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1. Introduction
With the rise in the use of computers in every sphere of our lives, every business,
government entity or citizen began to produce and collect a huge number of
data. To put this huge amount into perspective, let’s have a look at some facts.
Between 1986 and 2007, digital storage grew 23% annually. By the time you
finish reading this sentence, Google has probably processed over 100 thousand
searches. Amazon stores approximately one exabyte of historical purchase data
which is used for estimating future purchase needs [8].

With all this data over the years, everyone has been struggling with one
problem: how to store data effectively? There have been many approaches to
this problem and at first, they were probably sufficient. But it was most likely
out of everybody’s imagination how much it was going to grow in the recent
years. And as a response, businesses started to make their already complicated
data models even more complex. One extension after another, until they realized
that their data storage is so complicated that they actually had no idea what is
related to what. If you joined a bank in 70s and became a database architect,
the chances are high that you are already retired and a huge portion of your
knowledge left the institution with you. But the bank cannot just throw all your
work away when you leave.

While there is no change and everything works, it is still alright. But then,
data incidents happen. Invalid data in table XYZ. Nobody knows what is stored
in table XYZ created 20 years ago, there is insufficient documentation and its
name is also not very specific. The only way to find out is to have someone nav-
igate the data ecosystem for a couple of days and then you figure out that the
system that was producing data and stored them into the table had its firmware
updated and used a different data format. Good news, you have found the prob-
lem and can fix this issue quite cheaply. All it cost you was a few days of work
and an easy fix - this time you were lucky. But as the system grows, more and
more incidents come across.

One day, your boss calls you and tells you that the predictions you made for
the next fiscal quartal seem odd and asks you to perform a data quality check.
But since you used seventeen tables in your prediction, you have to examine data
origin and validity of all tables. In a large data environment, navigating to all
sources of data for every table can take days, weeks, or even months. And you
cannot simply skip it, because important business decisions are often based on
data. If you have wrong business-impacting data, your decisions are most likely
going to be wrong and that could have a serious impact on your business.

Same problems are dealt with by government entities. With each country
having millions or tens-of-millions inhabitants, e-government solutions have to
deal with huge amount of data. Data privacy must be ensured, too, to guarantee
that unauthorized persons can not access your medical history or to make sure
that your pension is not paid to someone else by accident through an error in
data pipeline.

So what can be done to reduce data incidents, increase data transparency
and improve data governance? To make navigation across the data solution
(e.g. a data lake) easier, companies often decide to use data cataloging tools,
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for example, Infogix’s Data360, Informatica’s Enterprise Data Catalog or IBM’s
Watson Knowledge Catalog. A data catalog tool automates the discovery of data
sources throughout an enterprise’s systems [25].

Having data catalogs certainly makes sense, but these tools do not tell you
where did your data originate. For this, we need to create data lineage. Data
lineage is generally defined as a kind of data life cycle that includes the data’s
origins and where it moves over time. It can help with efforts to analyze how
information is used and to track key bits of information that serve a particu-
lar purpose [4]. Over the past few years, several companies managed to create
their own data lineage solutions, one of which is the Czech-American company
MANTA.

Starting as a project of the Czech software house Profinit , MANTA quickly
became a separate company, selling its own product, MANTA Flow. MANTA
Flow is a complex solution which is able to analyze data lineage in over 40 dif-
ferent technologies from the fields of data modeling and integration, business
intelligence, databases or programming languages, one of them being the Python
scanner, which is currently released as a prototype scanner. Covering a wide va-
riety of technologies and having an ability to integrate well with data cataloging
solutions, such as Collibra Data Governance Center or Alation Data Catalog, it
gains a lot of popularity among the enterprise-level customers.

1.1 Goals
The goal of this thesis project was to extend the MANTA’s Python scanner
with additional functionality which would enable the scanner to analyze and
find data flows in Python source code using features of the PySpark library and
Object-relational mapping (ORM). Since the PySpark library is too complex to
be supported completely, the scope of the support is reduced to the ’prototype’
level - supporting elementary data-modifying and I/O operations is sufficient.
Similar applies for ORM technology, where it is important to design such ORM
support, that it is possible to reuse it for specific implementations for various
libraries in the future.

The list of specific goals includes:

1. Analyze the Apache PySpark technology and understand the key concepts
it uses.

2. Design and implement a new PySpark plugin for the Python scanner which
will support elementary data-modifying and I/O operations.

3. Analyze the usage of ORM in Python and design a universal solution for
its data lineage analysis in the Python scanner.

1.2 Glossary
Let us define some important terms that are often used in the whole text.

Data lineage is a representation of data relations between objects. It usually
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maps the lifecycle of data, which means, that the reader of the representation
should be able to find out where the data originates from, how it is used and
modified during its life cycle and where it ends up. A visualization is usually a
graph, but other representations can be used as well.

A data flow is a relation between two objects where one object provides the
data and the other object consumes the provided data.

A flow information, in the context of symbolic analysis, is a location-specific
representation of a piece of information obtained during the symbolic analysis of
a programming language. It can be anything, like a string constant, a column of
an SQL table which is loaded, or an item in a Python’s dict object.

Static analysis is an automated analysis of source code which is performed with-
out executing the code itself.

A caller is a language object (Python module, class or function) which invokes
another object.

A callee is a language object (Python module, class or function) which is in-
voked by another object.

A MANTA scanner is a component of the MANTA Flow platform which is capa-
ble of performing data lineage analysis for a specific technology, such as a concrete
DBMS, ETL tool, or a programming language.

A scanner plugin is a module of a programming language scanner which is respon-
sible for a custom handling of some library functionality, without the simulation
of the source code. This is common for specific functions interacting with other
resources, like functions which perform file reads and writes, interactions with
the database or printing to a console.

A propagation mode is a manual definition of the data flow handling of a cer-
tain function invocation. It specifies how function invocation input data flows
shall be processed and propagated into the function invocation output data flows.

Deduction in the context of data lineage analysis is an information-inferring pro-
cess from the surrounding code. It is used when the exact data model is not
clearly defined in the source code. However, it is possible to get more informa-
tion about the model indirectly, such as when pieces of the model are referenced
in other operations. For example, when a specific column is queried over the
result of a select query, it is reasonable to deduce that the selected column was a
part of the result of the query.

1.3 Outline
At the beginning of this work, in Chapter 2, Data Lineage Analysis for Python,
we briefly introduce MANTA Flow, the company’s tool for data lineage analysis,
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explain how it is extended to support more technologies, and discuss why is data
lineage of programming languages important in the current world of data. In the
end of the chapter, we explain how does the Python scanner work in a step-by-step
manner, explaining what is happening and why it is necessary.

Chapter 3, named PySpark, introduces the PySpark technology, its relation to
Apache Spark and describes its key modules. It then discusses how PySpark SQL
module works - its data structures, actions and transformations, and metadata
management in relation to data sources, sessions, and catalogs.

Chapter 4, Object–relational mapping1, explains what ORM is, why it is useful
and what are its advantages and disadvantages. Then, we proceed to describe
how ORM works in practice, demonstrated on the SQLAlchemy ORM technology.

Chapter 5, Analysis, first defines the scope of the work based on the de-
scription of PySpark and ORM technologies, and then focuses on identifying all
features necessary for supporting the mentioned technologies in the scope defined
at the beginning of the chapter.

Chapter 6, Design, discusses the design of solutions to problems and fea-
tures introduced in Chapter 5. It provides a detailed technical design that’s
implementation would result in the Python scanner’s support for PySpark and
SQLAlchemy ORM technologies in the defined scope.

Then, in Chapter 7, Implementation, we describe how individual features were
implemented and highlight important implementation details worth mentioning.

Chapter 8, Evaluation, demonstrates the functionality of implemented fea-
tures on several examples and discusses limitations of the implementation.

Lastly, Chapter 9, Conclusion, summarizes this work and compares the origi-
nal goals of this work with the actual output.

There is also Section A, Attachments, at the end of this work which contains a
short user documentation and describes the content of the attachment distributed
with this work.

1Often abbreviated in this work as ORM.
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2. Data Lineage Analysis for
Python
Before we get to the main subject of this work, we first need to explain how
MANTA works in general, why there even is a need to scan data lineage in
Python source code and how it actually works.

2.1 MANTA Flow
As mentioned earlier, MANTA’s flagship solution, named MANTA Flow, is a
platform for automated data lineage analysis. It helps users to visualize their
data pipeline, resulting in easier data governance, improved data quality and
faster data incident resolution. The key feature of the solution is automation,
thanks to which the solution from MANTA is able to perform the data lineage
analysis in a couple of hours, or a couple of days for huge environments.

Because every technology stores data in a different way, having a different
metadata structure, a new MANTA scanner must be produced for every sup-
ported technology. It is obvious that it is impossible to use the same approach
for the extraction and the analysis of metadata from a DBMS, such as MS SQL
or Oracle, and a BI tool, like PowerBI or Tableau.

Thanks to the well-designed MANTA Flow platform, the company is capable
of abstracting the main concepts present in every technology and quickly develop
new scanners according to the market needs - MANTA currently supports auto-
mated data lineage analysis for over 40 main technologies in the data pipeline -
databases, data integration and modeling, or reporting and BI.

Every data lineage scanner has got the same high-level design - it consists of
two main components, which are:

1. Connector which contains two main parts:

(a) Extractor which extracts all inputs needed for the dataflow analysis
from the server or other location, collecting all this information in a
single location.

(b) Reader which resolves scanner’s inputs and creates their general mo-
del to be used for dataflow generation.

2. Dataflow Generator which analyses the reader output to create a data
lineage graph which the user sees.

One might think that this is pretty much everything that is needed in the
industry, but the fact is that to scan the whole customer environment, it is
necessary to expand MANTA into new, and sometimes unknown areas, such
as the analysis of programming languages.
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2.2 Data Lineage in Programming Languages
It has become more common over time that technologies allow users to define their
behavior by writing source code instead of using the user interface. For example,
you can write procedures in C# in MS SQL, define JavaScript functions in Google
BigQuery, or notebooks and jobs in Databricks can be written in Python, R, or
Scala. This code, even though it is often very short, is very likely to create data
flows which need to be analyzed and visualized together with data lineage of other
technologies which use a much simpler approach.

2.2.1 Role of programming languages in data pipeline
There are many cases when MANTA Flow skips a part of data lineage analysis
because it requires analysis of a source code and this may lead to certain incon-
sistencies in the resulting lineage graph. However, if the tool was able to allow
other scanners to use the programming language scanners for the analysis of the
source code embedded in other technologies, customers could be offered with a
useful and unique feature that others could not deliver. Additionally, pieces of
code do not have to be necessarily embedded in other technologies, they can be
standalone programs executed as a cron job, or deployed on some third-party
platform, like AWS Glue.

Static analysis of programming languages, which is also used in the Python
scanner, is no easy job and even though there are several approaches which seem
to work, there is no existing solution with the focus on data lineage. While
the first phase of the static analysis, parsing (lexical and syntactic analysis), is
relatively easy for programming languages due to a well-defined syntax, it is a
major problem to perform the semantic analysis - understanding what the parsed
code actually does and how it affects data. If we, for example, assign a value to a
variable: my variable = 5+5, it (usually) has got no impact for the data lineage
and can be ignored - there is no data used from any data source (only numeric
constants are used).

However, if we are loading some data from table A and writing this data to
table B, we need to be able to recognize it and visualize it in the resulting data
lineage graph by showing that data in table B originates in table A. For this and
many other reasons, MANTA partners with Faculty of Mathematics and Physics
of Charles University in Prague to conduct a research aiming to develop a working
solution for static analysis of programming languages.

2.2.2 A happy day use case
To help you understand the context even better, let’s see an example use case for
the scanner and its value if everything works well, as illustrated in Figure 2.1.
Imagine that you have a data pipeline consisting of four main components - a
database and a transformation script which saves transformed data from the
database into file(s). These files are then loaded into a BI tool, e.g. Qlik Sense
or PowerBI.

Everything works perfectly until somebody in your large company makes some
changes in the data transformation pipeline without letting anyone know and,
suddenly, visualizations of data in your BI tool start showing weird data or stop
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Figure 2.1: Without the Python scanner, you would not know how database and
files are related (or you would not know there is any connection at all).

working completely. What would you do? If you combine tens of tables in your BI
tool, finding the root of the problem can take several days. Luckily, you scanned
your data pipeline using MANTA Flow before, and have the data lineage from
the time when everything worked, as seen in Figure 2.2.

Figure 2.2: A simple data lineage visualization of 4 technologies (left to right:
MS SQL, Python, Filesystem, Qlik Sense).

With MANTA Flow, all you need to do is run another scan of your pipeline
and compare the before and after graphs (see Figure 2.3).

Figure 2.3: Comparison of two data lineage scans in MANTA. Red nodes are the
nodes and edges which were removed, green are the new ones.

Luckily, you can see the problem easily - somebody changed the database
columns which are stored in files and that is why your BI tool was suddenly
making no sense. All you need to do in order to fix the problem is to get the
problematic Python script back to its original state. Thanks to the fact that it
was known how data in files is related to the database, it was possible to discover
the issue in the matter of tens of minutes instead of a very long and tedious
manual analysis of the whole pipeline [3].

2.2.3 Analyzing a programming language source code
It is very important to understand the whole process of the data lineage analy-
sis for programming languages, how we start with just a couple of source code
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files at the beginning and end up with their data lineage graph, before we can
continue with the analysis and solution of more complex problems of this work.
Let’s briefly have a look at the workflow of data lineage analysis of a program-
ming language. Excluding the COBOL scanner, which uses a different approach,
MANTA currently develops three programming language scanners (for Java, C#
and Python) which have similar workflow and we can abstract the way they all
work. The sequence of individual steps can be seen in Figure 2.4.

Figure 2.4: A simplified workflow of a programming language scanner.

Steps from the extraction of the source code until the analysis itself are per-
formed in the Connector component, the creation of the resulting graph is done
in the Dataflow Generator, which is shared among all three programming lan-
guage scanners, and visualization is taken care of by the MANTA platform and
its universal Visualizer component.

Extract the code

Before the analysis can begin, the scanner first needs to collect all input program
code in some location. This step is called the extraction. Typically, two sets
of input program codes are needed: application and libraries. Application is
the source code provided by the user (the source code they have written and
that’s data lineage they want to see) and libraries is the source code used in the
application, but the user did not write it, usually, these are publicly available
libraries and Python built-in library.

Of course, the main focus is on finding out what the analyzed application
does, and not really what does the implementation of libraries. However, it is
essential to know which library functions are used - if the scanner sees that a
print() function is called - is it the Python’s native print into the console, or
is the print() function of some other library performing a completely irrelevant
action? For this reason, libraries have to be extracted and included in the analysis
as well.

Process the input

Once all the input program code is collected, it needs to be loaded into the
memory. There are countless ways to parse and process source code - if there is
some Java code, it can be compiled and the output compiled code processed, the
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source code can be parsed using own parser and grammar, or, in case of Python,
an interpreter can be used to prepare a parse tree of the script and use that. For
each programming language, the optimal solution is different and it needs to be
chosen carefully to avoid as many potential problems as possible.

In case of the Python scanner, though, the path to parse the code on its own
was chosen. The main reason behind this is the control of how the output would
be represented, allowing a precise tailoring of representing data structures to the
need of other components. This includes, for example, removal of syntactic sugar
(instead of ’a’ + ’b’, an equivalent expression ’a’. add (’b’) is used), sim-
plifying expressions or adding implicit code constructs (instead of ’a’ ’b’, the
scanner creates ’a’. add (’b’), adding the implicitly invoked concatenation
function of string objects). On the other hand, one of the negatives is that the
parser is not automatically compatible with all versions, but needs to be reviewed
with every new version of the language, and a lot of source code which needs to
be maintained.

Construct call graph

The next thing that needs to be done before the analysis can start is the compu-
tation of the call graph. The call graph captures dependencies between individual
functions. If the analysis scope counts hundreds or thousands of files and func-
tions, it is not always easy to determine which function is actually called. If we
create a structure which can tell us quickly which are the functions that can be
invoked in the current context, we can save a lot of computation time. This can
be pre-computed at the beginning because function callers and callees do not
change during the analysis.

The same stands for imported modules which contain functions that could be
invoked and these imports do not change. Therefore, the component constructing
the call graph must be able to resolve imports because it is very common that
functions invoked are from various modules. If this information is lost, a gigantic
amount of knowledge is gone.

Compute aliases

Step number four is to traverse the input program code and compute aliases.
It is important to figure out which expressions reference the same data flow,
allowing the scanner to correctly assign and, later during the symbolic analysis,
to propagate data flows, even if we only one of the aliases is known. If we consider
the following example:

a = 5 # a aliases value 5
b = a # variable b aliases value 5 as well

From the analysis of the assignment statements it can be determined, without
knowing the context, that when the variable b is used, it is the same as using
the variable a. A traversal of the assignment statements in the input program
code representation can help with computing aliases per different parts of code
- functions, classes, or modules. Again, aliases are context-insensitive (therefore,
the exact variable value is not stored, it is just noted that a is the same thing as
b and this information can be used for the given part of code.
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Run the analysis

When all context-insensitive tasks are done, the actual symbolic analysis can
commence. Performing symbolic analysis means that the input source code is
analyzed, without actually being run. However, it loses some precision in cases
when a runtime value is provided. A good example are control statements. Let’s
have this if-statement:

option = input(’Choose output destination: ’)
if option == ’file’:

# write data into a file
else:

# write data into the database

If the program was analyzed at runtime, it would be known what is the value of
the option variable. However, in static analysis, it can only be guessed. To avoid
missing the correct option, it must be assumed that both options are correct.
Thus splitting the execution into two branches - one branch counts with the fact
that the option == ’file’ condition was fulfilled, and the other one pretends
that it was not.

Typically, an execution of a program has some entry point - a function or a
file which is executed (for example, the main() function in Java, or the Python
module which is ran by the interpreter). This is where the execution starts and
whence all invocations, branching and operations need to be computed.

During the analysis, all objects (in case of Python, these are modules, classes,
and functions) which need to be analyzed are placed in a worklist (an enhanced
queue). Objects in the worklist are those which are reachable from the entry
point (by invocation in the source code). The analysis uses Invocation context
which is the context of the program at the point in the source code where the
function was invoked. Because contexts can differ, for example due to branching
at conditionals and other language constructs, the analysis must compute flow
summary for every context. The flow summary of an executable (module, class,
function) is the flow information computed over the object across all contexts.
If a flow summary for an executable changes, all its callers and callees must be
added into the worklist again, because their flow summaries may be affected.

The analysis runs in a loop while the worklist is not empty. At that moment,
the analysis ends because there is nothing new to be computed anymore and the
results are transformed to be used by the Dataflow Generator.

An obvious question you might be asking now is - the number of options
and possible execution branches is huge, can the analysis ever finish? Well, yes
and no. In order to get a relatively accurate output in a reasonable time, some
approximations have to be used which would not reduce the correctness of the
analysis - for example, the scanner does not simulate the execution of library
function, but instead, it contains propagation modes for the important library
functions which handle data flows in a special way (specific for every function),
without a need to simulate their body.

If these modifications are implemented correctly, the analysis finishes in a
relatively short time with a reasonable overapproximation of the resulting graph
(that is, there are some false positives, e.g. some incorrect data flows, but all ac-
tual flows are present). However, only explicitly specified flows can be tracked and
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what is not in the user source code, or specifically implemented in a propagation
mode, as if did not exist at all.

Create the resulting graph

The last step before a data lineage graph is ready to be visualized is, as mentioned
earlier, to transform the output of the static analysis into a standard MANTA
graph. During the analysis itself, it makes no sense to represent the data as graph
because different contexts produce different nodes and edges which sometimes
turn out to be worthless in terms of data lineage.

Instead of adding nodes and later removing them, all context data is kept in
separate data structures which are easy to work with and are only transformed
into the graph at the end, adding nodes and edges only for those data flows which
are interesting for the user (file and database streams, console input/output etc.).
Creation of the graph is done via the common Dataflow Generator for all three
programming language scanners because the output of the Connector can be
abstracted into a form which does not require any language-specific logic anymore.

Visualize data lineage

Allowing the user to see data lineage is taken care of by the MANTA Visualizer.
It is a component which visualizes graphs from different scanners and creates a
complete picture of the data lineage for the user.

When compared to MANTA graphs of other scanners, it is clear that program-
ming language graphs are way smaller. The reason behind this is very simple -
if every step of the program was visualized, with all the branching and all con-
text options, there would be an incomprehensible graph in the end which would
provide no value to users. Users would only be capable of reading it if they
contracted inner nodes and saw a smaller graph. This raises a question - is the
big graph even needed, or is it enough to only show those points in the program
which interact with external resources, as shown in Figure 2.5?

Figure 2.5: Relevant parts of a programming language data lineage graph.

More compact graphs make sense - only the ‘entry points’ flowing into/from
the given program point are visualized. For a user, it is not very useful to see
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that you initialize a variable with a value 5 on line 427, if the variable plays no
role in terms of data lineage. What is more valuable in the world of data lineage
is seeing that the Python program loads data from table xyz, processes it inside
(without visualizing exactly how), and writes the output into a CSV file - the
user knows that the source of the CSV file’s data is in the table xyz, perhaps
with some modifications. If the CSV file is then used to load data into a BI tool,
the user will see the relation between the BI tool data and the table xyz which
would otherwise be unknown had the Python scanner not been used.

Below, in Figure 2.6, you can find an example of how the data lineage looks if
the data is loaded from a database and printed to a console. Note that in some
cases, the exact column name or index are unknown during the analysis since
the code is not run — in such cases, it may need to be claimed that there are
some columns used, but the scanner was unable to enumerate them all (only the
program code is analyzed, not SQL queries or content of read/written files). The
green node is the output of the MANTA’s MS SQL scanner and yellow nodes are
from the Python scanner.

Figure 2.6: A visualization of a Python program data flows loading data from a
database and printing different subsets of the SQL query result to the console.
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3. PySpark
In this chapter, we are going to introduce the PySpark library, its features and
key concepts. Because the library is of significant size, we are going to focus on
those parts of the library which are relevant to the rest of this work.

Thanks to Python’s easy-to-use syntax and ability to write simple programs
in a matter of minutes and many big data libraries available, the language is
often a go-to option when data scientists or developers need to write scripts for
processing data. According to the JetBrains Python Developers Survey 2021 [18],
more than half of Python developers use it for Data Analysis, making it its number
one purpose. Indeed, when we have a look at all available libraries, we can find
libraries for:

• computation in distributed systems, e.g. PySpark,

• simple data manipulation and representation, e.g. Pandas,

• representing complex mathematical structures, e.g. NumPy,

• plotting, e.g. matplotlib, or,

• machine learning and artificial intelligence, e.g. TensorFlow.

In the world of big data, the number one Python library is PySpark [18].
Approximately one in nine developers uses this library, and, when combined with
other Apache’s products, such as Kafka, Hadoop, and Hive, they dominate the
sector.

When we compare PySpark to other data science libraries, we can observe
that the ability to easily utilize distributed computation distinguishes it from its
competitors, such as Pandas.

3.1 Overview
PySpark is a Python interface for Apache Spark. It not only allows users to
write Spark applications using Python APIs, but also provides the PySpark shell
for interactively analyzing data in a distributed environment. PySpark supports
most of Spark’s features such as Spark SQL, DataFrame API, Streaming, MLlib
(Machine Learning) and Spark Core [17], as illustrated in Figure 3.1.

At a high level, every Spark application consists of a driver program that runs
the user’s main function and executes various parallel operations on a cluster. The
main abstraction that Spark provides is a resilient distributed dataset (RDD),
which is a collection of elements partitioned across the nodes of the cluster that
can be operated on in parallel. RDDs are created by starting with a file in the
Hadoop file system (or any other Hadoop-supported file system), or an existing
Scala collection in the driver program, and transforming it. Users may also ask
Spark to persist an RDD in memory, allowing it to be reused efficiently across
parallel operations. Finally, RDDs automatically recover from node failures [19].

The main use case for PySpark is, as described above, to perform high-
performance computing over various datasets. The secret ingredient in PySpark’s
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Figure 3.1: Overview of the Spark architecture. Source: Apache PySpark docu-
mentation.

favor is the fact that the data structures used for representing data in (Py)Spark
can be distributed across several machines and the system can, therefore, process
even the largest tables easily. Distributed computing is done on the background,
which means, that after some setup, users do not have to deal with problems of
distributed computing by themselves at all.

3.2 Spark Streaming
Spark Streaming extends the core Spark API with capabilities of a scalable, high-
throughput, fault-tolerant stream processing of live data streams. It allows load-
ing data from various sources, such as Kafka, Kinesis, or TCP sockets. Addition-
ally, it can process the data using complex algorithms expressed with high-level
functions like map, reduce, join and window. The processed data can be stored
into filesystems, databases, and live dashboards [22]. The workflow can be seen
in Figure 3.2.

Figure 3.2: Visualization of the Spark Streaming workflow. Source: Apache Spark
documentation.

We can demonstrate how it can be used on a very simple use case from the
Spark’s documentation [22], as shown in Figure 3.3.
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1 from pyspark import SparkContext
2 from pyspark.streaming import StreamingContext
3
4 sc = SparkContext("local[2]", "NetworkWordCount")
5 ssc = StreamingContext(sc, 1)
6 lines = ssc.socketTextStream("localhost", 9999)
7
8 words = lines.flatMap(lambda line: line.split(" "))
9 pairs = words.map(lambda word: (word, 1))

10 wordCounts = pairs.reduceByKey(lambda x, y: x + y)
11
12 wordCounts.pprint()
13
14 ssc.start()
15 ssc.awaitTermination()

Figure 3.3: A simple program using the Spark streaming functionality. Copied
from PySpark documentation [22].

In this example, a new context with two execution threads is created (line
4), then, the batch interval is set to one second (line 5). After the setup, a data
stream from a TCP source at localhost:9999 is created. This source is first
used to split the data by a whitespace character into words and then to count
each work in each batch (lines 8 and 9). Finally, a reduction is used to sum up
the word frequency occurrence and print it into the console (lines 10 and 12).
Once this pipeline is set up, the program can be started and let to run until it is
terminated (lines 14 and 15). In a couple of lines, it is possible to create a simple
PySpark streaming application.

3.3 Spark MLlib
MLlib is a scalable Spark library used for machine learning. It provides a large
amount of uniform high-level APIs which make creating machine learning pipe-
lines easy and intuitive. Overall, it provides several API sets:

• ML Algorithms,

• featurization,

• pipelines,

• persistence,

• utilities [9].

Thanks to this library, it is very easy to perform the majority of machine
learning operations. For example, to create a simple summarizer, only a single
line of code is needed, as shown in Figure 3.4.
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1 from pyspark.ml.stat import Summarizer
2 from pyspark.sql import Row
3 from pyspark.ml.linalg import Vectors
4
5 df = sc.parallelize([
6 Row(weight=1.0, features=Vectors.dense(1.0, 1.0, 1.0)),
7 Row(weight=0.0, features=Vectors.dense(1.0, 2.0, 3.0))])
8 .toDF()
9
10 # create summarizer for multiple metrics "mean" and "count"
11 s = Summarizer.metrics("mean", "count")
12
13 # compute statistics for multiple metrics without weight
14 df.select(s.summary(df.features)).show(truncate=False)
15
16 # compute statistics for single metric "mean" without weight
17 df.select(s.mean(df.features)).show(truncate=False)

Figure 3.4: A simple program using the Spark MLlib module functionality.
Copied from PySpark documentation [23].

3.4 Spark SQL
Spark SQL is a Spark module for structured data processing. When compared to
Spark RDD API, the main difference is that the interfaces provided by Spark SQL
allow for more structure of both the data and the computation being performed.
Spark SQL uses the extra information about the structure to perform additional
optimizations. Commonly, Spark SQL offers two ways of usage - Spark SQL
including SQL and the Dataset API. It uses the same execution engine for both
approaches and regardless of the language used (Scala, Java, Python, and R).
This allows users to choose the best way to express the transformation to be
done, setting very few constraints [21].

3.4.1 Datasets and DataFrames
A Dataset is a distributed collection of data which was added in Spark 1.6, re-
leased in November 2016. It provides the benefits of RDDs (strong typing, ability
to use powerful lambda functions) with the benefits of Spark SQL’s optimized
execution engine. Datasets are constructed from JVM objects and then manip-
ulated using functional transformations (map, flatMap, filter, etc.). This API
is available in Scala and Java, Python does not have the support for it. Due
to Python’s dynamic nature, many of the benefits of the Dataset API are al-
ready available (i.e. it is possible to access the field of a row by name naturally
row.columnName) [21].

On the other hand, a DataFrame is a Dataset organized into named columns.
It is conceptually equivalent to a table in a relational database or a data frame in
R/Python, but with more optimizations. DataFrames can be constructed from
a wide array of sources such as: structured data files, tables in Hive, external
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databases, or existing RDDs. The DataFrame API is available in Scala, Java,
Python, and R. In Scala and Java, a DataFrame is represented by a Dataset of
Rows [21].

In the rest of this work, we are going to focus on DataFrame only as it makes
no sense to consider Datasets since they are not present in PySpark.

To allow users to specify column names and data types, PySpark supports
definition of DataFrame schemas. A DataFrame schema is a collection of schema
fields (class StructField) organized in a wrapper class, StructType.

The StructField is a container for the column name, data type (such as a
string, an integer, or a date), nullable flag and, optionally, column metadata.

On the other hand, the wrapping class StructType only provides additional
functionality for adding new columns, loading structure from a JSON object or
retrieving a list of all contained column names.

If a user wants to create a new DataFrame, they can do it in several ways.
Most commonly, a DataFrame from a data source is used, such as from a CSV
or a parquet file, or a database table (see Section 3.4.3 for details). A user
may, additionally, omit the schema completely and let PySpark infer it, including
column data types. Loaded data is then processed to fit the schema correctly,
however, if the resource does not contain a header, column names are gener-
ated by combining an underscore prefix with the column position, starting at
1. Therefore, three columns with generated names would, for example, be 1,
2, and 3. Another way to create a DataFrame is to initialize it by utiliz-

ing the SparkSchema’s createDataFrame(...) function. It creates an empty
DataFrame with the schema provided as one of the parameters. If no schema is
provided, the new DataFrame has no columns.

An interesting feature of DataFrame is the ability to access its columns by
attribute access. If there is, for example, a column A in a DataFrame df, one may
simply use command df.A to get access to the column. This is possible thanks
to the implementation of the getattr () function in the DataFrame class.

Every initialized DataFrame has got a context in which it operates, rep-
resented by the SparkSession object. Both data source reading functions and
SparkSession.createDataFrame(...) initialization options clearly define the
SparkSession instance which is the parent session of the DataFrame. We will talk
more about sessions in Section 3.4.4 - at the moment, we don’t need more details.

Another very important feature of DataFrame is its immutability. If a user
decides to do any transformation with a DataFrame, the target object never
changes. Instead, every transformation creates a new DataFrame instance that
contains data after the transformation.

3.4.2 Transformations and Actions
Everything that a user can do in the PySpark’s SQL module, which is going to
be the main focus for us, can be split into two categories:

• Transformations - when a transformation is applied, the result of the com-
putation produces a new data structure with the transformation applied to
all records. A new object is created because these data structures in PyS-
park SQL are immutable and, therefore, no transformation can be applied
on them (they are read-only). An example of such data transformation can

19



be functions map() or filter(), while structure transformations are, e.g.,
functions drop() or select(), which modify the structure of a DataFrame.

• Actions - no new object is created, the main use case for this type is re-
trieving a single value or persisting of data, for example, functions count(),
reduce() or saveAsTextFile().

Before we have a look at the way I/O operations work in PySpark, let’s
have a quick look at some elementary and common transformations supported
by DataFrames. We will omit too much detail and implementation specifics, so
that the reader does not get too distracted with non-essential information. Most
information in the overview below is from the PySpark Documentation itself [17].

• alias(alias) - adds a DataFrame alias, creating a new column alias with
the DataFrame alias prefix.

df_aliased = df.alias("df_as1")
df_aliased.select(’df_as1.name’, ’df_as1.age’)

• crossJoin(other) - performs a cartesian product with another DataFrame.
The resulting DataFrame’s SparkSession is that of the target DataFrame,
not the ’other’.

• drop(*cols) - drops the specified column (or more columns), the parameter
is either a string name of the column or the column instance to be dropped.
If no matching column is found in the target DataFrame, no operation is
performed.

• join(other, on=None, how=None) - performs a join operation, using the
expression provided. If not present, inner join is performed.

• select(*cols) - projects *cols provided and returns a new DataFrame
representing the result of projection. Columns can be either strings (names
of columns to be selected), instances of the pyspark.sql.Column class, or
lists of strings or Columns.

• union(other) - performs an equivalent to SQL’s UNION ALL over two
DataFrames - self and other. The self DataFrame is the base for the
new resulting DataFrame in terms of object properties. Union is performed
by position, not by a name, as it is done in SQL as well.

• unionAll(other) - equivalent to DataFrame#union.

• withColumn(colName, col) - creates a new DataFrame instance from the
self DataFrame by adding the col column under the name colName. If a
column with such name already exists, it is replaced.

• withColumnRenamed(existing, new) - returns a new DataFrame which
was created from self by renaming the column with name existing to
new. If there is no column with existing name, no operation is performed.

A very simple program which uses some of the above-listed functions can be
seen in Figure 3.5. Note that this program is only for the demonstration and as
such does not really work with real data and does not perform any useful task.
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from pyspark.conf import SparkConf
from pyspark.sql.session import SparkSession
from pyspark.sql.types import StructType, StructField, \

IntegerType, StringType
from pyspark.sql.functions import lit

# create a schema
f1 = StructField("id", IntegerType(), False)
f2 = StructField("txt", StringType(), False)
my_list = [f1, f2]

# initialize sessions
conf = SparkConf()
spark = SparkSession.builder.getOrCreate()

# provide data and DataFrame schema
df2 = spark.createDataFrame(

[(1, "foo"), (2, "bar"),],
StructType(my_list),

)

df = spark.read.csv("./input.csv")
# transformations always create a new DataFrame
df = df.alias(’df_alias’)
df = df.crossJoin(df)
df = df.withColumn(’column1’, lit(None))
df = df.withColumn(’column2’, lit(1))
df = df.withColumnRenamed(’column2’, ’col’)
df = df.unionAll(df2)
df = df.drop(’column1’)

# df: DataFrame[col: string (+ content of input.csv)]
# df2: DataFrame[id: int, txt: string]
print(df2)
df.write.csv("my_file.csv")

Figure 3.5: An example PySpark program performing transformations.
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3.4.3 PySpark I/O operations
After getting familiar with PySpark’s DataFrames and the main functionality
that we are going to focus on in terms of transformations, we can have a look at
how DataFrames can be loaded from and written to data sources. For the sake
of simplicity, we are going to ignore the functionality which allows defining own
loading/writing mechanisms through configuration of the Spark engine, and will
focus on formats and functionality supported in PySpark by default.

For I/O operations, PySpark uses two objects - DataFrameReader for reading
data sources and then creating DataFrames, and DataFrameWriter for writing
DataFrames into data sources. These objects support reading or writing over sev-
eral different data source formats, namely CSV, JSON, PARQUET, ORC, and
text files, and databases via JDBC connections. While for files, the resolution of
path and options is rather straigh-forward, there is a larger context behind re-
solving JDBC connections and processing SQL. Therefore, we discuss the relation
between PySpark and SQL in a greater detail in Section 3.4.4.

DataFrameReader and DataFrameWriter class instances, in this section ref-
erenced as reader and writer, are obtained slightly differently.

For reader, a SparkSession instance must be used, which utilizes the @pro-
perty decorator to initialize the read attribute:

@property
def read(self):

return DataFrameReader(self._wrapped)

Then, whenever a reader needs to be retrieved for the given session, let’s say it
is stored in the variable session, only a simple read attribute access is necessary:

reader = session.read

Every access to the read attribute creates a new reader object which means
that configuration of a reader is not shared among two attribute accesses.

reader1 = session.read
# configure reader1
reader2 = session.read
# reader2 is configured to default values, regardless of reader1

A similar approach is used for obtaining the writer. The only difference is that
the write attribute is accessed on the DataFrame instance, not a SparkSession.
The behavior is, then, the same as for the reader - a new instance of the writer
is returned upon every write attribute access.

This behavior, when a library object’s implicit field is accessed, is a potential
problem for the scanner, because initialization of attributes read and write is
nowhere in the code and, therefore, when accessed, the Python scanner has no
idea what this attribute is or what should be written. We discuss more on this
topic later in Section 5.3.

For every standardly supported format, the reader and the writer contain
a specific function to be used, such as json() or jdbc(). These functions
are heavily parameterized, mostly for specifying formatting options, such as
timestampFormat or ignoreNullFields. As a result, functions can have as
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many as thirty-five parameters in case of the DataFrameReader#csv function.
Almost all of these parameters are optional, though.

There are, however, also generic functions for loading and writing DataFrames.
In fact, format-specific functions call generic functions with only setting some op-
tions implicitly, such as format="csv" for the csv() function. Functions load()
and save() aggregate all options available for the given reader or writer object
and then, based on these options, perform the operation. Not all options have to
be set explicitly, though. For example, the default value for the format of a data
source is parquet.

In addition to all these I/O options, there is more functionality available. The
reader provides the table() function, which returns a DataFrame representing
the specified database table. Similarly, writer’s function saveAsTable() saves
a DataFrame into the specified table. To determine behavior on-write, mode()
function is available with four options:

• append: Append contents of this DataFrame to existing data.

• overwrite: Overwrite existing data.

• error or errorifexists: Throw an exception if data already exists.

• ignore: Silently ignore this operation if data already exists [17].

It is also important to know how options can be specified. Alongside passing
options as parameters when invoking I/O functions, there are also two option-
setting funcitons available for both reader and writer - option() and options().

The option(key, value) function simply stores the provided value in the
reader’s or writer’s dictionary of options under the key key.

Similarly, the options(**options) function goes over all key=value pairs
and stores them in the options dictionary.

It is important to mention that option functions return the reader or writer
instance, making it possible to chain invocations. Therefore, loading a new
DataFrame can look as follows:

session = SparkSession.builder.getOrCreate()
jdbc_df = session.read \

.format("jdbc") \

.schema(StructType([StructField("col1", IntegerType())])) \

.option("url", "jdbc:oracle:thin:@localhost:1521/orcl") \

.option("dbtable", "schema.tablename") \

.option("user", "username") \

.option("password", "password") \

.load()

Similarly, for writing a DataFrame, the code can look like this:

jdbc_df.write \
.format("csv") \
.path("my_file.csv") \
.options(mode="append", sep=";") \
.write()

23



3.4.4 Spark SQL core data structures
In PySpark, there are several abstractions which help developers and data ana-
lysts with creating complex, but relatively simply understandable, data pipelines,
mostly relying on databases. This is the main use case of PySpark SQL, an API
giving access to Spark SQL core functionality, which has already been briefly sum-
marized in this section. Now, we are going to describe how the whole Spark SQL
“core” works on the background. This applies to all APIs and implementations
of Spark - Spark (Scala, Java), PySpark (Python), and SparkR (R language).

When working with Spark SQL, the two elementary data structures respon-
sible for managing the whole context of Spark runtime are classes SparkContext
and SparkSession.

SparkContext

The SparkContext class is the entry point for Spark functionality. It represents
the connection to a Spark cluster and can be used to create RDDs, accumulators
and broadcast variables on that cluster. Only one SparkContext should be active
per JVM [17].

SparkSession

SparkSession, on the other hand, is the entry point to programming Spark using
Dataset and DataFrame APIs (in case of PySpark, it recognizes only DataFrame,
Dataset API functionality is included in the DataFrame API). SparkSession is
present since Spark 2.0.0. Before that, SQLContext was used to work with rows
and columns (Spark 1.x) [17]. Spark 2.0 was released already in July 2016 and,
therefore, we are going to ignore Spark 1.x, for the sake of simplicity.

It is worth noting that there can be several SparkSessions created, with each
instance having its own SessionState. If a session has been created upfront,
an instance can be obtained through the SparkSession.Builder object using
the command SparkSession.builder.getOrCreate(). To create a new session
with custom configuration, following commands can be used:

SparkSession.builder
.master("local")
.appName("Word Count")
.config("spark.some.config.option", "some-value")
.getOrCreate()

The SparkSession.Builder lookup algorithm works as follows:

1. Check whether there is a valid thread-local SparkSession, and if yes, return
that one.

2. Check whether there is a valid global default SparkSession, and if yes, return
that one.

3. Create a new SparkSession and assign the newly created SparkSession as
the global default.
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4. In case an existing SparkSession is returned, the non-static config options
specified in this builder will be applied to the existing SparkSession [17].

SparkSession can also be created in different ways, for example, using the
SparkSession.newSession() function. However, using Scala’s object function-
ality, there is also a ‘global’ instance of the session which provides additional
mapping and instantiating options, i.e., provides already created instances of a
session when parameters match the builder and method getOrCreate() is used.

3.4.5 Session and Shared States
When working with sessions, there are two different states that can be used: the
global SharedState and the instance-specific SessionState. The SharedState is
a singleton (again, via Scala’s object concept) and, as the name suggests, can be
accessed by any SparkSession, as opposed to the SessionState, which is private
for every session instance.

Every SessionState provides, as you can see in Figure 3.6, among other de-
tails, information about tables, views, columns etc., available in the local (ses-
sion) scope. This information is stored in a SessionCatalog instance, which
keeps all information about available objects. However, access functionality is
mediated by the Catalog object, which is a direct attribute of the session in-
stance. If it wasn’t like that, all operations would have to be invoked using
SparkSession.sessionState.<function>(args), which is not very convenient.

Therefore, every SessionCatalog instance stores various table and database
information and, in addition, allows users to store views. A view is, for example,
the result of persisting some DataFrame data. When data is loaded from a file
into a DataFrame instance, it can be stored in a SessionCatalog as a local view,
or it can be stored globally, so that every session can access it.

Moving forward to the SharedState class, it can be said that its instance
provides two simple functionalities:

1. Creation and maintenance of a GlobalTempViewManager instance, so that
views can be accessed from any session, which can be useful when a user
wants to prepare common views at the beginning, right after JVM starts,
and all their sessions do something different, but over the same set of views.

2. Initialization of the ExternalCatalog class, which provides available data-
bases, tables, or columns initialized from the linked Apache Hive server or
other external data store. The ExternalCatalog is just a trait and within
the Spark library, it is only implemented for the usage with the Apache
Hive technology. Other implementations may be supplied, but they are not
provided as part of the standard Spark library.

3.4.6 Tables and Views
As described earlier, SparkSession keeps its shared and session states, which man-
age, among other objects, also loaded and/or created tables and views. In PyS-
park, views and tables are stored using functions listed below.
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Figure 3.6: Simplified relations of SparkSession-related objects in Spark SQL.
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• DataFrame.createTempView(self, name) → None
Saves the target DataFrame as a temporary view in the session state under
the defined name.

• DataFrame.createOrReplaceTempView(self, name) → None
Saves the target DataFrame as a temporary view in the session state under
the defined name. If this view already exists, it is overwritten.

• DataFrame.createGlobalTempView(self, name) → None
Saves the target DataFrame as a temporary global view in the shared state
under the defined name.

• DataFerame.createOrReplaceGlobalTempView(self, name) → None
Saves the target DataFrame as a temporary global view in the shared state
under the defined name. If this view already exists, it is overwritten.

• DataFrame.registerTempTable(self, name) → None
Registers a DataFrame as a temporary table using the given name. The
lifetime of this temporary table is tied to the SparkSession that was used
to create the DataFrame. Deprecated as of PySpark 2.0.0.

Cross-session operations

When there are operations over several DataFrame instances, such as join() or
union(), where every DataFrame instance may have a different parent SparkSes-
sion, the resulting DataFrame’s parent session is the one of the invocation target
object (”self”).

spark = SparkSession.builder.getOrCreate() # session instance 1
spark2 = spark.newSession() # session instance 2

df1 = spark.createDataFrame([], StructType([])) # parent session 1
df2 = spark2.createDataFrame([], StructType([]))# parent session 2

df3 = df1.join(df2) # parent session 1
df4 = df2.join(df1) # parent session 2

3.5 Relation to the pandas library
Finally, it is worth noting that PySpark is closely related to the pandas library
- their data structures representing tables and data are transformable from/to
each other. To access pandas functionality on a PySpark DataFrame, function
DataFrame#to pandas has to be used.

import pyspark.pandas as ps

pyspark_dataframe = ps.range(10)
pandas_dataframe = pyspark_dataframe.to_pandas()

To convert a pandas DataFrame instance to its equivalent PySpark DataFrame
representation, the SparkSession#createDataFrame function can be used.
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import pandas as pd
from pyspark.sql import SparkSession

data = [[’Scott’, 50], [’Jeff’, 45]]
pandasDF = pd.DataFrame(data, columns = [’Name’, ’Age’])
spark = SparkSession.builder.getOrCreate()
spark_df = spark.createDataFrame(pandasDF)
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4. Object–relational mapping
In this chapter, we are going to introduce the ORM technology and its key fea-
tures. It is important for the Python scanner to be able to analyze the source code
which uses this technology as it produces a lot of data lineage which is very impor-
tant for users. The technology allows users to use databases in Python script in a
very different manner when compared to the usage of common database libraries
and supporting this feature allows the scanner to be used in a large amount of
new use cases.

Before we get to technical details of this work, let us first introduce the concept
of Object-relational mapping (from now on, abbreviated as ORM ), its advantages,
disadvantages, and its common use cases. It is necessary to understand how this
technology works before we can start the analysis and design to support ORM
libraries in the Python scanner.

Note that the majority of code snippets in this chapter are taken from the
SQLAlchemy ORM documentation [24] with occasional minor adjustments to
highlight the subject described in individual sections.

4.1 What is ORM?
Object-relational mapping is a programming technique which allows developers
to map data present in relational databases to object code, using metadata de-
scriptors. The object code is written in one of the object-oriented programming
languages, such as Python, Java, or C# [10].

It allows developers to work with objects in their applications instead of re-
lying on embedded SQL code, which allows for faster development and better
readability of the code.

If a developer wants to use ORM in their code, its configuration is fairly
simple.

Firstly, the developer needs to specify the model to which data shall be
mapped. This is usually done by declaring classes which serve as data struc-
tures representing individual (sets of) objects. To declare two mapped classes,
User and Address, with a foreign key from Address to able User, we can do so,
for example, followingly:

class Base(DeclarativeBase):
pass

class User(Base):
__tablename__ = "user_account"

id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str] = mapped_column(String(30))
fullname: Mapped[Optional[str]]

addresses: Mapped[List["Address"]] = \
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relationship(back_populates="user")

class Address(Base):
__tablename__ = "address"

id: Mapped[int] = mapped_column(primary_key=True)
email_address: Mapped[str]
user_id = mapped_column(ForeignKey("user_account.id"))

user: Mapped[User] = relationship(back_populates="addresses")

Then, it is important to configure the library or the system providing the
ORM functionality, so that it is clear with which data source the ORM system
works:

engine = create_engine(’mssql://user:pass@localhost:1433/some_db’)
session = Session(engine)

Once this all is configured, the user can simply work with mapped objects,
instead of data sources themselves. This provides for more readability in the
code, where every operation is expressed in the programming language itself,
avoiding often complicated operations of SQL-query-building, managing database
connection, etc. To perform simple insert and select operations, the user does
not need to worry about creating SQL statements, instead, simple manipulation
of mapped classes is enough:

# insert
user = User(name="sandy", fullname="Sandy Cheeks")
session.add(user)
session.commit()

# select the column value of a specific row in the table
sandy_fullname = session.execute(select(User.fullname) \

.where(User.id == 2)).scalar_one()

There are several ways to specify the objects representing data sources. Every
technology which provides functionality for ORM allows for different approaches
and we will talk about them in a greater detail later in this chapter.

4.2 Advantages of ORM
There are several obvious reasons why ORM is a very popular technique among
software engineers, for example:

• Simplified development because developers do not have to write code to
manipulate data sources directly, but all they need to do is modifying ob-
jects in their programming language - the tedious work related to working
with databases is handled by the ORM technology used [10].
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• Since the ORM-supporting technology handles the majority of data source
interaction, the code is simpler, cleaner, more readable, and, as a direct
consequence, less error-prone [10].

• Mapping individual pieces of data into domain-model objects brings simpli-
fication in developed applications, therefore, faster development and lower
development cost [26].

• Increased security - many ORM solutions include data validation and secu-
rity threat prevention mechanisms which greatly increase application secu-
rity without any effort [26].

4.3 Disadvantages of ORM
Without a doubt, there are many advantages which make using ORM technique
very tempting, however, we shall not forget about the downsides which are of-
ten underestimated when a new piece of technological stack is being chosen by
developers. Between the biggest ORM disadvantages are:

• Overhead - ORM solutions rely heavily on abstraction and, as it is common
for such cases, it introduces some performance penalty. All handling of in-
teractions with data sources requires a lot of overhead which we, fortunately,
do not see in the code, but it is present anyway [6].

• Additionally, ORM-supporting technologies do not always use the most
optimal SQL queries possible and they cannot be modified. Using embedded
SQL in the code, on the other hand, allows for executing any query (even
an invalid one), providing means for query optimizations in performance-
sensitive programs [6].

• Learning how to use a new technique, especially the one that differs to
some degree between all technologies supporting it, is somewhat tricky and
lengthy. For this reason, many companies decide to opt for the usage of
embedded SQL [6].

• Using a technology or any technique which is not understood entirely brings
a risk of encountering problems with common pitfalls to the project. In case
of ORM, it is, for example, the lazy loading pitfall [11].

• Another aspect to consider is complicated situations when several data
sources (e.g. database tables) need to be altered. In plain SQL, these sit-
uations could be handled by several clauses, however, in ORM, all clauses
have to be analogously performed in code, which is often more difficult than
writing an SQL query [26].

4.4 Usage
Despite the above-mentioned disadvantages, ORM is still used by developers in
various situations. Web applications usually utilize ORM often since it allows for
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an easily implemented functionality which persists data in a database and does
not require, in most cases, any complex logic.

Thanks to the ORM support of their chosen technology, they can simply
focus on implementing business logic without a focus on how data is about to be
persisted, resolve how database connection is going to be handled and handle all
exceptions that database communication can throw.

In these web applications, usually, only CRUD1 operations are necessary and,
with exception for specific cases, their business logic is rather simple. Using ORM,
therefore, simplifies the development and allows for a rapid software development.

When we take into account built-in security mechanisms, ability to generate
SQL migration scripts upon model change, or easy configuration, which many
ORM-supporting technologies provide, ORM is often the correct choice which
makes software development easier and its advantages are greater than disadvan-
tages.

According to the Python Developers Survey 2021 [18], the most popular ORM
solutions for Python were SQLAlchemy, Django ORM and SQLObject. In this
work, we are going to focus on the most popular solution - SQLAlchemy.

4.5 SQLAlchemy
The SQLAlchemy Toolkit is a set of tools for working with databases and Python.
It contains several sets of functionality which can be used separately or to-
gether [14]. The whole toolkit is built atop of the DB API v2.0 [15], which
specifies a unified way how to access databases in order to ensure a more un-
derstandable code, generally portable across databases, and a wider range of
supported databases [15].

Note that in this analysis, we are going to focus on SQLAlchemy 2.0-style
syntax, which is a newer version of the library. Currently, only SQLAlchemy 2.0
is actively developed, while the 1.0-style is considered as deprecated and only
critical bugs are developed for this version.

In general, SQLAlchemy can aggregate its functionality into two major ar-
eas of functionality - the SQLAlchemy Core and SQLAlchemy Object Relational
Mapper (ORM) [14]. The top-level architecture of the technology can be seen in
Figure 4.1.

In Core, there are several standard features that are handy for standard work-
ing with databases. The most important is SQL Expression Language, which is
a separate toolkit for constructing SQL expressions represented by composable
objects, which can be executed against a database within the scope of a spe-
cific transaction. It returns a standard result set, common in database libraries
of other programming languages as well. Data-manipulating operations, such
as inserts, deletes, or updates, are handled by passing SQL expression objects
with dictionaries of parameters, which together represent the statement to be
executed [14].

On the other hand, the ORM is built atop the Core. The ORM uses Core
to represent all database operations that need to be done, providing a domain
object model mapping to a database schema. Therefore, the user does not have

1CRUD - the four basic operations of software applications: create, read, update, delete
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Figure 4.1: A high-level architecture of SQLAlchemy [14].

to use SQL Expressions directly. Instead, the ORM takes care of persisting modi-
fications in business objects (instances of domain object model, representing data
from a database) using the unit of work pattern - these changes are automati-
cally translated into the SQL Expression Language and the resulting statements
are then executed. Select statements work in a similar manner, used when new
business objects are instantiated [14].

When compared, the Core is more command-oriented, relying on immutability
and applying a schema-centric view of the database. On the other hand, ORM
employs a more object-oriented approach (via domain object model), relying on
mutability of business objects, and state-oriented [14].

Because the SQLAlchemy ORM, which is the main topic of this analysis, is
based atop the SQLAlchemy Core, it is necessary to explain the basics of the
Core module before proceeding with the analysis of SQLAlchemy ORM.

The main object which represents the source of connections to a particular
database is called Engine. In addition to being a connection pool for database
connections, it also serves as their factory. To create a new Engine instance, a
user simply needs to provide the URL string which describes how to connect to
the database host. It is quite similar to common connections strings [7].

url1 = "dialect+driver://username:password@host:port/database"
url2 = "postgresql+psycopg2://scott:tiger@localhost/mydatabase"

first_engine = create_engine(url1)
another_engine = create_engine(url2)

When an engine is created, its only purpose is to provide the object serving
as the connection, named Connection. This new object is used for all database
interactions. A simple usage to select all entries from a table and print it can
look like this [29]:

with engine.connect() as conn:
result = conn.execute(text("select ’hello world’"))
print(result.all())
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Changes are not autocommitted and, therefore, when the connection is re-
leased, changes are rolled back. To commit changes, the commit as you go ap-
proach can be chosen, which requires the explicit commit command to be invoked,
or the begin once approach can be used as well. In such case, the connection is
created by invoking the begin() function and all changes are automatically com-
mitted when the connection is released, given the code ran without a problem,
or it is rolled back in case there was an exception [29].

# commit as you go
with engine.connect() as conn:

conn.execute(
text("INSERT INTO some_table (x, y) VALUES (:x, :y)"),
[{"x": 6, "y": 8}, {"x": 9, "y": 10}])

conn.commit()

# begin once
with engine.begin() as conn:

conn.execute(
text("INSERT INTO some_table (x, y) VALUES (:x, :y)"),
[{"x": 6, "y": 8}, {"x": 9, "y": 10}])

Note the usage of the text() function which provides a backend-neutral way
for parameter binding, per-statement execution options and result-column typing
behavior [2].

When executing SQL statements which are expected to return some data, the
Result object is used, which represents an iterable wrapper around all returned
Row objects. The Row class implementation is intended to behave very closely
to Python’s named tuples and, therefore, can be iterated over in several different
ways [29], as shown in Figure 4.2.

Database Metadata

If users want to work with a relational database, they usually create and query
the basic database object, table, represented by the Table class in SQLAlchemy.
Before starting the work with SQLAlchemy Expression Language, typically, a user
may want to have all tables that they are going to be working with represented
by Tables [28].

Tables may be declared, when a user defines exactly what the table looks like,
or reflected, when the user lets SQLAlchemy to generate a Table based on what
is present in the database. Resulting Tables can be worked with together, no
matter how they were created [28].

Before a Table can be created, a MetaData object, which is a facade around
a Python dictionary where Table objects are mapped by their string name, has
to be created first. A single MetaData object is commonly used in the entire
application (and used as a module-level variable in the models or dbschema type
of package), but there can also be multiple MetaData collections as well. It is
typically the most helpful if a series of Table objects related to each other belong
to the same MetaData object [28].
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result = conn.execute(text("select x, y from some_table"))

# tuple assignment
for x, y in result:

print(’x = ’ + str(x))

# integer index
for row in result:

x = row[0]

# attribute name
for row in result:

y = row.y
print(f"Row: {row.x} {y}")

# mapping access
for dict_row in result.mappings():

x = dict_row["x"]
y = dict_row["y"]

Figure 4.2: Different approaches to the iteration of the Result object.

A Table object usually consists of Column objects, which must be passed to the
constructor when creating a new Table declaratively, along with table name and
the MetaData object where the new Table object shall belong. These columns
are, then, accessible via the Table.c field. Various constraints can be added for
every column, but that is not important from our point of view.

from sqlalchemy import MetaData, Table, Column, Integer, String

metadata_obj = MetaData()

user_table = Table(
"user_account",
metadata_obj,
Column("id", Integer, primary_key=True),
Column("name", String(30)),
Column("fullname", String))

# prints "Column(’name’, String(length=30), table=<user_account>)"
print(user_table.c.name)

# prints "[’id’, ’name’, ’fullname’]"
print(user_table.c.keys())

Another approach to working with table metadata is to use reflection. This
approach means that the Table object is generated according to the current state
of a database. While declared tables can be used to emit DDL to the database
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(and create database schema according to tables in the MetaData), the table
reflection does this in reverse. It can create Table according to database’s schema,
by specifying the engine to be used, together with the table name [28].

some_table = Table("some_table", meta_obj, autoload_with=engine)
>>> some_table
...Table(’some_table’, MetaData(),

Column(’x’, INTEGER(), table=<some_table>),
Column(’y’, INTEGER(), table=<some_table>),
schema=None)

Note that reflected tables can also override certain columns [20]:

my_view = Table(
"some_view",
metadata,
Column("view_id", Integer, primary_key=True),
Column("related_thing", Integer,
ForeignKey("othertable.thing_id")),
autoload_with=engine)

Additionally, all database tables can be reflected at once [20]:

metadata_obj = MetaData()
metadata_obj.reflect(bind=someengine)
addresses_table = metadata_obj.tables["addresses"]

Other approaches to reflection can be also used, such as loading tables from
some other schema [20]:

metadata_obj = MetaData(schema="project")
metadata_obj.reflect(someengine)
messages_table = metadata_obj.tables["project.messages"]

For a fine grained reflection, users may use the Inspector functionality. We
are not going to get into details of the Inspector’s usage as it is not widely used
and not really usable in relation to SQLAlchemy ORM.

engine = create_engine("...")
insp = inspect(engine)
print(insp.get_table_names())

Working with data

Now that we know how metadata work in SQLAlchemy Core, let’s have a quick
look at how working with data looks like, so that we can better understand the
differences and similarities between Core and ORM modules.

As pointed out earlier, the Core module relies to a great extent on its SQL
Expression Language. Alongside the traditional raw query execution with param-
eters (using, for example, the text() function, mentioned earlier), equal opera-
tions can be executed and expressed by the expression language. This is not the
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the most important part of the analysis and, therefore, we will just show simple
examples of common CRUD operations.

To insert a single row, the insert() function can be used:

from sqlalchemy import insert
stmt = insert(user_table).values(name="spongebob",

fullname="Spongebob Squarepants")
with engine.connect() as conn:

result = conn.execute(stmt)
conn.commit()

Selection of data is very similar to the insertion - using the function select(),
a ScalarSelect object is created. It supports defining additional clauses and/or
parameters by invoking methods over the object, such as where() or column().
The execution of the select statement then returns a Result object which is iter-
able, as shown in Figure 4.2.

from sqlalchemy import select
stmt = select(user_table).where(user_table.c.name == "spongebob")
with engine.connect() as conn:

for row in conn.execute(stmt):
print(row)

An interesting piece of functionality is the ability to define a select statement
via an ORM entity. The returned data, as opposed to a standard select, contains
one ORM entity instance per row, as opposed to a standard Result object, we
will discuss more on the topic of ORM later, in Section 4.5.1.

# some setup code before

class User(Base):
__tablename__ = "user_account"

id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str] = mapped_column(String(30))
fullname: Mapped[Optional[str]]

row = session.execute(select(User)).first()

# prints:
#(User(id=1, name=’spongebob’, fullname=’Spongebob Squarepants’),)
print(row)

There are, of course, many other options that are commonly used with select
statements in SQLAlchemy, such as defining the FROM clause, ordering, group-
ing, joins, or unions. However, this is not our main focus at the moment and we
are not going to go into too much detail.

Updates and deletes work in the same manner, providing practically equal
functionality that can be achieved using raw querying, but in a programmatic
manner.
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4.5.1 SQLAlchemy ORM
When compared to the Core functionality of SQLAlchemy, we should not focus
on what is present in one and not in the other, but rather what is present in
SQLAlchemy ORM in addition to Core, since it is rather a Core’s extension.

A fundamental transactional object used in ORM is called Session. It is an
object that enhances the Connection, which is fundamental for Core and, in fact,
the Session refers to a Connection instance internally, which is then used to work
with SQL itself [29].

When used in a non-ORM way, the Session simply forwards SQL state-
ments to its internal Connection object and returns what the Connection object
does. It also provides Connection’s functions, such as execute(), commit() or
rollback(). A simple usage in a non-ORM way would look as follows:

with Session(engine) as session:
result = session.execute(text(

"SELECT x, y FROM some_table WHERE y > :y ORDER BY x, y"),
{"y": 6})

for row in result:
print(f"x: {row.x} y: {row.y}")

Database Metadata

In ORM, key concepts of database metadata mapping around Table, Column
and MetaData objects stay more or less the same. One difference is that the
MetaData object is commonly associated with an ORM-only construct known as
the Declarative Base [28]. It can be acquired by sub-classing the SQLAlchemy’s
DeclarativeBase class:

from sqlalchemy.orm import DeclarativeBase
class Base(DeclarativeBase):

pass

This Base class is referred to as the Declarative Base. Later, when new classes
are created by sub-classing the Declarative Base, they are established as ORM
mapped classes, usually representing a single Table object.

The Declarative Base refers to a MetaData object which it creates automat-
ically in case it is not provided, as well as the registry instance, which is the
central mapper configuration unit. They both can be accessed via their property
attributes [28]:

Base.metadata
>>> Metadata()
Base.registry
>>> <sqlalchemy.orm.decl_api.registry object at 0x...>

In SQLAlchemy 1.4, the standard way to create a Declarative Base was to
initialize the registry and the MetaData object manually, or to generate both
using a standard function declarative base() [27]:
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from sqlalchemy.orm import registry
mapper_registry = registry()
# MetaData accessed via:
# mapper_registry.metadata
Base = mapper_registry.generate_base()

# alternative to the code above:
Base = declarative_base()

The Declarative Base class serves as the base class for all ORM mapped classes
that are declared. As of SQLAlchemy 2.0, a common way to declare a class is
using the PEP 484 type annotations [16], indicating attributes to be mapped as
particular types [28]:

class Address(Base):
__tablename__ = "address"

id: Mapped[int] = mapped_column(primary_key=True)
email_address: Mapped[str]
user_id = mapped_column(ForeignKey("user_account.id"))

user: Mapped[User] = relationship(back_populates="address")

As you can see, not all attributes need to be initialized using an assignment
operation - if there are no specific constraints, a simple type definition is sufficient.
The usage of type information is not necessary - all this information can also be
passed to the mapped column() function and assign the result to a variable. In
case of the id column, we could equivalently declare the field as id = mapped -
column(Integer, primary key=True) which produces the same output as the
code on line 6 in the example above.

When the Address class is initialized, it collects all available information -
table name, columns and foreign keys and uses it to create a new Table instance,
equal to the one created in a non-ORM way, using the Table constructor. The
new Table instance can be accessed via the table variable [28].

print(Address.__table__)
>>> Table(’addresses’, MetaData(),
... Column(’id’, Integer(), table=<address>, primary_key=True),
... Column(’email_address’, String(), table=<address>),...)

The declared class has also got an automatically generated constructor used
with keyword parameters.

my_addess = Address(email_adress="my.email@gmail.com", user_id=5)

In SQLAlchemy 1.4, all columns had to be declared using the mapped -
column() function, however, this approach is not preferred because of the PEP
484 [16] and its better support in IDEs and other tools. It is, however, still
supported.

Table declarations and ORM declarative approach can be combined, where
the Table is directly assigned to the table attribute:
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address_table = Table("address",
metadata_obj,
Column("id", Integer, primary_key=True),
Column("user_id", ForeignKey("account.id"), nullable=False),
Column("email_address", String, nullable=False))

Base = declarative_base()

class Address(Base):
__table__ = address_table
user = relationship("User", back_populates="addresses")

This mapping style, named within SQLAlchemy as the declarative style, how-
ever, is not the only way to define ORM mapping. Another option is to use the
imperative style.

This style uses imperative table definition, common in SQLAlchemy Core,
which then maps imperatively created Table objects to empty classes [12]:

mapper_registry = registry()

user_table = Table(
"user",
mapper_registry.metadata,
Column("id", Integer, primary_key=True),
Column("name", String(50)))

class User:
pass

mapper_registry.map_imperatively(User, user_table)

Working with data

Because the ORM technology is intended to allow for working with data sources
in a simpler manner, data manipulation is very straight-forward. Earlier, we have
shown how to map database tables and columns to objects - every class represents
a table (or a part of a table) and its fields represent columns of the mapped table.
Logically, then, one instance of this mapped class is going to represent a single
row of the mapped table.

Let there be a table tracking all characters of a cartoon, named User, hav-
ing three columns - id, name and fullname. Thanks to the automatically-
generated constructor of the mapped class, named User, we can create a new
instance as follows [5]:

squidward = User(name="squidward", fullname="Squidward Tentacles")

You may notice that we did not assign the id of the new object. That is
because we want to make sure that the primary key of the row, which we would
like to insert, is provided using an auto-incrementing primary key feature of the
database. Meanwhile, it is represented in the instance as None:
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print(squidward)
# prints
# User(id=None, name=’squidward’, fullname=’Squidward Tentacles’)

To start working with the database, a Session object has to be initialized, as
mentioned earlier. Once it is ready, the newly created User can be added into
the database, using a simple add() function.
session = Session(engine)
session.add(squidward)

It is important to mention that this action itself does not automatically in-
teract with the database. Because the SQLAlchemy ORM uses the unit of work
pattern, all changes are stored temporarily in the Session object, which keeps a
list of changes before it flushes them - writing into the database. Therefore, the
data is inserted into the database only when the session.flush() command is
invoked.

Manually flushing data may sometimes be unnecessary, for example, when the
autoflush feature is enabled (enabled by default; all query operations issue a flush
command to their related session before proceeding). Changes are also flushed
whenever the Session.commit() function is invoked.

As it is clear, the insert statement is automatically generated from the modifi-
cations tracked by the Session object and the user does not have to write a single
line in SQL.

For selecting rows, the process changes a little bit. The Session object provides
the get() method which takes two compulsory arguments - the mapped class
(entity into which the corresponding row shall be mapped) and the primary key
specifier, which identifies the row to be loaded. For example, the User with id 5
can be selected very easily:
some_squidward = session.get(User, 5)
print(some_squidward)
# prints
# User(id=5, name=’some_squidward’,fullname=’Squidward Tentacles’)

Now, if a user wants to make some changes to the row, they only need to
modify the instance that was returned.
some_squidward.name = ’some_squidward2’

However, because changes have not been flushed, the changed name is not yet
in the database. If the same row over the same session is selected, using the filter
for the name that was just changed, we would see that the autoflush functionality
would first flush changes into the database and then return the row we changed
locally:
squidward = session.execute(select(User)

.filter_by(name="some_squidward2"))

.scalar_one()

# prints True, because both instances contain data
# of the same row in the database
print(squidward is some_squidward2)
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Therefore, to update data in the database, we selected rows need to be mod-
ified in the code.

Lastly, to delete a row, only a simple usage of the delete() function is needed:

patrick = session.get(User, 3)
session.delete(patrick)

# this select flushes the deletion
session.execute(select(User).where(User.name=="patrick")).first()

# prints False - changes were autoflushed,
# patrick was deleted from the table
print(patrick in session)

It is worth mentioning that even though the data was flushed into the data-
base, it was not yet committed. To commit the transaction which was started au-
tomatically by performing changes using the ORM approach, Session.commit()
function needs to be invoked. In such case, all objects that are being used in the
program are still valid, but any subsequent change would initialize a new trans-
action. Alternately, Session.rollback() can be invoked to revert all changes.

In some cases, the ORM approach to working with data is not suitable, for
example, if a user wants to insert a lot of data. Initializing a new mapped object
only to immediately insert it and never use it again can have a significant impact
on the performance of software and, therefore, it is preferred to use a non-ORM
approach via the Session.execute() functionality, as was already shown earlier
and providing arguments in the second function’s parameter [13]:

from sqlalchemy import insert
session.execute(

insert(User),
[

{"name": "spongebob", "fullname":"Spongebob Squarepants"},
{"name": "sandy", "fullname": "Sandy Cheeks"},
{"name": "patrick", "fullname": "Patrick Star"},
{"name": "squidward", "fullname": "Squidward Tentacles"},
{"name": "ehkrabs", "fullname": "Eugene H. Krabs"},

],
)

This single command transforms to and executes the following SQL query:

INSERT INTO user_account (name, fullname) VALUES (?, ?)
[...] [(’spongebob’, ’Spongebob Squarepants’),

(’sandy’, ’Sandy Cheeks’),
(’patrick’, ’Patrick Star’),
(’squidward’, ’Squidward Tentacles’),
(’ehkrabs’, ’Eugene H. Krabs’)]

Finally, before the work with the Session is terminated, it needs to be closed,
by invoking the Session.close() function, which releases all connection re-
sources to the connection pool and expunges all objects from the Session [5].
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Relationships

Last, but not least, it is important to understand how table relations are defined
in SQLAlchemy ORM. This is particularly useful when two or more tables are
associated, for example, when there is a one-to-one relation, where a row in a
table references another row in a different table via a foreign key. In such cases,
SQLAlchemy resolves which tables are related and, therefore, which table can be
accessed from some other table [1].

The standard way to declare a relationship between two tables is to use the
relationship() function. This function can be used in both imperative and
declarative approaches, both with annotations (using PEP 484 [16]) and without
them. By default, this function returns a List of related class’ instances, which
can be configured to return a single value, or a different collection of instances
(set, dict, etc.) [1].

Using the most modern approach with annotations, declaring a relationship
between two tables, and, therefore, access record(s) of one table from another
table, would look like this [1]:

class Parent(Base):
__tablename__ = "parent_table"

id: Mapped[int] = mapped_column(primary_key=True)
children: Mapped[List["Child"]] = \

relationship(back_populates="parent")

class Child(Base):
__tablename__ = "child_table"

id: Mapped[int] = mapped_column(primary_key=True)
parent_id: Mapped[int] = \

mapped_column(ForeignKey("parent_table.id"))
parent: Mapped["Parent"] = \

relationship(back_populates="children")

As you can see, the child table table contains a foreign key to parent table
table and to be able to work with the related table in an ORM style, a way to
access the class instance defined by the foreign key is needed. It is possible via
the already-mentioned relationship() function which synchronizes the Parent
class with the Child class. Using the back populates parameter, it is possible to
specify with which other table’s variable shall this instance be synchronized (as
seen in the example, the Parent instance is synchronized with the Child.parent
attribute, and Child instance is synchronized with the Parent.children attribute.

Using annotations, it is possible to define whether a single or more instances
are accessible (one to many or one to one relationship).

In case of Mapped[List["Child"]], a Parent may reference many Child in-
stances, but Mapped["Parent"] signs that every Child record may only have a
single parent. To change the collection in a ‘many’ relationship, the annotation
can be simply changed to Mapped[Set["Child"]] or a similar value. For nullable
single-relationships, Optional shall be used: Mapped[Optional["Child"]].
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Using relationship() in both related classes allows for a simply-configurable
bidirectional access.

In case of the non-annotated declarative style, the same result can be achieved
using similar code [1]:

class Parent(Base):
__tablename__ = "parent_table"

id = mapped_column(Integer, primary_key=True)
children = relationship("Child", back_populates="parent")

class Child(Base):
__tablename__ = "child_table"

id = mapped_column(Integer, primary_key=True)
parent_id = mapped_column(ForeignKey("parent_table.id"))
parent = relationship("Parent", back_populates="children")

As seen in the code, the approach is very similar. The main difference is that
instead of defining the related class in an annotation, the first-position argument
of relationship() has to be used - this parameter can be either the name of
a mapped class or direct reference of the class, such as relationship(Parent).
Another difference is that changing the returned collection of many-relationship
is done via the function’s collection class parameter.

Lastly, the imperative approach is very similar [1]:

user_table = Table("user",
mapper_registry.metadata,
Column("id", Integer, primary_key=True),
Column("name", String(50)),
Column("fullname", String(50)),
Column("nickname", String(12)))

class User:
pass

mapper_registry.map_imperatively(User, user_table,
properties={"addresses": relationship(Address, backref="user",

order_by=address.c.id)})

As seen from the example, the usage of the relationship() makes the whole
concept reusable in different approaches and the only difference is how the in-
formation is defined - whether in the class configuration and its annotations, or
using a function explicitly (in declarative style, the most work is done in the same
way, but functions are invoked implicitly). This way, different relations can be
modeled with only slight changes - one to one, one to many, many to one, or
many to many.
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5. Analysis
Based on the description of technologies that we are going to work with (Python
scanner, PySpark, ORM), we are going to focus on the problem of data lineage
analysis for these technologies in a more specific manner in this chapter. We will
outline the important parts that need to be implemented in order to generate
data lineage graphs and we will also discuss the most important requirements for
the solution.

Before we start analyses of individual features, we first need to define the
scope of this work. To support the PySpark library within the Python scanner,
we need to create a new scanner plugin for it. The PySpark plugin, which is
a set of propagation modes defining how to handle specific PySpark function
invocations, needs to support some elementary functionality:

• Initializing a new SparkSession

• Defining a DataFrame schema

• Creating a new DataFrame instance by loading data from a CSV or JSON
file, or a JDBC connection, including the generic load() function

• Saving a DataFrame instance into a CSV or JSON file, or a JDBC connec-
tion, including the generic save() function

• Using SQL queries to work with data (SparkSession#sql())

• Data-modifying operations over DataFrames:

– crossJoin()
– drop()
– join()
– select()
– union()
– unionAll()
– withColumn()
– withColumnRenamed()

We will, therefore, focus on the Spark SQL functionality, not taking into
consideration Spark Streaming and Spark MLlib.

Since the majority of functionality is performed over DataFrame columns,
rather than DataFrames themselves, it is also necessary to support column recog-
nition in this plugin. The Python scanner is implemented to support resource1

recognition only, so it is necessary to modify how the scanner works in general.
As for the ORM support, we only need to design data structures which are

going to represent the ORM defined in the analyzed application. Because the
implementation of the ORM support would span long past the scope of a master’s
thesis, we did not implement the solution within this work.

1In the context of the Python scanner, resources are files, database tables, or the console.

45



Therefore, in the beginning of this chapter, we are going to analyze how the
scanner can work on the column level and which constraints there are. Then, we
will analyze PySpark’s behavior and define what functionality we are going to
need from data structures representing the library’s objects and briefly describe
the behavior of functions which we intend to support in the plugin. In the end,
we will discuss what is required from the ORM support design.

5.1 Column Handling
As mentioned above, the scanner does not support column recognition except
for a single case - when a query is executed and the getitem () function is
invoked over the result: result[’my column’]. In such case, deduction is used,
creating a named column (column named my column in the previous example).

We need a solution that would let us work with columns effortlessly, ideally,
without having to know whether a column originates in a file, a database, or if it
was created in the program (”hard-coded” in the source code; not being loaded
from anywhere). To meet MANTA’s standards, columns may be either named,
indexed or unknown. Additionally, if a column has both name and an index, for
example, when it is know that a column X is n-th in a data structure (the name
is X and the index is n), then index is preferred.

Deduction is desired, too. The same way it is implemented for database
results already, similar behavior should be implemented for files. As for the third
resource supported by the Python scanner, the console, column deduction is not
required because it makes no sense - a data line which is read or printed has never
got any name or an index.

Another useful feature is tracking origin. Even though the Python scanner
currently does not use or visualize which transformations are performed inside the
program, only input/output edges, this information may be useful in the future.
If we consider data lineage as illustrated in Figure 5.1, according to current scan-
ner implementation, only green columns would be visualized and inner PySpark
columns would be removed by contraction of edges. However, it is desired that
the new solution keeps track of the whole lineage, allowing the scanner to change
the output graph by a simple graph transformation modification, not needing to
change how the scanner’s data lineage analysis works.

Figure 5.1: An example of a complete data lineage of a Python program. Cur-
rently, only green columns are visualized in MANTA.

For cases when a column is recognized, it would be very convenient to be
able to add new resource columns without knowing the concrete type of resource.
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This can be useful when a function accepts both JDBC connection string or a file
path as the resource identifier. When identifiers are recognized and resolved, it is
preferred to work with resulting resources, not with a file and a JDBC connection
separately. For this, a simple interface is a clear solution, but we will talk more
about this in the next chapter.

To demonstrate a functioning solution for file columns, we decided to add
support for reading and writing columns to/from a CSV file, which will allow us
to deduce both indexed and named columns for files.

5.1.1 CSV I/O reading operations in Python
In this section, we will describe the basic reading functionality of CSV I/O opera-
tions in Python’s built-in library, so that the reader can understand implementa-
tion details that we are going to describe in following chapters. All functionality
is aggregated in the csv module, which is imported by a simple import csv
command.

For reading, the module provides two reader objects - a simple one, which we
are going to call a common reader, allowing us to specify columns by index, and
a dictionary reader, which allows us to navigate across columns by their given
name.

Common reader

A common reader instance can be obtained by invoking the following function:

csv.reader(iterable, dialect=’excel’, *args, **kwargs)

It returns a reader object over the iterable provided (can be, for example, an
opened file, a string, a collection). This iterable is, then, returned upon every
invocation of next () function (one row/iterable item). Before returning a
row or other item, the reader first splits the object by a comma separator (or any
separator assigned in the reader function invocation) and returns a list of strings
resulting from the split operation.

For a string row ’a,b,c’, it returns a list with 3 string objects [’a’, ’b’,
’c’].

The work with these objects is similar to any list. If a user wants to print the
second row item, they can simply use the following code:

with open(’file.csv’) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=’,’)
for row in csv_reader:

print(row[1])

A more general use case can be:

import csv
with open(’input.csv’, newline=’’) as csvfile:

spamreader = csv.reader(csvfile, delimiter=’,’, quotechar=’|’)
for row in spamreader:

# returns a list by comma-splitting a row
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print(row[0])
print(’,’.join(row))

Even though the function definition (signature with an empty body) is present
in the Python’s built-ins file csv.py, the implementation is hidden and not many
details are provided in the documentation.

We are mostly interested in the way it works if the iterable parameter is a file.
We want to be able to see in the data lineage graph that an unknown column
was loaded from a path-identified file and printed to a console. If we take, for
example, the program below, the expected data lineage visualization is depicted
in Figure 5.2.

with open("sample.csv") as csv_file:
reader = csv.reader(csv_file, delimiter=",")
for row in reader:

print(row)

Figure 5.2: Expected output in the data lineage graph of a program which reads
CSV data from a file and prints them to the console.

Dictionary reader

An instance of the dictionary-like reader of the built-in library can be obtained,
as opposed to the common reader, by simply using its initializing function:

csv.DictReader.__init__(self, f, fieldnames=None, restkey=None,
restval=None, dialect="excel", *args, **kwds)

It is an alternative to the index-based reader and, as a matter of fact, the
DictReader class is a wrapper around the common reader. The DictReader cre-
ates and keeps an instance of the common reader inside and uses that to read
columns, transforming columns into dictionary using the fieldnames information.
If a column is accessed by its name, the DictReader uses its internal mapping to
map the name to the column index and returns the common reader’s output for
the mapped index. If there are no explicit fieldnames provided, the first row is
used as the header with names.

An example usage is similar to that of the common reader:

import csv
with open(’names.csv’, newline=’’) as csvfile:

reader = csv.DictReader(csvfile)
for row in reader:

print(row[’first_name’], row[’last_name’])
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Therefore, working with common and Dictionary readers is similar, the only
difference is that common one uses integers indexes, while Dictionary reader uses
strings as indexes.

In case when no columns are defined in a getitem () manner, then the
expected data lineage graph looks exactly as the expected output in Figure 5.2.

5.1.2 CSV I/O writing operations in Python
Similarly to reading options, Python supports both indexed and named column-
writing options.

Common writer

An instance of the common writer is retrieved similarly to the common reader:

csv.writer(fileobj, dialect=’excel’, *args, **kwargs)

The common writer uses the fileobj parameter as the output resource of its
writing operations - this parameter does not necessarily have to be a file, but it
can be any object that supports the File API.

The function definition is present in the built-in library’s file csv.py, im-
plementation is hidden and not many details are provided in the documentation
about how the writer works internally.

When writing objects, there are two options:

• Using the function writerow(self, rowdict) which writes a single row
dictionary - in case of the common writer, it uses a list, a set, or any other
iterable object, and writes the content into the file using the rowdict pa-
rameter iteration, adding the separator in between items (default separator
is comma).

• Using the function writerows(self, rowdicts), similar to the function
writerow(...), its parameter rowdicts is just an iterable of rowdict, the
implementation flattens rowdicts and writes them into a file sequentially.

Example usage of the writerow(...) function for writing a single line into
the file:

import csv
with open(’eggs.csv’, ’w’, newline=’’) as csvfile:

spamwriter = csv.writer(csvfile, delimiter=’ ’,
quotechar=’|’, quoting=csv.QUOTE_MINIMAL)

spamwriter.writerow([’Spam’] * 5 + [’Baked Beans’])
spamwriter.writerow([’Spam’, ’Lovely Spam’, ’Wonderful Spam’])

And the writerows(...) function, in this case, the data contains two lists,
therefore, two rows are written, each with four columns:

data = [
[input(), 28748, ’AL’, ’ALB’],
[’Algeria’, 2381741, input(), ’DZA’]
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]

with open(’countries.csv’, ’w’, encoding=’UTF8’, newline=’’) as f:
writer = csv.writer(f)
writer.writerows(data)

For this example, the expected data lineage output can be seen in Figure 5.3.
Note that only two columns use the console input (function input()) and, there-
fore, only those rows have got the console-input data source.

Figure 5.3: Expected output in the data lineage graph of a program which reads
console for 2 column input data and print four-column rows to a file.

Dictionary writer

A very similar class to common writer, again, DictWriter uses the common writer
for actual operation. This class only translates named indexes to integer-based
indexes. An instance can be retrieved by invoking the class constructor:

class csv.DictWriter.__init__(self, f, fieldnames, restval="",
extrasaction="raise", dialect="excel", *args, **kwds)

The DictWriter provides two writing functions as does the common writer -
writerow(...) and writerows(...). Instead of lists, dictionaries are provided
as items of the provided iterable, they are then mapped back to correct positions
during writing operations. Its usage is very simple:

import csv
with open(’names.csv’, ’w’, newline=’’) as csvfile:

fieldnames = [’first_name’, ’last_name’]

# fieldnames specifies what the file header should be,
# compulsory parameter
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

# arbitrary order of columns - writer resolves keys
# to correct order using the fieldnames parameter of __init__
writer.writerow({’first_name’: input(), ’last_name’: input()})
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For this example, the expected data lineage graph is very similar to the one of
the common writer, with column names changes from indexes to names, as seen
in Figure 5.4.

Figure 5.4: Expected output in the data lineage graph of a program which reads
console for 2 columns and prints them to a file, specifying their column names.

Having defined requirements for the key feature of extending the Python scan-
ner, which is going to let us analyze PySpark data lineage on the column level,
and choosing CSV functionality of Python to verify a working solution verifiable
in the output graph, we can move forward to the analysis of PySpark functions
which were chosen to be supported.

5.2 PySpark SQL
In order to accurately track all data flows and external data connections, the
PySpark plugin would have to be able to find a way to persist all information
about available views, data sources and their names or aliases. From the above
described PySpark structures, behavior, and relations, it is clear, that supporting
all this functionality would require a lot of additional and non-trivial implemen-
tation, which would also require many changes in other technologies, for example
the Java scanner, which already supports Spark, or the Apache Hive scanner. For
this reason, we are not going to focus on supporting tracking sessions and session
objects in this work.

5.2.1 DataFrames, transformations and actions
Following up on the Section 3.4.1, we are going to have to design a convenient
data structure to represent DataFrames. What we need from DataFrames is to
be able to track columns which are present in the ’current’ DataFrame. That is,
if a DataFrame 1 is created by loading from a file, then DataFrame 2 is created by
adding a new column X to DataFrame 2, DataFrame 3 originates in DataFrame
2 and renames column Y to Z, and DatFrame 3 is written into another file, we
want to be able to have all this information present in data lineage.

This example with DataFrames 1-3 can be translated into following source
code:

spark = SparkSession.builder.getOrCreate()
df1 = spark.read.csv("./input.csv")
# new column ’X’ has always got value ’1’
df2 = df1.withColumn(’X’, lit(1))
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df3 = df2.withColumnRenamed(’Y’, ’Z’)
df3.write.csv("./output.csv")

The expectation from the processing of DataFrame operation is that we can
retrieve as much information from the source code as possible about the structure
of data. Therefore, we want the PySpark plugin to be able to identify that:

• DataFrame 1

– originates in file input.csv
– contains only a single unknown column

• DataFrame 2

– originates from DataFrame 1
– contains an unknown column and a column ’X’

• DataFrame 3

– originates from DataFrame 2
– contains an unknown column, column ’X’, and column ’Z’
– these three columns were written to file output.csv

• Since DataFrame 2 contains column ’X’ and DataFrame 3 rename ’Y’ to
’Z’, that means that DataFrame 1 contained column ’Y’, therefore, input.csv
contained an unknown column and column ’Y’

We need the DataFrame to be able to track all these changes and, thanks to
the column recognition design, this capability shall be available for users of the
scanner. As we explained at the end of Chapter 2, only input/output points of
programs are visualized - internal data flow edges are contracted and, therefore,
for our example with DataFrames 1-3, the data lineage graph shall resemble
the graph in Figure 5.5. Therefore, only known columns of the input.csv and
output.csv are to be visualized, with edges correctly assigned between columns of
these two files.

Similar approach stands for other transformations which selected to be sup-
ported in the PySpark plugin at the beginning of this chapter. In terms of actions,
we only outlined I/O operations to be supported, which we discuss in the next
section, with focus on database data sources.

However, this is not the only problem related to DataFrames. It is also nec-
essary to keep in mind that DataFrame schema is going to have to be tracked,
for example, when a DataFrame is loaded from a data source with pre-defined
schema. Luckily, this is not much of a problem and we can approach schema as
a DataFrame with no data source. Therefore, a StructField object is equal to
a DataFrame’s column and the StructType object is DataFrame. All we need
to do is if a schema is provided, to correctly match data source to schema, by
matching columns to their sources.
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Figure 5.5: Expected output in the data lineage graph for the example with
DataFrames 1-3.

5.2.2 I/O operations
Even though our implementation is not going to be able to track all catalog
and runtime state information, it does not automatically mean that a simplified
solution could not exist for less complicated use cases. In this section, we are
going to follow-up on the PySpark I/O operations from Section 3.4.3 and focus
on some database data source specifics, as it is a more complex topic than file
system resources, and which we are going to need to resolve in our design. We will
discuss how DataFrames are initialized from JDBC connections, what are some
of its implementation specifics, and what to look out for. We are not going to
further analyze file data sources in-depth as they are not as complex as database
data sources and there is, therefore, no need to dig deeper into this topic.

As we already described in Section 3.4.3, there are three basic ways how
to load DataFrames from a JDBC connection, which do the same thing on the
background, and those are DataFrameReader’s functions load(), jdbc() and
table(). Analogically, for writing, the three options which are the same on
the background are DataFrameWriter’s functions save(), saveAsTable() and
jdbc().

While read/write operations with file resources only require the path to the file
provided, it is different for database sources. To define which JDBC connection,
schema, and table shall be used, PySpark requires two properties. First of all, a
JDBC connection string must be provided to the database source which should
be used. This specifies which DBMS is to be used and when a user wants to
specify which table is to be used, there are two mutually exclusive options:

• Provide the name of the table to be used. If schema is used, this option
can be in format <schema>.<table>, otherwise a simple table name can be
used. PySpark, then, returns a DataFrame representing the loaded table.
The key for this option is dbTable.

• User provides a query to be used in the FROM clause of the SQL query.
PySpark then adds parentheses around the query and uses in the template
SELECT <columns> FROM <query> spark gen alias. The key of this op-
tion is query.

The resulting query is then executed, retrieved data are stored in a new
DataFrame instance and the user can continue working with it.

In case of writing a DataFrame, PySpark, again, creates a query that would
write the data into the desired database, takes into account the mode option

53



configured (e.g. append or overwrite) and executes it. In this case, the option
query makes no sense and is not allowed.

However, for interacting with databases and executing SQL queries, there is
one more option for inter SparkSession.sql(query). This function executes
the query, provided as a string, over the configured data source and returns a
DataFrame containing the result data. However, this function does not limit
users to only use it for SELECT statements. In case of a query which does not
return any data (INSERT, CREATE TABLE, etc.), an empty DataFrame object
is returned, which can be ignored. Spark contains an internal parser for these
queries which it processes and executes. By standard, Spark supports Apache
Hive, DB2, Derby, H2, MS SQL, MySQL, Oracle, PostgreSQL, and Teradata
dialects.

It is also worth noting that in case of the sql() function, not only database
resources need to be used in the FROM clause. Any resource that can be turned
into a DataFrame is accepted, for example, a path to a PARQUET file is accepted.
Then, before execution, Spark loads the file into the memory and executes the
query over it. Unfortunately, not many details are provided in the documentation
about all supported options, and therefore, it is not possible to clearly specify
where are the limits of capabilities of the SparkSession.sql() function.

This all means that we need to be able to track all configuration used for read-
ing and writing resources in relation to DataFrames. The option-setting functions
can affect how PySpark behaves and, therefore, we must be able to analyze this
configuration, together with format-specific reading and writing functions’ con-
figurations in order to create a reliable data lineage graph. Therefore, if a user
sets the format, path, or database table option, we must keep this information
for later usage, when a reading/writing operation, such as load() or save() is
executed.

Additionally, specifically for JDBC connections, we are going to need to also
count with an option that a JDBC connection information is going to be un-
known. While for file system resources it is not a problem, since it is handled in
general by MANTA’s component named Node Creator, there is no such univer-
sal solution for database data sources. If, for example, the scanner encounters
a SparkSession.sql() function with no database connection details, it cannot
just skip this situation. Instead, a solution is necessary that would allow the user
to provide additional ’fallback’ information.

5.3 Flow variables
We have already mentioned a limitation of the Python scanner and its approach
to processing library function invocations in Section 2.2.3. When we are analyzing
them, our main focus is to process (or, as it is common to call, propagate) data
flows form the source of the function to its target (output) in a specific manner
which resembles the actual function behavior translated to data structures used
in the scanner.

If there is a file path represented as a string on the input to the propagation
mode processing reading from a file (e.g. readlines() invoked on a file instance),
a new FileReadFlow instance is created, which represents the output of this
operation. The flow knows the path it read the data from and even though the
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exact structure of read data is unknown, it is possible to continue the computation
with this result and produce reasonably precise results.

However, there are some cases when this is not enough and more details about
the flow objects which represent an entity in the program runtime are needed.
Since we already talked about PySpark’s DataFrame readers and writers, we can
use a simple PySpark code to illustrate the issue and show what happens in the
current implementation.

A simple use case

Let us have a simplified program which uses the default SparkSession to create a
DataFrame by reading a CSV file and then writes it into another file:

spark = SparkSession.builder.getOrCreate()
df = spark.read.csv("./input.csv")
df.write.csv(’my_file.csv’)

In the code snippet above, every line contains the problematic attribute access
of a library-object instance. On line 1, it is SparkSession.builder, on line 2, it
is spark.read, and on the last line, it is df.write. What happens is that when
the Python scanner tries to resolve what data flows are assigned to expression
spark.read, where spark is the result of the invocation of getOrCreate(), it
finds out that there are no flows.

The reason is that the assignment on the line 1 only deals with an assign-
ment to the spark expression and there is nothing about spark.read, since the
assignment to the read attribute happens in the library source code, which is
not analyzed command-after-command. As a matter of fact, in this case, there
is not even an assignment to the read attribute, because it is handled by the
@property decorator.

Nevertheless, the scanner is unable to find any flows belonging to the expres-
sion spark.read and, therefore, returns an empty collection of flows related to it.
In case of lines 1 and 2, this does not have to be an issue, because no input flows
are needed to create a session or a DataFrame instance (considering the scope
limitation we set earlier about not tracking data related to session instances). For
creating a DataFrame instance, only the "./input.csv" parameter is important
because it provides the path to the file whence the data is loaded.

It is, however, a problem on the line 3, because the scanner must know which
DataFrame is being written into the file. The DataFrameWriter keeps a reference
to the DataFrame instance it writes. However, if df.write returns an empty
collection of data flows, the scanner has no idea which DataFrame should be
processed during the propagation of function DataFrameWriter#csv. As a result,
no DataFrames are written and an important part of data lineage is lost.

A general use case

This problem can be observed, in general, in a single situation: during invoca-
tion of functions of library object’s attributes when the invocation target (usually
named the self parameter) plays its role. Whenever there is a command, such
as my var = obj.field.foo(), and foo() utilizes the self parameter, it is nec-
essary to resolve the field correctly - obj.field may already be known, because
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it was assigned explicitly, but it may also not have been used before, and the
obj.field is not in the collection of known expressions yet.

To resolve this problem, a new feature of the scanner must be designed and
implemented that would allow developers to avoid this unwanted behavior and
help the scanner to propagate flows correctly.

5.4 Object-relational Mapping
In Chapter 4 we explained details about ORM and SQLAlchemy ORM and now
we can start with the actual analysis - what is the information we need to track,
propagate and use for data lineage?

First and foremost, the scanner must be able to keep information about which
table and columns are mapped by a specific class. It certainly does need to
know that a class A has got columns x, y, z and represents a table named my -
table. This information needs to be available for the mapped class, since the
class reference is passed for selects, specifying to which class should selected rows
be mapped.

For simple column initialization, the procedure would be easy, as Column
. init () and mapped column() functions are used in imperative and declara-
tive approaches, respectively. However, SQLAlchemy allows for the implicit field
declaration, using only the type hint: column : Mapped[type]. This would
pose a major challenge to handle as there is practically no explicit invocation
which means that no propagation process is launched.

Per column, only the name of the table’s column that is mapped is needed to
be known (the table shall be its parent and the column itself probably won’t need
to know its parent). Information whether a column is a primary key or what type
the data is in it, is irrelevant for us.

However, at the moment, the Python scanner does not fully support variable
descriptors, objects representing variables declared in classes, module and func-
tions. This is a major limiting factor in gathering column information for these
classes. When a new class definition is encountered in the code, a ClassDefini-
tionFlow object is created to keep information about a class being present in the
context of the module it is defined it. This class keeps reference to the associated
ClassDefinition2 object, which could theoretically provide information about
which variables are defined in the scope of the class, though it should, preferably,
be done differently. The scanner should be able to fully support variable descrip-
tors, which could, then, be associated to a class, similarly to how functions can
currently be associated to their parent class.

Subsequently, the ClassDefinitionFlow object would have to contain a ref-
erence to its related ClassDescriptor instance, rather than the raw Program
Model’s ClassDefinition object. This way, the class descriptor would provide
much more information in case it was passed as an argument, for example in the
following code:

2A ClassDefinition is an object originating in the Program Model, which originates in a
class definition directly in the parsed source code. It represents the code structure of the class
and its functions, variables, and nested classes, as present in the source code.
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# User is a class used for mapping
select(User).where(User.name == "patrick")

Another aspect to consider is mapping relationships between tables. As sum-
marized at the end of Section 4.5.1, SQLAlchemy allows for defining relationships,
based on foreign keys. This relationship can be defined in several different ways,
but mostly, the related column is specified via a string value which is then pro-
cessed by the registry to correctly match columns.

This means, that we would have to collect all mapping classes together in
order to properly resolve columns and objects - mapping to class A might use
columns from class B if A has a foreign key reference to the table mapped by
class B. The whole registry workflow needs to be created in order to provide the
global information. This problem is similar to the problem of Spark context in
the PySpark plugin - there, the SparkContext and the SparkSession instances
need to be available as well.

The relationship information is very important from the data lineage point
of view because this mechanism allows users to access different table-mapping
classes from one another (e.g., we can access the Address table from the User
table). For such cases, when the scanner encounters it, it is essential to be able
to determine which column from which table is used and to accurately track
this information. A good example is when the related class is modified via the
instance of some other class:

class Parent(Base):
__tablename__ = "parent_table"

id: Mapped[int] = mapped_column(primary_key=True)
name: Mapped[str]
children: Mapped[List["Child"]] = \

relationship(back_populates="parent")

class Child(Base):
__tablename__ = "child_table"

id: Mapped[int] = mapped_column(primary_key=True)
parent_id: Mapped[int] = \

mapped_column(ForeignKey("parent_table.id"))
parent: Mapped["Parent"] = \

relationship(back_populates="children")

# ... session preparation ...

child = session.execute(select(Child).where(Child.id == 2))
.scalar_one()

# this code works with Parent, but the Child is queried
child.parent.name = ’changed_name’
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An another problem we need to look into is inheritance. Declaratively mapped
classes are defined via inheritance of the declarative base, which takes care of
registering these classes to the registry. However, the Python scanner currently
only supports the inheritance to the level where the invocation lookup is done
over functions defined in a class and its predecessors.

All mapped classes use the declarative base’s constructor, so this may be
useful for our case - since the declarative base is essentially a class generated by
SQLAlchemy dynamically (during the registry initialization), which transforms
the keyword arguments passed into it to constructed class’ attributes. However,
this poses another problem for us - the way the Python scanner works, it needs a
static-code-present function to define its plugin behavior. If a way is found to map
the dynamically created declarative base’s init () function to the inheriting
mapped classes, the resolution of this problem would possible.

Lastly, it is also need from the scanner to be able to work with type anno-
tations, since it is the latest approach to defining the ORM model. Without
this ability, annotation-based mapped classes would be virtually unusable as the
scanner would not be able to recognize fields as database-column-mapped entities.

Due to a large amount of unsupported features necessary for the implementa-
tion, we decided to only design the solution of the ORM support feature without
the implementation, which would greatly extend this work past its original scope.

The design, however, contains a precise solution to all highlighted problems
and ORM features that need to be implemented in the Python scanner, should
the scanner be able to analyze data lineage in the source code which uses the
ORM technology.
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6. Design
In this chapter, we are going to introduce, discuss, and reason about the design
of solutions to individual problems outlined and analyzed in previous chapters.

6.1 Column Handling
Before we can start with the implementation of the PySpark plugin or the support
for column recognition in CSV file operations, we first need to design how is the
whole column handling going to work. In Section 5.1, we concluded that the
column-handling solution needs to have following properties and capabilities:

• easy-to-use interface,

• tracking of column origin,

• column deduction,

• working with columns without knowing concrete resource type.

To ensure that all requirements are fulfilled, we split the design of this feature
into several parts, each focusing on a certain aspect of data lineage analysis in
relation to data columns.

In Sections 6.1.1 and 6.1.2, we talk about the overall design in relation to the
data life cycle and decisions which ensure that the design is easy-to-use and easy-
to-understand. In section 6.1.3, we discuss the problem of tracking the column
origin and Section 6.1.4 explains how deduction is to be performed in the proposed
design.

We disclose parts of the design that allow us to ignore the column resource
type when working with columns in Section 6.1.5. Because it is necessary to
transform the output of the data lineage analysis into a format understandable
by the Dataflow Generator, adjustments in the transformer had to be designed as
well, about which we talk in Section 6.1.6. Lastly, in Section 6.1.7, we summarize
the whole design of this feature.

6.1.1 Data life cycle
When we look at the way that column flows are going to work, it is always the
same scenario. As we can see in Figure 6.1, the life cycle of every piece of data
in Python programs can be summarized in three steps:

1. Load data - get the data to work with. This step can be omitted from
our point of view when the data is hard-coded into the source code. In
such case, no data flows are present, because there is no interaction with
external data sources.

2. Work with data - perform transformations, move the data across func-
tions, etc.
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3. Write the data - transformed and/or modified data is written to a re-
source, for example, to a database. This step is important, because without
a write operation, it makes little sense to track inputs.

Figure 6.1: A very simplified life cycle of data in Python programs.

When we expand this idea a little bit, we can say that at the beginning of
every data life cycle is a data resource which exists independently on the Python
program being analyzed. When we read data from it, we load data columns from
it. Every input can be categorized into three types of columns:

• Indexed columns - data that can be specified by providing its numeric
position are called indexed columns in the context of MANTA. If a user
selects, for example, the third column from the input of a CSV file or they
write the second column of a PySpark DataFrame, we talk about indexed
columns. Indexed columns are superior to named columns in data lineage
graphs, if a column has both a known name and a known index.

• Named columns - data that can be specified via a string name. For
example, selecting column user id uniquely names a column user id.

• Unknown columns - data which has no identifier. This is for cases when
we are unable to identify data. This can be, for example, a data line from
console input, or unknown columns loaded from a file or a database table.
During the analysis, we may get find out more information about columns
of a file or a database table, but at the moment of reading data, we usually
have no information about the data and its identification.

This data can be, then, represented internally in the program in any way. At
the end of the life cycle, again, we have some data, which we can categorize into
columns, and write them into a data resource (see Figure 6.2).

Figure 6.2: Expanded life cycle of data in Python programs.

From the point of data lineage analysis, it makes the most sense to try and
represent data flows in a way which resembles the actual state of the program for
the sake of simplicity and avoiding problem in complex contexts. Therefore, we
are going to try to replicate this life cycle with our design.

This means that in our data flows, we are going to have to distinguish between
three different entities, representing three stages of data, as we have shown in
Figure 6.1. Even though the beginning and the end of the life cycle relate to
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data resources, their roles are completely different - while the data resource at the
beginning of the life cycle provides base for a data flow which is to be propagated,
the representation of the write operation does not even have to be a data flow
- this is where data flows end, are not propagated any further (it does not even
make sense to propagate them) and, therefore, we are going to distinguish between
these two situations.

To make it easier to distinguish what we are talking about, let’s give these
three object types their names:

1. Python Column Parent is a data source which is being read. Data flow
life cycle in a Python program starts here.

2. Python Column is the intermediate structure representing the data flow
throughout its life cycle in the Python program.

3. Python Resource Terminal is the terminal node of a life cycle of a
column. We want to avoid calling this Column terminal, because, at the
end of the life cycle, the data flow being written does not necessarily have
to be a column - it can be a hard-coded constant, a serialized class instance,
or any other structure.

In Figure 6.3, you can see the expanded life cycle from Figure 6.2 translated
to the newly named entities.

Figure 6.3: Data life cycle in terms of Python objects.

6.1.2 Column types
As mentioned in the previous section, there are three different types of columns
that the MANTA platform distinguishes between - indexed, named and unknown.
Because the output of our analysis is going to be transformed into a MANTA
graph, we do not want to add any other type and will follow these three categories.
Also, there is no need for a new column type, because if we cannot name a column
by its name or position in a set of index, there is no other specifier how to disclose
which column we are working with - it would be an unknown column.

However, we want to keep different information or implement different be-
havior for some types of columns - PySpark’s DataFrame columns are able to
perform different operations than database or file columns. Therefore, it makes
more sense to have behavior of columns implemented in classes which extend
column interfaces. Same goes for column parents and resource terminals - it is,
obviously, going to be different when we work with a file resource than with a
database resource. The core functionality is going to be the same (defined in an
interface), but the implementation is going to differ. The exact functionality is
going to be presented later in this chapter.

For columns, we are going to create three categorizing interfaces - indexed,
named and unknown column. Every implementing class is going to define which

61



interface it is going to be able to represent. For file or database columns, it makes
sense to only represent a single type, because it is never going to change, but for
internal representation columns, for example, in Pandas or PySpark, where we
want to process transformations and create new columns repeatedly, it is more
convenient to not implement representation of columns per type.

Therefore, we won’t have an unknown, indexed, named and indexed-and-
named PySpark column, but we would have a single PySpark column which would
be able to have any of the four different states, but it would provide functionality
for every type (such as name or index retrieval). We talk more about the design
of PySpark columns in Section 6.3.

6.1.3 Tracking origin
To be able to access all predecessors of a single column, we can simply provide an
interface method which would return a direct predecessor (origin) of the column.
From Figure 6.3 we can see that life cycles look like a linked list.

There can be situations when a column originates in two different columns,
for example, in case of PySpark’s union. In such cases, we can simply create
two equal column instances representing the same DataFrame column, but with
different origins. In the end, these columns are going to be visualized as one
anyway, because MANTA Visualizer merges equal columns. However, because
these instances are always going to be processed and propagated together, they
will, eventually, be propagated to the same write operations.

6.1.4 Deduction
With chained columns, we can preserve information about column names and
indexes quite easily. All we need to do is to preserve the order in which we gather
information about columns. This means, that for example, when we have the
following CSV-file-reading program:

1 with open(’file.csv’) as csv_file:
2 csv_reader = csv.reader(csv_file, delimiter=’,’)
3 for row in csv_reader:
4 print(row[1])

With a little simplification, we can generalize the processing of program into
these steps:

1. We have got a file opened - store path file.csv to csv file (line 1).

2. A reader is initialized and assigned to variable csv reader. Create a new
flow representing file read from the path in csv file and this flow is the
origin of a new unknown column, which is assigned to csv reader (line 2).

3. row = csv reader (line 3).

4. Process row. getitem (1) on line 4 as follows:

(a) Find all indexed columns with index == 1 and add them to the set
of returned flows for this expression.
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(b) Find all unknown file columns, for each of them create a new indexed
file column with index 1 and origin being the unknown file column.
Add the newly created indexed columns to the set of returned flows.

(c) Return the set of indexed file columns.

5. Process console write operation for all columns returned in previous step
(line 4, again).

Therefore, we do not need to add any additional functionality to columns,
column parents or resource terminals - previously outlined structure of flows
suffices.

6.1.5 Creating resource columns
The final requirement we set during the analysis was a simple column creation.
This is ensured very simply by turning Python Column Parent interface into a
column factory. Using the abstract factory design pattern, we define three factory
methods to be implemented by all column parents which would produce resource
column objects: one for named, one for indexed and one for unknown columns.

Implementing classes, such as FileReadFlow or ConsoleReadFlow, decide
which columns are created. For example, as we mentioned earlier in Section 5.1,
the ConsoleReadFlow class would always return an unknown column, while the
FileReadFlow class may want to return also named or indexed columns. Signa-
tures of the methods can be seen in Figure 6.4.

Figure 6.4: Signatures of the three methods to create a column in the interface
PythonColumnParent.

6.1.6 Transforming columns to data lineage
The last thing we need to consider before we can finalize the design is to think
about how is this chain of columns going to be transformed into a common
intermediate structure, which is the base for the Intermediate Dataflow Generator
component.

The generator only transforms input and output nodes and hides modifica-
tions inside the Python program. Therefore, we only need to correctly transform
Python Column Parent, their most specific column, the Python Resource Termi-
nal and its written column. Because the precision of column name or index is the
most specific at the end of the column life cycle, it is easy to determine whether
the written column is indexed, named, or unknown. We can simply look at the
origin of the Python Resource Terminal and if it is a column, we resolve its type
and get its name or index.
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It is, however, more complicated to resolve which column is the source of data
for the given written column in the Python Resource Terminal - without showing
whence do the output columns get their data, the value of data lineage is not
very high. We know that to get the input column, we must look among those
columns which are origins of the output column. They form a chain of columns,
as can be seen in, for example, Figure 6.3.

However, how many steps back from the output column do we have to take?
We can outline several predicates which we will use to resolve as specific column
name as possible, without losing correctness. When we think about how this can
be done, we can use a decision diagram to define all constraints, as you can see
in Figure 6.5.

Figure 6.5: A decision diagram for getting the most specific input column.

We can call the method for retrieving the input column with the most specific
identification as getOriginalColumn(). For every column, we must be able to
determine:

• Direction - whether we are dealing with an input, output, or an unknown
column. Unknown columns are cases when we are unable to identify which
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role the column plays - usually in case of inner columns, such as PySpark
or Pandas columns.

• Type - one of four types, as mentioned earlier: unknown, named, indexed,
or indexed-and-named. These types must be comparable in the following
manner: named, indexed, and indexed-and-named have got the same prior-
ity, unknown column has got a lower priority. Whenever we would go one
step back in the column chain and this step would get us from a known
column to an unknown column (within the same column type, e.g. input
file column), we must prevent it to keep as much precision as possible.

To make it easier to think about how input columns would be resolved with
this approach, you can see some examples in Figure 6.6. Examples are illustrated
over file read and write operations as they are simpler to visualize, but database
and console column resolution works analogously.

Figure 6.6: Resolution of the most specific input column. The resolved column
is marked green.

In addition to resolving the ”original column”, we also need to think about
how to retrieve the Python Column Parent instance for the given column. This
is a trivial task - we simply need to crawl back the column chain until we find
a non-column origin. If this origin is a column parent, we return it, otherwise,
we claim that there is no column parent (which implies that there are no input
resource columns, since those must have a parent they belong to).

6.1.7 Design summary
Because the design of column handling was rather complex and introduced several
different concepts, let us quickly summarize it, so that it is easier to understand
all implications and properties that this design possesses.

The workflow of handling computed flows is going to change from resources
(files, databases, console) to their columns. A standard life cycle of a flow, as
depicted in Figure 6.7, is going to start at a resource flow, which represents
reading the resource that provides data used in the Python program (interface
PythonColumnParent).

This read flow is capable of creating relevant PythonColumn object belonging
to this resource, such as a named, or an indexed column flow. The analysis then
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uses these PythonColumn instances to propagate data flows across the program
and compute the data lineage. Column propagation works in a layering manner,
which means, that a new column is able to access all previous forms of its data
origin.

Additionally, columns are able to tell their type, for example, an unknown,
named, or an indexed column. They also contain information about their direc-
tion - input, output, or unknown.

At the end of the life cycle, when data flows are written somewhere (again, a
file, a database, or the console), we register this write operation as a PythonRe-
sourceTerminal object for backwards transformation later, during the construc-
tion of the final data lineage graph.

When creating the lineage graph, it is possible to track the origin of write
operations using the origin parameter of PythonColumn and PythonResourceTer-
minal objects. This effectively creates a backwards-linked list and using certain
predicates, we are able to precisely determine the read resource columns which
were used for the given written piece of data.

Figure 6.7: Column flow life cycle visualized by flow interfaces.

To make working with columns during the analysis more precise, we also
introduced trait interfaces, as seen in Figure 6.8, which allow individual plugin
propagation modes to filter out used columns more precisely, for example, when
we are handling a dataframe.select(*cols) function in the PySpark plugin,
we are definitely going to want to work with named and unknown columns, but
definitely not indexed columns.

Thanks to this, we can ensure that columns filtered as named have always got
a column name, which makes propagations easier to implement and work with.

The concept of columns is going to be important for the implementation of
both CSV I/O operations and the PySpark plugin, see Sections 7.1.3 and 7.3.
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Figure 6.8: Trait interfaces for PythonColumn classes.

6.2 Flow Variables
Following the analysis of the Flow Variables feature in Section 5.3, we can proceed
with the design of the feature. Before we introduce the proposal of the solution,
let us first clarify certain details about how the scanner works internally, so that
all new concepts are easily understandable.

Expression resolving

In the Python scanner, expressions are resolved in the AssignmentFlowTarget
#propagateAssignment() method. There, expressions and flows related to them,
stored in a map, are matched to the function invocation parameters. If an expres-
sion is not among keys of the map of expressions, a new AExpressionFlow object,
representing the looked-up expression, with an empty set of related flows, is cre-
ated and added. If it is present in the key set, all expression’s flows are propagated
into the flow set of the target expression (before the foo() invocation handling,
obj.field’s flows would get propagated into the flow set of function parameter
self).

For our use case, it would be ideal if we could modify this map in a way that
would allow us also specifying ’inner’ flows of the expression, so for expression
obj we could also say that there is available expression obj.field and we could
specify which flows represent it.

Expression resolution under the hood

Current resolution of flows per variable is very straightforward. In the analysis
module of the Python scanner, identifiers are represented by two classes: the
VariableExpression, representing a simple variable, such as obj or my var, and
the IdentifierAccessExpression, which are extensions to some other expres-
sion. This expression does not have to be an identifier, though. For example, in
case of foo().bar, when bar is resolved against the result of the foo(), which is
represented as a ReturnExpression. IdentifierAccessExpressions can be chained,
creating a linked-list-like structure, as depicted in Figure 6.9.

Both VariableExpression and IdentifierAccessExpression extend the
abstract class IdentifierExpression, as seen in Figure 6.10. They are going
to be primary classes of interest in the design of a solution to this problem,
however, other subclasses of the AExpression are going to be important as well,
because we are also going to need to be able to analyze expressions, such as
foo().result.bar(), where the base expression can be any other AExpression
subclass.
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Figure 6.9: An example of how several IdentifierAccessExpression ob-
jects can be chained, in this case, for the representation of the expression
obj.field.bar.

Figure 6.10: Class hierarchy of the AExpression class with focus on identifying
expressions.

6.2.1 Inner flows
The first designed change is adding a new field to all flows named inner flows.
An inner flow is, simply said, a definition of what should be returned if there is
an inquiry about the flow of some field. If a flow represents a variable foo and
has defined that upon requesting its field bar (as in foo.bar), it shall return
constant 3.

To store this information, we introduced the field innerFlowMapping, a map
of String → Function<String, Collection<PythonFlow>>. Whenever a field
is queried, the flow looks into this map and if there is an entry for the variable
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name, it returns the result of applying the string parameter to the related func-
tion. In some cases, it can return itself or it can perform any other action with
the information it has available. Thanks to this, there is little limitation as to
what is defined in these inner flows, as long as it can be expressed in a function.

For creating an entry matching the bar example we mentioned at the begin-
ning of this section, we would only need a single command:

addInnerFlowMapping("bar", key ->
Set.of(new ConstantFlow(AExecutableFlow.START_NODE_INDEX,
functionDefinition, 3)));

After adding this entry to the map, whenever any component asks the flow
about the field bar, it returns a ConstantFlow object of value 3.

As you can see in Figure 6.11, we also introduced a new interface PythonFlow
which is intended for simplification of the AValueFlow class, which grew quite big
after adding the inner flow functionality, and it also allwos us to avoid wildcards
in the code when we store the filtered-out AValueFlow into collections - instead of
Collection<? extends AValueFlow>, Collection<PythonFlow> can be used.

Figure 6.11: Changes to the AValueFlow class related to inner flows.

Adding this capability does not require any additional changes because the
default behavior would be set in such manner that if the key is not found in
the map of inner flows, an empty collection is returned. Therefore, unless we
explicitly add some entries into the map, the analysis is going to work like before.
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6.2.2 Expression resolving
The second part of the solution utilizes ’inner flows’ we defined above. While
tracked expressions are stored in a map used by the AssignmentFlowTarget
#propagateAssignment() method, to avoid unnecessary increase in the map
size, inner flows are kept as on-request flows. Whenever the analysis wants to
resolve any IdentifierAccessExpression object, it is going to have to resolve
the identifier prefixes. These prefixes are going to be collected by recursively
going through the sought IdentifierAccessExpression’s prefixes until encoun-
tering a non-IdentifierAccessExpression object. At that point, the analysis
looks for all flows of this non-IdentifierAccessExpression expression in the
map of the AssignmentFlowTarget object and starts ’reconstructing’ the sought
IdentifierAccessExpression object by adding prefixes of chained expressions
to the base - the IdentifierAccessExpression instance. Figure 6.12 illustrates
proposed changes in the expression flows’ lookup.

The algorithm of reconstructing these expressions is pretty much straight-
forward, as Figure 6.13 shows.

To better explain the idea, we can explain it on an example. Let us look for
the right-hand-side expression in the following code fragment:
g.h = a.b[0].c.d.e.f

Iterating from the right to left, we determine the non-IdentifierAccess-
Expression a.b[0] (it is an invoke expression because the Python interpreter
processes it as a.b. getitem (0) and so does the Python scanner).

Starting from this expression, there are four IdentifierAccessExpression
objects which the scanner is going to need to process - c, d, e, and f.

The algorithm proceeds as follows:
1. a.b[0]

• Check flows for a.b[0] flows

2. a.b[0].c

• Query flows for a.b[0].c. For every flow from step 1, query for ‘inner
flow’ c and add to the flow return collection.

3. a.b[0].c.d

• Query flows for a.b[0].c.d. For every flow from step 2, query for
‘inner flow’ d and add to the flow return collection.

4. a.b[0].c.d.e

• Query flows for a.b[0].c.d.e. For every flow from step 3, query for
‘inner flow’ e and add to the flow return collection.

5. a.b[0].c.d.e.f

• Query flows for a.b[0].c.d.e.f. For every flow from step 4, query
for ‘inner flow’ f and add to the flow return collection.

6. Return the output of step 5, or earlier if an empty set is a result of any of
the previous steps.
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Figure 6.12: Proposed change in looking for flows related to an expression during
the analysis (original and proposed solution).

71



Figure 6.13: Algorithm for reconstructing sought expression by prefixes.

6.3 PySpark
In this section, we are going to describe the design of data structures that we are
going to use for the implementation of the PySpark plugin. Because the plugin
core of the Python scanner is already implemented, it is not necessary to design
this part of the scanner and we can, therefore, only add more propagation modes
and data flow types to handle PySpark functionality listed in Section 5.2.

6.3.1 DataFrame representation
The first and foremost thing we need to design is how PySpark’s DataFrames
are going to be represented. There are two options - representing DataFrame as
a whole or only representing columns which would form DataFrames by simply
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being assigned to the same variable in the analysis.
While the first option is very close to the actual representation in PySpark, the

other option has got more advantages. If we look at the DataFrame class, it does
not contain much information itself, we could say that it is rather a management
class for its columns in the meaning that DataFrame offers functionality to users
that they can use to manipulate columns and, therefore, also their wrapping
structure - the DataFrame.

However, it is columns which represent the actual structure in the DataFrame
and that are modified, rather than the DataFrame itself. Whether it is aliasing,
joining or selecting columns, we simply modify the collection of columns we work
with. This is no new point of view in the Python scanner as collections (sets,
lists, or dicts) already work this way - there is no wrapping structure collecting all
items together. Instead, they are represented separately as CollectionItemFlow
objects and their affiliation to the same collection is implied by belonging to the
same expression.

Another pro-column argument is that it makes more sense to us to work with
columns since we have already designed a column-based representation of data
flows in the scanner in Section 6.1 and it would not make sense to work with their
wrapping data structures and making the whole solution more complicated and,
logically, more error-prone.

Therefore, for reasons listed above, we decided to go with the column rep-
resentation, from this point onward, we will reference them by their class name
PySparkColumnFlow.

PySparkColumnFlow

Based on the intended supported functionality, we are going to need to store some
data in the PySparkColumnFlow instances:

1. Column name - PySpark’s columns can be named and, for some functions
that we want to support, it is important to know names of the column.
Therefore, this flow class is going to implement the NamedPythonColumn
interface (see Section 6.1.7).

2. Column index - similarly to the column name, some functionality is
also index-dependant. For this reason, the class will also implement the
IndexedPythonColumn interface. In special cases, the UnknownPythonCol-
umn insterface is going to be implemented - the column is unknown if neither
name or index are known. However, name and index are not mutually ex-
clusive - a column can have both the name and its index known.

3. Table aliases - names of the table the column belongs to.

4. Known column aliases - aliases of the column instance.

5. Origin - the flow that is the source of the data in the column. May be
absent, for example, if an empty DataFrame column is created.

Because flows in the Python scanner are immutable data structures with no
inner logic, only property getters shall be implemented by this class.
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6.3.2 DataFrame schema
As explained in Section 3.4.1, a user may define a schema of a DataFrame, using
classes StructField and StructType of PySpark. When creating a DataFrame
with a pre-defined schema we have to realize that the structure of the new
DataFrame is equal to the structure that user defined.

As already pointed out at the end of Section 5.2.1, the StructField class
represents a single PySpark column in the new DataFrame and the StructType
class represents the new DataFrame itself. The only change is in the origin of the
data - while schema itself has no data origin, the DataFrame may have an origin.

Therefore, we only need to add origin to the schema, when it is present. This
means that we do not need any additional data structures for classes StructField
and StructType - they are going to be represented simply as PySparkColumnFlow
class instances without any origin, like a mold for data.

6.3.3 DataFrame Reader and Writer
The next thing we have to think-through is the handling of I/O operations in
PySpark.

It is important to notice that signatures of the reading and writing functions
are almost identical. That means, that in most of cases, the algorithm for de-
termining possible invocation targets would return both options - reading and
writing. Because the reader and writer objects only contain options which can be
present in both read and write objects, we are unable to determine the direction
of data flow from this.

However, what we can do is following: if the code accesses a DataFrameReader
instance SparkSession.read, a special object is returned, we will name it the
PySparkReaderFlow, that is going to be present in the propagation mode han-
dling the operation. Then, we can distinguish between input and output opera-
tions by simply trying to find the PySparkReaderFlow instance in the propagation
mode’s input flows - if it is present, we are dealing with a reader, otherwise we
are dealing with a writer.

To make this work, we first have to be able to define the behavior of the
read field access. To do this, we must have a flow class created for representing
the Spark session, which we are going to call the PySparkSessionFlow, and
then we can define the behavior for the read attribute, using the Flow Variables
functionality we designed in Section 6.2. The PySparkReaderFlow class does not
actually need to contain any information, its presence in a particular flow set is
sufficient. This means that we can treat this flow as a singleton object.

For writer, we want to keep the information about DataFrame columns being
written in the writer object. Because we do not have a writer object (write
operation is determined by the absence of the PySparkReaderFlow instance, as we
described earlier in this section), we have to implement a flow variable handling for
the write field access in the PySparkColumnFlow instance. Returning columns
themselves is going to be sufficient, because in the end, when processing the
written DataFrame - we want to only work with the written columns and options
of the writer.
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6.3.4 Reader and writer options
The last thing we need to design is how to process options of the DataFrame
reader and writer. Because options can contain any keys, not just those listed in
the documentation, we have to create a data structure to store options in that
would be flexible enough to contain any key-value pairs, but also the one that
would not produce too much overapproximation by collecting all information in
one place.

When processing one of the two option-setting functions, we simply need to
take invocation arguments and transform them into a flow data structure which
we can work with later. So, an obvious choice is to simply create a new type of
flow, the OptionFlow, which stores the key and the value of the option, which
can be used later in PySpark’s propagation modes.

We must remember that neither keys nor values must be string values (they
can be, for example, console inputs), so we can store them both as PythonFlow
variables - the interface which is implemented by every flow present in the Python
scanner.

Later, when using options, we simply have to look for all options and filter
out those that matter to us. Some options, such as database user or password
are not interesting for us in terms of data lineage. On the other hand, we are
definitely going to want to use format, path or dbtable options.

By adding these options to the flow set of the invoked object (the dataframe
reader or writer), we will have them available in propagation modes handling the
loading and the writing of a DataFrame.

6.3.5 Example workflow
Now that we have got the key aspects of the PySpark plugin designed, to better
explain how analyzing PySpark would work in relation to flow classes we described
earlier in this section, we can explain what would happen in a simple PySpark
program example from Figure 6.14, without mentioning unimportant steps not
relevant to our purpose.

Line 1 - creates a new PySparkSessionFlow instance and stores it to variable
spark

Line 2 - spark.read - the PySparkSessionFlow object returns the singleton
object PySparkReaderFlow

Line 3 - both DataFrameReader.csv() and DataFrameWriter.csv() are
analyzed, but only the DataFrameReader.csv() performs an action - a PySpark-
ReaderFlow object is present. No schema is provided for the reading operation,
so, first, a FileReadFlow is created for file ./input.csv.

Then, its unknown ResourceColumnFlow instance is created, representing the
output of the file read operation, This unknown column is the origin of the new
unknown PySparkColumnFlow instance. It represents the data from the file stored
in the DataFrame of variable df. We have no information about names or indexes
of columns in the DataFrame, so we only create an unknown column.

Line 4 - accessing the write attribute returns all columns present. In this
case, it is only the unknown PySparkColumnFlow object.

Line 5 - creates a new OptionFlow instance with key being format and its
value jdbc. This flow is available in the option invocation on the next line,
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1 spark = SparkSession.builder.getOrCreate()
2 df = spark.read \
3 .csv("./input.csv")
4 df.write \
5 .format("jdbc") \
6 .option("url", "jdbc:connection-string") \
7 .option("dbtable", "schema.sometable") \
8 .save()

Figure 6.14: A simple PySpark program using its reading and writing function-
ality.

together with the unknown column.
Line 6 - creates a new OptionFlow instance with key being url and its value

jdbc:connection-string. This flow is available in the option invocation on
the next line, together with the unknown column and the format option.

Line 7 - creates a new OptionFlow instance with key being dbtable and its
value schema.othertable.

Line 8 - The save function does not find any PySparkReaderFlow object,
so it processes its inputs. It looks for the format function, resolves it to be a
database write operation. Collects connection details to the database - options
url and dbtable.

With these details, the target table is known and the last step is to write all
written columns there - in our case, it is just the unknown PySparkColumnFlow
instance that was created on line 3.

You can see in Figure 6.15 how would the data lineage after the analysis
look like for the program from Figure 6.14. During the transformation of this
graph, the PySpark column would be concatenated and, therefore, a data flow
from ./input.csv to table sometable would be present in the MANTA data lineage
graph.

Figure 6.15: Data lineage of the example program from Figure 6.14.

6.4 Object-relational Mapping
In this section, we are going to focus on the design for the support of ORM
tehcnology in SQLAlchemy, where mapping is defined in a declarative way. Since
imperative way is more trivial, it does not require more thought and with a couple
of simple changes, this approach can be supported.

In SQLAlchemy, both imperative and declarative approaches form equal struc-
tures, therefore, it shall be possible to achieve a common model for both ap-
proaches in the Python scanner as well. Because the scanner does not support
variable descriptors and detailed complex class definition analysis, which are nec-
essary for ORM analysis, the design does not go into too much detail, leaving
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portions of design to be adjusted according to the implementation of these two
essential requirements.

The first step to design the solution of the feature enabling the Python scanner
to analyze ORM-based source code is to design suitable data structures which
would allow the scanner to store all essential information found in the source
code and to let developers work with these data structures effortlessly to avoid
potential bugs in the code. From the analysis, it can be understood that the
information needed to be stored in the designed data structures is:

1. Relations between declared ORM classes and the name of the table they
are mapped to.

2. Columns of every mapping class - names of the column in both class and
the table (function mapped column(...) allows to define the name of the
table’s column being mapped, this name does not have to be the same as
the name of the variable to which this column instance is assigned).

3. Information about relationships between classes, as we discussed in Sec-
tion 4.5.1.

The mapped class declaration can, with a little bit of abstraction, be consid-
ered similar to PySpark and its schemas. They both define the mould for data,
where it should fit. In case of PySpark, the form for the data is defined via a
schema, while in case of SQLAlchemy’s ORM and its declarative approach, it is
defined via mapping classes (using assignments or type annotations).

Therefore, the most obvious way to store information about columns is to
have a similar data structure to the PySparkColumnFlow class, which has its own
metadata (such as a name, an index, or aliases), which are already present when
the column is only defined in a schema, but it can also contain data, in form of
its origin - like all other column flows.

The same would, presumably, be desired for ORM columns. Both PySpark
columns and ORM columns can contain type information, but that is not impor-
tant information for us. The flow object defining an ORM column shall, therefore,
contain following information:

• Name of the table to which it is mapped (mapped class’ tablename field
value).

• Column’s name in the table.

• Column’s name in the class (variable name).

• Origin (nullable when declared as a mapped class, may contain value when
mapped class is instantiated).

For the case of relationships, it is needed to keep even less information. Ac-
cording to the configuration of the relationship, only a few configurable fields are
needed to be tracked:

• Name of the field within its class that contains the relationship (name of
the variable in the class).
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• Name of the class which can be accessed via the class variable (the related
class).

• Flag whether the field returns a class instance or a collection of class in-
stances.

– For declaration children: Mapped[List["Child"]] =
relationship(back populates="parent"), a collection (List) of the
Child class instances is returned.

– For declaration child: Mapped[Child] =
relationship(back populates="parent"), one object is returned.

– This affects whether the scanner should work with the object directly,
or whether it shall work with a collection of objects.

It is, however, impossible to link classes together at class initialization in
certain situations, for example, when two classes related with a foreign key allow
to access each other:

class User(Base):
...
addresses: Mapped[List["Address"]] = \

relationship(back_populates="user")

class Address(Base):
...
user: Mapped[User] = relationship(back_populates="addresses")

Classes are, logically, processed in the exact order in which they appear in the
source code and, in this case, it is guaranteed that the scanner would not know
about the related classes, which is declared after the currently processed class (in
the case above, the Address class referenced on line 3 would be yet unknown to
the scanner).

Therefore, the scanner must only store information about the name of the ref-
erenced class and perform lookup upon the request. That is, when the addresses
field is accessed, the scanner looks for the class referenced by this variable, in this
case, the Address class. Since class and function definitions are processed sequen-
tially, the same way that Python does it, unless a special situation happens, the
scanner will know about the Address class by the time the addresses variable
is accessed.

It is necessary to keep this information in a data structure which would be
mutable. It is not possible to say upfront when the modifications in the ORM
mappings are over and, therefore, an immutable option is not possible. Such
situation can happen when there is a mapped class altered at runtime. It is
especially unpleasant in the case of imperative ORM mapping approach, as you
can see in the code snippet in Figure 6.16.

Unless the last command on line 11 is invoked, the scanner has no idea that
the class User would ever represent a mapping class and even if it did, there
would be no information about its mapping metadata unless it is paired with the
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1 user_table = Table(
2 "user",
3 mapper_registry.metadata,
4 Column("id", Integer, primary_key=True),
5 Column("name", String(50))
6 )
7
8 class User:
9 pass
10
11 mapper_registry.map_imperatively(User, user_table)

Figure 6.16: Source code of a program which changes the ORM class model during
runtime.

user table. This means that to create an immutable data structure, the scanner
would first have to analyze all the source code, only looking for the ORM-related
source code, to establish the model upon which the ORM analysis would operate,
and after that, another analysis of the source code with immutable model would
be run. This is an unnecessarily complex solution which would add non-trivial
time complexity to the scanner’s analysis with very little benefit.

Instead, an auxiliary structure could be used to progressively update and
aggregate information about the registry and its related mapping classes. We can
name the mutable structure analogously to the SQLAlchemy’s ORM registry -
the ORMRegistry. Both classes serve to resolve columns and relationships and this
way it is the best to keep the naming similar. Other ORM-related objects would
only contain the reference to the ORMRegistry instance, which would provide
up-to-date information without a need to modify flows themselves, which should
remain immutable.

This ORMRegistry class should, then, be able to map:

• An ORM table to its ORM columns.

• ORM table variables to other ORM tables mapped via a relationship.

• Name of an ORM mapping class to a table name - in some cases, only the
table name is known, while in other cases, we only know the name of the
ORM mapping class.

Additionally, it should be possible to query this information when needed,
even if the registry state is not yet final.

Lastly, it is important to consider how classes will be represented. In order
to separate functionality, it seems to be the best idea to not directly connect
classes with their fields because of the issue with relationships. In some cases,
the class would be able to access its columns, but if a relationship-specified class
was accessed, the ORM registry would have to be used. In order to keep related
functionality together, only representing an ORM mapping class as a simple proxy
between the scanner (or a propagation mode) and the ORM registry is reasonable.
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If any object was needed, whether it is a column or a related class, the ORM
registry could be used.

The ORM mapping class would not contain any logic, it would only be used
to get to the related mutable object. All information that is needed for the class
representative to know is a reference to the related ORM registry and the name
of the class, or the name of the table, that it represents. These values can be
altered as they are both considered to be static in the program and it is only a
matter of implementation which value is used in mappings and lookup method
invocations.

With these classes outlined, we can give names to individual classes of the
ORM model of the Python scanner. The class representing a declared column
could be named the ORMMappingColumnFlow, the proxy class for representing a
mapping class would be named ORMMappingClassFlow, the entity acting as a
placeholder for a relationship mapping will be the RelationshipMapping. You
can see classes, their relations, and fields in Figure 6.17.

Figure 6.17: Class model of the designed ORM-analyzing feature.

So far, the design has been a little abstract and it is better to explain it in
examples. In the following sections, we will explain the usage of these classes on
concrete examples of initialization and behavior in various operations. Note that
the DELETE operation is omitted as it produces no data lineage information
currently relevant for the Python scanner.

6.4.1 Initialization of mapping defined declaratively
The first step to supporting the ORM technology in the scanner is enabling it to
process the metadata information defined in mapping classes. With ORM model
defined above, we can explain how they would be used in the case of a simple
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use case with two mapping classes named User and Address. These classes will,
then, be used in code fragments for concrete ORM operations below.

In the code snippet below, there is a class which defines the declarative base
class for the ORM of the program. Then, there are two more classes, the User and
the Address, which represent two database tables, user account and address
respectively. In SQLAlchemy, every instance of these classes represents a single
row in their related table. As mentioned earlier, they define the form into which
table data is loaded. It is necessary to, therefore, analyze how these classes are
defined.

The first step is to map the Base class to an instance of the ORMRegistry
class. Every Base-extending class uses the same registry implicitly. If another
class extended the DeclarativeBase class, another instance of the registry would
have to be used.

Once the registry for the selected base is created, it should be clear for all
extending classes which is their parent registry - this information can be simply
deduced from the base class and the registry instance assigned to it. What the
scanner needs to do when initializing a new class definition object is to analyze
all of its variables. There are, essentially, four types of variables that can be
encountered:

• tablename defining the name of the table which it maps (within a given
Session instance).

• Table column fields which represent columns of the mapped table.

• Relationship fields allowing users to access instances of related table rows
(other ORM classes).

• Other fields which are not mapped to columns and only serve the imple-
mentation.

The first three categories are interesting for data lineage analysis, the last
one is not. From invocation of functions mapped column and relationship, it is
quite easily possible to determine which columns are mapped and which classes
are related to each other.

When it comes to the analysis of fields declared using PEP 484 [16], this
information can be retrieved by parsing the type hint. Of course, this has got
certain limitations, for example, if the int return type is defined in a non-standard
way, for example, as a concatenation of three characters: def foo() -> chr(73)
+ chr(78) + chr(84), instead of the standard def foo() -> int. Both values
are allowed, but the Python scanner may ignore non-standard ways to define
type hints as even IDEs only use identifier-defined type hints and do not evaluate
expressions.

1 # ...relevant imports...
2
3 class Base(DeclarativeBase):
4 pass
5
6
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7 class User(Base):
8 __tablename__ = "user_account"
9
10 id: Mapped[int] = mapped_column(primary_key=True)
11 name: Mapped[str] = mapped_column(String(30))
12 fullname: Mapped[Optional[str]]
13
14 addresses: Mapped[List["Address"]] = \
15 relationship(back_populates="user")
16
17
18 class Address(Base):
19 __tablename__ = "address"
20
21 id: Mapped[int] = mapped_column(primary_key=True)
22 email_address: Mapped[str]
23 user_id = mapped_column(ForeignKey("user_account.id"))
24
25 user: Mapped[User] = \
26 relationship(back_populates="addresses")
27
28
29 engine = create_engine(
30 ’mysql+pymysql://root:admin@localhost/schema’)
31 session = Session(engine)

When the scanner approaches line 7 in the code snippet above, it first deter-
mines that the Base class is a declarative base and, therefore, it should be able to
retrieve its ORMRegistry instance. Then, it processes and categorizes class fields.

The tablename field is present at most once, other types are either ignored
(Other fields) or transformed into ORMMappingColumnFlow and Relationship-
Mapping instances. Once all information available in the source code is collected
and categorized, the class shall register itself in the registry, so that it can be
worked with later. The whole process can be seen in Figure 6.18.

If all necessary steps for the proper initialization of mapping classes are fol-
lowed, the state of the registry at the end of the process should be approximately
as it is visualized in Figure 6.19.

We are going to consider this state as the base for the ORM operations de-
scribed later in this chapter. Identifier User contains an instance of the ORM-
MappingClassFlow class, referencing the registry and containing information
about the class it represents.

Again, as described above, this can be either the table name or the class name
- this is the implementation detail that needs to determine which identifying value
will be used in registry’s maps. It does not affect the functionality or this design,
though.

On the last two lines, it can be seen that an engine and a session are initialized,
which means that the session is able to identify the data source which is used for
searching mapped tables.
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Figure 6.18: Steps of the algorithm to initialize mapped ORM classes.

6.4.2 Accessing columns
Because in case of mapped classes only a proxy class is returned instead of all
columns of the class, it is necessary to determine how columns would be accessed.
For example, it is a standard practice within the ORM technology to modify
mapped class instances by field assignment in applications:

user_instance = ...load a row from the user_account table...
user_instance.fullname = ’changed-value’

On line 1, only an ORMMappingClassFlow instance of the User class is stored
into the user instance variable. However, on line 2, its column needs to be
accessed. A simple solution is possible using the flow variables feature. Whenever
a field of user instance (or any other ORMMappingClassFlow object) is queried,
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Figure 6.19: State of the ORMRegistry instance after processing the two ORM
mapping classes’ initialization.

the flow only needs to forward the query to its registry. The registry may return a
column, a class (defined by a relationship), or it may return some default value -
this is an implementation detail to be specified later. The ORMMappingClassFlow
object does not need to know all the information and its structure upfront, only
a simple delegation to the registry is needed.

However, one more thing is necessary to be stored. When an ORMMapping-
ClassFlow instance is assigned to the User variable during the mapping class
initialization, no data source is present as it is only a mould for the data.

However, when it is initialized via some session, then it becomes an object,
instead of the ‘mould’ and the origin of its data needs to be stored somewhere.
The Session instance knows the connection string of the engine it is related to
and, therefore, if a Session object creates an ORMMappingClassFlow object, it
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needs to provide the class flow with this information, so that the columns received
from the registry can be cloned with a correct data origin.

In general, the two-line code snippet above would be analyzed by the Python
scanner in the following steps:

1. Right side of the assignment on line 1: creates an ORMMappingClassFlow
instance of the relevant class by cloning the mould of the ORMMappingClass-
Flow and providing it with the connection string retrieved from the session
object.

2. The new ORMMappingClassFlow instance stores the connection string as a
DatabaseDirectReadFlow object.

3. The new ORMMappingClassFlow instance is assigned to the user instance
variable.

4. Line 2 - resolving left-hand side of the assignment: query for the fullname
flow variable over user instance.

5. The ORMMappingClassFlow object queries its related ORMRegistry instance
for flows related to the class User with name fullname.

6. The ORMRegistry instance returns a single ORMMapingColumnFlow object.

7. The ORMMappingClassFlow instance copies the returned column flow and
add an origin to it - a named resource column flow with the parent being
the class flow’s dataSource and the column’s name being fullname.

8. This new column flow is assigned to the user instance.fullname expres-
sion’s flow set, but also to the user instance, because we may insert this
variable to the session (see INSERT operation below), not just the user -
instance.fullname and if we did not do this, we may lose the information
of the assigned field value.

9. The string value changed-value is assigned to that expression’s flow set as
well.

The situation works the same way for the case when the ORMMappingClass-
Flow object is returned (when related class is accessed, not a class field).

6.4.3 INSERT operations
For the case of INSERT operations, there are two general approaches that can
be used - individual and bulk insertions. We will explain how both approaches
would work in current design.

Standard INSERT operation

The code below performs a single row insertion into the user account table.
It uses the default initializer defined in the DeclarativeBase class which uses
arbitrary keyword arguments - init (**kwargs). The instance is, then, as-
signed to the variable user. On line 2, the instance is added into the session,
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which keeps this information internally and on the last line, the transaction is
committed, which means that the changes have been projected into the database
table.

user = User(name="sandy", fullname="Sandy Cheeks2")
session.add(user)
session.commit()

The first thing that needs to be thought about is when are the changes consid-
ered as definite? When is the transaction seen as completed? One, obvious way
is to wait for the commit() function invocation, which would prevent incorrect
deduction in case a rollback() function was called instead. However, this has
got two problems:

1. An operation with calling rollback() at the end makes no sense, except
for the try-catch or if-else blocks, for example, when there is some problem
during the transaction commit and the whole transaction needs to be rolled
back (but in some possible scenario of the program, the commit() function
would be invoked anyway. This means that it is not so crucial to wait for
either a commit() or a rollback() operation.

2. There may be a committed transaction even without the explicit commit()
or rollback() operations. For example, when the session is created and
auto-closed in a with statement:

with Session(engine) as session:
user = User(name="sandy", fullname="Sandy Cheeks2")
session.add(user)

Additionally, the autoflush feature automatically commits all changes upon
a query operation (see Section 4.5.1 for more details), this feature is enabled by
default.

Because of these two problems, it seems that considering any data changes in
ORM as effectively final may be a better idea. This means that for the INSERT
operation, adding user into the session may already by considered as a committed
change. Taking this into consideration, the Python scanner could ignore line 3,
performing only following steps:

1. Process constructor, launch propagation mode that processes initialization
function of the DeclarativeBase class with arbitrary keyword arguments.
Map arguments to the User class’ columns (using keyword arguments’ keys).
Copy these matched columns, setting their origin to be the argument value.

2. Store the newly created column flows into the variable user.

3. Continue with line 2.

4. Launch the propagation mode of the function Session.add() , where for
every added column flow (stored in the user variable, passed as a function
argument), create a new DatabaseDirectWriteFlow instance, retrieving
connection string from the session, and table and column names from the
ORMMappedColumnFlow object. The flow being written (the origin) would
be the ORMMappedColumnFlow instance itself.
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Bulk INSERT operation

For the bulk INSERT, the situation is quite similar. Let us have the following
code:

session.execute(
insert(User),
[

{"name": "steven", "fullname": "Steven Chen"},
{"name": input(), "fullname": "James Bond"},
{"name": "carlos", "fullname": "Carlos Rodriguez"},
{"name": "stewart", "fullname": input()},
{"name": "juliet", "fullname": "Juliet Capulet"},

],
)
session.commit()

In this case, it is important to notice that a bulk insert is, essentially, the
standard INSERT concentrated in a single invocation of the execute() function.
Therefore, expected steps for its successful analysis are:

1. Again, ignore the commit() invocation on the last line.

2. Process insert() function on line 2. Return the ORMMappedClassFlow
object of the User class. Return also the information that the INSERT
operation was used (either as a separate flow instance or in a wrapper
together with the ORMMappedClassFlow instance) - not important for the
design.

3. Process the execute() operation.

4. From the presence of the ORMMappedClassFlow instance, determine that the
inserted class is User. In some corner cases, even several ORMMappedClass-
Flow instances may be present. In such case, for each of them, perform the
remaining steps.

5. For every dictionary in the second argument of the execute() function, be-
have as if an individual INSERT happened. Keywords in DeclarativeBase
. init (**kwargs) are passed as a dictionary as well, so no big changes
are necessary.

6. Because there is information present about an insertion operation, also
simulate the Session.add() operation using the output of the previous
step.

The result would be the same as if there were five individual INSERT opera-
tions executed.
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6.4.4 SELECT operations
In case of the SELECT operation, the scanner must be able to determine which
classes (or even columns) are being selected. Let us have the following code:

users = session.execute(select(User))

Again, the Session.execute() function is used, so the output of the invo-
cation of select(User) must provide it with the information that a SELECT
operation is performed and which objects are being selected (classes or columns).
The steps of the scanner should be:

1. Analyze the select(User) invocation.

2. Propagate the User class’ ORMMappedClassFlow instance and the informa-
tion that the SELECT operation was used.

3. Analyze the Session.execute() function.

4. Determine that a SELECT operation is being executed.

5. For every DatabaseConnectionStringFlow object in the Session instance,
create a new DatabaseDirectReadFlow instance.

6. For every selected ORMMappedClassFlow object:

(a) For every created DatabaseDirectReadFlow object:
i. Create a copy of the ORMMappedClassFlow instance, setting the

dataSource to be the DatabaseDirectReadFlow object.

7. For every selected ORMMappedColumnFlow object:

(a) For every created DatabaseDirectReadFlow object:
i. Create a new ResourceColumnFlow instance named equally as the

iterated ORMMappedColumnFlow object (if the name is unknown,
create an unknown resource column flow) using the Database-
DirectReadFlow object as its parent flow.

ii. Create a copy of the ORMMappedClassFlow object with its origin
being the create resource column flow.

8. Wrap the newly created mapped column and class flows into some kind of a
wrapper flow class, so that propagation modes can be created for iterating
this Result instance (see details in Section 4.5).

9. Return the wrapper flow class.

10. Assign returned wrapper flows to the users variable.

In case of the code snippet above, step 7 would be skipped as no columns are
being selected. However, the following source code would make use of this step,
instead of the step 6:

user_details = session.execute(select(User.name, User.fullname))
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6.4.5 UPDATE operations
The UPDATE operation is the most complex as it is not handled entirely just
by function invocations. While in case of the INSERT and SELECT operations,
explicit functions were invoked performing this operation, in case of the UPDATE
operation, as can be seen in the code snippet below, the UPDATE operation is
done simply by updating a field value of a mapped class instance and committing
these changes.

This means that the analysis of this operation needs to be different. In the
code below, first, all records from the table user account with ID equal to 2
(exactly one record as column ID is the primary key) are selected and, then,
the scalar one() function returns the single record present in the Result ob-
ject. This object is assigned to the variable sandy and its column fullname is
changed to value provided by the user via the console input. This change is, then,
committed by the session.

As described in the analysis, the Session instance maintains the list of ‘dirty’
mapped objects and commits changes (updates) only those records, which are
dirty. In this case, only the table cell in the row with User.id == 2 and column
fullname would be updated.

sandy = session.execute(select(User) \
.where(User.id == 2)).scalar_one()

sandy.fullname = input("Enter user’s full name: ")
session.commit()

We discussed earlier that it is not preferred to wait for the commit() function
invocation which may never happen. If we, again, modify the code to use the
with-statement, the commit() is invoked implicitly:

# equal to the code snippet above
with Session(engine) as session:

sandy = session.execute(select(User) \
.where(User.id == 2)).scalar_one()

sandy.fullname = input("Enter user’s full name: ")

An option to analyze this operation is to modify the way in which assignments
work. The analysis could keep information whether the set of flows assigned to
a variable (or any expression) contains an instance of the ORMMappedColumnFlow
class with origin being a resource column flow of a database.

This signs that the column’s data was loaded from a table, for example, using
the SELECT ORM operation and it is mapped to it. This is very easy to check
as there are only two ways how new flows can be added into a flow set instance
(more specifically, into its modifiable version named MPythonFlowSet):

1. Adding the flow into the constructor.

2. Invoking the MPythonFlowSet#add(PythonFlow) method.

In both cases, it is relatively simple to verify that such flow occurs and if it
does, the set needs to keep all these flows in a separate collection - they would
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be used later. Flows may never be removed from a flow set, so they may never
be removed from the list of found ‘special’ flows as well.

When an assignment occurs, the analysis only needs to check that the flow
being assigned to a variable’s flow set contains at least one of the ‘special’
ORMMappedColumnFlows instances. If that is the case, a new DatabaseDirect-
WriteFlow object needs to be created for each of these ORMMappedColumnFlow
objects. The origin of the data is going to be the assigned expression (the right
side of the assignment), in our case the console input from line 2, and the connec-
tion details can be retrieved from the origin of the ORMMappedColumnFlow object
(its resource column flow is a database, which means that it contains connection
details - the table name and the connection string).

This operation has, however, got a corner case when the data lineage may be
incorrect, for example when the assignment of some data is to simply ‘clean up’
values from the database, and these changed objects are not written back into
the same table, but, for example, to a file or other data source. In the example
below, a console output is shown as the destination for the cleansed data to make
the code more simple:

sandy = session.execute(select(User) \
.where(User.id == 2)).scalar_one()

if sandy.fullname is None:
sandy.fullname = input("Enter backup value: ");

print(sandy)

This is one of the cases when a simpler and faster solution would be traded
for a potentially incorrect data lineage, but these cases could be attributed to the
overapproximation or, alternately, this behavior could be explicitly mentioned as
a known side-effect behavior.
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7. Implementation
Because the implementation of solutions presented in Chapter 6 consists of thou-
sands of lines of code which rely heavily on understanding the Python scanner
in a great detail, we are only going to point out and explain the most important
implementation details in this chapter.

In most cases, however, once the solution is designed, the implementation
does not pose any challenge and it is the amount of code needed to be altered
rather than the algorithmic complexity that makes this task difficult.

7.1 Column handling
The implementation of the column handling feature was the most demanding
since the Python scanner already contained an implementation of database col-
umn handling. Therefore, the implementation did not only require extending the
scanner, but it also required some changes in already existing code.

7.1.1 Column handling classes
To cover many use cases of the column handling, several classes had to be imple-
mented. In this section, we are going to describe them and provide examples of
code when they are used. To maintain readability of classes, only key function-
ality and attributes of classes and interfaces are going to be present in diagrams
for the rest of this section.

PythonColumnParent

We are going to start with the first flow type in the data flow life cycle - the
PythonColumnParent interface. As you can see in Figure 7.1, there are three
extending classes for database, file and console inputs. They map to the three
equally-named standard resources used in other MANTA scanners.

Figure 7.1: Classes implementing the PythonColumnParent interface and their
most important attributes.
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DatabaseDataStatementFlow Represents the database that is being used
for loading data via an SQL query. It carries information about the database
connection. In addition to that, it is also capable of storing the SQL statement
being executed and the parameters being used (if there are any). However, the
functionality tracking SQL parameters is not currently fully supported.

As you can see in Figure 7.1, the class has got an origin attribute, which
makes no sense for a data source. We will clarify this field later in this section.

FileReadFlow Keeps information about the data source which is, in this case,
a file, identified by its file path. Because the file path does not only have to be
in the local file system, resources which can be defined by a path or an URI can
be represented by this flow as well, for example, an Amazon S3 resource.

ConsoleReadFlow A data source coming from the console. This input has
never got any indexed or named columns and, therefore, all three variants of the
createColumn method return the ConsoleReadFlow instance itself. We explained
why console resource and its columns can be represented by the same object in
Section 5.1.

PythonColumn

As we outlined in Section 6.1.7, there are more column types than there are
column parents or resource terminals. The reason for this is simple - while every
resource has to have a column that represents the resource data, columns do not
necessarily have to have a resource they belong to.

As an example, we can use library-specific columns which would typically have
resource columns as their source of data (e.g. file or database columns), but the
library itself is never going to be a resource - we can not write data into a library
or read from it.

Therefore, there are two general types of columns - resource and library
columns, you can see them in Figure 7.2. First, we will describe the widely-used
resource columns, and then we will have a look at library columns.

Because column resource is identified by the PythonColumnParent object that
is their (transitive) origin, we do not have to implement indexed, named, or
unknown columns for file and database separately, but we can unify them and
reuse these objects for both situations.

IndexedResourceColumnFlow Represents a resource column which is iden-
tified by an index (a numeric value) within its resource (a file or a database).

NamedResourceColumnFlow Represents a resource column which is iden-
tified by a name (a string value) within its resource.

UnknownResourceColumnFlow Represents a resource column which has
got an unknown identification within its resource.

92



Figure 7.2: Classes implementing the PythonColumn interface and their most
important attributes.
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ConsoleReadFlow As was the case for the PythonColumnParent interface,
this flow also implements the PythonColumn interface, which helps with simplifi-
cation of the implementation of both propagation modes and transformation of
flows into the data lineage graph.

PandasDataframeColumnFlow The first plugin column is the one for the
usage in the analysis of the pandas library. Library columns can implement more
than one PythonColumn interface’s sub-type because this makes the analysis easier
and there can usually be more than a single identification for some columns.

In this case, the PandasDataframeColumnFlow class implements both Named-
PythonColumn and UnknownPythonColumn interface. If the pandas column’s
name is not known, it is treated as an empty string. The type of the column
is also determined according to the non-empty property of the column name.

Similarly to the PySpark column, this column is also represented as-is without
the wrapping DataFrame flow. We explained this design in Section 6.3.1.

PySparkColumnFlow Finally, the newly introduced column for the PySpark
plugin. It implements all three column sub-type interfaces. It can be identified
by its position within the DataFrame, its name, both, or none of them. These
four states are determined by checking whether the index and name are equal to
their default values (-1 for index and an empty string for the name).

We will discuss the PySparkColumnFlow class and its usage in the plugin later,
in Section 7.3.

PythonResourceTerminal

At the end of the data flow life cycle, we have got four terminal flows, as you
can see in Figure 7.3. When compared to PythonColumnParent interface, there
is one extra flow, which covers a special case that appears, so far, only in the
PySpark plugin.

Figure 7.3: Classes implementing the PythonResourceTerminal interface and
their most important attributes.

DatabaseDataStatementFlow We already described this class among col-
umn parent classes. For this case (output), there is the origin attribute present.
This attribute stores the flow object being written. The rest of the class and its
usage is equivalent to the usage as a column parent.
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DatabaseDirectAccessFlow A special use case for database access. It does
not contain any SQL statement, instead, it specifies that data is written to a
specific column in the table of the defined database connection. Direct database
access is to prevent generating non-existent SQL statements upon column writes -
there are no SQL statements present in the code for DataFrame writing, however,
we are capable of specifying (or estimating) which columns are being written.

FileWriteFlow Similar to the FileReadFlow class with one difference - this
class allows for setting the origin, which is the column being written to the file
represented by an instance of this class.

ConsoleWriteFlow Represents a write to the console. This class can write
any column (or flow) and, as opposed to the ConsoleReadFlow class, it does not
only have to be an unknown column, although the console output in the graph
would only contain a single column.

7.1.2 Transforming columns into data lineage graph
Due to the design of columns, it is relatively simple to transform the flows result-
ing from dataflow analysis into the graph. We need to start the transformation
from the end and construct the data lineage backwards.

Therefore, for every PythonResourceTerminal instance, we:

1. Create an output node for the resource.

2. Create the written column node within the resource-representing node.

3. Find the original column of the written column (see Section 6.1 for more
details on how original column is found).

4. If not found, do not create any input flows and finish.

5. Otherwise, get the original column’s parent, an instance of the Python-
ColumnParent interface, and create its graph node.

6. Create the read column node within the original column’s parent node.

7. Add an edge between the read and written column nodes.

For different column, column parent, and resource terminal class types, there
are different handlers for creating edges, for example, because a file-representing
graph node contains different data than the node representing a database, but
the implementation has only got small differences between handlers and the code
is generally shared among individual handler classes.

No further changes were necessary except for the implementation of direct
database access in the common Dataflow Generator for all intermediate language
scanners (C#, Java and Python).
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7.1.3 CSV Column Recognition
The implementation of the CSV column recognition in the Python scanner re-
quired no design as this feature used the designed column handling in a straight-
forward manner. We will describe in this section what happens in the scanner
when a reader or a writer is used in the analyzed source code.

Using CSV readers

When a new instance of a reader is created (for both common and dictionary
readers), a new FileReadFlow instance is created, using file path(s) present in
the constructor parameter. Then, an unknown column is created for every read
flow - we have no information about the structure of the read file. This file is
then propagated to the return value of the constructor, assigned to the reader
variable in the code sample below:

# open() creates a file path and assigns it to csvfile
with open(’input.csv’, newline=’’) as csvfile:

# common reader
reader = csv.reader(csv_file, delimiter=",")
# dictionary reader
reader = csv.DictReader(csvfile)

The reader instance’s unknown column can then be used in the rest of the
code as the representative of the data read from the CSV file. Rows can, then, get
more granular by invoking the getitem () function over the reader output. In
such situation, we can create a named, or indexed column, with the origin being
the unknown column from the reader.

# common reader
# returns a list with splitting row by comma, indexed by a number
for row in reader:

print(row[0])

# dictionary reader
# returns a list with splitting row by comma, indexed by a string
for row in reader:

print(row[’first_row’])

From the code above we can see deduce that in the first case, we only write
the first column, while in the second case, it can be identified that there is a
column named first row and it is being printed into the console. We will show
how these examples are visualized in MANTA graphs in Chapter 8.

Using CSV writers

The scenario with writers is very similar to that of readers. As we described
in Section 5.1.2, it is only possible to write with CSV writers using functions
writerow and writerows. Writerows is, essentially only bulk writerow and,
therefore, a lot of analysis can be performed the same way.

When writers are created, the scanner only stores the path of the output file
to the writer-containing variable:

96



# open() creates a file path and assigns it to csvfile
with open("out.csv", "w", newline="") as file:

# only propagate path from ’file’ to ’write’, no modifications
writer = csv.writer(file, delimiter=",")
writer = csv.DictWriter(file)

This is because we only create the resource terminal (in this case, of the
FileWriteFlow class) after we get the column being written (remember the data
life cycle from Figure 6.3). Therefore, we must keep the path and wait for the
write operation’s invocation which will contain the data being written into the
file.

Once the function writerow is invoked, the propagation mode we implemented
is used and the input data is analyzed. The function only allows for an iterable
object to be written, such as a list, a tuple, or a dictionary. Therefore, we
can determine the position or the name of the column to which each item is
being written from the key of its DictionaryItemFlow1 object. Then, only these
dictionary items need to be processed and a quite accurate data lineage can be
created. With the index or the name known, a new indexed/named resource
column is created and this new column is, then, the origin of the newly created
FileWriteFlow instance, which can now be created, when the written column
and file path are both known.

For the case of writerows, it is necessary to get the value of every dictionary
item twice, because this function’s parameter is expected to be an iterable of an
iterable, for example:

data = [
[’Alabama’, 28748, ’AL’, ’ALB’],
[’Algeria’, 2381741, ’AG’, ’DZA’]

]

Therefore, we have to treat every iterable in the data variable as a separate
invocation of the writerow. This is the part where the functionality can be
shared.

One last corner case is that a string is also an iterable object. To cover
this case, the scanner simply creates an unknown column, instead of an indexed
or a named column. There is no useful information which can help with the
identification of the column. Below, you can see a situation in which this scenario
can happen:

# written data is from the console input
data = input(’Enter data to be written’)

# create a file path flow
with open("out.csv", "w", newline="") as file:

1A DictioanryItemFlow represents an element of a collection with two values - its key
(index in a list, a string or any other value in a dictionary), and its value. All dictionary items
form a dictionary by simply being associated to the same expression. In code li = [’a’,
’b’], variable li would contain two dictionary items - one with key 0 and value ’a’, the other
with key 1 and value ’b’.

97



# assign path to ’writer’
writer = csv.writer(file, delimiter=",")

# create an unknown column with origin being console input
# and assign this column to a file write flow
writer.writerow(data)

7.2 Flow Variables
The implementation, based on the design, is very simple. All modifications that
have been made in the source code match the changes proposed in the design of
this feature in Section 6.2 and, therefore, it makes no sense to repeat it. Instead,
we can demonstrate how it is utilized in the PySpark structures designed in
Section 6.3. In Section 6.3.3, we discussed that flow variables were going to be
important in order to resolve the SparkSession’s read and DataFrame’s write
attributes.

The flow variables feature was developed in order to be easy to use and, as
we will show in code snippets of this section, it only requires a couple of lines of
code to configure.

Let’s start by having a look at the commands necessary for obtaining a
PySparkReaderFlow instance from the PySparkSessionFlow object via an ac-
cess to its read property.

The flow variable setting is, therefore, very simple. When the read attribute
is accessed, the session instance creates a new reader instance, exactly how it
is done in PySpark upon every property access and, this new reader flow, is
returned. When the PySparkSessionFlow object is created, the constructor only
needs to register a single entry into its flow variables in order to make the field
access work properly. The needed command can be seen below.

addInnerFlowMapping("read", key -> Collections.singleton(
new PySparkReaderFlow(AExecutableFlow.START_NODE_INDEX,

executable, this)));

As you can see, even though the function accepts a single argument, it is not
used as there is no need for that. The PySparkReaderFlow class requires a session
argument in its constructor, which, currently, does not have much use. However,
it is implemented in this way due to the fact that it is likely that sessions are
going to be tracked in the future to provide a more detailed analysis. We discussed
sessions in Section 3.4.5.

A similar approach is used for the write property access of DataFrames. For
every column present in the DataFrame that’s writer is needed, the column shall
return itself as a part of the writer’s referenced DataFrame. Therefore, every
PySparkColumnFlow object simply needs to return itself when it is queried for
the writer property:

addInnerFlowMapping("write", key -> Set.of(this));
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This way, all columns are successfully propagated to writing functions of the
DataFrameWriter class. If it was not for this flow variable configuration, no
columns would be available and, therefore, data lineage information for the write
operation would be lost.

There is one more use case for the flow variables in PySpark’s columns. Since
columns can be obtained by field access: df.column where column is a name of a
column in the target DataFrame, a simple configuration of flow variables enables
this functionality also in the Python scanner’s analysis.

All that is needed is to add a new mapping, where the key of the mapping is
the name of the column and the returned value is the column flow instance itself,
as you can see in the code snippet below. Note that this only works for named
columns and for other column types, this configuration is omitted.

if (!getColumnName().equals("")) {
addInnerFlowMapping(getColumnName(), key -> Set.of(this));

}

When the column is, then, queried, the analysis iterates over all flows of
the DataFrame, in our case over all column flow instances, and tries to find the
one with the correct name, using flow variables. All columns return an empty
set except for those that are wanted. Thanks to flow variables and a single
command, it was possible to support another commonly used feature of PySpark’s
DataFrames.

There are many more use cases for this feature in the future, however, for
now, only the PySpark plugin makes use of it.

7.3 PySpark Plugin
The implementation of the PySpark plugin contains the four core model classes
designed in Section 6.3: PySparkColumnFlow, PySparkReaderFlow, PySpark-
SessionFlow, and OptionFlow. These structures are implemented according to
the design and, therefore, there is nothing relevant to point out except for the
flow variables usage, which was already described in the previous section.

Instead, in the following sections, we will focus on several implementation
specifics not mentioned before.

7.3.1 Column builder
Because of the way how columns are chained to each other during analysis to
track changes of columns, it happened many times that PySpark columns had
to be duplicated with very small changes, for example, only changing the name
of the column or its index. Since this task was very repetitive, creating long
constructors due to the fact that PySpark columns contain a lot of information,
an auxiliary column builder was created, named the PySparkColumnBuilder,
which simplifies this duplication.

In principle, it can be seen as a modifiable, temporary, version of the PySpark-
ColumnFlow class, which is used during propagations, but never propagated out
of a propagation mode - that is also why it is not a flow, to prevent it from being
used incorrectly.
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The builder contains a couple of factory methods for its initialization - either
to initialize from an existing PySpark column or to initialize from scratch:

public static PySparkColumnBuilder from(
PySparkColumnFlow originalFlow)

public static PySparkColumnBuilder from(
FunctionDefinition functionDefinition)

These are the only two ways how to obtain an instance as the constructor is
private. Once an instance is obtained, it can be modified using simple setter-type
methods utilizing the fluent interface by returning the instance itself. There are
methods to change the name, the index, or, for example, to add a column alias:

public PySparkColumnBuilder withName(@NonNull String name)

public PySparkColumnBuilder withIndex(int index)

public PySparkColumnBuilder withColumnAliases(
@NonNull Collection<String> aliases)

When all modifications are done, the builder is used to turn it into a PySpark-
ColumnFlow instance using the build() method. There are different version of
this overloaded method for different use cases. The non-parameterized one can be
used when the origin of the new column shall be the original one (or no origin at
all in case the builder was not initialized from an existing instance of a PySpark
column flow). Other versions allow for defining the origin(s) of the newly create
column(s).

The builder is easily extensible, so only a new field and a setter method are
necessary if the PySparkColumnFlow class adds more properties in the future.
Thanks to this solution, the implementation of propagation modes has gotten
simpler and easier to read.

7.3.2 Reading and writing of DataFrames
When we look at how DataFrame read and write operations work in general,
they are very similar. First, there needs to be some analysis of options present
in the reader or writer - the target format, source/target file path or database
details. Then, the format is used to distinguish between file- and database-based
operations. For each of these operations a different action is performed as they
work with different data strucutres.

However, the part of option resolving and the overall division among file- and
database-based operations is common regardless of the fact whether we are ana-
lyzing a reading or a writing operation. Therefore, it makes sense to create a prop-
agation mode that would take care of these common parts once, reducing code
duplicity. For this use case, the PySparkIoPropagationMode class was created,
which provides its extending classes a method named createResourceFlows()
performing three steps:

1. Collect options of the I/O operation
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2. Categorize the format and decide between a file- and a database-based
operation

3. Create resources per selected operation

4. Return created resource flows

The third step, creation of resources, is entirely configurable by declaring both
file- and database-based operation as abstract methods, enforcing an implemen-
tation by extending classes. This makes the createResourceFlows() a template
method.

It means that for reading operations, the propagation mode handling this
part of analysis must define how file read flows are created and which options are
used for this, and similar stands for database resources - it defines how database
statement flows are initialized as well. Everything else, though, is handled by the
common propagation mode.

For write operations, the situation is similar, as the PythonResourceTerminal
flow creation needs to be defined for both resource types (console is, obviously,
ignored). However, write operations do not propagate any flows since they are
effectively terminal in the life cycle of columns within the Python scanner analysis.
Therefore, the output of step four of the template method is ignored.

Due to this implementation, the read- and write-operation-handling propa-
gation modes can focus on handling their specific tasks and the common part is
handled separately in their common abstract base class.

7.3.3 PySpark transformations
At the beginning of Chapter 5, we pointed out a few DataFrame transformations
which we deemed the most important in terms of data lineage analysis of the new
PySpark plugin for the Python scanner. Analysis of some of these transformations
was simpler, but in some cases, several different scenarios had to be taken into
account. Below, we describe every transformation propagation mode and its
steps. We briefly described these functions in Section 3.4.2.

crossJoin()

Same as join().

drop()

No action for this transformation. The problem is that for deleting operations,
like this one, there is no data flow present. In order to keep the overapproximation
approach to the analysis, no changes are made upon invocation of this method
in the source code. A problem may occur if the parameter of the target drop
column contained more than one value and, as a result, more columns would be
dropped than intended and, as a result, the data lineage would lose some data
flows. Consider following source code:

df = ... # contains columns col1 and col2
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my_var = ’col1’
... some operations ...
my_var = ’col2’ # my_var contains flows of both col1 and col2

df2 = df.drop(my_var) # col1 is incorrectly dropped

In the source code above, due to the fact that flow sets of variables can only
be extended, not overridden or have their flows dropped, the my var variable
would contain constant flows for both col1 and col2 before the drop() function
is analyzed. As a result, if we processed the drop transformation, two columns
would be matched and dropped. even though only a single column is dropped in
the source code.

This is an incorrect propagation and in case the resulting DataFrame was
written into a data source, the col1 column would be missing in the data lineage
graph. Therefore, there is no propagation for this function.

join()

The join statement aggregates columns of two DataFrames using a join expres-
sion. While there is no change needed for the receiving DataFrame no matter
what, the joined DataFrame’s columns are appended and the columns from joined
expression are merged.

Since the evaluation of expressions is not supported by the Python scanner,
we can only claim that all columns are simply appended, including columns on
which the join is performed. Because we may not have a complete information
about the amount of columns in the receiving DataFrame (for example, when
we only deduce some columns without a provided schema), the precise position
(index) of joined columns can not be set. Therefore, appended columns have got
their indexes removed.

select()

In case of the select() function, two types of parameters can be passed - either
PySpark column instances or just their names. Because the function uses the
arbitrary parameter *cols, the Python scanner wraps all parameters into a col-
lection and when the propagation starts, it first must unpack all collection items.
Then, matching is performed:

1. Matching by column instance - the passed columns are matched against
columns present in the DataFrame and if they match the selection, they are
returned.

2. Matching by column name - this matching has got two different scenarios:

(a) An asterisk is encountered - simply return the selected DataFrame
as-is.

(b) An asterisk is not encountered - three types of columns are returned:
• Columns whose name matches at least one of the columns to be

selected.
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• Columns whose at least one column alias matches at least one of
the columns to be selected.

• Unknown columns - to cover these columns within overapproxi-
mation, mapped to columns with the searches names.

Columns returned from both matching approaches are, then, returned. Since
selecting is highly schema-oriented, this propagation may cause significant over-
approximation. However, it is necessary in order to capture all possible scenarios.

union()

In PySpark, the union() transformation is based on the merged columns’ in-
dex, instead of names. This means that columns need to be matched with their
columns and columns with an unknown index need to be considered as well. The
propagation mode works in several steps:

1. Collect all columns of the receiving DataFrame - columns into which is the
other DataFrame unioned - later named receiver columns.

2. Collect all column of the other DataFrame - the one being unioned - later
named other columns.

3. Categorize all origins of other columns into sets per index (position) -
columns without an index are all at index -1 as unknown position. These
origins shall be added into every column (overapproximation).

4. Add all column sources from other columns matching the given index to all
receiver columns with matching indexes, creating a their copy with assigned
proper origin of data. Same for columns with an unknown index.

5. If there is an unknown column among receiver columns, add all other
columns to that column as its origin via making a copy and assigning it
as the copied receiver column’s origin.

6. Add the newly discovered columns from other columns, not present in the
original flow. If there was and unnamed-and-unindexed column among re-
ceiver columns before, it was already merged with matching other columns.
If there was no such column it is created in this step as an overapproxima-
tion.

Due to a high chance of missing parts of DataFrame schema data, this prop-
agation is very complex and needs to cover many combinations. Again, in some
situations, this may cause a considerable overapproximation.

unionAll()

Same as union().
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withColumn()

A simple propagation with two arguments - the name of the added column and
the instance of the column to be added. It is necessary to collect the added
column’s name(s) and the column(s) to be added. Then, permutations are made
for every added column and every column’s name, when the column is simply
renamed and added to the DataFrame.

withColumnRenamed()

Again, a simple propagation. Collect the name(s) of the columns to be renamed.
Then, collect the name(s) to which the matching columns shall be renamed.
Then, only an iteration of the DataFrame’s columns is necessary and a change of
name is needed for all columns matching the name(s) of the renamed columns.
For all matching columns, new columns have to be created for every new name
found. Because of the same scenario as for the drop() function, no columns are
removed, only the renamed columns are added.

7.3.4 Testing
As it is common in the Python scanner, there are three levels of testing related
to the new PySpark plugin:

1. Unit tests - test that propagation modes implemented in the plugin work
as expected for various inputs, corner cases and correct deduction when
certain pieces of information are missing is tested.

2. Integration tests - realized on the level of the Python reader. The whole
process from parsing, through alias and symbolic analysis, until the result
transformation is executed. These tests make sure that all scanner’s com-
ponents used by the reader in data lineage analysis work properly and the
result matches the expectations.

3. System tests - implemented in the module which configures the common
Dataflow Generator to process the outputs of the Python scanner’s reader.
We mentioned the common Dataflow Generator in Section 2.2.3. These
tests verify that all outputs produced by the analysis of the Python scanner
are transformed correctly by the common generator component and the
actual graph, which is visualized in MANTA Viewer, looks as-expected.
These tests utilize other MANTA scanners and components, for example
those, which handle creating database or file system nodes and edges.

There are around two hundred unit tests and in case of integration and system
tests, only a few testing scenarios verifying the functionality of the PySpark
plugin are present. Both integration and system test inputs are Python scripts
and, therefore, it is possible to test the whole plugin in only a few scripts which
use several functions handled by the PySpark plugin and ensure that inputs and
outputs of propagation modes work well together and no data lineage is lost.

According to SonarQube, the code quality analysis tool used in MANTA’s
CI/CD pipeline, the code coverage of unit tests is 43,5% for the PySpark ex-
tractor, and 96,4% for the PySpark dataflow plugin. The low extractor coverage
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is mostly caused by the fact that extractor tests are, in general, executed in
the Python scanner’s extractor-core module, and this coverage is not taken into
account for the specific extractor module.
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8. Evaluation
In this chapter, we would like to demonstrate that the features implemented in
this work, namely the CSV column recognition, flow variables, and the PySpark
plugin, work and produce the expected data lineage graph.

We are going to use two separate examples as there is not much connection
between the source code using CSV reader and/or writer, and the PySpark func-
tionality. First, we are going to present, explain, analyze, and show the result of
the CSV column recognition functionality, and then, we will repeat the process
with the PySpark input source code.

Note that the analyzed source code is created in order to highlight the new
scanner functionality and it may not entirely make sense to execute it in a pro-
duction environment. However, with minor adjustments, both examples could
make sense even to be used by users in real-world use cases. Presented scripts
can be executed without an error given the file and database environment needed
is correctly prepared. In terms of the Python syntax, all source code is valid.

8.1 CSV column recognition example
As mentioned earlier, we are going to focus on the demonstration of the CSV
column recognition first. As you can see in Figure 8.1, the code is not very long
and is limited to only focus on the functionality we implemented within this work,
which allows us to see clearly how the scanner behaves in reality.

First, on line 4, the example program opens a file named names.csv, which is
the input data source for the instantiated dictionary CSV reader on line 5. Then,
on line 7, another file output.csv is opened, which is used as the target file for the
common CSV writer on line 8. With the reader and the writer created, the actual
data operation is executed on lines 10-12, where the reader is used to read all
input data source lines iteratively, with each line’s values of columns last name
and first name are written into the output file, using the writerow() function.

In case of the reader, its string constant access option is used, while for the
common writer, values are passed by position in a tuple. We explained how CSV
readers and writers work in Sections 5.1.1 and 5.1.2.

Scripts like this can be used in situations when data sorting, filtering, or
cleansing is desired in order to create data sets for certain data marts. If a
system outputs a lot of data into CSV files, but only certain columns are needed
for a particular data set, CSV reader and writer may be used.

Having the input source code explained, let’s have a look at how its data
lineage graph.

You can see the output of the output graph of the analysis of the Python
scanner in Figure 8.2. On the left- and right-hand size, nodes in the shades of the
green color are file system nodes, while yellow- and black-colored nodes represent
the Python technology in this graph visualized by MANTA Viewer.

On the left side, we can see that two columns are being read, which is the
information deduced from the invocation of the getitem () function on lines
11 and 12 (string constants in brackets). These two columns are loaded into the
Python column, note that the scanner determines the line of this read operation
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1 import csv
2
3
4 with open(’names.csv’, newline=’’) as infile:
5 reader = csv.DictReader(infile)
6
7 with open(’output.csv’, ’w’) as outfile:
8 writer = csv.writer(outfile, delimiter=’,’)
9
10 for row in reader:
11 writer.writerow((row[’last_name’],
12 row[’first_name’]))

Figure 8.1: Source code analyzed by the Python scanner to demonstrate the CSV
column recognition feature.

to be four, instead of eleven. That is because the file operation, which wraps the
columns, began on line 4, when function open() was invoked.

Edges between the two groups Python nodes in the middle of the figure show
that the values in the first column originate in the input file’s column last name
and values in the second column originate in the input file’s column first name,
just as we would expect. Note that indexed columns start with number one,
as it is defined in MANTA that the unknown column in nodes of the Python
technology is marked as zero, while in file system nodes, the unknown column is
marked as number one.

This is also the reason why columns one and two from the Python output
lead to columns two and three in the output file. When the user views the graph,
they can see that if a system (BI, or ETL tool, other program) loads the data
from the file output.csv, it actually reads the data that originate in input.csv.
Column deduction yielded expected results and the data lineage graph provides
as detailed information as it is possible to retrieve from the source code.

8.2 PySpark plugin example
Now, let’s get to the second example, which focuses on demonstrating how the
PySpark plugin works. The source code for this example is in Figure 8.3. It is
much longer as there is a lot of functionality to demonstrate, although not all
implemented propagation modes are used in order to maintain readability of the
input and also the output data lineage graph. Equally to the previous example,
this program can also be seen as a script to perform a simple ETL1 task within
a larger ETL pipeline.

Before we present the result of the data lineage analysis, let’s analyze the
input. The script can be split into five main parts:

1Extract, transform and load. It is a common data process which names tasks which, in
general, are performed three stages. The first stage loads a data from a source, the second stage
performs a certain data operation, and the last stage writes the output of the operation into
another data source
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Figure 8.2: Data lineage graph of the input from Figure 8.1.
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1. Lines 1-4: PySpark imports - this is the least important part, importing
the essential functionality from the PySpark SQL module.

2. Lines 6-11: Defining DataFrame schemas - to show how column de-
duction is also possible in the PySpark plugin, two DataFrame schemas are
defined first which will be used later in the code. The first schema, db -
schema, contains two fields - FULL NAME and COUNTRY. The second
schema, csv schema, contains columns COUNTRY and CUST CLASSIFI-
CATION. There is an equally-named column present in both schemas which
will be utilized later.

3. Lines 13-24: DataFrame initialization - in this part, two DataFrame
instances are created. First, the db df is created by loading a database
table from a resource defined by a JDBC connection string and using the
db schema defined in the previous step. The second DataFrame, csv df is
created by using the CSV file data source ./countries.csv, using the csv -
schema schema.

4. Lines 26-28: DataFrame operations - here, the DataFrame instances are
modified, a simple data transformation is performed. First, a new column
named REGION is added into the csv df DataFrame. Then, the col-
umn FULL NAME of the db df DataFrame is reanamed to CUSTOMER -
NAME. Lastly, a new DataFrame, joined df, is created by joining csv df
to db df. Remember that the join operation is matched by column name,
as we described in Section 7.3.3, so the COUNTRY column of both schemas
shall be merged into a single one.

5. Lines 31-38: DataFrame writing - the last part of the example source
code performs two write operations of the created joined df DataFrame.
First, there is a write operation of all columns into a CSV file joined -
df file.csv, and then, columns CUSTOMER NAME, COUNTRY, and are
selected and written into a database table dwh.CUSTOMER CAT.

Now that we have explained what the example source code does, we can show
and describe the output data lineage graph, which is shown in Figure 8.4. The
color scheme of nodes per technology remains the same, with the light-green color
representing the MS SQL technology.

As you can see in the graph, loading of the db df DataFrame is shown in
the top-left part of the graph (bottom-left corner of the page). The PySpark
plugin correctly deduced that two columns FULL NAME and COUNTRY were
loaded from the specified database data source and the table. However, due to the
overapproximation caused by the way how the scanner processes collections, two
other columns are shown in the graph. On line 10 in the script, the two fields are
passed to the StructType class constructor in a list, with indexes 0 and 1. How-
ever, the scanner passes this information after extracting the two StructField
objects, which makes the plugin create two indexed PySpark columns and there
is not much that can be done within the PySpark plugin to limit this behavior.

The initialization of the csv df is shown in the bottom-right corner of the
page, with, again, two correct columns, and two indexed columns resulting from
the way that collections are processed.
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1 from pyspark.sql.session import SparkSession
2 from pyspark.sql.types import StructType, StructField, \
3 IntegerType, StringType
4 from pyspark.sql.functions import lit
5
6 field1 = StructField("FULL_NAME", IntegerType(), False)
7 field2 = StructField("COUNTRY", StringType(), False)
8 field3 = StructField("CUST_CLASSIFICATION", StringType(),False)
9
10 db_schema = StructType([field1, field2])
11 csv_schema = StructType([field2, field3])
12
13 spark = SparkSession.builder.getOrCreate()
14 db_df = spark.read \
15 .format("jdbc") \
16 .schema(db_schema) \
17 .option("url","jdbc:sqlserver://localhost;database=manta")\
18 .option("dbtable", "dwh.rep_client") \
20 .option("user", "username") \
21 .option("password", "password") \
22 .load()
23
24 csv_df = spark.read.csv("./countries.csv", schema=csv_schema)
25
26 csv_df = csv_df.withColumn(’REGION’, lit(None))
27 db_df = db_df.withColumnRenamed(’FULL_NAME’, ’CUSTOMER_NAME’)
28 joined_df = db_df.join(csv_df)
29
30 # write resulting dataframes to CSV and database
31 joined_df.write.csv("joined_df_file.csv")
32
33 joined_df.select(’CUSTOMER_NAME’, ’COUNTRY’,
34 ’CUST_CLASSIFICATION’).write \
35 .format("jdbc") \
36 .option("url","jdbc:sqlserver://localhost;database=manta")\
37 .option("dbtable", "dwh.CUSTOMER_CAT") \
38 .save()

Figure 8.3: Source code analyzed by the Python scanner to demonstrate the
PySpark library support.
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These two DataFrames are, then, mixed together in the fourth part of the
source code. We can see that there is a newly created column REGION nested
under the Stream: Output [29:0] node, which was created in the operation on
Line 26. We can also see that there is a renamed CUSTOMER NAME in both
output Python nodes, which was renamed on line 27. Remember that we do
not remove any columns even during the rename operation, as we described in
Section 7.3.3, so the original column FULL NAME is present as well.

The last important thing to notice in this graph is that there is a properly
joined column COUNTRY, from line 28. This column should have its origin from
both DataFrames, as they both contain a column with this name. Data lineage
for this column is highlighted in Figure 8.5. As you can see, the COUNTRY
column of both DataFrames is the origin of the written column with the same
name from DataFrame joined df.

Note that as part of approximation, all columns without a name of the joined
DataFrame (the one passed as an argument of the function), are the source of
this column as well - see columns 1 and 2 of the CSV-file-originating DataFrame.

As for the DataFrame written into the database, the plugin managed to cor-
rectly match selected columns to their instances in the written DataFrame and
not include any other columns as part of an overapproximation.

8.3 Limitations and Future Work
As demonstrated in previous sections, scanner extensions designed and imple-
mented in this work are capable of analyzing the source code containing con-
structs for which they were implemented on a satisfactory level.

8.3.1 PySpark SQL coverage
It is relatively common that there is some room for improvement and this outcome
is no exception.

Because it turned out that the PySpark technology is too large to be supported
entirely as a result of this work, the plugin is fairly limited in the amount of
PySpark functionality it can process. This is, however, not a large blocker as
extending the plugin is simple as core data structures are already implemented
and only new propagations have to be configured or created.

8.3.2 PySpark tables
Despite the fact that the PySpark plugin supports a majority of reading and
writing operations, there are still some that are left unhandled. It is especially
the piece of functionality regarding PySpark’s tables. While most data is persisted
in a database or a file, it is possible to also persist data in tables managed by
PySpark. This allows for an effortless usage of PySpark SQL queries as these
saved table names can be used in queries as if they were created in a standard
data resource.

DataFrames can also be created by specifying the table from which the new
DataFrame shall be created, using the DataFrameReader’s table() function.
They can be written into a table via the function saveAsTable() of the class
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Figure 8.4: Data lineage graph of the input from Figure 8.3.

112



DataFrameWriter. While this is not a piece of functionality which we declared
to support within this work, the plugin may miss some important data lineage
information without the support for the analysis of these two functions.

8.3.3 Support for other PySpark modules
As it was mentioned several times in this work, the PySpark library comprises a
lot of functionality split across several large modules and we only developed the
plugin to support the elementary functionality of the PySpark SQL.

In the future, the plugin will have to be extended in order to be useful in
more user scenarios and to be able to discover and analyze as much data lineage
as possible, for example, to analyze data lineage when PySpark’s MLlib module
is used. This is, however, a subject to prioritization based on the requirements
from users. The functionality needs to be chosen as it is almost impossible to
cover the whole library.

8.3.4 Overapproximation
When we described data lineage graphs in the previous section, we often men-
tioned certain data flows which occurred as a result of an overapproximation.
While it is impossible to entirely remove some incorrect data flows in data lin-
eage graphs produced by the Python scanner, mainly due to certain operations
depending on runtime information which is not available during the static anal-
ysis, it may be reduced.

In terms of the PySpark plugin, there are some pieces of propagation modes
written a little too generally, for example, the processing of DataFrame schema,
as we have shown in the graphs, or algorithms for matching DataFrames in join
or union operations. The issue with the precision is also rooted in the fact that
the actual behavior of PySpark in certain scenarios is not mentioned in the doc-
umentation and, therefore, a deep analysis of Spark code, which is called from
within the PySpark library, is necessary.

This makes improving the precision of the scanner very difficult and makes
room for imprecision. To mitigate incorrect behavior of the plugin, overapprox-
imation is used to cover the actual data flows, even if that means that several
incorrect data flows may be present.

8.3.5 No analysis of CSV reader and writer field names
One of the constructor parameters of the CSV dictionary reader and writer is
named fieldnames. This parameter may be passed which defines the structure
of columns being read or written. The scanner, currently, does not analyze this
piece of information even if it is available, as the implementation of the support
for CSV readers and writers was implemented to show that the column deduction
works even in simpler cases than in the PySpark plugin.

Adding the analysis of field names to make column-level data lineage more
accurate is not, however, very difficult and would not pose a major challenge to
anyone who would try to add this feature into the Python scanner in the future.
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Figure 8.5: Data lineage graph of the input from Figure 8.3 with highlighted
lineage for the column COUNTRY.
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9. Conclusion

In this project, we have managed to successfully develop a PySpark plugin
for the Python scanner capable of analyzing Python scripts which use the most
common functionality of the PySpark library. This module is fully integrated in
the scanner and it is a part of the MANTA Flow production deployment.

The plugin currently supports the elementary functionality of the PySpark
library which on one side is able to detect and analyze data flows during its
whole life cycle within the Python source code, but this analysis is limited by
the number of supported input/output options and, additionally, by the amount
of transformations which can be processed by the scanner. In the future, several
extensions are going to be necessary as new use cases are going to be encountered
in user source code. Since the library is enormous, it is almost guaranteed that
new features are going to be required.

As we have shown in the last chapter, the plugin works as expected and is able
to create the data lineage which employs all information available in the source
code to produce as detailed graph as possible.

We also analyzed and designed a solution for the analysis of ORM source code.
As it turned out, due to the heavy employment of type annotations in declarative
ORM approach, it was not possible to implement support for the analysis of
this technology in the SQLAlchemy library, which would require an additional
implementation of processing of advanced Python features in the scanner’s core
and, therefore, extending the scope way past what was originally intended.

However, the design is detailed enough to not require any significant amount
of time to design the last details before the implementation. As a consequence,
when the blocking features are implemented, it shall be a fairy trivial task to
implement the support as all major problems were already resolved in the design.
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A. Attachments

A.1 User Documentation
To run extraction and data flow analysis of the Python scanner module, several
environment requirements need to be fulfilled:

• Java 11 needs to be installed on your computer.

• MANTA Flow has to be installed on your computer. This can be a major
problem since only customers and developers of MANTA usually have access
to this program.

A.1.1 Building the project
Our code consists of the PySpark plugin module integrated into the Python scan-
ner and several modified files across the whole scanner which allow for a proper
functioning of the plugin and other features implemented in this work. Since the
scanner is already part of an experimental release of MANTA Flow, no building
of the project is necessary as it is already present in every installation of the
software. During the deployment of the Python scanner into MANTA Flow, all
modules of the Python scanner are built to ensure that all module dependencies
are satisfied.

A.1.2 Running the Scanner Module
If a user has got the MANTA Flow installed on their computer, they need to create
a new Python connection, which defines whence the analyzed source code shall
be extracted. After the extraction is finished, the user may edit the extraction
configuration to select the module, or the function, where the analysis shall start.
After that, extraction must be run to save changes and then, the DataFlow
analysis scenario may be run, which launches the analysis of the extracted Python
source code.

The output of the analysis can then be visualized and examined by the
MANTA Flow Viewer, as we have shown in some of the figures used in this
thesis work.

A.2 Contents of the Attachment
The attachment comprises following items:

The source-code/Connector folder, which contains the source code produced
within this work. Note that these are just classes and other pieces of code written
entirely within this work, not the whole Python scanner and, therefore, a lot of
related source code is missing. The source code is hierarchically split into modules
and components as they appear in the production code.

Additionally, files which were modified, but not written entirely, are not in-
cluded. This is, mostly, related to two features - Flow variables and CSV col-
umn recognition as they mostly modified the existing implementation and classes.
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Changes made to implemented these two features can be found in the following
diff files:

• source-code/csv-column-recognition-implementation.diff
Contains changes for the CSV column recognition feature implementation.

• source-code/flow-variables-implementation.diff
Contains changes for the Flow variables feature implementation.

The thesis.pdf, which is the PDF version of this text.
The tex-source folder, which contains the TeX source code used for compiling

this text. If it is needed to inspect some large diagrams or other figures in a
greater details, all of them are present in this folder, in the sub-directory named
img.
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