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Institute: Institute of Formal and Applied Linguistics
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Abstract: German is known for its highly productive word formation processes,
particularly in the area of compounding and derivation. In this thesis, we focus
on German nominal compounds and their representation in machine translation
(MT) outputs. Despite their importance in German text, commonly used met-
rics for MT evaluation, such as BLEU, do not adequately capture the usage of
compounds. The aim of this thesis was to investigate the generation of German
compounds in Transformer models and to explore the conditions that lead to
their production. Our analysis revealed that MT systems tend to produce fewer
compounds than humans. However, we found that due to the highly productive
nature of German compounds, it is not feasible to identify them based on a fixed
list. Therefore, we manually identified novel compounds, and even then, human
translations still contained more compounds than MT systems.

We trained our own Transformer model for English-German translation and con-
ducted experiments to examine various factors that influence the production of
compounds, including word segmentation and the frequency of compounds in
the training data. Additionally, we explored the use of forced decoding and the
impact of providing the model with the first words of a sentence during trans-
lation. Our findings highlight the importance of further research in developing
MT models that are better suited to producing compounds in line with human
translation.
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Název: Německé složeniny v modelech typu Transformer

Autor: Bc. Kristýna Neumannová
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Abstrakt: Němčina je známá svou velmi produktivńı slovotvorbou, zejména v
oblasti kompozice a derivace. V této práci se zaměřujeme na německé nominálńı
složeniny a jejich zastoupeńı ve výstupech strojového překladu. Navzdory je-
jich d̊uležitosti v německých textech, běžně použ́ıvané metriky pro hodnoceńı
kvality překladu, jako je BLEU, nedokážou použit́ı složenin dostatečně zachytit.
Ćılem této práce bylo zkoumat generováńı německých složenin v modelech typu
Transformer a prozkoumat faktory, které vedou k jejich tvorbě. Zjistili jsme, že
strojové překladové systémy produkuj́ı méně složenin než lidé. Také se ukázalo,
že kv̊uli velmi produktivńı povaze německých složenin neńı možné je identifikovat
na základě fixńıho seznamu. I po ručńım vyhledáńı nových kompozit jich lidské
překlady obsahovaly v́ıce než strojové.

Natrénovali jsme vlastńı model typu Transformer pro překlad z angličtiny do
němčiny, abychom to mohli zkoumat r̊uzné faktory, které ovlivňuj́ı produkci
složenin, včetně segmentace slov a frekvence složenin v trénovaćıch datech. Dále
jsme experimentovali s vynuceným dekódováńım (forced decoding) a zjǐsťovali,
jak se změńı výstup systému po poskytnut́ı prvńıch slov překládané věty. Naše
výsledky zd̊urazňuj́ı d̊uležitost daľśıho výzkumu v oblasti strojového překladu,
aby se byly překladové systémy schopny lépe přibĺıžit lidskému překladu a gen-
erovat v́ıce složenin.

Kĺıčová slova: Transformátor, Strojový překlad, Německá kompozita, Kvalita
strojového překladu
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Introduction
Estimating the quality of machine translation is a challenging task regularly tack-
led by researchers. Various evaluation methods have been developed for this pur-
pose. The most widely used automatic metric is still the BLEU score [Papineni
et al., 2002] which measures the n-gram similarity of the translation output to one
or more human reference translations. Another automatic metric for measuring
translation quality is, for instance, ChrF [Popović, 2015]. The ChrF metric uses
character n-grams instead of word n-grams. However, string-based metrics are
not ideal since they measure only the surface similarity to the reference and fail
to capture the meaning of the sentence or other subtle phenomena that can also
influence the perceived quality of the translation. One such phenomenon is the
presence or absence of compound words, a particular grammatical construction
that is frequent in German. This thesis focuses on compound words, and how
they occur in human and machine translations.

German has a highly productive word formation system mainly through com-
pounding and derivation, especially for nouns [Barz, 2016, p. 2388]. In this thesis,
we study German nominal compounds, which mostly consist of two constituents
that are either complex or simple stems. The compounds in German are right-
headed which means that the second element determines the morphosyntactic
properties of the formed word. Additionally, semantically empty elements, called
linking elements, can be added to the first stem of the compound. [Barz, 2016,
p. 2390]

Using compounds instead of multi-word expressions is a soft phenomenon
related to text style, which can affect the perceived quality of the text. Native
speakers can even form new compound words to fulfil the needs requested by a
particular dialogue or discourse situation. We believe that machine translation
systems, operating on subword units, are able to produce complex words like
humans, even if they were not included in the training data. In this thesis, we
examine Transformer-based models in terms of how often and in which situations
they produce compounds in translations from English to German and if and how
we can influence that.

We know that splitting and determining German compounds is a complex
task. Therefore, we relied on a list of compounds extracted from the German
adaptation of WordNet called GermaNet [Henrich and Hinrichs, 2011]. Oper-
ating on a closed list of compounds may provide an advantage for the analysis.
Considering that the use of compounds is a stylistic matter, the exact list provides
us with the possibility to group the observations of the phenomenon.

In the thesis, we study several aspects of the data and models concerning the
production of German nominal compounds. One aspect of estimating the quality
of translations is the number of appearances of compounds in translations, and
we set this metric as our main measure.

Firstly, we compared the counts of compounds in human translations with
state-of-the-art machine translation system outputs for the English-German lan-
guage pair. We examined their correlation with the general translation quality
measured by the BLEU score. Then, we trained our own Transformer model
to explore its behaviour regarding compound production on a fixed training set.
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Since the weights and inner states of the model are hard to interpret, clustering
examples (or sentences) that contained compounds helped us explore the simi-
larities and differences among different model versions. We analyzed the factors
that influenced compound production. Furthermore, we also searched for words
in the output that are not contained in the training data, compared the counts
of produced compounds within the training epochs of the system, and performed
further analysis concerning the compound counts in the outputs. Several training
setups that differed in preprocessing of the corpora were compared. The source
code and the outputs of the performed analysis are available on GitLab.1 The
repository contains scripts and outputs of the compound analysis, training, and
preprocessing scripts and additional code for experiments on our Transformer.

The structure of the text is as follows: Chapter 2 describes the data and
tools used for compound analysis and Transformer training. Chapter 3 provides
a study of the appearance of German compounds in state-of-the-art English-
German translations. Chapter 4 specifies the parameters and data used for the
training of our own Transformer model. The subsequent analysis of the outputs of
our model is described in Chapter 5. We investigate the production of compounds
and their adaptations and focus on aspects that can influence the production.

1https://gitlab.mff.cuni.cz/neumankr/master-thesis
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1. Background & Related Work
German compounds are complex words that occur in every German text. How-
ever, they pose a challenge for natural language processing (NLP) applications
such as morphological analyzers or machine translation (MT) systems. There
have been several attempts to find and process compounds to improve the qual-
ity of these applications. Most of the previous work on MT dealing with German
compounds was done in statistical machine translation (SMT). We found only a
few papers, see below, about German compounds in neural machine translation
(NMT), almost all of which were published before the introduction of the Trans-
former model [Vaswani et al., 2017]. The Transformer model outperformed the
previous NMT systems and became the leading neural network architecture not
only in NLP but also in a broad range of other applications. Our work focuses
on the production of German compounds in Transformer models, a topic that
has not been adequately studied yet. We describe previous work on German
compounds in SMT (Section 1.1) and NMT (Section 1.2).

1.1 Compounds in SMT
The most common approaches to SMT operated on whole words. Therefore, they
did not handle morphologically rich or compounding languages very well. This led
to the introduction of several methods to improve SMT quality for compounding
or inflectional languages. One such method is compound splitting which aims
to split complex words into parts that can help translate unknown words. We
can translate their parts after splitting them and then join them. Morphological
analysis of a text or determining compounds in a text or a set of words can aid in
this process. We describe the approaches to compound splitting in Section 1.1.1.
These methods dealt with improving MT quality from compounding languages.

There were other approaches that focused on translation into compounding
languages and performed post-processing of translations and merging words into
compounds. The data passed to MT systems were often pre-processed with a
word splitter, and the compound generating part was then employed after the
translation using compound merging strategies. It is not possible to fully separate
approaches dealing with compound splitting and compound generation because
they were often combined. However, we present work focusing mostly on merging
strategies in Section 1.1.2

1.1.1 Compound Splitting
One of the first empirical methods for splitting compounds was introduced by
Koehn and Knight [2003]. In their paper, the authors attempted to split com-
pounds into parts that had been separately observed in the training data. They
focused on improving MT quality and used a metric that considered the frequency
of the constituents in the training data. Another factor that influenced the split-
ting of compounds was the number of similar words (with the same component)
that were split. For example, the German word Grundrechte was better to be
split because the first constituent Grund- was a frequent part of compounds. Er-
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rors in split prefixes and suffixes were resolved using limitations on the part of
speech (POS).

Schmid et al. [2004] presented SMOR, a German morphological analyzer that
focused on productive derivation and compounding processes in German. The
analyzer was implemented as a finite-state transducer and had an impact on other
work in German morphology and compound splitting. For example, Henrich
and Hinrichs [2011] used an adapted version of SMOR to improve the German
compound splitting algorithm for determining the constituents of compounds in
GermaNet. They combined an updated SMOR compound splitter with other
splitters, such as a pattern-matching-based splitter that considers all potential
modifiers and heads, along with linking elements. This approach generated a list
of nominal German compounds that were used for our analysis.

Besides morphology-based data-driven methods for compound splitting, un-
supervised or semantic-based approaches also exist. For example, Sugisaki and
Tuggener [2018] introduced an unsupervised method for compound splitting based
on the productivity of morphemes. This approach distinguishes between bound
and free morphemes. Free morphemes have the ability to stand alone as words,
while bound morphemes appear only as parts of words in the text. They com-
puted a probability of morpheme boundedness, which is the ratio between the
counts of bound and free morphemes. The lexicon used for this approach was
extracted from a giga web corpus.

Another approach based on semantic representations was presented by Daiber
et al. [2015]. They visualized compound words and their constituents in vector
space for better intuition of how are their representations distributed in relation
to each other. Compounds with the same head, which is the second part of the
compound carrying morphosyntactic properties, tended to be close in the vector
space, which did not necessarily hold for compounds with the same modifier,
which is the first part of the compound. The authors proposed a method for
extracting compounds based on this observation. They recursively extracted all
possible modifiers (all meaningful prefixes that also left meaningful suffixes) and
then created prototypical vectors for them. For each extracted modifier-head
pair, the directional vector was computed by subtracting the head vector from a
compound vector. These retrieved modifier vectors were then added to all vectors
in the dictionary of heads. If the resulting vector was similar to some word, it was
then considered a compound. The authors evaluated their splitter based on the
described prototypes on the GermaNet list of compounds. They achieved 27.4%
accuracy and 58.4% coverage on the test set. This compound splitting method
has been shown to improve SMT systems with the BLEU score on the WMT15
News test set improving by 0.6 BLEU compared to the baseline translation from
the Moses decoder Koehn et al. [2007].

1.1.2 Generation of Compounds
Although we could not entirely separate methods dealing with splitting and merg-
ing compounds, in this section, we present approaches that explored the genera-
tion of compounds or merging strategies for them in more detail. Popović et al.
[2006] focused on both German-English and English-German translation. For
translation into German, they collected all German words consisting of two or
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more components and decided whether to split them based on the frequency
of the whole expression and its parts. They proposed three different methods
for English-German translation, one of which dealt with splitting and merging
German compounds. They divided the compounds into parts as described in Sec-
tion 1.1.1 for German-English translation. After that, the authors trained the MT
system and let it translate the input text. The resulting text was post-processed,
i.e., the compounds were merged. The merging method was based on corpus
statistics. They extracted a list of German compounds and their constituents
from the training corpus. The merging algorithm then searched for words that
followed each other in the output text in this list. The sequences of words that
were found as constituents of compounds in the list were then merged into a
compound. This method enabled the production of only compounds that are
composed of known compound parts in the training corpus.

Stymne [2009] investigated merging strategies for compounds on the target
side of SMT including the method of Popović et al. [2006]. She focused on trans-
lating into German. As in the previously cited article, compounds were first split
in the training data, and after translation, the parts were merged into complete
compounds. Stymne compared several merging algorithms in her paper. The
first algorithm merged tokens seen in the training data as compound parts (the
method called “word-list” based on Popović et al. [2006]). The second dealt with
merging tokens marked with a special symbol (the method called “symbol”). The
third merged all tokens with a compound POS tag (“POS-match”). These three
main groups of algorithms also had some modifications. These methods were
evaluated in two ways: the overall quality of the translation was evaluated, and
the performance of merging algorithms was analysed (according to the number,
type and quality of merges). It was shown that merging strategies could improve
SMT quality; however, none of the investigated algorithms reached the number
of compounds in the human-translated reference.

Stymne and Cancedda [2011] built on Stymne’s previous work and proposed
a method for compound merging that viewed the task as sequence labelling.
The words were labelled as to whether they should be joined or not. Further
improvements were made by combining and enhancing the heuristics for merging
described by Stymne [2009].

As composition is a highly productive word formation process in German, MT
systems should be able to produce unseen compounds to deal with it. Cap et al.
[2014] focused on improving SMT through the compound synthesis in English-
German translation. Their systems operated on English-German translation. To
produce unseen compounds, the authors preprocessed the training data by split-
ting words into parts and computing the frequency statistics of these parts. The
output of the MT system was then post-processed using these statistics. Poten-
tial compounds were merged based on frequencies of the bigram, the second part
as the head of a compound, and the first part as the modifier of a compound
from the training data. If the target language features were insufficient, source
language features such as alignment or POS features were used. As the automatic
evaluation using the BLEU metric did not show significant improvements, they
provided a review of the compounds by identifying them manually, aligning them
with English source text, projecting these English counterparts, and then anno-
tating the resulting tuples of German compounds and their English counterparts.
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Their method generated 100 more compounds (750 in total) than the baseline
Moses decoder Koehn et al. [2007]. Many of the found compounds were correct
translations of the source text even if they were not all affirmed by the reference
translation.

1.2 Neural Machine Translation
Neural machine translation (NMT) replaced the previous approaches between
the years 2014–2017. In this brief summary, we skip the previous models based
on recurrent networks and focus only on the Transformer architecture (1.2.1),
subword units (1.2.2), and compounds in NMT (1.2.3).

1.2.1 Transformer Architecture
Vaswani et al. [2017] introduced a Transformer architecture which surpassed the
performance of the previous state-of-the-art recurrent and convolutional networks
in MT. Like other sequence-to-sequence models, the Transformer has an encoder
and decoder. The encoder produces a representation of an input sequence, which
is then fed to the decoder to iteratively generate an output sequence. The output
is then transformed into the final output, which in the case of translation means
producing words in the target language based on vocabulary indices.

The key idea behind the Transformer architecture was the self-attention mech-
anism, which enabled interactions between all positions in the input or output,
even if they were very distant. This mechanism was implemented by the scaled
dot product of queries with keys obtained from the input, which were (after ap-
plying the softmax function) multiplied with values that were also extracted from
the input. The authors proposed to use multiple parallel self-attention computa-
tions and constructed a multi-head attention mechanism. This mechanism was
utilized in both the encoder and the decoder of the model. Each encoder layer
consisted of a self-attention sub-layer and a fully-connected feed-forward sub-
layer, with normalization and residual connections employed after each sub-layer.
In addition, the decoder included a third sub-layer that provided multi-head at-
tention over the output of the encoder. The decoder self-attention sub-layer was
modified to ensure that the predictions for a particular position only depend on
previous predictions. The decoder of the sequence-to-sequence model generates
a final sequence of tokens, and in each step of generation, one token is added to
the previous sequence. Since the number of possible words to add to the trans-
lated sentence in each step of decoding is very large, the path through the entire
search space must be reduced to save the memory and speed requirements of the
algorithm. Sutskever et al. [2014] introduced a general approach to sequence-to-
sequence learning for neural networks. The decoder search was equipped with a
left-to-right beam search that kept a small defined number B of partial hypothe-
ses. B is called beam size or beam width. The partial hypothesis is considered to
be a prefix of some potential translation. In each step of decoding, they extended
each partial hypothesis in the beam with every possible word in the vocabulary.
After that, the partial hypotheses with lower probabilities were discarded, so only
the B best hypotheses remained in the beam. The Transformer model utilized
this search algorithm for decoding.
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Holtzman et al. [2019] investigated several decoding strategies, including beam
search. They discovered that maximization-based decoding algorithms, such as
beam search, lead to degeneration, meaning that the output text is dull, incoher-
ent, or repetitive. However, their work focused mainly on open-ended generation,
which includes tasks such as conditional story generation and text continuation.
Since translation is a directed-generation task and its output is tightly scoped
by the input, repetitions are not so problematic. The authors examined several
aspects of text generation that were influenced by the chosen decoding algorithm.
One of them was vocabulary usage and text perplexity. They discovered that the
text generated by maximization is too probable, which means that it lacks diver-
sity and divergence in vocabulary usage. This differentiates machine-generated
text from human-written text. Their statistics revealed that high values of beam
size led to vocabulary usage more similar to human distribution; however, these
texts often had a high variance in likelihood and were, therefore, less coherent.
The perplexity of the text generated by maximization-based algorithms was found
to be much lower than it was for human text. To overcome these issues, the au-
thors proposed a new decoding strategy called Nucleus Sampling, which utilized
sampling with a dynamically changing parameter.

The search space of all possible sentences is huge, so the algorithm uses prun-
ing which can lead to various errors in decoding. We distinguish three types
of errors: search error, modelling error, and compound error. When the model
scores better on an incorrect (or undesirable) sentence than the correct one, we
call it a modelling error – the model did not fulfil our wishes. This allows the
model to make a search error where a better-scored sentence exists but was not
found during the search. The compound error is the combination of these two
errors.

1.2.2 Rich Morphology in NMT
Morphological analysis, compound segmentation, and merging are easily imple-
mented in SMT. Nevertheless, NMT has surpassed SMT in performance and is
still evolving. Several attempts have been made to address the complex morphol-
ogy of inflectional or compounding languages in NMT. Although it is challenging
due to the non-intuitive nature of neural networks’ hidden parameters, dealing
with rich morphology is essential to improve translation quality for languages
such as German or Czech.

Translating into inflected and compounding languages requires the ability to
generate words from an extensive vocabulary. However, dealing with a large
vocabulary in NMT is very computationally demanding, so the dictionary size
needs to be limited. However, translation is an open-vocabulary problem and the
MT system should be able to produce rare and unknown words. Sennrich et al.
[2016] introduced a simple and effective approach based on the idea that various
categories of words, such as compounds and other morphologically complex words,
names, or loanwords, can be translated using smaller units than words. These
units are called subwords. The authors proposed a word segmentation method
based on the Byte Pair Encoding (BPE) compression algorithm [Gage, 1994]. The
original algorithm iteratively replaced the most frequent bytes in a sequence with
another unused byte. The proposed segmentation method merges characters or
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character sequences instead of pairs of bytes. The initial vocabulary included all
characters plus the special end-of-word symbol. Then, the algorithm iteratively
replaces each occurrence of the most frequent symbol pair with a new symbol
for the pair. Each merge produces a new symbol representing a character n-
gram (or possibly a whole word). The algorithm iterates until the desired size of
the vocabulary is reached. The BPE word segmentation method has led to big
improvements in the translation of rare and unseen words, and it has become a
prominent method for segmentation in NMT.

Tamchyna et al. [2017] proposed a two-step translation system to incorporate
the morphological features of target side words. In the first step, they used an
encoder-decoder NMT system with BPE to produce a sequence of interleaving
lemmas and morphological tags. In the second step, they applied a morphological
generator to construct the final inflected words. Although their work mainly
focused on English-Czech translation, they also carried out experiments for the
English-German pair. For German, they used a morphological analyzer instead
of a simple lemma and morphological tag tuple as in Czech to cover productive
word formation processes such as compounding.

Weller-Di Marco and Fraser [2020] extended the lemma-tag generation ap-
proach from Tamchyna et al. [2017] and implemented source-side word segmen-
tation based on statistics retrieved from tagged and lemmatized data. Their
method operates on suffixes and prefixes and was investigated using English-
German translation implemented by the Transformer model. The evaluation was
again performed using the BLEU metric.

1.2.3 Compounds in NMT
Weller-Di Marco and Fraser [2020] integrated a compound splitter for German
into their previously described translation system. The splitter was based on
morphological analysis and relied on a morphological analyzer from Koehn and
Knight [2003]. Their compound splitter was similar to Weller-Di Marco [2017],
which combined a basic frequency-based approach with a form-to-lemma map-
ping. They assumed that components of compounds could possibly be inflected,
and lemmatization of them would solve it. However, adding a compound to their
two-step translation did not show significant improvements.

As described in the previous section, the used word segmentation technique
influences the ability of the model to deal with complex words and the rich mor-
phology of inflectional and compounding languages. Huck et al. [2017] investi-
gated word segmentation strategies that incorporate more linguistic knowledge
than the widely used BPE. One of the described strategies involved compound
splitting and provided top-down segmentation that considers the frequency of the
components, in contrast to BPE, which operates bottom-up. Compound split-
ting combined with suffix splitting improved BPE word segmentation in English-
German translation, as evaluated by the BLEU score.
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2. Data and Tools

2.1 Data
In this section, we present the data that was used to analyse the presence or
absence of German compounds in English-German translations, as well as the
fixed dataset that was used to train our Transformer model. The compounds
included in the systems’ outputs and in the training data were determined based
on a published list of compounds extracted from GermaNet. For our model, we
used a training and testing dataset from the Sixth Conference on Machine Trans-
lation (WMT21).1 The outputs from submitted systems to the conference were
explored in terms of translation quality and the number of compounds contained
within them.

2.1.1 GermaNet
GermaNet is a German word net that preserves the database format and structure
of Princeton WordNet 1.5. However, GermaNet does not provide a translation
of WordNet. It is an independently created word net with its own concepts
and features that focus on the German language. GermaNet was composed of
lexicographic resources, such as Wehrle and Eggers (1989), and was manually
assembled based on corpus frequencies [Kunze and Lemnitzer, 2007]. Additional
resources have been added over time.

Nouns, adjectives, and verbs are the most important categories of words in
the word net. The central representation concept in GermaNet is the synset that
groups synonyms of a given topic, such as Streichholz and Zündholz (matches).
The word net captures semantic relations between the synsets and also between
synonyms in one synset [Kunze and Lemnitzer, 2007]. The authors distinguished
two types of relations: lexical, such as synonymy and antonymy, and conceptual,
like hyponymy, hypernymy and others.

As mentioned above, we used a fixed list of nominal German compounds ex-
tracted from GermaNet [Henrich and Hinrichs, 2011] (version v17.0 last updated
in June 2022) to determine German compounds. The list contains 115,563 nom-
inal German compounds with information on how they are split into two parts:
the head and the modifier of the compounds. The first part modifies the meaning
of the second part (the head), which carries the morphosyntactic features of the
entire word [Barz, 2016, p. 2390]. Compounds with more than two constituents
can be recursively split by finding the split of its components in the GermaNet
list.

2.1.2 WMT21
We used a dataset provided by the Sixth Conference on Machine Translation
(WMT21) [Akhbardeh et al., 2021] and tested our hypotheses on the outputs of
systems submitted to the conference. Our own Transformer model was trained

1https://www.statmt.org/wmt21/
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using a closed set of parallel training data and then tested on the Newstest2021
test set provided by the authors of the metrics task at the conference.

Training Data

We trained our Transformer model for English-German translation using seven
parallel corpora which were the same as those used for constrained systems sub-
mitted to WMT21. The constrained systems did not use any additional data
except for the given corpora for training. In the provided data, each sentence was
provided on a separate line, and we split it into tokens using the Moses tokenizer
(see Section 2.2.4). The number of sentences and English and German tokens
in the datasets is shown in Table 2.1. We set aside 10% of the data for valida-
tion, as suggested by the translation example from FAIRSEQ (see Section 2.2.1).
Therefore, only 90% of the data was used for training.

corpus sents EN tokens DE tokens
ParaCrawl v7.1 82,638,202 1,644,732,036 1,588,959,138
WikiMatrix 5,473,201 107,836,063 103,902,159
Common Crawl corpus 2,399,123 59,894,034 55,956,928
Europarl v10 1,828,521 50,964,634 48,517,316
Tilde Rapid corpus 1,631,639 1,631,639 26,915,003
Wiki Titles v3 1,474,203 3,966,045 3,563,107
News Commentary v16 398,981 9,979,602 10,059,964

Table 2.1: WMT21 Training corpora - number of sentences and tokens

Test Data

To compare human translations to outputs of state-of-the-art systems and evalu-
ate our model, we used the WMT21 test set [Akhbardeh et al., 2021]. The source
texts for this dataset were retrieved from online news sites. The test set comprises
around 1,000 sentences for all languages (1,002 for en-de). The authors of the
test set guaranteed that the sentences were originally from the source language
and then translated into the target language. The sources of the English articles
used in the test set are listed in Figure 2.1.

ABC News (5), Al Jazeera (1), All Africa (2), BBC (4), Brisbane Times (3), CBS LA (1), CBS
News (3), CNBC (1), CNN (1), Daily Express (4), Daily Mail (1), Egypt Independent (3), Fox News (2),
Guardian (6), LA Times (1), London Evening Standard (2), Metro (1), NDTV (7), New York Times (2),
RTE (1), Russia Today (5), Seattle Times (4), Sky (1), The Independent (1), The Sun (2), UPI (1),
VOA (1), news.com.au (1), novinite.com (1)

Figure 2.1: Composition of English test-set (number of articles)

Professional translation agencies performed the reference translations. Con-
sidering that English-German is a highly attractive language pair, it received
special attention. A different translation agency provided a second reference,
labelled “B”; however, it was found to be a post-edited version of one of the sub-
mitted systems, so it was discarded from the conference. Since we do not rely on
the BLEU score in most of our experiments, we left the second reference in the
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(d) ref D

Figure 2.2: Histogram of lemmas present in references according to frequencies
in training data

test set for compound analysis. However, we did not use it for BLEU scoring.
The third reference translation was sponsored by Microsoft, labelled “C”. The
metric task organizers then provided a fourth reference, labelled “D”. [Akhbardeh
et al., 2021]

The plot in Figure 2.2 shows the comparison of training and test data distri-
butions for each reference separately. The x-axis shows the frequencies of words
in the training data, and the y-axis shows the count of tokens in the reference be-
longing to a particular frequency interval. The blue bars represent all words, while
the red bars represent specifically compounds (secondary y-axis). The statistics
were computed on lemmatized texts.

The distributions of all words are very similar for all four references, but the
counts of compounds differ. The reference translations “C” and “D” contain the
most compounds, while the reference “B” has the least. It may be due to the fact
that the reference “B” is a postedited version of an MT system. It is interesting
to note that the most frequent lemmas, which belong to the last bin, are “–” and
“der” (definite article in German).
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C-BUPT_rush
C-eTranslation
C-HuaweiTSC
C-ICL
C-Manifold
C-Nemo
C-nuclear_trans
C-P3AI
C-UEdin
C-UF
C-WeChat-AI
UC-Facebook-AI
UC-happypoet

UC-metricsystem1
UC-metricsystem2
UC-metricsystem3
UC-metricsystem4
UC-metricsystem5
UC-Online-A
UC-Online-B
UC-Online-G
UC-Online-W
UC-Online-Y
UC-VolcTrans-AT
UC-VolcTrans-GLAT

Figure 2.3: Systems participating on WMT21 for English-German translation
(C marks constrained systems and UC unconstrained)

System Outputs

We downloaded the outputs of the systems submitted to WMT21 for the English-
German language pair to compare their state-of-the-art results to human trans-
lation and our own results. We focused on compound counts, which we chose as
the main criterion for our comparison. However, not all provided systems used
only the given fixed training set, so we distinguished constrained (C) and uncon-
strained (UC)systems and marked them in our statistics. All systems are listed
in Figure 2.3.

2.2 Tools
This section describes the tools and frameworks used for our analysis and Trans-
former training. WE wrote the majority of the code in Python 3 or Bash. We
selected FAIRSEQ [Ott et al., 2019] as the framework for training and evaluating
Transformers, as explained in Section 2.2.1. Prior to identifying compounds in
the outputs, we had to lemmatize the text. In Section 2.2.2, we explain several
different lemmatization methods, that we used. Additionally, we used some minor
tools during our analysis, which are described in Section 2.2.4.

2.2.1 FAIRSEQ
The FAIRSEQ toolkit [Ott et al., 2019] is an open-source tool used for sequence
modelling and allows researchers to train and evaluate their custom models for
text-generating tasks such as translation, language modelling and summarization.
It is written in PyTorch and designed to run on multiple GPUs.

The authors also provide command-line tools to launch Python training and
evaluating scripts. The toolkit repository contains several sample pipelines that
implement specific research papers. For our preprocessing, we used a script that
was inspired by the provided WMT14 English to German example.2

We utilized the fairseq-preprocess script to binarize the train, test, and val-
idation data. Our Transformer model was trained using the fairseq-train script
and we generated the outputs of the models using the fairseq-generate script.

2https://github.com/facebookresearch/fairseq/tree/main/examples/translation
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We adapted the generation script to output not only the final hypotheses (com-
plete translations) but also candidate hypotheses for each generation step. The
parameters used for training are further described in Chapter 4.

2.2.2 Lemmatization
To obtain accurate results, we had to normalize the translations (human and MT)
to identify German compounds in the translated text. We initiated the process
by lemmatizing the German text using the Spacy framework.3 We downloaded
the small model for German, de core news sm for Spacy, and lemmatized all
human and system translations of the Newstest2021 test-set. Additionally, we
lemmatized the German part of the training data to detect new words in the
systems’ outputs and generated statistics about their frequencies in the training
data.

However, we encountered some errors in lemmatization, particularly for long
German compounds – many plural nouns were not normalized and not all gen-
itive nouns with ending -s or -es were recognized. To address these issues, we
developed a simple rule-based normalization method that primarily focused on
genitive endings. This method employed external tools for tokenization, as de-
scribed in Section 2.2.4, and was advantageous as it correctly processed numer-
ous complex nouns. Since our analysis centered on German nouns, we did not
concentrate on normalizing other words in this method. We found this simple
rule-based method to be an excellent complement to Spacy lemmatization since
both techniques identified supplementary sets of German compounds.

However, after evaluating both methods, we decided not to combine them
and chose the UDPipe 2 [Straka, 2018] lemmatization method instead because it
performed better. The description of this method is provided in the subsequent
section.

2.2.3 UDPipe
UDPipe 2 is a Python toolkit for tagging, lemmatization, and syntactic analysis
developed by Straka [2018]. UDPipe operates on CoNLL-U4 inputs. The second
version of UDPipe is implemented as a client-server-based application. It can be
used either via REST service or by compiling a server locally and then sending
requests to it. Since we wanted to lemmatize the German texts of the entire
training data, we compiled the server locally. The server and client scripts are
available on GitHub.5 We ran UDPipe and Wembedding 6 servers on separate
GPUs to achieve better performance in lemmatization of complex words. The
Wembedding server provides the computation of contextualized embeddings.

In a small manual examination, we found that the pre-trained German GSD
model7 from the 2.10 version of Universal Dependencies models8 is the best option
for lemmatization of complex compounds. The GSD model performed better

3https://spacy.io/
4https://universaldependencies.org/format.html
5https://github.com/ufal/udpipe/tree/udpipe-2
6https://github.com/ufal/wembedding service
7https://universaldependencies.org/treebanks/de gsd/index.html
8https://ufal.mff.cuni.cz/udpipe/2/models#universal dependencies 210 models
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than the other German models for that version, particularly in processing long
compounds and it did not omit modifiers from the compounds. It also successfully
processed many nouns with genitive and plural endings.

During manual analysis of lemmatization errors based on a comparison of UD-
Pipe with Spacy, we uncovered several inconsistencies between produced lemmas
and the normalized compounds in the GermaNet list. The comparison of lemma-
tization methods in counts found in translations is displayed in Appendix A.1.
One of the differences in UDPipe lemmatization was a substitution of the German
letter sharp s (ß) for ss in nouns. Based on these observations, we decided to
lemmatize also the list of GermaNet compounds for consistency.

2.2.4 Other Tools
Some outputs were only tokenized for the analysis. We utilized tokenization
for our rule-based lemmatization and for further analysis of our Transformer
model, for instance for stripping the first n words of a sentence before computing
the BLEU score which has to be done on the original output and not on the
lemmatized version of it. Tokenization for text normalization was implemented
using the NLTK framework with the function word tokenize().9

The FAIRSEQ tool processed its inputs for generation and evaluation with
the Moses tokenizer and detokenizer [Koehn et al., 2007]. Therefore, we used
the same tokenization method to analyse specific outputs of the tool, specifically
for prefix statistics. Consistent tokenization was needed to strip a prefix of a
particular length from a sentence. We used the Python implementation of the
Moses tokenizer and detokenizer (Sacremoses10).

Because the training of an NMT model is limited to a fixed vocabulary size,
the vocabulary of the training data had to be reduced. This was achieved by
dividing less frequent words into subwords using the BPE method. We used the
subwordNMT [Sennrich et al., 2016] implementation to learn and apply BPE.11

To assess the general translation quality, we computed BLEU scores for the
WMT21 systems’ outputs as well as the outputs of our Transformer models. In
the thesis, we provide BLEU scores against the first reference and also against
all references (without the discarded one). We used the SacreBLEU [Post, 2018]
implementation12 of the BLEU metric.

9https://www.nltk.org/api/nltk.tokenize.html
10https://github.com/alvations/sacremoses
11https://github.com/rsennrich/subword-nmt
12https://github.com/mjpost/sacreBLEU

16



3. German Compounds in
English-German Translations
The first part of the thesis analyses the presence or absence of German com-
pounds in English-German translations. As previously stated, identifying Ger-
man compounds is challenging, so we relied on the list of German compounds
from GermaNet (see Section 2.1.1) during the analysis. The study focuses on
determining if MT systems produce compounds at similar rates and in the same
sentences as human translators. This research may lead to a better understanding
of the phenomenon of creating German compounds and improving MT quality in
terms of productive composition for Transformer models, which are the subject
of the thesis.

We visualised notable sets of compounds to compare two different system
outputs and their intersections. Figure 3.1 displays these sets with their numbered
intersections. We have two different translations of the test sentences and the
compounds comprised in them (blue and red), the compounds from the GermaNet
list (green), and compounds that occurred in the training data (violet). The
entire rectangle signifies their superset – all possible German compounds. We
could theoretically add a set of compounds relevant to the test text, but there is
no easy way to add a fifth subset, and besides, this set is not easy to describe or
collect.

The only set we know entirely is the set of GermaNet compounds. We can
estimate all subsets of it (subsets II, III, IV, V, VI, VII in Figure 3.1). Approx-
imately 3.5%–5% of the GermaNet compounds are not included in the training
data (the percentage is biased by the used lemmatization method). We assume
that the sets VI, IV, and II will be very small or empty in the constrained systems
(systems that were trained using only the fixed set of training data).

Figure 3.1: Sets of German compounds appearing in outputs of two systems and
a list of compounds from GermaNet
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Unfortunately, determining the counts of German compounds in the subsets
depends on lemmatization. The texts need to be lemmatized before searching for
the compounds in them because we only have a closed list of German compounds
in a standardized form. The quality of lemmatization affects the counts of the
found compounds. In Section 2.2.2, we present the lemmatization methods we
experimented with.

In the following sections, we examine the sets described in Figure 3.1. We
compare the counts of compounds in different translations from WMT21 with
each other and with the training set.

3.1 Compounds in WMT21 Translations
In this section, we focus only on compounds that are contained in the GermaNet
list and search for them in WMT21 translations. We compare the counts of
compounds found in reference translations and state-of-the-art system outputs,
i.e. the sets II, III, IV, VI, and VII from the diagram in Figure 3.1 are investigated.
The figure displays the relation of only two systems, but we have more translations
to compare. We did not compute the sizes of all subsets for each pair.

We present counts of compounds and counts of sentences that contain at
least one compound for each reference and output translation separately. For the
constrained systems, we also report the number of compounds and sentences with
compounds that also appeared in one or more reference translations in a table
(considering only the same sentence it appeared in and not counting multiple
occurrences of the same compound in a sentence). The results are sorted by the
number of found compounds decreasingly and listed in Table 3.1.

Table 3.1 shows that human reference translations contain more compounds
than any other MT systems’ outputs. The best reference regarding the compound
number is the reference “C”, with 955 compounds found in 593 sentences. That
is over 100 compounds more than in the best MT system. The source text for all
of the translations comprised 1,002 sentences, so more than half of them led to
the generation of some compound in the best reference translation. Considering
all sentences where at least one human translator used a compound, we get 756
sentences with 995 different compounds. For all translations, we have 898 out of
1,002 sentences where at least one compound occurred.

Considering only the number of produced compounds, the best MT system is
the constrained system Nemo, with 842 compound occurrences in 559 sentences
(see Table 3.1). 87% of the compounds are approved by references. Unconstrained
systems that employ extra training data are presumed to have better results than
constrained systems. However, two constrained systems, Nemo and UF, each
produced more compounds than any of the unconstrained systems. The worst
system, ICL, contained 138 fewer compounds than the best MT system and 251
fewer compounds than the best human translation (see Table 3.1).

Although we sorted the table according to the compound count, the sentence
count is also important, especially for comparison with reference translations.
The same concept can be translated as a different compound, and as such it
would not be validated by the reference despite being also correct. Counting
all sentences with a compound helps to mitigate this effect. We take this into
account by considering four different human translations instead of only one.
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system # compounds in refs # sents in refs

ref-C 955 593
ref-D 946 591
ref-A 901 566
ref-B 878 569
C-Nemo 842 735 559 511
C-UF 802 710 532 487
UC-metricsystem2 801 533
UC-Online-B 798 532
UC-Facebook-AI 796 533
C-eTranslation 794 696 530 486
UC-VolcTrans-GLAT 792 533
UC-Online-W 791 533
UC-metricsystem1 790 530
UC-metricsystem3 787 518
UC-metricsystem5 783 531
C-WeChat-AI 783 707 527 493
UC-VolcTrans-AT 782 531
UC-Online-Y 776 522
UC-happypoet 770 526
UC-metricsystem4 769 515
C-Manifold 768 666 514 460
UC-Online-A 767 520
C-nuclear trans 762 656 514 466
C-HuaweiTSC 761 673 516 473
C-UEdin 758 666 513 466
UC-Online-G 754 516
C-P3AI 740 655 505 467
C-BUPT rush 731 627 495 443
C-ICL 704 595 485 426

Table 3.1: Compounds appearance in English-German translations in WMT 21
(counts of all appearances of compounds and counts of sentences with compounds
plus its subsets approved by reference translations)

We have calculated BLEU scores for all the systems to compare their overall
translation quality with our metric of produced compound counts. The BLEU
scores against reference A and against all three references (A, C, D) for all systems
are displayed in Table 3.2. While the order of systems based on the BLEU
score against reference A does not entirely correspond to the order based on
our compound metric (in Table 3.1), the first six systems scored high in both
metrics, and the two worst systems placed in the same positions in both metrics.
The constrained system UF contained many compounds but did not receive a
high BLEU score. The results have shown that we could not entirely rely on the
BLEU score when dealing with compound production but the correlation between
these two metrics is large.
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system BLEU refA BLEU all

UC-VolcTrans-GLAT 31.34 64.33
UC-Facebook-AI 31.26 62.00
C-WeChat-AI 31.32 60.34
C-Nemo 30.01 58.84
UC-Online-W 29.71 62.64
C-eTranslation 29.59 57.40
C-HuaweiTSC 29.77 57.94
C-UEdin 29.90 57.03
UC-Online-A 29.03 57.09
C-Manifold 29.43 56.03
UC-VolcTrans-AT 29.31 56.47
C-UF 28.47 56.88
UC-metricsystem1 28.29 56.43
UC-metricsystem4 28.55 56.45
UC-Online-B 28.40 56.84
C-P3AI 28.32 55.97
UC-metricsystem2 27.94 54.14
UC-happypoet 27.56 53.58
UC-Online-Y 27.94 53.04
UC-Online-G 27.08 52.65
C-nuclear trans 27.70 51.93
UC-metricsystem5 26.66 52.23
C-BUPT rush 26.36 50.57
UC-metricsystem3 25.97 51.12
C-ICL 24.54 46.00

Table 3.2: BLEU scores of WMT21 systems – for reference A and all references
excluding B, sorted descending by the score for refA

3.2 Compounds in WMT21 Training Data
In the previous section, we measured the sizes of sets of Germanet compounds
in the translations’ outputs. Now we focus on the relation of the compounds in
the outputs to the training data, again subject to the coverage of GermaNet. As
shown in Figure 2.2 the compounds contained in the references have frequencies
approximately between 101 and 104 in the training data.

We collected all examples of compounds found in the sentences of the WMT21
systems’ outputs and all four references. The instances were distinguished by
the compound and the identifier of the sentence the compound appeared in.
Therefore, if there were several occurrences of one compound in the sentence, we
counted it only once. Still, we collected all the different compounds in the sen-
tence and considered them as multiple examples. The list of all the examples from
outputs and references contained 6,025 items of the form: (sentence number, com-
pound, position in sentence). If we considered for each sentence all possible com-
pounds from various systems the list contained 2,245 unique compound-sentence
number pairs from 806 sentences. That means we have 806 sentences from 1,002
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where at least one system or the human translator produced a compound.
As discussed in Section 1.1.2 on compound merging strategies, the frequency

of a compound, as well as its constituents, is substantial for its production. Al-
though these merging strategies were mainly developed for SMT, they can also be
related to NMT sequence-to-sequence algorithms namely to strategies for creating
subword units. To determine the probability that the system created a particular
compound, we compared the compound’s frequency from the training data with
the number of outputs that contained it (only for constrained systems that used
the fixed training set). Due to a large number of examples of compounds (1306 for
constrained systems), and the fact that the frequencies of contained compounds
do not differ significantly, we grouped the observations according to frequency
and averaged the number of systems that produced them.

Figure 3.2 shows the average counts of constrained WMT21 systems’ outputs
containing compounds depending on their frequency. The frequencies are dis-
played on a logarithmic scale. The dots in the plot represent the average number
of systems that produced compounds for the frequency interval (placed at the
mean value of the frequencies). The y error bars indicate the standard deviation
in the count of systems for each group of compounds and the x error bars repre-
sent the frequency interval of the compounds. We can observe a growing trend in
the graph: the compounds with higher frequency in the training data are more
likely to appear in more systems’ outputs. Nevertheless, the graph has some out-
liers, especially for low frequencies. This may be due to the limited number of
found compounds with lower frequencies that influence the average.

The standard deviation in the count of systems containing particular com-
pounds is quite large (see Figure 3.2). This may be due to the fact, that approx-
imately half of the compounds appeared either in the output of only one system
(263 out of 1,306) or in all of them (405 out of 1,306). However, the compounds
exemplified in all outputs were more common for the more frequent words. The
frequencies of compounds that appeared in all constrained translations were in
the range of 5 (Armeeschule – army school) to 510,365 (Flughafen – airport),
with an average of 44,475, while for the compounds contained only in one system
output, the frequencies were from 19 (Atemorgan – breathing organ) to 427,165
(Mitglied – member), with an average of 18,753.

The statistic is also influenced by the possible synonyms that appeared in the
translations but were counted as different words. Some examples are listed below:

(1) Videoaufnahme and Videomaterial (video recording)
(2) Jugendgefängnis and Jugendstrafanstalt (juvenile prison)
(3) Sprühdose and Spraydose (spray can)

We thought that these synonymous expressions could be the cause of a high
number of compounds appearing in only one translation, but our hypothesis was
proven wrong. For instance, the compound Videoaufnahme (Example 1) from
sentence 6 appeared in four systems’ outputs while its synonym Videomaterial
appeared in four as well. Similarly, for the pair in Example 2 from sentence 16,
five systems produced one of them and the other five systems produced the other.
The synonyms in Example 3 had a distribution of three and seven, respectively.

In this section, we focused solely on compounds from GermaNet that were
present in the training data and analysed their distribution. In the following
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Figure 3.2: Frequencies of compounds in the training data and their appearance
in constrained WMT21 systems’ outputs

section, we will investigate whether the identified compounds were present in the
training data or not. We will also attempt to identify more compounds in the
translation, including those that are not listed in GermaNet.

3.3 Newly Created Compounds
MT models operating on subword units have the potential to generate unseen
words in their output. We first examined the number of compounds from Ger-
maNet that were produced by systems but were not present in the training data
(marked as subsets II or III in Figure 3.1). This statistic depends on the lemma-
tization method used.

We found that there were no newly created compounds from GermaNet in
the outputs of the constrained system. We expected this subset to be very small
or empty, so it was not surprising. Some compounds were found by certain
lemmatization methods but the manual analysis disproved them.

We also looked at whether there were any compounds from GermaNet that
were not present in the training data. We found that the training data did not
include approximately 3.5% to 5% (4,200 to 6,200 depending on the lemmatiza-
tion method used) of the compounds from GermaNet. Therefore, there may be
possible compounds that can be generated by the MT systems and identified by
our methods, but we cannot be certain that they are relevant to the test text.
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3.3.1 Words not Attested in the Training Data
We decided to explore a subset of compounds that were included in outputs of
constrained systems but were not present in the training data or in the Ger-
maNet list (i.e. subset I and the unlabelled remnants of the systems’ outputs in
Figure 3.1). However, there is no direct way to accomplish this. We collected all
words that were not seen in the training data; note that we considered all words
here, and manually verified which of them are compounds, see below. Table 3.3
displays the number of unseen tokens in the outputs and the counts of unique
words that were not contained in the training data from the systems’ outputs.

system count of unseen tokens unique count

C-eTranslation 146 106
C-HuaweiTSC 142 114
C-UF 139 112
C-Manifold 134 112
C-WeChat-AI 128 105
C-ICL 127 106
C-UEdin 123 103
C-nuclear trans 122 100
C-Nemo 121 96
C-BUPT rush 116 98
C-P3AI 114 97

Table 3.3: Statistics of words not seen in the training data for constrained systems

Determining whether a word that appears to be a compound is an existing or
conceivable German word is not easy. We can consider all compounds produced
by native speakers as proper German words. To identify novel words, we searched
large monolingual corpora, such as Araneum Germanicum Maius [Benko, 2014]
or the DWDS dictionary [Klein and Geyken, 2010]. To include compounds used
in German articles or web pages, we used Google search.

We conducted a manual analysis using these resources to determine whether
the words produced by the systems exist. The systems produced a total of 304
unique new words that started with a capital letter, indicating that they were
possible nouns. Approximately half of them were found by Google. During
the analysis, we discovered various groups of words. Some words were of foreign
origin, such as the English verb maced (capitalized because it was so in the source
text), human names like Shaquia and Bhadauria, and geographic locations like
Mambourin. Regarding compounds, we discovered an example of a joint English
phrase, Speakupfordemocracy, and many German compounds. Out of 304 novel
nouns, we manually determined 229 of them as compounds. The exact number of
identified compounds and foreign words for each constrained system is displayed
in Table 3.5 below.

We examined the German compounds and discovered many words that ap-
peared to be compounds and were made up of meaningful constituents but were
neither included in the training corpus nor found by Google. Naturally, they were
also not found in DWDS. Example 4 lists several instances of this phenomenon.
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Most of the examples make sense as two separate words and combining them
into a compound is possible. For instance, Example 4d Quarantäneentscheidung
can be split as Quarantäne (quarantine) and Entscheidung (decision). We also
provide examples of more complex words produced by the systems that do not
have any known sense (see Example 5). Their two constituents can form proper
German words (Examples 5d and 5e), but their concatenation is not known as a
German compound. However, there are also examples that could not be clearly
divided into two parts that make sense (for instance, 5b or 5c were formed from
three such parts).

The systems also produced compounds that existed and were found by Google
but were not contained in any mentioned corpora. The examples of these rare
words we found during the analysis are listed in Example 6. These words were
also produced by humans in some texts or articles but did not belong to a common
vocabulary. In total, 103 of 229 novel compounds were found by Google. This
analysis provides several examples of the productivity of NMT models in terms
of compounds. We examined these examples further and searched for them in
a bigger German corpus, namely in Deutsche Referenzkorpus (DeReKo).1 The
DeReKo corpus revealed that beside all compounds from Example 6 Examples 4b
and 4d can aslo be considered as existing compounds.

(4) Novel words made from meaningful constituents
a. Kirchenkanister
b. Kondolenzbotschaft
c. Gladiatorenmodus
d. Quarantäneentscheidung

(5) Very complex unknown words made from meaningful constituents
a. Sanktionsüberwachungsteam
b. Gefangenenfreistellungsprogramm
c. Passagierlokalisierungsformular
d. Notfallgesundheitsdirektorin
e. Telekommunikationsnetzausrüstung

(6) Very rare compounds
a. Flughafenvertrag
b. Pandemiekrise
c. Kartoffelwurzeln
d. Schlüsselarbeiterin
e. Republikanerkollege
f. Amateurfehler

After discovering many newly produced compounds in the systems’ outputs,
we also explored words produced by human translators in the references that
were not contained in the training data, in order to compare them. As the
organizers of the WMT21 found out, reference B is a post-edited output of one
of the participating MT systems. We also found a lot of newly created words in
its output that suggest the text was produced by a machine. However, during

1https://www.ids-mannheim.de/digspra/kl/projekte/korpora
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our manual analysis, we also found several words in the reference translations
that were not included in the training data. We can assume that these words
were created correctly and reflect the discourse situation of the source test text.
Particular phrases in the source text encouraged the translators to create these
compounds.

We collected all the words produced by humans in the reference translations of
the test text. We are aware of the fact that comparing the vocabulary of human
translations to training corpora might not be ideal to demonstrate productivity
regarding composition. However, we can consider the huge training corpora as a
sample of common vocabulary knowledge. The counts of the tokens from human
translations that were not present in the training data are listed in Table 3.4.
Reference D had the most new words, as it also had the highest number of
compounds from the GermaNet list in its translation. The number of newly
created words is similar for human translations as it was for MT outputs (see
Table 3.3). All the references together contained 193 unique novel nouns of which
82 were also present in the MT outputs.

system count of unseen tokens unique count

ref-D 144 110
ref-B 132 100
ref-A 129 100
ref-C 122 93

Table 3.4: Statistics of words not contained in the training data for reference
translations

We detected several novel compounds from our examples also in the refer-
ence translations: The compounds Kondolenzbotshaft and Gladiatorenmodus were
found in references B and D, while references A and C contained a modifica-
tion of the second compound, Gladiatormodus. Two of the complex compounds
that seemed to have no sense were also created by humans, namely the word
Sanktionsüberwachungsteam in references B and C and Passagierlokalisierungs-
formular in references A, B, and C. We found three of the listed rare compounds
in the references – Flughafenvertrag (in references A, C, and D), Pandemiekrise
(in references B and C) and Kartoffelwurzeln (in all references). That affirmed
that MT systems are capable of producing unseen but meaningful compounds.
Half (150 out of 304) of the MT-generated novel nouns were found to be existing
words (based on google search) and less than a third of them (82 out of 304) were
approved by reference translations. We can be certain that the novel nouns that
were also present in the reference translations were created correctly according to
the context and information need in the test text, but we can not easily decide
the correctness of the other novel words.

After providing manual analysis and listing some examples, we grouped the
observations together. Table 3.5 displays the number of novel nouns created
by constrained MT systems, their cooccuracne with reference translations and
their distribution into categories. We distinguished three categories: compounds,
foreign words or names, and other, such as web domain names or meaningless
words. Only the first two categories are listed in the table. We also estimated
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system # nouns n. in ref # comp. c. in ref # foreign

C-Manifold 106 52 69 22 34
C-HuaweiTSC 102 57 58 24 36
C-UF 101 58 60 24 36
C-WeChat-AI 95 54 51 19 35
C-UEdin 93 56 49 20 37
C-eTranslation 92 56 55 23 32
C-Nemo 87 51 44 17 38
C-nuclear trans 87 47 44 13 35
C-P3AI 86 45 49 15 32
C-ICL 82 47 41 15 35
C-BUPT rush 81 43 40 11 34

Table 3.5: Categories of unseen words produced by constrained systems according
to manual analysis

how many of the novel compounds were also present in the reference translations.
In most of the constrained systems, more than a half of novel nouns appeared to
be compounds, as shown in Table 3.5.

To conclude, the MT systems are, same as humans, capable of generating novel
words although it did not seem so when relying on a fixed list of compounds. At
the same time, the number of compounds in the translations is still higher for
human translators than for the MT systems when we count both novel words and
compounds found by GermaNet.
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4. Training Own Transformer
Model
As seen in Chapter 3, human translators produce more compounds than state-of-
the-art MT systems. The goal of the thesis was not only to analyse the appearance
of compounds in translations but also to determine the conditions that may lead
to producing them. To achieve this, we trained our own Transformer model
for English-German translation on a fixed dataset, namely on parallel corpora
provided by WMT21 (see Figure 2.3).

4.1 Preprocessing of Data
For further analysis of compound productivity, we trained several variations of
the Transformer model. The modifications mainly concerned the preprocessing
of the training data. We preprocessed the training data using a script inspired
by FAIRSEQ examples for translation.1 We adapted the script and performed
different preprocessing variants. The segmentation to subword units was provided
by the SubwordNMT implementation of BPE (see Section 2.2.4). After applying
the BPE encoding, the data was binarized using the FAIRSEQ preprocess script.
We experimented with the size of the joined vocabulary for subword units and
utilized variants with two different dictionaries for English and German. The first
model had a joined dictionary size of 40k and was preprocessed with the default
random seed set to 1. In the second setup, we utilized two separate vocabularies
with size 40k, and the seed was also left to default. We experimented with a
much smaller vocabulary in the third setup to see whether it could help with the
production of the compounds. For the fourth model, we set the seed to 1,000
to examine how are the results biased by the random seed. For clarity, all the
versions are listed in Table 4.1.

system seed type of dictionary size of dictionary

T40k 1 joint 40,000
T2x40k 1 separated 2 x 40,000
T10k 1 joint 10,000
T2x40k-2 1,000 separated 2 x 40,000

Table 4.1: Training setups of our Transformer model

4.2 Training Setup
The models were trained using the FAIRSEQ framework as described in Sec-
tion 2.2.1. We trained the models using the default FAIRSEQ Transformer con-
figuration containing 6 decoder and 6 encoder layers, each with eight-headed at-
tention. The setup differed from the default configuration in the following ways.

1https://github.com/facebookresearch/fairseq/tree/main/examples/translation
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The parameters were inspired by EdinSaar’s submission to WMT21 [Tchistiakova
et al., 2021]. We operated on batches of a maximum size of 4,096 tokens. We
used the Adam optimizer with setting β1 = 0.9, β2 = 0.98, and ϵ = 1e − 9. The
dropout was set to 0.01. We utilized the GELU activation function. The learning
rate was set to 3e−4 and scheduled with an inverse sqrt scheduler. We set 16,000
warmup updates with an initial learning rate of 1e − 7. The criterion for training
was label-smoothed cross-entropy. The models were trained on a heterogeneous
grid server that contains Quadro RTX 5000, GeForce GTX 1080 Ti, RTX A4000,
and GeForce RTX 3090 cards. We utilized 8 GPU cards across several weeks to
train the models. We did not train all versions of the model at once and the
training was not continuous, so we could not specify the exact time of training.

The training was stopped after at least 13 epochs for each model. The vali-
dation was done every 5,000 updates, and the checkpoints were saved afterwards.
We kept only the checkpoints for each epoch to save disk space. We let the train-
ing of the first model run longer than the other variants, so we could explore its
features in later phases of training. It is further described in Chapter 5.

4.3 Overall Translation Quality
We observed the overall translation quality of the models after each epoch of
training. The BLEU scores computed by FAIRSEQ against reference translation
A during the training of all four models are displayed in Figure 4.1. As we used
the SacreBLEU implementation to evaluate the overall quality of translations in
the thesis, we recomputed the scores with this implementation. The BLEU scores
against reference A and against all three references are shown in Figure 4.2. The
results from both implementations of BLEU did not differ significantly, although
the scores from the FAIRSEQ implementation were lower ranging from 16 to 19,
while the SacreBLEU scores ranged from 20 to 23 for reference A.

The model with the small subword dictionary had the lowest scores, especially
in the early phases of training, as displayed in Figure 4.1 and Figure 4.2a. The
other three models did not differ much in scores. The variants of the model
with separate dictionaries for the source and target languages achieved higher
scores than other variants at the beginning of training, but the scores for these
variants did not improve much in later epochs. The second model had a peak in
score after the seventh and tenth epochs. The first model with a joint vocabulary
outperformed the other variants in all phases of training except for the beginning,
seventh, and tenth epochs where the second model achieved a better score.

The scores were more balanced for the different variants of the models when
using all references for evaluation, as shown in Figure 4.2b. They ranged from 37
to 43. Similarly to Figure 4.2a, we observed that the systems with two separate
vocabularies achieve higher scores after the first epoch of training than the sys-
tems with one joint dictionary. Contradicting the evaluation using only reference
A, the second model outperformed the first model in most epochs when using all
three references for similarity.
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Figure 4.1: BLEU score for reference A during training of all four versions of the
Transformer model computed by FAIRSEQ
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Figure 4.2: BLEU scores during training of all four versions of the Transformer
model computed by SacreBLEU
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5. Compounds in Our
Transformer Model
In Chapter 3, we observed that humans produce many more German compounds
than MT systems. By adjusting the models to generate more compounds in
their outputs, we may be able to improve MT quality. In order to analyse the
behaviour of Transformer models and figure out the conditions that lead to the
production of compounds, we trained our own models as described in Chapter 4.
This chapter provides a detailed analysis of compounds in our model outputs.

First, we studied the outputs of the systems and compared them to human
references and state-of-the-art systems from WMT21, as presented in Section 5.1.
Then, in Section 5.2, we analysed further aspects that we thought could affect
the generation of compounds in the outputs of the systems. We also explored the
models’ features and scores during output generation. We provided examples and
an evaluation of forced decoding in which we passed prefixes of different lengths
to the model and observed how the outputs differed. We focused mainly on
compound production and how the prefix influenced it. This analysis is presented
in Section 5.4.

5.1 Analysis of Compounds Appearance
In Chapter 4, we presented the general translation scores for all four variants of
the Transformer model. In this section, we shift our focus to quality concerning
the counts of produced compounds. We counted sentences containing compounds
and also all occurrences of compounds in the text. We provide the results for all
models’ epochs compared to the reference translations. Observing the counts after
each epoch may lead to an understanding of how the production of compounds
evolves during training. The counts during training are displayed in Figure 5.1.

The counts of compounds were not generally just growing during training.
We can observe peaks and low points on the curves (see Figure 5.1). The first
version of the model, trained on the joint dictionary of size 40k and for more
epochs than the other variants, achieved the highest number of compounds in its
output. However, the second variant using separate vocabularies for the languages
produced more compounds than the first setup at the beginning of training.
We left the training of the first model to run longer because the production of
compounds seemed to grow. Nevertheless, the growth was only for a few epochs
after epoch 15, and then the count of compounds in the outputs started to decline.

The model with a smaller vocabulary that was forced to split more words into
subword units did not show any improvements regarding compound production
when evaluated against GermaNet. The model performed even worse than the
previous models, as shown in Figure 5.1. We expected that the splitting of
more words would lead to some improvements. Nevertheless, it might not be
a problem of the size of the dictionary but the algorithm for splitting. It split
words according to their frequency in the training data and did not consider the
morphological features of complex words.

Utilizing a different seed for the preprocessing did not result in significant
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Figure 5.1: Counts of compounds in the system’s output during the training of
our Transformer compared to references and WMT21 systems

changes in the counts of compounds. The number of sentences containing at least
one compound did not differ much between the setup with joint vocabulary and
the setup with separate vocabularies of the same size, as well as the modification
with a different preprocessing seed. The counts of sentences with compounds
were slightly lower for the third setup with a smaller vocabulary.

We compared the numbers of compounds and sentences containing them
to references and constrained WMT21 systems. As shown in Figure 5.1, both
the counts of compounds and sentences were much lower for all of our systems
compared to human reference translations. Although there are some differences
among the references regarding compound production, the results are incompa-
rable to our system outputs.

We visualised the number of compounds and sentences containing them for
the constrained WMT21 systems with dots in the graph. The exact counts for
each system were displayed in Table 3.1. The values for WMT21 systems fill
the space between our models and human translations. Our best-performing
systems reached comparable values to the worst WM21 systems for both counts:
compounds and sentences. It is not surprising that our vanilla Transformer model
did not outperform the state-of-the-art systems. These differences could also
be observed in the overall MT quality of our Transformer models compared to
WMT21 MT systems. As shown in Table 3.2 and Figure 4.2, our best systems
achieved BLEU 23 and the WMT21 systems’ quality was in the range of 24 to
31 BLEU (measured on reference A).

As described in Section 3.1, there was a correlation between the number of
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Figure 5.2: Comparison of overall translation quality to the number of produced
compounds for constrained systems an our systems

generated compounds and the BLEU score of WMT21 translations. We visu-
alised the relation of both scores for all the constrained MT systems, including
four versions of our Transformer, as shown in Figure 5.2. The scores did not
differ much for our Transformer models, as observed earlier. However, the graph
confirmed the correlation between the overall quality of translations measured
by BLEU and the number of generated compounds. Their dependency is almost
linear. This implies that we could possibly rely on overall quality when dealing
with compound production in constrained systems.

5.2 Aspects Affecting Compounds Generation
We already mentioned several conditions that can affect compound generation in
Transformer models during the training and analysis of our models. We exper-
imented with the size of vocabulary in training, as described in Chapter 4. In
Section 5.1, we observed counts of compounds during the training of all versions
of our Transformer models.

The hypothesis that reducing the size of subword vocabulary would force the
model to be more creative and generate more compounds in the output was
not supported by GermaNet’s list of compounds, as shown in Figure 5.1 when
comparing T10k with our other models. However, as discussed in Section 3.3,
the ability to generate new compounds cannot be measured by a fixed list of
compounds.
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Figure 5.3: Counts of words from our Transformer outputs that were not included
in the training data

5.2.1 Novel Words
To further investigate the creation of novel words, we collected the words in
the translations that were not present in the training data. These words could
potentially be compounds, as seen in Section 3.3 during the manual analysis of
unseen words in WMT21 translations. Figure 5.3 displays the number of unseen
words in our Transformer models for each epoch of training. The third version
of our model, which had a smaller vocabulary than the other models, generated
many more new words. After the first epoch, the system produced 492 words
that were not present in the training data, of which 466 were unique. The count
of newly produced words decreased in the later phases of training and after the
sixteenth epoch, only 350 new words were created.

We manually analysed the words produced by the third model. The list of
unique words from the outputs of all different epochs of the model contained 2,024
novel words. Of these, 1,320 were considered nouns because they started with
capital letters, which is a sign of nouns in German. The shortest word consisted of
only three letters, while the longest contained 48. The average character length of
the newly created words was 12. We expected the longer words to be compounds.
Unfortunately, the longest word (Example 7a) did not make any sense in German
since it contained 43 “i” letters after each other. The second-longest word was at
least made up of meaningful components (Example 7b).

(7) The longest novel words
a. Besiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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b. Bankmitgliedertiruchirappalli

During the analysis, we observed that the generated words mostly combined
subwords from different words. The combined subwords did not make sense
together in German, as presented in Example 9. Some compounds, such as Ex-
ample 9c (prisoner exchange programme), were built from meaningful stems but
the created words did not have any meaning in German yet (there is probably
no exchange programme for prisoners, but both “prisoners” and “exchange pro-
gramme” are meaningful constituents and could potentially create a new word
together). The other group of words contained compounds generated from sub-
words from different words, as shown in Examples 9a and 9b, or by repeating
subwords from the same word, as in Example 9d.

We also noticed that the longer the produced words were, the less probable
they were to make sense. However, we found some long words that were meaning-
ful in German, as Example 8b. The other meaningful words were mostly technical
terms (Examples 8a and 8c).

(8) Existing words
a. Säuglingsmedizin
b. Coronkoviruspräventionsmassnahmen
c. Wärmeverletzung
d. Kriminalitätsexperten

(9) Non-existing words
a. Beschäftigungspersonstigen
b. Befürwortwörtlich
c. Gefangenenenaustauschprogramm
d. Schaufschaufschaufschaufeln

The third system generated an extraordinary number of newly created words;
however, as we discovered during our analysis, most of them were not real German
words. Although our hypothesis about reducing the vocabulary size was not
completely wrong and the model produced a big number of new words,it generated
the least compounds from GermaNet. Moreover, most of the newly created words
were not meaningful German compounds.

5.2.2 Compound Production vs. Frequency
As observed by the WMT21 MT systems (shown in Figure 3.2), the more frequent
compounds were more likely to be generated than those with lower frequencies
in the training data. We decided to explore this phenomenon in our models as
well. We focused our analysis on the models after each epoch of the first variant
of our Transformer. In Figure 5.4 we display the average number of systems
that generated compounds of particular frequencies. Dots on the graph represent
mean values on both axes. Horizontal lines present intervals of frequencies, while
vertical lines display the standard deviation from the mean values.

As shown in Figure 5.4, only a few models of our Transformer produced com-
pounds with frequencies under 10. Then, the average number of systems that
generated compounds increased as the frequency grew up to 105. There were
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Figure 5.4: Frequencies of compounds in the training data and their appearance
in outputs of first modification of our Transformer for all epochs

probably only a few compounds with frequencies above 105, so the number of
systems producing them decreased after this frequency. There are only a few
outliers from the growth curve in the graph.

Similar to Figure 3.2 for WMT21 systems, we observed a growing trend in the
graph (Figure 5.4). The trend was even more visible for our Transformer than it
was for the WMT21 systems. Since each of the systems submitted to the WMT21
conference focused on different phenomena in the language, the differences in
compound production were not significant on average regarding their frequency
in the training data. In our setup, we utilized just a vanilla Transformer and did
not specialise in improving the MT quality in any way.

5.3 Compounds as Inference Shortcuts
Furthermore, we proposed a modification to the model that could increase the
number of produced compounds. Our assumption for this modification was that
the path through the search space is easier for words that consist of more sub-
words, like compounds. When the model chooses that path, the next steps become
much easier because the choice of the right subword in the middle of the word is
straightforward. An example of a beam search space is displayed in Appendix A.2.

We suggested computing perplexity in each decoding step and including it
in the total score of that node in the search space. The perplexity should be
computed for a few following decisions, for example, three. This approach would
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add a look-ahead to the model and prefer sentences that contain more complex
words. We tested our proposed modification on the outputs from the beam search.
We chose a sentence where we knew that the model generated a sentence without
a compound, but the compound was listed in the concerned hypothesis in the
beam search. The perplexity of the node with the compound start was really
lower than the perplexity of the other possible node.

In the end, we did not implement this modification in the FAIRSEQ gen-
eration step because of the lack of time and the complexity of the FAIRSEQ
implementation. However, it could be investigated in future work. We believe
that it could lead to better results regarding the number of generated compounds
because this way of thinking seems more similar to that of humans. People do
not maximise the probability of the sentence; instead, they think more in an eco-
nomic way. An effort of human speakers is to express their thoughts as clearly
and easily as possible.

5.4 Forced Decoding Using Prefixes
To investigate further properties of models that influence compound production,
we explored the behaviour of the models when we gave them the first words
(prefixes) of the translated sentences. The models were forced to use these words
as beginnings and then continue translating the source sentences. This process of
influencing the outputs is called forced decoding. We observed how the outputs
would look if we changed the early steps of the inference. We fed prefixes of
different lengths to the models and then compared the outputs. The analysis
focused on the number of produced compounds.

5.4.1 Hinting towards More Compounds?
We ran experiments on the first setup of our Transformer and forced the models
to use the first n words from the given reference (reference A) for the translation.
We call the n prefix length. We generated all the outputs with prefix lengths from
0 to 40. The counts of collected compounds from GermaNet are displayed in Fig-
ure 5.5. The number of found compounds increased with the growing length of the
prefix and reached almost the value from reference B for prefixes of length above
30 words. However, reference B had the fewest compounds and was a post-edited
version of MT output, while the other references that were truly translated by
humans included more compounds. Although it seemed that we could influence
the model by hinting it the first words to generate more compounds in the trans-
lations, this statistic was not accurate because it also counted the compounds
hinted by the reference. Moreover, the number of sentences that the model could
influence decreased with the prefix length. The short sentences were just copied
from the reference and therefore brought inaccuracy to the graph.

To overcome these two errors in the statistic, we stripped the prefix of the
particular length from each sentence before collecting compounds from it and
displayed the relative number of compounds, not the absolute. Figure 5.7 shows
the percentage of possible compounds from reference A that the systems gener-
ated. We counted only the compounds that were not included in the prefix, so
the number of concerned sentences decreased with the growing prefix length. We
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Figure 5.5: Counts of compounds in our Transformer depending on prefix length
passed to the system

visualised the number of compounds in reference A that were not contained in
the prefix, as displayed in Figure 5.6. It was taken as a basis for the search for
compounds in the outputs of our Transformer. As shown in Figure 5.6, the num-
ber decreased almost linearly with the prefix length. It started with the value of
901 compounds for the whole sentences and descended to 60 for the prefix length
of 40.

Figure 5.7 shows that the proportion of produced compounds from reference
A did not change much for different phases of training. The curves for all dis-
played epochs have a similar shape. Nevertheless, the Transformer generated
fewer compounds in the early phases of training, which is especially notable for
prefixes under 20. For prefixes shorter than 20 words, the percentage of produced
compounds was around 40% after one or two epochs and around 45% after more
epochs of training. The peak of generated compounds was for prefixes of lengths
28 to 30, where all of the systems generated the highest rates of compounds.
The number of possible compounds from reference A in sentences after the 28th
word was 141, and the systems produced 49%–63% of them. The percentage
of compounds descended rapidly for prefixes of length above 30. The accuracy
in generated compounds then increased again for the longer prefixes, but it is
not significant since the number of possible compounds was very low (under 100
compounds, as shown in Figure 5.6).

The peaks in the graph may be caused by different frequencies of the com-
pounds in the training data. As we have seen in Section 5.2, the more frequent
compounds are more likely to be generated. And since the distribution of com-

37



0 5 10 15 20 25 30 35 40
Prefix lenght

200

400

600

800
Co

m
po

un
ds

 c
ou

nt
 in

 re
fA

Figure 5.6: Count compounds in ref A depending on prefix lenght

pounds in the reference is not balanced, some compounds at the end of sentences
could be more frequent in the training data than the compounds at the beginning
and were therefore generated more times in the outputs.

5.4.2 Just One Word Hint Sufficient?
To investigate the impact of prefixes on the generation of compounds, we col-
lected prefix lengths that led to the generation of each particular compound from
a list taken from reference A. We utilized this statistic on the first setup of our
Transformer for models after each epoch and noticed that in many cases, the
generation of a compound was influenced just by hinting the first word to the
model. It often happened that the system did not originally generate the partic-
ular compound, but when we gave it a prefix of at least one word it produced
it. So, the compound generation was influenced just by the first word of the
candidate translation.

This led us to aggregate the statistic and count all compounds that were gen-
erated by hinting just one word and remained in the outputs for longer prefixes
(called “first prefix”). We also summed all cases where it happened with a later
prefix than one (called “later prefix”), as well as the compounds that were gen-
erated when we hinted all preceding words (called “preceding prefix”). For the
first two cases, we provide a soft statistic where at least 80% of the prefixes up to
40 or to the position of the compound led to its generation, as well as the strict
statistic where all of the prefixes had to lead to the compound. The collected
counts for the system after the 22nd epoch are displayed in Table 5.1. We found
that 24% of compounds that were not present in the original translation of the
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Figure 5.7: Percentage of compounds from ref A comprised in Transformer out-
puts with fixed prefixes

model appeared in the outputs where we hinted at least one word. In another
17% of cases, it happened after some later prefix. So, 41% of compounds were
suddenly created after limiting the search space during output generation.

To further investigate this phenomenon, we conducted a manual analysis of the
outputs. We found that sometimes the first word influenced the system to produce
a more German variant of a word, such as Gleichgewicht instead of Ballance
or Flughafen instead of Airport. We believe that the first word changed the
search space of the sequence-to-sequence algorithm, leading to the generation of
a different synonym for the particular word. We also observed that the influenced
system could produce a compound in a different position than in the reference
translation and the generation was also affected by the prefix. For example, a
prefix of length 5 was long enough to change the wording of the sentence and
caused the model to produce the compound, but earlier than in the reference
(position 9). Therefore, the compound was not counted by longer prefixes (6 and
longer) and was not added to the “later prefix” case.

We also discovered examples where the first hinted word was the same as the
first word in the original output of the model, but the prefix still changed the
output. This fact indicates some errors in the search algorithm. The types of
possible errors are described in Section 1.2.1.

We visualised the search space of the beam search for one concrete sentence
where the original model did not create a compound but the models influenced
by prefixes did. We chose a sentence with the number 437 generated by the
model after the 22nd epoch of the first setup of our Transformer. The original
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variant of change number of cases from them strict

first prefix 26 12
later prefix 19 9
preceding prefix 6
other 58

Table 5.1: Agregated statistic on changes of appearance of compounds in the
output based on prefix

translated sentence started with the word Herr (Mister) and so did the sentence
in reference translation. The observed compound Kinderspiel (children’s game)
was at the end of the sentence. However, it was generated only by the influenced
models and the original model produced instead a word that did not make any
sense in German (Klacks). We attached the sample of the search process for the
original model (see Appendix A.2) and for the model influenced by hinting the
first word (see Appendix A.3). The influenced model developed only hypotheses
beginning with the hinted word, all other beginnings were scored minus infinity.
This fact influenced the shape of the search tree. The search tree of the influenced
model developed more on one side (left in our figure), while the original model
elaborated all of the first five hypotheses and was, therefore, more balanced.

We discovered that these two outputs contained the same path through the
search space to step 15 where their paths split based on the variation of the score
for the next word. Since the difference in their paths was only in the score of the
next word, we tried to explain it. However, there was some non-determinism in
the model which we did not manage to find in the complex implementation of
FAIRSEQ. This path was in both cases the best hypothesis and resulted in the
final translation hypothesis. The sentence in the original model was made from
39 subwords while the influenced output sentence was from only 36 subwords.
The original model decided to repeat some words in the sentence and in the
end produced another word instead of the compound, otherwise the translated
sentences were the same. Even though only the influenced model resulted in the
generation of the compound, both models considered variants of the sentence
with or without the compound. The decision on whether to produce a compound
was made in the last step based on the final scores of the hypotheses. The final
hypothesis of the influenced model scored better than the one from the original
model. So we discovered a search error in this particular sentence.

As stated before, the hinting of the first words changed the search space of the
model. It was shifted to one side and had a chance to explore more hypotheses
starting with given words. We have seen previously in this section that it did
not bring any significant improvements in terms of the compound production
of the models. Although we found a lot of examples where hinting at the first
word helped, we could not systematically influence the models to generate more
compounds.
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5.4.3 Discussion
Why humans produce more compounds in their texts remains an open ques-
tion. As Holtzman et al. [2019] found out, models using beam search and other
maximization-based decoding methods tend to a generation of very probable out-
put and do not share diversity in vocabulary with human texts. This claim goes
along with our findings. Compounds are generated based on their frequency, and
shifting the model to another subspace of the search space did not change this
behaviour. We suggest that one of the possible reasons for human translators
and speakers to produce more compounds might be the language economy. Us-
ing compounds instead of multi-word expressions shortens the output sentences,
which people tend to make brief and clear when speaking. The use of compounds
can be helpful for that purpose because multi-word expressions often contain
other words like prepositions and articles that are not needed in compounds. Ad-
ditionally, compounds do not require the same level of exactness as multi-word
expressions with prepositions do.

To compare the overall quality and the similarity to human translations re-
garding compound production, we computed the overall similarity of the influ-
enced models’ outputs to human translations. Figure 5.8 displays the BLEU
score on reference A depending on prefix length. The score was computed af-
ter stripping the prefix from both the output and the reference translations, i.e.
we removed the beginnings of the sentences that were given to the model from
the reference translation. We performed the statistic on our first Transformer.
The BLEU score increased with shorter prefixes (up to a length of 3) but then
decreased rapidly (with a prefix of length 5), which surprised us.

We suspected that a longer prefix on average means a shorter sequence to be
scored and for shorter sub-sequences of the MT output, it may be harder to hit
the exact words of the reference. To check the behaviour of BLEU on shorter
sentences, we computed the score for the original model for sentences grouped by
their length to see whether the shorter sentences are on average less similar to
the reference. Figure 5.9 shows the BLEU score of the original output sentences
that are grouped by their lengths. The sentences with a maximum length of five
words got a score of almost zero. The score grew for sentences containing at most
seven words (but more than five) but descended further for sentences consisting
of eight words. The BLEU score stabilized for sentences longer than 20 words at
values of about 18.

The figure confirmed that shorter sentences had on average lower BLEU scores
in our test set. Considering the conflicting trends of the decrease of BLEU in
Figure 5.8 and the fact that BLEUs for shorter sequences are lower, we cannot
make any concluding judgement about overall sentence quality vs. compounds
in sentences we affected by prefix hinting. We can only refer back to the general
observation (Figure 5.2) that overall quality seems to correlate well with the
production of compounds.
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Figure 5.8: BLEU score for Transformer outputs with fixed prefixes
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6. Conclusion
In the thesis, we performed various steps to explore the behaviour of Transformer
models on German compounds in English-German translation. First, we studied
the number of compounds in state-of-the-art systems submitted to the WMT21
conference. We focused mainly on constrained systems that were trained on fixed
datasets. We discovered that human translators produce more compounds in
their texts than any MT system in its output. The statistics were collected based
on a fixed list of German nominal compounds extracted from GermaNet.

We also examined the words from the MT outputs that were not present
in the training data because we found no newly generated German compounds
based on the GermaNet list. We assumed that the MT systems operating on
subword units are capable of generating novel words, including compounds. Our
assumption was proven to be true based on our manual analysis of newly created
words. Many of them were German compounds that were not included in any
lexicon. Nevertheless, we found half of the novel nominal compounds in some
articles on the Internet which confirms their validity. One third of the novel
nouns were also present in reference translations.

As discussed, German has a very productive word formation system, and
speakers often form new compounds based on the particular situation. We have
shown that MT systems also produce new meaningful compounds that consist
of existing constituents and are able to generate them in similar positions as
humans do.

Even though the GermaNet list did not capture the productive word forma-
tion processes, it helped to group sentences where at least one system generated
a compound. This made it possible to provide various analyses on compound
production in various models. We trained our own Transformer model to explore
the behaviour of the models in more detail.

Similar to SMT, the production of compounds can be influenced by word
segmentation strategies. Therefore, we experimented with several setups of pre-
processing, namely with the size and the number of BPE vocabularies. We found
out that there was no big difference regarding the number of compounds when
comparing setups with two separate dictionaries for each language and one dic-
tionary for both languages. The model where we reduced the vocabulary size
to one quarter generated much fewer compounds than the other setups based on
the GermaNet list. We conducted a manual analysis of words that the system
generated but were not in the training data and found several new compounds.
Determining the novel compounds was conducted with the help of Google search.
However, most of the novel words were not identified as proper German words.
The hypothesis that forcing the model to split words into more subwords would
lead to more compounds did not prove to be true.

We also investigated other factors that affect compound generation in the
models. The frequency of the compound in the training data was shown to
influence the probability of its appearance in the MT output. This dependency
was even stronger for our vanilla Transformer than for the WMT21 systems.
Although the BLEU score captures only the surface similarity of the outputs to
the human reference, we examined whether there was a correlation between the
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BLEU score and the number of found compounds in the outputs. We discovered
that the correlation is rather high and better systems generate more compounds
in their outputs.

We compared the results of our Transformer models with constrained systems
from WMT21. It was not surprising that the WMT21 systems performed better
in both the BLEU score and the number of produced compounds. The systems
submitted to the shared task utilize enhanced models and not only the vanilla
Transformer architecture as we do. However, none of the MT systems reached as
high a number of generated compounds as we found in the human translations.
It still remains an open question why people produce more compounds than MT
systems. We proposed various possible explanations for it.

As described by Holtzman et al. [2019], outputs of systems that perform
maximization-based decoding, such as beam search, are often too probable. We
assumed that compound production could be influenced by language economy,
which people tend to prioritize. The economy can be described in two ways: (1)
people try to express their thoughts and needs in as few words as possible, and (2)
they need to manage their language production load. It is easier to merge several
parts of one thought into one compound than to express it with a multi-word
expression that could also include prepositions, articles, and other words. Using
prepositions is demanding because we need to choose them properly to express
the exact thought, whereas the composition of the constituents is more vague and
does not require exactness.

We proposed a modification to our model to deal with the point (2) economy.
Assuming that the path generating a complex word is straightforward after the
first subword, we computed the perplexity of the three following nodes in the
search space and included it in the final score of the node. In other words, the
model would consider the cost of future decisions already in the current choice.
We only examined this idea on detailed outputs of a finished decoding process
and did not implement it into the source code. We believe that adding this look-
ahead to the model can make its behaviour more human-like and lead to the
generation of more compounds. We would like to investigate this further in our
future work.

To further explore the behaviour of our model on German compounds, we
influenced it by forcing it to start with the first few words of the reference, and
then we studied the outputs. We found that shifting the decoding algorithm to
another subspace of the search space did not generally improve the generation of
compounds. There was a small increase in the number of compounds for smaller
prefixes. Although hinting the model with the first word helped the model to
produce a better output in many cases, we found that it was more due to a
search error than a systematic improvement. These results indicate that current
models are inadequate with respect to compounds – less natural sentences with
fewer compounds are scored higher.

In conclusion, we discovered that human translators produce more compounds
than MT systems, and it is not easy to influence this tendency. The overall
translation quality can indicate how well the system is capable of generating
compounds in its outputs. Collecting German compounds in the translation based
on a fixed list is not sufficient for any analysis because there are too many novel
words created. We have shown that word segmentation influences the generation
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of complex words. In our future work, we aim to build on our findings and modify
the word segmentation strategies and MT models to bring their outputs closer to
human translations.
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A. Attachments

A.1 Comparison of Lemmatization Methods

UDPIPE SPACY

system # compounds in refs # compounds in refs

UC-ref-C 955 878
UC-ref-D 946 882
UC-ref-A 901 822
UC-ref-B 878 815
C-Nemo 842 735 774 664
C-UF 802 710 741 642
UC-metricsystem2 801 742
UC-Online-B 798 736
UC-Facebook-AI 796 755
C-eTranslation 794 696 731 627
UC-VolcTrans-GLAT 792 733
UC-Online-W 791 724
UC-metricsystem1 790 732
UC-metricsystem3 787 737
C-WeChat-AI 783 707 718 632
UC-metricsystem5 783 724
UC-VolcTrans-AT 782 712
UC-Online-Y 776 713
UC-happypoet 770 698
UC-metricsystem4 769 714
C-Manifold 768 666 710 601
UC-Online-A 767 704
C-nuclear trans 762 656 691 581
C-HuaweiTSC 761 673 705 609
C-UEdin 758 666 689 598
UC-Online-G 754 694
C-P3AI 740 655 687 600
C-BUPT rush 731 627 670 559
C-MyTransformer-e16 715 572 645 502
C-ICL 704 595 666 543
C-MyTransformer-e7 691 544 645 499
C-MyTransformer-e20 690 562 638 502
C-MyTransformer-e11 689 549 636 492
C-MyTransformer-e13 689 540 632 478
C-MyTransformer-e12 687 544 644 495
C-MyTransformer-e17 687 552 611 484
C-MyTransformer-e21 686 549 636 490
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A.2 Beam Search Example (Original)
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A.3 Beam Search Example (Forced Decoding)
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