
MASTER THESIS

Marek Čermák

Extraction and representation of unified
metadata from files and file systems

based on data formats

Department of Software Engineering

Supervisor of the master thesis: RNDr. Jakub Kĺımek, Ph.D.
Study programme: Computer Science

Study branch: Software and Data Engineering

Prague 2023





I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



ii



I would like to thank and express my gratitude to my supervisor, RNDr. Jakub
Kĺımek, Ph.D., for his continuous support, guidance, and feedback on this thesis
and my adventures in RDF and Linked Data in general.

I am also very thankful to all my friends, colleagues, family and close ones, for
their support, patience, ideas, and tolerance when having to discuss this whole
endeavour with me.

iii



iv



Title: Extraction and representation of unified metadata from files and file sys-
tems based on data formats

Author: Marek Čermák

Department: Department of Software Engineering

Supervisor: RNDr. Jakub Kĺımek, Ph.D., Department of Software Engineering

Abstract: This thesis documents the process of analyzing, designing, and imple-
menting a software tool able to accept files in various formats, inspect them in
depth, and produce a graph in the Resource Description Framework that rep-
resents their metadata. Such a description may be useful to any person or sys-
tem capable of understanding RDF, to provide insight into large sets of files or
archives, to allow searching using SPARQL based on concrete domain criteria, or
to identify common or distinct entities across different datasets. The results of
this thesis may be used by any individual or organization wishing to process files
in a semantic and extensible way, to offer users of file hosting sites a wide range
of search options, to provide analysts a way to work with metadata in a com-
pact and detailed form, detached from the original source, or to improve systems
for processing files with greater control over what kind of data is accepted and
processed.

Keywords: RDF, file formats, file format analysis, media, metadata, information
extraction

v



vi



Contents

Introduction 5

1 Preliminaries 9
1.1 Introduction to various file formats . . . . . . . . . . . . . . . . . 9

1.1.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Identification and registries . . . . . . . . . . . . . . . . . 11

1.2 Identifying entities on the web . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Uniform Resource Identifier . . . . . . . . . . . . . . . . . 13
1.2.2 Hash-based identification . . . . . . . . . . . . . . . . . . . 14
1.2.3 Public Identifiers . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Universally unique identifiers . . . . . . . . . . . . . . . . 15
1.2.5 Object identifiers . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Linked data and RDF . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Basics of RDF . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 From data to linked data . . . . . . . . . . . . . . . . . . . 17

2 Related works 19
2.1 File analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 PRONOM . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Metadata representation schemes . . . . . . . . . . . . . . . . . . 20
2.2.1 NEPOMUK . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 WinFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 SPARQL Anything and Facade-X . . . . . . . . . . . . . . . . . . 21

3 Analysis 23
3.1 Target audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Functional requirements . . . . . . . . . . . . . . . . . . . 24
3.2.2 Non-functional requirements . . . . . . . . . . . . . . . . . 28

3.3 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Obtaining a description of a file and its contents . . . . . . 30
3.3.2 Searching through files based on their description . . . . . 31
3.3.3 Retrieving sub-files stored in a file . . . . . . . . . . . . . . 32
3.3.4 Extending the analysis with custom plugins . . . . . . . . 33

4 Design 35
4.1 File format analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Extension-based . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Signature-based . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 Parsing-based . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.4 Format conflicts . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.5 Text files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Describing file systems . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Choosing the data model and encoding . . . . . . . . . . . 37

1



4.2.2 Assigning identifiers to file system objects . . . . . . . . . 38
4.2.3 Choice of vocabularies . . . . . . . . . . . . . . . . . . . . 43
4.2.4 Describing a file system . . . . . . . . . . . . . . . . . . . 46
4.2.5 Describing content . . . . . . . . . . . . . . . . . . . . . . 48
4.2.6 Describing hashes . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.7 Describing media objects . . . . . . . . . . . . . . . . . . . 50
4.2.8 Handling invalid data . . . . . . . . . . . . . . . . . . . . . 57

4.3 Interaction with output . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Storing RDF as file metadata . . . . . . . . . . . . . . . . 59
4.3.2 Semantic file search . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Validation and processing . . . . . . . . . . . . . . . . . . 60
4.3.4 Extraction of hashes . . . . . . . . . . . . . . . . . . . . . 60

4.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Linked nodes . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.3 Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.4 Hash algorithms . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Implementation 67
5.1 Execution environment . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Language and framework . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Choice of libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Classes and interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Files and directories . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 Archives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.3 File formats . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.4 RDF terms . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.5 URI formatters . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.6 Hash algorithms . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.7 Linked nodes . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.8 Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5.1 Using RDF vocabularies . . . . . . . . . . . . . . . . . . . 77
5.5.2 Type-introducing return values . . . . . . . . . . . . . . . 78
5.5.3 Caching temporary objects . . . . . . . . . . . . . . . . . . 79
5.5.4 Adapting for the browser . . . . . . . . . . . . . . . . . . . 80
5.5.5 Circumventing automatic conversions of URIs . . . . . . . 80
5.5.6 Opening Cabinet archives . . . . . . . . . . . . . . . . . . 81
5.5.7 Forking the XML reader . . . . . . . . . . . . . . . . . . . 82

6 Documentation 83
6.1 User documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 Configuring components . . . . . . . . . . . . . . . . . . . 85
6.1.2 Using SPARQL . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Programmer documentation . . . . . . . . . . . . . . . . . . . . . 93
6.2.1 SFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.2 SFI.Accessories . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.3 SFI.BaseFormats . . . . . . . . . . . . . . . . . . . . . . . 94

2



6.2.4 SFI.ExternalFormats . . . . . . . . . . . . . . . . . . . . 95
6.2.5 SFI.MediaAnalysis . . . . . . . . . . . . . . . . . . . . . 95
6.2.6 SFI.Windows . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.7 SFI.Application . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.8 SFI.ConsoleApp . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.9 SFI.WebApp . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.10 SFI.SamplePlugin . . . . . . . . . . . . . . . . . . . . . . 95
6.2.11 SFI.Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Extender documentation . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.1 Loading plugins . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.2 Configurable components . . . . . . . . . . . . . . . . . . . 99

6.4 Administrator documentation . . . . . . . . . . . . . . . . . . . . 100

7 Tests 103
7.1 MSTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Unit testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3 Component testing . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3.1 Mocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4 Output testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4.1 telparia.com . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.5 Manual testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.5.1 Obtaining a description of a file . . . . . . . . . . . . . . . 106
7.5.2 Searching in files . . . . . . . . . . . . . . . . . . . . . . . 108
7.5.3 Extracting sub-files . . . . . . . . . . . . . . . . . . . . . . 109

8 Evaluation 111
8.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Profiling and statistics . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2.2 Benefits of RDF and SPARQL . . . . . . . . . . . . . . . . 120

8.3 Meeting goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Conclusion 123

Bibliography 125

List of Figures 129

List of Listings 130

List of Tables 133

A Attachments 135
A.1 Application source code . . . . . . . . . . . . . . . . . . . . . . . 135
A.2 Sample description of Samples/zip/example.zip . . . . . . . . . 135

3



4



Introduction
Throughout the history of computers, from the age of the mainframes and con-
tinuing its existence into the modern age of the web, one technology has been
always present and used by almost everyone – files. Whether they are stored on
a floppy disk or accessible through the Internet, computer files are the primary
means of recording and labelling digital data of any kind, able to be created,
moved, shared, or deleted.

The biggest advantage of files is also their greatest downside – the majority
of file systems do not offer any means of truthfully assigning what format a
particular file is in, or what its metadata are. If there is an image file containing
a photograph, for example, the file system has no means of being certain about
it, and it cannot even read its dimensions or find out when the photo was taken1.
All it sees is just a plain sequence of bytes, oblivious to the media object they
may represent.

It is not possible to “fix” file systems and eliminate this issue at this point
in the history of their existence, and although there have been attempts in the
past to create a new type of media-based file system, they were not successful2.
It may also be argued that there is no need to fix anything, as this way of storing
and understanding files is the best to accommodate for the immense number and
variety of file formats in existence, and using any such file system would prevent
people from using unsupported file formats efficiently.

There is, however, a better solution to this problem – annotating files using
external tools that produce their description, in a suitable format, separate from
the data. This has several advantages:

• The file system does not have to maintain any supported file formats; files
are still primarily sequences of bytes, and the knowledge of certain formats
by the annotation tool only affects the level of detail of their description.

• Choosing a standardized or commonly used format for the description opens
up the possibility of using other tools in the respective ecosystem to perform
tasks such as exploration, research, or processing of the information within
the files through such a description format, without having to be limited to
tools that work only with files.

• Additionally, hosting the description separately from the original file makes
it possible to operate on datasets consisting of large files without having
to download them, using the description first to select those files that are
relevant.

• The description can also be used for other purposes, such as for verification,
identification of files across multiple datasets, or validation of input data.

The purpose of this thesis is to provide such a tool.
1The file extension only serves as a suggestion in what program the file should be opened by

the operating system, which also attempts to read such metadata on its own when the format
is recognized. This, however, depends on the capabilities of the operating system and cannot
be guaranteed on all platforms.

2One of them was WinFS, later described in section 2.2.2.

5



Goals
The goal of this thesis is to design and provide an application that is capable of
generating descriptions of input files, by identifying their formats and extract-
ing the relevant metadata. For the purpose of representing the annotations, the
Resource Description Framework3 [1] was chosen. This makes it possible to in-
tegrate the output of the software into existing systems working with RDF or
Linked Data, and to use solutions like SPARQL [2] or SHACL [3] for further
processing.

In practice, such a software could be used for these tasks:

Exploration of file systems

The primary way of using the software is to analyze collections of files and ex-
tract useful information. This includes the number of files, their sizes, dates of
modification, and the formats of the stored data and their metadata.

As an example, the user may want to filter a large collection of photos and
select those that were taken in a specific location, or on a specific date. The
software can extract this information based on EXIF metadata stored in the
images, and performing a SPARQL query would identify the relevant files.

A similar, more technical example might be exploring a collection of executa-
bles and determining their manufacturer, version, or whether they are crypto-
graphically signed.

The output of the software can also be easily accessed as text in formats such
as Turtle [4], without having to view it in applications that accept RDF data.

File input validation

A file hosting site may restrict user-uploaded data to a specific form, for example
by limiting the range of allowed formats to archive-friendly or non-executable
ones, or by requiring the presence of specific files in archives.

The output of this software may be automatically processed using standard-
ized technologies such as OWL [5] or SHACL [3], to determine validity based on
the supplied criteria. This is especially useful thanks to the software’s ability to
recursively traverse through nested file systems, such as archives.

Linking files from different data sources

Another way of using the results obtained via the software is by comparing them
to other sources of data or data listings. As an example, there are sites hosting
file metadata, including hashes, but not the files themselves. The user may want
to find files in their system based on known metadata, such as their hashes, and
use the software to determine whether the file system contains occurrences of files
that match the criteria.

This could be useful for specific peer-to-peer file sharing services, such as
BitTorrent, to be able to determine whether a part of a user’s collection of files
matches the hashes of files in other collections.

3Introduced in detail in section 1.3, its use being justified later in section 4.2.

6



Extraction of relevant files based on specific criteria

The software’s ability to describe files in RDF also makes it possible to use
SPARQL to extract individual pieces of data based on conditions expressed in
the query. Coupled with the ability to explore even files embedded in archives or
executables, the software may be used as a powerful tool to automatically identify
and extract data matching a supplied query.

Structure
The following chapters in this thesis are structured as follows:

1. Preliminaries – introduction to file formats and other technologies relevant
for this work;

2. Related works – other pieces of software or systems with a similar focus as
this thesis;

3. Analysis – identifying the target audience, requirements, and use cases of
the software;

4. Design – detailed description of the process and its parts, the choice of RDF
vocabularies, and the architecture of the software;

5. Implementation – the concrete properties of the implementation, the exe-
cution environment, libraries, and common interfaces;

6. Documentation – documentation of the software for users, web administra-
tors, programmers, and extenders;

7. Tests – the overview of the tests that were used to ensure the functionality
of the software;

8. Evaluation – the summary of the performance of the software in achieving
the goals and meeting the requirements.

Conclusion is the final chapter of this thesis, which summarizes the process
of building this software and further areas of work.

7



8



1. Preliminaries

1.1 Introduction to various file formats
Storing data of various nature in files on a drive or available on the web requires
the use of a particular file format. The file format generally specifies the kind of
data that it is used to encode, what is the internal structure of the encoded file
(i.e. the layout of the bytes or bits composing the raw data), and what algorithms
are used to transform the original entity to its encoded form and back.

There is a wide variety of file formats that can be encountered during everyday
work with files, both proprietary and standardized. The file format of a particular
file is not stored alongside its contents, therefore it is generally not possible to
determine the file format used for every conceivable file. However, it is possible
to distinguish some file formats based on the differing structure of the bytes,
provided that the program can recognize it, or on other telling signs, such as
the initial few fixed bytes that many formats use to make the result somewhat
self-descriptive (commonly referred to as the “signature” or “magic number”). If
the operating system has means to open a file of a particular format, it usually
recognizes it based on externally assigned information, such as the file name
extension on Windows and Linux or the Uniform Type System code on Apple
systems.

1.1.1 Classification
Traditionally, all existing file formats are classified into two categories: text for-
mats and binary formats.

Text formats

The necessity to distinguish text formats has arisen from the differences between
major operating systems in relation to the structure of text files: On Unix sys-
tems, text files consist of a list of lines, each terminated by the line feed (LF)
character (including the last line). Prior to the macOS, the older Apple systems
used the carriage return (CR) character to terminate lines. Windows inherits
the MS-DOS ending of the carriage return, followed by the line feed character
(CRLF), and the last line does not have to be terminated in any way.

The differences in the overall format of text files meant that transferring them
between systems required conversion of line endings or other adaptation, in or-
der for the file to be readable. Modern operating systems can usually display
non-conforming files properly, as is the necessity due to the infeasibility of trans-
formations in all situations when transferring files over the Internet.

Another important property of text files is the character encoding that deter-
mines how the sequence of bytes stored in a text file should map to the sequence
of characters that should be displayed, printed, or parsed. This information is
usually also not stored alongside the file, therefore the software that opens the file
might have to guess the encoding based on the system’s default or the frequency
of certain bytes in the file.

9



In modern times, one of the several encodings of the Unicode [6] character
set is usually used for new files, but the ability to recognize and process other
encodings is still important when working with older sources of files.

Text files can usually be recognized by the absence of specific control code
characters except for line separators, as their presence could affect the reading or
displaying software in unexpected ways.

Text files are further classified into specific text formats with varying degrees
of structure. The completely unstructured text format is called plain text, which
is intended to be displayed and processed as-is. More structured formats include
those for formatting human-readable text, such as Markdown1, RTF2 or TeX3.
Data conforming to a user-defined format could be stored in formats such as
CSV [7] or INI4. The end of the spectrum is formed by source codes for various
computer languages, conforming to strict specification and unambiguous inter-
pretation.

Binary formats

Binary files consist of a sequence of bytes that should not be interpreted and
displayed as characters, and have to use binary mode5 when encoding. There are
no restrictions on the content of a binary file, apart from those imposed by its
format.

There are no theoretical restrictions that would prevent choosing a text for-
mat instead of a binary format when deciding how to store specific entities, but
binary formats are generally preferable when the primary content does not con-
sist of characters or when compression is necessary. Therefore, binary formats
are usually selected for storing digitized audiovisual data (such as images, audio,
and video), as well as general-purpose file archives containing hierarchies of files
and directories. Binary file formats are sometimes also selected when they are
intended to be processed by a particular application and not by the user directly,
as it is generally harder to edit binary files manually.

The sole knowledge of whether a given format stores a particular kind of
media, such as an image or audio, is usually not enough on its own to decode the
data, but it may be useful for selecting the optimal transfer speed or compression.

Derived formats

File formats in general may be based on multiple other formats while still logically
stored in a single file. In some cases, the base formats themselves are extensible
in some way, as is the case for XML [8], which is the underlying format for

1https://daringfireball.net/projects/markdown/
2https://interoperability.blob.core.windows.net/files/Archive_References/

%5bMSFT-RTF%5d.pdf
3https://tug.org/index.html
4The JSON and XML formats are also used for this purpose, and they are perfectly dis-

playable as text files due to their respective specifications, but they have their own rules for the
character encoding and line endings, and thus it is better to think of them as binary formats.

5In C, opening a file with fopen allows specifying text or binary mode. In
binary mode, the LF character is not transformed to the system-appropriate line
ending. See https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/
fopen-wfopen?view=msvc-170.

10

https://daringfireball.net/projects/markdown/
https://interoperability.blob.core.windows.net/files/Archive_References/%5bMSFT-RTF%5d.pdf
https://interoperability.blob.core.windows.net/files/Archive_References/%5bMSFT-RTF%5d.pdf
https://tug.org/index.html
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/fopen-wfopen?view=msvc-170
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/fopen-wfopen?view=msvc-170


many other formats such as XHTML [9], SVG [10], SOAP [11], SSML [12], or
RDF/XML [13]. In other cases, a common framework could be used for a range
of similar formats, such as the OLE compound file6 used for the original Microsoft
Office formats. When the logical structure of a format is close to a file system,
archive formats like ZIP7 may also be used in this case, as is done by Java Archive8

and Office Open XML9, used by the newer Microsoft Office formats.

External formats

There are several formats that have requirements on data beyond the bytes of a
single file. The most common cases are formats that have to know the name of the
file storing the data in order to function properly. This could also be the case of
packing formats like gzip [14] or SZDD10, where the name of the file is necessary
to know the proper name of the unpacked file, but the data is recoverable in any
case.

Formats that require multiple files range from formats where the coupling is
only optional, such as between video and subtitle files, to files where data may be
lost when separated, such as multiple archives storing a split file, or CUE/BIN
pairs where both files are necessary.

It is also possible for a file to describe an external entity, as is the case of
DESKTOP.INI files11 on Windows which provide metadata about the directory
that contains them.

1.1.2 Identification and registries
Although for the end user, the format may be hidden and irrelevant, the operating
system, browser, or other file processors need a way of knowing how to open a file
they encounter. They could attempt to guess the format based on several telltale
signs of its contents, but if that fails, there would be no way to inform the user
what application to install to recognize and open the file.

There are many ways to provide this information, several of which are worth
mentioning.

Name extension

The most common way of specifying the file format is to store it in the filename
extension, after the “.” character. In older file systems, the extension was a fixed
part of the name and was limited to 3 characters; hence most formats commonly
used today still follow that pattern.

6https://learn.microsoft.com/en-us/cpp/mfc/containers-compound-files?view=
msvc-170

7https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
8https://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html
9https://www.ecma-international.org/publications-and-standards/standards/

ecma-376/
10https://www.nationalarchives.gov.uk/PRONOM/Format/proFormatSearch.aspx?

status=detailReport&id=1249&strPageToDisplay=summary
11https://learn.microsoft.com/en-us/windows/win32/shell/

how-to-customize-folders-with-desktop-ini

11

https://learn.microsoft.com/en-us/cpp/mfc/containers-compound-files?view=msvc-170
https://learn.microsoft.com/en-us/cpp/mfc/containers-compound-files?view=msvc-170
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/
https://www.nationalarchives.gov.uk/PRONOM/Format/proFormatSearch.aspx?status=detailReport&id=1249&strPageToDisplay=summary
https://www.nationalarchives.gov.uk/PRONOM/Format/proFormatSearch.aspx?status=detailReport&id=1249&strPageToDisplay=summary
https://learn.microsoft.com/en-us/windows/win32/shell/how-to-customize-folders-with-desktop-ini
https://learn.microsoft.com/en-us/windows/win32/shell/how-to-customize-folders-with-desktop-ini


There is no general repository for filename extensions, thus the pairing be-
tween the extension and its handler is only determined by the system. In other
cases, the extension only informs the user about the purpose of the file, but not
about a suitable application to open it, such as MUS (music), VID (video), DAT
(data), or BIN (binary), all of which usually contain data in a proprietary format
specific to the software that uses them.

IANA Media Types

The Internet Assigned Numbers Authority (IANA) maintains a list of registered
media types, also known as MIME types12. Each format is assigned a code in the
form of type/subtype which can be used to obtain the registration document,
which contains more details about the format [15].

The type portion of the Media Type code corresponds to one of the registries
and identifies the general type of the data. There are multimedia types such as
image, audio, video, font, and model, component types mostly used in other
standards like multipart and message, and general types text and application,
the former specifying a file that can be viewed as text, and the latter being used
for anything that does not fit the other categories.

There are two basic registered types that can be used: text/plain for text
files and application/octet-stream for binary files [16].

The use of Media Types permeates Internet standards, appearing in many
protocols such as HTTP [17] or SMTP [18], the data: URI scheme [19], and in
some metadata formats. Its use solves the ambiguity of extensions, but it is not
completely free from issues, mainly due to legacy reasons13.

Uniform Type Identifiers

On Apple systems, a number of type codes, called Uniform Type Identifiers14,
can be attached to a file that can be recognized by the system. These types form
a hierarchy of types residing in different namespaces, following the reverse DNS
scheme.

UTIs also link to each other by conformance, allowing to obtain a more general
type from a more specific one. There are also type codes that describe other
identifiers or schemes.

12https://www.iana.org/assignments/media-types/media-types.xhtml
13Initially, no specific hierarchy was maintained for subtypes, therefore many of them still have

inconsistent names. This led to the creation of the vnd. (vendor) tree and prs. (personal) tree,
which indicate the purpose of a format. However, there are still many formats used today that
do not follow this pattern. Additionally, while the use of unregistered Media Types is prohibited
by the relevant standards, some codes were regularly used despite being unregistered. Their
subtypes used the x- prefix which earlier standards regarded as being part of the unregistered
tree, but the latest version permits their registration if necessary, as the unregistered prefix was
redefined to “x.”. Therefore, one may still encounter confusing situations like an unregistered
normal subtype, a registered x- subtype, or an unregistered subtype with a different registered
name in a specific tree.

14https://developer.apple.com/library/archive/documentation/FileManagement/
Conceptual/understanding_utis/understand_utis_intro/understand_utis_intro.html

12

https://www.iana.org/assignments/media-types/media-types.xhtml
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/understanding_utis/understand_utis_intro/understand_utis_intro.html
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/understanding_utis/understand_utis_intro/understand_utis_intro.html


XML namespaces

The system used to identify semantics of XML elements and attributes does not
require the use of a central registry, but still prevents ambiguity and offers some
self-description.

XML elements may be defined by a namespace [20], which is identified by a
URI [21]. Such a URI technically serves only to disambiguate elements with the
same name, but navigating to it should by convention yield a description of the
namespace in some form. This form is not mandated by any standard and could
only be human-readable, but there has been some practice of hosting the XML
Schema [22] description of the format at this location.

PRONOM

There are also repositories whose aim is to identify and preserve various exist-
ing formats rather than to be a place for registering new ones. Such a one is
PRONOM15, maintained by the National Archives of the British government. Its
database hosts over a thousand file formats, both old and new, including addi-
tional metadata such as their extensions, byte order, signatures, or compression
types.

Formats identified by PRONOM have a unique identifier, called a PUID
(PRONOM Unique Identifier). This identifier is also usable as an info: URI [23],
for example info:pronom/fmt/42 identifies the JPEG File Interchange Format
1.0016.

1.2 Identifying entities on the web
A problem related to identifying and classifying file formats is how to unambigu-
ously identify any sort of resource when communicating with a remote party.

Historically, there have been many different ways to refer to various objects
between remote locations, most of which have been replaced or unified by the
Uniform Resource Identifier (URI) [21]. Despite that, their understanding is still
relevant as they may be used in contemporary formats or encountered in older
formats when browsing historical data.

1.2.1 Uniform Resource Identifier
The URI [21] is a form of identifier, nowadays used pervasively throughout the
web, being the identifier of choice for many new technologies. The basis of URI
was conceived and developed in the early 1990s, then called the Uniform Resource
Locator (URL) [24], as a means of encoding a location of a specific resource
together with information on how to interpret the location (the scheme). For
IP-based protocols, a more complex syntax is usually used:

15https://www.nationalarchives.gov.uk/PRONOM/
16https://www.nationalarchives.gov.uk/PRONOM/Format/proFormatSearch.aspx?

status=detailReport&id=667

13

https://www.nationalarchives.gov.uk/PRONOM/
https://www.nationalarchives.gov.uk/PRONOM/Format/proFormatSearch.aspx?status=detailReport&id=667
https://www.nationalarchives.gov.uk/PRONOM/Format/proFormatSearch.aspx?status=detailReport&id=667


<scheme>://[<user>[:<password>]@]<host>[:<port>][/<path>][?<
query>][#<fragment>]

Listing 1.1: The full URI syntax

The fragment, which does not directly participate in retrieving the resource,
was not originally specified as a part of a URL, as it is used to refer to a specific
part of the resource itself, not determined by any scheme, but solely based on
the content type of the resource. Its inclusion in the general syntax is helpful in
many situations when the protocol does not permit addressing individual parts
of a resource, or when such a mechanism was not provided.

There are numerous registered schemes used to access or identify entities by
various means, such as http: and ftp: for the protocol of the same name [17][25],
file: for identifying files on a particular machine, regardless of the means of
retrieving such a file [26], mailto: for sending e-mails, and many others.17

Of particular interest are two additional schemes, the data: scheme [19] and
the urn: scheme [28]. The former presents a way of identifying a resource by its
data directly in a URI, without the need for any protocol to retrieve it from an
external location. The use of such a URI in a protocol or document effectively
embeds the resource in it. As there is no inherent limit on the length of a URI,
this scheme could be, in theory, used for identifying any piece of data and any
part thereof thanks to the fragment.

The urn: scheme was created with the primary intention of naming, but not
locating, resources. It consists of a hierarchy of namespaces, assigned by the
Internet Assigned Numbers Authority, but without any universal mechanism to
access the entities to which they refer, provided that a concrete entity could be
accessed in the first place.18

Internationalized Resource Identifier

The IRI [29] is a technology that extends the URI syntax, capable of storing
Unicode characters beyond U+007F directly in its components. The relevant
standard also defines the conversion from IRI to URI and vice versa, allowing
interoperability with software that does not directly accept IRIs. All other aspects
of such identifiers are otherwise identical to those of URIs.

In all further situations in this thesis where URI is mentioned, it is assumed
that an IRI could be accepted/produced in its place, unless stated otherwise.

1.2.2 Hash-based identification
Various distributed or peer-to-peer services use identifiers that serve to verify
the content to which they were assigned after retrieval, rather than to simply
point to its supposed location. There are numerous, mostly non-standard, iden-
tifier schemes used in older peer-to-peer clients, and there are also URI schemes
designed for this purpose.

17An interesting, albeit underused, scheme is the tag: scheme [27], not intended for describing
the location of existing entities, but for assigning new identifiers unique across space and time
to entities.

18The meaning of “resource” becomes more abstract when it does not have to be backed by
a file, as such could refer to conceptual entities, such as XML namespaces.

14



An example of such a scheme would be the magnet: scheme19, used for retriev-
ing files based on their characteristics, typically the file hash as a URN derived
from the specific hash algorithm, as well as optionally the file length, name, and
other information that may assist in retrieving it. The ni: scheme [30] works in
a similar way, but specifies less metadata about the file, only its content type,
and the specification also includes a mapping to a well-known URI scheme [31]
in case the authority is included.

1.2.3 Public Identifiers
SGML [32] and XML-based documents could refer to external objects, in the form
of document types, embedded entities, or notations, using two types of identifiers:
a public identifier and a system identifier [8]. There are no particular restrictions
on their structure, but the system identifier is commonly represented by a URI,
while the public identifier usually follows the Formal Public Identifier syntax [33].

A Formal Public Identifier consists of several fields that specify the nature of
the entity it identifies, including the owner, type of the resource, its description,
language, and version. The owner portion is optional and, if present, could specify
an owner registered by ISO, an unregistered owner, or the owner of a particular
domain name.

Any kind of a public identifier can be converted to a URN in the urn:public:
namespace [34], using a specific algorithm that preserves the general structure of
the identifier.

1.2.4 Universally unique identifiers
A universally unique identifier (UUID) [35] is a 128-bit piece of binary data,
generated according to algorithms designed to produce a practically negligible
probability of collisions. Such an identifier is usually formatted as a hex-string,
and since the structure of it only serves to distinguish it from other UUIDs, there
is generally no information in the identifier itself that could lead to its originator
or the resource it describes.

Version 1 and 2 UUIDs are generated based on the computer’s MAC address
and the current precise timestamp, both of which are prone to errors in some cases.
Version 3 and 5 UUIDs are the only ones that are based on other identifiers in
specific “name spaces”, such as DNS or URL, used together with the name string
with a hash to form the bits of the UUID. Version 3 uses MD5 [36] as the hash
function, while version 5 uses SHA-1 [37]. Version 4 UUIDs are generated solely
via a random number generator.

UUIDs can be translated directly into URNs with the urn:uuid: prefix.

1.2.5 Object identifiers
Object identifiers (OIDs) [38] form a hierarchy of integer-labelled nodes, together
forming a path of dot-separated integers leading from the root node to the specific
object. Each node in the hierarchy is given to a specific authority which receives
the rights to allocate integers under it.

19https://www.iana.org/assignments/uri-schemes/prov/magnet

15

https://www.iana.org/assignments/uri-schemes/prov/magnet


OIDs are very similar to URNs but are generally more efficient to store due
to their integer-based nature. On the other hand, the basic OID format does
not contain any human-readable labels and must be resolved to find the specific
meaning.

OIDs are most commonly used in X.509 certificates [39] to identify various
properties and are therefore commonly associated with security.

OIDs are also accessible as URNs with the urn:oid: prefix. Additionally,
UUIDs may be represented as OIDs in the 2.25 tree20 as 128-bit integers, or in
the Microsoft-hosted 1.2.840.113556.1.8000.255421 as consecutive chunks of
the UUID, limiting the maximum length of the individual components.

1.3 Linked data and RDF
A pertinent problem when publishing data is what format to use, as this limits
both the nature of the published data and the options the potential consumers
of the data will have. An example of such a format is the Resource Description
Framework (RDF) [1].

1.3.1 Basics of RDF
Data represented in RDF is, in its basis, a sequence of triples in the form of
subject, predicate, object, with restrictions on the type of value in each position.
To refer to a particular resource or entity, a URI can be used in all of the 3
positions22. Additionally, the object can also denote a literal value that is directly
embedded in the triple, which can be a plain string, a language-tagged string, or
a value and a URI denoting its type, usually taken from XML Schema [40]. The
subject and object positions also allow for a blank node instead of a URI, usable
in cases where the URI is unknown or indeterminable.

A collection of these triples can be thought of as an oriented multigraph, with
each triple interpreted as a URI-tagged edge between the vertices represented
by its subject and object. Semantically, this graph can describe various entities
with an unlimited number of properties of arbitrary types, either storing data or
pointing to other entities.

As RDF is just a data model, a concrete representation has to be chosen when
serializing RDF data into files or over the network. For this purpose, there are
various file formats to choose from, RDF/XML [13] and JSON-LD [41] based on
existing file formats, or the Turtle language [4], specifically designed for RDF.

Data stores that use RDF can be queried in a standardized way with SPAR-
QL [2] which is designed to match triples in the RDF database based on a specific
set of patterns and filters.

20http://oid-info.com/get/2.25
21http://oid-info.com/get/1.2.840.113556.1.8000.2554
22To be precise, RDF is defined in terms of the IRI instead of URI, and mandates difference

between an IRI and a URI formed by percent-encoding the international characters. However,
not all pieces of software respect this.

16

http://oid-info.com/get/2.25
http://oid-info.com/get/1.2.840.113556.1.8000.2554


1.3.2 From data to linked data
The RDF data model can be used on its own, but without any agreement on URIs,
a data publisher would have to provide not only the actual data, but also the
vocabulary alongside it. However, the advantage of using URIs is the possibility
of linking to other datasets, where one can navigate and obtain information about
the vocabulary used elsewhere. This is accomplished using standard and widely
used protocols, such as HTTP.

Equipping vocabularies with rules and relations between different concepts
gives rise to ontologies, which can themselves be described using RDF via RDF
Schema [42] or the Web Ontology Language (OWL) [5] for describing different
parts of information discourse.

There are many vocabularies used in the web of linked data, and anyone is
free to define their own. Some commonly used vocabularies are SKOS23, DCMI
Metadata Terms24, Schema.org25, or the DBPedia Ontology26.

23https://www.w3.org/TR/swbp-skos-core-spec/
24https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
25https://schema.org/
26https://dbpedia.org/ontology/

17

https://www.w3.org/TR/swbp-skos-core-spec/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://schema.org/
https://dbpedia.org/ontology/


18



2. Related works
In this chapter, several other projects related to the topics described in this thesis
will be presented. The problem of extracting metadata from files can be natu-
rally separated into two parts, one related to file format analysis and metadata
extraction, and one concerning metadata representation in a suitable format. The
sections in this chapter reflect this distinction, the first listing individual pieces
of software and software suites for file format analysis, while the second describes
other methods and schemes for representing metadata.

2.1 File analyzers
The primary purpose of a file analyzer is to look for patterns within a file and
to determine the format that corresponds to these patterns. File analyzers vary
in terms of additional operations they can perform after the analysis, such as
metadata extraction, or whether they can traverse through compound or archive
formats. The analysis may be performed either on the whole file, corresponding to
a collection of possible formats in which the file could be, or on individual parts of
the file, allowing it to identify individual embedded files inside compound formats,
data dumps or archives.

2.1.1 PRONOM
PRONOM has already been introduced as a file format registry, but its database
can also be used for the purpose of file format classification. The DROID (Digital
Record Object Identification)1 tool utilizes file format signatures stored in the
registry to automatically classify files based on their extension or contents. It
also supports container formats such as Microsoft Word Document (DOC) files
stored in an OLE2 container, or Java Archives stored in a ZIP.

PRONOM’s technical database used for classification is stored in a proprietary
XML-based format, supporting the matching of binary sequences at various po-
sitions in the data, or other factors. While this database could be in principle
incorporated into the file format analysis process performed by the software de-
scribed by this thesis, classification is only one part of file format analysis. The
DROID tool is not capable of extraction of file format-specific metadata, hence
the other part of the process would have to be handled by other means.

2.1.2 Extractor
The Extractor by Nova Software2 is a tool for analyzing file formats, allowing not
only file format recognition, but also inspection of arbitrary binary files, looking
for patterns corresponding to formats of embedded files. The primary purpose
of the tool is to extract the embedded files that it finds, but it can also display

1https://cdn.nationalarchives.gov.uk/documents/information-management/
droid-user-guide.pdf

2http://web.archive.org/web/20080725014248/http://www.volny.cz/
nova-software/

19

https://cdn.nationalarchives.gov.uk/documents/information-management/droid-user-guide.pdf
https://cdn.nationalarchives.gov.uk/documents/information-management/droid-user-guide.pdf
http://web.archive.org/web/20080725014248/http://www.volny.cz/nova-software/
http://web.archive.org/web/20080725014248/http://www.volny.cz/nova-software/


metadata for a limited number of formats, such as the dimensions of images or
sample rate of audio files.

Extractor also supports plugins via a C or Delphi API which can add addi-
tional supported individual formats or compound formats, called “groupfiles”.

2.2 Metadata representation schemes
This section lists several projects that have introduced particular formats or
schemes for encoding data or metadata, beyond plain bytes.

2.2.1 NEPOMUK
NEPOMUK3 is a project containing a series of specifications and a framework
which together compose a solution for the Social Semantic Desktop, an evolution
of the standard computer desktop with the goal of interconnecting applications
and desktops to provide a way for users to express their ideas as semantic infor-
mation, to be accepted, integrated, and annotated across different applications.

A part of NEPOMUK particularly of interest to this thesis is the NEPOMUK
File Ontology4, an RDF Schema-based ontology for expressing information about
various concepts related to files and file formats, such as audiovisual content,
documents, archives, executables, fonts, file systems, and their properties.

Although this ontology covers many situations, it lacks detail in others, such
as describing arbitrary byte sequences.

2.2.2 WinFS
WinFS5 was a discontinued project developed by Microsoft, akin to a file system,
to store data with a varying degree of structure. The goal of the project was
to replace commonly used data formats for storing structured data with records
stored in a relational database adhering to a particular schema. “Files” in such
a system are not stored as traditional binary blobs, but are exposed as .NET
objects having properties specific to their type, such as images providing their
dimensions, or documents having a property to store their author, backed by
the database. Data in this system does not have to be parsed, as applications
can instead acquire information from media objects directly by accessing the
properties of the relevant objects.

This project shares some of its goals with this thesis, in particular enabling
“semantic search”, a way to search through files based on criteria relevant to
their interpretations, rather than just a few attributes shared by all files, such as
name, creation date, etc. The presuppositions are different, however, as WinFS
expects the user to create the files in a semantic way from the beginning, while
the software described in this thesis is made to work with already existing data,
without any need to convert it to a semantic file system first.

3https://nepomuk.semanticdesktop.org/
4https://www.semanticdesktop.org/ontologies/2007/03/22/nfo/v1.2/
5https://web.archive.org/web/20060602151743/http://msdn.microsoft.com/data/

ref/winfs/

20

https://nepomuk.semanticdesktop.org/
https://www.semanticdesktop.org/ontologies/2007/03/22/nfo/v1.2/
https://web.archive.org/web/20060602151743/http://msdn.microsoft.com/data/ref/winfs/
https://web.archive.org/web/20060602151743/http://msdn.microsoft.com/data/ref/winfs/


2.3 SPARQL Anything and Facade-X
The SPARQL Anything project6 [43] provides a SPARQL extension for Apache
Jena, as well as a stand-alone application, with the aim of querying arbitrary data
using SPARQL. To achieve this possibility, structured data is first re-engineered
into the Facade-X meta-model [44], stripping away any domain-specific informa-
tion. The result of this process is an RDF graph which can be matched using
standard SPARQL graph patterns and further processed in the query.

Some of the end goals of this project align with the software presented in
this thesis, such as being able to process arbitrary files as RDF data and, as
a consequence, “SPARQL anything”, however the methodology and design of
this process differ from the one presented here, as well as the primary focus:
SPARQL Anything focuses on data and its raw structure, expressing it through
their domain-independent meta-model, while this work focuses on meta-data,
using highly domain-specific ontologies that semantically describe the input data,
but not fully encode it. As such, these two approaches can easily co-exist and
complement each other.

6https://sparql-anything.cc/

21

https://sparql-anything.cc/


22



3. Analysis
This chapter focuses on general aspects of the problem of creating a software to
inspect data, analyze file formats and collect metadata.

3.1 Target audience
The people who would benefit from this software can be separated into three
main groups, based on common characteristics:

File collections maintainers

These are the people or companies who maintain collections that at some level
consist of files, for the purpose of sharing or preservation. The use of this soft-
ware would improve the quality of their services, including search capabilities or
publishing metadata in a standardized form.

Data analysts

These individuals work with specific collections of data and are interested in ob-
taining information that is relevant to their research. They are expected to un-
derstand RDF and related technologies like SPARQL. This software would make
it possible for them to extract useful information or files themselves by taking
advantage of SPARQL instead of proprietary solutions or manual inspection.

Common users

They usually do not have prior experience working extensively with files, file
formats, or RDF. While this software does not offer any means of presenting its
results to these users, other tools may be used to visualize the results, or to build
SPARQL queries, thanks to the open and standardized nature of the technologies
used. The presentation of the RDF output is, however, not part of this thesis.

Even users without technical knowledge can use this software for their own or
the society’s benefit, if they have access to large data sources. In this case, the
output of this software, usually smaller by a few degrees of magnitude than the
original data, can be shared with other individuals for offline analysis without
requiring the original user to share the actual files.

Regardless of their presence in one of these groups, all users may also vary
according to their general programming skill. It is not necessary to have any
programming knowledge to use this software, but developers may benefit from
their skills by being able to extend the capabilities of the software beyond the
default supported components1.

1A developer with this specialization is an extender. Documentation how to extend the
software is provided later in section 6.3.

23



3.2 Requirements
This section describes the requirements the potential users of the software have
on its behaviour, based on the expectations of people interested in similar tools,
which were gathered from informal discussions and debates.

The requirements stated here can also be evaluated by testing the software
according to the scenarios presented in section 7.5.

3.2.1 Functional requirements
The following sections list the functional requirements on the specific features of
the software, denoted by FR and numbered. There are no specific user roles, so
these requirements apply to all of them.

FR1 – File analysis

The user should be able to provide a file or piece of data to the software for
analysis as input, and it should be able to determine its properties and produce
its description. This can be further broken down into the following:

• FR1.1 – Common file properties
The software should read the properties of the file in the file system, at the
minimum its name, size, and date of last modification, if available.

• FR1.2 – Recognizing known formats
The software should contain a set of known formats and be able to identify
files matching one or multiple of the known formats. The set of known
formats should contain at least the following2:

– Portable Document Format (PDF, application/pdf3),
– Microsoft Portable Executable (EXE, application/vnd.microsoft.

portable-executable4),
– Extensible Markup Language (XML, application/xml5),
– ZIP archives (ZIP, application/zip6),
– Ogg audio (OGG, application/ogg7),
– WAVE audio (WAV, audio/vnd.wave8),
– JPEG JFIF (JPG, image/jpeg9),

2The formats are identified using the IANA Media Types, as described in section 1.1.2.
3https://www.iana.org/assignments/media-types/application/pdf
4https://www.iana.org/assignments/media-types/application/vnd.microsoft.

portable-executable
5https://www.iana.org/assignments/media-types/application/xml
6https://www.iana.org/assignments/media-types/application/zip
7https://www.iana.org/assignments/media-types/application/ogg
8https://www.iana.org/assignments/wave-avi-codec-registry/

wave-avi-codec-registry.xhtml
9https://www.w3.org/Graphics/JPEG/

24

https://www.iana.org/assignments/media-types/application/pdf
https://www.iana.org/assignments/media-types/application/vnd.microsoft.portable-executable
https://www.iana.org/assignments/media-types/application/vnd.microsoft.portable-executable
https://www.iana.org/assignments/media-types/application/xml
https://www.iana.org/assignments/media-types/application/zip
https://www.iana.org/assignments/media-types/application/ogg
https://www.iana.org/assignments/wave-avi-codec-registry/wave-avi-codec-registry.xhtml
https://www.iana.org/assignments/wave-avi-codec-registry/wave-avi-codec-registry.xhtml
https://www.w3.org/Graphics/JPEG/


– Portable Network Graphics (PNG, image/png10).

• FR1.3 – Properties of known formats
For each known format, the software should store its MIME type and file
name extension. The way a format is matched is implementation-defined11.

• FR1.4 – Analyzing recognized files
For every recognized format of an individual file, the software should read
the object stored in the file under the specific format, and collect its prop-
erties or attributes during the process. The set of browsed properties or
attributes is implementation defined.

• FR1.5 – Analyzing unrecognized binary files
For every binary file that is not matched by any of the known formats, the
software should include the signature bytes of the file in the description, if
there are any12.

• FR1.6 – Analyzing unrecognized textual files
For every textual file that is not matched by any of the known formats, the
software should include the first line of the file in the description13.

• FR1.7 – Computing hashes
The software should maintain a collection of hash algorithms and use them
to compute hashes/digests of the encountered files or data and include them
in the description. At least SHA-1 and SHA-256 [45] should be supported.

• FR1.8 – Traversing nested file systems
A file system consists of directories and files within, but individual files
may themselves be serializations of other file systems. The software should
be able to identify nested file systems and follow them. As an example,
archives stored in other archives should be traversed recursively.

• FR1.9 – Using SPARQL for search
The user should be able to provide a SPARQL query to the software to
be used during the analysis to extract information from the generated de-
scription and present it as a result of the query. The way of inputting and
processing the query is defined by the software and should be documented.

10https://www.iana.org/assignments/media-types/image/png
11It is not prescribed how a format is matched, as in general, the method is specified by each

format individually. A format could be matched using a signature or other byte patterns, but
it could also be matched using an arbitrary algorithm or by calling an external API function
to perform the matching or parsing the file.

12This may give hints to the users of the software or the consumers of its output about the
probable format of the file, as many binary formats have a unique signature.

13This may be useful to the users of the software in determining the nature of the file, as
many text-based formats can be identified by the first line.

25

https://www.iana.org/assignments/media-types/image/png


• FR1.10 – Using SPARQL for extraction
The user should be able to provide a SPARQL query to the software to
be used during the analysis to select individual sub-files, such as those in
archives, and extract them to an output directory, based on a match between
the filters or graph patterns in the query and the generated description.
The specific form of the query is defined by the software and should be
documented.

• FR1.11 – Disabling the detection of specific formats
The user should be able to remove formats from the set of known formats
so that they will not be taken into account during the analysis.

• FR1.12 – Disabling the analysis of specific formats
The user should be able to skip the analysis of particular formats, so that
even if they are detected, no format-specific properties will be collected and
they will not be analyzed in detail.

• FR1.13 – Configuring individual components in analysis
The user should be allowed to control the specific settings that affect the
analysis, for example in situations where the result may rely on arbitrary
values or guesswork. These settings are defined by every component and
should be documented.

FR2 – Description in RDF

The software should express the description of the files obtained during the anal-
ysis in RDF, with these additional requirements on its structure:

• FR2.1 – Reuse of existing ontologies
The software should re-use existing ontologies and vocabularies to express
the properties of the analyzed data. The amount of custom-made vocabu-
lary shall be kept at minimum.

• FR2.2 – Use of hierarchical URIs
The hierarchies present in the analyzed data should be reflected in the URIs
for items in those hierarchies, so that it should be possible to determine their
position in the hierarchy just by comparing the URIs14.

14For example, if a particular archive is identified using the UUID-based URI
urn:uuid:342842d6-b6f8-40f9-b0d3-6d621b5938e6, a directory at path /dir/ in the
archive could be identified using urn:uuid:342842d6-b6f8-40f9-b0d3-6d621b5938e6#/dir/,
and a file named file.txt in this directory could be identified using urn:uuid:
342842d6-b6f8-40f9-b0d3-6d621b5938e6#/dir/file.txt. Note that these URIs are not
relative to each other in the sense used in RFC 3986 [21], since relative references only operate
on the path component of a URI, not its fragment. Not all URI schemes, however, permit
hierarchies in the path, as is the case for urn:uuid:, so using the fragment may sometimes be
the only option.

26



• FR2.3 – Elimination of blank nodes
The user should be able to disallow the use of blank nodes in the description,
using a URI for every individual instead15.

• FR2.4 – Separate nodes for the file, its content, and the media object seri-
alized in it
In the description, a node representing a file should be distinct from the
node for its plain content, and both are distinct from the node for the media
object actually serialized in the data16.

FR3 – Presenting the output

The RDF output from the process should be produced and presented to the user,
with these additional requirements:

• FR3.1 – Support for common serialization formats
Usual RDF serialization formats, such as Turtle, RDF/XML, or JSON-LD,
should be supported as RDF data storage options.

• FR3.2 – Outputting triples in real-time
It should be possible to write out the RDF triples directly at the point they
are created, as opposed to buffering them in a temporary graph and saving
it to the output file at once at the end of the process, if the particular
output RDF format supports it17.

• FR3.3 – Support for formatted output
The user should be able to enable formatting of the output, to improve read-
ability in an implementation-defined fashion, such as by including whites-
pace, if the output RDF format supports it18.

FR4 – Extending the software using plugins

The user should be able to extend the software by providing plugins in a specific
format that can add new capabilities while maintaining the previous requirements.
Additional requirements are as follows:

• FR4.1 – Support for new formats
It should be possible to add support for previously unknown formats, al-
lowing the application to detect them.

15It is not required that the URI be stable, as it may not be possible to find a stable method
of identification of every entity. Conversely, the URIs may also contain random elements.

16For example, an image stored in a binary file located in a file system should be represented
by 3 nodes in total – one with the file attributes, such as the file name or modification date, one
with properties of the data, such as the length or the actual bytes, and one with the properties
of the image, like its width or height.

17This should be supported by at least Turtle and RDF/XML.
18In Turtle and RDF/XML, this should at a minimum add indentation to the output.

27



• FR4.2 – Support for new analyzers
It should be possible to modify the analysis process by adding new compo-
nents to analyze data, or by modifying the existing components and adding
new capabilities.

• FR4.3 – Support for new hash algorithms
It should be possible to provide additional hash algorithms that can be used
to compute digests of data, for identification or description.

3.2.2 Non-functional requirements
The following sections specify the expectations about the software or its quality
in general, denoted by NR and numbered.

NR1 – Execution and portability

The software should be able to be executed in various environments and on various
platforms, which should not impair its core functionality. Differences in availabil-
ity of specific components are permitted, however, as the implementation may
not be available for the concrete platform.

• NR1.1 – Running in console
It should be possible to launch the software from the desktop environment
as a console application accepting input from the command line.

• NR1.2 – Running as a web application
It should be possible to operate the software as a web application, using it
solely from the browser.

NR2 – Separation of projects

The software should be separated into multiple projects that each have a clearly
defined focus, so that it is possible to use only a part of it without referencing
or including all of them. For example, code using the Windows API functions
should be limited to one project, so that it is possible to deploy the software to
non-Windows platforms by excluding that project without concerns about which
other code may be affected.

NR3 – Documentation

The software and its parts should be concisely documented.

• NR3.1 – Use and deployment instructions
Documentation about building or deploying the software should be pro-
vided, as well as documentation for using it, for both the console-based
implementation and web-based implementation.

28



• NR3.2 – Programmer documentation
Documentation of the code and its parts should be provided, including
documentation comments inside the code itself.

• NR3.3 – Extender documentation
Documentation on how to extend the functionality of the software by adding
new components and including them without rebuilding the application
should be provided.

NR4 – Tests

The software should include tests that allow assessing its functionality.

• NR4.1 – Unit tests
Unit tests should be provided for the integral or commonly used parts of
the software, showing and verifying their functionality.

• NR4.2 – Complex tests
More complex tests for the software or its parts as a whole should be pro-
vided, testing and evaluating their behaviour.

NR5 – Demo and examples

An easily available demo of the software shall be provided, including examples
on how to operate and use it for common purposes.

3.3 Use cases
This section shows possible use cases for the users of the software, covering the
functional requirements in section 3.2.1. Since the software does not have multiple
user roles, the same actor is implied for all the following use cases – the user. It
is also assumed that the software is properly installed or deployed and can be
launched by the user.

29



Application
Application

≪extend≫

≪extend≫

User

Obtain a description of
a file and its contents

Search through
files based on

their description

Retrieve sub-files
stored in a file

Extend the analysis
with custom plugins

Figure 3.1: Use case UML diagram

3.3.1 Obtaining a description of a file and its contents
Description

The user wants to use the software to obtain a full description of a single file,
including its properties and the properties of its data and metadata, which can
be used by the user for the purpose of search, information retrieval, interlinking,
archival, etc.

The output of this process is a detailed RDF description of the file which can
be used to derive information from it without having to access the file itself.

Preconditions

• The file to be described is present and accessible in the user’s file system.

Steps

1. The user launches the software with the parameters to analyze a file, as
specified in the documentation, including the path to the file and a path
where to save the output.

2. The software locates the file and reads its common properties, such as the
name, date of creation and modification, and size.

3. The software opens the file for reading and derives additional information
from its contents, such as whether it is binary or textual, and computes its
hashes.

30



4. The software identifies which of the known formats match the contents of
the file.

5. For every matched known format, the software parses the file in the format
and analyzes the resulting media object, collecting its properties.

6. The software links the information collected at all these 3 levels, and pro-
duces an RDF graph containing all of the collected properties.

7. The graph is serialized to the output file in the appropriate format.

Postconditions

• The status of the progress and result of the analysis are displayed to the
user.

• The output file is created and contains information that reflects the analyzed
file.

Alternative paths

• The input file may not be found at the specified path. In this case, an error
message is displayed and no output file is produced.

• The file may become unavailable, unreadable, or otherwise corrupted during
the analysis. In such a situation, an error message is displayed, but the
output file is created with the information that the software managed to
collect up to this point.

• The media object may itself contain a collection of files. In this case, these
files are recursively processed in the same way as the original input file from
step 3, and their description is linked to the media object.

• The user may configure the software to suit their needs by removing specific
known file formats, hash algorithms, or other components, or by configuring
their properties to values different from the default. In such a case, the
output of the software is affected in the way specific to the components.

3.3.2 Searching through files based on their description
Description

The user is interested in extracting information represented by a file or its content,
based on particular criteria, such as obtaining the properties of specific media
objects or looking for the presence of given formats. The software can accept
a SPARQL query and evaluate it on the generated description, retrieving the
requested information in the result of the query.

31



Preconditions

• The file to extract from is present and accessible on the user’s file system.

• One or multiple SPARQL queries are prepared and accessible through the
file system.

Steps

1. The user launches the software with the path to the target file and the paths
to the SPARQL queries.

2. The software loads the SPARQL queries.

3. The software opens the input file and follows the same steps as in sec-
tion 3.3.1 to analyze it and its contents.

4. The loaded SPARQL queries are evaluated on the generated description,
and their results are collected.

Postconditions

• The output file contains the results of the evaluation of the SPARQL queries
in the provided format.

Alternative paths

• The input file or SPARQL queries may not be found at the specified paths.
In such a situation, an error message is displayed, and the software exits.

• The SRARQL queries may not be parseable, may contain syntax errors, or
may be otherwise unsuitable to use for extraction. In such a case, an error
message is displayed with the error reason, and the process stops.

3.3.3 Retrieving sub-files stored in a file
Description

The user is interested in retrieving actual pieces of data stored inside a file,
matching particular criteria, such as resources in an executable file or files in an
archive. The software can identify such sub-files by means of a SPARQL query
and extract them.

Preconditions

• The file to extract from is present and accessible in the user’s file system.

• One or multiple SPARQL queries are prepared and accessible through the
file system.

32



Steps

1. The user launches the software with the path to the target file and the paths
to the SPARQL queries.

2. The software loads the SPARQL queries.

3. The software opens the input file and follows the same steps as in sec-
tion 3.3.1 to analyze it and its contents.

4. When a sub-file that matches any of the queries is encountered, it is copied
to an output directory based on the information from the query.

Postconditions

• The list of extracted files is displayed to the user.

• The output directory contains all sub-files matched by any of the queries.

Alternative paths

• The input file or SPARQL queries may not be found at the specified paths.
In such a situation, an error message is displayed, and the software exits.

• The SRARQL queries may not be parseable, may contain syntax errors, or
may be otherwise unsuitable to use for extraction. In such a case, an error
message is displayed with the error reason, and the process stops.

3.3.4 Extending the analysis with custom plugins
Description

The user wants to extend the capabilities of the software to add support for
additional known formats, hash algorithms, or other components beyond what
the base installation of the software offers. The software accepts plugins that the
user can provide for this purpose.

Preconditions

• A plugin file is prepared, either created by the user or obtained from another
source.

Steps

1. The user places the plugin file in its appropriate location, as specified in
the extender documentation, and launches the software with parameters
according to the desired task.

2. The software locates the plugin file and loads it.

3. All components in the file, such as additional known formats or hash algo-
rithms, are added to their respective collections.

33



4. The process continues as specified by the parameters, but with the compo-
nents included in it.

Postconditions

• The list of loaded plugins is displayed to the user.

• The components in the plugin are incorporated into the process and affect
it when encountered.

Alternative paths

• The plugins may have an invalid format or be otherwise unloadable. In this
situation, an error message is displayed to the user, with the name of the
erroring plugin.

34



4. Design
This chapter focuses on the creation of the application from the ground up, the
decisions that were made alongside the process, the solutions to the requirements
stated during the analysis, and the reasoning behind them.

The design process is divided into four parts, starting with the different meth-
ods for analyzing the format of a file, described in section 4.1, followed by the
methodology of producing descriptions of files and data in section 4.2. In sec-
tion 4.3, it is shown what uses such a description should have, and section 4.4
introduces the overall architecture of the software that achieves these goals.

4.1 File format analysis
An integral part of loading any useful data from a file is determining its format,
which can be achieved via various methods.

4.1.1 Extension-based
A fast but imprecise method is to only consider the file extension, without in-
specting the file’s content at all. This is what most operating systems use when
opening a file, but for the purposes of this software, this method cannot be used
alone, as it relies on the presence and correctness of the extension, which is usually
not possible to guarantee1.

For this reason, the extension can be used merely as a suggestion but not as a
determining factor in the whole process. Specifically, a file that uses an extension
commonly used for a particular file format must not be classified as having that
file format without first using other methods to make sure that the assessment is
correct.

4.1.2 Signature-based
A better and often sufficient method is to look for specific sequences of bytes
inside the file, known as magic bytes, or the signature if placed at the beginning
of the file. Many of file formats use this location to store a short string of ASCII
characters with the primary purpose of rejecting invalid or damaged data when
the signature does not match, but it can also be compared against a list of known
signatures to quickly find out which format it corresponds to, such as MZ for
Windows and DOS executables, MThd for MIDI files, or PK for ZIP archives.

This approach is sufficient in many cases, but there are situations when the
signature is not present at all, such as in a tar archive or in an MP3 file, at a
different position like in a WAV file or MZ-based executables, or the format is
determined in a completely different way, such as by using namespaces in XML
or metadata files in ZIP-based formats.

These issues must be solved on a per-format basis, such as by using specific
heuristics for tar or MP3, looking at multiple positions in the file, or resorting to

1In most file systems, a file can be renamed together with its extension.

35



a more general format like XML and ZIP first, parsing it and then deciding on
the more specific format.

4.1.3 Parsing-based
Although the previous approaches are quite efficient, they are not completely
precise, as they rely only on heuristics and patterns in existing files, but it is
always possible to devise a completely different format that looks similar enough
to be confused with the original one. Therefore, the best and most accurate
method is to simply attempt to parse the input file in any format not ruled out
by the previous checks. The result of the parsing, if successfully obtained, is also
required in the following step in order to be described, and thus checking the
signature, etc. only serves as an optimization.

4.1.4 Format conflicts
There are cases where a file could be recognized as having multiple formats. One
of the reasons for that is some relation between the formats, like WAV being
a variant of RIFF, or a Java archive being stored in a ZIP archive. In these
cases, the formats would better be expressed in a hierarchy with the most general
format, such as RIFF or ZIP, at the top. In other cases, the two formats might
be unrelated but could share enough similar structure to allow misinterpretation.

Regardless of whether the reason is accidental or purposeful, it is not a sig-
nificant complication, provided that multiple formats can be easily described in
the output without causing any conflicts.

4.1.5 Text files
All existing text formats are directly or indirectly based on the plain text format,
and being able to accurately determine properties of a text file is important to
correctly interpret the data within.

Recognizing plain text

Even determining whether a particular file stores text or not is non-trivial, due
to the variety of different forms text files were stored as.

Usually, a set of non-text characters is used to determine if a file is binary
or not; the presence of such characters indicates that it is most likely not text.
However, to accommodate for different encodings and file terminators, only the
NUL character is looked for in the file by this software. If it is found at the
beginning, or in the middle followed by non-NUL characters, the file is treated as
binary straight away, meaning that text files are permitted to end on a variable
number of NUL characters. This is useful to permit, as some files or resource
storage systems use NUL as a file terminator, which may be found when the file
is read.

36



Analyzing plain text

Once a text file is encountered, there are many properties of it that pose the risk
of misinterpretation, such as what sequence of characters is used to delimit lines,
whether the file is terminated by some special character and, most importantly,
its encoding.

Although some text formats, such as HTML [46], are able to specify the
encoding inside the file itself, and some transfer protocols like HTTP [17] can
indicate it during the transfer, a text file on disk in most cases does not specify its
encoding in any way. Misinterpreting the encoding of a text file leads to an effect
known as mojibake, when the binary values of characters in the original encoding
are interpreted in another encoding, usually resulting in garbled text. In order
to avoid this effect in situations where the encoding is not stated explicitly, the
encoding has to be guessed via heuristics, for example by computing statistical
data about the occurrences of sequences of characters and matching it to profiles
of known encodings.

If this process fails or the file contains characters invalid in the guessed encod-
ing, it is better to treat the file as binary, but, similarly to a file being recognized
as having multiple formats, a text file could also be recognized as having multiple
encodings, and while a garbled text is not usually the desired result, it is also not
strictly incorrect.

4.2 Describing file systems
This section covers the problems of representing the information stored in a file
system in a structured non-proprietary form that can cover data obtained at any
level in its hierarchy.

4.2.1 Choosing the data model and encoding
There are three possibilities for the type of the data model that can be used to
represent the metadata: relational, tree-based, and graph-based.

In a relational model, entities are represented as relations grouping together
their attributes, usually along with a primary key attribute which is necessary
to distinguish distinct but equivalent entities. Typically, data conforming to a
relational model is stored in a relational database in fixed tables that conform to a
specific schema. This model can be used to represent a relation for directories and
a relation for files in a directory, but it is not suitable for natural representation
of heterogeneous data that may be found inside the files themselves, since adding
a new attribute specific to a single format would require changing the schema of
the table.

A tree-based model has a single root, containing or linking to its children,
which also link to their children, recursively. The children of a node can usually
be distinguished if they have a different relation to the parent. This model could
be encoded in JSON or XML, which may or may not specify a schema. Individual
file systems naturally map into a tree-based model due to their hierarchical nature,
but there are still exceptions. A file system could contain symbolic or hard links
to other parts of it, references to entities inside or outside the file system, and

37



entities existing at different levels in a file system may also potentially exist on
their own, e.g. a specific image with concrete underlying bytes can be described
without first locating it in an actual file system. To prepare for this possibility,
a document conforming to this model would have to be split into a collection of
files, directories, and data and media objects, each given an identifier in order to
be linked from other places, in essence reverting back to the relational approach.

A graph-based model is a perfect match for this case, whereby individual
nodes exist on their own and may link to or be linked from an arbitrary number
of other nodes. Data in this model can be accessed by locating any of the nodes in
the graph. Traversing along its vertices will lead to other parts of the file system.

This makes RDF [1] a suitable framework for representing and encoding any
information derived from a file system, as it is capable of identifying any arbitrary
entity and properties and links thereof.

4.2.2 Assigning identifiers to file system objects
There are two ways in RDF to refer to resources: by using a URI or through
a blank node. While using blank nodes in itself does not limit the ability of
the application to formulate facts about the resources it encounters, blank nodes
are inherently unstable, and their identity is limited to the document they are
defined in. Loading any such document into a triple store prevents the possibility
of referring to the individual nodes in a stable manner, unless the triple store
supports advanced techniques like using hashing to stabilize blank nodes.

Another reason for preferring to use URIs is the fact that the nature of file
systems is hierarchical, and this hierarchy can be easily projected onto a URI
structure, making it possible to derive the identifier for any object even without
having to traverse the RDF graph.

As a consequence, the use of URIs will be preferred to blank nodes whenever
possible. What remains is to describe how to assign URIs to any resources that
might be encountered in a file system. It should be noted that the following
methods are by no means the only way to achieve this goal, but they were devised
with as little arbitrariness in mind as possible, relying on open specifications or
common conventions where possible, to increase the chance of interlinking with
other possible serialization schemes.

Contrary to RDF recommendations [47], the use of the HTTP(S) scheme in
the URIs constructed here is not always possible, simply due to the fact that most
resources do not have a primary HTTP representation, and trying to create one
would only increase arbitrariness at the risk of breaking dereferenceability when
such a service is discontinued.

Data and media objects

The root of the URI hierarchy is formed by representations of contents of individ-
ual files, independent of their original locations. To make a distinction between
the actual file entity in a file system and its content as a sequence of bytes, the
term “data object” is used for the latter.

To identify a data object, the data: URI scheme is used, along with the byte
sequence stored in the file. At this point, it is also necessary to decide whether
the content should be interpreted as being in a text format or a binary format,

38



either externally or using heuristics, to determine whether the media type used
by the URI should be text/plain or application/octet-stream. In the case
of text content, the intended encoding should be determined as well. The choice
between text and binary format or the encoding of the text does not affect the
actual data in any way, rather it gives indication as to how the data should be
initially interpreted.

A media object is created when further mechanisms are used to determine
the actual structured type of the data, in which case the resulting URI is formed
again but with a different media type. There may also be multiple concurrent
media types found in the data, or a hierarchy of increasingly more precise media
types2.

Although this approach could in theory identify the content of any file, too
large URIs quickly become impractical or difficult to store, the commonly cited
length limit being 1024 [19]. Without relying on a central registry of files, it is
possible to use hashes to identify such files, as shown in the next section.

Hashes and checksums

There are two parts to this problem: how to identify a data object based on its
hash and how to identify the hash itself. The reason for this separation is the fact
that several commonly used hash algorithms have been found to be vulnerable to
collision attacks and therefore using them to identify a single piece of data would
be improper3.

If a sufficiently strong hash algorithm is used and it can be reasonably expected
that the same identifier using it will never be generated for a different piece of
data, the ni: URI scheme [30] can be used to refer to a data or media object
through its base64-encoded hash, created from one of the algorithms in the Named
Information Hash Algorithm Registry [30]. The URI for an empty file would
therefore be, using the SHA-256 algorithm, ni:///sha-256;47DEQpj8HBSa-_
TImW-5JCeuQeRkm5NMpJWZG3hSuFU. The scheme also supports specifying the me-
dia type of the file along with the hash, so ni:///sha-256;47DEQpj8HBSa-_
TImW-5JCeuQeRkm5NMpJWZG3hSuFU?ct=text/plain can be used to refer to the
empty plain text file. The choice of the media type here is the same as for the
data: scheme.

For compatibility with systems that use older, potentially unsafe hash al-
gorithms, it is, however, useful to provide support for other hash algorithms

2Examples of concurrent media types are mostly text formats that are not distinct enough
from other formats, like XML and HTML which could be mistaken for each other in specific
cases. Similarly, a program can be written and interpreted in multiple programming languages
at the same time, known as a “polyglot”, as a form of recreational programming or to simplify
its execution.

A media format hierarchy could be found in generic document types, for example every XML
document could also be interpreted as a specific format to reflect its schema, and in container
or archive formats, which may be used to create package formats.

3It is, however, possible to reinterpret a possibly ambiguous identifier as “the first file ever
created by humanity with this particular hash”, under the assumption that all files having the
same hash that followed were created just to prove that the collision is possible and are, in fact,
not identifiable by that hash anymore. These semantics may be useful to adopt for a sufficiently
strong hash algorithm, but any weak hash or checksum algorithms are better to be interpreted
in a different way, as illustrated in the following paragraphs.

39



or checksums, as there are existing databases that use them to lookup addi-
tional metadata. Informally, URN namespaces such as urn:md5:, urn:sha1:
or urn:crc32: have been used for this purpose, despite not being registered.
When working with resources in this form, it is important to define the pre-
cise meaning of the entities denoted by these URIs. In a peer-to-peer system, a
URI like urn:md5:D41D8CD98F00B204E9800998ECF8427E (the MD5 hash of the
empty file) is generally satisfiable with any file that has the same hash, not just
the empty file4, and therefore such a URI should be interpreted in a way that
reflects this. When this form of a URI is encountered, its general interpretation
is not a specific file with the exact hash, but any such file, as a concept broader
than any concrete file that matches the hash.

This approach makes it possible to link a uniquely identified hash to almost
any resource, not just files, while being able to handle any degree of uncertainty
or loss of information. There are examples of such hashes like the BitTorrent Info
Hash used for files or directories and their metadata, or a suite of techniques for
difference-based hashing of images known collectively as dHash. Hashing of XML
or RDF documents also falls into this category when canonicalization is used.

Files and directories

File system objects are represented as part of a hierarchy with the file system
itself at its root, combined with the path to the individual files and directories.

The root of the file system is itself represented by an arbitrary URI, with
different possibilities depending on the intended usage. For creating a serialization
of an HTTP server, FTP server, or a local file system, the appropriate URI
scheme could be used, but the URIs created this way are not guaranteed to
be resolvable to the same content on a different machine or at a different time.
A safer alternative is to generate a new UUID-based URN every time the file
system is browsed, but this makes the result non-deterministic and hard to track
changes with. A stable and deterministic option, yet one that may not always
be available, is to first store the file system itself in an archive format and use
the available methods to generate an identifier for the media object it represents.
It is also possible to use a specific format for the archive that does not need to
be concretely present as a single file and could instead be formed, hashed, and
disposed of on the fly as the file system is browsed.

Due to the large number of sources and possible formats the file system could
be provided with, there are no standardized options to choose from to refer to
objects within. In case of URI schemes that expose a file system-like hierarchy
(i.e. http(s):, ftp:, and similar), the path can be easily included in its proper
location in the URI, but the ni: and data: schemes do not offer this possibility.

One option is to use the fragment portion of the URI to store the path.
However, this is not usually provided as part of the official registration doc-
ument for media types at the IANA, making the format of the fragment al-
ways arbitrary to a degree. Regardless of this, a URI like ni:///sha-256;...?
ct=application/zip#/path/file.txt, inspired by other hierarchical fragment
schemes such as JSON Pointer [48], might be interpreted to refer to a file located

4Peer-to-peer clients also check that the length of the file matches after it is downloaded,
but this information is not reflected in the hash identifier itself.

40



at /path/file.txt in the specific ZIP archive. To achieve at least some com-
patibility with other proprietary fragment formats, the XPointer framework [49]
could be adopted, resulting in a URI like ni:///sha-256;...?ct=application/
zip#xmlns(fs=http://example.org/fs)fs:path(/path/file.txt). This de-
creases the risk of collisions with other types of fragments, at the cost of increasing
the length of every URI.

Another possibility is to use a specific URI scheme to construct a new URI
that conveys the meaning of opening an archive and addressing individual files
within it. The only registered URI scheme, at the time of writing, that permits
this use, is the jar: scheme, which supports ZIP files, but there are applications
that understand other proprietary schemes. In this case, the URI would look like
jar:ni:///sha-256;...?ct=application/zip!/path/file.txt.

The following conventions are also adopted for every path, regardless of the
encoding scheme: every path starts with /, and a path to the contents of a
directory, separate from the directory object itself, ends with /.

Path objects

Although the identifier for an actual concrete file can be derived from the URI
of its parent directory and the name of the file, a local naming scheme is usually
used when the file system is accessed by the operating system. For example,
on a Windows operating system, a path like C:\Windows\notepad.exe uniquely
identifies a file in the “Windows” directory on a volume assigned to the letter C.

For the purpose of identifying files in the scope of the system, the file:
URI scheme [26] may be used, so, for example, an URI of file:///C:/Windows/
notepad.exe could be used to identify the same file. However, this does not work
when translated into RDF, as there is no concept of a local system, and even if
there were, such a document would change meaning when moved across different
systems.

Therefore, under the assumption that all URIs used in an RDF document
are stable and unambiguous, an approach similar to that in the case of hashes
can be taken. In this interpretation, file:///C:/Windows/notepad.exe does
not refer to a single file on the local system but to any file on any file system
that can be accessed by that path, simultaneously. Additionally, a virtual file
system may be imagined in the C:\Windows directory, allowing for the use of
file:///notepad.exe as a broader concept for any file named notepad.exe,
regardless of its location.

Although it may be argued that abusing the file: scheme simply to refer
to paths, which could be easily represented as data nodes, is not necessary, this
approach has some advantages. First, while an RDF graph can be easily navigated
by traversing data nodes, many databases only offer the ability to browse and
navigate through URI or blank nodes, thus an operation like “find all files that
share a name with this file” would require writing a SPARQL query just for this
purpose. Second, it may be useful to describe the paths themselves, as they also
form a hierarchy and may be associated with broader or narrower concepts.

It will also be necessary to produce two distinct URIs for a single directory;
one to identify it as a file in its parent directory and the other other to identify it
as a container of other files. The ending / character serves as the distinguishing
factor: a URI like file:///C:/Windows identifies the directory as a file node

41



in file:///C:/, while file:///C:/Windows/ identifies it as a collection of files.
There is a special case for the root file:///, because file:// is invalid. In
this case, file:/// is given the first meaning of a file node, while file:///./ is
interpreted with the second meaning.

Many paths have an extension, also called a suffix, which determines how to
interpret the file located at that path. It is reasonable to also provide a URI
for the extension, as this makes it possible to use a database that associates
extensions with file formats to guess the format of a file, all just by navigating
through its path. The https://w3id.org/uri4uri/suffix/ namespace is used
for this purpose, as there is no designated URI scheme just for extensions.

Lastly, it is a common practice on Windows systems to use environment
variables in paths, to refer to specific configurable locations, for example using
%WinDir%\notepad.exe to prepare for the possibility that the Windows directory
may be moved to a different location. At the cost of possible ambiguity, such a
“path” may also be encoded as file:///WINDIR:/notepad.exe5, imagining that
a file system may be mapped under that specific variable name. However, us-
ing variables in other portions of the path remains unsupported, and devising a
scheme for this case is beyond the scope of this thesis.

Source objects

Although every data object can be solely identified by its hash, it is usually not
sufficient to use such an identifier to locate the file without additional information.
In some cases, it is possible to create a URI that combines the source file system
and the path of the resource, to be able to locate it without the need to traverse
the path in the graph every time. As an example, a URI like ni:///sha-256;
...?ct=application/zip#/path/file.txt is not enough to retrieve the file if
there is no mapping that would resolve the hash of the archive, but if such an
archive was downloaded from https://example.org/archive.zip, its location
could be substituted instead of the ni: URI, forming https://example.org/
archive.zip#/path/file.txt.

It is important to be aware that this association is temporally unstable, as
the source URI may become unavailable or start providing different data. The
Wayback Machine hosted by the Internet Archive6 may be used instead to form a
stable reference to the resource at a specific time of retrieval, e.g. https://web.
archive.org/web/20220216013606if_/https://example.org/archive.zip.

5Windows environment variables are case-insensitive.
6https://web.archive.org/

42

https://web.archive.org/


...#/path/

...#/path/image.png

file:///path/
image.png

file:///image.png

data:application/
octet-stream,...

data:image/png,...

urn:sha1:...

Figure 4.1: Example graph of nodes corresponding to an image in a directory

4.2.3 Choice of vocabularies
Once the relevant classes of entities in the universe of discourse are established,
they can serve as the basis for selecting the optimal RDF vocabularies to describe
them. While it is possible to build a custom ontology perfectly tailored to the
needs of the application, using a combination of already established ontologies
increases compatibility with other similar projects. There are several factors that
affect the selection:

Prior use. A vocabulary already used in several projects has a greater chance
of being recognized and correctly processed by tools designed to work with such
projects.

Precision. Ability to describe entities and distinguish concepts to the depth
required by the application. As an example, vocabularies might conflate the
concept of a file, the raw content within, and its interpretation.

Compatibility. It is better to use vocabularies with reasonably aligned con-
cepts and properties that can be used together.

Reasoning power. Vocabularies backed by well-defined consistent ontologies
increase the possibility of deriving additional useful data from the resulting graph.

Based on these criteria, the following vocabularies were chosen:

Nepomuk File Ontology7

The Nepomuk File Ontology is part of a larger family of ontologies within the
NEPOMUK project. This ontology is intended for use in file system serializations,
offering a specialized vocabulary for defining file systems of different types, files
and folders, and types of media.

7https://www.semanticdesktop.org/ontologies/2007/03/22/nfo/

43

https://www.semanticdesktop.org/ontologies/2007/03/22/nfo/


This ontology offers separation between storage and information objects, mak-
ing it possible to differentiate between a file and the resource encoded therein,
but it lacks necessary precision as it defines files as sequences of bytes rather than
as storages of such sequences, which is necessary in order to be able to identify
the sequences themselves.

Representing Content in RDF [50]

The issue of representing data free of any specific storage is solved by an ontol-
ogy devised by the W3C Working Group, which refers to this form of data as
“content”. It offers specific classes and properties for describing textual, binary,
and XML content as distinct but linked entities, suitable for combination with
the data: and ni: URI schemes that also support specific content types.

However, this ontology does not offer any means of interlinking various types
of content together, or specifying additional metadata.

DCMI Metadata Terms8

The Dublin Core Metadata Initiative vocabulary provides a basic set of properties
and classes to describe resources in general, regardless of what kind of resources
they are.

This is a commonly used ontology, and as such its use is useful when other
specialized ontologies do not offer similar capabilities. Specifically, it is recom-
mended by the W3C Working Group to use alongside the Content ontology to
link different representations of resources together as formats of each other.

Schema.org9

The Schema.org vocabulary is a general-purpose web-oriented vocabulary cover-
ing a broad range of subjects relevant when annotating documents representing
concrete physical or digital objects. This vocabulary comes into play for the
purpose of this application when describing individual media objects and their
metadata, alongside the more technically oriented Nepomuk File Ontology. As it
is more widely used, its general properties are more suitable to use compared to
synonymous properties in the Nepomuk File Ontology.

The Security Vocabulary10

This ontology is a work of the Credentials Community Group and covers various
types of entities in this area, including certificates, signatures, keys, and digests.

The ability to describe digests on their own including their type and value is
very useful, as it is an accurate representation of the associated URNs, however
it does not offer any ability to associate a digest with an object it represents.

8https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
9https://schema.org/

10https://w3c-ccg.github.io/security-vocab/

44

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://schema.org/
https://w3c-ccg.github.io/security-vocab/


Additional concepts

Regardless of the expressive power of these vocabularies, there are still some parts
of the serialization that are not covered by them. These parts of ontology shall be
defined on top of the common vocabularies, using as much of the existing terms
to describe them.

One such case is linking the resource identifying a hash or digest to a resource
that has that particular digest. While there are several vocabularies, such as the
Semantic Web Publishing Vocabulary [51] with its swp:digest property, they
either restrict the domain of such a property, making it unusable for most cases,
or require the object to be a literal, like the aforementioned example.

at:digest a owl:ObjectProperty, nrl:DefiningProperty ;
skos:prefLabel "hash"@en ;
skos:altLabel "digest"@en ;
dcterms:description "Links a resource to an object describing

its hash."@en ;
rdfs:range sec:Digest ;
rdfs:subPropertyOf skos:broadMatch, schema:identifier ;
skos:closeMatch nfo:hasHash, swp:digest, <urn:oid

:1.2.840.113549.1.7.1.5> .
Listing 4.1: The definition of at:digest

As defined, every at:digest property implies skos:broadMatch, which means
that the hash object is in some sense “broader” than the object being hashed, as
it, as a concept, can be thought of as encompassing all resources with the same
particular hash.11

Another relation that has to be defined is the relation between a file system
object and its path object, or between two different path objects where one ends
with the other, or between a path object and its extension object:

at:pathObject a owl:ObjectProperty, owl:TransitiveProperty, nrl
:DefiningProperty ;

skos:prefLabel "path"@en ;
skos:altLabel "path object"@en ;
dcterms:description "Links an entity to a file object

generalizing its location."@en ;
rdfs:subPropertyOf skos:broader .

at:extensionObject a owl:ObjectProperty, nrl:DefiningProperty ;
skos:prefLabel "extension"@en ;
skos:altLabel "extension object"@en ;
dcterms:description "Links an entity to an extension object

indicating its encoding."@en ;
rdfs:subPropertyOf skos:broader .

Listing 4.2: The definitiond of at:pathObject and at:extensionObject

11Specifically, skos:broadMatch also implies that the subject concept is in a different “con-
cept scheme” than the object concept. The intended meaning here is that all resources that
could be hashed, such as files, directories, or pieces of data, are fundamentally in a different
semantic category than all their hashes.

45



Again, the presence of these properties implies skos:broader, meaning that
e.g. a path dir/file.txt is in some sense broader than an actual file located
at that particular location in some file system, and that file.txt is even much
broader.

4.2.4 Describing a file system
The following sections show how to map concepts in a file system to RDF. For the
most part, entities in a file system will be described using the NEPOMUK vocab-
ularies. URIs of the individual entities in a file system are formed in accordance
with the principles described in section 4.2.2 and section 4.2.2.

In the following examples, a simple instance of a file system is used, containing
one folder with a single file.

/
folder

file.txt
Listing 4.3: Example file system hierarchy

File system root

The file system encompasses all the directories and files within. It may be a
representation of a drive or a volume located on a physical machine, or the root
of a web server, but the file system may also be serialized in a container format,
such as an archive or hard drive image. This is indicated using rdf:type, usually
pointing to a subclass of nfo:DataContainer:

# If the file system is stored in an archive:
<> a nfo:Archive .
# Alternatively, if it is stored in an image (CD, DVD etc.):
<> a nfo:FilesystemImage .
# Or if the type is not known or relevant:
<> a nfo:DataContainer .

Listing 4.4: Options to describe the file system root

The root of the file system may also be thought of as a unique directory-
like entity in the file system, and as such describable using properties like nfo:
fileLastModified, but also treated as a folder containing all the top-level files
and directories. This is realized as two distinct nodes, linked using nie:inter-
pretedAs from the Nepomuk Information Element Ontology12 in a manner de-
scribed in greater detail in the following sections.

<> a nfo:DataContainer ;
# The file system is the root of its own hierarchy.

at:pathObject <file:///> ;
# Its contents are treated as a folder.

nie:interpretedAs </> .

12https://www.semanticdesktop.org/ontologies/2007/01/19/nie/

46

https://www.semanticdesktop.org/ontologies/2007/01/19/nie/


</> a nfo:Folder ;
skos:prefLabel "/" ;
at:pathObject <file:///./> .

Listing 4.5: Properties of the root file and directory

Files and file system objects

All files, here including special file system objects13, are represented by nfo:
FileDataObject, or a specialized class, such as nfo:ArchiveItem or nfo:Embed-
dedFileDataObject for specific kinds of file systems. All files are linked using
at:pathObject to a broader concept representing their position in the file system
hierarchy, as described in section 4.2.2.

</folder/file.txt> a nfo:FileDataObject ;
# This file is also an item in an archive.

a nfo:ArchiveItem ;
at:pathObject <file:///folder/file.txt> .
skos:prefLabel "/folder/file.txt" .

Listing 4.6: Example of a file node

Most file systems provide a way to represent and preserve useful metadata
about files alongside their name and size, such as the creation date, the date of
last modification, the revision, and others. Properties such as nfo:fileName,
nfo:fileSize, nfo:fileCreated, nfo:fileLastModified and similar are used
to store these attributes.

</folder/file.txt>
nfo:fileName "file.txt" ;
nfo:fileLastModified "1999-09-22T05:08:46.000000+02:00"ˆˆxsd:

dateTime ;
nfo:fileSize 11 .

Listing 4.7: Other properties of a file node

Lastly, a file can be linked to its parent directory using nfo:belongsTo-
Container, and to its content using nfo:interpretedAs14.

</folder/file.txt>
nfo:belongsToContainer </fs:folder/> ;

# The file can be interpreted as text.
nie:interpretedAs [ a cnt:ContentAsText ] .

Listing 4.8: Linking a file to its directory and contents

Directories and folders

Every directory in a file system is actually expressed using two nodes: one when
the directory is viewed as an item in a folder, i.e. as an nfo:FileDataObject,
and one for the actual collection of its contents, as an nfo:Folder. These two

13Directories, symbolic links, etc.
14The content of text or binary bytes is described more in section 4.2.5.

47



concepts are linked together using nie:interpretedAs, which is used to link
an instance of nie:DataObject15 to an instance of nie:InformationElement it
represents. The two resources are also distinguished by the presence of a trailing
slash (/) at the end of the path.

# A directory as a file system object uses the same set of
applicable properties used for files:

</folder> a nfo:FileDataObject ;
a nfo:ArchiveItem ;
at:pathObject <file:///folder> ;
skos:prefLabel "/folder" ;
nfo:fileName "folder" ;
nfo:belongsToContainer </> ;

# but it is not interpreted as data:
nie:interpretedAs </folder/> .

Listing 4.9: Properties of a directory as a file

The actual collection of files is represented as an instance of nfo:Folder. Its
contents are linked using nfo:belongsToContainer, as previously described.

</folder/> a nfo:Folder ;
skos:prefLabel "/folder/" ;
at:pathObject <file:///folder/> .

Listing 4.10: Properties of a directory as a container

4.2.5 Describing content
In an actual semantic system, like in WinFS or the Semantic Desktop, files could
store images, documents, etc. “directly”, but in most environments, text or
binary data is the only kind of data accessible from a file without any additional
analysis.

For this reason, the vocabulary specified by Representing Content in RDF [50]
is used first to describe the content of a file at the basic level, before any concrete
format is found16.

This vocabulary provides classes for describing different “forms” of content,
such as cnt:ContentAsText when the content is interpreted as plain text, and
cnt:ContentAsBase64 when the content is treated as raw binary data, expressed
in base64.

For text content, the relevant properties are cnt:chars storing the text itself
as xsd:string, and cnt:characterEncoding specifying the original encoding17.
There is no specified property to represent the size of the data, but dcterms:
extent can be used in combination with a specific datatype, such as dt:byte or
another DBpedia Datatype18:

15Files, streams, data items, services etc.
16In NEPOMUK alone, this step is skipped, as the nfo:FileDataObject instance also hosts

properties for its byte content, like nfo:hasHash or nie:byteSize
17The value of cnt:chars is always in Unicode, hence the use of cnt:characterEncoding.

This property can also be used in binary data derived from text, in which case it specifies the
encoding.

18http://mappings.dbpedia.org/index.php/DBpedia_Datatypes#InformationUnit

48

http://mappings.dbpedia.org/index.php/DBpedia_Datatypes#InformationUnit


# If possible, the file is identified purely by its content,
such as using the data: scheme.

<data:,hello%20world> a cnt:ContentAsText ;
cnt:chars "hello world"ˆˆxsd:string ;

# us-ascii is the default encoding for the data: scheme.
cnt:characterEncoding "us-ascii" ;
skos:prefLabel "text (11 B)"@en ;
dcterms:extent "11"ˆˆdt:byte .

Listing 4.11: Example description of a text content with the characters hello
world

For binary data, only the cnt:bytes property is relevant, storing the data
itself as xsd:base64Binary:

<data:application/octet-stream,%01%02> a cnt:ContentAsBase64 ;
cnt:bytes "AQI="ˆˆxsd:base64Binary ;
skos:prefLabel "binary data (2 B)"@en ;
dcterms:extent "2"ˆˆdt:byte .
Listing 4.12: Example description of a binary content with bytes 01-02

Per the recommendations in Representing Content in RDF, dcterms:has-
Format should be used to link between different formats or “forms” of the same
resource. It may be used to link from the binary representation to the textual rep-
resentation, or to a media object. For this application, it is not necessary to pro-
vide both cnt:ContentAsBase64 and cnt:ContentAsText, as either is suitable
to describe the data in a form that can be used to derive the other representation.

4.2.6 Describing hashes
A particular hash or digest, produced by processing the data using a specific
algorithm, is usually defined by two pieces of information: the concrete hash
algorithm, and its output.

This entity can be described via The Security Vocabulary, using the hash
node identified by a URI as described in section 4.2.2. Such a resource has the
type sec:Digest and uses two properties: sec:digestAlgorithm to identify the
particular hash algorithm to produce the hash, and sec:digestValue to store
its value, as base64. Each hash instance is linked to the node representing the
hashed object using at:digest, a sub-property of skos:broader:

<data:application/octet-stream,%01%02>
at:digest <urn:md5:0CB988D042A7F28DD5FE2B55B3F5AC7A> .

<urn:md5:0CB988D042A7F28DD5FE2B55B3F5AC7A>
a sec:Digest ;
sec:digestAlgorithm <http://www.w3.org/2001/04/xmldsig-more#

md5> ;
sec:digestValue "DLmI0EKn8o3V/itVs/Wseg==" .

Listing 4.13: Linking an MD5 hash node to a content

Although hashes are usually computed from binary data, any object may be
hashed using a standard binary hash algorithm when serialized or formatted to

49



produce binary data. In some cases, e.g. text, JSON or XML, there may be
multiple distinct serialization techniques, differing in features like line endings,
encoding, order of properties/attributes, etc. This can be specified using the
sec:canonicalizationAlgorithm property on the hash resource19.

4.2.7 Describing media objects
The information obtained during file format analysis can be used to construct
the description of the media object actually stored in the file, such as an image,
executable, document, etc.

This description largely depends on the nature of the media object. However,
all media objects use the schema:MediaObject class, and their encoding can be
specified using schema:encodingFormat:

_:container a schema:MediaObject ;
schema:encodingFormat <https://w3id.org/uri4uri/mime/

application/zip> ;
skos:prefLabel "ZIP object (924 B)"@en .

Listing 4.14: Example of the base properties of a media object

In the following subsections, descriptions of several media formats or cate-
gories of them will be shown.

Images

Most image objects share a number of properties, such as dimensions, resolu-
tion, or pixel format. These properties are expressible using the Nepomuk File
Ontology, containing nfo:width, nfo:height, nfo:colorDepth, and similar:

_:image a schema:MediaObject ;
a schema:ImageObject ;
a nfo:Image ;
nfo:width 266 ;
nfo:height 132 ;
nfo:horizontalResolution 95.9866 ;
nfo:verticalResolution 95.9866 ;
nfo:colorDepth 24 ;
schema:encodingFormat <https://w3id.org/uri4uri/mime/image/

png> ;
skos:prefLabel "PNG object (266x132, 8-bit)"@en .

Listing 4.15: Example image object description

A thumbnail may be linked to the image object, encoded as a data: URI:
19This usage poses certain issues, however, since the canonicalization algorithm is not an

intrinsic property of the hash value, but of the process that led to it. For this reason, the
property should not be used in the case of insecure or weak hash or checksum algorithms or
generally in situations where it is likely for the same hash to be produced for different and
differently canonicalized pieces of data. In that case, a more proper usage would be to encode
the canonicalization algorithm in the URI node, or to use a blank node and link to the general
hash without canonicalization using skos:broader.

50



_:image
schema:thumbnail <data:image/png;base64,...> .

Listing 4.16: Linking a thumbnail to an image object

The pixel data of the image can also be hashed. This is distinct from the hash
of the image when stored in a format like PNG and helps to identify images with
the same raw pixels but stored in different formats:

_:image
at:digest <urn:md5:5827DCB7E21952923D380E3946777E12> ;
at:digest <urn:sha1:VS53ZHBDU65NLVBGKJCENV68N96FDVZF> .

Listing 4.17: Linking hashes to an image object

Other metadata stored in the image may also be derived using specific vocab-
ularies, such as for EXIF tags20 stored in JPEG images:

_:image
exif:make "SONY"ˆˆxsd:string ;
exif:model "DSC-WX350"ˆˆxsd:string ;
exif:orientation 1 ;
exif:xResolution 350 ;
exif:yResolution 350 ;
exif:resolutionUnit 2 ;
exif:software "DSC-WX350 v2.00"ˆˆxsd:string ;
exif:dateTime "2021-02-22T13:01:17.000000"ˆˆxsd:dateTime ;
exif:yCbCrPositioning 2 .

Listing 4.18: EXIF properties on an image object

Sound and music

Similarly to images, audio objects can be primarily described by the Nepomuk
File Ontology, with properties such as nfo:duration, nfo:sampleRate, nfo:
channels, and others:

_:audio a schema:MediaObject ;
a schema:AudioObject ;
a nfo:Audio ;
nfo:channels 1 ;
nfo:bitsPerSample 8 ;
nfo:sampleRate "22050"ˆˆdt:hertz ;
nfo:duration "PT0.0080272S"ˆˆxsd:duration ;
schema:encodingFormat <https://w3id.org/uri4uri/mime/audio/

vnd.wave> ;
skos:prefLabel "WAV object (8-bit, 22050 Hz, 1 channel)"@en .

Listing 4.19: Example audio object description

Audio files may also be equipped with metadata sections, such as ID3, com-
monly used for MP3 files. Nepomuk ID3 Ontology21 can be used to describe
those:

20https://www.w3.org/2003/12/exif/
21https://www.semanticdesktop.org/ontologies/2007/05/10/nid3/

51

https://www.w3.org/2003/12/exif/
https://www.semanticdesktop.org/ontologies/2007/05/10/nid3/


_:audio a nid3:ID3Audio ;
nid3:title "Adagio for Strings" ;
nid3:leadArtist "Boston Symphony" ;
nid3:composer "Samuel Barber" ;
nid3:albumTitle "Samuel Barber - Adagio, Op.11" ;
nid3:contentType "Classical" ;
nid3:recordingYear 1997 ;
nid3:trackNumber 1 ;
a schema:AudioObject ;
a nfo:Audio ;
schema:encodingFormat <https://w3id.org/uri4uri/mime/audio/

mpeg> ;
skos:prefLabel "MP3 object (10.69 MiB)"@en .

Listing 4.20: ID3 properties on an audio object

Videos and media containers

Videos can be described, in the simpler cases, as a combination of both image and
audio content, using both sets of relevant properties. However, many container
formats used to store video also support the storage of multiple streams of visual
or audio content. Multiple separate media streams in a single container can be
linked using nfo:hasMediaStream:

_:video a schema:MediaObject ;
a schema:VideoObject ;
a nfo:Video ;
nfo:duration "PT0.04S"ˆˆxsd:duration ;

# Properties of the primary stream:
nfo:width 1280 ;
nfo:height 1024 ;
nfo:hasMediaStream [

# The first video stream:
a nfo:MediaStream ;
a nfo:Video ;
nfo:width 1280 ;
nfo:height 1024 ;
skos:prefLabel "0:Video (1280x1024)"

] ;
nfo:hasMediaStream [

# The second video stream:
a nfo:MediaStream ;
a nfo:Video ;
nfo:width 640 ;
nfo:height 480 ;
skos:prefLabel "1:Video (640x480)"

] .
Listing 4.21: Example video object description

52



Executables

Executables form a category of versatile file formats that usually store executable
code, but also metadata such as version number, information about the creator,
or copyright. Data files may also be stored alongside the code in an executable
in the form of resources.

Most properties usage for storing executable metadata can be taken from
Schema.org, such as schema:softwareVersion or schema:copyrightNotice:

_:executable a schema:MediaObject ;
a schema:SoftwareApplication ;
a nfo:Executable ;

# For the PE format used by Windows, these values are taken
from the VS_VERSION_INFO structure:

schema:name "Object Manager Namespace Viewer" ; #
InternalName

dcterms:creator "Sysinternals"@en-us ; # CompanyName
schema:copyrightNotice "Copyright (c) 1996-2010 Mark

Russinovich"@en-us ; # LegalCopyright
schema:softwareVersion "2.22" ; # ProductVersion
dcterms:description "Sysinternals Winobj"@en-us ; #

FileDescription
dbo:originalName "Winobj.exe" . # OriginalFilename

Listing 4.22: Example executable description

Other contents of the executable can be represented as embedded files, linked
using nie:hasPart:

_:executable
nie:hasPart [

a nfo:FileDataObject ;
a nfo:EmbeddedFileDataObject
# other properties of the file

] .
Listing 4.23: Linking embedded resources to an executable object

Archives

Archive formats such as ZIP or RAR store multiple compressed files, usually
organized into directories, forming their own individual file system. For the most
part, the resulting description is not different from the description of any other
file system, with properties such as nfo:fileName or nfo:belongsToContainer:

_:archive a schema:MediaObject ;
a nfo:Archive ;

# This forms the root of the file system.
at:pathObject <file:///> ;
nie:interpretedAs _:folder .

# It can be interpreted as a directory.

53



_:folder a nfo:Folder ;
skos:prefLabel "/" ;
at:pathObject <file:///./> .

_:file a nfo:FileDataObject ;
a nfo:ArchiveItem ;
at:pathObject <file:///file.txt> ;
skos:prefLabel "/file.txt" ;
nfo:fileName "file.txt" ;
nfo:belongsToContainer _:folder .

Listing 4.24: Example archive object description

XML

Documents in XML can be described in part by XML-related classes and prop-
erties defined in Representing Content in RDF [50], capable of expressing the
non-structural parts of XML, i.e. the XML declaration and document type dec-
laration, while the XML structure can be represented using the RDF schema for
the XML Infoset [52]. The descriptions are produced per the instructions in the
respective specifications, as an instance of cnt:ContentAsXML and xis:Document,
sharing the same node:

_:document a schema:MediaObject ;
# As an XML content, using cnt:

a cnt:ContentAsXML ;
cnt:version "1.0" ;
cnt:standalone "no" ;
cnt:dtDecl [

a cnt:DoctypeDecl ;
cnt:doctypeName "svg" ;
cnt:publicId "-//W3C//DTD SVG 1.1//EN" ;

# Interlinking with other documents with the same PUBLIC
identifier:

rdfs:seeAlso <urn:publicid:-:W3C:DTD+SVG+1.1:EN>
] ;

# As an XML document, using xis:
a xis:Document ;
xis:documentElement [

a xis:Element ;
xis:localName "svg" ;
xis:name "svg" ;
xis:namespaceName "http://www.w3.org/2000/svg"ˆˆxsd:anyURI

;
# Intelinking with other documents using the same root

namespace:
rdfs:seeAlso <http://www.w3.org/2000/svg>

] ;
schema:encodingFormat <https://w3id.org/uri4uri/mime/

application/xml> ;

54



skos:prefLabel "XML object (svg)"@en .
Listing 4.25: Example XML content description

In most cases, an XML document is in itself only an encoding of a more
concrete format. In that case, dcterms:hasFormat can be used again to link to a
more specific representation of the resource, such as a schema:ImageObject for
SVG [10] in the example above.

Documents

Digital documents, usually stored in various office formats, commonly store meta-
data about the publication itself, such as its author, date of creation, keywords,
etc., in addition to useful properties of the text, such as the number of words,
paragraphs or pages. Most of relevant properties are covered by the DCMI
Metadata Terms and Schema.org, such as dcterms:creator, dcterms:title,
schema:keywords or schema:category, while Nepomuk File Ontology provides
properties like nfo:lineCount and nfo:pageCount. The document resource it-
self is an instance of schema:DigitalDocument or nfo:Document or a specialized
class such as nfo:TextDocument or nfo:Spreadsheet.

_:document
a schema:DigitalDocument , nfo:Document ;
dcterms:creator "Document Author" ;
dcterms:title "Document Title" ;
dcterms:created "2012-07-08T13:24:00+02:00"ˆˆxsd:dateTime ;
schema:version "1" ;
nfo:characterCount 24 ;
nfo:wordCount 4 ;
nfo:pageCount 1 ;
nfo:lineCount 1 ;
schema:encodingFormat <https://w3id.org/uri4uri/mime/

application/msword> ;
skos:prefLabel "DOC object (Document Title)"@en .

Listing 4.26: Example document description

Implied formats

It is always possible that files in an unrecognized format are encountered. Even
if so, it may be desirable to derive some information from the contents of such
files, to be able to group together files that are likely to be in the same format,
to analyze them later, and then link them to the proper format.

Such a format is fully implied by various signs which are, by convention,
shared among most formats, making it possible to use these signs to create an
identifier for the implied format. The prefix application/x. is used here to
form an unregistered private MIME type, based on signs derived from the specific
categories of formats.22

22The x. prefix is not recommended to be used for public data, but providing a distinct
MIME type is necessary to form data: and ni: URIs.

55



Binary formats. Most binary files, by convention, start with a sequence of
usually 2 or 4 ASCII characters, called a signature. This designation does not
come under any authority for registration and can be freely chosen by the design-
ers of the format, but it is usually in their best interest to pick a signature that
is distinct from commonly used formats.

For example, if a file starting with the characters RIFF in ASCII is encoun-
tered, but there is no registered routine matching its format, a default represen-
tation could still be produced:

_:object a schema:MediaObject ;
schema:encodingFormat <https://w3id.org/uri4uri/mime/

application/x.sig.riff> ;
skos:prefLabel "RIFF object (5.08 KiB)"@en .

Listing 4.27: Example media object for the RIFF signature-based implied format

After manual analysis, the user may find out that RIFF is a container format
commonly used for WAVE audio files. The user may choose to represent this
relation via SKOS, linking the more concrete format to the implied one using
skos:broader23:

<https://w3id.org/uri4uri/mime/audio/vnd.wave> skos:broader <
https://w3id.org/uri4uri/mime/application/x.sig.riff> .

Listing 4.28: Suggested linking of an implied format and a real format

Text formats. Text files do not have any prevalent convention to indicate the
format like binary files, but on Unix systems, it is common to denote scripts with
the “shebang” sequence, #!, to indicate which interpreter to use when executing
the file, in the form #!/path/to/interpreter arguments.

# Implied from #!/bin/sh
_:object a schema:MediaObject ;

schema:encodingFormat <https://w3id.org/uri4uri/mime/
application/x.exec.sh> ;

skos:prefLabel "SH object (1.12 KiB)"@en .
Listing 4.29: Example media object for the sh interpreter-based implied format

XML-based formats. Formats based on XML are usually distinguished by
the full name of the root element, i.e. its local name and namespace URI24:

_:xml-object a schema:MediaObject ;
# The namespace URI can be broken down using its hierarchy,

removing irrelevant characters:
schema:encodingFormat <https://w3id.org/uri4uri/mime/

application/x.ns.org.w3.www.http.2000.svg.svg+xml> ;
23The logic here is that all WAVE files start with “RIFF” as the signature, but not all RIFF

files are WAVE, as other formats such as AVI also use RIFF containers, and, in general, another
format distinct from RIFF but using “RIFF” as the signature can be encountered.

24If the namespace URI is not present and the document has a DTD with a PUBLIC identifier,
it can be converted to the urn:publicid: URN namespace and used instead of the namespace.

56



# The format can also be described by the DTD
schema:encodingFormat <urn:publicid:-:W3C:DTD+SVG+1.1:EN> ;

# Taken from the root element’s local name:
skos:prefLabel "SVG object"@en .

Listing 4.30: Example media object for the {http://www.w3.org/2000/svg}svg
XML name-based implied format

4.2.8 Handling invalid data
When working with arbitrary files, it is possible to encounter malicious, corrupted,
or misinterpreted files that could potentially cause the software to corrupt its
output or make it unloadable by other software working with RDF.

There are several cases that need special handling throughout the process,
which are described in the following sections.

Long URIs

URIs can store any sequence of bytes, thanks to percent-encoding, and the length
of this sequence is theoretically unlimited. However, some software may place lim-
its on the length of individual URIs, such as the limit of 1900 bytes in OpenLink
Virtuoso25.

URIs exceeding a pre-configured character limit can be shortened without
sacrificing uniqueness by converting to a version 5 UUID, using the following
steps as specified by RFC 4122 [35]:

• A byte array is created, starting with the encoding of NameSpace URL26,
followed by the URI encoded in UTF-8.

• An SHA-1 hash is computed, truncated to 16 bytes.

• A version 5 UUID is created from the hash, by setting the appropriate
version fields.

• A new URN is formed from the UUID using the urn:uuid: prefix.

This process in essence turns a URI identifying a resource into a fixed-size
UUID, by convention identifying the same resource, and encoding it as a URN of
that resource.

Transforming URIs this way is useful in situations where parts of the parsed
input files are used to form URIs. It is also possible to employ this to identify
content, transforming it from its data: URI, but this is inefficient and impractical
compared to using the actual hash of the file with the ni: scheme.

It is generally impossible to retrieve back the original URI from its shortened
form, however it is possible to create another RDF graph to store such links,
using owl:sameAs.

25http://docs.openlinksw.com/virtuoso/setshortenlongurisparam/
26Defined as 6ba7b811-9dad-11d1-80b4-00c04fd430c8 by RFC 4122 [35].

57

http://docs.openlinksw.com/virtuoso/setshortenlongurisparam/


Invalid characters in literals

Literals in RDF are more restricted than how strings are usually handled in com-
mon programming languages. To facilitate encoding in RDF/XML, the lexical
value must not contain any characters not covered by the Char production in
XML 1.0 [8]. The forbidden characters are all ASCII control characters with the
exception of tabs and line breaks, UTF-16 surrogate characters, and the non-
characters U+FFFE and U+FFFF.

Additionally, there are some Unicode characters that are valid in XML 1.0,
but whose purpose is to be combined with the preceding character, and as such
could cause problems when displaying if found at the beginning of literal. These
characters include the M (Marks) Unicode category [40], containing combining
characters, and the zero-width joiner, U+200D, used to link characters which
should be displayed together.

It is possible that these literals may inadvertently appear if taken from un-
sanitized input. When a triple containing such a literal is to be written to the
output, one option is to skip the triple altogether. Another option, to preserve
the original value, is to encode it in a way that makes it possible to decode it,
but also to retrieve the original type of the literal, if specified. For this purpose,
the JSON-LD [41] encoding of the literal is used:

// A literal containing a single NUL character:
{"@value":"\u0000"}
// With a language tag:
{"@value":"\u0000","@language":"en"}
// With a datatype:
{"@value":"\u0000","@type":"http://example.org/"}

Listing 4.31: Example JSON-LD encoding of invalid RDF literals

This literal is used instead of the original one, with the rdf:JSON datatype.
While this is not semantically equivalent to the original literal and is not actually
valid JSON-LD, this form of encoding can be usually easily decoded as most
programming languages have support for JSON.

Invalid characters in files

Files recognized as text may often contain invalid characters, especially older
documents using various control characters to separate pages or mark the end of
the file. While this case is already covered by encoding invalid literals as JSON,
the value of the cnt:chars property may be encoded in a way that is not as
disruptive as JSON.

There is a block of Unicode characters starting at U+2400 (␀) used as replace-
ment symbols for the corresponding forbidden control characters. This process
is still reversible as long as the original encoding of the file does not support
the actual replacement characters, in which case they could be transformed back
after checking the cnt:characterEncoding property. For this reason, Unicode
text files cannot take advantage of this transformation.

58



4.3 Interaction with output
The output of this process is a gradually formed RDF graph matching and de-
scribing the input files and directories, and their contents. It is up to the user to
decide how to use the RDF data, but there are several purposes worth presenting.

4.3.1 Storing RDF as file metadata
One possibility, useful for file-hosting sites and archives, is to simply store the
RDF output alongside the original files, either as text or uploaded to a triple
store. When the file is presented to a viewer of such a site, the RDF metadata
can be used to give the viewer an almost full overview of the file and its contents.
The data can be used in its original form or processed to make it more presentable
to the viewer.

Figure 4.2: Example of a potential display of RDF file metadata

If the triple store is equipped with a SPARQL endpoint, it gives the user
the possibility to look for specific information about the files or search based on
arbitrary criteria.

4.3.2 Semantic file search
As the RDF graph is formed from files at various levels in the file system, SPARQL
queries can be used to identify files based on arbitrary criteria expressed via the
RDF properties used in the descriptions.

This can be used to select files based on certain properties or to extract them
if found in archives.

59



4.3.3 Validation and processing
The RDF output can be used for automatic validation of arbitrary user input or
to derive useful information from it. For example, a SPARQL query can be used
to determine whether the input contains files of a specific kind, with particular
sizes, or, when coupled with external sources, to look for files whose extension
does not match their recognized type.

All these constraints can be combined for complex validation using RDF-based
languages such as SHACL [3] or OWL [5].

4.3.4 Extraction of hashes
If enabled, hashes calculated from files are part of the output data, identified by
URIs with prefixes such as urn:md5:, urn:sha1: and similar. These hashes can
be used in peer-to-peer file sharing networks to locate the file, for example via a
magnet: link.

4.4 Architecture
The software uses object-oriented programming to separate the logic and be-
haviour between entities occurring in the system. The two core abstractions are
linked nodes, to capture description of RDF resources, and analyzers, to transform
various entities to linked nodes and describe them.

These objects are handled by the inspector, selecting the appropriate analyzer
for the specific kind of input. During the analysis, other entities may be discovered
or produced in addition to the linked node. These are recursively handled back
to the inspector to delegate.

Inspector
Entity

AnalyzersFile

Data

Turtle

Linked nodes

RDF

Entity

Figure 4.3: Overview of the inspector object and its interactions

60



The analyzers themselves are distinguished based on the type of input they
accept, and may as well contain other components relevant to the analysis of such
input:

Analyzers
Data analyzer

Data formats

XML analyzer

Hash algorithms

XML formats

Linked nodeEntity

Data

XML

Figure 4.4: Overview of several example analyzers

The abstractions are explained in greater detail in the following sections, while
their concrete representation in code is given later in section 5.4.

4.4.1 Linked nodes
A linked node is a write-only abstraction of an RDF node appearing in the subject
position in a graph. It can also be thought of as the description of an RDF
resource, usually identified by a URI.

This abstraction is intended to be used to unify various methods of producing
RDF data, such as direct output to a file or construction of an RDF graph in
memory, thus there are no operations which would be able to retrieve information
from an RDF graph; instead the available methods only allow setting properties
on an RDF resource, equivalent to adding triples to an RDF graph.

Aside from setting its RDF properties, a linked node supports derivation of
a new linked node using a sub-name. This operation is used in situations where
the node corresponds to a group of entities, such as when identifying a file by its
name in a directory containing it or locating a vocabulary item in a vocabulary.

61



4.4.2 Analyzers
Analyzers are objects whose purpose is to describe entities of specific types in
RDF, through an instance of a linked node representing the entity. The linked
node may be provided externally, but it may also be created by the analyzer
itself, by means of derivation from the parent node, or only based on the received
entity.

Analyzers are kept in a sequential collection ordered based on the specificity
of individual analyzers; analyzers of most derived types come first, followed by
analyzers of less derived types. The inspector starts the analysis process by
traversing the collection and looking for the first analyzer supporting the entity.
If found, the analyzer receives the entity and a reference to the analyzer collection
through its Analyze method and returns a linked node representing the entity.
From within the analyzer, nested entities can also be identified, separately ana-
lyzed, and linked back to the original node. This process is recursively repeated
through the hierarchy formed by the entities and visited by the analyzers.

File analyzer

The file analyzer is usually the first analyzer in the process, used for files and
directories. Its task is to produce the RDF description based on properties of the
file system entities themselves, not their data, such as the name, path, date of
last modification, etc.

Some hash algorithms, such as the BitTorrent Info Hash, require a concrete
file system object instead of just the data, in order to produce the hash not only
from the contents but also from names or other metadata. For this reason, the
file analyzer also keeps a collection of file-based hash algorithms which are used
on files and directories.

Individual files are handled by the data analyzer as plain binary data.

Data analyzer

The data analyzer examines binary data and determines its properties.
Some properties assigned by the data analyzer are based on heuristics, such

as whether the input is binary or textual, or its encoding in the latter case.27

The analyzer maintains a collection of data-based hash algorithms, such as
MD5 or SHA-1, all of which are used to process data exceeding a certain size.
Data below this threshold is identified using the data: URI scheme, hence it is
not necessary to compute the hashes at all, while larger data results in computing
all of the hashes, and possibly picking one of them to form its ni: URI.28

Another responsibility of the data analyzer is to store a list of supported
binary file formats and attempt to recognize them from the data. This process
is separated into several steps, outlined here and later described in detail in
section 5.4.3:

27The factual correctness of the result is not affected by the accuracy of these heuristics,
however, as the resulting node can be thought of as representing just one possible, and ultimately
valid, interpretation of the data, regardless of its author’s intentions.

28This threshold can be selected based on an estimate of the size of the RDF output. Having
to store all of the hashes would be inefficient for small files, compared to using a data: URI.

62



• CheckHeader is called to match the few initial bytes of the data. This
method should be lightweight, without initiating any complex parsing pro-
cess, enough to quickly filter out cases where the format cannot match due
to incorrect signature, etc.

• Match is called to attempt to parse the data and produce an object describ-
ing it. The object is retrieved from within Match via a callback because
some formats might require cleanup after the object is no longer needed.

• If an object is successfully produced from Match, it is wrapped in a format
object and processed by other analyzers.

• If Match ends in an exception before producing a result, or produces no
result at all, the format is considered to be unmatched.

All information collected about the object, including whether any formats
were recognized, is stored in a data object and left to be analyzed further.

Data object analyzer

This analyzer exists to describe the data object produced by the data analyzer.
It expresses its properties in RDF, and if no explicit formats were detected, it
creates the implied format and sends it to analysis.

This analyzer is not strictly necessary, as the RDF properties could be assigned
directly in the data analyzer, however this makes it possible to replace the way
the RDF properties are assigned while keeping the data and file format analysis
the same.

Format object analyzer

A format object stores the object produced from file format analysis, together
with the object that identifies the format. This analyzer uses the stored format
to obtain the MIME type, necessary to produce the URI of the format object,
and the extension to form the label. Formats derived from XML also expose
the namespace of the root element and the PUBLIC and SYSTEM identifiers of the
document type.

This can be expressed using the following inequality:

sizeinline(l) ≤ sizehashed(l)

sizeinline(l) =
{︄

#"data:," + T + 2l (text file)
#"data:;base64," + T + 2l 4

3 (binary file)

sizehashed(l) = #"ni:///;?ct=" + #ninameprimaryhash

+ sizeprimaryhash(l) · 4
3 +

∑︂
hash

(3T + urisizehash(l))

Where l is the length of the input file and T is the size of a single RDF triple. The fraction
4
3 is used as an estimate of the increase in size after base64-encoding the data. urisizehash(l)
corresponds to the total size of a URI identifying the particular hash, including the URI prefix
and the length of the encoded output of the hash function, possibly variable based on the input
length.

63



The object inside the format object is not constrained to any specific type,
and is completely opaque to the analyzer. Instead, it is extracted and passed to
any analyzer that supports it, but keeping the same linked node.

4.4.3 Formats
A format is, generally, a representation of a specific structure, form, or restriction
of a less constrained medium. Binary formats specify the structure of a byte
sequence, but other formats may specify the structure of more derived objects,
such as an XML format constraining XML documents.

The number of categories of formats is not limited in any way because each
individual analyzer may use its own collection of specific formats, similarly to the
data analyzer.

Generally, each format exposes a lightweight “check” method that only tests
whether the object may be a valid instance of the format, based on common signs,
leaving more complex parsing or allocations to the “match” method.

Binary formats

Binary formats specify the structure of plain binary data, a sequence of bytes.
The CheckHeader method only operates on the file “header”, i.e. a smaller initial
section of the file, whose maximum length is specified in HeaderLength. When
reading data, the data analyzer tries to read at least HeaderLength + 1 bytes,
allowing the format to determine whether there is any data after the header, and
potentially reject files consisting of only the header or a smaller section.

If the header check succeeds, Match should be called, given the full binary
data.

XML formats

Other kinds of formats imposing a particular structure on data, such as XML-
based formats, may also be distinguished in a similar manner. Here, the analogy
to CheckHeader is the CheckDocument method, which is given the Document
Type Declaration and the information about the root element, such as its name
or attributes. If the check succeeds, the Match method is called to read the whole
XML document, similarly to binary formats.

4.4.4 Hash algorithms
Hash algorithms are, in general, pieces of code that digest a particular object,
returning a short sequence of bytes that may be used to distinguish the object
among several others. This definition applies to a wide range of algorithms,
ranging from weak checksums, like CRC32, to hashes of non-binary data, such as
dHash used for images.

Hash algorithms are, like formats, attached to concrete analyzers that have
the best access to their required input, for example hash algorithms for processing
binary data are used by the data analyzer, hash algorithms requiring file nodes
are used by the file analyzer, and so on.

64



To form URI nodes identifying individual hashes (section 4.2.2), each hash
algorithm must store a URI prefix, such as urn:sha1:, and an encoding method
for the bytes of the hash29. In the case the hash can be also used as the primary
identifier for the object, forming a ni: URI [30], the hash algorithm must also
store its ni name30 or its multihash [54] identifier31. To describe the hash resource,
the hash algorithm should also define its URI32. Additionally, in order for the data
analyzer to estimate the minimum length of data to hash, the hash algorithm also
stores the size of the hash in bytes.

Concrete hash algorithms can be categorized based on the kinds of input they
require, such as raw data or files.

Data hash algorithms

Data hash algorithms take raw bytes as input, without any additional metadata.
They can be used by the data analyzer to assign the hash as an additional iden-
tifier of binary or text content, but it could also be used in other analyzers. For
example, an XML analyzer might use canonicalization [55] before hashing to ar-
rive at a hash that is possibly different from the one corresponding to the original
binary data. Similarly, a bitmap analyzer might hash the raw pixel data stored
in the image, allowing for the identification of images with the same pixels but
stored in different formats.

File hash algorithms

These algorithms require an actual file or directory in a file system, and changing
information such as the name of the file might change the resulting hash. One
such example is the BitTorrent Info Hash, being in itself an SHA-1 hash of the
BitTorrent info section describing a file or a directory and all its contents, usually
stored as a part of a .torrent file.

These hash algorithms are used by the file analyzer. In the case of a di-
rectory, the semantics differ based on whether the hash is attached to a nfo:
FileDataObject storing the directory, or the nfo:Folder inside. In the former
case, the root directory should be represented in the same way as any other nested
directory, while in the latter case, the directory is treated only as a collection of
files. In the case of the BitTorrent Info Hash however, the name of the root di-
rectory may still be stored in the info section and, therefore, otherwise equivalent
directories may result in a different hash when their names are different.

29Common encodings are hexadecimal, base32, or base64 [53], but they are only used by
convention.

30These names are defined by the Named Information Hash Algorithm Registry located at
https://www.iana.org/assignments/named-information/named-information.xhtml

31The proposed name mh could be used in ni: URIs as a fallback if the actual hash is not
given a registered name. In that case, the hash is first wrapped in a multihash, storing the
identifier of the hash algorithm, and then represented as a ni:///mh; URI.

32For common hashes, the URIs are taken from XML Signature Syntax and Processing [55],
for example http://www.w3.org/2000/09/xmldsig#sha1.

65

https://www.iana.org/assignments/named-information/named-information.xhtml
http://www.w3.org/2000/09/xmldsig#sha1


4.4.5 Application
The core part of the application is an object outside the inspector, which accepts
user-provided options, locates and opens the input files to be given to the in-
spector, configures it according to the provided options, and starts the analysis,
storing the output at the provided output paths.

The application object itself is not a stand-alone program, rather it accepts
an abstraction for controlling the external environment, such as writing messages
to the user or opening and creating files. The options are given only as string
arguments, as is the basic form of controlling applications from the command
line33. The reason for this is to be able to execute it from various environments
or processes, allowing the option to have a shared application interface for both
the console and web environment, as is later discussed in section 5.1.

33The various supported command-line options are described in section 6.1.

66



5. Implementation
This chapter focuses on the actual implementation process, the choice of language
and libraries, and other aspects which are pertinent when realizing the design
outlined in the previous chapter. The complete source code of the software is
accessible through GitHub1.

5.1 Execution environment
The choice of environment, in which the software runs, determines what kind of
operations the user will be able to perform with it, but restricting it to a specific
kind of environment may also limit the range of possible files that the software
can recognize.

As an example, restricting the software to a web-based application will most
likely inhibit the application’s ability to analyze large files, as they cannot be eas-
ily transferred over the internet, and may be subject to rate limits. It is possible
to use a client-side web application to counter rate limits, but this again restricts
the range of supported formats to those that can be analyzed via technologies
supported by the browser. Desktop applications do not have this restriction, but
there is still a decision to be made between a console-based application and a
window-based application.

Based on these facts, it is better to build the application in a way that does not
inherently restrict it to any of these environments but may be accessed from any
of them via a common interface, as outlined in section 4.4.5. The only minimum
requirements for the environment are text-based arguments and file manipulation,
both of which can be provided or simulated via a console, window, or web-based
environment. This makes it possible to develop a specific adaptation layer for
any environment that meets these requirements.

Such a layer will be provided as a console application and as a client-side web
application, both of which will use a common application API.

Providing input

Due to the environment-agnostic nature of the core application, communication
between the user’s file system and the application will also have to be done
through the adaptation layer. This has the advantage of supporting additional
methods of input if the environment provides them, such as directly via the
standard input stream, or through the web. All these methods of input can be
treated as files, providing a method to open the file in order to read the binary
stream it stores. For this purpose, a file or a directory can be represented by an
interface exposing common properties such as the name, date of creation, etc.,
and the list of contents in the case of a directory.

1https://github.com/cermakmarek/SFI

67

https://github.com/cermakmarek/SFI


5.2 Language and framework
The choice of language is determined based on the intended platform, environ-
ment, and the purpose of the software, as some languages are better suited for
specific tasks. In this case, C# was chosen, targeting .NET, for the following
reasons:

• C# is a flexible and versatile language that supports both object-oriented
programming and fast and safe raw memory access.

• C# is compiled into CIL, a portable intermediate language executable on
many platforms. Ahead-of-time compilation to WebAssembly is also sup-
ported via the ASP.NET Blazor framework2.

• .NET can run in all common execution environments, including console-
based, window-based and web-based.

• External libraries and packages, e.g. for processing specific file formats, can
be easily added via NuGet in Visual Studio.

• .NET supports P/Invoke, a technology allowing interoperability between
managed and unmanaged code. This makes it possible to use system-
specific functions to parse input files or to import libraries written in lan-
guages such as C or C++, if supported by the platform.

The software itself is separated into projects, the bulk of which target .NET
Standard 2.03, a formal specification of .NET APIs that should be supported by
concrete frameworks implementing it. .NET Standard 2.0 is implemented by all
common frameworks based on .NET, including .NET Framework, .NET Core,
Mono, Universal Windows Platform, Xamarin, and Unity, making it possible to
incorporate parts of the software in projects targeting any of these platforms.

The remaining projects are concrete executable applications that target .NET
54, importing the base projects.

5.3 Choice of libraries
This section introduces the libraries that were used during implementation and
reasons for using them.

dotNetRDF5 dotNetRDF is a versatile and robust library for consuming, trans-
forming, and producing RDF data, supporting a wide range of formats, as well
as in-memory querying using SPARQL.

This library is internally used in all situations where RDF data is to be ma-
nipulated, but it is not exposed directly to analyzers. Instead, the linked node
interface is used, making it possible to use a different library or implementation
if needed.

2https://learn.microsoft.com/cs-cz/aspnet/core/blazor/?view=aspnetcore-7.0
3https://learn.microsoft.com/cs-cz/dotnet/standard/net-standard?tabs=

net-standard-1-0
4https://dotnet.microsoft.com/en-us/download/dotnet/5.0
5https://dotnetrdf.org/

68

https://learn.microsoft.com/cs-cz/aspnet/core/blazor/?view=aspnetcore-7.0
https://learn.microsoft.com/cs-cz/dotnet/standard/net-standard?tabs=net-standard-1-0
https://learn.microsoft.com/cs-cz/dotnet/standard/net-standard?tabs=net-standard-1-0
https://dotnet.microsoft.com/en-us/download/dotnet/5.0
https://dotnetrdf.org/


Ude.NetStandard6 This is a .NET Standard port of the Mozilla Universal
Charset Detector, containing heuristics for determining the encoding of text files.
It is used as the primary encoding detector through a custom interface, making
it possible to replace it when different detection methods are necessary.

SharpCompress7 This library is used to decompress archives stored in ZIP,
RAR, tar, gzip, or 7z formats, and exposes many properties obtainable from files
within. The readers for individual archive formats all implement a single inter-
face, making it possible to effortlessly add new archive formats without making
additional analyzers.

TagLibSharp8 This library supports the reading of arbitrary metadata from
various file formats, expressed as “tags” – collections of pieces of metadata in
various formats, such as ID3. It also supports browsing various codecs and media
streams used by multimedia content.

This library is exposed as a single format and its analyzer, allowing retrieving
a general representation of any file with metadata.

MetadataExtractor9 This library is similar to TagLibSharp, but only for im-
ages. It represents an image as a list of “directories”, where each directory consists
of properties defined by specific metadata schemes, such as EXIF.

This library is used in the same way as TagLibSharp, with one format to
retrieve the metadata “directories”, which are then analyzed.

Vanara.PInvoke10 This suite of libraries exposes the native Windows API
using .NET classes and methods, internally utilizing the P/Invoke mechanism to
call the proper API functions and marshal data.

It is used to parse several formats understood by Windows, such as the
Portable Executable and Cabinet formats. Formats and analyzers using it are,
however, unavailable on non-Windows platforms.

PeNet11 This library supports loading executables using the Portable Exe-
cutable format used by Windows. It is used by a single format, a managed
alternative to the one using the Windows API.

NAudio12 NAudio is a general-purpose audio library containing various ab-
stractions for audio streams, with both managed and system implementations.
It is used to recognize and load audio files, as well as read audio samples for
additional analysis.

6https://github.com/yinyue200/ude
7https://github.com/adamhathcock/sharpcompress
8https://github.com/mono/taglib-sharp
9https://github.com/drewnoakes/metadata-extractor-dotnet

10https://github.com/dahall/Vanara
11https://github.com/secana/PeNet
12https://github.com/naudio/NAudio

69

https://github.com/yinyue200/ude
https://github.com/adamhathcock/sharpcompress
https://github.com/mono/taglib-sharp
https://github.com/drewnoakes/metadata-extractor-dotnet
https://github.com/dahall/Vanara
https://github.com/secana/PeNet
https://github.com/naudio/NAudio


DiscUtils13 This is a library for loading various disk images, such as ISO, VHD,
VDI etc., and supporting common file systems such as NTFS or FAT.

NPOI14 This is a .NET version of Apache POI, supporting the various Mi-
crosoft Office formats, both OLE-based and XML-based.

OpenMcdf15 This library is used by the OLE format to read files in the Mi-
crosoft Compound Document File Format.

SVG.NET16 This library supports the loading of vector-based SVG files from
XML, as well as rendering them as images.

PdfSharpCore17 This is a .NET Standard library for parsing PDF documents.

Html Agility Pack18 This library is capable of loading HTML documents.

BencodeNET19 This library allows for encoding data in the Bencode format,
used by .torrent files and required by the BitTorrent Info Hash.

Blake3.NET20 This is a .NET implementation of the BLAKE3 cryptographic
hash function.

SwfDotNet.IO21 This library is used to open Shockwave Flash animations.

WarcProtocol22 This library provides the parser for Web ARChive (WARC)
files.

Aeon23 This is an x86 DOS emulator, capable of executing DOS EXE and COM
executables.

5.4 Classes and interfaces
This section describes common classes and interfaces representing abstractions
introduced in section 4.4, as well as other abstractions which could be utilized by
various formats and analyzers.

13https://github.com/DiscUtils/DiscUtils
14https://github.com/dotnetcore/NPOI
15https://github.com/ironfede/openmcdf
16https://github.com/svg-net/SVG
17https://github.com/ststeiger/PdfSharpCore
18https://html-agility-pack.net/
19https://github.com/Krusen/BencodeNET
20https://github.com/xoofx/Blake3.NET
21https://www.nuget.org/packages/SwfDotNet.IO
22https://github.com/toimik/WarcProtocol
23https://github.com/gregdivis/Aeon

70

.torrent
https://github.com/DiscUtils/DiscUtils
https://github.com/dotnetcore/NPOI
https://github.com/ironfede/openmcdf
https://github.com/svg-net/SVG
https://github.com/ststeiger/PdfSharpCore
https://html-agility-pack.net/
https://github.com/Krusen/BencodeNET
https://github.com/xoofx/Blake3.NET
https://www.nuget.org/packages/SwfDotNet.IO
https://github.com/toimik/WarcProtocol
https://github.com/gregdivis/Aeon


5.4.1 Files and directories
Each item in any file system is represented by an instance of IFileNodeInfo,
containing properties common to files and directories, and derived by interfaces
IFileInfo and IDirectoryInfo, similarly to the relations between the base
.NET classes System.IO.FileSystemInfo, System.IO.FileInfo, and System.
IO.DirectoryInfo.

Anything that can be opened to provide an instance of System.IO.Stream is
represented as an instance of IStreamFactory, a generalized version of IFile-
Info.

1

Entries *

≪interface≫
IFileNodeInfo

Kind : FileKind
Path : string
Name : string
SubName : string?
Revision : int?
CreationTime : DateTime?
LastWriteTime : DateTime?
LastAccessTime : DateTime?

≪enum≫
FileKind

None
Embedded
ArchiveItem

≪interface≫
IDirectoryInfo

≪interface≫
IFileInfo

IsEncrypted : bool

≪interface≫
IStreamFactory

Length : long
Access : StreamFactoryAccess

Open() : Stream

≪enum≫
StreamFactoryAccess

Single
Reentrant
Parallel

Figure 5.1: File and directory types hierarchy

5.4.2 Archives
Archives are represented in two ways: as an IArchiveFile when the imple-
mentation supports accessing the collection of entries as a whole, and as an
IArchiveReader deriving from IEnumerator<IArchiveEntry> when the imple-
mentation can only move forward through the entries once. This is analogous to
how archives are represented in SharpCompress.

71



1
Entries*

≪interface≫
IArchiveInfo

IsComplete : bool
IsSolid : bool

≪interface≫
IArchiveFile

≪interface≫
IArchiveReader

Skip()

IEnumerator<IArchiveEntry>
≪interface≫

IArchiveEntry

ArchivedTime : DateTime?

IFileNodeInfo

Figure 5.2: Archive types hierarchy

5.4.3 File formats
Each file format or a set of file formats, as designed in section 4.4.3 , is represented
by an instance of the interface IFileFormat. Such an object supports retrieval of
the media type of the concrete format and the usual extension via the methods
GetMediaType and GetExtension. These methods require a value of a specific
type supported by the object, to extract the information from. For example, a
format representing various image formats supported by the System.Drawing.
Image class requires an instance of Image to obtain the concrete format from,
and it should also implement IFileFormat<Image>.

File formats with a concrete medium are represented by derived interfaces,
such as IBinaryFileFormat for formats of byte sequences, and IXmlDocument-
Format for formats of XML documents, providing methods and properties useful
for the relevant analyzers.

72



≪interface≫
IFileFormat

GetMediaType(value : object) : string
GetExtension(value : object) : string

≪interface≫
IFileFormat

GetMediaType(value : T) : string
GetExtension(value : T) : string

T

FileFormat

MediaType : string
Extension : string

T

≪interface≫
IBinaryFileFormat

HeaderLength : int

CheckHeader(header : Span<byte>) : bool
Match<TResult>(stream : Stream,
resultFactory : any => TResult) : TResult

≪interface≫
IBinaryFileFormat

Match<TResult>(stream : Stream,
resultFactory : T => TResult) : TResult

T

BinaryFileFormat

T

≪interface≫
IXmlDocumentFormat

GetPublicId(value : object) : string
GetSystemId(value : object) : string
GetNamespace(value : object) : Uri
CheckDocument(docType : XDocumentType,
rootReader : XmlReader) : bool
Match<TResult>(reader : XmlReader,
docType : XDocumentType,
resultFactory : any => TResult) : TResult

≪interface≫
IXmlDocumentFormat

GetPublicId(value : T) : string
GetSystemId(value : T) : string
GetNamespace(value : T) : Uri
CheckDocument(docType : XDocumentType,
rootReader : XmlReader) : bool
Match<TResult>(reader : XmlReader,
docType : XDocumentType,
resultFactory : T => TResult) : TResult

T

XmlDocumentFormat

PublicId : string
SystemId : string
Namespace : Uri

T

Figure 5.3: File format types hierarchy

5.4.4 RDF terms
To distinguish RDF terms suitable for different semantic purposes, value types
IndividualUri, PropertyUri, ClassUri, DatatypeUri, and GraphUri are de-
fined, all of them implementing the ITermUri interface. These types are used to
denote items in a particular vocabulary, which is represented by VocabularyUri.

VocabularyUri

Value : string

≪interface≫
ITermUri

Vocabulary : VocabularyUri
Term : string

PropertyUriIndividualUri ClassUri

GraphUri DatatypeUri

Figure 5.4: RDF term types hierarchy

73



How to statically define these terms is later described in section 5.5.1.

5.4.5 URI formatters
Complementary to the types for RDF terms, URI formatters are objects capable
of creating a URI from an input value. These are used in similar situations as the
types for RDF terms24, and are similarly divided into IIndividualUriFormatter,
IPropertyUriFormatter, IClassUriFormatter, IDatatypeUriFormatter, and
IGraphUriFormatter.

≪interface≫
IUriFormatter

this[value : T] : Uri?

T

IPropertyUriFormatter

T

IIndividualUriFormatter

T

IClassUriFormatter

T

IGraphUriFormatter

T

IDatatypeUriFormatter

T

IGenericUriFormatter

T

Figure 5.5: URI formatter types hierarchy

The IGenericUriFormatter interface is used in situations where the gen-
erated URIs may be usable as individuals, properties, or classes and it is not
possible to further distinguish them.

5.4.6 Hash algorithms
Every hash algorithm, as described in detail in section 4.4.4, implements the
interface IHashAlgorithm, storing information such as the name of the algo-
rithm, but individual algorithms are further separated based on the type of in-
put they accept – hash algorithms accepting arbitrary binary data implement
IDataHashAlgorithm, hash algorithms using the properties of files or directories
implement IFileHashAlgorithm, while hash algorithms for arbitrary objects are
represented by IObjectHashAlgorithm<T>.

24These situations include cases where a particular part of a term’s URI is fixed, while the rest
depends on a value, for example UUID-based URIs with the fixed prefix urn:uuid: followed
by a part based on the UUID. This may be represented as an IUriFormatter<Guid>, or using
one of the more concrete interfaces.

74



≪interface≫
IHashAlgorithm

Name : string
Identifier : IndividualUri
NumericIdentifier : int?
Prefix : string
FormattingMethod : FormattingMethod
NiName : string?

GetHashSize(dataSize : long) : int
EstimateUriSize(hashSize : int) : int

≪enum≫
FormattingMethod

Hex
Base32
Base58
Base64
Decimal

≪interface≫
IFileHashAlgorithm

ComputeHash(file : IFileInfo) : byte[]
ComputeHash(directory : IDirectoryInfo,
contentOnly : bool) : byte[]

≪interface≫
IDataHashAlgorithm

ComputeHash(input : Stream) : byte[]
ComputeHash(buffer : byte[]) : byte[]

≪interface≫
IObjectHashAlgorithm

ComputeHash(object : T) : byte[]

T

Figure 5.6: Hash algorithm types hierarchy

5.4.7 Linked nodes
As introduced in section 4.4.1, a linked node is a write-only abstraction of an
RDF resource. Linked nodes are manipulated as instances of ILinkedNode.

≪interface≫
ILinkedNode

Scheme : string

SetAsBase()
SetClass(class : ClassUri)
Set(property : PropertyUri, value : object)
Set(property : PropertyUri, value : string, datatype : DatatypeUri)
Set(property : PropertyUri, value : string, language : LanguageCode)
this[subName : string?] : ILinkedNode
In(graph : GraphUri) : ILinkedNode?

Figure 5.7: Linked node type

75



The ILinkedNode interface contains multiple overloads of the Set and Set-
Class methods with more complex parameters, allowing the usage of IUriFor-
matter<T> instead of fixed vocabulary items.

The ILinkedNodeFactory interface is used to create new instances of ILink-
edNode.

≪interface≫
ILinkedNodeFactory

Root : IIndividualUriFormatter<string>

Create<T>(formatter : IIndividualUriFormatter<T>, value : T) : ILinkedNode

Figure 5.8: Linked node factory type

The Root property can be used as a sort of default namespace for new entities
formed from arbitrary strings as identifiers.

Both interfaces are meant to be implemented by concrete classes that en-
capsulate objects specific to the actual code manipulating RDF data, such as
dotNetRDF.

5.4.8 Analyzers
Analyzers are objects capable of reading the properties of an entity and stor-
ing them through an instance of ILinkedNode, as introduced previously in sec-
tion 4.4.2.

These objects are manipulated using two complementary interfaces, IEntity-
Analyzers and IEntityAnalyzer<in T>25. The first interface is meant to be a
general-purpose object capable of accepting any value, while the second interface
is able to analyze only instances of T.

25This interface is contravariant on T, which means that every IEntityAnalyzer<U> is also
a IEntityAnalyzer<V> if V is more specific than U.

76



≪interface≫
IEntityAnalyzers

Analyze<T>(entity : T,
context : AnalysisContext) : AnalysisResult

≪interface≫
IEntityAnalyzer

Analyze(entity : T, context : AnalysisContext,
analyzers : IEntityAnalyzers) : AnalysisResult

T

AnalysisContext

Parent : ILinkedNode?
Node : ILinkedNode?
Initialized : bool
NodeFactory : ILinkedNodeFactory

AnalysisResult

Node : ILinkedNode?
Label : string?
Exception : Exception?

EntityAnalyzer

EntityAnalyzer

T

Figure 5.9: Entity analyzer types hierarchy

A potential implementation of IEntityAnalyzers could store a collection of
objects, and when Analyze is called, use the first one that implements IEntity-
Analyzer<T> for the type argument T specific to the Analyze call, passing itself
through the analyzers parameter.

The result of the analysis is recorded in AnalysisResult, storing the ILink-
edNode that should represent the analyzed entity, and other relevant information.

5.5 Challenges
In the following sections, some problems that arose during the implementation
are introduced, as well as their solutions.

5.5.1 Using RDF vocabularies
One of the first challenges faced during development was how to “import” an
RDF vocabulary to be used easily from code, in a manner comparable to how
one would use it in an RDF language like Turtle.

The initial idea was to have an instance of a vocabulary, identified by a vari-
able, and using indexing to obtain the representations of the terms in the vocab-
ulary:

node.Set(Vocabularies.Rdf["value"], "value of the node");
Listing 5.1: Initial idea of assigning a property of a node

This is an approach similar to how derived linked nodes are created, but it
has downsides: indexing the vocabulary requires creating the URI each time, or
using caching, and is prone to mistakes when the name has to be typed each time.
Additionally, it is not easy to replace a term with a different one by modifying
the vocabulary, since the URI is already given by the string index.

It is better to represent each term by an actual field, having the additional
advantage that removing a term leads to a compile-time error. A custom attribute
is used to mark from which vocabulary the term stored in the field should come.

77



// The vocabularies are not normally needed; only their URIs
are kept as constants.

public static class Vocabularies
{

public static class Uri
{

public const string Rdf = "http://www.w3.org/1999/02/22-
rdf-syntax-ns#";

public const string Rdfs = "http://www.w3.org/2000/01/
rdf-schema#";

public const string Owl = "http://www.w3.org/2002/07/owl
#";

}
}

// All imported RDF properties are kept in a single class, to
easily keep track of which properties are used. This is,
however, not necessary.

public static class Properties
{

// A custom attribute is used to link to the vocabulary.
[Uri(Vocabularies.Uri.Rdf)]
public static readonly PropertyUri Type;
[Uri(Vocabularies.Uri.Rdf)]
public static readonly PropertyUri Value;

[Uri(Vocabularies.Uri.Rdfs)]
public static readonly PropertyUri Label;

// The local name of the term can be specified as well.
[Uri(Vocabularies.Uri.Owl, "sameAs")]
public static readonly PropertyUri IsSameAs;

static Properties()
{

// This method enumerates all static properties and
assigns their values based on the Uri attribute,
using reflection.

typeof(Properties).InitializeUris();
}

}
Listing 5.2: Example of a static type with predefined RDF properties

5.5.2 Type-introducing return values
All analyzers implement the IEntityAnalyzer<in T> interface where T denotes
the type of objects the analyzer can handle, as defined in section 5.4.8. This

78



makes testing whether a particular analyzer can handle a specific type very easy,
but there are situations where the concrete type is not easily retrievable:

public interface IFormatObject
{

string Extension { get; }
string MediaType { get; }
IFileFormat Format { get; }

}

public interface IFormatObject<out T> : IFormatObject
{

T Value { get; }
}

Listing 5.3: The IFormatObject interfaces

While it is possible to obtain the value as an object, by casting to IFormat-
Object<object>, the intended type T is still not retrievable, without using reflec-
tion. The reason for having to obtain the proper type at all is that some classes
may implement two interfaces which are handled by two separate analyzers, and
it may be necessary to pick the intended interface to analyze.

The adopted solution was to use a “generic callback” to retrieve the result, as
an instance of IResultFactory:

public interface IResultFactory<out TResult, in TArgs>
{

ITask<TResult> Invoke<T>(T value, TArgs args);
}

public interface IFormatObject
{

string Extension { get; }
string MediaType { get; }
IFileFormat Format { get; }

ValueTask<TResult> GetValue<TResult, TArgs>(IResultFactory<
TResult, TArgs> resultFactory, TArgs args);

}
Listing 5.4: The IResultFactory interface and its use in IFormatObject

Inside GetValue, resultFactory.Invoke should be called by the implemen-
tation, which has access to T and can provide it to the method, alongside any
arguments the caller specified. The calling code is free to provide any implemen-
tation of IResultFactory to handle the value.

5.5.3 Caching temporary objects
File-based hashes, such as the BitTorrent Info Hash, usually need to hash the
data inside the file as a part of creating their own hash, but at this point the data
might already be inaccessible. Some archive formats only support sequential

79



reading through the files, meaning parts of the data relevant to the file hash have
to be computed alongside the other data hashes, cached, and later retrieved by
the file hash.

This poses a problem how to store the hash, or specifically how to pick the
cache by which the hash is cached. It is generally not possible to use the file
object itself, because there is no guarantee that the same object instance will be
used to represent the same file the next time it is retrieved.

This is solved using the IPersistentKey interface, storing two keys that
persist beyond the intended lifetime of the object:

public interface IPersistentKey
{

object ReferenceKey { get; }
object DataKey { get; }

}
Listing 5.5: The IPersistentKey interface

Such an object provides two keys, ReferenceKey which is compared for iden-
tity, i.e. using Object.ReferenceEquals, and DataKey compared for equality
using Object.Equals. The first object should be a complex object which should
persist in memory for as long as possible, for example the object representing the
archive a file is in. The second object should be a simpler value that uniquely
identifies the original object inside within a single ReferenceKey, for example a
string storing the path of the file in the archive.

5.5.4 Adapting for the browser
Via Blazor, it is possible to write code in .NET that can be executed on both the
desktop and in the browser. There are, however, significant differences between
the two environments, which require some adaptations to parts of the code:

• All waiting must be performed purely by asynchronous methods. It is not
possible to use methods like Task.Wait to pause the current thread. As
a consequence, every I/O operation must be non-blocking and must use
await, requiring almost every method to return a task, either ValueTask
for optimization, ITask26 when covariance is needed, or a Task otherwise.

• Multithreading may not be supported, in which case all parallel code in-
cluding Task.Run will be executed sequentially. The code must be adapted
to work with this restriction.

• Some hashes, Windows-specific formats, and native libraries are not sup-
ported, having to be disabled.

5.5.5 Circumventing automatic conversions of URIs
In some cases, .NET performs automatic conversions of URIs in regards to per-
cent-encoded characters:

26Imported from the package MorseCode.ITask.

80



var uri1 = new Uri("urn:á");
Console.WriteLine(uri1.AbsoluteUri); // urn:%C3%A1
Console.WriteLine(uri1.ToString()); // urn:á

var uri2 = new Uri("urn:%C3%A1");
Console.WriteLine(uri2.AbsoluteUri); // urn:%C3%A1
Console.WriteLine(uri2.ToString()); // urn:á

Listing 5.6: Behaviour of Uri in .NET

In some situations, dotNetRDF calls Uri.ToString() to obtain the string
value of the URI, so if the automatic conversion to IRI is not required, it can be
overridden:

public class EncodedUri : Uri
{

public EncodedUri(string uriString) : base(uriString)
{

}

public EncodedUri(string uriString, UriKind uriKind) : base
(uriString, uriKind)

{

}

public override string ToString()
{

return IsAbsoluteUri ? AbsoluteUri : OriginalString;
}

}
Listing 5.7: The EncodedUri class

Similarly, Uri.OriginalString may be returned if its validity can be ensured.

5.5.6 Opening Cabinet archives
The Cabinet format used by older Windows installations can be opened using
Windows API functions, also exposed in Vanara.PInvoke.Cabinet. The con-
tents of the archive are iterated using a push-based approach; the FDICopy func-
tion repeatedly calls a specified callback function in different events, such as when
an archive is opened, a file is encountered, or the archive ends. The archive an-
alyzer, however, enumerates the archive contents in a pull-based way, through
IEnumerable.

The solution is to use a thread to call FDICopy, and communicate with it
using a channel – from within the thread, files are pushed to the channel, while
outside the thread, they are pulled from the channel. The thread is paused until
the channel is emptied.

The callback in FDICopy is expected to return a writable stream when a file
in the archive is requested to be, while the data analyzer expects to read from

81



the stream. The same approach is used to solve this issue – a channel is used to
store the data requested to be written, and the thread remains paused until the
channel is emptied.

During the implementation, several bugs were also found in Vanara.PInvoke
regarding interoperability with the native Cabinet API, which were reported and
fixed by the maintainers of the library.

5.5.7 Forking the XML reader
In .NET, XML data is at its core consumed using the XmlReader abstract class.
This is the class used by the XML analyzer, IEntityAnalyzer<XmlReader>, but
the class only supports moving forward in the XML stream, not backward. This
poses an issue when there are multiple formats recognizable from the XML file,
for example when an SVG file is also annotated in some general way, for example
by attributes on the root element.

In this case, multiple formats have to read data coming from the same XML
reader, but the data must be read only once. This is achieved by capturing
“snapshots” of the current state of the XmlReader, including information about
the current node or its attributes, which are sent via channels to each of the
formats during reading. The channel assigned to each format is viewed as a
XmlReader, moving through the channel and invoking properties from the latest
state.

82



6. Documentation
In the following sections, documentation for the software is provided. In sec-
tion 6.1, information on how to operate the software as a user in general is
provided, for both the console and web application. In section 6.2, the overall
structure of the solution is described, including the list of projects, namespaces,
and important classes, and section 6.3 specifies how can plugins be added to the
application. Lastly, in section 6.4, instructions on how to publish and run the
included web application are provided.

6.1 User documentation
The software may be downloaded from the GitHub repository1 as the console
application, or tried out in the browser2. The console version is built for the
win-x64 platform, and it is also possible to build the application from source
code, requiring at least .NET 5.03 and C# 9.

Both the console and web application are controlled through a shared command-
line interface. The usage of the application and the supported options can be
displayed by passing -? as the command-line option.

Usage: (describe|search|list) [options] input... output
Listing 6.1: Parameters of the application

The application operates in three modes: describe, search, and list. In
list, it only displays a list of supported components and their properties, which
can be used to configure them further. In describe, the application loads a
collection of input files and describes them using RDF, saving the output in
a desired RDF serialization format to the last file specified. In search, the
application requires a list of SPARQL queries in addition to the input files and
evaluates them on the RDF descriptions, saving the output in a desired SPARQL
results serialization format to the last file specified.

Input files support wildcard characters like ? and * to select multiple files
at once4. In the console-based application, if - is used as one of the input files,
the standard input of the process is used as the input and is analyzed as if it
were a file. Additionally, in both applications, - may also be used as the output
file, in which case the RDF data is written to the standard output in the case of
the console application, or to the log in the web application. It is also possible
to specify NUL (case-insensitive) or /dev/null as the output, which discards any
RDF data.

Additional arguments given to the application must be passed as options
before the input files, beginning with - for the short form or -- for the long form:

1https://github.com/cermakmarek/SFI/releases
2https://cermakmarek.github.io/sfi/app/
3https://dotnet.microsoft.com/en-us/download/dotnet/5.0
4The ? character stands for a single arbitrary character, while * stands for any number of

arbitrary characters.

83

https://github.com/cermakmarek/SFI/releases
https://cermakmarek.github.io/sfi/app/
https://dotnet.microsoft.com/en-us/download/dotnet/5.0


Short
form

Long form Argument Description

q quiet No logging messages, normally sent
to the standard error, are produced.

i include pattern From the previously excluded com-
ponents, includes those matching
the pattern.

e exclude pattern From the previously included com-
ponents, excludes those matching
the pattern.

f format extension or
MIME type

Sets the RDF serialization format of
the output (ttl, jsonld, rdf etc.) in
case of describe, or the SPARQL
results format in case of search.
Also deduced from the output file
extension.

h hash pattern Set the primary data hash algo-
rithm. The algorithm is also in-
cluded as a component. Only a suffi-
ciently collision-resistant hash algo-
rithm should be used.

c compress Enables gzip compression for the
output.

m metadata Adds annotation metadata to the
output.

d data-only Only treats the input files as plain
data, without file information.

u ugly Use compact, non-pretty mode of
RDF output writing.

b buffered Buffer the RDF triples in memory
before writing them to the output all
at once.

r root URI Sets the URI prefix that is used for
unique entities which do not have a
stable identifier. Without this op-
tion, only blank nodes are used. A
prefix like urn:uuid: or a Skolem
IRI prefix, under /.well-known/
genid/, is recommended.

s sparql-
query

file The given file is executed as a
SPARQL query, in case of describe
for selecting files, or in case of
search to query for information
from the description.

Table 6.1: All command-line options of the application

84



Examples

describe dir/* out.ttl
Describes all files in dir using the default components, and saves the RDF
output to out.ttl.

describe -d -h sha1 dir out.ttl
The same as above, but only loads the files in the directory as data (-d),
without storing their names or other metadata. In addition to that, the
SHA-1 hash algorithm is used to produce ni: URIs for content.

describe -f rdf dir -
Same as the first example, but writes the RDF description as RDF/XML
to the standard output.

describe -b -f jsonld dir -
Writes the RDF description in JSON-LD instead. This requires buffering
the output (-b).

describe -r urn:uuid: dir -
Does not use blank nodes to identify entities, instead using URIs starting
with urn:uuid:.

describe -x *-hash:* -i data-hash:sha1 dir -
Does not use any of the supported hash algorithms, with the exception of
SHA-1, to describe data.

More detailed examples of the usage of the application modes, as well as the
expected output, can be found in section 7.5.

6.1.1 Configuring components
Various configurable objects, understood by the application, such as analyzers,
file formats, or hash algorithms, are collectively stored in component collections
and can be included or excluded from them via the -i and -x options.

When present in a collection, a component receives its compound identifier,
formed from the name of the collection, and the base name of the component,
joined using :. For example, components in the analyzer collection are iden-
tified using the analyzer: prefix, and can be collectively removed using -x
analyzer:*5.

It is possible a single component may be included in multiple collections at
once, for example data hash algorithms may be used by the data analyzer for
hashing arbitrary bytes, using the data-hash: prefix, or by the image analyzer
for analyzing raw pixel data, using the pixel-hash: prefix. Using the proper
pattern, a particular hash algorithm may be configured to be present in only one
collection, both or none of them.

5The wildcard character * represents any number of characters, while ? represents a single
arbitrary character.

85



Analyzers form their base name from the supported type of analyzed objects,
for example the analyzer of images has the identifier analyzer:image. If the
type is located in a foreign assembly, the name of the assembly is also used as a
part of the base name, for example the analyzer of wave streams from the core
NAudio library has the identifier analyzer:n-audio.core.wave-stream.

Formats use the MIME type of the recognized files as their base names, for ex-
ample the identifier of the XML format is data-format:application/xml. If the
MIME type of the format is not known, or if the format does not represent a single
concrete format, the special unregistered MIME type prefix application/x.obj.
is used, followed by the base name of the analyzer that would recognize this ob-
ject, for example in data-format:application/x.obj.image.

The base names of other components do not follow any particular pattern.
Some components may have configurable properties that can be browsed by

running the application in the list mode. The identifier of a component’s prop-
erty is formed by joining the compound identifier of the component and the name
of the property by :, and can be used as an option by prefixing it with --. For
example, the estimate of the base size of a single triple in bytes in a triple store6

can be configured using --analyzer:stream-factory:triple-size-estimate.
Additional components of arbitrary types may be added by the user in the

form of plugins; see section 6.3.1 for instructions on how to load plugins into the
application.

Available components

This is the list of available components and their properties:

analyzer:file-node-info
This is the file analyzer, as designed in section 4.4.2, accepting arbitrary files
and directories. This component holds the collection of file hash algorithms,
prefixed file-hash:.

analyzer:stream-factory
This is the data analyzer, as designed in section 4.4.2, accepting any source
of data or sequence of bytes. This component holds the collection of bi-
nary formats, prefixed data-format:, and data hash algorithms, prefixed
data-hash:.

analyzer:stream-factory:file-size-to-write-to-disk
The minimum size at which the data is written to a temporary file on disk
instead of being stored in memory.

analyzer:stream-factory:min-data-length-to-store
The minimum size at which to consider storing data directly in the URI,
instead of using one of its hashes to identify it.

6This property is used by the data analyzer to decide whether to use the raw data or the
primary hash as the means of identifying an entity, based on whichever takes less space.

86



analyzer:stream-factory:triple-size-estimate
An estimate of the size of a triple in a data store, used to evaluate whether
describing the data using hashes would be more efficient than storing it in
the URI.

analyzer:stream-factory:max-depth-for-formats
The maximum depth the data is allowed to be as an entity in a hierarchy
in order to attempt to analyze formats.

analyzer:data-object
This is the data object analyzer, as designed in section 4.4.2. Excluding
this component will disable describing data, but individual media objects
will still be analyzed.

analyzer:data-object:label-size-suffix-digits
The number of decimal digits used to format the data size in the label.

analyzer:format-object
This is the format object analyzer, as designed in section 4.4.2. Excluding
this component will prevent any format analysis.

analyzer:format-object:label-size-suffix-digits
The number of decimal digits used to format the data size in the label.

analyzer:xml-reader
The analyzer of XML documents. This component holds the collection of
XML formats, prefixed xml-format:.

analyzer:x509-certificate
The analyzer of X.509 certificates.

analyzer:x509-certificate:describe-extensions
Whether to use the certificate’s extensions to provide an additional descrip-
tion.

analyzer:image
The analyzer of arbitrary images. This component holds the collection
of image hash algorithms, prefixed image-format:, and pixel data hash
algorithms, prefixed pixel-hash:7.

analyzer:image:make-thumbnail
Whether to produce a small thumbnail data: node from the image.

analyzer:read-only-list.metadata-extractor.directory
The analyzer of metadata directories, produced by MetadataExtractor from
image files.

analyzer:metadata-extractor.exif-directory-base
The analyzer of EXIF metadata in MetadataExtractor directories.

7This collection contains the duplicates of all hash algorithms under data-hash:, since they
are the same algorithms, just used for hashing the actual pixel data

87



analyzer:metadata-extractor.xmp-directory
The analyzer of XMP metadata in MetadataExtractor directories.

analyzer:tag-lib-sharp.file
The analyzer of TagLibSharp files, as containers of tags.

analyzer:tag-lib-sharp.xmp-tag
The analyzer of XMP TagLibSharp tags.

analyzer:svg.svg-document
The analyzer of SVG documents from SVG.NET.

analyzer:n-audio.core.wave-stream
The analyzer of audio streams from NAudio.

analyzer:n-audio.core.wave-stream:create-spectrum
Whether to produce spectrogram images from the audio.

analyzer:swf-dot-net.io.swf
The analyer of Shockwave Flash animations from SwfDotNet.IO.

analyzer:npoi.poi-document
The analyzer of OLE-based documents from NPOI.

analyzer:npoi.ooxml.poixml-document
The analyzer of OOXML-based documents from NPOI.

analyzer:pdf-sharp-core.pdf-document
The analyzer of PDF documents from PdfSharpCore.

analyzer:html-agility-pack.html-document
The analyzer of HTML documents from the Html Agility Pack.

analyzer:archive-file
The analyzer of whole archives from SharpCompress.

analyzer:archive-reader
The analyzer of archives from SharpCompress, read sequentially.

analyzer:cabinet-archive
The analyzer of Cabinet archives. The analyzed archive is wrapped and
handled to analyzer:archive-reader.

analyzer:disc-utils.core.file-system
The analyzer of file systems from DiscUtils.

analyzer:module
The analyzer of Windows executable or resource modules.

analyzer:win-version-info
The analyzer of Windows version resources, in the VS VERSIONINFO format8.

8https://learn.microsoft.com/en-us/windows/win32/menurc/vs-versioninfo

88

https://learn.microsoft.com/en-us/windows/win32/menurc/vs-versioninfo


analyzer:dos-module
The analyzer of DOS executables, using Aeon to execute them.

analyzer:dos-module:emulate
Whether to attempt to run the executable to obtain additional data.

analyzer:dos-module:console-encoding-name
The encoding used to decode texts produced by the module.

analyzer:dos-module:instruction-step
The number of instructions to emulate in each step.

analyzer:dos-module:instruction-limit
The limit on the total number of instructions after which emulation is
stopped.

analyzer:delphi-object
The analyzer of Delphi DFM objects, stored as resources in executables.

analyzer:open-mcdf.compound-file
The analyzer of OLE compound files from OpenMcdf.

analyzer:package-description
The analyzer of packages using the FILE_ID.DIZ file for description.

analyzer:rdf-xml-analyzer.document
The analyzer of RDF/XML documents.

analyzer:async-enumerable.toimik.warc-protocol.record
The analyzer of WARC files from WarcProtocol.

analyzer:vanara.p-invoke.shell32.url.uniform-resource-locator
The analyzer of internet links from Vanara.PInvoke.

analyzer:vanara.p-invoke.shell32.shell32.shell-link-w
The analyzer of shell links from Vanara.PInvoke.

data-format:application/x-delphi-form:default-encoding-name
The encoding used to read strings.

data-format:text/html:default-encoding-name
The encoding chosen for HTML by default.

data-hash:md5
The MD5 hash algorithm.

data-hash:sha1
The SHA-1 hash algorithm.

data-hash:sha256
The SHA-256 hash algorithm.

data-hash:sha384
The SHA-384 hash algorithm.

89



data-hash:sha512
The SHA-512 hash algorithm.

data-hash:bsha1256
A variable-length hash algorithm producing SHA-1 hashes from 256 KiB-
long chunks of the hashed data.

data-hash:blake3
The BLAKE3 hash, implemented by Blake3.NET.

data-hash:crc32
The CRC32 checksum algorithm.

data-hash:crc64
The CRC64 checksum algorithm.

data-hash:xxh32
The xxHash-32 checksum algorithm.

data-hash:xxh64
The xxHash-64 checksum algorithm.

image-hash:dhash
A dHash9 low-frequency image hash algorithm.

file-hash:btih
The BitTorrent Info Hash, using BencodeNET.

file-hash:btih:block-size
The size of the individual file chunks in bytes, 256 KiB by default.

Furthermore, there are also components for generally recognized formats ac-
cepted by the analyzers10, and the specific formats that are supported by the
application also have a corresponding *-format: component11.

9This hash works by encoding the difference between adjacent pixels in a downscaled version
of the image. There is not a single universal dHash variant – the one used by this application
works on two downscaled images, 9x8 and 8x9, the first one used for horizontal differences
and the second for vertical differences, both based on the brightness of the pixels, in the HSB
color model. The difference maps are alternated and traced using a third order Hilbert curve.
Additionally, the bit chosen for equal brightness in the horizontal difference map is 0, while the
vertical map uses 1, forming an alternating bit pattern for same-color image sections.

10Such as data-format:application/x.obj.image, data-format:application/x.
obj.n-audio.core.wave-stream, data-format:application/x.obj.read-only-list.
metadata-extractor.directory, data-format:application/x.obj.tag-lib-sharp.file,
or data-format:application/x.obj.x509-certificate2.

11These are image/svg+xml, audio/vnd.wave, application/ogg, application/vnd.
adobe.flash-movie, application/msword, application/vnd.ms-excel, application/
vnd.openxmlformats-package, application/vnd.openxmlformats-officedocument.
spreadsheetmlsheet, application/vnd.openxmlformats-officedocument.
wordprocessinml.document, application/pdf, text/html, application/zip,
application/gzip, application/vnd.rar, application/vnd.ms-cab-compressed,
application/x-ms-compress-sz, application/x-7z-compressed, application/x-tar,
application/x-iso9660-image, application/x-udf, application/x-dosexec,
application/x-msdos-program, application/x-msdownload, application/x-msdownload;

90



Examples

-x *-format:* -i *-format:image/*
Excludes all file formats from the list of components, but keeps specific
image formats.

-x * -i analyzer:stream-factory -i analyzer:data-object
Only allows for the analysis of actual data, not files.

--analyzer:stream-factory:max-depth-for-formats ""
Sets this property value to null, disabling depth checks.

6.1.2 Using SPARQL
Using the --sparql-query option, it is possible to execute custom SPARQL
queries during the process, and match various entities handled by the analyzers.

Each query is executed at various points during the analysis. The data avail-
able to the query differs based on the presence of the --buffered option: if the
option is present, the query operates on the whole graph, while if the option is
not present, only a small section of the data, usually enough to describe a single
entity, is used.

Search

In the search mode, the --sparql-query option should point to a SELECT or ASK
query. When a query is evaluated, its results are added to an internal storage,
which is serialized to the output file when the process stops.

The evaluation of a query in this mode may also stop the process prematurely
if one of these conditions succeeds:

• The query uses ASK, and its result is determined to be true.

• The query uses LIMIT, and the number of results exceeds the limit. The
process will be stopped in this case only if there are no other queries that
may yet produce results, such as queries without LIMIT.

PREFIX schema: <http://schema.org/>

ASK WHERE {
[] schema:encodingFormat <https://w3id.org/uri4uri/mime/image

/png> .
}
Listing 6.2: An example ASK query determining the presence of a PNG image

format=le, application/x-msdownload;format=ne, application/vnd.microsoft.
portable-executable, application/x-delphi-form, application/x-ole-storage,
application/xml, application/json, application/rdf+xml, application/warc,
text/x-uri, and application/x-ms-shortcut.

91



PREFIX nfo: <http://www.semanticdesktop.org/ontologies
/2007/03/22/nfo#>

PREFIX nie: <http://www.semanticdesktop.org/ontologies
/2007/01/19/nie#>

PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX schema: <http://schema.org/>

SELECT DISTINCT ?name ?w ?h
WHERE {

[
nfo:fileName ?name ;
nie:interpretedAs/dcterms:hasFormat [

a schema:ImageObject ;
nfo:width ?w ;
nfo:height ?h

]
] .

}
Listing 6.3: An example SEARCH query that retrieves the names of image files and
their dimensions

In addition to the usual formats for storing SPARQL results, it is also possible
to save them as a new SPARQL query12 that uses VALUES to replicate the same
results.13

File extraction

In the describe mode, the --sparql-query option should point to a SELECT
query, which will be used to mark entities that should be matched and extracted
if they are backed by binary data. The query should have a variable ?node,
which is compared against the node representing the currently analyzed entity,
extracting it as a file if the nodes are equal.

The name of the file can be determined by assigning the ?path format vari-
able in the query, which has the default value "${name}${extension}". Other
properties related to the file may be substituted in ?path format, including
${media type} or ${size}.

SELECT ?node ?path_format
WHERE {

?node ?p ?o .
BIND("extracted/${name}${extension}" AS ?path_format)

12Using the application/sparql-query media type, or the sparql or rq extension.
13This may be useful to prepare a query for file extraction in a two-pass style, by first using

-b to enable buffered mode in the search mode, while providing a SPARQL query made for
extraction. This evaluates it on the whole graph, having a complete overview of the RDF data as
opposed to running it in the non-buffered mode. Using this pre-computes the nodes produced
by the extraction query in the describe mode, which might otherwise finish processing the
extracted entities before they can be matched by the query, at which point they are no longer
extractable.

92



}
Listing 6.4: An example query that matches all entities; extracting them to the
“extracted” folder according to their name and extension

PREFIX nfo: <http://www.semanticdesktop.org/ontologies
/2007/03/22/nfo#>

PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX schema: <http://schema.org/>

SELECT DISTINCT ?node
WHERE {

?node dcterms:hasFormat [
a schema:ImageObject ;
nfo:width 256 ;
nfo:height 256

]
}

Listing 6.5: An example query that matches all 256x256 images

6.2 Programmer documentation
This section describes the structure of the code and the various projects it consists
of. The whole solution is divided into several projects, based on their primary
purpose and dependencies. This allows to distribute the projects as packages to
be used as libraries in other solutions, selected based on the individual needs of
those solutions.

The documentation of all classes and methods is available in structured form,
generated from the XML documentation comments included in the code14, while
the individual projects are described in the following sections.

6.2.1 SFI
The SFI project is the core part of the software, defining the common interfaces
used in the other projects, as well as core analyzers and formats whose imple-
mentation does not depend on any external libraries outside of .NET. It defines
types from these namespaces:

SFI This namespace contains various utility classes such as DataTools, Text-
Tools, and UriTools, as well as classes containing extension methods intended
to be used from all other components.

SFI.Analyzers This namespace is intended to store all analyzers, in this project
or others. In the core project, the only defined analyzers are for objects whose
types are defined in .NET or in the core project, such as FileAnalyzer, Data-
Anylzer, XmlAnalyzer, or X509CertificateAnalyzer.

14https://cermakmarek.github.io/sfi/docs/

93

https://cermakmarek.github.io/sfi/docs/


SFI.Formats This namespace is similar to the previous one but stores classes
used for defining and parsing formats. Aside from common interfaces and related
components defined here, it defines only formats that can be used from pure
.NET, such as XmlFileFormat, ZipFileFormat, and X509CertificateFormat.

SFI.Services This namespace contains specialized interfaces to be used for
communication between formats and analyzers or other components in the solu-
tion, such as IFileNodeInfo, IFormatObject, IPersistentKey, ILinkedNode,
ILinkedNodeFactory, IEncodingDetector, and similar, as well as their base
implementations.

SFI.Tags Tags, in this context, are usually small objects intended to be ap-
plied to existing objects via other means, providing extended description of them
beyond what their original classes support.

In this project, the tags that are defined are IImageTag and IImageResource-
Tag, usually applied to images via the Image.Tag property, providing information
about the origin of the image or the allowed operations.

SFI.Tools This namespace hosts various specialized utility classes for general
use and for I/O and XML operations. It also exposes the collection of built-in
hash algorithms using the BuiltInHash class, the PersistenceStore class, used
for storing values attached to instances of IPersistentKey, and the EncodedUri,
which should be used instead of the base Uri class in all situations to control its
formatting, as justified in section 5.5.5.

SFI.Vocabulary This namespace provides datatypes used for defining RDF
vocabularies, such as ClassUri, PropertyUri or LanguageCode, as well as stor-
ing the common vocabulary terms in the static classes Individuals, Classes,
Properties, and Datatypes, as described in section 5.5.1, to be used from code
easily.

6.2.2 SFI.Accessories
This project provides a concrete implementation of the core classes and interfaces.
As such, it imports several external projects, like dotNetRDF for the RDF output
in LinkedNodeHandler, or UDE for encoding detection in UdeEncodingDetector,
while the core project can theoretically work with any implementation of those
services.

In addition to the previous uses, this project also defines the format descrip-
tions and analyzers for HTML and RDF/XML, since they can take advantage of
the already necessary dependencies.

6.2.3 SFI.BaseFormats
This project adds several formats and analyzers, but without requiring any addi-
tional dependencies. It also supports expressing compound formats, via Contai-
nerFileFormat.

94



6.2.4 SFI.ExternalFormats
This project groups all the remaining supported formats that are implemented
using external dependencies.

6.2.5 SFI.MediaAnalysis
This project stores code for manipulating audiovisual data that requires native
support. It mainly adds support for image and audio formats, using GDI+ and
NAudio.

6.2.6 SFI.Windows
This project adds formats and analyzers implemented solely through the Windows
API, using P/Invoke, such as Win32 executable modules, shell links, or cabinet
archives.

6.2.7 SFI.Application
This is the primary project to use when wishing to run the software using the
command line-based API as described in section 6.1, but still in a platform-
agnostic way.

The project contains a hierarchy of classes derived from Inspector, capable
of easily setting up the process of file format inspection. This class is inherited
by ComponentInspector, which is capable of storing configurable collections of
components (section 6.1.1), and itself inherited by ExtensibleInspector, adding
support for plugins, described in detail by section 6.3.

When intending to use one of these classes, the user shall derive from the one
of them covering the user’s needs, adding the desired components, and either use
the inspector by calling methods on the instance, or through the Application
class which can be controlled using command-line arguments.

6.2.8 SFI.ConsoleApp
This project implements an executable console application for .NET 5.0, providing
the components that can be used on the desktop platform.

6.2.9 SFI.WebApp
This is an ASP.NET Core Blazor WebAssembly project with a single page for
running the application in the browser. It adds only the components usable in
the web environment, and loads all required files through file dialogs.

Details about running the web application are provided in section 6.4.

6.2.10 SFI.SamplePlugin
Stores additional sample components, for illustrating how they can be added to
the application as plugins. The process is explained in greater detail in section 6.3.

95



6.2.11 SFI.Tests
This project contains test classes and methods that cover other parts of the
solution. Details about the testing methodology are presented in chapter 7.

6.3 Extender documentation
The application may be extended with plugins, capable of adding new components
with arbitrary types, but still configurable through the application as needed.
This section describes both how plugins are loaded into the application by the
user and how they interact with the application through the .NET API.

6.3.1 Loading plugins
Plugins are stored in directories or ZIP files in the plugins directory alongside
the main executable in the case of the console applications, or provided only as
ZIP files for the web applications. Each plugin has a main .NET assembly, which
is looked up by replacing the .zip extension with .dll in the case of ZIP files,
or just appending .dll to the directory name in the case of a directory.

The main assembly of a plugin should contain publicly visible and constructible
types, compatible with one of the known component collections15.

When such a type is encountered, dependency injection is used to select the
appropriate constructor, providing these services distinguished by their type:

• Inspector – the inspector instance that is loading the plugin,

• TextWriter – an instance used for logging messages,

• IDirectoryInfo – the directory where the main assembly of the plugin is
located.

Once an instance of the type is created, it is added into all compatible collec-
tions, and thus becomes in use by the application.

Example

The following pieces of codes are examples taken from the SFI.SamplePlugin
project, showing how to add custom analyzers, formats, and hash algorithms.

15The initially defined component collections are the collection of analyzers, im-
plementing IEntityAnalyzer<T>, the collection of container formats, implement-
ing IContainerAnalyzerProvider, the collection of data formats, implementing
IBinaryFileFormat, the collection of XML formats, implementing IXmlDocumentFormat,
the collection of data hash algorithms, implementing IDataHashAlgorithm, the collection of
file hash algorithms, implementing IFileHashAlgorithm, and for the image analyzer, the
collection of image hashes, implementing IObjectHashAlgorithm<Image>, and pixel hashes,
again implementing IDataHashAlgorithm. See section 6.1.1 for more details.

96



Formats. Custom data formats are identified based on whether they implement
IBinaryFileFormat, either directly or through the base class or other interfaces
that inherit it:

// BinaryFileFormat implements IBinaryFileFormat
public class UriListFormat : BinaryFileFormat<IReadOnlyList<Uri

>>
{

public UriListFormat() : base(246, "text/uri-list", "uris")
{

}

// Returns true if it is likely in this format
public override bool CheckHeader(ReadOnlySpan<byte> header,

bool isBinary, IEncodingDetector? encodingDetector)
{

// Binary files can be immediately
if(isBinary) return false;
using var reader = new StringReader(Encoding.UTF8.

GetString(header));
while(reader.ReadLine() is string line)
{

if(Uri.TryCreate(line, UriKind.Absolute, out _))
{

return true;
}

}
return false;

}

// Parses the file. Exceptions may be thrown from the Uri
constructor, indicating that the format is incorrect.

public override async ValueTask<TResult?> Match<TResult,
TArgs>(Stream stream, MatchContext context,
ResultFactory<IReadOnlyList<Uri>, TResult, TArgs>
resultFactory, TArgs args) where TResult : default

{
using var reader = new StreamReader(stream);
var list = new List<Uri>();
while(await reader.ReadLineAsync() is string line)
{

if(line.StartsWith("#")) continue;
list.Add(new Uri(line, UriKind.Absolute));

}
// The resulting entity is returned through the callback

.
return await resultFactory(list, args);

}

97



}
Listing 6.6: An example of a custom data format component for text/uri-list

Analyzers. Custom analyzers are identified on the basis of whether they im-
plement IEntityAnalyzer<T>, for any type T:

// EntityAnalyzer implements IEntityAnalyzer
public class UriListAnalyzer : EntityAnalyzer<IReadOnlyList<Uri

>>
{

// Recommended async to capture exceptions in the task.
public override async ValueTask<AnalysisResult> Analyze(

IReadOnlyList<Uri> entity, AnalysisContext context,
IEntityAnalyzers analyzers)

{
// Construct the linked node appropriately for the

context.
var node = GetNode(context);

// Set its properties to the URIs stored in the list.
for(int i = 0; i < entity.Count; i++)
{

node.Set(Properties.MemberAt, i + 1, entity[i]);
}

// Return through AnalysisResult.
return new(node);

}
}
Listing 6.7: An example of a custom analyzer component for text/uri-list

Hash algorithms. Custom data hash algorithms are identified based on whe-
ther they implement IDataHashAlgorithm:

using Murmur;

// BuiltInHash implements IDataHashAlgorithm
public class Murmur32Hash : BuiltInHash<Murmur32>
{

// Vocabulary item to identify the hash algorithm
[Uri(Vocabularies.Uri.At)]
public static readonly IndividualUri Murmur32;

// Setting up the hash algorithm through the BuiltInHash
base

public Murmur32Hash() : base(() => MurmurHash.Create32(),
Murmur32, "urn:murmur32:", 0x23, null, Services.
FormattingMethod.Base64)

98



{

}

// Populate the vocabulary items
static Murmur32Hash()
{

typeof(Murmur32Hash).InitializeUris();
}

}
Listing 6.8: An example of a custom hash algorithm component using the
Murmur.Murmur32 class provided by an external library

These pieces of code are enough to expose the three custom components, and
if they are built into an assembly named SamplePlugin.dll, it can be placed
in the directory plugins/SamplePlugin/ to be loaded by the application, or
stored as a ZIP file in plugins/SamplePlugin.zip, and the components will be
automatically loaded.

6.3.2 Configurable components
Components can be configured from the application, allowing it to assign their
properties to different values, or to specify other components that they can use.
The application uses System.ComponentModel.TypeDescriptor.GetProperties
on the instance to obtain the list of properties. This method uses reflection by
default, but can be configured to provide different values per type or even per
instance. Properties that are marked non-browsable16 are excluded from this
collection.

Assignable properties. Any writable property on a component can be as-
signed from the command-line application, as long as the type converter cor-
responding to the property supports conversion to and from System.String17.
This converter is used for subsequent conversions, as documented in section 6.1.1.

Custom component collections A component may define a property with
the [ComponentCollection] attribute to indicate that the elements in the col-
lection shall be treated as components, and subsequent types found in plugins
compatible with the element type of the collection may be constructed and placed
there. The type of the collection must implement ICollection<T>, where T can
be System.Object or a more specific type. The ComponentCollection attribute
also makes it possible to specify the type of the components explicitly, supporting
generic type definitions in addition to concrete types.

Example

16For example, by adding the [Browsable(false)] attribute.
17The converter can be changed via the [TypeConverter] attribute on the property or its

type.

99



// This property will be exposed as an assignable property "int
-property"

public int IntProperty { get; set; }

// This property will not be exposed because there is no native
conversion from string to int[]

public int[] ArrayProperty { get; set; }

// This property will not be exposed due to the Browsable
attribute

[Browsable(false)]
public string StringProperty { get; set; }

// This property will not be exposed directly, but classes that
implement IJsonObjectFormat will be automatically put

inside the collection, and may be removed through the json
-format: prefix

[ComponentCollection("json-format")]
public ICollection<IJsonObjectFormat> JsonFormats { get; } =

new List<IJsonObjectFormat>();
Listing 6.9: An example of assignable and non-assignable properties

6.4 Administrator documentation
The software can also be executed as a web application, thanks to the platform-
independent nature of the main application implementation.

The web application is stored in the SFI.WebApp project, providing a user
interface to the command line-based applications, and the necessary implemen-
tations of the required services specific to the web environment. It also excludes
components incompatible with the web environment, such as those requiring na-
tive code or platform-specific APIs.

The web application may be downloaded from GitHub18 or built from the
source code using the following steps:

1. Get the project from the repository, either via git clone or by downloading
the ZIP.

2. Open the solution file SFI.sln in Visual Studio19

3. Right-click on the project SFI.WebApp and select “Set as Startup Project”.

4. Pressing F5 or selecting “Debug/Start Debugging” will launch the website
in the browser using a local web server.

5. Alternatively, right-click the project and select “Publish...”. You can publish
using the default FolderProfile, which will output the website into the
bin/Release/net5.0/browser-wasm/publish/ directory.

18https://github.com/cermakmarek/SFI/releases/tag/v1.0
19At least Visual Studio 2019, version 16.7, is required.

100

https://github.com/cermakmarek/SFI/releases/tag/v1.0


6. After publishing, the resulting website can be found inside wwwroot/.

The website targets ASP.NET Core Blazor WebAssembly, and can therefore
be statically hosted on any web server and executed in any browser capable of
running WebAssembly. Optionally, the files ending on .gz and .br can be used
by the web server for offering gzip and Brotli-compressed files.

When the web application is loaded, a page similar to the one below is dis-
played:

Figure 6.1: Overview of the web application

The page has the following controls:

• Command prompt – the large text area control is used to enter the ar-
guments to the application, in the same syntax as for the console-based
application. There may be multiple lines, in which case the application is
executed multiple times for each line.

• Input files – this control is used to enter any input files visible to the appli-
cation, including described files or SPARQL queries.

• Plugins – this control is used to provide plugins to the application, as indi-
vidual ZIP archives.

• Execute – launches the application using the provided command-line ar-
guments, as documented in section 6.1. Any output of the application,
including the standard output or files, appears below.

101



102



7. Tests
This chapter describes the test practices and methodology used for the imple-
mentation of the software, ensuring that it behaves according to the design, its
functionality is not negatively impaired by new changes to the code, and that it
meets the requirements stated in section 3.2.1.

The first section in this chapter introduces MSTest, the primary testing frame-
work used by this software, followed by sections describing the various kinds of
performed tests in detail.

7.1 MSTest
MSTest is a Microsoft-provided testing framework and SDK, which is supported
by Visual Studio by default. As such, it is very straightforward to use for .NET
projects opened in Visual Studio, requires no configuration, and its controls and
results are integrated into the UI.

Performing tests only requires creating a new MSTest project, and using at-
tributes in the Microsoft.VisualStudio.TestTools.UnitTesting namespace
to mark classes and methods to be automatically executed as part of test suites.
The [TestClass] attribute is used to mark any class that contains test methods,
which are themselves marked by [TestMethod], and will be automatically exe-
cuted during testing. Methods with parameters can be provided with test values
using the [DataRow] attribute. The attributes can be used as in the following
example, containing two test methods, one of them with parameters:

using Microsoft.VisualStudio.TestTools.UnitTesting;

[TestClass]
public class TestClass
{

[TestMethod]
public void TestMethod()
{

Assert.Equals(1 + 1, 2);
}

[TestMethod]
[DataRow(-1)]
[DataRow(1)]
public void TestMethodWithParameter(int arg)
{

Assert.Equals(arg * arg, 1);
}

}
Listing 7.1: Example usage of MSTest

The Assert class is used to assert conditions within the tests.

103



The framework is capable of running individual test methods, all test methods
in a particular test class, or all test methods in the solution. For any failing or
inconclusive test, it displays the particular test method and input that led to that
result in the overall report.

7.2 Unit testing
An important part of software testing is ensuring the functionality of small indi-
vidual pieces of code, i.e. units. In practice, units are usually individual public
methods, ideally pure, i.e. with predictable results and no side effects.

Due to the component-oriented nature of the whole system, and the viability
of other tests with higher coverage, the majority of the code is covered by other
types of tests, while unit tests are left only for non-component code that does
not interact with other parts of the code on its own. These tests are located in
the UnitTests directory, and cover about 69 % of non-component classes in the
main project.

7.3 Component testing
As the software follows a component-oriented architecture, it is viable to test
individual components and how they interact with the system.

The tests for components are located in the ComponentTests directory, named
based on the component they are for. These tests do not necessarily have to
cover every component in the system, as the majority of formats and analyzers is
better tested using output testing, but the core components like DataAnalyzer
and FileAnalyzer can be tested specifically, to identify issues that could affect
other tests.

MSTest is used for these tests as well.

7.3.1 Mocks
Mocking is the creation of objects that mimic real objects and simulate their
behaviour but without bringing in the complexities associated with these objects.

There are several types that are necessary to be used mocks for, as their
implementations are very complex or cannot be easily used for test conditions:

ILinkedNode The real-world implementation of ILinkedNode, as defined in sec-
tion 5.4.7, constructs RDF triples when operated on and sends them to an RDF
serializer or graph, but it does not offer any capabilities of reading the data that
has been written through it. The mock implementation, StorageLinkedNode,
instead stores an associative collection mapping a predicate URI to a set of ob-
ject URIs associated with the subject represented by the ILinkedNode. Thanks
to this, the objects can be easily retrieved from the collection and compared to
the expected values, testing that the component stores the correct properties to
the node.

104



IEntityAnalyzers This interface serves to analyze an object produced by an-
other component using an implementation-defined collection of analyzers, as de-
fined in section 5.4.8, but for the purpose of testing individual components, no
concrete analyzers should be used. The mock implementation, AnalyzedObject-
Collection, only stores the analyzed entity in its internal collection, so that it
can be retrieved later and compared with the expected object. This can be used
to test that a component is capable of deriving the correct objects from another
object, and using the IEntityAnalyzers instance for the analysis of these enti-
ties.

7.4 Output testing
A large part of testing the functionality of the software as a whole is testing the
file format analysis process by comparing its RDF output across updates to look
for regressions that may affect the result. These tests also have additional uses
beyond maintaining correct behaviour – their output could serve as a part of the
documentation, as examples of how the software works and how the input files
are described in RDF, which properties are covered and which are not.

This testing process is rather simple: the core part of the software is re-
peatedly executed as if run from the command-line application, with the default
components and settings. Each time, it is provided with a different input – the
to-be analyzed file – and the output is compared, as RDF, to the stored output of
the previous analysis of the same input file, which is a part of the repository. The
outputs are compared as RDF graphs, as there could be differences in the textual
form due to variations in the process caused by concurrency, or changes to the
serializers, but still unaffecting the actual triples. The concrete graph-matching
algorithm is provided by dotNetRDF as an implementation detail, but it does not
have to be complex, since the output can be configured not to use blank nodes at
all and use other means of stable identification of data, such as hashes. For this
reason, just comparing the graphs as sets of triples is, in most cases, enough.

If the graphs do not match, this is reported as a test failure, even in situa-
tions when triples are only added to the original graph to form the new one, for
example as a result of support for new properties or file formats. This encourages
updating the stored output to accommodate even for additive changes which do
not negatively impair the functionality of the software and serves as a practical
documentation of the impact of such changes.

The standard graphs used for comparing are stored in the directory Expected-
Descriptions, serialized as Turtle files. If the input file does not have a previ-
ously stored description, the current one is saved into NewDescriptions, other-
wise if the descriptions do not match, the new one is saved into NotMatched-
Descriptions. Files downloaded from the web are cached in Cached. In all
these directories, the files are identified using the version 5 UUID created from
the URIs identifying the original files.

For performing these tests, MSTest is used as well, in the class GraphTests.
The tests are separated according to the source of the file samples.

105



7.4.1 telparia.com
telparia.com1 hosts a large and still growing database of over 14000 files, grouped
into more than 1700 formats.

The file formats are organized into general categories, such as archives, docu-
ments, executables, images etc., containing the directories for individual formats,
each storing samples of that format. Neither the general category directories nor
the specific format directories follow any standardized file format naming scheme,
such as MIME; the names are arbitrary, but descriptive for humans.

In this database, 2016 relevant files were identified, covering 38 of the sup-
ported 41 formats and their corresponding analyzers, equating to 92.7% coverage.

The only formats not covered by this database are RDF/XML and .lnk and
.url files. Samples for these formats can be found in the Samples directory.

7.5 Manual testing
This section describes the tests that can be performed manually, ensuring that
the software behaves according to the functional requirements specified in sec-
tion 3.2.1. It is assumed the directory SFI.Tests/Samples2 is located in the
working directory.

Functional requirements under FR4, specifying the support for adding new
components, can be tested by following the extender documentation in section 6.3.

7.5.1 Obtaining a description of a file
1. Launch the application with the parameters describe -d -r urn:uuid:

-q -x *-hash:* -h sha256 Samples/zip/example.zip -.

2. The application should produce a Turtle-encoded RDF graph, equivalent
to the attachment in section A.2.

By inspecting the output, these requirements can be verified:

• FR1.1 – Common file properties
Properties of each file are present in the output, such as nfo:fileName,
nfo:fileSize, and nfo:fileLastModified.

• FR1.2 – Recognizing known formats
The formats PNG and ZIP are recognized from the input3.

• FR1.3 – Properties of known formats
The recognized formats are identified using their media types image/png
and application/zip. The extension is reflected in the label.

1https://telparia.com/fileFormatSamples/
2https://github.com/cermakmarek/SFI/tree/master/SFI.Tests/Samples
3The ability to recognize other formats may be assessed by output testing, described in

section 7.4.

106

https://telparia.com/fileFormatSamples/
https://github.com/cermakmarek/SFI/tree/master/SFI.Tests/Samples


• FR1.4 – Analyzing recognized files
The PNG image, represented by the resource <ni:///sha-256;...?ct=
image/png>, has been analyzed and described using many image-related
properties, such as nfo:width, nfo:height, and nfo:colorDepth.

• FR1.5 – Analyzing unrecognized binary files
The unrecognized binary file unk-binary.dat has been described using the
implied media type application/x.sig.head, storing its signature.

• FR1.6 – Analyzing unrecognized textual files
The unrecognized text file unk-textual.txt has been described using its
first line, represented as <ni:///sha-256;...?ct=text/plain#line=,1>.

• FR1.7 – Computing hashes
SHA-256 hashes were computed from the 3 encountered files, as <urn:
sha256:...> nodes, and linked to the respective content nodes.

• FR1.8 – Traversing nested file systems
The file is a ZIP archive which stores an inner file system, which is reflected
by the hierarchy starting from <ni:///sha-256;...?ct=application/zip
#/>.

• FR2.1 – Reuse of existing ontologies
Almost all used properties and classes are from pre-existing vocabularies,
with the exception of at:digest, at:pathObject, and at:extension-
Object.

• FR2.2 – Use of hierarchical URIs
The URIs produced for the files inside the ZIP archive follow a hierar-
chy, starting from ni:///sha-256;...?ct=application/zip#/, followed
by the path to each file.

• FR2.3 – Elimination of blank nodes
No blank nodes were produced in the output, thanks to the choice of SHA-
256 as the primary hash algorithm to identify individual pieces of content.
If there were any nodes that could be identified this way, they would use
the root URI prefix provided by -r.

• FR2.4 – Separate nodes for the file, its content, and the media object seri-
alized it in
Nodes such as <ni:///sha-256;...?ct=application/zip#/dir/example
.png>, <ni:///sha-256;...?ct=application/octet-stream>, and <ni:
///sha-256;...?ct=image/png> are distinct from each other, and repre-
sent the files at various levels of interpretation.

107



7.5.2 Searching in files
1. Launch the application with the parameters search -s - -q -x *-hash:

* -h sha256 Samples/zip/example.zip -.

2. Provide the following SPARQL query through the standard input:
PREFIX nfo: <http://www.semanticdesktop.org/ontologies

/2007/03/22/nfo#>
SELECT * WHERE {

?image nfo:width ?width .
?image nfo:height ?height .

}
Listing 7.2: A test SPARQL query to obtain the properties of images

3. The application should produce these SPARQL XML results:
<?xml version="1.0" encoding="utf-8"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">

<head>
<variable name="image" />
<variable name="height" />
<variable name="width" />

</head>
<results>

<result>
<binding name="image">

<uri>ni:///sha-256;FrAhAufBERWjweVgm65W-
LxtbrApgClbV-SbFS36IiY?ct=image/png</uri>

</binding>
<binding name="height">

<literal datatype="http://www.w3.org/2001/XMLSchema
#integer">44</literal>

</binding>
<binding name="width">

<literal datatype="http://www.w3.org/2001/XMLSchema
#integer">144</literal>

</binding>
</result>

</results>
</sparql>

Listing 7.3: Test SPARQL XML results with the properties of images

The correctness of the result may be verified by comparing it to the graph
attached in section A.2.

This tests FR1.9 – Using SPARQL for search.

108



7.5.3 Extracting sub-files
1. Launch the application with the parameters describe -s - -q -x *-hash

:* -h sha256 Samples/zip/example.zip NUL.

2. Provide the following SPARQL query through the standard input:
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX schema: <http://schema.org/>
SELECT * WHERE {

?node dcterms:hasFormat/schema:encodingFormat <https://
w3id.org/uri4uri/mime/application/x.sig.head> .

BIND("-" AS ?path_format)
}

Listing 7.4: A test SPARQL query to extract a file in a particular format

3. The application should extract the file unk-binary.dat from the archive
and write it to the standard output, starting with the text HEAD.

This tests FR1.10 – Using SPARQL for extraction.

109



110



8. Evaluation
This chapter shows the usage of the application in practice on a large amount of
data, evaluates its results, shows various interesting examples and statistics, and
assesses the meeting of goals.

8.1 Preparation
The application was used to describe in detail the Windows 101 and Windows
112 installation media, downloaded as ISO files from Microsoft services.

The files were processed with the command-line parameters -x *-hash:* -i
*-hash:xxh64 -i image-hash:* -h xxh64 -r urn:uuid:, using the xxHash-
64 algorithm as the primary data hash.

The following table contains some basic information about the input files and
the output description serialization produced by the application:

Input Windows 10 Windows 11
File name Win10US x64.iso Win11 22H2 English-

International x64v1.
iso

File size 4.455 GiB 5.167 GiB
Downloaded on 2023-02-09 2023-02-09
SHA-1 hash b59cb70a1349cdee-

5c12ddd94558483e-
3938c216

8b3c9f859e3273ff-
ac425179e501eee1-
e4f9db95

Output Windows 10 Windows 11
Turtle size 17.579 MiB 17.864 MiB
Turtle size (GZip)3 1.469 MiB 1.503 MiB

Table 8.1: Properties of the input and ouput of the ap-
plication

8.2 Profiling and statistics
As a next step, the output graphs were loaded into a Virtuoso instance, to simplify
browsing and querying4.

The following table contains triple statistics for the two graphs:
1https://www.microsoft.com/software-download/windows10
2https://www.microsoft.com/software-download/windows11
3This corresponds to about 0.03 % of the input size.
4The results of the queries can be replicated here: https://cermakmarek.github.io/sfi/

example-queries.html.

111

https://www.microsoft.com/software-download/windows10
https://www.microsoft.com/software-download/windows11
https://cermakmarek.github.io/sfi/example-queries.html
https://cermakmarek.github.io/sfi/example-queries.html


Number of Windows 10 Windows 11
Triples 216138 220067
Distinct triples5 140839 140921
Unique triples6 98516 98598
Subjects 29529 29380
Unique subjects7 17752 17603

Table 8.2: Counts of entities in the output graphs of the
application

Since the -d parameter was not specified, the input files were described as unique
entities with randomly-generated UUIDs, identified using urn:uuid:21101c75-
83e7-4104-b7c4-f53fe44eb970 and urn:uuid:53e226e1-3a50-482a-98c3-15
463643c5d08, for Windows 10 and 11 respectively. The triples were loaded into
two named graphs identified by the same URIs.

The benefit of using RDF to describe the metadata becomes apparent from
the very first query that can be performed on the graphs, to count the number
of times a particular property-value pair appears on distinct resources, using the
following SPARQL query:

SELECT ?source ?property ?object ((COUNT(DISTINCT ?item)) AS ?
count)

WHERE {
VALUES ?graph {

id:65948b27-93be-4ace-9091-f2272525a6cd
id:b45785a7-e8bf-4428-8996-14caec7eaaed

}

GRAPH ?graph {
?graph nfo:fileName ?source .
?item ?property ?object .

}
}
GROUP BY ?source ?property ?object
HAVING (COUNT(DISTINCT ?item) > 4)
ORDER BY DESC(COUNT(DISTINCT ?item)) ASC(?source)

Listing 8.1: A SPARQL query that counts the number of distinct subjects for all
predicate-object pairs

With this single query, many profiling information can be derived from the
two graphs:

5Some triples may be duplicated on output in the non-buffered mode, such as triples for
duplicate files or file: path hierarchies.

6There were 42323 triples shared in both graphs.
7There were 11777 subjects shared in both graphs.
8In later queries, the prefix id: is defined as <urn:uuid:>.

112



Number of Windows 10 Windows 11
All files9 5706 5717
Directories10 781 776
Recognized media11 4732 4706
Binary content12 2376 2382
Text content13 1329 1301
XML content14 1099 1082
Executables15 656 668
Images16 628 623
Certificates17 320 351
Programs from Mi-
crosoft18

606 565

Table 8.3: Counts of various occurrences within the data

Another general-purpose query could be made to obtain the range of values and
average value of properties:

SELECT ?source ?property (MIN(?value) AS ?min) (AVG(IF(
isNumeric(?value),?value,"INF"ˆˆxsd:double)) AS ?avg) (MAX
(?value) AS ?max)

WHERE {
VALUES ?graph {

id:65948b27-93be-4ace-9091-f2272525a6cd
id:b45785a7-e8bf-4428-8996-14caec7eaaed

}

GRAPH ?graph {
?graph nfo:fileName ?source .
?item ?property ?value .

}
}
ORDER BY ?property ?source

Listing 8.2: A SPARQL query that produces the minimum, maximum value of
properties, and average value for numeric objects of properties

9a nfo:FileDataObject
10a nfo:Folder
11a schema:MediaObject
12a cnt:ContentAsBase64
13a cnt:ContentAsText
14a cnt:ContentAsXML
15a schema:SoftwareApplication
16a schema:ImageObject
17a cert:X509Certificate
18dcterms:creator "Microsoft Corporation"@en-us

113



Data Windows 10 Windows 11
Average file size19 1.9 MiB 2.19 MiB
Average media dimen-
sions20

60x33 73x36

Maximum media di-
mensions21

1366x800 1025x768

Earliest file creation
date22

2022-09-08T08:07:16Z 2022-09-
25T03:41:03.819Z

Earliest file modifica-
tion date23

2019-04-18T18:43:00Z 2022-05-04T17:34:00Z

Earliest certificate ex-
piration date24

2010-01-
22T22:34:55+01:00

2013-01-
10T21:32:25+01:00

Table 8.4: Properties of various occurrences within the
data

For all properties, counting the distinct values may also be informative:
SELECT ?source ?property ((COUNT(DISTINCT ?object)) AS ?count)
WHERE {

VALUES ?graph {
id:65948b27-93be-4ace-9091-f2272525a6cd
id:b45785a7-e8bf-4428-8996-14caec7eaaed

}

GRAPH ?graph {
?graph nfo:fileName ?source .
[] ?property ?object .

}
}
GROUP BY ?source ?property
ORDER BY DESC(COUNT(DISTINCT ?object)) ASC(?source)

Listing 8.3: A SPARQL query that counts the number of distinct objects for each
property

Number of Windows 10 Windows 11
Media types25 54 52
File names26 3524 3454
19nfo:fileSize, including the whole input file.
20nfo:widthxnfo:height
21nfo:widthxnfo:height
22nfo:fileCreated
23nfo:fileLastModified
24sec:expiration
25schema:encodingFormat
26nfo:fileName

114



Hashes27 5089 5045
Table 8.5: Properties of various occurrences within the
data

8.2.1 Observations
Based on the information collected earlier from general queries, we can make
several observations and formulate questions that might be of interest:

• There are two media types missing from the Windows 11 installation – what
are they?

• There are 28 text files missing from the Windows 11 installation compared
to Windows 10 – which of them are they?

• The number of programs from Microsoft is smaller than the number of
executables – which programs were not made by Microsoft?

• The total number of files is larger than the total number of text and binary
content – which files are duplicates?

Missing entities

The questions about missing files and media types might be answered both using
a single configurable SPARQL query:

SELECT ?source ?property ?object
WHERE {

VALUES (?graph_a ?graph_b) {
(id:65948b27-93be-4ace-9091-f2272525a6cd id:b45785a7-e8bf

-4428-8996-14caec7eaaed)
(id:b45785a7-e8bf-4428-8996-14caec7eaaed id:65948b27-93be-4

ace-9091-f2272525a6cd)
}
GRAPH ?graph_a {

?graph_a nfo:fileName ?source .
VALUES ?property {

nie:interpretedAs
schema:encodingFormat

}
[] ?property ?object .
FILTER NOT EXISTS {

GRAPH ?graph_b {
[] ?property ?object .

}
}

27at:digest

115



}
}
ORDER BY ?property ?object

Listing 8.4: A SPARQL query that lists the objects of properties nie:
interpretedAs and schema:encodingFormat that are missing from either graphs

Source Property Object
"Win10US x64.iso" schema:

encodingFormat
mime:application/x.
ns.switches+xml

"Win10US x64.iso" schema:
encodingFormat

mime:application/x.
sig.crim0

"Win10US x64.iso" schema:
encodingFormat

mime:application/x.
sig.crimt

"Win11 22H2
English-
International
x64v1.iso"

schema:
encodingFormat

mime:application/x.
sig.crimx

Table 8.6: The first 4 results of the query in Listing 8.4

This partially answers the questions already – one of the differences in media
types was caused only by misinterpreting the files with the CRIM signature, which
got mixed with the following byte, errorneously interpreted as an ASCII char-
acter. The other missing media type, application/x.ns.switches+xml, was
implied from the <Switches> root element of the XML document28, stored as an
embedded resource inside /sources/generaltel.dll29, as can be observed by
traversing alongside the relevant property paths. This DLL, described as “Gen-
eral Telemetry”, does have its equivalent in the Windows 11 graph30, but it lacks
the corresponding resource.

This query does not sufficiently answer the question of missing text files how-
ever, because the number of text files differing between the two graphs is too
large to compare. This can be improved by a more precise query:

SELECT ?source ?file
WHERE {

VALUES (?graph_a ?graph_b) {
(id:65948b27-93be-4ace-9091-f2272525a6cd id:b45785a7-e8bf

-4428-8996-14caec7eaaed)
}
GRAPH ?graph_a {

?graph_a nfo:fileName ?source .
?file nie:interpretedAs ?object .

28ni:///mh;4ucCCAW6xSlj0UwB?ct=application/xml
29ni:///mh;4ucCCBf7SPjkKnI0?ct=application/x-udf#/sources/generaltel.dll
30ni:///mh;4ucCCA1uFg5qaoIm?ct=application/x-udf#/sources/generaltel.dll

116



?file at:pathObject ?path .
?object a cnt:ContentAsText.
FILTER NOT EXISTS {

GRAPH ?graph_b {
{ [] nie:interpretedAs ?object . } UNION { [] at:

pathObject ?path . }
}

}
}

}
ORDER BY ?file

Listing 8.5: A SPARQL query that lists the files with textual content whose path
and content are missing from the other graph

This yields 86 files, which were neither updated nor moved unchanged in the
Windows 11 installation. After manual inspection, they were attributed to the
following differences:

• Microsoft-Windows-NetFx3-OnDemand-Package˜31bf3856ad364e35˜amd64˜
en-US˜.cab31 missing from /sources/sxs/.

• /sources/SetupDU_159931.spdx.json32 updated and renamed to Setup
DU 161400.spdx.json33.

• /sources/en-us/34 renamed to en-gb/35.

• Files removed from /sources/36.

• Several .manifest files in Cabinet archives37 either moved or deleted.

• Embedded resources inside two PresentationHostDll.dll.mui files38, both
of which are missing.

• /Html/FEEDBACKTOOL.XSL39 inside /sources/devinv.dll40, whose Win-
dows 11 version41 is missing the resource.

31ni:///mh;4ucCCBf7SPjkKnI0?ct=application/x-udf#/sources/sxs/
Microsoft-Windows-NetFx3-OnDemand-Package˜31bf3856ad364e35˜amd64˜en-US˜.cab

32ni:///mh;4ucCCBf7SPjkKnI0?ct=application/x-udf#/sources/SetupDU_159931.
spdx.json

33ni:///mh;4ucCCA1uFg5qaoIm?ct=application/x-udf#/sources/SetupDU_161400.
spdx.json

34ni:///mh;4ucCCBf7SPjkKnI0?ct=application/x-udf#/sources/en-us/
35ni:///mh;4ucCCA1uFg5qaoIm?ct=application/x-udf#/sources/en-gb/
36ni:///mh;4ucCCBf7SPjkKnI0?ct=application/x-udf#/sources/
37ni:///mh;4ucCCIu2-uLxmASs?ct=application/vnd.ms-cab-compressed, ni:

///mh;4ucCCMZZqDfMq1oq?ct=application/vnd.ms-cab-compressed, ni:///mh;4ucCCKO_
p5j6r9So?ct=application/vnd.ms-cab-compressed

38ni:///mh;4ucCCHYZqj8AoPDb?ct=application/vnd.microsoft.portable-executable,
ni:///mh;4ucCCMqLvAPoJ-7d?ct=application/vnd.microsoft.portable-executable

39ni:///mh;4ucCCPNMKWBmKcjm?ct=application/vnd.microsoft.portable-executable#
/Html/FEEDBACKTOOL.XSL

40ni:///mh;4ucCCPNMKWBmKcjm?ct=application/vnd.microsoft.portable-executable
41ni:///mh;4ucCCDHCeASx-2ps?ct=application/vnd.microsoft.portable-executable

117



Non-Microsoft executables

As could be seen from the profiling data, not all executable files were made by
"Microsoft Corporation"@en-us. It is, however, possible that there were other
variations of the literal:

SELECT DISTINCT ?exe ?creator
WHERE {

VALUES ?graph {
id:65948b27-93be-4ace-9091-f2272525a6cd
id:b45785a7-e8bf-4428-8996-14caec7eaaed

}
GRAPH ?graph {

?exe a schema:SoftwareApplication .
FILTER NOT EXISTS {

VALUES ?microsoft {
"Microsoft Corporation"@en-us
"Microsoft Corporation"@en-gb
"Microsoft Corporation"

}
?exe dcterms:creator ?microsoft .

}
OPTIONAL {

?exe dcterms:creator ?creator .
}

}
}

Listing 8.6: A SPARQL query that identifies applications not made by Microsoft

This yields 4 occurrences of PresentationCFFRasterizer.dll42 from Adobe
Systems Incorporated, a boot-related COM executable etfsboot.com43, and
everal other executables lacking any creator or description: imagelib.dll44,
setupdiag.exe45, hwreqchk.dll46, compatappraiserresources.dll47, and com-
patappraiserresources.dll.mui48.

Duplicates

Finding duplicates is just a matter of grouping files based on their content, since
pieces of content are identified solely by the stored byte sequence:

42ni:///mh;4ucCCMkU0Sp24U-5?ct=application/vnd.microsoft.portable-executable,
ni:///mh;4ucCCIEdWMtPZF5Y?ct=application/vnd.microsoft.portable-executable,
ni:///mh;4ucCCPS7VcMZPrUH?ct=application/vnd.microsoft.portable-executable,
ni:///mh;4ucCCCyg7xOUxZmS?ct=application/vnd.microsoft.portable-executable

43ni:///mh;4ucCCD8V4mkHRiiz?ct=application/x-dosexec
44ni:///mh;4ucCCGc1nrs3Y8mc?ct=application/vnd.microsoft.portable-executable
45ni:///mh;4ucCCOeJ-iXW7VyP?ct=application/vnd.microsoft.portable-executable,

ni:///mh;4ucCCBf7SPjkKnI0?ct=application/x-udf#/sources/setupdiag.exe
46ni:///mh;4ucCCDppzpHBiB1C?ct=application/vnd.microsoft.portable-executable
47ni:///mh;4ucCCDpURMyTF9Kg?ct=application/vnd.microsoft.portable-executable
48ni:///mh;4ucCCBVZGsPDxend?ct=application/vnd.microsoft.portable-executable

118



SELECT ?source (SUM(?count) AS ?total_count) (SUM(?size) AS ?
size)

WHERE {
{

SELECT ?source ((COUNT(?file)-1) AS ?count) ((SUM(?size)-
SAMPLE(?size)) AS ?size)

WHERE {
VALUES ?graph {

id:65948b27-93be-4ace-9091-f2272525a6cd
id:b45785a7-e8bf-4428-8996-14caec7eaaed

}

GRAPH ?graph {
?graph nfo:fileName ?source .
?file nie:interpretedAs ?content .
{ ?content a cnt:ContentAsText . } UNION { ?content a

cnt:ContentAsBase64 . }
?file nfo:fileSize ?size .

}
}
GROUP BY ?source ?content
HAVING (COUNT(?file) > 1)

}
}
GROUP BY ?source

Listing 8.7: A SPARQL query that counts the total number and size of duplicated
files

This query results in 81.8 MiB of duplicate data over 1234 files for Windows
10, and 56.4 MiB over 1274 files for Windows 11.

Multi-typed files

By navigating to the main content entity for Windows 1049 and Windows 1150,
it can be observed that the files are in two distinct formats simultaneously, ISO
and UDF, and as such contain two separate file systems, depending on what
kind format is requested to open. Furthermore, the Windows 11 installation
ISO contains a README.TXT51 file with the text “This disc contains a ”UDF” file
system and requires an operating system”, which is revealed to applications that
do not support UDF.

It is possible to find other similar files that have content that can be interpreted
in multiple formats:

SELECT ?source ?content
WHERE {

VALUES ?graph {
49ni:///mh;4ucCCBf7SPjkKnI0?ct=application/octet-stream
50ni:///mh;4ucCCA1uFg5qaoIm?ct=application/octet-stream
51ni:///mh;4ucCCN40EXLPpT9m?ct=text/plain

119



id:65948b27-93be-4ace-9091-f2272525a6cd
id:b45785a7-e8bf-4428-8996-14caec7eaaed

}
GRAPH ?graph {

?graph nfo:fileName ?source .
?content dcterms:hasFormat ?format .
FILTER NOT EXISTS {

# Ignore certificates, interpreted from executables
?format a cert:X509Certificate .

}
}

}
GROUP BY ?source ?content
HAVING (COUNT(?format) > 1)
ORDER BY DESC(COUNT(?format)) ASC(?source)

Listing 8.8: A SPARQL query that retrieves all pieces of content with multiple
formats

Aside from the two main files, the only files found by the query are six HTML
files, interpreted as both HTML and XML due to the similarity of the formats.

8.2.2 Benefits of RDF and SPARQL
As can be seen from the examples above, using RDF as the representation of
metadata and SPARQL as a querying language has several benefits:

• The data can be stored in a triple store, allowing one to browse, identify,
and link individual resources using any features supported by the triple
store.

• It is possible to write completely domain-agnostic queries that still provide
useful statistics, such as obtaining the number of distinct objects.

• More varied queries can be written easily, using only the relevant vocabu-
lary, and operating on multiple graphs at once.

• Differences in the data can be observed both on a large scale using special-
ized queries and on a small scale by navigating to individual resources and
exploring alongside property paths.

• All of the above is possible while working with graphs completely detached
from the original input files, taking less than 1 % of the original size.

8.3 Meeting goals
The primary goal of the application was stated to be capable of generating de-
scriptions of input files by identifying the formats they are in and extracting the
relevant metadata. As is evident from the above process, this goal was achieved
completely – the known formats are recognized in files, even multiple formats per

120



file, and they are analyzed to the depth, with metadata collected from every piece
of content and media that is encountered.

Several potential uses of the application were also outlined:

Exploration of file systems

Various kinds of file systems can be browsed and described by the application,
and the collective description allows for a range of interesting queries.

File input validation

While the intention of the application was not to collect data, only metadata,
and as such not all methods of validation may be performed through the RDF
description, it is nonetheless able to store many relevant properties of the data
and may thus be of use in at least some file validation situations.

Linking files from different data sources

While excluded from the specific evaluation scenario provided above, a wide va-
riety of hashes from files and data may be computed, allowing to find records of
them on external sites, such as those specialized in providing DLL files. Despite
the use of standardized URI schemes to produce the identifiers, identifiers other
than hashes have limited use for this purpose, since most file hosting sites use
their own proprietary way of identification.

Extraction of relevant files based on specific criteria

It is possible to write extraction queries similar to the one shown above that iden-
tify matching files using the ?node variable, or such a query could be constructed
from a given list of URIs for each entity.

The architecture of the application does not, however, allow one to extract
all entities potentially matched by too complex queries requiring links to other
entities in a single step, as the links may have already been purged from memory
in the non-buffered mode, or they may appear in the data too late, when an
entity has already been processed. This is, however, still possible to achieve in
two steps, i.e. to prepare a list of stable URIs from the RDF graph to identify
entities for extraction, and to provide that list via a SPARQL query that selects
the individual nodes52.

52This process is relatively straightforward, as is shown in section 6.1.2.

121



122



Conclusion
Working on this software has been a long and interesting journey, from starting
with a simple premise – to describe every file in RDF – and turning it into
something that could be considered a full-fledged framework or suite, able to
be used on its own as an extensible stand-alone application, or as a component
incorporated in a complex solution.

There were many complications that needed to be overcome in this process,
from designing the whole system and architecture and representing it in C#,
to facing the peculiarities of URI parsing in .NET, finding various bugs in dot-
NetRDF and working with its authors to resolve them, rescuing uri4uri to pre-
serve and enhance media type descriptions, and learning about the more obscure
formats and finding out how to use the varied libraries and APIs able to work
with them. However, overcoming each of these steps is what led to additional
knowledge and insight, invaluable in getting to the end of the journey.

While this is the end of the thesis, the real journey may never end, as more
and more formats and file encoding schemes get invented, and any perfect appli-
cation of this nature would have to be able to understand them all, to claim this
attribute.

Regardless of this practical impossibility to reach perfection, there are still
many other areas that could be improved – the ability to describe all data in
RDF and not just metadata, a more advanced SPARQL engine that could eval-
uate the queries alongside the inspection process, more varied output with more
properties from specialized vocabularies, additional useful heuristics for profil-
ing unrecognized textual and binary files, perhaps incorporating latest AI-based
technologies such as GPT, a user-friendly front-end to load the input and present
and analyze the output, or a more detailed and controllable plugin system.

There are a lot of features that could be added, some of which worthy of theses
on their own, but it is a great wish and hope of the author that this is not a task
solely for himself, and that thanks to the extensibility of the application in both
directions, others could improve it in any number of ways they see fit, not just
for the benefit of the potential users of the application, but for the benefit of the
whole RDF and Linked Data community, whose respect and admiration for was
what fueled this project from its inception.

123



124



Bibliography
[1] David Wood, Markus Lanthaler, and Richard Cyganiak. RDF 1.1 Con-

cepts and Abstract Syntax. W3C recommendation, W3C, February 2014.
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

[2] Steven Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C
recommendation, W3C, March 2013. https://www.w3.org/TR/2013/REC-
sparql11-query-20130321/.

[3] Dimitris Kontokostas and Holger Knublauch. Shapes Constraint
Language (SHACL). W3C recommendation, W3C, July 2017.
https://www.w3.org/TR/2017/REC-shacl-20170720/.

[4] Gavin Carothers and Eric Prud’hommeaux. RDF 1.1 Turtle. W3C rec-
ommendation, W3C, February 2014. https://www.w3.org/TR/2014/REC-
turtle-20140225/.

[5] Boris Motik, Bijan Parsia, and Peter Patel-Schneider. OWL 2 Web
Ontology Language Structural Specification and Functional-Style Syn-
tax (Second Edition). W3C recommendation, W3C, December 2012.
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/.

[6] ISO Central Secretary. Information technology — Universal coded character
set (UCS) identifiers. Standard ISO/IEC 10646:2020, International Organi-
zation for Standardization, Geneva, CH, December 2020.

[7] Yakov Shafranovich. Common Format and MIME Type for Comma-
Separated Values (CSV) Files. RFC 4180, October 2005.

[8] Jean Paoli, Michael Sperberg-McQueen, Eve Maler, François
Yergeau, and Tim Bray. Extensible Markup Language (XML)
1.0 (Fifth Edition). W3C recommendation, W3C, November 2008.
https://www.w3.org/TR/2008/REC-xml-20081126/.

[9] Steven Pemberton. XHTML™1.0 The Extensible HyperText Markup Lan-
guage (Second Edition). WD not longer in development, W3C, March 2018.
https://www.w3.org/TR/2018/SPSD-xhtml1-20180327/.

[10] Bogdan Brinza, Dirk Schulze, Amelia Bellamy-Royds, David Storey, Eric
Willigers, and Chris Lilley. Scalable Vector Graphics (SVG) 2. Candidate
recommendation, W3C, October 2018. https://www.w3.org/TR/2018/CR-
SVG2-20181004/.

[11] Marc Hadley, Anish Karmarkar, Martin Gudgin, Noah Mendelsohn, Jean-
Jacques Moreau, Yves Lafon, and Henrik Frystyk Nielsen. SOAP Version
1.2 Part 1: Messaging Framework (Second Edition). W3C recommenda-
tion, W3C, April 2007. https://www.w3.org/TR/2007/REC-soap12-part1-
20070427/.

125



[12] Zhi Wei Shuang and Daniel Burnett. Speech Synthesis Markup Lan-
guage (SSML) Version 1.1. W3C recommendation, W3C, September 2010.
https://www.w3.org/TR/2010/REC-speech-synthesis11-20100907/.

[13] Guus Schreiber and Fabien Gandon. RDF 1.1 XML Syntax. W3C recom-
mendation, W3C, February 2014. https://www.w3.org/TR/2014/REC-rdf-
syntax-grammar-20140225/.

[14] L. Peter Deutsch. GZIP file format specification version 4.3. RFC 1952, May
1996.

[15] Ned Freed, Dr. John C. Klensin, and Tony Hansen. Media Type Specifica-
tions and Registration Procedures. RFC 6838, January 2013.

[16] Ned Freed and Dr. Nathaniel S. Borenstein. Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types. RFC 2046, November 1996.

[17] Henrik Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim
Gettys, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616, June 1999.

[18] Dr. John C. Klensin. Simple Mail Transfer Protocol. RFC 5321, October
2008.

[19] Larry M Masinter. The ”data” URL scheme. RFC 2397, August 1998.

[20] Henry Thompson, Tim Bray, Andrew Layman, Richard Tobin, and Dave
Hollander. Namespaces in XML 1.0 (Third Edition). W3C recommen-
dation, W3C, December 2009. https://www.w3.org/TR/2009/REC-xml-
names-20091208/.

[21] Tim Berners-Lee, Roy T. Fielding, and Larry M Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986, January 2005.

[22] Murray Maloney, David Beech, Noah Mendelsohn, Henry Thompson, Sandy
Gao, and Michael Sperberg-McQueen. W3C XML Schema Definition Lan-
guage (XSD) 1.1 Part 1: Structures. W3C recommendation, W3C, April
2012. https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/.

[23] Eamonn Neylon, Tony Hammond, Herbert Van de Sompel, and Dr. Stuart
Weibel. The ”info” URI Scheme for Information Assets with Identifiers in
Public Namespaces. RFC 4452, April 2006.

[24] Tim Berners-Lee, Larry M Masinter, and Mark P. McCahill. Uniform Re-
source Locators (URL). RFC 1738, December 1994.

[25] File Transfer Protocol. RFC 959, October 1985.

[26] Matthew Kerwin. The ”file” URI Scheme. RFC 8089, February 2017.

[27] Sandro Hawke and Tim Kindberg. The ’tag’ URI Scheme. RFC 4151, Oc-
tober 2005.

126



[28] Peter Saint-Andre and Dr. John C. Klensin. Uniform Resource Names
(URNs). RFC 8141, April 2017.

[29] Martin J. Dürst and Michel Suignard. Internationalized Resource Identifiers
(IRIs). RFC 3987, January 2005.

[30] Stephen Farrell, Dirk Kutscher, Christian Dannewitz, Börje Ohlman, Ari
Keränen, and Phillip Hallam-Baker. Naming Things with Hashes. RFC
6920, April 2013.

[31] Eran Hammer-Lahav and Mark Nottingham. Defining Well-Known Uniform
Resource Identifiers (URIs). RFC 5785, April 2010.

[32] ISO Central Secretary. Information processing — Text and office systems —
Standard Generalized Markup Language (SGML). Standard ISO 8879:1986,
International Organization for Standardization, Geneva, CH, October 1986.

[33] ISO Central Secretary. Information technology — SGML support facil-
ities — Registration procedures for public text owner identifiers. Stan-
dard ISO/IEC 9070:1991, International Organization for Standardization,
Geneva, CH, April 1991.

[34] Norman Walsh, John Cowan, and Dr. Paul Grosso. A URN Namespace for
Public Identifiers. RFC 3151, August 2001.

[35] Paul J. Leach, Rich Salz, and Michael H. Mealling. A Universally Unique
IDentifier (UUID) URN Namespace. RFC 4122, July 2005.

[36] Ronald L. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, April
1992.

[37] Donald E. Eastlake 3rd and Paul Jones. US Secure Hash Algorithm 1
(SHA1). RFC 3174, September 2001.

[38] Michael H. Mealling. A URN Namespace of Object Identifiers. RFC 3001,
November 2000.

[39] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Housley, Stephen Farrell,
and David Cooper. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280, May 2008.

[40] Henry Thompson, Paul V. Biron, David Peterson, Michael Sperberg-
McQueen, Ashok Malhotra, and Sandy Gao. W3C XML Schema Definition
Language (XSD) 1.1 Part 2: Datatypes. W3C recommendation, W3C, April
2012. https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/.

[41] Gregg Kellogg, Dave Longley, and Pierre-Antoine Champin.
JSON-LD 1.1. W3C recommendation, W3C, July 2020.
https://www.w3.org/TR/2020/REC-json-ld11-20200716/.

[42] Dan Brickley and Ramanathan Guha. RDF Schema 1.1. W3C recommenda-
tion, W3C, February 2014. https://www.w3.org/TR/2014/REC-rdf-schema-
20140225/.

127



[43] Luigi Asprino, Enrico Daga, Aldo Gangemi, and Paul Mulholland. Knowl-
edge Graph Construction with a Façade: A Unified Method to Access Het-
erogeneous Data Sources on the Web. ACM Trans. Internet Technol., 2022.

[44] Enrico Daga, Luigi Asprino, Paul Mulholland, and Aldo Gangemi. Facade-
X: an opinionated approach to SPARQL anything. CoRR, abs/2106.02361,
2021.

[45] Tony Hansen and Donald E. Eastlake 3rd. US Secure Hash Algorithms (SHA
and SHA-based HMAC and HKDF). RFC 6234, May 2011.

[46] Steve Faulkner, Erika Doyle Navara, Silvia Pfeiffer, Ian Hickson, Robin
Berjon, Travis Leithead, and Theresa O’Connor. HTML5. W3C recom-
mendation, W3C, March 2018. https://www.w3.org/TR/2018/SPSD-html5-
20180327/.

[47] Richard Cyganiak and Leo Sauermann. Cool URIs for the Semantic Web.
W3C note, W3C, December 2008. https://www.w3.org/TR/2008/NOTE-
cooluris-20081203/.

[48] Paul C. Bryan, Kris Zyp, and Mark Nottingham. JavaScript Object Notation
(JSON) Pointer. RFC 6901, April 2013.

[49] Norman Walsh, Paul Grosso, Jonathan Marsh, and Eve Maler.
XPointer Framework. W3C recommendation, W3C, March 2003.
https://www.w3.org/TR/2003/REC-xptr-framework-20030325/.

[50] Carlos A. Velasco, Philip Ackermann, and Johannes Koch. Rep-
resenting Content in RDF 1.0. W3C note, W3C, February 2017.
https://www.w3.org/TR/2017/NOTE-Content-in-RDF10-20170202/.

[51] Chris Bizer. Semantic Web Publishing Vocabulary (SWP) User Man-
ual. Technical report, November 2006. http://wbsg.informatik.uni-
mannheim.de/bizer/wiqa/swp/SWP-UserManual.pdf.

[52] Richard Tobin. An RDF Schema for the XML Information Set. W3C note,
W3C, April 2001. https://www.w3.org/TR/2001/NOTE-xml-infoset-rdfs-
20010406.

[53] Simon Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC
4648, October 2006.

[54] Juan Benet and Manu Sporny. The Multihash Data Format. Internet-Draft
draft-multiformats-multihash-04, Internet Engineering Task Force, February
2022. Work in Progress.

[55] Joseph Reagle, Kelvin Yiu, David Solo, Frederick Hirsch, Donald East-
lake, Magnus Nyström, and Thomas Roessler. XML Signature Syntax
and Processing Version 1.1. W3C recommendation, W3C, April 2013.
https://www.w3.org/TR/2013/REC-xmldsig-core1-20130411/.

128



List of Figures

3.1 Use case UML diagram . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Example graph of nodes corresponding to an image in a directory 43
4.2 Example of a potential display of RDF file metadata . . . . . . . 59
4.3 Overview of the inspector object and its interactions . . . . . . . 60
4.4 Overview of several example analyzers . . . . . . . . . . . . . . . 61

5.1 File and directory types hierarchy . . . . . . . . . . . . . . . . . . 71
5.2 Archive types hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 File format types hierarchy . . . . . . . . . . . . . . . . . . . . . . 73
5.4 RDF term types hierarchy . . . . . . . . . . . . . . . . . . . . . . 73
5.5 URI formatter types hierarchy . . . . . . . . . . . . . . . . . . . . 74
5.6 Hash algorithm types hierarchy . . . . . . . . . . . . . . . . . . . 75
5.7 Linked node type . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.8 Linked node factory type . . . . . . . . . . . . . . . . . . . . . . . 76
5.9 Entity analyzer types hierarchy . . . . . . . . . . . . . . . . . . . 77

6.1 Overview of the web application . . . . . . . . . . . . . . . . . . . 101

129



130



List of Listings
1.1 The full URI syntax . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 The definition of at:digest . . . . . . . . . . . . . . . . . . . . . 45
4.2 The definitiond of at:pathObject and at:extensionObject . . . 45
4.3 Example file system hierarchy . . . . . . . . . . . . . . . . . . . . 46
4.4 Options to describe the file system root . . . . . . . . . . . . . . . 46
4.5 Properties of the root file and directory . . . . . . . . . . . . . . . 46
4.6 Example of a file node . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Other properties of a file node . . . . . . . . . . . . . . . . . . . . 47
4.8 Linking a file to its directory and contents . . . . . . . . . . . . . 47
4.9 Properties of a directory as a file . . . . . . . . . . . . . . . . . . 48
4.10 Properties of a directory as a container . . . . . . . . . . . . . . . 48
4.11 Example description of a text content with the characters hello

world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.12 Example description of a binary content with bytes 01-02 . . . . 49
4.13 Linking an MD5 hash node to a content . . . . . . . . . . . . . . 49
4.14 Example of the base properties of a media object . . . . . . . . . 50
4.15 Example image object description . . . . . . . . . . . . . . . . . . 50
4.16 Linking a thumbnail to an image object . . . . . . . . . . . . . . . 51
4.17 Linking hashes to an image object . . . . . . . . . . . . . . . . . . 51
4.18 EXIF properties on an image object . . . . . . . . . . . . . . . . . 51
4.19 Example audio object description . . . . . . . . . . . . . . . . . . 51
4.20 ID3 properties on an audio object . . . . . . . . . . . . . . . . . . 52
4.21 Example video object description . . . . . . . . . . . . . . . . . . 52
4.22 Example executable description . . . . . . . . . . . . . . . . . . . 53
4.23 Linking embedded resources to an executable object . . . . . . . . 53
4.24 Example archive object description . . . . . . . . . . . . . . . . . 53
4.25 Example XML content description . . . . . . . . . . . . . . . . . . 54
4.26 Example document description . . . . . . . . . . . . . . . . . . . 55
4.27 Example media object for the RIFF signature-based implied format 56
4.28 Suggested linking of an implied format and a real format . . . . . 56
4.29 Example media object for the sh interpreter-based implied format 56
4.30 Example media object for the {http://www.w3.org/2000/svg}

svg XML name-based implied format . . . . . . . . . . . . . . . . 56
4.31 Example JSON-LD encoding of invalid RDF literals . . . . . . . . 58
5.1 Initial idea of assigning a property of a node . . . . . . . . . . . . 77
5.2 Example of a static type with predefined RDF properties . . . . . 78
5.3 The IFormatObject interfaces . . . . . . . . . . . . . . . . . . . . 79
5.4 The IResultFactory interface and its use in IFormatObject . . . 79
5.5 The IPersistentKey interface . . . . . . . . . . . . . . . . . . . . 80
5.6 Behaviour of Uri in .NET . . . . . . . . . . . . . . . . . . . . . . 81
5.7 The EncodedUri class . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1 Parameters of the application . . . . . . . . . . . . . . . . . . . . 83
6.2 An example ASK query determining the presence of a PNG image 91
6.3 An example SEARCH query that retrieves the names of image files

and their dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 92

131



6.4 An example query that matches all entities; extracting them to the
“extracted” folder according to their name and extension . . . . . 92

6.5 An example query that matches all 256x256 images . . . . . . . . 93
6.6 An example of a custom data format component for text/uri-list 97
6.7 An example of a custom analyzer component for text/uri-list . 98
6.8 An example of a custom hash algorithm component using the

Murmur.Murmur32 class provided by an external library . . . . . . 98
6.9 An example of assignable and non-assignable properties . . . . . . 100
7.1 Example usage of MSTest . . . . . . . . . . . . . . . . . . . . . . 103
7.2 A test SPARQL query to obtain the properties of images . . . . . 108
7.3 Test SPARQL XML results with the properties of images . . . . . 108
7.4 A test SPARQL query to extract a file in a particular format . . . 109
8.1 A SPARQL query that counts the number of distinct subjects for

all predicate-object pairs . . . . . . . . . . . . . . . . . . . . . . . 112
8.2 A SPARQL query that produces the minimum, maximum value of

properties, and average value for numeric objects of properties . . 113
8.3 A SPARQL query that counts the number of distinct objects for

each property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4 A SPARQL query that lists the objects of properties nie:interpretedAs

and schema:encodingFormat that are missing from either graphs 115
8.5 A SPARQL query that lists the files with textual content whose

path and content are missing from the other graph . . . . . . . . 116
8.6 A SPARQL query that identifies applications not made by Microsoft118
8.7 A SPARQL query that counts the total number and size of dupli-

cated files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.8 A SPARQL query that retrieves all pieces of content with multiple

formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

132



List of Tables

6.1 All command-line options of the application . . . . . . . . . . . . 84

8.1 Properties of the input and ouput of the application . . . . . . . . 111
8.2 Counts of entities in the output graphs of the application . . . . . 112
8.3 Counts of various occurrences within the data . . . . . . . . . . . 113
8.4 Properties of various occurrences within the data . . . . . . . . . 114
8.5 Properties of various occurrences within the data . . . . . . . . . 115
8.6 The first 4 results of the query in Listing 8.4 . . . . . . . . . . . . 116

133



134



A. Attachments

A.1 Application source code
The source code of the application, as described in section 6.2, is located in the
/src directory in the attached ZIP file. It also corresponds to the tag v1.0 in the
GitHub repository at https://github.com/cermakmarek/SFI. Additionally, the
/docs directory stores the auto-generated structured documentation, replicated
at https://cermakmarek.github.io/sfi/docs/. The file /example.zip.ttl
is a copy of the code in section A.2.

A.2 Sample description of Samples/zip/example
.zip

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix schema: <http://schema.org/>.
@prefix nfo: <http://www.semanticdesktop.org/ontologies

/2007/03/22/nfo#>.
@prefix nie: <http://www.semanticdesktop.org/ontologies

/2007/01/19/nie#>.
@prefix skos: <http://www.w3.org/2004/02/skos/core#>.
@prefix cnt: <http://www.w3.org/2011/content#>.
@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix dt: <http://dbpedia.org/datatype/>.
@prefix sec: <https://w3id.org/security#>.
@prefix enc: <http://www.w3.org/2001/04/xmlenc#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

<data:application/octet-stream,HEAD%00%00%00%01>
dcterms:extent "8"ˆˆdt:byte;
dcterms:hasFormat <data:application/x.sig.head,HEAD

%00%00%00%01>;
a cnt:ContentAsBase64;
skos:prefLabel "binary data (8 B)"@en;
cnt:bytes "SEVBRAAAAAE="ˆˆxsd:base64Binary.

<data:application/x.sig.head,HEAD%00%00%00%01>
schema:encodingFormat <https://w3id.org/uri4uri/mime/

application/x.sig.head>;
a schema:MediaObject;
skos:prefLabel "HEAD object (8 B)"@en.

<file:///dir/example.png> at:pathObject <file:///example.png>.
<file:///example.png> at:extensionObject <https://w3id.org/

uri4uri/suffix/png>.

135

/src
v1.0
https://github.com/cermakmarek/SFI
/example.zip.ttl


<file:///unk-binary.dat> at:extensionObject <https://w3id.org/
uri4uri/suffix/dat>.

<file:///unk-textual.txt> at:extensionObject <https://w3id.org/
uri4uri/suffix/txt>.

<ni:///sha-256;407cJBH1yB2r5mCiqtajo3rs--u6kNttFkj8cdDXLQI?ct=
application/octet-stream>

at:digest <urn:sha256:276
UFBWZH3B8GHMKQ6EHC45Y2HLUL959MSW79NJZEZP23EPMFGQQ>;

dcterms:extent "3441"ˆˆdt:byte;
dcterms:hasFormat <ni:///sha-256;407cJBH1yB2r5mCiqtajo3rs--

u6kNttFkj8cdDXLQI?ct=application/zip>;
a cnt:ContentAsBase64;
skos:prefLabel "binary data (3.36 KiB)"@en.

<ni:///sha-256;407cJBH1yB2r5mCiqtajo3rs--u6kNttFkj8cdDXLQI?ct=
application/zip>

at:pathObject <file:///>;
schema:encodingFormat <https://w3id.org/uri4uri/mime/

application/zip>;
nie:interpretedAs <ni:///sha-256;407cJBH1yB2r5mCiqtajo3rs--

u6kNttFkj8cdDXLQI?ct=application/zip#/>;
a schema:MediaObject,

nfo:Archive;
skos:prefLabel "ZIP object (3.36 KiB)"@en.

<ni:///sha-256;407cJBH1yB2r5mCiqtajo3rs--u6kNttFkj8cdDXLQI?ct=
application/zip#/>

at:pathObject <file:///./>;
a nfo:Folder;
skos:prefLabel "/".

<ni:///sha-256;407cJBH1yB2r5mCiqtajo3rs--u6kNttFkj8cdDXLQI?ct=
application/zip#/dir>

at:pathObject <file:///dir>;
nie:interpretedAs <ni:///sha-256;407cJBH1yB2r5mCiqtajo3rs--

u6kNttFkj8cdDXLQI?ct=application/zip#/dir/>;
nfo:belongsToContainer <ni:///sha-256;407

cJBH1yB2r5mCiqtajo3rs--u6kNttFkj8cdDXLQI?ct=application/
zip#/>;

nfo:fileLastModified "2023-03-19T01:21:34.000000+01:00"ˆˆxsd:
dateTime;

nfo:fileName "dir";
a nfo:FileDataObject,

nfo:ArchiveItem;
skos:prefLabel "/dir".

136



<ni:///sha-256;407cJBH1yB2r5mCiqtajo3rs--u6kNttFkj8cdDXLQI?ct=
application/zip#/dir/>

at:pathObject <file:///dir/>;
a nfo:Folder;
skos:prefLabel "/dir/".

<ni:///sha-256;407cJBH1yB2r5mCiqtajo3rs--u6kNttFkj8cdDXLQI?ct=
application/zip#/dir/example.png>

at:pathObject <file:///dir/example.png>;
nie:interpretedAs <ni:///sha-256;FrAhAufBERWjweVgm65W-

LxtbrApgClbV-SbFS36IiY?ct=application/octet-stream>;
nfo:belongsToContainer <ni:///sha-256;407

cJBH1yB2r5mCiqtajo3rs--u6kNttFkj8cdDXLQI?ct=application/
zip#/dir/>;

nfo:fileLastModified "2023-03-19T01:21:34.000000+01:00"ˆˆxsd:
dateTime;

nfo:fileName "example.png";
nfo:fileSize 819 ;
a nfo:FileDataObject,

nfo:ArchiveItem;
skos:prefLabel "/dir/example.png".

<ni:///sha-256;407cJBH1yB2r5mCiqtajo3rs--u6kNttFkj8cdDXLQI?ct=
application/zip#/unk-binary.dat>

at:pathObject <file:///unk-binary.dat>;
nie:interpretedAs <data:application/octet-stream,HEAD

%00%00%00%01>;
nfo:belongsToContainer <ni:///sha-256;407

cJBH1yB2r5mCiqtajo3rs--u6kNttFkj8cdDXLQI?ct=application/
zip#/>;

nfo:fileLastModified "2023-03-19T01:20:34.000000+01:00"ˆˆxsd:
dateTime;

nfo:fileName "unk-binary.dat";
nfo:fileSize 8 ;
a nfo:FileDataObject,

nfo:ArchiveItem;
skos:prefLabel "/unk-binary.dat".

<ni:///sha-256;407cJBH1yB2r5mCiqtajo3rs--u6kNttFkj8cdDXLQI?ct=
application/zip#/unk-textual.txt>

at:pathObject <file:///unk-textual.txt>;
nie:interpretedAs <ni:///sha-256;YUt039MujchKe-

KG_6_Il2kbICwlZevbturkTmKvcoE?ct=text/plain>;
nfo:belongsToContainer <ni:///sha-256;407

cJBH1yB2r5mCiqtajo3rs--u6kNttFkj8cdDXLQI?ct=application/
zip#/>;

nfo:fileLastModified "2023-03-19T01:48:38.000000+01:00"ˆˆxsd:
dateTime;

137



nfo:fileName "unk-textual.txt";
nfo:fileSize 7481 ;
a nfo:FileDataObject,

nfo:ArchiveItem;
skos:prefLabel "/unk-textual.txt".

<ni:///sha-256;FrAhAufBERWjweVgm65W-LxtbrApgClbV-SbFS36IiY?ct=
application/octet-stream>

at:digest <urn:sha256:
NQR2ZAKKAVWCGGXUS3UND7MCU358X7ANDAQ6BF9CWPX4GNEPZGDQ>;

dcterms:extent "819"ˆˆdt:byte;
dcterms:hasFormat <ni:///sha-256;FrAhAufBERWjweVgm65W-

LxtbrApgClbV-SbFS36IiY?ct=image/png>;
a cnt:ContentAsBase64;
skos:prefLabel "binary data (819 B)"@en.

<ni:///sha-256;FrAhAufBERWjweVgm65W-LxtbrApgClbV-SbFS36IiY?ct=
image/png>

schema:encodingFormat <https://w3id.org/uri4uri/mime/image/
png>;

nfo:colorDepth 24 ;
nfo:height 44 ;
nfo:horizontalResolution 95.9866;
nfo:verticalResolution 95.9866;
nfo:width 144 ;
a schema:MediaObject,

schema:ImageObject,
nfo:Image;

skos:prefLabel
"PNG object (144x44)"@en,
"PNG object (819 B)"@en,
"PNG object (144x44, 8-bit)"@en.

<ni:///sha-256;YUt039MujchKe-KG_6_Il2kbICwlZevbturkTmKvcoE?ct=
text/plain>

at:digest <urn:sha256:
A8BE755MVD2GRSF5Z7APP7ZJ7RMNATTSSDJNLF8NC3J9WG9HB4QA>;

dcterms:extent "7481"ˆˆdt:byte;
nie:hasPart <ni:///sha-256;YUt039MujchKe-

KG_6_Il2kbICwlZevbturkTmKvcoE?ct=text/plain#line=,1>;
a cnt:ContentAsText;
skos:prefLabel "text (7.31 KiB)"@en;
cnt:characterEncoding "us-ascii".

<ni:///sha-256;YUt039MujchKe-KG_6_Il2kbICwlZevbturkTmKvcoE?ct=
text/plain#line=,1> rdf:value "[Header]".

138



<urn:sha256:276
UFBWZH3B8GHMKQ6EHC45Y2HLUL959MSW79NJZEZP23EPMFGQQ>

a sec:Digest;
sec:digestAlgorithm enc:sha256;
sec:digestValue "407cJBH1yB2r5mCiqtajo3rs++u6kNttFkj8cdDXLQI

="ˆˆxsd:base64Binary.

<urn:sha256:
A8BE755MVD2GRSF5Z7APP7ZJ7RMNATTSSDJNLF8NC3J9WG9HB4QA>

a sec:Digest;
sec:digestAlgorithm enc:sha256;
sec:digestValue "YUt039MujchKe+KG/6/Il2kbICwlZevbturkTmKvcoE

="ˆˆxsd:base64Binary.

<urn:sha256:
NQR2ZAKKAVWCGGXUS3UND7MCU358X7ANDAQ6BF9CWPX4GNEPZGDQ>

a sec:Digest;
sec:digestAlgorithm enc:sha256;
sec:digestValue "FrAhAufBERWjweVgm65W+LxtbrApgClbV+SbFS36IiY

="ˆˆxsd:base64Binary.

139



140


	Introduction
	Preliminaries
	Introduction to various file formats
	Classification
	Identification and registries

	Identifying entities on the web
	Uniform Resource Identifier
	Hash-based identification
	Public Identifiers
	Universally unique identifiers
	Object identifiers

	Linked data and RDF
	Basics of RDF
	From data to linked data


	Related works
	File analyzers
	PRONOM
	Extractor

	Metadata representation schemes
	NEPOMUK
	WinFS

	SPARQL Anything and Facade-X

	Analysis
	Target audience
	Requirements
	Functional requirements
	Non-functional requirements

	Use cases
	Obtaining a description of a file and its contents
	Searching through files based on their description
	Retrieving sub-files stored in a file
	Extending the analysis with custom plugins


	Design
	File format analysis
	Extension-based
	Signature-based
	Parsing-based
	Format conflicts
	Text files

	Describing file systems
	Choosing the data model and encoding
	Assigning identifiers to file system objects
	Choice of vocabularies
	Describing a file system
	Describing content
	Describing hashes
	Describing media objects
	Handling invalid data

	Interaction with output
	Storing RDF as file metadata
	Semantic file search
	Validation and processing
	Extraction of hashes

	Architecture
	Linked nodes
	Analyzers
	Formats
	Hash algorithms
	Application


	Implementation
	Execution environment
	Language and framework
	Choice of libraries
	Classes and interfaces
	Files and directories
	Archives
	File formats
	RDF terms
	URI formatters
	Hash algorithms
	Linked nodes
	Analyzers

	Challenges
	Using RDF vocabularies
	Type-introducing return values
	Caching temporary objects
	Adapting for the browser
	Circumventing automatic conversions of URIs
	Opening Cabinet archives
	Forking the XML reader


	Documentation
	User documentation
	Configuring components
	Using SPARQL

	Programmer documentation
	SFI
	SFI.Accessories
	SFI.BaseFormats
	SFI.ExternalFormats
	SFI.MediaAnalysis
	SFI.Windows
	SFI.Application
	SFI.ConsoleApp
	SFI.WebApp
	SFI.SamplePlugin
	SFI.Tests

	Extender documentation
	Loading plugins
	Configurable components

	Administrator documentation

	Tests
	MSTest
	Unit testing
	Component testing
	Mocks

	Output testing
	telparia.com

	Manual testing
	Obtaining a description of a file
	Searching in files
	Extracting sub-files


	Evaluation
	Preparation
	Profiling and statistics
	Observations
	Benefits of RDF and SPARQL

	Meeting goals

	Conclusion
	Bibliography
	List of Figures
	List of Listings
	List of Tables
	Attachments
	Application source code
	Sample description of Samples/zip/example.zip


