
MASTER THESIS

Bc. Jǐŕı Filek

Hierarchical Version of the Wave
Function Collapse Algorithm

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Vojtěch Černý

Study programme: Computer Science

Study branch: Visual Computing and Game
Development

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor Mgr. Vojtěch Černý for his help during the
development of this project and many great ideas. I would also like to thank my
family, friends, and colleagues for their support.

ii

Title: Hierarchical Version of the Wave Function Collapse Algorithm

Author: Bc. Jǐŕı Filek

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Vojtěch Černý, Department of Software and Computer Science
Education

Abstract: Maxim Gumin’s Wave Function Collapse (WFC) is a recent algorithm
used for procedural content generation. The algorithm uses constraint solving
and local similarity to generate outputs. However, it struggles to generate large
or complex outputs. We aim to generalize the original work to make the algo-
rithm work hierarchically on several different granularities. We show that this
approach is promising and yields better results than the original algorithm in
several challenging domains. Our approach also provides better controllability of
the outcome. The algorithm has applications in the field of procedural content
generation to generate different kinds of 2D game levels. It can provide good
variability for the players and save the time of game designers.

Keywords: Hierarchical Wave Function Collapse, Wave Function Collapse, Pro-
cedural Content Generation, Computer Games

iii

Contents

Introduction 3

1 Background 5
1.1 Procedural Content Generation 5
1.2 Constraint Satisfaction Problems 6
1.3 Wave Function Collapse . 7

1.3.1 Overlapping Model . 8
1.3.2 Simple Tiled Model . 10

1.4 Inputs . 11

2 Analysis 14
2.1 Motivation . 14
2.2 Hierarchical Wave Function Collapse 15

2.2.1 Enforcing Minimal Size . 17
2.2.2 Upscaling . 18

2.3 Modifying Wave Function Collapse 19
2.3.1 Early Tile Placement . 19
2.3.2 Borders . 21
2.3.3 Non-rectangular Output 22
2.3.4 Auto-tiling . 23

3 Experiments 25
3.1 World Map . 25

3.1.1 The First Layer . 26
3.1.2 The Second Layer . 28
3.1.3 The Third Layer . 32

3.2 Dungeon . 38
3.2.1 The First Layer . 39
3.2.2 The Second Layer . 41
3.2.3 The Third Layer . 47

4 Results 50
4.1 World Map . 50

4.1.1 Generated Maps . 50
4.1.2 Comparisons . 53

4.2 Dungeon . 59
4.2.1 Generated Maps . 59

1

4.2.2 Comparisons . 63
4.3 Performance . 68

4.3.1 World Map . 68
4.3.2 Dungeon . 69

5 Implementation 71
5.1 Wave Function Collapse Unity Wrapper 71

5.1.1 Tile Painter . 72
5.1.2 Training . 73
5.1.3 Model Wrappers . 73

5.2 Modifications . 74
5.2.1 Base WFC . 74
5.2.2 Early Tile Placement . 74
5.2.3 WFC Postprocessing . 77
5.2.4 Runtime . 77

5.3 Hierarchical Controller . 78
5.3.1 Editor . 82
5.3.2 Seed . 84

Conclusion 85

Bibliography 87

List of Figures 89

List of Tables 92

List of Abbreviations 93

A Attachments 94
A.1 Unity Project . 94
A.2 Build . 94
A.3 User Documentation . 94

2

Introduction
Maxin Gumin introduced the Wave Function Collapse algorithm (WFC) in late
2016. [Gumin, 2016b] It was a new approach to procedural content generation. It
uses constraint solving to create its output. This is relatively rare in the field of
procedural content generation. It opens a possibility for a lot of further research
since it has not been explored enough. We will deal with it in much more in
chapter 1.3.

The Wave Function Collapse algorithm was introduced for a 2D generation.
It takes a bitmap as an input and generates outputs with similar characteristics.
It is great for small and simple scenarios. The algorithm is also very flexible and
can generate totally different kinds of outputs. However, it struggles to generate
complex and structured outputs. It is also very hard to control to generate
outputs satisfying given constraints. To alleviate this issue, it has already been
combined with other methods used in procedural content generation. [Minini and
Assunção, 2020]

Goals

The primary goal of this thesis is to combine the Wave Function Collapse al-
gorithm with itself. We mean that we can create several instances of the Wave
Function Collapse algorithm, each generating totally different kinds of outputs.
Then we can combine those instances instead of using other procedural content
generation methods. We will combine them in a hierarchical way.

Since it is whole new research, we will need to discover many improvements
to make our algorithm controllable and applicable to challenging problems. We
designed two such example problems: a World Map and Dungeon generation.

Another important aspect is to compare it with the regular Wave Function
Collapse. It is important to compare both the quality of generated maps and the
performance of both algorithms. This way, we can determine if it is a promising
area for further research or, rather, a dead-end. Wave Function Collapse is a
constraint solver, which makes it computationally intensive. Therefore, we also
need to explore its performance since another significant performance cost might
make the algorithm unusable.

Finally, we aim to provide a decent user interface for our hierarchical version.
The algorithm itself is very difficult to control. Having its hierarchical version
difficult to set up might also make the algorithm unusable because the learning
curve would be too steep.

3

Structure

In chapter 1, we will discuss the background information about procedural content
generation, and mainly Wave Function Collapse algorithm. In chapter 2, we will
discuss the hierarchical version of the algorithm. We will also focus on many
modifications of Wave Function Collapse to make it better for our use case.

In chapter 3, we will demonstrate the usage of the hierarchical algorithm. We
will apply it to generate a World Map and a Dungeon, discussing and explaining
every design decision we make. This chapter is significant for understanding
how to apply the hierarchical algorithm to different problems. We will show and
discuss generated outputs in chapter 4. We will also compare them with regular
Wave Function Collapse outputs regarding quality, satisfying design requirements,
and performance. Finally, we will discuss the Unity implementation in chapter 5.

Related Work

We are trying the generalize the Wave Function Collapse algorithm. There were
already many generalizations. Many authors have implemented the 3D Wave
Function Collapse algorithm. [Gumin, 2016a] It is not really important for us
since we will focus only on its 2D version.

Some authors have found that the WFC is hard to control. Therefore, they
were looking for ways how to make the WFC more controllable. [Cheng et al.,
2020] Our hierarchical version tries to achieve a similar goal of creating structured
outputs.

Joseph Parker has implemented WFC in Unity. [Parker, 2016]. This is im-
portant for us because we base our implementation on his framework.

The most important related work was probably done by Brian Bucklew, who
combined WFC with other PCG methods for the game Caves of Qud [Buck-
lew, 2019a] [Bucklew, 2019a]. The core idea behind Hierarchical Wave Function
Collapse is closely related to his work.

Otherwise, our work is new and highly experimental. Therefore, it visits many
unexplored areas.

4

1. Background
This chapter will introduce the related helpful theory for the following chapters. It
serves as a building block for this thesis. We will start with a brief introduction to
Procedural Content Generation 1.1. After it, we will shortly discuss a Constraint
Satisfaction Problems 1.2, which is closely related to the Wave Function Collapse
algorithm. Finally, we will discuss the Wave Function Collapse 1.3 algorithm
itself.

1.1 Procedural Content Generation

Procedural Content Generation (PCG) could be defined as: ”PCG is the algo-
rithmic creation of game content with limited or indirect user input.” [Togelius
et al., 2011] The content can mean almost anything. It ranges from the maps,
through loot and items, to whole stories or game mechanics.

In comparison with procedural art, the PCG for games is more strict. The
generated content must satisfy some constraints to be helpful. For example, a
generated map must support other game mechanics, and its major parts should
be reachable.

There are several reasons why to use PCG. Firstly, it can speed up the process
of making a game. People are expensive, and it can replace long, repetitive
work. Secondly, some problems are only solvable with PCG. We could not have
potentially infinite levels in Minecraft without PCG. Some designers would need
to place down all the blocks, which is infeasible. Thirdly, the PCG can greatly
improve the replayability of the game. Finally, it can help us to understand design
constraints and intentions. We understand those concepts much more when they
are required to be expressed in some formal language. [Shaker et al., 2016]

The help of PCG is suitable for both small and large game studios. The
smaller studios could use a wild approach to generate large parts of the game.
On the other hand, large AAA studios are using PCG to place roads, rivers, and
vegetation on large open-world maps. The designer can draw their general layout,
and the PCG method will handle all the repetitive tasks and details. [Werle and
Martinez, 2017]

5

1.2 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is closely related to the Wave Function
Collapse. The Wave Function Collapse is a special case of the CSP. Therefore,
we will start with the more general CSP.
A constraint satisfaction problem has three components:

X is the set of variables X1, ..., Xn

D is the set of domains D1,, Dn, one for each variable
C is the set of constraints that specify allowable combinations of values

For variable Xi, the domain Di consists of a set of allowable values v1, ..., vn.
Constant Ci has a tuple of variables and relation that specifies which values are
allowed simultaneously. Each CSP is defined by an assignment of values to the
variables. The assignment is consistent if it does not violate any constraints.
The assignment is complete when it assigns a single value to each variable. The
solution to a CSP is a consistent and complete assignment. [Russell and Norvig,
2010]

When solving the CSP, we can use constraint propagation. It means we can
use constraints to reduce the domain for a variable, given a partial assignment.
This process can also transitively reduce legal values for another variable. We can
look at the CSP as a graph, where each variable is a node and binary constraints
define edges. A common approach is to enforce arc consistency. It means that for
each edge (Xi, Xj) and every value in Di, there exists a value in Dj that satisfies
the binary constraint on the arc (Xi, Xj). To enforce this consistency, we remove
all the values in Di that do not have any supporting value in Dj. [Russell and
Norvig, 2010]

Algorithm 1 is called AC-3, and it resolves the arc consistency. We could also
enforce higher levels of consistency. A path consistency is similar, but it works
on three variables at a time. The number of variables that we are considering
simultaneously is called an order. If we enforce the consistency of order N , it
solves the whole CSP immediately. On the other hand, enforcing higher levels
of consistency is much more computationally intensive, and arc consistency is a
good compromise. [Russell and Norvig, 2010]

To solve the CSP, we can combine search with constraint propagation. It
means that we iterate between two steps. We pick a value for some variable,
assign it the value, and propagate new constraints with AC-3. We can repeat
this process until we have a solution. If AC-3 finds a contradiction, we must
backtrack and try different values for the variable.

There are two common heuristics. The first one is to choose the most con-
strained variable. That is a variable Xi with the least legal values in Di. The

6

Algorithm 1 AC-3 [Russell and Norvig, 2010]
1: Input: csp (X, D, C)
2: queue← all edges
3: while !queue.empty() do
4: (Xi, Xj)← queue.pop()
5: revised← false
6: for all x in Di do
7: if no value in Dj supports x then
8: Dj.delete(x)
9: revised← true

10: end if
11: end for
12: if revised then
13: if Di.size() == 0 then
14: return false
15: end if
16: for all Xk in Xi.neighbors\{Xj} do
17: queue.push((Xk, Xi))
18: end for
19: end if
20: end while
21: return true

idea is that the CSP is likely to fail on this variable in the future. The second
heuristic is to use the least constraining value. That is the value that rules out
the fewest option from its neighbors.

1.3 Wave Function Collapse

The Wave function collapse (WFC) is a quite recent algorithm used for procedural
generation. Maxim Gumin introduced the algorithm in late 2016. Most of the
resources about Wave Function Collapse are available on his GitHub page [Gumin,
2016b]. The standard version of the algorithm works on a two-dimensional grid.
It takes a bitmap as an input a produces a different bitmap as an output. An
interesting feature is that the output bitmap can be much larger than the input
bitmap. Those two bitmaps are locally similar.

Local similarity is defined as:

• (C1) for a given positive integer N , each N×N pattern that is in the output
has to be somewhere in the input

• (C2 weak) probability of the pattern appearing in the output should be
close to the density of the pattern in the input

7

Figure 1.1: Examples of Wave Function Collapse; on the left side, is the input
bitmap and on the right side are several generated outputs. [Gumin, 2016b]

The definition of local similarity needs a positive integer N . This parameter
can influence the outcome of the algorithm dramatically. If the N is large, the
algorithm tends to copy large chunks of the input to the output. It also adds
significant performance costs. Taking N too small can create degenerate output
due to under-constraining. The most common option is to take N = 3, which is
a good compromise between the variety of outcomes, control, and performance.
The algorithm must also know the output size as width and height parameters.

Figure 1.1 shows the usage of the Wave Function Collapse algorithm in some
examples. It shows that the WFC algorithm is applicable to a large domain
of problems. We can generate totally different kinds of outputs with a single
algorithm. This example is taken from the WFC repository [Gumin, 2016b].

The Wave function collapse algorithm has two models, which we will introduce
in the following sections. Those models are the Overlapping Model 1.3.1 and the
Simple Tiled Model 1.3.2.

1.3.1 Overlapping Model

The first model is the Overlapping model or the Overlap model. It can be de-
scribed with the following Algorithm 2.

At the start, the algorithm does a preprocessing step. It extracts all patterns
from the input bitmap B, assigns them weights, and finds which patterns can be
placed next to each other. Weights are obtained from the number of appearances
of a given pattern on the input. Then it initializes the propagator. It is a two-
dimensional array initialized to an uncollapsed state. There can be any pattern
from B in each cell.

8

Algorithm 2 Wave function collapse (Overlap model)
1: Input: width W , height H, pattern size N , input bitmap B
2: patterns← all N ×N patterns from B
3: weights← #occurrences of each pattern
4: constrains← which patterns neighbors which in B
5: propagator ← array (W ×H) each contains a list of patterns.size of indices

6: // position (w, h) is collapsed ⇐⇒ propagator[w, h].size ≤ 1
7: while not collapsed do
8: if exist (w, h) ∈ propagator : propagator[w, h].empty then
9: return failure {random restart here}

10: end if
11: (w, h)← uncollapsed position from propagator with minimal entropy
12: selected← random weighted pattern from propagator[w, h]
13: propagator[w, h]← selected
14: propagate this with constrains
15: end while
16: return propagator

After the preprocessing step, there is the main loop. In the loop, we will
always pick an uncollapsed cell and collapse it. An uncollapsed cell is defined as
a cell with at least two possible patterns. The collapse selects a possible pattern
randomly distributed according to weights for a given cell. After selecting a sin-
gle pattern in a cell, we must propagate this information into adjacent cells. The
propagation works the same way as in a regular constraint satisfaction problem
using the arc consistency and the AC-3 algorithm 1. Patterns that are no longer
supported will be pruned. This propagation process is recursive, and it can prop-
agate into distant areas. It is also the most significant performance bottleneck.

Algorithm 2 can fail on line 9. It happens if, for some cells, there does not exist
any possible pattern. It means that each pattern was banned by some neighbors.
For this reason, we are all always collapsing the cell with a minimal Shannon
entropy 1.1.

H(P) = −
n∑︂

i=1
P (xi) log P (xi) (1.1)

cell = argmin
c ∈ uncollapsed

H(c) (1.2)

The minimal entropy heuristic is similar to the most constrained variable
heuristic used in CSPs. Therefore, a random restart of the algorithm works
relatively well, as failures do not often occur with good inputs. Alternatively,
we can use backtracking to solve this issue. Picking a cell to collapse on line 11
and the collapse itself on line 12 is usually done using a Observe() function.

9

The propagation of new constraints on line 14 is usually done by a Propagate()
function.

We cannot use the second common heuristic from the CSP to select the least
constraining variable. This way, we would improve our chances for a successful
collapse. However, most outputs would be very similar, which we want to avoid
in the PCG. Selecting the weighted random pattern also helps to satisfy the (C2)
constraint in the definition of local similarity – patterns appear with a similar
distribution in both the input and the output.
We have mentioned several times that WFC and CSP are closely related. Now
we can define the WFC as a CSP:

X — a set of all cells
D — a set of patterns from the input
C — neighbors are four adjacent positions, and supported values are
extracted from the input

Figure 1.2: Consecutive updates of the output, uncollapsed cells shows the aver-
age value of remaining possible colors [Karth and Smith, 2017]

Since the algorithm is incremental, we can use its output for a nice visual-
ization of cells that are already collapsed. We can see an example of it in figure
1.2. Each following image shows one iteration of the algorithm. A single step can
collapse multiple tiles due to constraint propagation. [Karth and Smith, 2017]

1.3.2 Simple Tiled Model

The Overlapping model stores the whole N×N pattern in each cell, which makes
the algorithm non-trivial to modify. The Simple tiled model works differently. It
stores only tiles from the input into each cell – a 1× 1 pattern. It uses adjacency
rules to constrain its neighbors. This means that we only look, at which patterns
can be placed next to each other in four cardinal directions. It is equivalent to
considering only 1× 2 patterns. The input is often given as a .xml file because it
is easy to describe. For each tile, we only need to store which tiles are adjacent
in that four directions. Weights can also be set manually here for each tile. We
can easily generate this file from an input bitmap.

10

The Simple Tiled model is generally less powerful than the Overlapping model.
However, it is simpler to use and modify. Therefore, more relevant research was
done using the Simple tiled model. [Cheng et al., 2020]

Algorithm 3 Wave function collapse (Simple Tiled model)
1: Input: width W , height H, input .xml file I
2: tiles← all tiles from I
3: weights← tile weights from I
4: constrains← which tiles neighbors which in I
5: propagator ← array (W ×H) each contains a list of tiles.size of indices
6: // position (w, h) is collapsed ⇐⇒ propagator[w, h].size ≤ 1
7: while not collapsed do
8: if exist (w, h) ∈ propagator : propagator[w, h].empty then
9: return failure {random restart here}

10: end if
11: (w, h)← uncollapsed position from propagator with minimal entropy
12: selected← random weighted tile from propagator[w, h]
13: propagator[w, h]← selected
14: propagate this with constrains
15: end while
16: return propagator

We can see that Algorithm 3 for the Simple tiled model is almost the same as
Algorithm 2 for the Overlapping model. Firstly, prepossessing differs as we read
those values from a file instead of extracting them from the bitmap. However,
the idea of prepossessing it is the same. Secondly, we use tiles directly instead of
patterns, as mentioned above.

Oskar St̊alberg has made a very nice online interactive demo for the Simple
Tiled model that runs in a browser. It demonstrates how the algorithm works
and shows the remaining possible tiles for each cell. [St̊alberg, 2017]

1.4 Inputs

We have described the idea behind the WFC. Surprisingly, the Wave Function
Collapse algorithm takes a lot of inputs. We will focus on them more in this
section. We will describe inputs to the original implementation. [Gumin, 2016b]

Inputs to the WFC algorithm including their types

• Input Bitmap (bitmap – two-dimensional array of byte)

• Width (unsigned integer)

• Height (unsigned integer)

11

• N for the Overlapping model (small unsigned integer greater than 1, usually
2 or 3)

• Seed (integer)

• Periodic item input (bool)

• Periodic output (bool)

• Symmetry (integer in range [1, 8])

• Iterations (unsigned integer)

We have already discussed the core inputs: bitmap, width, height, and N.
Now, we will discuss the more special inputs.

The WFC algorithm uses pseudo-random numbers to generate different out-
comes. It takes a seed parameter to make the algorithm’s results reproducible.
The value seed = 0 is special and is used to generate pseudo-random output
that is not reproducible.

The periodic input states whether the input should also be sampled period-
ically over its edges. We discovered that the periodic input works well and is
active in all our usage.

The periodic output is similar to The periodic input. It states whether pat-
terns on the output that has to be in the input also reach over borders. We
discovered that the periodic output also works well and is active in all our usage.
Especially in combination with borders, which we will discuss in the next chapter.

Figure 1.3: Different symmetries, uses values from left 1, 2, 4, and 8

Symmetry is crucial. It states from how many directions should be the input
sampled. Each number adds either a new rotation or a new reflection. This is a
great way to get more patterns from the input. It results in more variability in
the output. However, if some tiles are not symmetric, the symmetry can make
the outputs unusable. The influence of symmetry is showcased in figure 1.3.

Finally, the last parameter is iterations. The WFC algorithm will run only for
a given number of iterations. This is helpful for the visualization of the progress

12

of the generation. The value iteration = 0 again has a special meaning. It
means unlimited number of iterations and does the whole collapse at once.

13

2. Analysis
The previous chapter showed us how the Wave Function Collapse algorithm
works. In this chapter, we will analyze the hierarchical usage of the algorithm and
its consequences. We will need to do much work to make the algorithm usable.

2.1 Motivation

We have the basics of the WFC algorithm. Therefore, we can finally focus on
the motivation behind its hierarchical usage. We already know that the WFC
algorithm is very flexible. It also implies that the algorithm is relatively hard to
control.

Brian Buclew have mentioned several issues with the WFC algorithm. [Buck-
lew, 2019a] [Bucklew, 2019b] He is one of the authors of a successful game, Caves
of Qud, which uses WFC extensively.

WFC difficulties:

1. Homogeny – the output of the WFC is homogenous, it does not have any
high-level structure and it feels the same everywhere

2. Overfitting – if the input is complex, the exact shape will likely be copied
to the output

3. No postprocessing – there is no general way to ensure the connectivity of
different areas

Figure 2.1: Example of homogeny [Bucklew, 2019a]

Figure 2.1 shows an example of homogeny. There is a lack of any high-level
structure. The whole output looks the same. It is a common issue since WFC
propagates constraints locally and cannot ensure high-level structures.

14

There is a simple solution for homogeny. We can split the whole output
into several regions and use different WFC for each region. Each region will be
homogenous, but the overall output will have a structure.

Figure 2.2: Example of overfitting [Bucklew, 2019a]

Figure 2.2 shows an example of overfitting. The shape of the input is way
too complex. Therefore, it has to be copied to the output (it can be rotated or
reflected). Otherwise, it would not satisfy the conditions of local similarity, and
the generation would fail. This is very bad because the output lacks variety.

Due to overfitting, we need to avoid very complex shapes on the input. Alter-
natively, we would need to have many different complex shapes which allow their
combinations. However, it is more computationally intensive. A possible solution
is to avoid details and add them as postprocessing or with another WFC pass.

The final issue about the lack of postprocessing is trivial to solve. We can
add a postprocessing step at the end. Postprocessing can be used, for example,
to connect rooms.

A general solution to work efficiently with WFC is to combine it with dif-
ferent PCG methods to cover its weaknesses. It is an already-known approach.
[Bucklew, 2019a] [Minini and Assunção, 2020] Our approach is slightly different.
We will combine the WFC algorithm with its other instances.

2.2 Hierarchical Wave Function Collapse

The Hierarchical Wave Function Collapse (HWFC) is a new algorithm introduced
by this thesis. The primary idea behind it is simple. The Wave Function Collapse
algorithm uses only local constraints, so it works locally. It is tough to enforce
global constraints in the algorithm. Therefore, we can use very specific WFC to
generate an abstract top layer that deals only with a general layout. Next, we
can use the output from the abstract layer and run a Wave Function Collapse
with a different input on each of them. We can also subdivide the work into more
layers to avoid overfitting.

For example, generating a world map with a standard Wave Function Collapse
is extremely difficult, maybe even impossible. However, with the Hierarchical

15

Wave Function Collapse, we can use the first layer to generate a layout of oceans
and continents. In the second layer, we can divide the continents into biomes.
Finally, we can generate the output for each biome over a given area in the third
layer. We will discuss it much more in the following chapter.

We have not found any papers dealing with the hierarchical usage of the Wave
Function Collapse algorithm. On the other hand, as we have already mentioned
Brian Bucklew gave a talk at the Game Developers Conference 2019 Bucklew
[2019b] and at Roguelike Celebration 2019, Bucklew [2019a] about their game
Caves of Qud. The recordings from both talks are available on YouTube. In
Caves of Qud, the map is situated on a two-dimensional grid and procedurally
generated at runtime using the Wave Function Collapse algorithm. They used the
Overlapping model with N = 3. It might be a bit surprising since the Simple Tiled
model is probably more popular among successful games using WFC. [St̊alberg,
2018] [St̊alberg, 2020] For some features, they used an approach similar to the
hierarchical idea. When generating ruins, they picked an area and ran the WFC
over it. Finally, they placed it on the primary background WFC which generated
the whole map.

Figure 2.3 demonstrates the core idea behind HWFC. At first, we generate a
simple general layout. It is shown in the top part. Then, in the next layer, we can
run different WFCs over each generated area. This way, we will avoid homogeny.
We can add more layers to add details and avoid overfitting if necessary. More
layers can also be helpful if we would like to generate even more structured
outputs.

However, the most considerable advantage of using WFC hierarchically is
that it dramatically reduces the complexity of the input bitmap. It means we
can split one huge input bitmap with thousands of tiles into several smaller ones,
each containing hundreds of tiles. These smaller maps are much easier to design
and adjust when necessary. We will discuss this further in chapter 3.1, giving
particular examples.

16

Figure 2.3: The core idea of the HWFC; start by generating a simple layout on
top, and continue by adding details with more specialized WFCs on bottom

2.2.1 Enforcing Minimal Size

The idea of the hierarchical Wave Function Collapse algorithm is simple. How-
ever, there are several issues that we need to solve. Firstly, we want to run a new
WFC on the part of the output of some other WFC. Therefore, it might cause an
issue if the given part of the output is too small. Running a WFC over 5×5 area
makes little sense as it can not generate any meaningful output. Furthermore, in
some cases, the WFC will fail every time with such a small output. The minimal
meaningful size of output varies heavily for each WFC. In general, the Overlap
Model requires a larger output than the Simple tiled model.

We can enforce the minimal size directly using the Overlapping model with
N = 3 by stacking different tiles next to each other. The exact pattern is shown
in figure 2.4.

Using this pattern, we can guarantee any minimal size. The minimal size
will be at least 2k × 2k, where k is the number of different stacked tiles. The

17

Figure 2.4: Expanding pattern for the Overlapping model N = 3, stacking several
one tile width layers must also stack them on the output

middle can expand further if we leave at least the 3× 3 pattern from the middle
tile. Leaving the middle as only 2× 2 will block the option for expanding. Then
the whole pattern might be copied to the output. We can see that all tiles have
different colors. It is not an issue since we only use them as a layout for WFCs
in the next layer. Therefore, we will generate a different output over this one.

The simplest way, to ensure the minimal size using tile stacking is with a
purely rectangular input. Figure 2.4 shows, that this method can be easily used
even for more general shapes.

In this example, tiles have different colors for clarity and better visualization.
Postprocessing could convert those tiles into the same color if necessary. However,
the idea is that we will run another WFC on top of this one, so it is rarely required.

The expanding pattern might look performance intensive because it contains
many tiles and even more patterns. In practice, it is not an issue. The problem
is relatively heavily constrained because we have to generate those stacked layers
one-by-one, and we cannot skip any of them. Therefore, once we start generating
the pattern, the algorithm often collapses multiple tiles simultaneously.

2.2.2 Upscaling

It might be beneficial to generate the first abstract layer smaller. In the next
step, we can upscale it. It will significantly help us since it simplifies achieving
minimal sizes of areas, as mentioned in the previous section 2.2.1.

Here the idea of upscaling is straightforward. We can duplicate each tile into
a 2 × 2 pattern or even larger. The duplication generally does not work very

18

well since we get rougher edges. However, here we will run another WFC on this
abstract layer. Therefore, it will not be visible in the output. Also, we can make
those rough edges smoothed using a simple 3× 3 filter. Furthermore, generating
smaller outputs has significant performance benefits since the runtime heavily
depends on the size of the generated output.

We need to consider whether it is useful to upscale the map performance-
wise since we will run another WFCs on the large upscaled version. This works
well because the generated shapes are much smaller. However, there can be one
large shape covering the majority of space shape. For example, when generating
continents, there might be a single connected ocean covering the whole map. It
is visible in figure 2.3. We can overcome this issue by dividing the ocean into four
smaller chunks and running WFC on top of each chunk. Usually, these types of
backgrounds are relatively easy to connect, so we can do it. On the other hand,
splitting up continents would be much more difficult since it would be hard to
connect them seamlessly.

2.3 Modifying Wave Function Collapse

The Wave Function Collapse algorithm is very powerful and flexible, but it is
difficult to use and control. In the following section, we will discuss possible
modifications to the algorithm. Those modifications are required for its usage in
the HWFC. We will focus primarily on the Overlapping Model 1.3.1 with N = 3.
We have found that this one works best for our requirements.

2.3.1 Early Tile Placement

The idea of Early Tile Placement is simple. We can collapse some cells manually
before we run the algorithm itself. Preplacing a tile can be quite useful since
we can guarantee to have some pattern on the output. For example, the early
placement of a water tile guarantees that there will be a lake or a sea on the
output.

Early tile placement is relatively straightforward to implement. We can pass
a different list containing pairs [position, pattern] to the algorithm. When the
algorithm selects a cell to collapse, it will first check the list and collapse those
cells. It is straightforward to do using the Simple Tiled model, where we can pass
[position, tile] directly. This idea was already implemented. [Cheng et al., 2020].
It gets more difficult for the Overlapping model. The original implementation
converts all possible patterns into unique numbers. Then it internally works
with just a grid of numbers for much better performance. This representation

19

is converted back to the bitmap once the algorithm finishes. Therefore, we need
to specify the whole N × N pattern and transform it correctly into the internal
representation of the algorithm.

Algorithm 4 WFC - Early Tile Placement (Overlapping model)
1: Input: width W , height H, pattern size N , input bitmap B,

early placement list P
2: patterns← all N ×N patterns from B
3: weights← #occurrences of each pattern
4: constrains← which patterns neighbors which in B
5: propagator ← array (W ×H) each contains a list of patterns.size of indices

6: // position (w, h) is collapsed ⇐⇒ propagator[w, h].size ≤ 1
7: while not collapsed do
8: if exist (w, h) ∈ propagator : propagator[w, h].empty then
9: return failure {random restart here}

10: end if
11: if !P.empty then
12: (w, h)← P [0].position
13: selected← P [0].pattern
14: P.remove(0)
15: else
16: (w, h)← uncollapsed position from propagator with minimal entropy
17: selected← random weighted pattern from propagator[w, h]
18: end if
19: propagator[w, h]← selected
20: propagate this with constrains
21: end while
22: return propagator

In Algorithm 4, we can see how we can achieve Early tile placement. It is very
similar to the original Wave Function Collapse algorithm 2. The major difference
starts on line 11 where we first take cells to collapse from P . This version will
modify the input list of early placement P . This might cause trouble when the
algorithm fails and we need to do a random restart. If we would like to avoid
this, using an index in the list is also sufficient.

We need to remember that doing this will significantly influence the output.
It will ensure that some tiles look exactly the same as we set. Therefore, doing
it on a large scale can hurt the variability of outputs. Moreover, it will influence
the selection of cells to collapse. The minimal entropy heuristic will always select
cells around already collapsed cells. Placing several tiles around different areas
can cause a collapse of the map from multiple directions. It can avoid gener-
ation patterns containing large structures that spread over larger areas. Those
structures are already constrained a lot from different sides. In comparison, the

20

standard WFC will pick a random cell and slowly expand the area around it.
Here larger structures are less over-constrained.

2.3.2 Borders

In some situations, it is beneficial to set the borders of the result manually. For
example, if we want to make a room over the whole output, we can place wall tiles
around the edges. Another example could be generating ocean. There we can
place the water tiles around the edges to avoid having parts of the islands cut-
offed by the end of the output. We can use the knowledge of Early tile placement
to add the borders. That means we can place tiles around the edges of the output.

Figure 2.5: Impact of borders on the generation; each figure advances by 200
iterations

We can see an example of borders in figure 2.5. As mentioned in the previous
section 2.3.1, this will influence the output. We will place tiles all around the
edges, and the minimal entropy heuristics will start the collapse from there. It will
further collapse all edges into the middle. This type of collapse has a consequence
as it tends to avoid larger shapes that reach over many tiles because they can
already be constrained for more directions. This effect is significant while using
borders since the middle parts are already somewhat constrained from all four
sides.

Figure 2.6: Standard generation without borders; each figure advances by 200
iterations

Figure 2.6 shows the same example as figure 2.5 but without borders. In these
examples, it took one more patch of iterations to collapse the borderless example.
It makes sense since placing borders already collapses a significant amount of cells.
More importantly, the general shape of the collapse is different. Here, we usually
get some area which is expanding further.

We can overcome the different nature of the collapse by adjusting the input
accordingly. That means making patterns on the inside even larger than we would

21

regularly do. The weights of those interesting patterns will be larger than fillers,
and it will balance out the side effects of using borders.

2.3.3 Non-rectangular Output

The standard Wave Function Collapse algorithm expects rectangular output
Width ×Height. Generalizing it to non-rectangular output is necessary for the
HWFC. In our case, the non-rectangular output is still a subset of grid tiles.
There are three primary ways to do it, each with different advantages and disad-
vantages. The first option is to divide the output into smaller rectangular areas.
The second option is to modify the algorithm to directly output a more general
shape. The third option is to generate a rectangular output and follow it with
postprocessing, where we can throw away unwanted tiles.

Dividing the area into only rectangular areas is simple. However, this can
produce many small areas, and it would be extremely difficult to make the output
nicely connected between those areas. Therefore, this approach is insufficient.

Figure 2.7: Complex shape with a narrow path in the middle

Suppose we would like to generate non-rectangular output directly. Then we
must pick a different data representation instead of a simple two-dimensional
array. Probably the best is to keep this whole array and add a bitmap describing
which cell is not in the input. The next step would be to adjust the Observe()
method to pick only cells we want to collapse. The Propagate() method must also
be modified to only propagate to output cells. However, the direct generation has
one big issue. There might be a path that is wide of just two tiles. This example
is shown in figure 2.7. If we used the standard Overlapping model with N = 3,
then the algorithm would fail every time. This situation can easily happen – for
example, imagine a narrow wall between two rooms. If we used the Simple Tiled
model, then this situation could not happen, and this approach might be optimal.

22

Figure 2.8: output over discarded area

The final option also has some issues. We can spend many resources generating
parts of the output that will be later discarded. An even larger issue is that we
can generate a house at the borders and discard a part of it, leaving degenerate
output. Figure 2.8 demonstrates this situation. However, it can be overcome
using Early tile placement 2.3.1. We can use some neutral pattern for discarded
areas – for example, solid walls or grass. Therefore, we have chosen this option
because it is the most reliable.

2.3.4 Auto-tiling

Wave function collapse thrives in keeping the structure of the input. For example,
we can surround an island with special borders – each individual tile facing a given
direction. Then the WFC will generate an output preserving this constraint.

On the other hand, this has one issue. Border tiles have fixed orientation, so
we cannot use the symmetry settings in the WFC algorithm. The symmetry will
sample the input with up to 8 rotations and reflections. Doing so will increase the
variety of the output with relatively simple input. Therefore, we need to design
more complicated inputs to produce variate outputs.

The alternative is to use auto-tiling. Auto-tiling means using one general
tile, such as an island or wall, for the generation and later changing it to the
proper version based on its surroundings. When the entire map is generated,
the changes must be done as a postprocessing step. For this to work, we need to
identify generated tiles. Fortunately, we need this information for the hierarchical
process.

23

Figure 2.9: Example of auto-tiling; left is without auto-tiling, right is with applied
auto-tiling

Figure 2.9 shows an example of auto-tiling. The right image has a smooth
transition between the ocean and the islands. In our case, the islands get smaller,
but it depends on assets.

24

3. Experiments
In this chapter, we will in-depth analyze the use of the hierarchical version of the
Wave Function Collapse algorithm for generating different types of content. The
primary purpose of this chapter is to figure out how difficult it is to generate con-
tent with the HWFC. We will later compare each of them with outputs obtained
from the standard single-layer WFC. In all examples, we will use the Overlapping
model 1.3.1 with N = 3 if not stated otherwise.

Firstly, we will explore a world map in the section 3.1. Later, we will look at
generating a dungeon in the section 3.2.

3.1 World Map

This thesis aims to generate a simple world map since that would be almost
impossible using regular WFC. The main reason is that a world map is heavily
non-homogeneous, containing large continents with several different biomes and
small islands. A single-layer WFC tends to generate a homogeneous output. This
example can be found in the scene WorldMap.

We are using two tilesets for the world map. Those tilesets are available at
https://opengameart.org/content/overworld-grass-biome and
https://pipoya.itch.io/pipoya-free-rpg-world-tileset-32x32-40x40-48x48.
Assets are distributed under CC0 license.

Figure 3.1: World map overview

Figure 3.1 shows the overview of the world map. Each box represents one
WFC. Their placement represents layers. Arrows show their dependencies — the

25

https://opengameart.org/content/overworld-grass-biome
https://pipoya.itch.io/pipoya-free-rpg-world-tileset-32x32-40x40-48x48

WFC at the end of the arrow runs on top of the output from the other WFC.

3.1.1 The First Layer

The first layer is abstract, and we will call it the abstract layer. It tries to spit up
the map into continents and oceans. One possible input for the abstract layer is
shown in figure 3.2. The size of the input is 35× 35 tiles. It is essential to think
about the size of the input. Manually drawing the input is quite labor-intensive.
Each input has a small cyan circle over each tile for better visualization. Outputs
do not have those circles because it would be distracting, and we do not need
them there.

Figure 3.2: Abstract layer input

Two generated outputs can be found in figure 3.3. The size of each is 80× 60
tiles. We use this size in our world map example. Therefore, those are much
larger than the input. Usually, we will show more than one output. The reason
is that we want also to demonstrate the variability among our outputs.

The blueish tiles specify an ocean. The yellowish tiles define continents. Both
use the enforcement of the minimal size technique discussed in section 2.2.1. The
yellowish tiles enforce the minimal size of each continent. The more tiles we stack,
the larger those continents will be. The optimal size depends heavily on the size
of the generated output. In our case, the output size is 80×60 tiles, as mentioned
above.

Different types of water tiles are used to enforce a distance between continents.
Otherwise, some continents could be right next to each other. One general ocean
tile and two specific padding around the continent guarantee a 6 tile gap. We

26

Figure 3.3: Abstract layer outputs

also place water tiles around the edges early to avoid having continents across
borders.

We can take advantage of the map upscaling since the output from the abstract
layer will not be a part of the final generated map. Using the upscaling for the
abstract layer simplifies the input dramatically. Otherwise, we would need to
provide much larger input with much more stacked tiles to generate sufficiently
large continents. In our case, we use an upscale factor of two with smoothing
around rough edges. Therefore, the whole output from the abstract layer is very
similar to one shown in figure 3.3, only it is 160× 120 tiles large instead.

Figure 3.4: World map example (seed = 1) after the abstract layer is generated

Figure 3.4 will be our running example. It shows the output looks after the
first layer. The size of the output is 160× 120 tiles. Using this example, we will

27

demonstrate the influence of each WFC on the generation.

3.1.2 The Second Layer

In the second layer, we will generate oceans with islands. Also, we will split
continents into biomes. Therefore, we have two WFCs in the layer called Sea

and Biomes.

Sea

The Sea WFC is pretty simple. An example of the input is in figure 3.5. In our
case, the input’s size is only 30 × 30 tiles. This WFC will be visible in the final
output since we will not run any more WFCs on top of this one.

Figure 3.5: Sea input

We can see two examples of Sea outputs in figure 3.6. Each is 60 × 60 tiles
since the generated output can be enormous. The size of the Sea WFC is the
same as that of the final output. Therefore, we want to have this WFC simple.
The first reason is that having fewer patterns will make it run faster since we
need to propagate less information. The second reason is that we do not want
this WFC to fail because, due to its size, it can take a significant portion of the
total run-time.

Similarly to the abstract layer, several tiles are stacked to enforce the minimal
size of the island. In our case, there are three grass tiles. Those tiles need to
have the same color since they will be visible in the final output. The amount of
water around the island influences the island’s density. Adding more water will

28

Figure 3.6: Sea outputs

reduce the amount and the size of generated islands. In our case, there is quite
a lot of water since we do not want islands everywhere. The Sea WFC also uses
auto tiling to put nice edges around islands and to provide seamless transitions
towards the water. We can see it in figure 3.6. Auto tiling gives us the option
to use higher symmetry settings. We could avoid using auto tiling. However, we
would need to provide more detailed input containing several islands. Otherwise,
we would lose some variety among generated islands.

Figure 3.7: World map example (seed = 1) after the sea in generated

Figure 3.7 shows the same world map as figure 3.4. This time, after the sea, is

29

generated. It spawned many islands of different sizes. We can see that it cutoffs
blue parts of the continents. As mentioned earlier, those serve as a delimiter
between continents and are part of the sea.

Biomes

The other WFC in this layer is Biomes. An example input is shown in figure 3.8.
Similarly to the abstract layer, we will run more WFCs over this one. Therefore,
it will not be visible in the final output. This input is more complex, containing
40× 40 tiles.

Figure 3.8: Biomes input; here is yellow sand at the bottom, green grasslands as
the majority of input, brown mountains, and dark green forests

There are four parts to this input: sand, grasslands, forests, and mountains.
We want to have some sand around the edges of each continent. Therefore, we
use sand as borders and for discarded areas. However, we want to avoid having
those continents only from the sand. Therefore, there is a bit of sand placed in
flexible patterns. By flexible pattern we mean, that almost any 3× 3 shape can
be formed out of the sand using symetry = 4. Most of the input is grass. We will
guarantee to have sand around the edges by placing it early. Then a large amount
of grass will force the WFC to quickly switch towards grass as the collapse gets
further away from the edges. Most of the generated output will be grasslands.
Therefore, we again enforced the minimal size of forests and mountains to be
6× 6 and 8× 8 tiles, respectively. We are again using slightly different colors for
better visualization.

Examples of outputs for Biomes are in figure 3.9. The size of each output here
is 50 × 50 tiles. A larger size is because Biomes will cover the whole continent.

30

Figure 3.9: Biomes outputs

There are small chunks of sand over the continents. Those are generated as
a consequence of the sandy edge. In this case, we do not might them. They
help to break down the monotony of the generated continents. Alternatively,
postprocessing could be used to remove those chunks if required. We are using a
second tile for Grasslands – the darker green around the edges. Its purpose is
to keep those sandy chunks further away from each other.

Figure 3.10: World map example (seed = 1) after the biomes are generated

Figure 3.10 shows the running example after generating the biomes. It is
actually the output of the whole second layer. In this case, there are three

31

instances of the Biomes WFC, one over each continent. The generated ocean
is the final. In the third layer, we will finish the generation of continents. As
mentioned above, the generation of the ocean takes much more time because we
run it over significantly larger area than continents. We showed only one example
of the output here. The main reason is that the map is quite large, so putting
two next to each other could make it hard to see. The other reason is that this is
just the middle step of the generation, and we will focus more on the final results
later.

3.1.3 The Third Layer

The third layer is the final layer for our world map example. Its purpose is
comparable to the standard single-layer WFC because it generates the final out-
put. There are three WFCs in this layer, namely Grasslands, Mountains, and
Forests. One huge advantage of the hierarchical approach is that those WFCs
are almost independent, and we can design each without looking at others. We
only need to keep this in mind to guarantee smooth transitions between them.

Grasslands

We will start with the Grasslands WFC. This WFC is the most complex. The
input is 35 × 35 tiles. We can see its example in figure 3.11. It also generates
villages and paths between them. It might be better to generate paths as a post-
processing step since that would give us more control our the output. However,
we want to push the WFC algorithm to its limits.

Figure 3.11: Grasslands input

32

The first crucial observation is that under each village is always a unique
end-of-road tile (either left or right). Under each village, there is precisely one of
them. It forces each village to be connected to some path. Otherwise, we could
generate a village with two path tiles underneath that would not lead anywhere.
The second observation is that the path cannot suddenly end. This forces each
village to connect with at least one other village. More precisely, the village can
also be connected to itself via loops of the path, but this rarely happens with
our input. Not all villages will be connected to a single pathway network. That
would constrain our algorithm way too much.

In the input, we have a high density of villages. However, we can expect a
lower density in the output since WFC tends to avoid more complex structures.
Moreover, the village is relatively complex as it also needs a path to different vil-
lages. Auto tilling could be used again to generate a correct path shape. However,
here it does not allow us to use higher values symmetry because of the villages.
Therefore, we are not using auto-tilling for the generation of paths. There are
also some trees in the Grasslands to add more variety.

We need to be careful when generating non-rectangular shapes. We will place
a 3 × 3 pattern of solid grass in areas that will be later removed. It is crucial
because we want to avoid having a village or a path suddenly cut-offed.

Figure 3.12: Grasslands outputs

Figure 3.12 shows two examples of generated grasslands. The size of each
output is 40 × 40 tiles since those will cover most of the continent. Especially
in the right one, we can see numerous pairs of close villages connected with a
path. It will be useful when we add mountains or forests into the middle of the
grasslands. Then it would be very challenging to connect multiple villages far
away.

33

Figure 3.13: World map example (seed = 1) after the grasslands are generated

Figure 3.13 shows the world map example after the grasslands. We can see
that most of the generation is already done. The grasslands can generate complex
path networks even if they are limited by sandy parts, mountains, and forests in
a way.

Mountains

The two remaining WFCs are much more straightforward in comparison to grass-
lands. Mountains WFC will generate simple mountains on the continent.

Figure 3.14: Mountains input

34

We can see the input for Mountains in figure 3.14. The size of the input is
only 16 × 16 tiles. It will early place grass tiles around the edges to make the
transitions between Grasslands seamless. The critical point is that Mountains

uses the N = 2 instead of the regular N = 3. Firstly, we can afford it since
a hill is created of 4 tiles with an ability to connect more of them, and for it,
N = 2 is sufficient. Secondly, it even helps us because we need to place only the
2× 2 pattern of grass around the edges instead of the regular 3× 3 pattern. This
approach makes the area covered by hills larger. Finally, N = 2 allows the input
to be smaller and simpler.

Figure 3.15: Mountains outputs

Two outputs of Mountains WFC are in figure 3.15. The size of each is only
20 × 20 tiles. This WFC will usually run in smaller areas, so we do not need a
large sample. There is still a relatively large area covered by grass. We do not
mind it since it blends smoothly into the final output.

Figure 3.16 shows the example with mountains. It is a minor change since
mountains cover a tiny part of the continents. However, they still add variety,
and those small WFCs are very fast.

Forests

Finally, the last WFC is Forests. This one is for sure the simplest.
We can see the input in figure 3.17. It has only 12 × 12 tiles making it the

smallest input. It is also almost trivial, as the layout of the trees does not matter.
We mostly care about their density.

Similarly to Mountains, it again uses the N = 2 as it is sufficient here.
Forests is the only WFC that does not early place any tiles. It is just not
required here. There are not only trees but also some grass. We do not want

35

Figure 3.16: World map example (seed = 1) after the mountains are generated

Figure 3.17: Forest input

to have solid chunks of trees only. Besides that, it again helps with smoother
transitions between Grasslands.

It might be tempting to avoid this WFC and add large areas of trees directly
into the Grasslands. However, it will still tend to avoid large areas of trees that
are not all over the map. Although using the concept of tile stacking to ensure
the minimal size could help, splitting it into two WFC also reduces the overall
complexity. The other advantage of breaking it into more WFCs is that we can
get more variety over those forests. Otherwise, it would need to be a large part
of diverse forests into Grasslands. That would hugely increase the overall size

36

and complexity of Grasslands since it would need to achieve a similar density
for villages and paths compared to trees. The main idea of Hierarchical Wave
Function Collapse is to reduce this complexity and to use several much simpler
WFCs.

Figure 3.18: Forest outputs

Two outputs of Forests are in figure 3.18. The size of each is 20 × 20 tiles.
However, even smaller outputs would be sufficient. We are consistently generating
these over smaller areas.

Figure 3.19: World map example (seed = 1) after the forests are generated

Figure 3.19 shows the world map after adding the forests. It is the final version
of the world map since there is no postprocessing. We will show much more of
them and discuss the outputs of the HWFC in the next chapter.

37

3.2 Dungeon

A dungeon is the second example we will try to generate using the Hierarchical
Wave Function Collapse. On the one hand, a dungeon seems to be much less
complex and structured than a world map. It is partially true. On the other
hand, our dungeon has some properties that are hard to achieve with the WFC
algorithm. Our dungeon needs to meet the following design criteria.

Dungeon design criteria:

• All areas have to be reachable

• There is a single large open boss room in each dungeon

• There are both Cavern-like and Mansion-like areas

For all of the reasons mentioned above, we will need to combine HWFC with
quite a lot of postprocessing. This example can be found in the scene Dungeon.

Figure 3.20: Dungeon overview

Figure 3.20 shows the overview of the dungeon generation and its layers. We
are again using three layers, and we will look at them more profoundly in the
following sections.

All assets used for the dungeon are handmade.

38

3.2.1 The First Layer

The first layer has the same purpose as the first layer of the World Map. It
divides the map into large regions, each serving a different purpose. We have
three types of regions. The first one is a boss area. The second one is used for a
cavern-like part of the dungeon. The third one is used for a mansion-like part of
the dungeon. We will deal more with them in the following subsection. The input
for the abstract layer is shown in figure 3.21. The size of this input is 40 × 40
tiles.

Figure 3.21: Dungeon — Abstract layer input

The darkest blueish tile makes a gap between two adjacent areas. None of
WFC will be run on top of it. There is one fundamental difference compared
to the World map. In the world map, we used an ocean as a default tile and
generated continents on top of it. Here, we want to generate regions, and none
is a default. Therefore, we choose a different approach to designing the WFC
input. The input might look strange. We are heavily utilizing the impact of the
periodic input. Therefore, we can connect areas over the edges. We also want
those layouts for rooms to be irregular and roughly similar in size.

Two outputs are shown in figure 3.22. The size of each output is 50× 50 tiles.
We will again upscale it by a factor of two. To guarantee a boss room, we can
preplace one of its corners at a pseudo-random position close to the corner of
the map. The position must be directly determined from seed 5.3.2 to make
the results reproducible. This will force our map to have at least one boss room.
However, there is a chance that we will have more than one boss room. It will
be just a big open room, so we do not mind it. Alternatively, the boss room tile

39

Figure 3.22: Dungeon — Abstract layer outputs

could be banned from the generation in areas further away. This feature is not
hard to implement and is very similar to the Early tile placement 2.3.1. It was
even implemented for the Simple Tiled model [Cheng et al., 2020]. We choose not
to implement this feature. Adding more features would make the HWFC even
more difficult to use since we would need to specify an extra parameter for each
WFC.

There are custom tiles around one diagonal of the boss room. Those tiles will
force the room to be a square. It is undesirable to have a long but narrow boss
room. There is no straightforward way to force the aspect ratio of the room close
to one. Therefore, we will force it to be precisely one all the time.

Similarly to the world map, we will show the progress of the HWFC in the
dungeon. Figure 3.23 will serve as our running example for it. It shows the
output looks after the first layer. We have again used upscaling with a factor 2.
The size of the output is 120× 100 tiles.

40

Figure 3.23: Dungeon example (seed = 1) after the abstract layer is generated

3.2.2 The Second Layer

The second layer places down all rooms. Therefore, it has a significant impact
on the final result. We have three types of rooms, which we will describe in the
following subsections. All of the WFCs are using the same assets. The major
differences are in their structure.

Boss Room

Figure 3.24: Boss room input

41

The boss room should be a large open area ideal for a boss fight. Therefore,
we want to fill most of the region. We can see the input in figure 3.24. The input
is tiny, only 16× 16 tiles.

Figure 3.25: Boss room output after a single iteration

Most of the work is done by an intelligent early tile placement. It places a
pattern with a wall tile around the bottom edge’s middle section and the right
edge’s middle section. Those patterns have ground tiles attached to the middle
of the room. After a single propagation, most of the room is filled with ground
tiles. Since we are using periodic input and output, the WFC is forced to place
walls on the remaining two edges. Those are the only possible patterns. The
example of an input after a single iteration is in figure 3.25. The blue color is
the background. It represents tiles that are not yet collapsed. The rest of the
middle area will be filled by ground in a few more iterations. The WFC can
only influence the shape around corners. This makes the small size of the input
sufficient.

Two example outputs are in figure 3.26. Each of them is 22 × 22 tiles large.
We picked this size since it is the actual size in the final dungeon from the ab-
stract layer after an upscaling. Both outputs are quite similar. Our approach
dramatically reduces the possible variety of generated outputs. We compensate
by using the symmetry = 8 option to get more variety. Furthermore, it always
generates a large open room which is desirable.

We could also cover less area which the preplacement of walls. It would make
the WFC effectively run on a larger area. However, it might produce degenerate
outputs if we pick the area to be too small.

Figure 3.27 shows the running example of the dungeon after the boss room is
generated. We can see it in the bottom right corner. However, the remaining two

42

Figure 3.26: Boss room outputs

Figure 3.27: Dungeon example (seed = 1) after the boss room is generated

WFC will have a much greater impact on the result since they cover significantly
larger areas.

Mansion-like Dungeon

Mansion-like part of the dungeon should look like a mansion. It should have
simple, mostly rectangular rooms connected with straight paths.

These rooms are easily generated with the WFC shown in figure 3.28. The
input size is only 16× 16, and we use symmetry = 4 to increase variety. We are

43

Figure 3.28: Mansion-like dungeon input

stacking three different ground tiles to enforce the minimal size of the room. It
will make the inside at least 6 × 6 tiles large. Some walls also contain torches,
which are not in the cavern-like sections of the dungeon. There are also some rocks
to add variety. It is possible to generate paths with WFC. [Scurti and Verbrugge,
2018] However, it is tricky because we want to connect the whole dungeon, and
the grasslands example has already demonstrated its difficulty. Therefore, we will
add them at the end with postprocessing.

Figure 3.29: Mansion-like dungeon outputs

Figure 3.29 shows two examples of generated outputs. The size of each is
50× 50 since those will have a decent size on the final output. We can see that it
generates multiple tightly packed rooms. And those rooms to either rectangular
or almost rectangular. It is ideal for the mansion-like part of the dungeon.

44

Figure 3.30: Dungeon example (seed = 1) after mansion-like parts are generated

Figure 3.30 shows the dungeon after generating all mansion-like segments. In
this example, most of the dungeon is made of mansion-like rooms. Therefore, it
has a very significant impact on the overall output.

Cavern-like Dungeon

The final WFC in the second layer is a cavern-like part of the dungeon. It means
many more open areas and irregular rooms.

For the generation, we are using a highly irregular room. The input is shown
in figure 3.31. Its size is 30×30 tiles, making it much larger than the mansion-like
input. As always, we use the tile stating of different ground tiles to enforce its
minimal size. Here we have three ground tiles again stacked. We get the most
variety in the symmetry = 8 .

This WFC uses postprocessing that connects those cavern-like parts. Parts
are connected by wide paths to make them blend in. The width of paths is 5 tiles
inside plus walls. Figure 3.32 shows an example of the generated map. The left
image is without the postprocessing, and the right one has already added paths.
The output size is 60× 60 tiles since the cavern-like parts are usually significant.
Since figure 3.32 shows only one output, there is one more example in figure 3.33
to show more variety. The generated maps are good as they provide a single large
open area.

The postprocessing is complex. The area where we run this WFC is not

45

Figure 3.31: Cavern-like dungeon input

Figure 3.32: Cavern-like dungeon output 1 – left generated map, right is after
postprocessing

rectangular most of the time. However, we cannot create a path across a different
area. Those paths would be removed in the next step, and we would get hanging
paths at the area’s borders. Therefore, those paths must be created only on top of
the given area. Fortunately, the postprocessing can access a bitmap that specifies
which tiles are inside.

Figure 3.34 shows the dungeon after generating all cavern-like segments. In
this example, there are three, each having a decent size. We can clearly distinguish
between the mansion-like and cavern-like portions of the dungeon. However, it
still appears that those parts belong together.

46

Figure 3.33: Cavern-like dungeon output 2 – left generated map, right is after
postprocessing

Figure 3.34: Dungeon example (seed = 1) after cavern-like parts are generated

3.2.3 The Third Layer

The third layer is straightforward. It runs only on top of the Cavern-like parts
of the dungeon, over the ground tiles. Its purpose is to add details such as rocks,
plants, and mushrooms. We could add those details directly to the Cavern-like
WFC, but it would cause overfitting. Shapes on the output would closely match
shapes in the input. It would kill the variety, and using an extra layer is a simple
workaround.

47

Figure 3.35: Decorations Input

We can see the input in figure 3.35. The size of the input is 20×20 tiles. Since
the input is straightforward, we can easily tweak it to fit our needs. Increasing
and decreasing the density of decorations is trivial. It might be surprising, but
this WFC still used the N = 3 . Otherwise, if we would use the N = 2 , some
decorations might be too densely packed. Most of the area is left unfilled.

All decorations have a background. It has a good reason. We need to flatten
the map into a single layer because it allows us to do simple postprocessing over
the whole output. If we need to have multiple backgrounds, it is easy to modify
the export of the HWFC. Our proposed solution is to mark those top tiles as
transparent. And then, we could merge those transparent tiles with a tile under
them and export the resulting tile.

Figure 3.36: Decorations output

Figure 3.36 shows two examples of outputs. The size of each is 30× 30 tiles.

48

We can see that most of those outputs are blue. The blue color represents a
background. Therefore, those tiles are not filled.

There is one more detail about this WFC. It does not have to use any early
tile placement. However, we can place an empty 3× 3 pattern in areas we do not
need to fill. The reason for it is not the quality of the output but the performance.
The rectangular cover of the Cavern-like areas can be massive. Therefore, this
WFC is relatively expensive. Moreover, it is much faster to collapse tiles with the
preplacement. We will discuss this more in the implementation chapter, namely
algorithm 5.

Figure 3.37: Dungeon example (seed = 1) after decorations are generated

Figure 3.37 shows the final version of the dungeon. It places decorations into
the cavern-like part. Then it connects all rooms via postprocessing. This final
postprocessing works on the whole output. Therefore, it can connect regions
generated by different WFCs.

49

4. Results
In the previous chapter, we have seen how to use the HWFC algorithm to generate
outputs. In this chapter, we will look at the outputs of the HWFC and compare
them to the regular WFC. Besides that, we will also compare the performance of
both algorithms.

4.1 World Map

We will start with the world map described in section 3.1. Generating a world
map is a very challenging task for the WFC algorithm.

4.1.1 Generated Maps

We used three layers and six different WFC to generate the World Map. Now, we
will see and discuss the final results. We can set a seed for the whole Hierarchical
WFC generation to make our results reproducible. There are also multiple gener-
ated results to show their diversity. We have already seen one final output in the
previous chapter in figure 3.16. That output used seed = 1. Therefore, we will
use seeds starting from 2, and each subsequent HWFC gets a seed incremented
by one. This way, we ensure that results are not cherry-picked, and even the
worse ones will be shown. Those outputs demonstrate the average outcome.

As mentioned in previous sections, each generated map has 160 × 120 tiles.
That size is quite huge for a WFC algorithm since the algorithm thrives in smaller
scopes.

We can see the first example in figure 4.1. We will not place multiple maps
next to each other here since all the details would be barely visible. There are
three continents, one large and two smaller. The continents cover a good portion
of the map. One thing that might not be optimal is the long island in the
bottommost part of the map. It has an unnatural shape. Besides that, the
generated map is solid and shows a good variety. It is widely non-homogeneous,
ranging from large continents to small islands.

The second output is in figure 4.2. There are four smaller continents in this
one. Each continent is relatively simple since they are small. Still, each continent
is different. The sea, with smaller islands, covers a significant portion of the
output. Overall, this output is very different from the first one but solid. Different
outputs are very important in PCG. We want to avoid a situation where all maps
would feel the same.

50

Figure 4.1: World map output (seed = 2)

Figure 4.2: World map output (seed = 3)

We can see the third output in figure 4.3. There are large continents. However,
each continent looks different. The topmost continent has long paths covering it.
Again, the generated map looks solid.

The fourth output is in figure 4.4. This one has an enormous continent in the
middle. Although the continent is huge, it still looks well and is non-homogenous.
Having huge continents might be bad since there is a greater chance that the

51

Figure 4.3: World Map output (seed = 4)

Figure 4.4: World map output (seed = 5)

generation will fail. And it takes some time to generate the whole continent again.
In this case, it needed three attempts to generate the grasslands. However, this
map is probably the best one so far.

The fifth and final output is in figure 4.5. It contains two large continents
nicely filling the map. Again, it is very solid. It does not make sense to show
more outputs here. However, many more maps could be generated with the pro-

52

Figure 4.5: World map output (seed = 6)

vided application. Those generated outputs used seed values from two to six.
Therefore, the average output with a random seed can be comparable. Over-
all, the quality of outputs is relatively high and even consistent. We have not
encountered a single output that would be terrible. It is also relatively fast to
generate. We will focus more on performance in the following section. Having
these properties, it looks like this example could be easily used even for a run-
time generation. Adding new assets into the third layer is simple if more variety
is required. Alternatively, adjusting previous layers to change some generation
properties is also straightforward.

4.1.2 Comparisons

We found out that world maps generated by the HWFC are all pretty good.
However, we need something that we can compare with it. A good candidate
for comparison is the regular single-layer WFC. However, comparing the HWFC
with a single-layer WFC is extremely hard to do right. We want it not to be
biased toward the HWFC.

The obvious solution would be to hand-design an input for the single-layer
WFC. Although this would be as fair as possible, it has a significant issue. We
would need a huge and precise input for complex, highly structured data like
the world map. The input size would probably need to be similar to the desired
output size. Otherwise, it would be very hard to achieve a good variety. In our

53

case, it is around 160 × 120 = 19200 tiles. We can not count on the upscaling
property of WFC if we want to generate a heavily constrained output. Manually
placing almost 20000 of tiles would be an enormous task. Especially if we would
like to tweak some part of the input, a large area would need to be redrawn.
Using tricks like enforcing minimal size in a single-layer WFC is also possible.
However, it would be much more difficult for such a huge input.

Therefore, we want to avoid this large hand-made map at any cost. We can
prevent it by taking the output of the HWFC and feeding it as an input to the
single-layer WFC. We obviously need to flatten the output of the HWFC to pick
only tiles visible in the final output, but it is straightforward. On the one hand,
these comparisons will be slightly biased toward the HWFC. On the other hand,
if we spend 100× more time on creating the input for the regular WFC, it would
be heavily biased towards it. This is the first point where HWFC significantly
outshines a regular WFC. We have no idea where and how to start if we would
like to create an extensive, heavily structured input with a single-layer WFC.
Therefore, the best we can do is to feed it a large, good-looking map and hope it
will work.

The quality of the HWFC output could significantly influence our WFC’s
quality. Therefore, we will try it with different inputs. Firstly, we want to focus
on the quality of the HWFC compared to the regular WFC. This is subjective.
However, we could quickly tell if there are significant differences. Later, we will
compare other properties, such as performance.

Figure 4.6: World map single-layer (seed = 2)

54

We will start with a World Map from figure 4.4 as this seems to be the best
overall. We will use an Overlap WFC with N = 3 as usual for comparisons.
Again we will start with s seed = 1 for the single-layer WFC. The first output
is in figure 4.6. It uses seed = 2 since the generation with seed = 1 has failed.
Sadly, it is terrible. The output is totally degenerate. It tried to generate the sea.
Its easiest filler is many tiny islands. The reason for it is that generating highly
structured output is hard.

Figure 4.7: World map single-layer (seed = 8)

The next successful generation uses a seed = 8. It is shown in figure 4.7. It
is pretty decent. However, it is not a world map. The map is homogeneous, and
there is only the Grasslands biome.

The next successfully generated maps have seed = 10, seed = 14, and
seed = 16. However, they all look almost identical as 4.6. The seed = 19
contains only grasslands and looks as 4.7. We have tried each seed all the way to
seed = 100, with some more successful generations. However, they all were very
similar to either 4.6 or 4.7. There was none one having most sea and continent
simultaneously. This is the issue with the homogeny of WFC, as it is hard to
transition between them.

We have found out that the pure single-layer WFC is out of luck. Clearly,
we need a better approach. However, we can still improve it with the early tile
placement. Placing down both part of a water area and part of a continent could
do the trick. We can place a 3×3 pattern of grass in the middle and a 3×3 pattern
of the sea at one edge. Although this idea seems promising, it fails miserably. We

55

Figure 4.8: World map single-layer, preplaced grass and water (seed = 2)

can see an example in figure 4.8. There is a tiny continent directly in the middle.
We could easily overlook it as another island. This pattern keeps occurring very
frequently with our setup. It has a simple explanation. The entropy of cells
next to the water tile is lower than the entropy of cells next to the grass tile.
Therefore, the algorithm will keep expanding the water area. In the end, it will
try to collapse the area around the grass. This will very often result in a tiny
continent. It is easier to generate while satisfying all the constraints enforced
by the ocean around it. We have tried all values up to seed = 50 without any
success.

We can still help it by placing down a village instead of grass. The entropy
around the village is smaller. Therefore, there is a chance that the area around
it will be expanded. An example is in figure 4.9. The first successful generation
has used seed = 5. Unfortunately, the entropy of the water is still lower, and it
tries to generate the continent very late. The resulting continent is larger and
looks much better, but it is still way too small.

We have tried each map all the way to seed = 100. Most of them failed or
were similar to figure 4.9. Figure 4.10 shows probably the best map we got. It
does not have any ugly structures. However, it is still much worse than every
HWFC output.

Our last chance is to place grass in the middle and hope for a good result.
This has two advantages compared to the pure WFC without any tile placing.
Firstly, the sea is more common, so there is a larger chance to transition to the

56

Figure 4.9: World map single-layer, preplaced village and water (seed = 5)

Figure 4.10: World map single-layer, preplaced village and water (seed = 96)

sea. Secondly, we will start the collapse from the middle instead of a random
point. This gives us a better chance to have water around the edges, with should
look better. We expect most of the maps to be very similar to the one in figure
4.6.

We have tried each map up to seed = 100. There were several ones having
both continents and sea at the same time. Unfortunately, most of them failed in

57

Figure 4.11: World map single-layer, preplaced grass (seed = 22)

the end. Figure 4.11 shows one successful output having both. This output is
not so bad, but it still gets crushed by any HWFC output.

Unfortunately, we could not generate good world maps with a single-layer
WFC. However, it is not too surprising. Generating a world map is extremely
challenging for the WFC because it is very structured. It is most likely possible
to generate good looking world map with a single-layer WFC, but it would take
an enormous effort to do so by designing a perfect input. At that point, it does
not make sense to use WFC anymore. We should use different PCG methods
instead.

Increasing N

Another approach is to increase the parameter N. It increases the viewing win-
dow size and forces it to copy larger parts of the input to the output. Therefore,
it could improve the output quality at the cost of variety. However, even set-
ting N = 4 crashes the application. The reason is simple. Our input map is
enormous, and it contains many different patterns. Memory consumption can
increase exponentially with N. Profiling shows that even with N = 3 , the appli-
cation takes over 2.5GB of memory. Therefore, if we want to find all patterns of
size 4× 4, we run out of memory, and the application crashes.

58

4.2 Dungeon

Similarly to the world map, we will now analyze generated dungeons. We use the
dungeon discussed in section 3.2, including its postprocessing.

4.2.1 Generated Maps

Again, we are using seeds to make our results reproducible. The size of generated
maps is 120× 100 tiles. Generated maps include postprocessing that adds paths
between areas of the dungeon.

We have already seen one generated dungeon in figure 3.37. That dungeon
uses seed = 1. Therefore, we will again start with seed = 2 and increment it by
one for each output.

Figure 4.12: Dungeon (seed = 2)

Figure 4.12 shows the first output. We can see a boss room in the bottom-left
corner. There are two ways into the boss room. This might not be optimal.
However, it is caused by postprocessing. Therefore, it could be avoided by using
smarter, more complex postprocessing without affecting the rest of the generation.
Besides that, the dungeon has both cavern-like and mansion-like sections in a
good balance. It would probably create a good gameplay experience.

Figure 4.13 shows the second generated dungeon. In this case, the boss room
is in the upper-right corner. There is only one path to it which is probably the

59

Figure 4.13: Dungeon (seed = 3)

best. This dungeon is very large. It is generated to the edges and covers a lot
of space inside. The only weakness of this dungeon is the long straight path at
the bottom. However, it is again caused by the final postprocessing. The issue
is not a fault of the HWFC and could be avoided using better postprocessing.
Otherwise, this dungeon is very solid.

The third example is shown in figure 4.14. There are again two paths to
the boss room. Besides that, we can see large open cavern-like parts next to
the boss room. This would surely provide a totally different gameplay experience
compared to the small mansion-like areas at the bottom. Again, the largest issues
are the long straight path created by our postprocessing.

Figure 4.15 shows the fourth generated dungeon. This time the majority of
the dungeon is cavern-like. This dungeon is quite different from the previous
ones, lacking larger mansion-like structures. However, it still looks interesting
and would provide a different experience.

Finally, figure 4.16 shows the fifth and last example. Cavern-like parts of the
dungeon cover the majority of the map. Then, there is a mansion-like section
near the boss room. This time, those sections are separated. The map is very
solid, potentially the most realistic.

However, some outputs might be much worse. Figure 4.17 shows one of them.
The tiny room in the bottom-right corner is reachable only through the boss

60

Figure 4.14: Dungeon (seed = 4)

Figure 4.15: Dungeon (seed = 5)

room. This is the first seed where it happened, so it is relatively rare. It could
be terrible design-wise. However, it is rare and could be avoided with better

61

Figure 4.16: Dungeon (seed = 6)

Figure 4.17: Dungeon (seed = 11)

postprocessing. Overall, this dungeon is not great, as most of it is filled with
mansion-like parts.

Obviously, the quality of generated dungeons depends heavily on our design

62

criteria. Here, all maps satisfy all of ours, which is very important. On the
other hand, our criteria are relatively vague. Similarly to the world map, we used
each seed value from 2 to 6. Therefore, those dungeons should be close to the
average expected output. It is crucial that the quality of generated maps is again
consistent. Besides that, those maps have a similar structure but are all different,
which is very important. It means that the HWFC for a dungeon generation
could even be applicable for runtime usage. There are some outliers, for example,
figure 4.17. However, that could be solved via postprocessing without affecting
the algorithm.

4.2.2 Comparisons

This section will show examples of single-layer WFC and compare them with
the HWFC. We will start by taking the example 4.13 as an input for the single-
layer WFC. It does not really matter which input we choose because they are all
quite consistent. This one gives us a good balance between the cavern-like and
mansion-like parts. It also covers a majority of the map. Again it is good to have
a large input since the generated dungeon is relatively complex.

Figure 4.18: Single-layer dungeon without postprocessing (seed = 1)

Figure 4.18 shows the first example. Here, we have used preplacement around
borders. Otherwise, some rooms could continue on the other side of the map.
We use the symmetry = 8 for maximum variety. There is no postprocessing.

63

Therefore, some areas are not connected. There are also several dead ends and
narrow paths.

Figure 4.19: Single-layer dungeon with postprocessing (seed = 1), the input is
without paths

An obvious improvement is to include postprocessing that adds paths. We
have this functionality implemented into the HWFC so that we can use it here.
However, we will not upscale the map after the first layer and use it only to run
one postprocessing. We will also take input without added paths. Figure 4.18
shows that they clearly harm the final outcome. And we will add them with
postprocessing anyway. Figure 4.19 shows an example of a dungeon with paths
added with postprocessing. This dungeon is much better. However, many small
long rooms make it quite unnatural. Dungeons in figure 4.18 and figure 4.19 use
the same seed but are very different because figure 4.18 has paths as a part of the
input. Anyway, this approach seems promising, so we will generate more outputs
to get a better sample size than one.

Figure 4.20 shows a second example with the same settings. Those only differ
in a seed. The quality of generated maps is very similar. This one is decent but
mostly a mansion-like dungeon with narrow rooms.

We have tried many more seeds with similar results. Either the generation has
failed, or there were long, narrow rooms that looked unnatural. However, here
we can at least compare it to the HWFC. The HWFC is clearly better, giving
us more variety. The single-layer WFC does not satisfy the design criteria for

64

Figure 4.20: Single-layer dungeon with postprocessing (seed = 2)

generating different types of rooms. Here, we have only the mansion-like parts,
making the whole dungeon homogeneous.

Figure 4.21: Handmade input to the single-layer dungeon

We can try one more strategy. The dungeon is far less structured than the
world map. Therefore, we can create the input manually. We will start which
the input for the cavern-like portions shown In figure 3.31. And we will extend
it with mansion-like parts. We will ignore the boss room. This way, we will not
fulfill all our design criteria, but we have a chance that the output will be decent.

65

Figure 4.21 shows the map we will use as input for the next generations. The
cavern-like part is on the left, and the mansion-like part is on the right.

Figure 4.22: Single-layer dungeon with handmade input and postprocessing
(seed = 1)

Figure 4.22 shows its first example. We can see that the output is way better
compared to previous results. This output is visually nice and even comparable
to the outputs of HWFC. Therefore, we will generate more outputs.

The second example shows figure 4.23. The room on the left might be way
too large and open. Otherwise, this output is decent. Therefore, we will show
one more example.

Finally, the third example is shown in figure 4.24. The output is fine. Sim-
ilarly to the HWFC, our generation on the simplified handmade input is pretty
consistent.

However, there are inconveniences. The single-layer WFC can only generate
the layout. We have tried to generate decoration, but the generation was over-
constrained, and the results were terrible. The same applies to the boss room.
In the HWFC, we had regions with different feels. Here, the whole map is a mix
between cavern-like and mansion-like parts. It lacks any high-level structure, and
the map is homogeneous – the core problem for a WFC. The single-layer WFC
also does not meet our design criteria. It would be extremely difficult to modify
the WFC in a way that will satisfy them.

66

Figure 4.23: Single-layer dungeon with handmade input and postprocessing
(seed = 2)

Figure 4.24: Single-layer dungeon with handmade input and postprocessing
(seed = 3)

67

We have figured out that the single-layer WFC works for less structured con-
tent like the dungeon. However, in our case, the quality of outputs is still a bit
worse than those generated by HWFC. The single-layer WFC does not gener-
ate structured content to fulfill only very simple design criteria. However, the
generated maps can look good and be usable with sophisticated postprocessing.

4.3 Performance

The performance is vital since the WFC algorithm itself is computationally in-
tensive. Therefore if the HWFC is much worse, it could make the algorithm
impractical.

CPU AMD Ryzen 7 5800X
RAM 2× 16 GB DDR4, 3600 MHz, cl 18
GPU Nvidia GeForce RTX 3060 Ti 8 GB

Table 4.1: Hardware used for experiments

For all experiments, we have used the hardware shown in figure 4.1. Our
measurements are CPU bound. Therefore the CPU is by far the most important
component to get comparable results. In fact, it depends primarily on its single-
threaded performance.

We have gathered results from 100 successful runs of each algorithm. If the
generation failed, the seed was incremented, and the generation was started with
a new seed. The same applies to the HWFC. However, there it means that only
one WFC instance in the pipeline has failed, and this instance will be run again.

The measurements were run on a standalone build of the game. To gather the
data, we used Unity’s Time.realtimeSinceStartup to avoid possibly inaccurate
measurements due to a drop in FPS.

4.3.1 World Map

For the world map, we are comparing HWFC, a regular single-layer WFC, and
a single-layer WFC with grass placed in the middle because it usually generates
more complex outcomes.

Results are shown in table 4.2. The HWFC is surprisingly the fastest on
average. However, for the single-layer WFC, it is caused by failed generation.
There is time without fail, and the single-layer WFC is much faster than HWFC.
It does not make sense to collect this metric for the HWFC, and it does not
fail much anyway. The standard deviation is much smaller for the HWFC. The

68

HWFC WFC WFC with grass
Average time [s] 19.04± 4.16 23.61± 19.32 33.49± 29.01

Min time [s] 14.56 8.91 8.79
Max time [s] 36.33 97.46 143.86

Average time (no fails) [s] — 9.39± 0.26 9.35± 0.21
Average failures 0.93± 1.22 2.06± 2.45 3.32± 3.48

Min failures 0 0 0
Max failures 5 13 18

Table 4.2: World map performance

maximal time for a successful generation is by far the lowest. The reason for it is
simple. The single-layer WFC tries to generate a large complex map. Therefore,
there is a decent chance that the generation will fail. At that point, we need
to start over with the whole generation. Indeed, it is shown in the maximum
failures. It means the maximum number of fails in a row for the WFC. In the
case of the HWFC, it shows the maximum number of failures during a single
generation. The HWFC usually fails for a smaller WFC, so its runtime is not
affected much.

It is handy that the HWFC is much more consistent. It has by far the lowest
maximal time. It makes the algorithm a good candidate for runtime usage. Single-
layer WFC has huge spikes. Each has several attempts, much longer than the
maximum for HWFC.

4.3.2 Dungeon

In this section, we will compare the performance of HWFC and single-layer WFC
in the dungeon example.

HWFC Handmade WFC
Average time [s] 7.39± 1.21 6.92± 0.5

Min time [s] 5.2 5.85
Max time [s] 12.17 8.38

Average failures 0.23± 0.58 0.0± 0.0
Min failures 0 0
Max failures 3 0

Table 4.3: Dungeon performance

Table 4.3 shows the results. This time, we did not include the single-layer
WFC generated on top of the output of HWFC. It was the worst by far since
many generations have failed. The dungeon generation was way faster than the

69

world map. It has two reasons. Firstly, the dungeon is way smaller – 120 × 100
instead of 160×120 tiles. The second reason is that the dungeon is less structured.

We can see that the dungeon generated with the handmade WFC is faster than
the HWFC by about 7%, but HWFC is faster in the best case. Those results
are very close. The main difference is that the single-layer WFC has no failures.
The reason is that the input is very simple. It contains only 5 tiles – 3 ground
tiles to enforce the minimal size of rooms, 1 wall tile, and 1 tile for a background.
Those tiles are also in very flexible patterns, making the generation hard to fail.
The HWFC has way more tiles. Only the background has 10 different tiles. The
experiment is biased towards the handmade single-layer WFC as it generates only
the layout. Generating decoration increases the number of patterns which slows
down the algorithm. It also increases the chance of failure.

We have found out that the runtime of both algorithms is very similar. The
splitting of the output to several regions done by HWFC greatly impacts the
runtime. Therefore, it balances out the generation of more layers. If we increase
the output size, it will get even better for the HWFC since the runtime of the
WFC algorithm scales non-linearly with the size.

70

5. Implementation
In this chapter, we will explore the implementation itself, including all the de-
tails. The project is implemented in Unity 2019 and is available on GitHub —
https://github.com/fileho/Hierarchical-Wave-Function-Collapse. As a baseline it
uses a Unity package developed by Joseph Parker Parker [2016] which contains a
nice wrapper around WFC to allow the usage directly in Unity.

Using Unity has several advantages. Firstly, it helps a lot with simplifying the
input as it can be created directly in Unity instead of using some external editor.
Secondly, most of the games that are already using some version of WFC are im-
plemented in Unity. Finally, the original implementation is created in C#, so we
use it directly with wrappers. It does not make any sense to implement the WFC
again. The original solution is well-tested and used across many applications.
For a C# solution, it is also well-optimized. However, C++ implementations are
significantly faster. [Ernerfeldt, 2016]

5.1 Wave Function Collapse Unity Wrapper

This package [Parker, 2016] simplifies the implementation of WFC in Unity a
lot. It uses the standard WFC algorithm [Gumin, 2016b] and provides wrappers
around those models. It is quite an early port that was already used in several
games [Parker et al., 2016], [Parker et al., 2017], or [Parker, 2018]. We have
heavily modified this wrapper so it works better for our use case. This package
is distributed under the MIT license as the WFC algorithm.

Figure 5.1: WFC Wrapper overview

Figure 5.1 shows an overview of the package. It contains the regular imple-

71

https://github.com/fileho/Hierarchical-Wave-Function-Collapse

mentation of the Wave Function Collapse algorithm, we will call it WFC [Gumin,
2016b], and four other components. Those are OverlapWFC , SimpleTiledWFC ,
Training , and TilePainter . The package represents every tile as a whole
GameObject . It is extremely flexible since we can use it for larger objects like a
whole room. It also simplifies the Hierarchical implementation since we can add
any data to each GameObject . However, using a GameObject has significant
memory and performance consequences. Using a Tilemap would be much more
efficient for tiles. Therefore, it might be useful to transform these GameObject
into Tilemap as postprocessing [Filek et al., 2022].

5.1.1 Tile Painter

The TilePainter component helps to create an input for the WFC. For us, it
is the most important part of the package. It heavily utilizes a custom Editor ,
which allows us to draw directly in the scene view.

Figure 5.2: Tile Painter

An example of the TilePainter is shown in figure 5.2. We can see a drawn
map on the left side in the scene view. Implementation-wise, it takes a list of

72

prefabs to instantiate to the scene. We can see those prefabs in the Palette .
Then we need to select an active prefab that will be placed into the scene. This
active prefab is the Color ; in our case, it is TreeBackground.

The placing of prefabs to then the scene is done via drawing over the canvas.
Therefore, the canvas needs to have attached Collider to register mouse events.
We can also adjust the canvas size by setting Width and Height parameters.
The TilePainter instantiates all spawned GameObject as children into a single
GameObject that is attached as its child.

We have added some quality-of-life changes. Firstly, the Fill button fills the
entire map with the selected prefab. Secondly, the Compile button will try to
compile the map. We will discuss what it means in the next section.

5.1.2 Training

The Training component specifies an input to the WFC. We can attach it to the
child GameObject created by the TilePainter . It extracts the drawn tiles and
then converts them to a representation that the WFC uses. That is a byte[,]
used for bitmaps. It is also useful to convert the resulting byte produced by the
WFC algorithm back original GameObject .

It has one critical function Compile() . It scans placed tiles and extracts
this information from them. It assigns a unique byte value to each unique
prefab. Then it creates a byte[,] sample of the same size from the input.
Alternatively, we can export the input as a .xml file of the Simple tiled model.

5.1.3 Model Wrappers

The OverlapWFC component and the SimpleTiledWFC component are wrappers
around the Overlapping model 1.3.1 and the Simple Tiled Model 1.3.2, respec-
tively. They derive from MonoBehaviour so we can place them into the scene.
We can set up all the standard parameters, such as width, height, or N in the
case of the Overlapping Model. We must also set its Training , which specifies
the input. When we call the Generate() , it creates a particular model of WFC,
forwards its parameters, and runs it. When the generation is finished, it extracts
its result and draws the output to the scene. There is one more useful feature. It
allows us to limit the number of iterations that the algorithm will execute. When
the generation is not finished, it runs more iterations in the Update() . This can
highly improve responsiveness. Otherwise, it could freeze the application until
the generation has finished.

The algorithm can spawn tens of thousands of GameObject that cause some
issues. One problem is that the scene can be over 100 MB large. We can over-

73

come those huge sizes by using algorithmic compression. We can only store the
parameters and seeds for the generator and generate the map when required.

5.2 Modifications

To support all the features mentioned in previous chapters, we had to modify
the WFC implementation and the wrapper. Primarily we need to add support
for the Early Tile Placement and the Postprocessing. We discuss them in the
following sections.

5.2.1 Base WFC

The first change was to add the BaseWFC component. It is derived from the
MonoBehaviour , so it can be attached to a GameObject . This class contains
all the shared data and functionality for both wrappers. Then, we can derive
OverlapWFC and SimpleTiledWFC from the BaseWFC .

Figure 5.3: WFC Wrapper — inheritance

Figure 5.3 shows the scheme of inheritance. The base class BaseWFC allows
us to use both wrappers interchangeably for our hierarchical WFC.

5.2.2 Early Tile Placement

The most crucial new feature is the Early tile placement 2.3.1. The modification
to the WFC is simple — it takes an extra list of pattern, position pairs. It is
handled by a Predetermited class. Then in the Observe() , it checks whether

74

there is some cell for early collapse, picks it, and sets its pattern accordingly. The
Propagate() does not need any modifications. The tile is represented as its
index in the Training component. As a quality of life change, this index is the
same as the tile index in the TilePainter .

Figure 5.4: Predetermined pattern for the Overlapping model

A bit tougher is to specify the pattern for the Overlapping model. The whole
pattern represented as byte[] must be correctly encoded into a single long
value. WFC uses this representation for better performance. This transforma-
tion is done internally in the constructor of the OverlappingModel . However,
the order of those tiles is not intuitive. Therefore, the Pretetermined takes
a byte[] and handles this transformation internally. If we want to create a
pattern, we can specify it row by row as shown in figure 5.4.

We want the Early Tile Placement to be easily specified in the OverlapWFC or
the SimpeTiledWFC . Therefore, we have created a Preplacement script which
derives from ScriptableObject . It contains two virtual functions.

Public virtual functions

• virtual void Run(OverlapWFC)

• virtual void Run(SimpleTiledWFC)

This way, any custom script deriving from Preplacement can override the
behavior for both types of WFC. Besides that, it can get all the required informa-
tion from its argument. Most critically, it can get the size of the WFC. It provides
us with great flexibility. We can call preplacement.Run(this) from our WFC
wrappers and the overload resolution will handle calling the appropriate version.

The primary use of the early tile placement is on large chunks. The reason is
that in the hierarchical approach, we need to fill areas covered by different WFCs
to avoid degenerate outputs. Using this observation, we can significantly improve
the performance of the early tile placement. We can start by collapsing all prede-
termined cells, and only after that can we propagate everything information. We

75

Algorithm 5 WFC - Early tile placement (optimized version)
1: Input: width W , height H, pattern size N , input bitmap B,

early placement list P
2: patterns← all N ×N patterns from B
3: weights← #occurrences of each pattern
4: constrains← which patterns neighbors which in B
5: propagator ← array (W ×H) each contains a list of patterns.size of indices

6: // position (w, h) is collapsed ⇐⇒ propagator[w, h].size ≤ 1
7: while not collapsed do
8: if exist (w, h) ∈ propagator : propagator[w, h].empty then
9: return failure {random restart here}

10: end if
11: if !P.empty() then
12: while !P.empty() do
13: last← P.size()− 1
14: (w, h)← P [last].position
15: selected← P [last].pattern
16: P.remove(last)
17: propagator[w, h]← selected
18: end while
19: else
20: (w, h)← uncollapsed position from propagator with minimal entropy
21: selected← random weighted pattern from propagator[w, h]
22: propagator[w, h]← selected
23: end if
24: propagate this with constrains
25: end while
26: return propagator

76

can afford such an approach since we do not need information about unsupported
patterns during the collapse of predetermined tiles. Therefore, we can propagate
constraints only at the end of this step. It saves us a lot of work since many of
the cells to propagate are already collapsed.

We can see the optimized version of the algorithm 5. The main difference is
the addition of a while cycle on line 12. Another critical detail is the if-else
block around the while cycle. This is crucial as we must first propagate all
the constraints before collapsing a normal cell. Otherwise, there is a significant
chance that we would pick a wrong value, and the algorithm would immediately
return a failure in the next step. We are also removing elements from the back
of the list since this does not force a move of all elements as removing from the
front.

It has a flaw. When we collapse and propagate to a large part of the map, it
is a significant amount of work that can freeze a game for a short duration. On
the other hand, it speeds up the generation a lot, so it is, in our case, probably
worth it.

5.2.3 WFC Postprocessing

We can run a custom postprocessing script after each WFC. This script needs
to have all information about the result of the generation. Therefore, we must
pass the entire result of GameObject[,] into it. Then the script can do any
modifications to our results.

Implementation-wise it is almost the same as the Early Tile Placement. We
have a WFCPostprocessing script derived from ScriptableObject . It contains
a virtual void Run(GameObject[,]) . We can override this function in any
further derived class.

There are two custom postprocessing that we are using right now. The first
one is RemoveSmallRooms , which removes areas that are too small. It is helpful
since some WFC will always fail in tiny areas. The second is ConnectRooms
which is much more complex. Its purpose is to connect rooms. It is used in the
dungeon generation to add paths in Cavern-like areas.

5.2.4 Runtime

We can limit the number of iterations that the algorithm executes per update.
Otherwise, we could not see how the map was generated. An even larger reason
is that it would totally freeze the game for a couple of seconds.

However, the original implementation has a major issue. When we want to
draw the generated parts, it will loop over all tiles, look if it is already collapsed,

77

and draw it. We want to collapse a low number of tiles each update, so this has
significant performance implications. However, there is an easy fix. The WFC
can store the collapsed tiles in each iteration. Then, we could loop only over
those tiles. This way, the draw will access every tile only once, which is optimal.

This sounds easy, but collapsing a single tile can collapse more tiles around
it. Therefore, we cannot add those tiles in Observe() because not all collapsed
tiles will be there. However, we can postpone it to the Propagate() . It works
because if the tile is collapsed in a given iteration, the Propagate() function
has to access it and propagate this information further.

We could use threads to generate WFCs. In the case of Unity, we would need
to use its job system. However, moving the implementation to jobs is not trivial.
Besides that, a significant amount of work would be required to synchronize
results with the main thread. In unity, only the main thread can instantiate
objects.

5.3 Hierarchical Controller

The Hierarchicalcontroller is the main script handling the HWFC. It holds
layers of WFC. Then it generates the given layers one by one. When one layer is
done, it will start the next layer on top of its output. It is done by instantiation
of appropriate WFC to each location.

Figure 5.5: Class diagram of the Hierarchicalcontroller ; arrows mean has
instances of relationship

Figure 5.5 shows the class diagram of the Hierarchicalcontroller . It
heavily utilizes composition.

Individual WFC place down prefabs. Those prefabs should have attached the
TileType component. It holds a single int value. Based on this value, the
Hierarchical Controller identifies regions for the subsequent layers. Each WFC is

78

stored in the structure called WFCData . It contains the following variables.

WFC data

• BaseWFC wfc — the WFC itself

• List<int> children — indices of its children in the next layer

• List<int> values — values of TileType on which we can run instanti-
ate this WFC; it is important the determine shape of each region

• List<BaseWFC> instances — all active instances of this WFC; it is used
internally and not specified by the user, so it is hidden

We could represent List<int> values only as a single int value. However,
using List<int> values gives us greater flexibility and a higher chance to reuse
some prefabs for more WFCs.

With the knowledge of the WFCData , we can define a class Layer represent-
ing one layer. It contains a List<WFCData> and some extra helper functions.
Therefore, the whole structure of WFCs is List<Layer> layers . Our structure
for layers is linear. We can see an example of it in figure 5.6. Each color repre-
sents one layer. Links represent dependencies between subsequent layers. In our
case, those links are indices to the next layer.

Figure 5.6: Linear structure of WFCs

We could also use a tree-like recursive structure. There, each WFCData would
hold a List<WFCData> children directly instead of their indices in the next
layer. However, we have tried this approach, and it was very difficult to set
everything up properly in the inspector. We would need to create whole custom
editor windows with a tree-like representation, which would have an even steeper
learning curve.

79

We need to specify the following properties:

• vector2 size – the size of the output; the resulting output will be twice
as large is each dimension due to upscaling

• int seed – the seed used for the generation; 0 is a random seed

• List<Layer> layers – all WFCs we want to use in a format discussed
above

• Postprocessing postprocessing – the postprocessing that covers that
whole output and is run as a last step; this field is optional

The public API of the Hierarchicalcontroller is straightforward. It has
one function responsible for the whole generation.

Public API

• public void StartGenerating(bool incrementSeed = false)

Algorithm 6 HWFC – Main loop
1: Input: width w, height h, List¡Layer¿ layers
2: Clear all generated WFCs
3: Run the layout WFC
4: Wait until it is done
5: for all layer ∈ layers do
6: GenerateLayer(layer)
7: Wait until all WFCs are done
8: end for
9: Export the output into a flat single-layered output

10: Run postprocessing if specified

Algorithm 6 shows a pseudo-code of the main loop. It is executed after calling
the StartGenerating() . There are two important note about this algorithm.
The first one is that we need to wait after each WFC until it is done. This
makes the implementation much more difficult. We are using callbacks to do
so. When each WFC is created, we register an OnGenerationDone() of the
HierarchicalController to an event in the WFC. This way, we get informed
when the WFC finishes. We can count how many WFCs need to be generated in
each layer. When all required WFCs are done, we will call an UpdateLogic() ,
which moves at the next step as shown in algorithm 6.

The second note is the GenerateLayer() on line 6. This function is crucial
for the HWFC. In fact, it does not take a layer but its index. The reason is
that we also need access to the previous layer.

80

Algorithm 7 HWFC – GenerateLayer()
1: Input: int layerIndex
2: for all prevLayerWFC ∈ layers[layerIndex− 1].layer do
3: for all wfcInstance ∈ prevLayerWFC.instances do
4: for all wfc ∈ prevLayerWFC.children do
5: for all area ∈ FindAllPatterns(wfcInstance, wfc) do
6: Instatiate new WFC over the area
7: Set its position, size, and bitmap of discarded positions
8: Register it for a callback when it is done
9: end for

10: end for
11: end for
12: end for

The algorithm 7 might look scary since there are four nested for-loops. How-
ever, we usually need to iterate only over a few elements in each of them. The
first one extracts all WFCs from the previous layer. The second one extracts all
WFC instances of each WFC. Each WFC can potentially have more instances.
For example, we can have more continents, as was shown in figure 3.10. The
third iterates over all WFCs that are children of the selected WFC in the previ-
ous layer. That means grasslands, forests, and mountains for the biomes WFC
in our world map example. Finally, the fourth finds all matching consecutive
areas and instantiates proper WFC instances over each of them. We find those
consecutive regions using BFS, which is probably the simplest option.

There are some public functions that are not expected to be called from the
code. The purpose of those functions is to generate given layers from the inspec-
tor manually. This way is cumbersome but very helpful for debugging. Those
functions are all called from the implementation and usually have major precon-
ditions.

Public functions usable from the inspector

• public void GenerateLayer(int layerIndex)

• public void UpscaleMap(int scale = 2)

• public void Clear()

• public void ExportMap()

The GenerateLayer(int layerIndex) generates a given layer. However, it
has a precondition that all previous layers must be completed. Otherwise, the
behavior is undefined.

81

The UpscaleMap(int scale = 2) upscales the whole map by a given scale.
Obviously, this scale has to be positive. However, the implementation supports
the upscaling only directly after the first layer. It could be generalized to work
after any layer, but we did not find a case where it would be helpful. Therefore,
it could be called only directly after the generation of the first layer.

The ExportMap() flattens all layers into a GameObjects[,] . Ultimately,
we do not need intermediate layers and only care about the result. This function
also applies the postprocessing on our result if one is provided.

Finally, the UpdateLogic() works only in the game mode. In the editor, it
uses a macro to exit and does not mess with a manual per-layer generation. It is
a reason why using the HWFC in a game mode is strongly preferred since it is
much more convenient.

The HierarchicalController has public UnityEvent generationDone
and invokes it at the end of the generation. This way, we can subscribe to it and
know when the generation finishes. We have used it to automate the generation
of many maps for our benchmarks.

5.3.1 Editor

The HWFC has a steep learning curve. Therefore, it is crucial to make its speci-
fication as easy as possible. One of the essential features of our implementation is
a custom editor. It is called HierarchicalControllerEditor , and it dramati-
cally simplifies the setup of the HWFC.

The example of the custom editor is shown in figure 5.7. It primarily deals
with layers. As mentioned earlier, the layer needs a List<WFCData> . However,
there is an abstraction that holds it in a Layer class. We want to make setting
values in the HWFC as easy as possible, so this List<WFCData> is exposed
directly to the user without the need for the Layer . We can see the whole
representation of the second layer in figure 5.7. It is reasonable to specify, and it
is readable. There are also buttons that allow us to add and remove layers with
the restriction that we always require at least one layer.

The first layer is unique. It is represented as a regular layer since it simplifies
the implementation. However, it must contain only one WFC. Besides that,
some parts of the WFCData are irrelevant. The List<int> values is useless
since it is not running over any other WFC, and List<int> children must
contain all WFC indices in the second layer. Therefore, we need to specify only
the BaseWFC wfc . Our custom editor does this and represents it as a ROOT
variable.

The editor also provides buttons for the manual generation of layers. How-

82

Figure 5.7: Editor of the Hierarchical Controller

ever, those buttons could be used with caution since they have preconditions, as
mentioned earlier. Besides that, the generation is much slower if we do not run
the application. Still, those options might be handy for debugging. The first
button is Clear, which clears the whole input. Then there are N buttons. Those
are Generate layer 1 – Generate layer N. Each is responsible for the generation of
an appropriate layer. The displayed buttons are dynamic based on the number of
layers we have specified. After it, there is an UpscaleMap button, which upscales
the map after the first layer. Finally, the last button is Export Map, which creates
a single-layer representation of the output.

Finally, the editor also simplifies the definition of seed. It exposes a single
int value directly from its encapsulated representation.

83

5.3.2 Seed

We want to provide an option to specify a seed to the Hierarchical Wave Func-
tion Collapse to make our results reproducible. However, there are a few issues.
Firstly, we need to know how seeding works for the standard WFC. Indeed, there
is an option to specify an integer as a seed, and the value seed = 0 means a
random seed.

We need to specify a seed for the HierarchicalController . The trivial
solution would be to assign its value to every WFC instance we will use. However,
there are two problems with this approach. The main problem is that if some
WFC fails to generate, then the whole Hierarchical WFC will fail to generate.
This is an enormous problem since there is a pretty solid chance that one of our
many WFCs could fail. This has an easy solution. If a WFC fails to generate
and its seed ̸= 0 , we can simply increment the seed and rerun the WFC.

The other problem is that some abstract WFC could generate two exactly the
same patterns. Then when we run two instances of WFC from the next layer
over it, we would get the same output for both of them. This would also imply
for each following layer. Therefore, if we have two same size continents in the
World Map example, then both would look exactly the same. We can again solve
this issue by increasing the seed for each generated WFC. This can still cause
the same issue. If the first WFC fails, it will increment the seed itself and will
again get the same results. However, this is very easy to adjust. We just need to
add a larger number to the seed for each WFC. If we would take seed += 10
for each WFC, then we would need at least 10 failed generations to be stuck on
the same seed again.

The last thing to consider is that we need to save the initial seed value. The
reason is that we might want to re-generate the output. And the algorithm has
the same seed , so it should behave the same.

84

Conclusion
In this thesis, we have introduced and implemented the hierarchical version of
the Wave Function Collapse algorithm. We have also shown its capabilities for
generating complex non-homogenous outputs like the world map or a dungeon sat-
isfying given design criteria. We had to experiment and implement multiple im-
provements like the Early Tile Placement and borders, work with non-rectangular
output and enforce its minimal size, and use per-layer and final postprocessing
to make it all work.

We have demonstrated that the Hierarchical Wave Function Collapse in com-
plex scenarios outshines the standalone Wave Function Collapse. The HWFC can
work even in situations where the use of the regular WFC is infeasible. Besides
that, upscaling the first layer and intelligent use of the Early Tile Placement al-
lows us to achieve comparable performance to the standalone WFC. We have also
shown that the HWFC has the potential for runtime usage, but more research is
still required. The runtime was very close on average but did not spike nearly as
high as the standalone WFC, which is critical for the runtime usage.

However, the primary advantage of the HWFC lies in spitting the huge and
very complex input into several smaller ones. Creating one large, very complex
input is an extremely challenging task. On the other hand, spiting it into smaller
ones has two advantages. Firstly, it is much easier to create. Secondly, we can
modify the individual outputs later and easily iterate the generator. Modifying
the complex huge input of a standalone WFC is also very challenging. This
division of the input makes its creation much more manageable or even possible.

Outputs from the HWFC algorithm are very consistent and have a similar
level of quality. Furthermore, ı́nputs have a similar structure, but each output
feels unique. It is caused by the generation in layers. The first layers significantly
influence the shape of the final output, and the later layers add details.

The HWFC also has some disadvantages. The most obvious is its complexity.
Even the standalone WFC has a very steep learning curve. It is easy to make
inputs and start generating some outputs. However, it gets challenging if we want
those outputs to satisfy some design criteria. The learning curve is even steep for
the HWFC. Especially the user has to think about layers and how to spit the task
to create the desired output. On the other hand, enforcing the design criteria is
much simpler for the HWFC.

85

Further Work

The thesis focuses mainly on experimenting and making the HWFC work. There-
fore, it is open to much further work.

The most obvious is to generate more esthetically pleasing outputs. This task
should be mainly about good assets. The other option is to generate an output
of larger-scale structures. It means using more complex objects instead of tiles
or bitmaps as assets. We could, for example, use whole rooms or major parts of
them. This way, it generates much larger and more complex outputs without any
performance cost.

Another option is to focus on the runtime use of the HWFC. This is challenging
since it is required to ensure a high quality of generated levels. It could be achieved
by the generate and test method. However, the WFC algorithm is slow, so this
approach is probably, not optimal.

Another task is to improve the performance of the HWFC algorithm. The
easiest way is to implement it in C++ for Unreal Engine 5. Using C++ allows
us to write way faster code. However, the most probable place where the HWFC
could be used is some experimental game developed in Unity. There is still a
place to optimize our Unity version. We are not using the job system. We are
drawing new parts of the output each frame, which is possible only from the main
thread. Therefore, heavy synchronization would be required. However, drawing
the output might not be desirable (if the player should explore the map). In that
case, using the job system could speed up the generation by a significant amount.

Probably the greatest challenge is incorporating the HWFC into a full game
that can be commercially successful. This should be possible, as shown in the
Dungeon of Chaos game. [Filek et al., 2022] However, there is still much work
for a larger-scale commercial game.

Another possibility is incorporating the hierarchical idea into a 3D WFC.
The hierarchical idea will work the same way. However, 3D WFC is even more
complex and harder to use. It would be a large task to make it work well and
produce good outputs.

86

Bibliography
Brian Bucklew. Dungeon Generation via Wave Function Collapse. Rogue-

like Celebration, Oct 2019a. URL https://www.youtube.com/watch?v=
fnFj3dOKcIQ. Accessed: 15/4/2022.

Brian Bucklew. Tile-Based Map Generation using Wave Function Collapse
in ’Caves of Qud’. Game Developers Conference, 2019b. URL https://
gdcvault.com/play/1026263/Math-for-Game-Developers-Tile. Accessed:
15/4/2022.

Darui Cheng, Honglei Han, and Guangzheng Fei. Automatic Generation of Game
Levels Based on Controllable Wave Function Collapse Algorithm, pages 37–50.
Entertainment Computing – ICEC 2020, Jan 2020. ISBN 978-3-030-65735-2.
doi: 10.1007/978-3-030-65736-9 3.

Emil Ernerfeldt. Wave Function Collapse in C++. GitHub, Oct 2016. URL
https://github.com/emilk/wfc. Accessed: 3/5/2023.

Jǐŕı Filek, Martina Fusková, and Shivam Sharma. Dungeon of Chaos. GitHub,
Oct 2022. URL https://github.com/fileho/Dungeon-of-Chaos. Accessed:
17/1/2023.

Maxin Gumin. Basic 3D WFC. Bitbucket, Nov 2016a. URL https://bitbucket.
org/mxgmn/basic3dwfc/src/master/. Accessed: 3/5/2023.

Maxin Gumin. Wave Function Collapse. GitHub, Sep 2016b. URL https:
//github.com/mxgmn/WaveFunctionCollapse. Accessed: 17/2/2022.

Isaac Karth and Adam Smith. Wavefunctioncollapse is constraint solving in the
wild. In The International Conference, pages 1–10, Aug 2017. ISBN 978-1-
4503-5319-9. doi: 10.1145/3102071.3110566.

Pedro Minini and Joaquim Assunção. Combining Constructive Procedural
Dungeon Generation Methods with WaveFunctionCollapse in Top-Down 2D
Games. Nov 2020.

Joseph Parker. Unity Wave Function Collapse. itch.io, Oct 2016. URL https:
//selfsame.itch.io/unitywfc. Accessed: 12/3/2022.

Joseph Parker. Bug with a Gun. itch.io, 2018. URL https://selfsame.itch.
io/bug-with-a-gun. Accessed: 21/02/2023.

87

https://www.youtube.com/watch?v=fnFj3dOKcIQ
https://www.youtube.com/watch?v=fnFj3dOKcIQ
https://gdcvault.com/play/1026263/Math-for-Game-Developers-Tile
https://gdcvault.com/play/1026263/Math-for-Game-Developers-Tile
https://github.com/emilk/wfc
https://github.com/fileho/Dungeon-of-Chaos
https://bitbucket.org/mxgmn/basic3dwfc/src/master/
https://bitbucket.org/mxgmn/basic3dwfc/src/master/
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://selfsame.itch.io/unitywfc
https://selfsame.itch.io/unitywfc
https://selfsame.itch.io/bug-with-a-gun
https://selfsame.itch.io/bug-with-a-gun

Joseph Parker, Ryan Jones, and Oscar Morante. Proc Skater 2016. itch.io,
2016. URL https://arcadia-clojure.itch.io/proc-skater-2016. Ac-
cessed: 01/02/2023.

Joseph Parker, Douglas Fileds, Joshua Suskalo, Ramsey Nasser, and Tims Gard-
ner. Swapland. itch.io, 2017. URL https://arcadia-clojure.itch.io/
swapland. Accessed: 19/02/2023.

Stuart J. Russell and Peter Norvig. Artificial Intelligence a Modern Approach.
Pearson, 3 edition, 2010. ISBN 978-0-13-604259-4.

Hugo Scurti and Clark Verbrugge. Generating Paths with WFC. CoRR,
abs/1808.04317, 2018. URL http://arxiv.org/abs/1808.04317.

Noor Shaker, Julian Togeliusm, and Mark J. Nelson. Procedural Content Gen-
eration in Games. Computational Synthesis and Creative Systems. Springer
International Publishing, Cham, 1st ed. 2016. edition, 2016. ISBN 3-319-42716-
4.

Oskar St̊alberg. Wave - by Oscar St̊alberg, May 2017. URL https://
oskarstalberg.com/game/wave/wave.html. Accessed: 8/4/2022.

Oskar St̊alberg. Bad North, Aug 2018. URL https://www.badnorth.com. Ac-
cessed: 10/8/2022.

Oskar St̊alberg. Townscrapper, June 2020. URL https://www.townscapergame.
com. Accessed: 10/8/2022.

Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios Yannakakis. What
is procedural content generation?: Mario on the borderline. In Proceedings
of the 2nd International Workshop on procedural content generation in games,
PCGames ’11, pages 1–6. ACM, 2011. ISBN 9781450308724.

Guillaume Werle and Benoit Martinez. ’Ghost Recon Wildlands’: Terrain Tools
and Technology. Game Developers Conference, Feb 2017. URL https://
www.gdcvault.com/play/1024029/-Ghost-Recon-Wildlands-Terrain. Ac-
cessed: 25/2/2023.

88

https://arcadia-clojure.itch.io/proc-skater-2016
https://arcadia-clojure.itch.io/swapland
https://arcadia-clojure.itch.io/swapland
http://arxiv.org/abs/1808.04317
https://oskarstalberg.com/game/wave/wave.html
https://oskarstalberg.com/game/wave/wave.html
https://www.badnorth.com
https://www.townscapergame.com
https://www.townscapergame.com
https://www.gdcvault.com/play/1024029/-Ghost-Recon-Wildlands-Terrain
https://www.gdcvault.com/play/1024029/-Ghost-Recon-Wildlands-Terrain

List of Figures

1.1 Examples of Wave Function Collapse; on the left side, is the in-
put bitmap and on the right side are several generated outputs.
[Gumin, 2016b] . 8

1.2 Consecutive updates of the output, uncollapsed cells shows the
average value of remaining possible colors [Karth and Smith, 2017] 10

1.3 Different symmetries, uses values from left 1, 2, 4, and 8 12

2.1 Example of homogeny [Bucklew, 2019a] 14
2.2 Example of overfitting [Bucklew, 2019a] 15
2.3 The core idea of the HWFC; start by generating a simple layout on

top, and continue by adding details with more specialized WFCs
on bottom . 17

2.4 Expanding pattern for the Overlapping model N = 3, stacking
several one tile width layers must also stack them on the output . 18

2.5 Impact of borders on the generation; each figure advances by 200
iterations . 21

2.6 Standard generation without borders; each figure advances by 200
iterations . 21

2.7 Complex shape with a narrow path in the middle 22
2.8 output over discarded area . 23
2.9 Example of auto-tiling; left is without auto-tiling, right is with

applied auto-tiling . 24

3.1 World map overview . 25
3.2 Abstract layer input . 26
3.3 Abstract layer outputs . 27
3.4 World map example (seed = 1) after the abstract layer is generated 27
3.5 Sea input . 28
3.6 Sea outputs . 29
3.7 World map example (seed = 1) after the sea in generated 29
3.8 Biomes input; here is yellow sand at the bottom, green grasslands

as the majority of input, brown mountains, and dark green forests 30
3.9 Biomes outputs . 31
3.10 World map example (seed = 1) after the biomes are generated . . 31
3.11 Grasslands input . 32
3.12 Grasslands outputs . 33
3.13 World map example (seed = 1) after the grasslands are generated 34

89

3.14 Mountains input . 34
3.15 Mountains outputs . 35
3.16 World map example (seed = 1) after the mountains are generated 36
3.17 Forest input . 36
3.18 Forest outputs . 37
3.19 World map example (seed = 1) after the forests are generated . . 37
3.20 Dungeon overview . 38
3.21 Dungeon — Abstract layer input 39
3.22 Dungeon — Abstract layer outputs 40
3.23 Dungeon example (seed = 1) after the abstract layer is generated 41
3.24 Boss room input . 41
3.25 Boss room output after a single iteration 42
3.26 Boss room outputs . 43
3.27 Dungeon example (seed = 1) after the boss room is generated . . 43
3.28 Mansion-like dungeon input . 44
3.29 Mansion-like dungeon outputs . 44
3.30 Dungeon example (seed = 1) after mansion-like parts are generated 45
3.31 Cavern-like dungeon input . 46
3.32 Cavern-like dungeon output 1 – left generated map, right is after

postprocessing . 46
3.33 Cavern-like dungeon output 2 – left generated map, right is after

postprocessing . 47
3.34 Dungeon example (seed = 1) after cavern-like parts are generated 47
3.35 Decorations Input . 48
3.36 Decorations output . 48
3.37 Dungeon example (seed = 1) after decorations are generated . . . 49

4.1 World map output (seed = 2) . 51
4.2 World map output (seed = 3) . 51
4.3 World Map output (seed = 4) . 52
4.4 World map output (seed = 5) . 52
4.5 World map output (seed = 6) . 53
4.6 World map single-layer (seed = 2) 54
4.7 World map single-layer (seed = 8) 55
4.8 World map single-layer, preplaced grass and water (seed = 2) . . . 56
4.9 World map single-layer, preplaced village and water (seed = 5) . . 57
4.10 World map single-layer, preplaced village and water (seed = 96) . 57
4.11 World map single-layer, preplaced grass (seed = 22) 58
4.12 Dungeon (seed = 2) . 59

90

4.13 Dungeon (seed = 3) . 60
4.14 Dungeon (seed = 4) . 61
4.15 Dungeon (seed = 5) . 61
4.16 Dungeon (seed = 6) . 62
4.17 Dungeon (seed = 11) . 62
4.18 Single-layer dungeon without postprocessing (seed = 1) 63
4.19 Single-layer dungeon with postprocessing (seed = 1), the input is

without paths . 64
4.20 Single-layer dungeon with postprocessing (seed = 2) 65
4.21 Handmade input to the single-layer dungeon 65
4.22 Single-layer dungeon with handmade input and postprocessing

(seed = 1) . 66
4.23 Single-layer dungeon with handmade input and postprocessing

(seed = 2) . 67
4.24 Single-layer dungeon with handmade input and postprocessing

(seed = 3) . 67

5.1 WFC Wrapper overview . 71
5.2 Tile Painter . 72
5.3 WFC Wrapper — inheritance . 74
5.4 Predetermined pattern for the Overlapping model 75
5.5 Class diagram of the Hierarchicalcontroller ; arrows mean has

instances of relationship . 78
5.6 Linear structure of WFCs . 79
5.7 Editor of the Hierarchical Controller 83

91

List of Tables

4.1 Hardware used for experiments 68
4.2 World map performance . 69
4.3 Dungeon performance . 69

92

List of Abbreviations
WFC — Wave Function Collapse algorithm 1.3.1
HWFC — Hierarchical Wave Function Collapse 2.2
PCG — Procedural Content Generation
CSP — Constraint Satisfaction Problem
API — Application Programming Interface

93

A. Attachments
This chapter describes attachments to the thesis.

A.1 Unity Project

The Unity project is placed in a folder source. It contains the implementation of
HWFC and the examples we used in the thesis. It used Unity version 2020.3.19f1
LTS.

The application can also be downloaded at GitHub:
https://github.com/fileho/Hierarchical-Wave-Function-Collapse.

A.2 Build

The build application is placed in a folder bin. It contains a build for the Windows
platform. For other platforms, building the application from the Unity project is
necessary.

The application contains both examples: the world map and the dungeon. It
is important to fill in the seed. It should be a non-negative integer. Seed = 0
generated pseudo-random output. We can generate and inspect many outputs of
the HWFC using this application. More information is in the user documentation.

A.3 User Documentation

User documentation is placed in documentation folder. It describes how to use
both the build and the Unity project.

94

https://github.com/fileho/Hierarchical-Wave-Function-Collapse

	Introduction
	Background
	Procedural Content Generation
	Constraint Satisfaction Problems
	Wave Function Collapse
	Overlapping Model
	Simple Tiled Model

	Inputs

	Analysis
	Motivation
	Hierarchical Wave Function Collapse
	Enforcing Minimal Size
	Upscaling

	Modifying Wave Function Collapse
	Early Tile Placement
	Borders
	Non-rectangular Output
	Auto-tiling

	Experiments
	World Map
	The First Layer
	The Second Layer
	The Third Layer

	Dungeon
	The First Layer
	The Second Layer
	The Third Layer

	Results
	World Map
	Generated Maps
	Comparisons

	Dungeon
	Generated Maps
	Comparisons

	Performance
	World Map
	Dungeon

	Implementation
	Wave Function Collapse Unity Wrapper
	Tile Painter
	Training
	Model Wrappers

	Modifications
	Base WFC
	Early Tile Placement
	WFC Postprocessing
	Runtime

	Hierarchical Controller
	Editor
	Seed

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Unity Project
	Build
	User Documentation

