is
the derivative of the free energy: τij = ∂ρψ

∂ϵij
. This further reduces the number of

independent elements to 6.
To represent the tensor, we can use Voigt notation, which is used to represent

a symmetric tensor by reducing its order. In our case we can write the elasticity
tensor as a 3 × 3 matrix cαβ, where α = i, if i = j and α = 3, if i ̸= j. The
same way for β. (We use Greek letters and small letter c to distinguish between
indices of the elasticity matrix from indices of the fourth-order elasticity tensor.)
We obtain ⎛⎜⎝τ11

τ22
τ12

⎞⎟⎠ =

⎛⎜⎝c11 c12 c13
c12 c22 c23
c13 c23 c33

⎞⎟⎠
⎛⎜⎝ ϵ11
ϵ22
2ϵ12

⎞⎟⎠ .
This is the most general form with no symmetry. If the material possesses

some symmetries, then there other restriction on the elasticity matrix cαβ.
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Remark. Sometimes an inverted relation with the compliance matrix dαβ is used.⎛⎜⎝ ϵ11
ϵ22
2ϵ12

⎞⎟⎠ =

⎛⎜⎝d11 d12 d13
d12 d22 d23
d13 d23 d33

⎞⎟⎠
⎛⎜⎝τ11
τ22
τ12

⎞⎟⎠ .
2.4.2 Transversely isotropic material
The elasticity tensor Cijkl transforms by the rule

C ′
ijkl = aimajnakralsCmnrs i, j, k, l = 1, 2, (2.5)

where aij are elements of an orthogonal transformation. If the material possesses
some kind of symmetry, then C ′

ijkl = Cijkl for this symmetry. This puts additional
constrains on the elasticity matrix cαβ.

Now suppose that the material si transversely isotropic and assume, that the
axis of symmetry in the (1, 0)⊤ direction. In our case we expect, that if we reflect
the stress and strain tensors along the axis of symmetry, we obtain the same

tensors. Thus they should be invariant with respect to the reflection
(︄

1 0
0 −1

)︄
.

Using (2.5) we see, that we only have to consider elements of Cijkl with odd
number of ones. Therefore

C ′
1112 = − C1112 =⇒ C1112 = c13 = 0,

C ′
2221 = − C2221 =⇒ C2221 = c23 = 0,

We see, that the stress - strain relation has the following form:⎛⎜⎝τ11
τ22
τ12

⎞⎟⎠ =

⎛⎜⎝c11 c12 0
c12 c22 0
0 0 c33

⎞⎟⎠
⎛⎜⎝ ϵ11
ϵ22
2ϵ12

⎞⎟⎠ . (2.6)

Remark. We would obtain the same result, if we used
(︄

−1 0
0 1

)︄
as the transfor-

mation matrix.

2.4.3 Isotropic materials
In the case of fully isotropic material, it has to hold C ′

ijkl = Cijkl not only for

reflection, but also for arbitrary rotation
(︄

cosφ sinφ
− sinφ cosφ

)︄
.

We start from the equation (2.6), since it already has some restrictions. Using
the transformation rule (2.5) yields

C ′
1111 = c′

11 = c11 =c11 cos4 φ+ c22 sin4 φ+ c12 sin2 φ cos2 φ

+ c21 sin2 φ cos2 φ+ 4c33 sin2 φ cos2 φ,

C ′
2222 = c′

22 = c22 =c11 sin4 φ+ c22 cos4 φ+ c12 sin2 φ cos2 φ

+ c21 sin2 φ cos2 φ+ 4c33 sin2 φ cos2 φ,

C ′
1122 = c′

12 = c12 =c11 sin2 φ cos2 φ+ c22 sin2 φ cos2 φ+ c12 cos4 φ

+ c21 sin4 φ− 4c33 sin2 φ cos2 φ,

C ′
1212 = c′

33 = c33 =c11 sin2 φ cos2 φ+ c22 sin2 φ cos2 φ

− c12 sin2 φ cos2 φ− c21 sin2 φ cos2 φ+ 4c33 cos4 φ.
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Adding equations for c12 and c11 gives

c11 + c12 = c11 cos4 φ+ c22 sin4 φ+ c12 sin2 φ cos2 φ+ c12 sin2 φ cos2 φ

+ 4c33 sin2 cos2 φ+ c11 sin2 φ cos2 φ+ c22 sin2 φ cos2 φ+ c12 cos4 φ

+ c12 sin4 φ− 4c33 sin2 cos2 φ

= c11 cos2 φ+ c22 sin2 φ+ c12

c11 = c11 cos2 φ+ c22 sin2 φ = c11(1 − sin2 φ) + c22 sin2 φ.

This implies that c11 = c22.
Finally, subtracting the equation for c12 from the equation for c11 yields

c11 − c12 = c11 cos4 φ+ c11 sin4 φ+ c12 sin2 φ cos2 φ+ c12 sin2 φ cos2 φ

+ 4c33 sin2 cos2 φ− c11 sin2 φ cos2 φ− c11 sin2 φ cos2 φ− c12 cos4 φ

− c12 sin4 φ+ 4c33 sin2 cos2 φ

= c11(sin2 φ− cos2 φ)2 − c12(sin2 φ− cos2 φ)2 + 8c33 sin2 φ cos2 φ

= c11 cos2(2φ) − c12 cos2(2φ) + 2c33 sin2(2φ)
= (c11 − c12)(1 − sin2(2φ)) + 2c33 sin2(2φ).

Thus c11 − c12 = 2c33.
Setting c33 = G and c12 = λ gives the following relation:⎛⎜⎝τ11

τ22
τ12

⎞⎟⎠ =

⎛⎜⎝λ+ 2G λ 0
λ λ+ 2G 0
0 0 G

⎞⎟⎠
⎛⎜⎝ ϵ11
ϵ22
2ϵ12

⎞⎟⎠ ,
which can also be written as

� = λ (Tr �) I + 2G�.

This well-known formula can be found for example in Gurtin et al. [2010].

2.5 Potential problems of the standard theory
of Green elastic solids

The final section of this chapter is devoted to the discussion of potential problems
of the standard theory of Green elastic solids.

2.5.1 Propagation of measurement errors
The first problem, that may occur it the propagation of measurement errors. We
can define the covariance of two tensors by

RC(A,B) = ∥A : B∥
∥A∥∥B∥

.

Using the Cauchy-Schwartz inequality we see, that

RC(A,B) ∈ [0, 1],
RC(A,B) = 0 ⇐⇒ ∥A : B∥ = 0 ⇐⇒ the tensors are mutually orthogonal,
RC(A,B) = 1 ⇐⇒ ∃c : A = cB ⇐⇒ the tensors are linearly dependent.
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Figure 2.1: A covariance of response terms I1 and I2 for a biaxial stretch.
λ1 and λ2 are stretch ratios. Figure taken from Criscione [2004].

The covariance thus measures, how much mutually orthogonal the tensors A and
B are.

Now we can consider a general constitutive law of the form

T = − qI + α1A1 + α2A2,

where T is a Cauchy stress tensor, A1 and A2 are symmetric and deviatoric tensors.
Criscione [2004] has shown, that the error in stress measurements is magnified by
a factor [︂

1 −RC (A1,A2)2
]︂−1/2

.

Thus if the tensors A1 and A2 are close to being linearly dependent, then the
measurement error will be greatly magnified.

In Figure 2.1 we can see a covariance of the I1 and I2 response terms for a
biaxial stretch of an incompressible sheet with a constitutive material law of the
following form:

T = − pI + 2∂ρψ
∂I1

B − 2∂ρψ
∂I2

B−1,

where ψ = ψ(I1, I2). As we can see, the magnification of measurement errors is
significant.

Srinivasa [2012] has shown, that the use of the QR decomposition does not
suffer from this problem and thus may be better from the experimental point of
view.
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2.5.2 Description of anisotropic materials
The second potential problem is the description of the anisotropic materials.
The Spencer’s model of transversely isotropic material described in Section 2.3
might feel clumsy, as it requires to define the fiber direction vector A, which is
rather artificial.

This is however not the case of the QR decomposition based approach, be-
cause, as Srinivasa [2012] has shown, the material anisotropy reduces to the parity
of the Helmholtz free energy ψ. The introduction of the vector A is not necessary.

Orthotropy

Let us consider orthotropic material. Orthotropic materials are materials with
three planes of symmetry wich are mutually orthogonal. If we assume a coordinate
system such that its basis vectors are orthogonal to the planes of symmetry, then
the free energy has the following form:

ψ = ψo
(︂
a, b, c, α2, β2, γ2, αβγ

)︂
,

or, if ψ is analytic in the last invariant,

ψ = ψo1
(︂
a, b, c, α2, β2, γ2

)︂
+ ψo2

(︂
a, b, c, α2, β2, γ2

)︂
αβγ.

Transverse isotropy

In the case of the transversely isotropic material symmetric about an x3 axis, the
free energy can be written as

ψ = ψT

(︄
log a+ log b

2 ,
log a− log b

2 , log c, β2 + γ2, β2 − γ2
)︄
.

For more details see Srinivasa [2012].
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3. Green elasticity based on the
QR decomposition
This chapter is devoted to the application of the QR decomposition in the theory
of Green elastic solids. Like in the previous chapter we focus on the transversely
isotropic materials with the typical example being fiber-reinforced material.

We begin with the problem of the privileged basis and provide a solution.
Then we proceed with the study of the model developed by Erel and Freed [2017].
We describe the model and show that for isotropic materials it is equivalent to
the standard model of Green elasticity. We also present a way how to describe
transversely isotropic materials.

3.1 Privileged basis
An occurring theme in the articles regarding the QR decomposition1 is the ne-
cessity to choose the basis in such a way that one of the basis vector is in the
direction of fibers. This basis is usually called the privileged or laboratory basis.
This choice of basis however might not be always convenient. Consider a square
piece of material reinforced by fibers at an angle of π/4 with the sides of the
square. It is much more convenient to choose and use a basis such that basis
vectors are parallel to the sides of the square than the privileged basis.

To overcome this problem we first have to choose two bases, one in the refer-
ence configuration and once in the current configuration. We denote the basis in
the reference configuration as

{︂
EC
i

}︂2

i=1
and the basis in the current configuration

as
{︂
eCi
}︂2

i=1
. These are the bases, in wich we want to perform computations, thus

we call the computational bases. We assume that these bases are identical:

EC
i = eCi i = 1, 2.

The deformation gradient has the following form in these bases:

FC = FC
ij eCi ⊗ EC

j .

We use the superscript C to stress the fact, that the deformation gradient is
expressed in terms of computational bases. But since this is the standard defor-
mation gradient, we usually suppress the superscript and denote it as F. We use
this convention also for other tensors, e.g. stress tensors.

Now it is time to incorporate fibers and their directions. Let QA
⊤ be an

orthogonal matrix, which defines the direction of the fibers. That is, let QA⊤ be
an orthogonal matrix, such that QA⊤EC

1 is a tangent vector to fibers. We do not
require the matrix QA

⊤ to be constant. We can then define two new bases:

EA
i = QA

⊤EC
i i = 1, 2,

eAi = QA
⊤eCi i = 1, 2.

1see for example Erel and Freed [2017] or Srinivasa [2012]
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These are the privileged bases, that were mentioned at the beginning of the sec-
tion. We also call them the anisotropy bases, as they are given by the anisotropy
of the material. It is easy to see, that these bases can also be identified with each
other.

Now we can define the anisotropic deformation gradient FA. The basis vectors
transform using the matrix QA⊤. The entries of the deformation gradient, in order
to be invariant under the choice of basis, thus must transform using the matrix
QA, which gives the following transformation rule:

FA = QAFQA
⊤
,

FA = FA
ij eAi ⊗ EA

j .

This is the point, in which we can perform the QR decomposition of the
deformation gradient, as the fibers lie in the direction EC

1 . We get

FA = RAUA the QR decomposition of FA,˜︁ei = RAeAi i = 1, 2.

As a consequence we see that

RA = RijeAi ⊗ ˜︁ej,
UA = Uij˜︁ej ⊗ EA

j .

We call the basis {˜︁ei}2
i=1 the QR basis.

Another way how to obtain the QR basis {˜︁ei}2
i=1 is to apply FA and perform

the Gram-Schmidt orthogonalization:

fAi = FAEA
i i = 1, 2.

This basis is not guaranteed to be orthogonal, so we use the Gram-Schmidt
orthogonalization process to get

˜︁e1 = fA1
∥fA1 ∥

,

˜︁e2 =
fA2 −

(︂
fA2 · ˜︁e1

)︂ ˜︁e1

∥fA2 − (fA2 · ˜︁e1) ˜︁e1∥
.

Putting everything together, we obtain

F = QA
⊤
FAQA = QA

⊤RAUAQA. (3.1)

This whole procedure in depicted in Diagram 3.1.

3.2 Conjugate stress / strain basis model
In this section we describe and generalize the model presented in Freed et al. [2016]
and Erel and Freed [2017]. This model is two dimensional, as it was devised for
planar biological materials like membranes. The only change we make is the usage
of the matrix of anisotropy QA presented in the previous section. This allows us
to work with fibers with arbitrary direction.
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EA
i eAi

EC
i eCi

˜︂ei

QA
⊤

QA

F ≡ FC

FA
UA RA

S ≡ SC

SA

˜︁S

Figure 3.1: A diagram depicting relations between different bases.
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We use the Kirchhoff stress tensor S, which is related to the Cauchy stress
tensor T through the following formula:

S = (detF)T.

It is worth mentioning that this formula implies that S is symmetric. To obtain
the Kirchhoff stress tensor in the anisotropy basis, we need to transform it using
the matrix RA. If we want the Kirchhoff stress tensor in the computational basis,
we need to transform it further using the matrix of anisotropy QA.

SA = RA˜︁SRA⊤
,

SC = QA
⊤
SAQA = QA

⊤RA˜︁SRA⊤
QA.

(3.2)

We usually suppress the superscript C and denote the Kirchhoff stress tensor in
computational bases as S as in the case of the deformation gradient. The formula
for the first Piola-Kirchhoff stress tensor TR has the following form:

TR = (detF)TF−⊤ = SF−⊤ = QA
⊤RA˜︁SRA⊤

QA
(︂
QA

⊤RAUAQA
)︂−⊤

= QA
⊤RA˜︁SRA⊤

QAQA
⊤RAUA−⊤

QA = QA
⊤RA˜︁SUA−⊤

QA.
(3.3)

3.2.1 Stress power
It is well known2, that

Ẇ = TR : Ḟ = Tr
(︂
T⊤
RḞ
)︂
,

where Ẇ is the stress power and L is the velocity gradient. Since TR = SF−⊤

and L = ḞF−1, we get

Ẇ = Tr
(︂
FT⊤

RḞF
−1
)︂

= Tr (SL).

Transforming S and L into the QR basis and using the cyclic property of trace
gives

Ẇ = Tr
(︂
QA

⊤RA˜︁SRA⊤
QAQA

⊤RȦ UAQAQA
⊤UA−1RA⊤

QA
)︂

+ Tr
(︂
QA

⊤RA˜︁SRA⊤
QAQA

⊤RAUȦ QAQA⊤UA−1RA⊤
QA
)︂

= Tr
(︂˜︁SRA⊤RȦ )︂+ Tr

(︂˜︁SUȦ UA−1)︂
.

Since 0 =
(︂
RA⊤RA

)︂̇
= RA⊤̇ RA + RA⊤RȦ , we see that the first trace on the

right hand side is zero, as it is the trace of symmetric and skew symmetric tensor.
Thus we obtain

Ẇ = Tr
(︂˜︁S˜︁L)︂ = ˜︁S11

˜︁L11 + ˜︁S12
˜︁L12 + ˜︁S22

˜︁L22, (3.4)

where ˜︁L = UȦ UA−1.
2See e.g. Ogden [1984]
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3.2.2 Decomposition of the Laplace stretch
The Laplace stretch UA can be decomposed into a product of three matrices
describing dilatation, squeeze and shear:

UA =
(︄
a aγ
0 b

)︄
=
(︄√

ab 0
0

√
ab

)︄
⏞ ⏟⏟ ⏞

dilatation

⎛⎝√︂a/b 0
0

√︂
b/a

⎞⎠
⏞ ⏟⏟ ⏞

squeeze

(︄
1 γ
0 1

)︄
⏞ ⏟⏟ ⏞

shear

= UA
d UA

sqUA
sh. (3.5)

Now we can define the velocity gradient for the dilatation, squeeze and shear.

˜︁Ld = UA
ḋ UA

d

−1 = 1
2

(︄
ȧ

a
+ ḃ

b

)︄(︄
1 0
0 1

)︄
,

˜︁Lsq = UA
sq
̇ UA

sq

−1 = 1
2

(︄
ȧ

a
− ḃ

b

)︄(︄
1 0
0 −1

)︄
,

˜︁Lsh = UA
sh
̇ UA

sh

−1 =
(︄

0 γ̇
0 0

)︄
.

Differentiating (3.5) yields

UȦ = UA
ḋ UA

sqUA
sh + UA

d UA
sq
̇ UA

sh + UA
d UA

sqUA
sh
̇

= UA
ḋ UA

d

−1UA + UA
sq
̇ UA

sq

−1UA + UAUA
sh

−1UA
sh
̇

= ˜︁LdUA + ˜︁LsqUA + UA˜︁Lsh,
where we used the fact, that UA

d and UA
sq commute. This implies, that

˜︁L = UȦ UA−1 = ˜︁Ld + ˜︁Lsq + UA˜︁LshUA−1 =
(︄
ȧ
a

a
b
γ̇

0 ḃ
b

)︄
. (3.6)

3.2.3 Stress and strain bases
Plugging (3.6) into (3.4) allows us to decompose the stress power into three parts
coming from the dilatation, squeeze and shear:

Ẇ = Ẇ d + Ẇ sq + Ẇ sh,

Ẇ d = ˜︁S : ˜︁Ld =
(︂ ˜︁S11 + ˜︁S22

)︂ 1
2

(︄
ȧ

a
+ ḃ

b

)︄
,

Ẇ sq = ˜︁S : ˜︁Lsq =
(︂ ˜︁S11 − ˜︁S22

)︂ 1
2

(︄
ȧ

a
− ḃ

b

)︄
,

Ẇ sh = ˜︁S :
(︂
UA˜︁LshUA−1)︂ = a

b
˜︁S12γ̇.

This suggests, that we can express the stress power as

dW = πdδ + σdϵ+ τdγ, (3.7)

where the conjugate stress / strain pair {π, δ} describes uniform dilatation, second
pair {σ, ϵ} describes squeeze and finally third pair {τ, γ} describes shear. The
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natural stress basis is the following:

π = ˜︁S11 + ˜︁S22,

σ = ˜︁S11 − ˜︁S22,

τ = a

b
˜︁S12.

For the strain, we may choose this basis:

δ = log
√
ab δ̇ = 1

2

(︄
ȧ

a
+ ḃ

b

)︄
,

ϵ = log
√︂
a/b ϵ̇ = 1

2

(︄
ȧ

a
− ḃ

b

)︄
,

γ γ̇.

3.2.4 Constitutive relation
Considering the first law of thermodynamics for a continuum

dS = 1
T

(︄
dU − 1

ρR
dW

)︄
,

where S is entropy, T is temperature and U is internal energy, and using the free
energy ψ = U − TS yields

dT = − 1
S

(︄
dψ − 1

ρR
dW

)︄
.

If we assume, that ψ = ψ(T, δ, ϵ, γ), then, using (3.7), we get

ρR

(︄
∂ψ

∂T
dT + ∂ψ

∂δ
dδ + ∂ψ

∂ϵ
dϵ+ ∂ψ

∂γ
dγ
)︄

= −ρRSdT + πdδ + σdϵ+ τdγ.

This implies
S = − ∂ψ

∂T

π = ρR
∂ψ

∂δ
,

σ = ρR
∂ψ

∂ϵ
,

τ = ρR
∂ψ

∂γ
.

(3.8)

3.2.5 Bases for anisotropic material
The conjugate stress / strain basis pairs presented in Section 3.2.3 can be gener-
alized to allow fiber-reinforced material. In order to do so, we define the extent
of anisotropy n, which describes how much stiffer the fibers are. If n > 1, then
the fibers are stiffer than the matrix material itself. On the other hand, if n < 1,
then it is the matrix material, which is stiffer. Even though we would expect
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an isotropic behaviour for n = 1, if the free energy is not isotropic, then we still
obtain anisotropy.

We can then define the basis for the stress as follows:

π =
˜︁S11

n
+ n ˜︁S22,

σ =
˜︁S11

n
− n ˜︁S22,

τ = a

b
˜︁S12,

(3.9)

Inverting this relations we get

˜︁S =
(︄
n
2 (π + σ) b

a
τ

b
a
τ 1

2n(π − σ)

)︄
(3.10)

The conjugate basis for strain is defined by the following way:

δ = log
√
anb1/n,

ϵ = log
√︄
an

b1/n ,

γ.

(3.11)

For n = 1 both conjugate bases have the same form as the bases in the Section
3.2.3.

3.2.6 Simple example
We perform a simple computation to show, how we can use the conjugate stress /
strain basis model with the free energy for planar membranes to solve problems.
To keep things simple, we assume that

˜︁S =
(︄
S 0
0 0

)︄
.

Using (3.9), we see that

π = S

n
,

σ = S

n
τ = 0.

from which we can, with the help of (3.12), compute elements of UA.

a =e 1
n

(δ+ϵ),

b =en(δ−ϵ).

Thus we see that

UA =
(︄
e

1
n

(δ+ϵ) 0
0 en(δ−ϵ)

)︄
.

If the free energy was given, we could use (3.8) to proceed further with the
computation.
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3.2.7 Isotropic material

For isotropic free energy we would expect isotropic deformation regardless values
of the extent of anisotropy n and the matrix of anisotropy QA. However compared
to the standard model (2.1), it is not clear, if the presented model for isotropic
free energy gives also isotropic stress tensor. In this subsection we answer this
question.

In what follows, we show, that if the free energy ψ is isotropic and does not
depend on n and QA, than also S is isotropic and does not depend on n and QA.
First, we show, that S does not depend on n, then that SA is isotropic and finally
that S is also isotropic and does not depend on QA.

Let us denote CA = FA
⊤
FA and let ψ depends only on the first and third

invariant of CA. First of all, we need to invert the relations (3.11):

a =e 1
n

(δ+ϵ),

b =en(δ−ϵ).
(3.12)

Using these inverted relations, we can compute derivatives of a and b with respect
to δ and ϵ.

∂a

∂δ
= 1
n
e

1
n

(δ+ϵ) = 1
n
a

∂b

∂δ
= nen(δ−ϵ) = nb

∂a

∂ϵ
= 1
n
e

1
n

(δ+ϵ) = 1
n
a

∂b

∂ϵ
= −nen(δ−ϵ) = −nb

(3.13)

Using chain rule, (1.6), (3.8), (3.12) and (3.13) we obtain

π = ρR
∂ψ

∂δ
= ρR

∂ψ

∂I1(CA)

(︄
∂I1(CA)
∂a

∂a

∂δ
+ ∂I1(CA)

∂b

∂b

∂δ

)︄

+ ρR
∂ψ

∂I3(CA)

(︄
∂I3(CA)
∂a

∂a

∂δ
+ ∂I3(CA)

∂b

∂b

∂δ

)︄

= ρR
∂ψ

∂I1(CA)

(︃
2a(1 + γ2) 1

n
a+ 2bnb

)︃
+ ρ

∂ψ

∂I3(CA)

(︃
2ab2 1

n
a+ 2a2bnb

)︃
= ρR

∂ψ

∂I1(CA)

(︃
2 1
n
a2(1 + γ2) + 2nb2

)︃
+ ρ

∂ψ

∂I3(CA)

(︃
2 1
n
a2b2 + 2na2b2

)︃
,

σ = ρR
∂ψ

∂ϵ
= ρR

∂ψ

∂I1(CA)

(︄
∂I1(CA)
∂a

∂a

∂ϵ
+ ∂I1(CA)

∂b

∂b

∂ϵ

)︄

+ ρR
∂ψ

∂I3(CA)

(︄
∂I3(CA)
∂a

∂a

∂ϵ
+ ∂I3(CA)

∂b

∂b

∂ϵ

)︄

= ρR
∂ψ

∂I1(CA)

(︃
2a(1 + γ2) 1

n
a− 2bnb

)︃
+ ρR

∂ψ

∂I3(CA)

(︃
2ab2 1

n
a− 2a2bnb

)︃
= ρR

∂ψ

∂I1(CA)

(︃
2 1
n
a2(1 + γ2) − 2nb2

)︃
+ ρR

∂ψ

∂I3(CA)

(︃
2 1
n
a2b2 − 2na2b2

)︃
,

τ = ρR
∂ψ

∂γ
= ρR

∂ψ

∂I1(CA)
∂I1(CA)
∂γ

+ ρR
∂ψ

∂I3(CA)
∂I3(CA)
∂γ

= ρR
∂ψ

∂I1(CA)2a2γ.

(3.14)
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Now we can use (3.10) to get elements of ˜︁S:

˜︁S11 = n

2 (π + σ) = ρR
∂ψ

∂I1(CA)2a2(1 + γ2) + ρR
∂ψ

∂I3(CA)2a2b2,

˜︁S12 = b

a
τ = ρR

∂ψ

∂I1(CA)2abγ,

˜︁S22 = 1
2n(π − σ) = ρR

∂ψ

∂I1(CA)2b2 + ρR
∂ψ

∂I3(CA)2a2b2.

(3.15)

Thus ˜︁S does not depend on n, which implies that S also does not depend on n.
Now we show, that SA is isotropic. We verify assumptions of the Represen-

tation Theorem 3. To simplify the notation and make the computation easier to
follow, we suppress the superscript A in elements of the anisotropic deformation
gradient FA. Instead of FA

ij , we just write Fij. One should keep in mind, that it
means the entries of FA and not F ≡ FC .

Using (1.2b) and (3.2) we obtain

SA11 = cos θ
(︂ ˜︁SA11 cos θ + ˜︁SA12 sin θ

)︂
+ sin θ

(︂ ˜︁SA12 cos θ + ˜︁SA22 sin θ
)︂

SA12 = − sin θ
(︂ ˜︁SA11 cos θ + ˜︁SA12 sin θ

)︂
+ cos θ

(︂ ˜︁SA12 cos θ + ˜︁SA22 sin θ
)︂

SA22 = − sin θ
(︂ ˜︁SA12 cos θ − ˜︁SA11 sin θ

)︂
+ cos θ

(︂ ˜︁SA22 cos θ − ˜︁SA12 sin θ
)︂

Now we can use (1.3a), (1.3b) and (3.15) to get

SA11 = ρR
F11√︂

F 2
11 + F 2

21

⎡⎣(︄ ∂ψ

∂I1(CA)2a2(1 + γ2) + ∂ψ

∂I3(CA)2a2b2
)︄

F11√︂
F 2

11 + F 2
21

+ ∂ψ

∂I1(CA)2abγ −F21√︂
F 2

11 + F 2
21

⎤⎦+ ρR
−F21√︂
F 2

11 + F 2
21

⎡⎣ ∂ψ

∂I1(CA)2abγ F11√︂
F 2

11 + F 2
21

+
(︄

∂ψ

∂I1(CA)2b2 + ∂ψ

∂I3(CA)2a2b2
)︄

−F21√︂
F 2

11 + F 2
21

⎤⎦ ,
SA12 = − ρR

−F21√︂
F 2

11 + F 2
21

⎡⎣(︄ ∂ψ

∂I1(CA)2a2(1 + γ2) + ∂ψ

∂I3(CA)2a2b2
)︄

F11√︂
F 2

11 + F 2
21

+ ∂ψ

∂I1(CA)2abγ −F21√︂
F 2

11 + F 2
21

⎤⎦+ ρR
F11√︂

F 2
11 + F 2

21

⎡⎣ ∂ψ

∂I1(CA)2abγ F11√︂
F 2

11 + F 2
21

+
(︄

∂ψ

∂I1(CA)2b2 + ∂ψ

∂I3(CA)2a2b2
)︄

−F21√︂
F 2

11 + F 2
21

⎤⎦ ,
SA22 = − ρR

−F21√︂
F 2

11 + F 2
21

⎡⎣ ∂ψ

∂I1(CA)2abγ F11√︂
F 2

11 + F 2
21

−
(︄

∂ψ

∂I1(CA)2a2(1 + γ2)

+ ∂ψ

∂I3(CA)2a2b2
)︄

−F21√︂
F 2

11 + F 2
21

⎤⎦+ ρR
F11√︂

F 2
11 + F 2

21

[︄(︄
∂ψ

∂I1(CA)2b2

+ ∂ψ

∂I3(CA)2a2b2
)︄

F11√︂
F 2

11 + F 2
21

− ∂ψ

∂I1(CA)2abγ −F21√︂
F 2

11 + F 2
21

⎤⎦ .
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After certain manipulations and using (1.6b) we have

SA11 = 2ρR detCA ∂ψ

∂I3(CA) + 2ρR
∂ψ

∂I1(CA)

[︄
F 2

11
F 2

11 + F 2
21
a2(1 + γ2)

+ F 2
21

F 2
11 + F 2

21
b2 − 2abγ F11F21

F 2
11 + F 2

21

]︄
,

SA12 = 2ρR
∂ψ

∂I1(CA)

[︄
F11F21

F 2
11 + F 2

21
a2(1 + γ2) − F11F21

F 2
11 + F 2

21
b2 + F 2

11 − F 2
21

F 2
11 + F 2

21
abγ

]︄
,

SA22 = 2ρR detCA ∂ψ

∂I3(CA) + 2ρR
∂ψ

∂I1(CA)

[︄
F 2

21
F 2

11 + F 2
21
a2(1 + γ2)

+ F 2
11

F 2
11 + F 2

21
b2 + 2abγ F11F21

F 2
11 + F 2

21

]︄
.

Using (1.3c), (1.3d) and (1.3e) leads to

SA11 = 2ρR detCA ∂ψ

∂I3(CA) + 2ρR
∂ψ

∂I1(CA)

[︄
F 2

11
F 2

11 + F 2
21

(F 2
11 + F 2

21)⎛⎝1 +
(︄
F11F12 + F21F22

F 2
11 + F 2

21

)︄2
⎞⎠+ F 2

21
F 2

11 + F 2
21

⎛⎝F11F22 − F12F21√︂
F 2

11 + F 2
21

⎞⎠2

−2
√︂
F 2

11 + F 2
21
F11F22 − F12F21√︂

F 2
11 + F 2

21

F11F12 + F21F22

F 2
11 + F 2

21

F11F21

F 2
11 + F 2

21

⎤⎦ ,
SA12 = 2ρR

∂ψ

∂I1(CA)

⎡⎣ F11F21

F 2
11 + F 2

21
(F 2

11 + F 2
21)
⎛⎝1 +

(︄
F11F12 + F21F22

F 2
11 + F 2

21

)︄2
⎞⎠

− F11F21

F 2
11 + F 2

21

⎛⎝F11F22 − F12F21√︂
F 2

11 + F 2
21

⎞⎠2

+F
2
11 − F 2

21
F 2

11 + F 2
21

√︂
F 2

11 + F 2
21
F11F22 − F12F21√︂

F 2
11 + F 2

21

F11F12 + F21F22

F 2
11 + F 2

21

⎤⎦ ,
SA22 = 2ρR detCA ∂ψ

∂I3(CA) + 2ρR
∂ψ

∂I1(CA)

[︄
F 2

21
F 2

11 + F 2
21

(F 2
11 + F 2

21)⎛⎝1 +
(︄
F11F12 + F21F22

F 2
11 + F 2

21

)︄2
⎞⎠+ F 2

11
F 2

11 + F 2
21

⎛⎝F11F22 − F12F21√︂
F 2

11 + F 2
21

⎞⎠2

+2
√︂
F 2

11 + F 2
21
F11F22 − F12F21√︂

F 2
11 + F 2

21

F11F12 + F21F22

F 2
11 + F 2

21

F11F21

F 2
11 + F 2

21

⎤⎦ .
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Further manipulations finally give us

SA11 = 2ρR
∂ψ

∂I3(CA) detCA + 2ρR
∂ψ

∂I1(CA)
[︂
F 2

11

+F
4
11F

2
12 + 2F 3

11F12F21F22 + F 2
11F

2
21F

2
22

(F 2
11 + F 2

21)
2

+F
2
11F

2
22F

2
21 − 2F11F22F12F

3
21 + F 2

12F
4
21

(F 2
11 + F 2

21)
2

−2F
3
11F12F21F22 + F 2

11F
2
21F

2
22 − F 2

11F
2
21F

2
12 − F11F12F

3
21F22

(F 2
11 + F 2

21)
2

]︄

= 2ρR
∂ψ

∂I3(CA) detCA + 2ρR
∂ψ

∂I1(C)
(︂
F 2

11 + F 2
12

)︂
,

SA12 = 2ρR
∂ψ

∂I1(CA)

[︄
F11F21 + F 3

11F
2
12F21 + 2F 2

11F12F
2
21F22 + F11F

3
21F

2
22

(F 2
11 + F 2

21)
2

−F 2
11F12F

2
21F22 + F11F

3
21F

2
22 − F11F

2
12F

3
21 − F12F

4
21F22

(F 2
11 + F 2

21)
2

+F
4
11F12F22 + F 3

11F21F
2
22 − F 3

11F
2
12F21 − F 2

11F12F
2
21F22

(F 2
11 + F 2

21)
2

−F 3
11F21F

2
22 − 2F 2

11F12F
2
21F22 + F11F

3
12F

2
21

(F 2
11 + F 2

21)
2

]︄

= 2ρR
∂ψ

∂I1(CA) (F11F21 + F12F22) ,

SA22 = 2ρR detCA ∂ψ

∂I3(CA) + 2ρR
∂ψ

∂I1(CA)
[︂
F 2

21

+F
2
11F

2
12F

2
21 + 2F11F12F

3
21F22 + F 4

21F
2
22

(F 2
11 + F 2

21)
2

+F
4
11F

2
22 − 2F 3

11F12F21F22 + F 2
11F

2
12F

2
21

(F 2
11 + F 2

21)
2

+2F 3
11F12F21F22 + 2F 2

11F
2
21F

2
22 − 2F 2

11F
2
12F

2
21 − 2F11F12F

3
21F22

(F 2
11 + F 2

21)
2

]︄

= 2ρR detCA ∂ψ

∂I3(CA) + 2ρR
∂ψ

∂I1(CA)
(︂
F 2

21 + F 2
22

)︂
.

We no longer omit the superscript A in the elements of FA from here. Since

BA = FAFA
⊤ =

(︄
FA

11
2 + FA

21
2

FA
11F

A
21 + FA

12F
A
22

FA
11F

A
21 + FA

12F
A
22 FA

21
2 + FA

22
2

)︄
,

we see that SA = 2ρR detCA ∂ψ
∂I3(CA) I + 2ρR ∂ψ

∂I1(CA)B
A. This means, that the as-

sumptions of Representation Theorem 3 are satisfied, because Ii(CA) = Ii(BA)
for i = 1, 3.

It remains to show that S is isotropic and does not depend on QA. It is easy to
see, that we only have to look at the product QA⊤

BAQA, because I1(B) = I1(BA)
and I3(B) = I3(BA).

QA
⊤
BAQA = QA

⊤
FAFA

⊤
QA = QA

⊤
QAFQA

⊤
QAF⊤QA

⊤
QA = FF⊤ = B.
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Thus we finally obtain the formula for S:

S = 2ρR detB ∂ψ

∂I3(B) I + 2ρR
∂ψ

∂I1(B)B.

This implies that S is isotropic and does not depend on QA. Furthermore we
see, that this formula is equivalent to the standard formula (2.1) for the Cauchy
stress tensor T, since in two dimensions we assume, that the free energy ψ only
depends on I1 and I3.

3.2.8 Transversely isotropic material

In the previous section we have shows, that for isotropic materials the conjugate
pairs model is equivalent to the standard model of Green elasticity. In this section
we take a look at how we can describe transversely isotropic (or fiber-reinforced)
materials in terms of QR decomposition.

First of all, we have to write the pseudo-invariants (2.2) in terms a, b and γ.
We may assume that the fiber direction A is equal to (1, 0)⊤, because this is the
direction of fibers in the anisotropy basis. Using (1.1) and (1.5) we obtain:

I4(CA,A) = A · CAA =
(︄

1
0

)︄
·
(︄

a2

a2 + a2γ

)︄
= a2 (3.16a)

I5(CA,A) = A ·
(︂
CA
)︂2

A = CAA · CAA =
(︄

a2

a2 + aγ

)︄
·
(︄

a2

a2 + a2γ

)︄
= a4 + a4γ2.

(3.16b)

Now we can extend the result obtained in the previous section and show, that
even in the case of transversely isotropic material the Kirchhoff stress tensor S
does not depend on the extent of anisotropy n.

First of all, we have to compute the elements of the stress basis. Extending
(3.14) yields

π = ρR

[︄
∂ψ

∂I1(CA)

(︃
2 1
n
a2(1 + γ2) + 2nb2

)︃
+ ∂ψ

∂I3(CA)

(︃
2 1
n
a2b2 + 2na2b2

)︃

+ ∂ψ

∂I4(CA)
2
n
a2 + ∂ψ

∂I5(CA)
1
n

4a4
(︂
1 + γ2

)︂]︄
,

σ = ρR

[︄
.

∂ψ

∂I1(CA)

(︃
2 1
n
a2(1 + γ2) − 2nb2

)︃
+ ∂ψ

∂I3(CA)

(︃
2 1
n
a2b2 − 2na2b2

)︃

+ ∂ψ

∂I4(CA)
2
n
a2 + ∂ψ

∂I5(CA)
1
n

4a4
(︂
1 + γ2

)︂]︄
,

τ = ρR

[︄
∂ψ

∂I1(CA)2a2γ + ∂ψ

∂I5(CA)2a4γ

]︄
.
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Now we can compute the elements of ˜︁S. Using (3.10) we obtain

˜︁S11 = ρR

[︄
∂ψ

∂I1(CA)2a2(1 + γ2) + ∂ψ

∂I3(CA)2a2b2

+ ∂ψ

∂I4(CA)2a2 + ∂ψ

∂I5(CA)4a4
(︂
1 + γ2

)︂]︄
,

˜︁S12 = ρR
∂ψ

∂I1(CA)2abγ + ρR
∂ψ

∂I5(CA)2a3bγ,

˜︁S22 = ρR
∂ψ

∂I1(CA)2b2 + ρR
∂ψ

∂I3(CA)2a2b2.

We see that ˜︁S does not depend on n, which implies that also S does not depend
on n. Unlike in the previous case, the independence of S on QA of course cannot
be proven. Also it is not possible to show, that this model is equivalent to the
standard Spencer’s model of fiber-reinforced material.
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4. Numerical experiments
In this chapter we perform numerical experiments using the Wolfram Mathemat-
ica software and compare the models mentioned in the previous chapter. We
start with the description of the so-called standard reinforcing material. Then
we proceed with the problem formulation and description of the Wolfram Math-
ematica including the showcase of a sample code. Then we finally numerically
solve several problems with various fiber directions, including curved fibers, and
compute norms of the displacement, the Cauchy and the first Piolla-Kirchhoff
stress tensors.

4.1 Standard reinforcing material
We assume the Helmholtz free energy of the standard reinforcing material, that
is based on neo-Hookean free energy:

ρRψ = G

2 (TrC − 2) + λ

2
(︂
log

√
detC

)︂2
−G log

√
detC

+ G

2 k (A · CA − 1)2 ,

(4.1)

where G is shear modulus, λ is Lamé parameter and k ≥ 0 is a material parameter
measuring stiffness of fibers. For k = 0 we would obtain the classical neo-Hookean
free energy, which is isotropic. This standard reinforcing model is a much-used
example of transversely isotropic material used in biomechanics, see e.g. Destrade
et al. [2008] or Ning et al. [2006].

Plugging (4.1) into (2.3) yields

T = 1√
detC

[︂(︂
λ log

√
detC −G

)︂
I +GB + 2Gk (A · CA − 1) A ⊗ A

]︂
. (4.2)

4.1.1 Linearization of the standard reinforcing material
If we want to perform numerical experiments with the standard reinforcing ma-
terial in the linear elasticity framework, we have to linearize the Cauchy stress
tensor. We can assume that A = (1, 0)⊤, as we can use the matrix of anisotropy
QA to rotate the basis.

Let FA = I+ ∇uA and assume, that ∇uA is small. Then, neglecting all terms
of second or higher order, we obtain

BA = FAFA
⊤ =

(︂
I + ∇uA

)︂ (︂
I + ∇uA

)︂⊤

≈ I + ∇uA +
(︂
∇uA

)︂⊤
= I + 2�A,

detFA = 1 + ∇uA11 + ∇uA22 + ∇uA33 + O
(︂
|∇uA|2

)︂
≈ 1 + Tr �A,

1√
detCA

≈ 1
1 + Tr �A ≈ 1 − Tr �A

2 ,

log
√

detCA ≈ log
(︂
1 + Tr �A

)︂
≈ Tr �A,

A · CAA =
⃓⃓⃓(︂
I + ∇uA

)︂
A
⃓⃓⃓2

= |A|2 + 2�AA · A +
⃓⃓⃓
∇uAA

⃓⃓⃓
≈ 1 + 2�AA · A.
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Using these yields the following approximation of the Cauchy stress tensor:

TA ≈
(︄

1 − Tr �A
2

)︄ [︂(︂
λTr �A −G

)︂
I +G

(︂
I + 2�A

)︂
+ 2Gk

(︂
2�AA · A

)︂
A ⊗ A

]︂
≈ λ

(︂
Tr �A

)︂
I + 2G�A + 4Gk

(︂
�AA · A

)︂
A ⊗ A =: �A.

Setting A = (1, 0)⊤ and using the Voigt notation, we obtain the following:⎛⎜⎝τ
A
11
τA22
τA12

⎞⎟⎠ =

⎛⎜⎝λ+ 2G+ 4Gk λ 0
λ λ+ 2G 0
0 0 G

⎞⎟⎠
⎛⎜⎝ ϵA11
ϵA22
2ϵA12

⎞⎟⎠ ,
which is the linearized version of the standard reinforcing material.

4.1.2 Standard reinforcing material in conjugate pairs
Using formulas (1.6) and (3.16a), we can write the standard reinforcing material
(4.1) in terms of the elements of the Laplace stretch UA:

ρRψ = G

2
[︂(︂
a2
(︂
1 + γ2

)︂
+ b2

)︂
− 2

]︂
+ λ

2 (log(ab))2 −G log(ab)

+ G

2 k
(︂
a2 − 1

)︂2
,

(4.3)

To be able to use (3.8), we have to write the free energy in terms of the strain
basis δ, ϵ and γ. Using (3.12) we obtain

ρRψ = G

2
[︂(︂
e

2
n

(δ+ϵ)
(︂
1 + γ2

)︂
+ e2n(δ−ϵ)

)︂
− 2

]︂
+ λ

2

(︃ 1
n

(δ + ϵ) + n(δ − ϵ)
)︃2

−G
[︃ 1
n

(δ + ϵ) + n(δ − ϵ)
]︃

+ G

2 k
(︂
e

2
n

(δ+ϵ) − 1
)︂2
.

Since according to Section 3.2.8, the resulting stress tensor does not depend on
n, we can for simplicity set n = 1. Now we can finally use (3.8) to obtain:

π = G
[︂
e2(δ+ϵ)

(︂
1 + γ2

)︂
+ e2(δ−ϵ)

]︂
+ 4λδ − 2G+ 2Gk

(︂
e2(δ+ϵ) − 1

)︂
e2(δ+ϵ),

σ = G
[︂
e2(δ+ϵ)

(︂
1 + γ2

)︂
− e2(δ−ϵ)

]︂
+ 2Gk

(︂
e2(δ+ϵ) − 1

)︂
e2(δ+ϵ)

τ = Ga2γ.

4.2 Problem description
We assume the following problem for comparison of the models: consider a piece
of material, which is fixed on the left hand side and is being pulled to the right
on the right hand side. See Figure 4.1.

We consider two different domains. The first domain is just a square Ω1 =
(0, 1) × (0, 1). The second domain Ω2 is a square (0, 1) × (0, 1) from which we
subtract an ellipse with center at (1/2, 1/2) and semiaxes with lengths 1/6 and
1/50. We consider this domain with both ellipse orientations. This domain can
be seen as an approximation of a material with inner crack.
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Figure 4.1: An illustration of the problem.

Rigorously, let Ω = Ω1 or Ω2 and f = (f, 0)⊤ be a given function. Then we
are looking for a solution of:

divTR = 0 in Ω,
u = 0 on {x = 0},

TRN = f on {x = 1},

where u is displacement and N is outer unit normal vector in the reference con-
figuration.

In the case of linear elasticity, we are looking for a solution of an analogous
problem:

div � = 0 in Ω,
u = 0 on {x = 0},

�N = f on {x = 1}.

4.2.1 Material parameters
We have to set a few material parameters in order to be able to perform numerical
experiments. The following parameters are required:

• Lamé parameter λ

• shear modulus G
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• fiber stiffness k

• fiber direction A

• matrix of anisotropy QA

• applied pressure f

We set the Lamé parameter to λ = 109 Pa and the shear modulus to G =
5 · 108 Pa. We perform the experiments with various fiber stiffness, thus we set
k = 1 and k = 100. The value k = 100 represents fibers with very high stiffness,
as for example the fiber stiffness of the brainstem of four weeks old piglets is
around 20 (Ning et al. [2006]). The matrix of anisotropy QA with the angle α
also varies and is specified in the results. The fiber direction A is simply set as
A = QA

⊤eC1 = QA
⊤(1, 0)⊤.

4.3 Wolfram Mathematica
Wolfram Mathematica is a software for symbolic computations, statistics, data
science, optimization as well as machine learning or natural language processing.
It contains thousands of built-in functions for all areas of technical computing.
Mathematica, firstly released in 1987, is a flagship product of a company Wolfram
Research founded by Stephen Wolfram in 1987.

Version 13.0, released on 13th of December 2021, introduced a support of solid
and structural mechanics, allowing its users to easily set up and solve complicated
problems. Version 13.1, released on 29th of June 2022, further extended the solid
mechanics framework and included Green elasticity. The current version 13.2 was
released on 14th of December 2022 and polished some flaws and fixed various bugs.
For more information about solid Mathematica’s solid mechanics framework and
Green elasticity, see Mat [c] and Mat [b].

Mathematica uses the finite element method to solve partial differential equa-
tions. The default finite element interpolation order is two, but can be specified
by the user. More details about the finite element method in Mathematica can
be found in Mat [a].

4.3.1 Simple example
Let us take a look at how we can use Mathematica to solve problems arising in
solid mechanics. We use the problem described in Section 4.2 as an example.

We start by importing the package for finite elements and by clearing all
variables.

ClearAll["Global`*"]
Needs["NDSolve`FEM`"]

Then we set up parameters pars. We want to use neo-Hookean isotropic solid,
which is done by setting the MaterialModel parameter. Then we set material
parameters, in this case Lamé’s parameter and shear modulus. We also specify
thickness of our sample.
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pars = <|"MaterialModel" -> "NeoHookeanIsotropic",
"LameParameter" -> 1000000000, "ShearModulus" -> 5*100000000,
"Thickness" -> 1|>;

Next we set up our variables vars. Mathematica computes a displacement,
which will have components u and v. The displacement will depend on coordi-
nates x and y. What remains is to set our domain Ω (denoted by \[CapitalOmega]
in the code), which will be a rectangle with vertices at (0, 0) and (1, 1) (or in other
words, Ω will be a square at origin with side length equal to 1) and finally create
a mesh mesh from Ω.

vars = {{u[x, y], v[x, y]}, {x, y}};
\[CapitalOmega] = Rectangle[{0, 0}, {1, 1}];
mesh = ToElementMesh[\[CapitalOmega]];

Now we set up and solve an equation. SolidMechanicsPDEComponent takes
our parameters and variables and returns desired equation. To specify boundary
conditions we use SolidBoundaryLoadValue and SolidFixedCondition. We use
the first one to specify, that we want pressure p1 acting in acting in direction x
at x = 1. We then use the latter one to set zero displacement at x = 0. The
equation and boundary conditions are then saved into variable pde. If we wanted
to prescribe a displacement, we could use SolidDisplacementCondition.

pde := {SolidMechanicsPDEComponent[vars, pars] ==
SolidBoundaryLoadValue[x == 1, vars, pars,

<|"Pressure" -> {p, 0}|>],
SolidFixedCondition[x == 0, vars, pars]};

To solve the equation for displacement, we use NDSolveValue. We set the pres-
sure p, specify that u and v are unknowns and that x and y are in the domain Ω.
The NDSolveValue function returns computed displacement. To measure compu-
tation time, AbsoluteTiming is used. (∈ is denoted \[Element] in the code.)

AbsoluteTiming[displacement = NDSolveValue[pde /. p -> 3*100000000,
{u[x, y], v[x, y]}, {x, y} \[Element] \[CapitalOmega]];]

We have computed the displacement, so we can use VectorDisplacementPlot
to visualize it.

VectorDisplacementPlot[displacement,
{x, y} \[Element] \[CapitalOmega], VectorSizes -> Full,
ColorFunction -> ColorData[{"GrayTones", "Reverse"}],
PlotLegends -> Automatic]

This is the result. We see that the computation took a little bit more than
one second.

1It is also possible to prescribe force instead of pressure. Mathematica will automatically
convert force to pressure.
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4.3.2 Stress
We now show, how to compute and visualize stress. First we have to compute
strain using SolidMechanicsStrain.

strain = SolidMechanicsStrain[vars, pars, displacement];

Now we can easily compute the first Piola-Kirchhoff stress tensor firstPK.
We use SolidMechanicsStress, but we have to specify, that we want the first
Piola-Kirchhoff stress tensor using the OutputStressMeasure parameter.2 To do
this, we use Join to join the parameters together.

firstPK = SolidMechanicsStress[vars,
Join[pars, <|"OutputStressMeasure" -> "FirstPiolaKirchhoff"|>],
strain, displacement];

Since the first Piola-Kirchhoff stress tensor is matrix, its visualization is diffi-
cult. Thus we visualize only its norm instead. To compute the norm firstPKNorm,
we use Norm, where we specify, that the desired norm is Frobenius norm.3

firstPKNorm = Norm[firstPK, "Frobenius"];

Now we can use DesnityPlot to visualize it.

DensityPlot[firstPKNorm, {x, y} \[Element] mesh,
ColorFunction -> ColorData[{"GrayTones", "Reverse"}],
PlotRange -> Full, PlotLegends -> Automatic]

This is the result:
2The default option is Cauchy stress tensor.
3The default option is spectral norm (largest singular value of matrix).
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Visualization of Cauchy stress tensor is more difficult, since Mathematica
computes it only in the domain Ω, which is not deformed. Therefore it has
to be mapped onto the deformed mesh. First we compute the Cauchy stress
tensor cauchy using SolidMechanicsStress. We do not have to specify the stress
measure, since Cauchy stress is the default option.

cauchy = SolidMechanicsStress[vars, pars, strain, displacement];

Then we compute its Frobenius norm cauchyNorm using Norm.

cauchyNorm = Norm[cauchy, "Frobenius"];

Now we use ElementMeshDeformation to compute deformed mesh deformedMesh.

deformedMesh = ElementMeshDeformation[mesh,
displacement, "ScalingFactor" -> 1];

We then evaluate the norm of Cauchy stress tensor on elements of the mesh using
EvaluateOnElementMesh.

evaluatedCauchyNorm = EvaluateOnElementMesh[{x, y}, cauchyNorm, mesh];

We can finally interpolate the norm of the stress tensor onto the deformed mesh
using ElementMeshInterpolation to obtain deformedCauchyNorm.

deformedCauchyNorm = ElementMeshInterpolation[deformedMesh,
evaluatedCauchyNorm["ValuesOnGrid"]];

Once again we use DensityPlot to visualize the result.

DensityPlot[deformedCauchyNorm[x, y], {x, y} \[Element] deformedMesh,
ColorFunction -> ColorData[{"GrayTones", "Reverse"}],
PlotRange -> Full, PlotLegends -> Automatic]
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We obtain the following image:

4.3.3 Custom material model

What remains to show is how to implement our custom materials. We present
the implementation of the standard reinforced material described in section 4.1,
because this is not Mathematica’s built-in material model and we use it later.

We need a constitutive equation for some stress tensor to implement custom
material. We already have a formula for the Cauchy stress tensor, see 4.2:

T = 1√
detC

[︂(︂
λ log

√
detC −G

)︂
I +GB + 2Gk (A · CA − 1) A ⊗ A

]︂
.

Now we can write our function, that will implement the standard reinforcing
material. We use the Module environment, which is used to set up local variables,
and create module StandardReinforcingMaterial. First, we load variables (dis-
placement u and coordinates x) and material parameters (shear modulus G, Lamé
parameter λ (denoted as \[Lambda]), fiber strength k and fiber direction A).

Then we set dimension dim as length of x and appropriate identity matrix idm.
Now we can compute gradient of displacement gradU, deformation gradient F and
also determinant of deformation gradient J and left Cauchy-Green strain tensor c.

Now we have all we need to compute the Cauchy stress tensor stressMatrix
(tensor product of fiber direction A with itself is denoted as \[TensorProduct]),
which we then simplify using Simplify and return.
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StandardReinforcingMaterial[vars_, pars_, data_] :=
Module[{u, x, dim, G, \[Lambda], k, A, idm, F, J, c, stressMatrix},
u = vars[[1]];
x = vars[[-1]];

G = pars["ShearModulus"];
\[Lambda] = pars["LameParameter"];
k = pars["k"];
A = pars["A"];

dim = Length[x];
idm = IdentityMatrix[dim];
F = Grad[u, x] + idm;
J = Det[F];
c = Transpose[F].F;

stressMatrix = 1/J*((\[Lambda]*Log[J] - G)*idm + G*F.Transpose[F]
+ 2*G*k*(Transpose[A].c.A - 1)*(A\[TensorProduct]A));

stressMatrix = Simplify[stressMatrix];
stressMatrix

]

Program code 1: Implementation of the standard reinforcing material.

We have successfully implemented standard reinforcing material. We have to
slightly modify parameters pars in order to use it. We need to set up additional
parameters and use MaterialModelFunction instead of MaterialModel. Also we
need to set ConstitutiveStressMeasure to Cauchy stress tensor.4

pars = <|"MaterialModelFunction" -> StandardReinforcingMaterial,
"ConstitutiveStressMeasure" -> "Cauchy", "LameParameter" -> 270,
"ShearModulus" -> 400, "k" -> 1, "A" -> {Sqrt[2]/2, Sqrt[2]/2},
"Thickness" -> 1|>;

This is all we have to do. Now we can perform computations with our custom
material model.

If we wanted to implement the standard reinforcing material using the conju-
gate stress / strain basis pairs model, the resulting module could look like this:

4Default option is second Piola-Kirchhoff stress tensor.
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QRStandardReinforcingMaterial[vars_, pars_, data_] :=
Module[{u, x, dim, idm, k, Q, G, \[Lambda], F, FA, R, sin\[Theta],

cos\[Theta], a, b, \[Gamma], U, \[Delta], \[Epsilon],
pi, \[Sigma], \[Tau], STilde11, STilde22, STilde12, STilde,
stressMatrix},

u = vars[[1]];
x = vars[[-1]];
G = pars["ShearModulus"];
\[Lambda] = pars["LaméParameter"];
k = pars["k"];
Q = pars["Q"];

dim = Length[x];
idm = IdentityMatrix[dim];
F = idm + Grad[u, x];
FA = Q.F.Transpose[Q];

sin\[Theta] = -FA[[2, 1]]/Sqrt[FA[[1, 1]]ˆ2 + FA[[2, 1]]ˆ2];
cos\[Theta] = FA[[1, 1]]/Sqrt[FA[[1, 1]]ˆ2 + FA[[2, 1]]ˆ2];
R = {{cos\[Theta], sin\[Theta]}, {-sin\[Theta], cos\[Theta]}};

a = Sqrt[FA[[1, 1]]ˆ2 + FA[[2, 1]]ˆ2];
b = (FA[[1, 1]] FA[[2, 2]] - FA[[1, 2]] FA[[2, 1]])/

Sqrt[FA[[1, 1]]ˆ2 + FA[[2, 1]]ˆ2];
\[Gamma] = (FA[[1, 1]] FA[[1, 2]] +

FA[[2, 1]] FA[[2, 2]])/(FA[[1, 1]]ˆ2 + FA[[2, 1]]ˆ2);
U = {{a, a*\[Gamma]}, {0, b}};

\[Delta] = Log[Sqrt[a*b]];
\[Epsilon] = Log[Sqrt[a/b]];
pi = G (Exp[2*(\[Delta] + \[Epsilon])]*(1 + \[Gamma]ˆ2)

+ Exp[2*(\[Delta] - \[Epsilon])]) + 4*\[Lambda]*\[Delta] - 2*G
+ 2*G*k*(Exp[2*(\[Delta] + \[Epsilon])] - 1)
*Exp[2*(\[Delta] + \[Epsilon])];

\[Sigma] = G (Exp[2*(\[Delta] + \[Epsilon])]*(1 + \[Gamma]ˆ2)
- Exp[2*(\[Delta] - \[Epsilon])])
+ 2*G*k*(Exp[2*(\[Delta] + \[Epsilon])] - 1)
*Exp[2*(\[Delta] + \[Epsilon])];

\[Tau] = G*aˆ2*\[Gamma];

STilde11 = 1./2.*(pi + \[Sigma]);
STilde22 = 1./2.*(pi - \[Sigma]);
STilde12 = (b/a)*\[Tau];
STilde = {{STilde11, STilde12}, {STilde12, STilde22}};

stressMatrix = 1/Det[F]*Transpose[Q].R.STilde.Transpose[R].Q;
stressMatrix = Simplify[stressMatrix];
stressMatrix

]

Program code 2: Implementation of the standard reinforcing material using the
conjugate stress / strain basis model.
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Figure 4.2: Fibers in the reference configuration.

4.4 Results

In this final section we present the results of several numerical experiments. We
consider fibers with various directions, which is specified by the anisotropy ma-
trix QA and the angle α:

QA =
(︄

cosα − sinα
sinα cosα

)︄
.

Every experiment is first computed with k = 1 and then with k = 100. We
present the fiber direction in the reference configuration, fiber direction in the
current configuration and the norm of the Cauchy stress tensor. For the first
experiment we also present the norms of the displacement and the first Piola-
Kirchhoff stress tensor. Computation times are also presented.

Computations were performed on six years old laptop Lenovo Ideapad 700-
15ISK with the Intel Core i7-6700HQ CPU.

4.4.1 Straight fibers

As the first experiment, we consider fibers with the angle equal to α = −π/4.
The visualization of fibers in the reference configuration can be seen in Figure 4.2.
The mesh, that is used, can be seen in Figure 4.3. The mesh has 400 elements
and the computational problem has 2562 degrees of freedom.
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Figure 4.3: The mesh used for the square domain.
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Figure 4.4: Norm of the displacement. The results for k = 1 are on the left hand
side, while results for k = 100 are on the right hand side.

Linear elasticity Green elasticity Conjugate stress
/ strain basis k

Computation
time [s]

0.404 1.399 45.161 1
0.380 2.411 114.358 100

Table 4.1: Displacement computation time.
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Figure 4.5: Fibers in the current configuration. The results for k = 1 are on the
left hand side, while results for k = 100 are on the right hand side.
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Figure 4.6: Norm of the first Piola-Kirchhoff stress tensor. The results for k = 1
are on the left hand side, while results for k = 100 are on the right hand side.

Linear elasticity Green elasticity Conjugate stress
/ strain basis k

Computation
time [s]

0.359 1.983 52.091 1
0.443 1.890 59.807 100

Table 4.2: Norm of the first Piola-Kirchhoff stress tensor computation time
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Figure 4.7: Norm of the Cauchy stress tensor. The results for k = 1 are on the
left hand side, while results for k = 100 are on the right hand side.

Linear elasticity Green elasticity Conjugate stress
/ strain basis k

Computation
time [s]

0.896 0.555 27.097 1
1.159 0.548 33.504 100

Table 4.3: Norm of the Cauchy stress tensor computation time
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Figure 4.8: Fibers in the reference configuration.

4.4.2 Curved fibers
For the next experiment, we consider fibers with the angle equal to α = −π

4 (x+y).
This results in the fibers, that are not straight. Their visualization can be seen
in Figure 4.8. The mesh is the same as in the previous case, that is:

Linear elasticity Green elasticity Conjugate stress
/ strain basis k

Computation
time [s]

0.817 4.080 1164.08 1
0.890 4.964 1235.56 100

Table 4.4: Displacement computation time.
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Figure 4.9: Fibers in the current configuration. The results for k = 1 are on the
left hand side, while results for k = 100 are on the right hand side.

54



Figure 4.10: Norm of the Cauchy stress tensor. The results for k = 1 are on the
left hand side, while results for k = 100 are on the right hand side.

Linear elasticity Green elasticity Conjugate stress
/ strain basis k

Computation
time [s]

1.954 3.000 1084.2 1
1.960 2.154 1051.78 100

Table 4.5: Norm of the Cauchy stress tensor computation time
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Figure 4.11: Domain shape with fibers.

Figure 4.12: The mesh used to approximate a cracked material.

4.4.3 Cracked material I

Now we consider the second domain described in the Section 4.2, which can
be seen as an approximation of a cracked material. We for simplicity consider
straight fibers angled at α = −π/4. The domain with the fibers can be seen in
Figure 4.11. The used mesh can be seen in Figure 4.12 and has 694 elements.
The resulting computational problem has 2948 degrees of freedom.

Linear elasticity Green elasticity Conjugate stress
/ strain basis k

Computation
time [s]

0.529 1.3345 36.314 1
0.525 2.697 151.372 100

Table 4.6: Displacement computation time.
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Figure 4.13: Fibers in the current configuration. The results for k = 1 are on the
left hand side, while results for k = 100 are on the right hand side.
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Figure 4.14: Norm of the Cauchy stress tensor. The results for k = 1 are on the
left hand side, while results for k = 100 are on the right hand side.

Linear elasticity Green elasticity Conjugate stress
/ strain basis k

Computation
time [s]

1.046 0.644 27.001 1
1.050 0.761 37.791 100

Table 4.7: Norm of the Cauchy stress tensor computation time
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Figure 4.15: Domain shape with fibers.

Figure 4.16: The mesh used to approximate a cracked material.

4.4.4 Cracked material II

For the final experiment, we consider the second domain described in the Section
4.2, but now with the ellipse rotated by π/4. We for simplicity consider straight
fibers angled at α = −π/4. The domain with the fibers can be seen in Figure
4.15 and the mesh, which has 698 elements, in Figure 4.16. The computational
problem has 2964 degrees of freedom. The results for the standard Green elastic
model with k = 100 are not presented, as the computation failed.

Linear elasticity Green elasticity Conjugate stress
/ strain basis k

Computation
time [s]

0.708 3.659 59.850 1
0.509 — 152.578 100

Table 4.8: Displacement computation time.
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Mathematica has failed to solve the
equations for the standard model of

Green elastic solid and k = 100.

Figure 4.17: Fibers in the current configuration. The results for k = 1 are on the
left hand side, while results for k = 100 are on the right hand side.
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Mathematica has failed to solve the
equations for the standard model of

Green elastic solid and k = 100.

Figure 4.18: Norm of the Cauchy stress tensor. The results for k = 1 are on the
left hand side, while results for k = 100 are on the right hand side.

Linear elasticity Green elasticity Conjugate stress
/ strain basis k

Computation
time [s]

1.145 0.662 28.081 1
1.105 — 31.697 100

Table 4.9: Norm of the Cauchy stress tensor computation time
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Conclusion
We have studied an alternative approach to constitutive relations for Green elastic
solids based on the QR decomposition of the deformation gradient. We focused
on the two dimensional conjugate stress / strain model presented in Erel and
Freed [2017].

In the first chapter we have compared the polar and QR decompositions. We
have introduced both decompositions and shown, how we can interpret them.

In the second chapter we have focused on the standard theory of elasticity.
We have started by introducing the principal invariants of matrices. Then we
have followed with the description of the theory of Green elastic solids. We
have also presented Spencer’s model of fiber-reinforced material, which is used
to describe transversely isotropic materials. Then we have moved to describe the
linear elasticity theory in two dimensions. At the end of the chapter we have
briefly discussed potential problems of the standard approach to Green elasticity
and we have shown, how the QR decomposition can solve them.

In the third chapter we have studied the elasticity based on the QR decom-
position. To overcome the key problem of the necessity of the privileged basis
for the QR decomposition, we have introduced the matrix of anisotropy, which
allowed us, unlike in Erel and Freed [2017], to work with fibers with arbitrary
direction. Then we have presented the conjugate stress / strain model, and we
have shown that for isotropic free energy, this model is equivalent to the stan-
dard Green elasticity. Even though the three dimensional conjugate bases are
known (Freed [2017]), we have decided for simplicity to focus on the two dimen-
sional model. This decision has proven to be a good one, as the conjugate basis
pairs model turned out to be computationally expensive even in two-dimensional
setting.

In the last chapter we have performed numerical experiments. We have used
the standard reinforcing material model to compare the three presented models
(standard Green elasticity, linear elasticity and conjugate stress / strain model).
We have used Wolfram Mathematica to solve the resulting boundary value prob-
lems. We have considered fibers with two different stiffnesses and various di-
rections and three different domains (rectangular block, rectangular block with a
horizontally / vertically oriented hole). The results for the linear elasticity are no-
ticeably different from the other two models. This suggests, that the assumption
of small displacement gradient does not hold in considered setting.

The conjugate stress / strain model shows results similar to the standard
model of Green elastic solid. For fibers with lower stiffness the difference between
those two models can be considered negligible. This is because the material is
close to being isotropic, and for isotropic material, both models are equivalent.
This shows, that at least for almost isotropic materials, the conjugate stress /
strain model is consistent with the standard theory of Green elasticity and can be
considered as an alternative. For material with stiffer fibers, some differences start
to appear. The displacement remains similar, but the magnitude of stress is two
or three times lower for the conjugate stress / strain basis model. All three models
successfully predict higher stress (stress concentration phenomenon) around the
vertices of the ellipse.
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For fibers with high stiffness, some noise, which vaguely resembles the under-
lying mesh structure, starts to appear in the norm of the Cauchy stress tensor
plots. This is the most evident in the case of the standard model of Green elas-
ticity if the curved fibers are assumed. The noise in the case of the conjugate
stress / strain basis model is much less noticeable. Finer mesh does not solve
the problem. In one case the computation of the standard model of Green elastic
solid has failed, while the conjugate stress / strain model has been successful.
This suggests, that for material with stiff fibers, the conjugate stress / strain
basis model might be better.

The downside of the conjugate basis pairs model is, that the model turned
out to be computationally expensive. This however might be due to the primitive
implementation of the model, and it is possible, that a better implementation
could reduce the computation time considerably. However our implementation is
the first one, which takes curved fibers into account.
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A. Derivatives of invariants and
pseudo-invariants
Sometimes it is useful to take a derivative of an invariant with respect to the
matrix. By derivative we mean Gâteaux derivative, which is a generalization of
a directional derivative.

Definition (Gâteaux derivative). Let f : D ⊂ U → V be a mapping between two
Banach spaces U and V , where D is an open subset of U . Then f has a Gâteaux
derivative at a point x ∈ D in the direction y, if and only if there exists a limit

Df(x)[y] = lim
τ→0+

d
dτ (f(x+ τy)) .

Remark (Identification of Gâteaux derivative with a matrix). When dealing with
a directional derivative of a function f from Rn to R, it is common to write it
as a dot product of a gradient of the function and the directional vector v, i.e.
df
dv = ∇f · v. In our case we are interested in functions from Rn×n to R, therefore
we can identify the Gâteaux derivative of tensor function f with a matrix in the
same way. We then obtain the directional derivative by taking the double dot
product.

Due to similarities with partial derivatives and gradient, we will use the fol-
lowing notation for the Gâteaux derivative:

∂f

∂A
[B] = ∂f

∂A
: B = Df(A)[B].

Theorem A.1 (Derivatives of invariants). Let A be a 3 × 3 invertible matrix.
Then

∂I1(A)
∂A

= I,

∂I2(A)
∂A

= (TrA) I − A⊤,

∂I3(A)
∂A

= (detA)A−⊤,

where the identification of the derivative with the matrix is in the sense of previous
remark.

Proof. Let B be a fixed 3 × 3 matrix. Then

∂I1(A)
∂A

[B] = ∂TrA
∂A

[B] = lim
τ→0+

d
dτ (Tr (A + τB)) = lim

τ→0+

d
dτ (TrA + τTrB)

= TrB.

This can be rewritten as I : B, therefore ∂I1(A)
∂A

= I. To prove the second identity,
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we will use the chain rule.

∂A2

∂A
[B] = lim

τ→0+

d
dτ

(︂
(A + τB)2

)︂
= lim

τ→0+

d
dτ

(︂
A2 + τAB + τBA + τ 2B2

)︂
= AB + BA,

∂Tr (A2)
∂A

[B] = ∂TrC
∂C

⃓⃓⃓⃓
⃓
C=A

[︄
∂A2

∂A
[B]
]︄

= Tr (AB + BA) = 2Tr (AB),

∂ (TrA)2

∂A
[B] = 2TrATrB.

Thus we see, that

∂

∂A

(︃1
2 (TrA)2 − 1

2Tr (A2)
)︃

[B] = TrATrB − Tr (AB).

We can rewrite it as
[︂
(TrA) I − A⊤

]︂
: B. This proves the second identity. Now

only the derivative of determinant remains.

∂ detA
∂A

[B] = lim
τ→0+

d
dτ (det(A + τB)) = lim

τ→0+

d
dτ

(︂
det(A(I + τA−1B))

)︂
= detA lim

τ→0+

d
dτ

(︂
det(I + τA−1B)

)︂
Now we expand the determinant of I + τA−1B in terms of powers of τ :

det(I + τA−1B) = 1 + τ
(︂
(A−1B)11 + (A−1B)22 + (A−1B)33

)︂
+ O(τ 2)

= 1 + τTr
(︂
A−1B

)︂
+ O(τ 2).

From this we see, that ∂ detA
∂A

[B] = (detA)Tr (A−1B). Rewriting it as (detA)A−⊤ : B
finishes the proof.

Theorem A.2 (Derivatives of pseudo-invariants). Let I4(C,A) = A · CA and
I5(C,A) = A · C2A. Then

∂I4

∂C
= A ⊗ A,

∂I5

∂C
= A ⊗ CA + CA ⊗ A.

Proof. By direct computation.(︄
∂I4

∂C

)︄
ij

= ∂AkCklAl
∂Cij

= AiAj =⇒ ∂I4

∂C
= A ⊗ A,(︄

∂I5

∂C

)︄
ij

= ∂CkmAmCklAl
∂Cij

= AjCilAl + CimAmAj

=⇒ ∂I5

∂C
= A ⊗ CA + CA ⊗ A.
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