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mechanism different from downstream limitation or carnitine-palmitoyl transferase-1 inhibi-

tion. Inhibition of Complex I was characterised by more marked reduction of Vmax, in keep-

ing with non-competitive nature of the inhibition and the pattern was similar to the inhibition

of Complex II or electron transfer chain capacity. There was neither inhibition of Complex IV

nor increased leak through inner mitochondrial membrane with up to 100 μg/ml of propofol.

If measured in isolation by spectrophotometry, propofol 10 μg/ml did not affect the activity of

any respiratory complexes.

Conclusion

In human skeletal and heart muscle homogenates, propofol in concentrations that are

achieved in propofol-anaesthetized patients, causes a direct inhibition of fatty acid oxidation,

in addition to inhibiting flux of electrons through inner mitochondrial membrane. The inhibi-

tion is more marked in human as compared to rodent tissues.

Introduction

Propofol is a short-acting hypnotic agent, which is reportedly administered to 100 millions of

patients each year and which had been on the WHO list of most essential drugs for more than

10 years[1]. However, in last three decades, fatal complications of propofol administration

were reported and defined as Propofol infusion syndrome (PRIS)[2,3]. The syndrome typically

includes metabolic acidosis, arrhythmias, ECG changes, hyperlipidaemia, fever, hepatomegaly,

rhabdomyolysis, cardiac and/or renal failure. Risk of developing PRIS increases with higher

dose and duration of infusion[4], and several studies in animals[5–9] and humans[10],

[11–13] suggest that this syndrome might be an extreme manifestation in susceptible individu-

als of propofol inhibitory effect on fatty acid oxidation (FAO) and/or electron-transfer chain.

Vanlander et al. in a study on rodents[14] first brought evidence for a hypothesis, that due to

structural similarity of propofol and Coenzyme Q (CoQ), at least some effects of propofol on

bioenergetics are caused by the inhibition of CoQ-dependent electron transfer pathways.

Other mechanisms are possible, too, including metabolic rearrangement at translational level

[15,16]. It is unknown whether increased concentration of substrates can overcome propofol-

induced inhibition, a feature that would point towards competition of propofol with the

respective substrate, or whether the presence of propofol influences the maximum flux

through the ETC, which would point towards inhibition outside the substrate-binding sites of

the enzymes or an interruption of electron flux through the respiratory chain, such as at the

level of CoQ.

The insight into the mechanisms of propofol toxicity was mostly obtained from experi-

ments in animals and it is currently unknown whether effects of propofol can be reproduced

in human tissues. In this study, we assessed propofol-effect on energy metabolism in skeletal

and heart muscle in humans and rats. We aimed to (1.) clarify the inter-species differences in

the effect of propofol and (2.) elucidate the Michaelis-Menten characteristics of propofol-

induced inhibition of metabolic pathways that will have been found to be inhibited by propo-

fol. In order to maximise biological plausibility of our results, we performed our key experi-

ments on tissue homogenates containing mitochondrial networks in cytosolic context[17].
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Fig 3. Prediction of difference of respiratory parameters against control at different concentration of propofol. Graph A–respiration chain capacity, graph B–

complex I, graph C–LEAK, graph D—complex II, graph E–FAO, graph F–complex IV.

https://doi.org/10.1371/journal.pone.0217254.g003
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Conclusions

Unloaded FES cycling, but not volitional exercise causes significant lactate production with-

out hypoxia in skeletal muscle. This phenomenon can be significant in vulnerable patients’

groups.

Introduction

Functional electrical stimulation-assisted cycling (FES cycling) is a method originally devel-

oped over 30 years ago for patients with spinal cord injury [1]. It uses computer-driven electri-

cal pulses delivered by transcutaneous electrodes and directly activating muscle contractions,

independently on functionality of the physiological pathway between upper motoneuron and

the neuromuscular junctions. The method is now commercially available in the form of both

stationary and mobile devices [2], used by patients with a wide range of conditions incl. spinal

cord injury [3], stroke [4,5], and multiple sclerosis [6]. FES cycling was demonstrated to

improve cardiovascular fitness, insulin sensitivity [7] bone density and muscle strength [2,8].

In recent years, FES-cycling has become particularly attractive for sedated critically ill patients.

Early mobilization is the only intervention, which can partially prevent the development of

intensive care unit-acquired weakness [9–14]—the major long-term consequence in the survi-

vors of protracted critical illness [15,16]. Muscle atrophy [17,18] and dysfunction [18] occur

very early in the critically ill and FES cycling can help to deliver exercise before the patient can

co-operate with a physiotherapist [19].

Although FES cycling seems to be feasible in intensive care unit patients [19], before its

effect on meaningful clinical outcomes can be tested in the critically ill and other vulnerable

patients groups, important physiological questions need to be addressed. Metabolic efficacy

(i.e. power output divided by metabolic cost) of the FES cycling is typically very low, around

5–10%, as compared to 25–40% in volitional cycling [20–22]). This is likely due to non-physio-

logical pattern of muscle activation, where large muscle groups are activated simultaneously

rather than small well-coordinated units [2,23]. Despite FES cycling increases cardiac output

[24] and leg blood flow to the same extent [25] or even more [26] than volitional cycling and

consequently oxygen delivery to the muscle should be normal, there are features suggesting

early switch to anaerobic metabolism: early fatigue [23,27], rapid intramyocellular glycogen

depletion [28], increase of respiratory quotient (RQ) >1 [20] and even a mild increase in arte-

rial lactate levels [29]. Increased lactate production could be caused by microcirculation

impairment during electrically stimulated asynchronous contraction [30] or by a mismatch

between glycogenolysis activated by electrical stimulation [31] and pyruvate oxidation.

Nonetheless, a direct evidence of the presence of anaerobic metabolism in skeletal muscle

during FES cycling is lacking. In addition, whilst the influence of volitional resistance exercise

on amino acid metabolism has been extensively studied [32–36] there is no such data for FES

cycling, although one study demonstrated activation of anabolic signalling in electrically stim-

ulated gastrocnemius muscle in a rat [31]. These questions may be particularly relevant before

FES-assisted exercise is introduced to critically ill patients, who are in profound protein catab-

olism and may be less able to clear lactate from systemic circulation.

In light of this we conducted a crossover study of volitional and FES supine cycling in

healthy postprandial volunteers, where we combined indirect calorimetry with across-leg

venous-arterial (VA) difference studies. We hypothesized that FES-cycling as compared to

light volitional exercise would lead to increased production of lactate in correlation with
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Objectives: Propofol may adversely affect the function of mito-
chondria and the clinical features of propofol infusion syndrome 
suggest that this may be linked to propofol-related bioenergetic 
failure. We aimed to assess the effect of therapeutic propofol con-
centrations on energy metabolism in human skeletal muscle cells.
Design: In vitro study on human skeletal muscle cells.
Settings: University research laboratories.
Subjects: Patients undergoing hip surgery and healthy volunteers.
Interventions: Vastus lateralis biopsies were processed to obtain 
cultured myotubes, which were exposed to a range of 1–10 μg/
mL propofol for 96 hours.
Measurements and Main Results: Extracellular flux analysis was 
used to measure global mitochondrial functional indices, glycoly-

sis, fatty acid oxidation, and the functional capacities of individual 
complexes of electron transfer chain. In addition, we used [1-14C]
palmitate to measure fatty acid oxidation and spectrophotometry 
to assess activities of individual electron transfer chain complexes 
II–IV. Although cell survival and basal oxygen consumption rate 
were only affected by 10 μg/mL of propofol, concentrations as 
low as 1 μg/mL reduced spare electron transfer chain capacity. 
Uncoupling effects of propofol were mild, and not dependent on 
concentration. There was no inhibition of any respiratory com-
plexes with low dose propofol, but we found a profound inhibition 
of fatty acid oxidation. Addition of extra fatty acids into the media 
counteracted the propofol effects on electron transfer chain, sug-
gesting inhibition of fatty acid oxidation as the causative mecha-
nism of reduced spare electron transfer chain capacity. Whether 
these metabolic in vitro changes are observable in other organs 
and at the whole-body level remains to be investigated.
Conclusions: Concentrations of propofol seen in plasma of 
sedated patients in ICU cause a significant inhibition of fatty acid 
oxidation in human skeletal muscle cells and reduce spare capac-
ity of electron transfer chain in mitochondria. (Crit Care Med 
2018; 46:e206–e212)
Key Words: fatty acid oxidation; mitochondrial dysfunction; 
propofol; propofol infusion syndrome; skeletal muscle

Propofol infusion syndrome (PRIS) is a rare, but poten-
tially fatal complication of propofol administration char-
acterized by presence of unexplained metabolic acidosis, 

arrhythmias, Brugada-like pattern on the electrocardiogram, 
cardiac and/or renal failure, rhabdomyolysis, hyperkalemia, 
hepatomegaly and hyperlipidemia (1–7). The pathogenesis 
of PRIS is still unknown; experimental studies performed on 
animal models and clinical features of PRIS (8–10) are sugges-
tive of its mitochondrial origin (11–18). According to the ani-
mal in vitro studies, propofol is thought to act as an inhibitor 
of the electron transport chain (11, 13, 14, 16) and probably 
a mild uncoupler of the inner mitochondrial membrane (12, 
14). However, these effects were only observed after a very short 
exposure of nonhuman cells to propofol concentrations in the DOI: 10.1097/CCM.0000000000002875
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order of magnitude higher than the concentrations found in 
human plasma during propofol anesthesia (19) or sedation (20, 
21), and the relevancy of these studies for patients exposed to 
propofol remains uncertain. Human data are scanty. Our group 
analyzed all 153 case reports of PRIS published between years 
1990 and 2014 (22) and observed patterns in the relationship 
between time and dose of propofol infusion and reported signs 
of the syndrome; symptoms that could be caused by mitochon-
drial uncoupling (e.g., fever, heart failure) occurred relatively 
early and after high doses of propofol. On the other hand, signs, 
which would be consistent with accumulation of nonesteri-
fied fatty acids (NEFAs) (23–26), such as rhabdomyolysis or 
arrhythmias, occurred after protracted propofol infusions irre-
spective of doses. A cumulative dose of propofol was the main 
risk factor influencing the severity of PRIS and its mortality in 
our analysis, suggesting that rather than being an idiosyncratic 
reaction, PRIS might be an extreme manifestation, in suscep-
tible individuals, of changes of cellular bioenergetics that nor-
mally occur after propofol administration, albeit in subtle form 
and remain asymptomatic in the vast majority of patients.

In light of this, we studied metabolic effects of 4 days expo-
sure of human skeletal muscle cells to clinically relevant con-
centrations of propofol.

METHODS

Study Subjects
Vastus lateralis muscle biopsies were obtained by open tech-
nique from patients during hip replacement surgery (n = 30; 
age, 71.8 ± 7.1; body mass index, 28.5 ± 4.8) at the Department of 
Orthopaedic Surgery of Královské Vinohrady University Hos-
pital in Prague. We excluded patients who had already received 
any dose of propofol or had known metabolic muscle disor-
der. Detailed characteristics of study subjects are in Table S1 
(Supplemental Digital Content 1, http://links.lww.com/CCM/
D63). In addition, for [1-14C]palmitate experiments (Experi-
ment 7, see below), we obtained vastus lateralis samples under 
local anesthesia from five healthy volunteers by Bergstrom tech-
nique (27) in the Department of Pharmaceutical Biosciences 
at the University of Oslo. The study protocols were approved 
by respective research ethics boards in both institutions. All 
patients provided a prospective written informed consent.

Cell Culture Isolation
Skeletal muscle cells were isolated and cultured as previously 
described (28) (Fig. S2A, Supplemental Digital Content 1, 
http://links.lww.com/CCM/D63). Upon 80–90% confluence, 
myoblasts were passaged and seeded into: 1) gelatine-coated 
24-well XF24 V7 cell culture microplates (Agilent Technologies 
Inc., Santa Clara, CA) for extracellular flux analyses, 2) gela-
tine-coated Petri dishes for later spectrophotometric analyses, 
3) 96-well microplates for cell viability assay, and 4) 24-well 
plates for acid-soluble metabolites analysis. After 24-hour incu-
bation, the medium was changed to differentiation medium 
(consisting of Dulbecco’s Modified Eagle Medium with 2% 
of Horse Serum) to induce differentiation into myotubes 

(Fig. S2B, Supplemental Digital Content 1, http://links.lww.
com/CCM/D63). After 7 days, differentiated myotubes were 
exposed for 96 hours to a range of experimental conditions, 
which are schematically shown in Fig. S1 (Supplemental Digi-
tal Content 1, http://links.lww.com/CCM/D63) and described 
below. All chemicals used in experiments were purchased from 
Sigma-Aldrich (St. Louis, MO) or Gibco-Life Technologies 
(Gaithersburg, MD).

Overview of Experiments on Myotubes Exposed to 
Propofol 
First, we determined which concentrations of propofol in the 
media are survivable for the cells (Experiment 1) (Fig. S1, Sup-
plemental Digital Content 1, http://links.lww.com/CCM/D63). 
Following this, we used extracellular flux analysis to determine 
global mitochondrial functional indices (Experiment 2) and 
fatty acid oxidation (Experiment 3) in intact cells. By extracellu-
lar flux analysis in permeabilized cells, we measured respiration 
linked to individual respiratory complexes I–IV (Experiment 4). 
In addition (Experiment 5), we homogenized cells and measured 
by spectrophotometry activities of selected enzymes, including 
respiratory complexes, acyl-CoA dehydrogenase (ACAD), and 
citrate synthase (CS). Then, we repeated the design of Experi-
ment 2 in cells coexposed to propofol and fatty acids (Experi-
ment 6). Last, while experiments 1–6 were performed on cells 
obtained from orthopedic patients (n = 7 for each experiment), 
in Experiment 7 we used cells isolated from healthy volunteers 
(n = 5) and applied [1-14C]palmitate method to assess fatty acid 
oxidation. All experiments are briefly described below, whereas 
step-by-step protocols including detailed composition of cul-
ture media and other experimental solutions can be found in 
supplementary appendix (Supplemental Digital Content 1, 
http://links.lww.com/CCM/D63).

Experiment 1. Cell viability measurements were performed 
by a colorimetric MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) 
assay as previously described (29). We tested for propofol con-
centrations between 1 and 50 µg/mL. Given that concentrations 
greater than 10 µg/mL impair cell survival (Fig. S3, Supplemental 
Digital Content 1, http://links.lww.com/CCM/D63), we used 
only lower concentrations for the bioenergetic experiments 2–7.

Experiment 2. Global mitochondrial functional indices were 
assessed by Seahorse XF Extracellular Flux Analyser (Agilent 
Technologies) (30). All the experiments were performed after 
calibration of the instrument with the temperature settled at 
37°C and all the buffers were adjusted to pH 7.4 before mea-
surement. In each experiment, there were six different experi-
mental conditions tested in a 24-well microplate. Hence, each 
condition for each subject was measured in tri- or tetraplicates. 
We used a sequential addition of adenosine triphosphate (ATP)
ase inhibitor, oligomycin, an uncoupler carbonyl cyanide-
4-[trifluoromethoxy]phenylhydrazone (FCCP) and complex 
III inhibitor antimycine A (AA). Oxygen consumption rate 
(OCR) after addition of AA was considered nonmitochondrial. 
This enabled us to calculate OCR at baseline (basal OCR) (as 
OCR at baseline—nonmitochondrial), ATP consumption rate 
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(as a decrement of OCR after addition of oligomycin), OCR 
related to leak of protons through inner mitochondrial mem-
brane (as basal OCR - ATP consumption), and the spare elec-
tron transfer chain capacity (ETC) capacity (calculated as OCR 
after the addition of FCCP—nonmitochondrial). Anerobic 
glycolysis was measured in parallel using an embedded pH 
electrode, with extracellular acidification rate (ECAR) reflect-
ing the production of lactate (30).

Experiment 3. Fatty acid oxidation was determined using 
extracellular flux analysis. Intact (nonpermeabilized) myo-
tubes in a carnitine-rich media were first uncoupled by FCCP. 
Palmitate was then added to reach 200 µM, and fatty acid oxi-
dation (FAO) was inhibited by etomoxir. The decrement of 
OCR with etomoxir is considered as the rate of FAO.

Experiment 4. Respiration linked to individual complexes 
of electron transport system was analyzed in saponin-per-
meabilized cells. In order to measure CI, II, and IV-linked 
respiration, we pretreated cells with adenosine diphosphate 
and malate + glutamate before using sequential addition 
of rotenone, succinate, AA, and N,N,N',N'-tetramethyl-p-
phenylenediamine (TMPD) + ascorbate. Complex I respira-
tion was calculated as the decrement after rotenone, complex 
II as the increment after the addition of succinate, and complex 
IV as the increment after addition of TMPD and ascorbate. 
Complex III-linked respiration was measured on a separate 
plate using freshly prepared duroquinone as the substrate.

Experiment 5. Spectrophotometric analysis of the activ-
ity of CS, individual respiratory complexes, and ACAD were 

analyzed in cell homogenates 
disrupted by three freezing-
thawing cycles as described 
previously (31-33). Protein 
content was determined using 
Bradford assay (34).

Experiment 6. Interaction 
of propofol with fatty acids. 
Propofol for infusions is 
diluted in 10% Intralipid, 
which is rapidly hydro-
lyzed into NEFAs (35, 36). 
In order to mimic this 
effect of propofol in vitro, 
we incubated cells also in 
fatty acid mixture resem-
bling fatty acid composition 
of Intralipid (37), which is 
linoleate:oleate:palmitate 
equals to 6:3:1 in total con-
centration of 500 µM. In 
these experiments, cells were 
cultured in two different 
concentrations of propofol 
(2.5 and 10 µg/mL) with and 
without NEFA (groups P2.5, 
P10, and P2.5 + NEFA, P10 
+ NEFA). Control groups of 

cells were cultured in fresh medium with and without fatty 
acid mixture (groups C, C+NEFA). After 96 hours of expo-
sure, mitochondrial functional indices were determined 
by extracellular flux analysis in the setting identical with 
Experiment 2.

Experiment 7. Analysis of FAO by [1-14C]palmitate 
method. After 96 hours of myotubes exposure, the medium 
was completely removed before addition of 0.5 µCi/mL 
[1-14C]palmitic acid (PerkinElmer NEN, Boston, MA), given 
in DMEM-Glutamax (Dulbecco’s modified Eagle’s medium 
with Glutamax; Gibco, Life Technologies, Paisley, UK) with 
l-carnitine and bovine serum albumin (BSA). The cells were 
incubated at 37°C for 4 hours before the incubation media 
(100 µL) were collected, added to 30 µL BSA (6%) and 300 
µL HClO

4
, and centrifuged at 10,000 rpm/4°C/10 min. 

Supernatant of about 200 µL was then counted by liquid scin-
tillation (Packard Tri-Carb 1900 TR; PerkinElmer, Waltham, 
MA). Oxidation of [1-14C] palmitic acid to acid-soluble 
metabolites, which consist mainly of tricarboxylic acid cycle 
metabolites, was used as the measure of the rate of FAO.

Statistics
For statistical analysis, we used software Stata 14.2 (Stata Corp., 
LLC, College Station, TX). In order to deal with hierarchical 
structure of the data, we used a four-level mixed effect model of 
linear regression. In the fixed part, the model consists of a depen-
dent continuous variable (e.g., a bioenergetic variable) and an 
independent variable, which is a categorical variable describing 

A B

C D

Figure 1. Differences in bioenergetic variables (y-axis) caused by a range of propofol concentrations (x-axis) 
diluted in 0.1% ethanol (propofol = 0 refers to ethanol alone) compared with reference cells cultured in fresh 
media (mean from n = 6; vertical bars represent 95% CIs). A, Basal oxygen consumption rate (OCR). B, Leak/
basal OCR ratio. C, Electron transfer chain capacity (ETC)/basal OCR ratio. D, The extracellular acidification 
rate (ECAR) reflects the rate of anaerobic glycolysis.
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the experimental condition (e.g., the concentration of propo-
fol). In the random part, the model reflects the following four 
levels: subjects, experimental condition, well, and repeated mea-
sures in each well. The data are presented as the difference (with 
a 95% CI and p value) between the mean value of the dependent 
variable of reference cells and the mean value of the dependent 
variable under the given experimental condition.

RESULTS

Cell Survival (Experiment 1) and Influence of 
Propofol on Mitochondrial and Protein Content 
Four days of myotubes exposure to propofol up to 10 µg/mL 
did not cause detectable changes in cell survival measured by 
MTS test, but higher concentrations (25 and 50 µg/mL) were 
toxic. Neither NEFA nor Intralipid alone affected cell survival. 
In all experiments, exposure to propofol caused a degree of 
dose-dependent reduction of both protein and mitochondrial 
contents (measured as Bradford assay or CS activity, respec-
tively). These changes were mirrored in changes of basal OCR. 
See Figures S3 and S4 (Supplemental Digital Content 1, http://
links.lww.com/CCM/D63). Hence, we normalized all func-
tional mitochondrial indices derived from extracellular flux 
analysis to basal OCR.

Global Mitochondrial Functional Indices (Experiment 2) 
Basal OCR was only affected by 10 µg/mL (Fig. 1A). Leak 
through the inner mitochondrial membrane tended to be 
increased in a nonconcentration dependent manner (from 21% 
of basal OCR in controls to 24–40% in cells exposed to pro-
pofol), but this effect only reached statistical significance with 
2.5 µg/mL of propofol (Fig. 1B). Spare ETC capacity in control 
cells was 378% ± 135% of basal OCR. This was significantly 
reduced across all concentrations of propofol (to 113% ± 96%, 
111% ± 77%, 245% ± 155%, 245% ± 188% for 1.0, 2.5, 5.0, and 
10 µg/mL of propofol, respectively, p < 0.01 for all differences) 
(Fig. 1C). No effect was observed after incubation of cells in the 
Intralipid vehicle. Anerobic glycolysis, as measured as the ECAR 
which reflects production of lactate (30), was highly variable 
and only reduced by 10 μg/mL of propofol (Fig. 1D).

Fatty Acid Oxidation (Experiments 3 and 7) 
By extracellular flux analysis (Experiment 3), we found a pro-
found inhibition of FAO which decreased to 36% and 33% of 
values in control cells with 2.5 or 10 µg/mL of propofol, respec-
tively (p < 0.01 for both) (Fig. 2A). In line (Experiment 7), we 
observed a significant decrease of FAO with 2.5, 5, and 10 μg/
mL of propofol (Fig. 2B) with [1-14C]palmitate technique.

Influence of Propofol on the Capacity of Individual 
Respiratory Complexes (Experiments 4 and 5)
As determined in experiment 5 (i.e., when measured in isola-
tion by spectrophotometry), we have not found any inhibition 
by propofol of the capacity of respiratory complexes II–IV nor 
ACAD. In intact mitochondria of saponin-permeabilized myo-
tubes (Experiment 4), there was no effect of propofol 2.5 µg/
mL on ETC complexes either, but with 10 µg/mL, there was a 
reduction of the activity of the complexes III and IV (Table 1). 
There was no correlation between the activity of any of these 
complexes and ETC spare capacity (data not shown).

Interaction of Propofol With Nonesterified Fatty Acid 
Exposure in the Media (Experiment 6)
We exposed cells to 2.5 and 10 μg/mL of propofol with and 
without NEFA. Addition of NEFA alone to the media did not 
affect cell survival or global mitochondrial functional indi-
ces, but it mitigated the inhibitory effects of propofol on basal 
OCR (Fig. 3A) and normalized spare ETC capacity (Fig. 3B) in 
cells coexposed to propofol.

DISCUSSION
In this study, we used an in vitro model of human skeletal 
muscle and studied the effects of propofol on major bioen-
ergetics pathways. We exposed human myotubes to propofol 
concentrations in a range 1–10 µg/mL for 96 hours in order 
to resemble levels achieved in patients during sedation in the 
ICU (1.2–4.5 µg/mL [19, 20]) or during induction of general 
anesthesia (10.5 µg/mL [19]). Although the highest propofol 
concentrations (10 µg/mL) affected mitochondrial content, 
and to some extent also activities of isolated respiratory com-
plexes and cell survival, none of these effects were observed for 

lower concentrations of pro-
pofol (2.5 µg/mL). Yet, even 
very low concentrations of 
propofol decreased spare ETC 
capacity, which reflects cellular 
ability to increase respiration 
when ATP demands are high. 
Because activities of individual 
respiratory complexes were 
unaffected by low propofol 
concentrations, we exploited 
propofol effects on upstream 
metabolic pathways, which 
feed electrons into ETC (Fig. 
S1, Supplemental Digital Con-
tent 1, http://links.lww.com/

A B

Figure 2. Changes in fatty acid oxidation rate caused by propofol measured by extracellular flux analysis 
(A) and by [1-14C]palmitate (B). Data expressed as mean % of value in reference cells (i.e., cultured without 
propofol), which are arbitrarily set as 100%. Vertical bars are 95% CI.
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CCM/D63). We found a profound inhibition of fatty acid oxi-
dation by extracellular flux analysis and confirmed this finding 
by the use of the [1-14C]palmitate tracer method. Furthermore, 
abundant NEFA in the media abolished the inhibitory effects 
of propofol on the spare ETC capacity. Taken together, these 
data suggest that propofol exposure limits spare ETC capacity 
by inhibiting FAO, rather than by inhibiting respiratory com-
plexes or electron transfer within ETC.

Effects of propofol on bioenergetics have been extensively 
studied in animals, mostly by exposing isolated mitochondria 
from rat liver (11, 12, 14) or heart (13) to very high doses of 
propofol for a very short time (in order of minutes). In these 
studies, propofol inhibited complex I and, at high concentra-
tions (> 35 µg/mL), also complex II (14). In the range 20–35 
µg/mL, propofol caused mild uncoupling and dissipation of 
the transmembrane potential. Two hours of a propofol perfu-
sion of isolated guinea pig hearts (9–37 µg/mL) slowed myo-
globin desaturation during temporary ischemia, suggesting 
inhibitory effects of propofol on ETC (16). The only study 
of long-term (up to 18 hr) in vivo exposure to propofol is a 
landmark article of Vanlander et al (18), who, in rat tissue 

homogenates, demonstrated an inhibition of complex II + 
III with 3.7 µg/mL of propofol, and of complex IV at 7.4 µg/
mL, whereas activities of isolated complexes I, II, and III were 
unaffected. Ex vivo exposure required propofol concentra-
tions of 10 times higher to cause a measurable inhibition of 
respiratory complexes (18). The authors explain the difference 
between in vivo and in vitro effects by different distribution 
of propofol within mitochondria. The inhibition of complex 
II + III by propofol was preventable with coincubation with 
coenzyme Q, which led the authors to the conclusion that in 
vivo inhibitory action of propofol on ETC can be explained by 
interference of propofol with coenzyme Q due to their struc-
tural similarity (18).

Ours is the first study looking at the long-term effects of 
propofol in an in vitro model of human tissue. We not only 
measured activities of individual ETC complexes but also stud-
ied effects of propofol on bioenergetics in a culture of intact 
or permeabilized cells by extracellular flux analysis, which we 
have previously adapted for the use in human myotubes (28). 
These are the main strengths of our study, particularly given 
our use of a prolonged exposure to concentrations found in 

plasma of patients sedated 
by propofol. For the reasons 
stated above, our results from 
prolonged propofol exposure 
cannot be directly compared 
with results of animal studies 
looking at very short expo-
sure of isolated mitochondria 
to high doses of propofol. We 
have not found any convinc-
ing inhibition of respiratory 
complexes measured in isola-
tion (by spectrophotometry) 
nor in functional context in 
permeabilized cells (by extra-
cellular flux analysis) exposed 

TABLE 1. Mean activities (95% CIs) of Individual Mitochondrial Enzymes Expressed as % of 
Values in Control Cells Cultured in the Absence of Propofol

Mitochondrial Enzymes

Spectrophotometry (n = 6) Extracellular Flux Analysis (n = 6)

Mean Enzyme Activity (Normalized to Citrate  
Synthase) Expressed as  
% of Controls (95% CI)

Mean Complex Capacity (Normalized to Basal  
Oxygen Consumption Rate) Expressed as % of  

Controls Without Propofol (95% CI)

Propofol Concentration: 
2.5 µg/mL

Propofol Concentration: 
10 µg/mL

Propofol Concentration: 
2.5 µg/mL

Propofol Concentration: 
10 µg/mL

Complex I N/A N/A 102 (93–112) 108 (98–117)

Complex II 102 (92–112) 124a (114–134) 104 (97–110) 101 (94–109)

Complex III 123 (100–146) 109 (86–131) 82 (44–120) 41a (10–92)

Complex IV 131a (111–151) 104 (83–124) 85 (62–108) 73a (46–99)

Acyl-CoA dehydrogenase 108 (85–130) 97 (74–119) N/A N/A

N/A = not applicable.
a�p < 0.05.

A B

Figure 3. Interaction of propofol diluted in 0.1% ethanol with increased nonesterified fatty acids (NEFAs) 
in culture media (propofol = 0 are cells cultured in 0.1% ethanol). Reference cells were cultured in the fresh 
media. A, Changes in basal oxygen consumption rate (OCR). B, Changes in spare capacity of electron transfer 
chain ratio to basal OCR. ETC = electron transfer chain capacity. 
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to 2.5 µg/mL of propofol. Only the highest concentration (10 
µg/mL) inhibited the activities of complexes III and IV, and 
only then if studied in permeabilized cells. Of note, we used 
the artificial substrates duroquinone and ascorbate/TMPD to 
measure activities of complexes III and IV, respectively. They 
donate electrons directly to respiratory complexes and bypass 
coenzyme Q, so their inhibition cannot be explained by the 
hypothesis by Kam and Cardone (38) and Vanlander et al (18) 
of propofol interference with coenzyme Q. Furthermore, spare 
ETC capacity and fatty acid oxidation were already limited by 
2.5 µg/mL of propofol: a concentration, which did not cause 
any measurable inhibition of any of the respiratory complexes. 
Propofol-induced defect of fatty acid oxidation has long been 
hypothesized as the underlying mechanism of PRIS (8, 10). 
This is because PRIS shares some clinical signs with inborn 
defects of FAO, including rhabdomyolysis, skeletal myopathy, 
and arrhythmias. In FAO disorders, these abnormalities can 
be triggered by prolonged fasting or low-carbohydrate, keto-
genic diet (39). 

In one case, a child who was simultaneously receiving 
propofol sedation and ketogenic diet developed PRIS (40). 
Additionally, children with PRIS are often screened falsely 
positive for inborn defect of FAO as acyl-CoA derivatives 
are elevated in their blood (8, 10, 41) and these normalize 
in PRIS survivors after propofol withdrawal (8). Our data 
bring direct evidence of propofol inhibitory effect on FAO 
in human cells.

On the other hand, apart from measuring the activity of one 
of β-oxidation enzymes (ACAD) that was unaffected by propo-
fol, we have not studied the mechanism of FAO inhibition any 
further. Propofol (or its intracellular metabolites) may inhibit 
carnitine-acyl transferases, β-oxidation complex, or electron 
transferring flavoprotein dehydrogenase. It is less likely that 
propofol-induced inhibition of FAO is secondary to an inhibi-
tion within ETC itself, as we have observed that any spare ETC 
capacity was unaffected if propofol-treated cells were cultured 
in fatty acid rich environment. However, it should be noted that 
although the range of total propofol concentration we exposed 
our cells to was in the range of that seen in propofol-sedated 
patients, free propofol concentrations might have been higher 
due to decreased protein binding in culture media as compared 
to plasma (42). In addition, added substances (BSA, palmitate) 
might have influenced propofol activity and confound the 
results. We chose skeletal muscle being a large body compart-
ment comprising around 40% of total body mass and because 
it is directly affected in PRIS. It remains unclear how propofol 
affects bioenergetics in other human tissues and organs and 
whether any metabolic effects would be detectable at a whole-
body level.

In conclusion, we have demonstrated that 96 hours of expo-
sure of human skeletal muscle cells to concentrations of pro-
pofol found in plasma of propofol-sedated patients reduced 
the spare capacity of electron transfer chain and caused a 
profound inhibition of fatty acid oxidation. In the context of 
other studies in the field, our results generate the hypothesis 
that propofol affects fatty acid utilization at whole-body level. 

Furthermore, in susceptible individuals (31), this may have 
adverse consequences, which, in extreme form, would result in 
the development of PRIS.
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Fig 4. Comparison of atrial and ventricular mitochondrial functional indices (left atrium; left ventricle). A) Dimensionless functional indices. B)

Raw data (absolute values). C) Values corrected to citrate synthase activity. D) Values corrected to baseline respiration.

https://doi.org/10.1371/journal.pone.0226142.g004

Fig 5. A-left: Dot-plot of interclass variability of electron transfer capacity normalised to citrate synthase activity (Denoted as state 3u = uncoupled). B-

right: Bland-Altman plot showing the individual differences in the same parameter between atria and ventricles. Ventricles have generally a bit higher

3u/CS than atria, but there is no dependency on absolute value.

https://doi.org/10.1371/journal.pone.0226142.g005
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ABSTRACT
Purpose  Functional electrical stimulation-assisted 
cycle ergometry (FESCE) enables in-bed leg exercise 
independently of patients’ volition. We hypothesised 
that early use of FESCE-based progressive mobility 
programme improves physical function in survivors of 
critical care after 6 months.
Methods  We enrolled mechanically ventilated 
adults estimated to need >7 days of intensive care 
unit (ICU) stay into an assessor-blinded single centre 
randomised controlled trial to receive either FESCE-based 
protocolised or standard rehabilitation that continued up 
to day 28 or ICU discharge.
Results  We randomised in 1:1 ratio 150 patients (age 
61±15 years, Acute Physiology and Chronic Health 
Evaluation II 21±7) at a median of 21 (IQR 19–43) hours 
after admission to ICU. Mean rehabilitation duration of 
rehabilitation delivered to intervention versus control 
group was 82 (IQR 66–97) versus 53 (IQR 50–57) min 
per treatment day, p<0.001. At 6 months 42 (56%) 
and 46 (61%) patients in interventional and control 
groups, respectively, were alive and available to follow-
up (81.5% of prespecified sample size). Their Physical 
Component Summary of SF-36 (primary outcome) 
was not different at 6 months (50 (IQR 21–69) vs 49 
(IQR 26–77); p=0.26). At ICU discharge, there were 
no differences in the ICU length of stay, functional 
performance, rectus femoris cross-sectional diameter or 
muscle power despite the daily nitrogen balance was 
being 0.6 (95% CI 0.2 to 1.0; p=0.004) gN/m2 less 
negative in the intervention group.
Conclusion  Early delivery of FESCE-based protocolised 
rehabilitation to ICU patients does not improve physical 
functioning at 6 months in survivors.
Trial registration number  NCT02864745.

INTRODUCTION
Preserving independent functioning and accept-
able quality of life is as important as survival for 
most patients in intensive care. Unfortunately, func-
tional disability, a natural consequence of weak-
ness, is a frequent and long‐lasting complication 
in survivors of critical illness.1 2 Minimising seda-
tion and a culture of early mobility has potential 
to reduce long-term sequelae of critical illness.3–5 

Protocolised physical therapy has been shown 
to reduce the duration of mechanical ventilation 
and intensive care unit (ICU) length of stay,6 but 
these benefits are not consistently translated into 
improved long-term functional outcomes.7–10 The 
delivery of protocolised physical therapy requires 
the concomitant presence of a cooperative patient 
and a trained physiotherapist, often a precious 
resource in the ICU. In turn, implementation of 
early mobility strategies may fail in randomised 
controlled trials and in clinical practice. Only six 
randomised controlled trials out of 43 published to 
date in the field reported data of protocol imple-
mentation.6 Moreover, during acute critical illness 
no active exercise can be delivered.11 12 Yet, immo-
bility‐associated muscle loss is evident as early 
as within 18–48 hours of onset of acute critical 
illness13 14 and during the first week patients lose 
10%–20% of rectus femoris muscle cross-sectional 
diameter15 and up to 40% of muscle strength.16

Neuromuscular electrical stimulation (NMES) 
may mimic active exercise in patients, who lack 
voluntary muscle activity.17–25 During NMES, 
cutaneous electrodes placed over specific muscle 

Key messages

What is the key question?
►► Functional-electrical stimulation cycle 
ergometry allows delivery of exercise to 
patients who are sedated and unconscious and 
can enhance progressive mobility programme, 
but its effects on patients-centred outcomes are 
unknown.

What is the bottom line?
►► Application of very early intensive cycling-
based progressive mobility programmes to 
intensive care unit (ICU)-long stayers did not 
improve muscle mass and power in ICU or 
physical function at 6 months.

Why read on?
►► This is the first large randomised controlled trial 
on the use of early cycling-based protocolised 
rehabilitation in the critically ill.
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groups electrically trigger muscle contractions. Passive cycling 
and NMES can be delivered simultaneously and synchronised to 
produce a coordinated pattern of movements (see online supple-
mental video 1) and increase whole-body energy expenditure.26 
The technique is called functional electrical stimulation-assisted 
cycle ergometry (FESCE). FESCE is beneficial to patients with 
stroke and spinal cord injuries (reviewed in Doucet et al27) as it 
prevents the loss of muscle mass28 and improved anabolic resis-
tance and insulin sensitivity in quadriplegic patients.29 30 In a 
pilot study, FESCE seems to be safe and feasible in the critically 
ill.31

In the light of this we aimed to test early FESCE-based proto-
colised rehabilitation in a randomised controlled trial powered 
to test treatment effects on patient-centred outcomes. We 
hypothesised that protocolised progressive mobility programme, 
which includes FESCE and starts within 72 hours after ICU 
admission, would improve functional outcomes of ICU survivors 
at 6 months when compared with the standard of care.

METHODS
This was a single centre, prospective, randomised controlled 
parallel group trial with a blinded outcome assessor, which 
had been registered prior to enrolling the first patient at www.​

clinicaltrials.​gov and the full protocol has been published.32 
We used a deferred consent procedure, where patients without 
capacity were enrolled based on assent gained from legal repre-
sentatives and asked to provide consent as soon as they regained 
capacity.

Participants
Participants were recruited in two multidisciplinary ICUs of 11 
and 10 level three beds, respectively, at tertiary FNKV Univer-
sity Hospital in Prague, Czech Republic. We included adult (≥18 
years) patients who received mechanical ventilation for less than 
72 hours but were predicted to need ICU for a week or more. We 
excluded patients bedridden before ICU admission, with missing 
or injured lower limbs, irreversible paralysis or those with pace-
makers (see online supplemental appendix 1 for full list of eligi-
bility criteria).

Standard care group
Both groups received usual best medical and nursing care in the 
ICU, which included daily sedation holds when applicable, respi-
ratory physiotherapy and management as usual in the routine 
practice. Both groups received standard physiotherapy delivered 

Figure 1  Flowchart of patients enrolled into the trial. Each patient could have one or more reasons not to be included and therefore the sum of 
reasons exceed the number of patients excluded. Other reasons included missed patients due to logistical reasons or patients who were deemed 
unlikely to survive; all patients who had been enrolled based on legal representative assent and regained capacity, gave written informed consent by 
the end of the follow-up period. ICU, intensive care unit; LOS, length of stay
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two times a day 6 days in a week in a routine way by physiother-
apists not involved in the study and adhering to the published 
safety criteria.33 Most importantly, a fraction of inspired oxygen 
less than 0.6 with a percutaneous oxygen saturation more than 
90% and a respiratory rate less than 30 breaths/min and normal 
and stable intracranial pressure (ICP) were required for in-bed 
and out-of-bed mobilisation. In the control group the therapy 
was initiated on request of the treating physician and was docu-
mented, but not protocolised. It included passive and active 
range of motion, application of stretch reflex to upper and lower 
extremities and activation of global motor response according 
to Vojta reflex locomotion, positioning in bed, sitting, mobility 
activities progressing from activity in-bed to out-of-bed activities 
such as up to chair or ambulation, multi-component intervention 
(eg, combination with respiratory physiotherapy) and education.

Intervention group
The intervention began the calendar day after randomisation 
and consisted of a progressive mobility programme tailored 
to patients’ condition and supplemented by the use of FESCE 
(online supplemental table 1). The goal was to deliver a total 
of 90 min of active exercise a day until ICU discharge or day 28 
whichever occurred earlier. Early in the course of the disease the 
intervention included FESCE (RT300 System, Restorative Ther-
apies 2005-2016. LB100108 V.37).31 See online supplemental 
appendix 1—online supplemental table 1 for details. In brief, 
after warm-up phase (5 min of passive cycling), patients received 
therapy consisting of functional electrical stimulation or active 
cycling with duration adjusted per protocol and patient’s 

tolerance) followed by relaxation phase (5 min of passive 
cycling). FES impulses had pulse width 250 μs, pulse frequency 
40 Hz and the lowest output per channel (in a range 0–60 mA) 
that allowed locomotive movement of lower extremities. Once 
the patient was more alert and able to participate, they were 
encouraged to engage in therapy. To increase the intervention 
workload, both resistance (3–10 Nm) and cycling cadence were 
increased incrementally. Face-to-face individual therapy was 
delivered two times a day by a certified physical therapist (MSc) 
specially trained in FESCE application in ICU.

Measures to ensure protocol implementation
Study physiotherapists (NH, KR) were appointed as 1.8 full 
working time equivalent specifically for this study and deliv-
ered the intervention 7 days/week. Throughout the study, 20 
randomly selected exercise sessions were monitored by a hidden 
observer to ensure reliability and consistency of protocol imple-
mentation data reported by physiotherapists. Rehabilitation 
after discharge from ICU was not altered nor monitored in 
either group. Data on safety outcomes (ICP elevation, dialysis 
interruptions) were collected from clinical information system 
Metavision V.5, iMDsoft, Israel. A multi-step approach was used 
to minimise number of patients lost to follow-up (see online 
supplemental appendix 1 for more details).

Outcomes
The primary outcome of this trial was the Physical Component 
Summary (PCS) score of the SF-36 quality of life questionnaire 

Table 1  Study subject characteristics

Baseline characteristics Intervention (n=75) Control (n=75) P value

Demographic Sex male/female (% male) 53/22 (71%) 57/18 (76%) 0.46

Age (years) 59.9±15.1 62.3±15.4 0.34

Body mass index (kg/m2) 29.3±6.3 30.7±8.3 0.24

Pre-admission health and function Charlson Comorbidity Score 2.8±2.3 3.4±2.4 0.15

Physical activity (RAPA score) 1 (IQR 1–3) 2 (IQR 1–5) 0.17

Level of independence (IAPA score) 8 (IQR 7–8) 8 (IQR 7–8) 0.52

Current disease severity Sepsis on admission (n, %) 19 (25.3%) 18 (24.0%) 0.85

APACHE II 22.1±5.2 22.2±7.7 0.91

SOFA score at enrolment 8.8±2.6 8.8±3.2 0.89

Primary reason for admission Respiratory failure (COPD, pneumonia) 20 (27%) 17 (23%) 0.7

Isolated TBI 16 (21%) 10 (13%) 0.28

Multiple trauma with TBI 12 (16%) 9 (12%) 0.64

Multiple trauma without TBI 2 (3%) 5 (7%) 0.44

Septic shock (non-respiratory) 8 (11%) 10 (13%) 0.8

Out-of-hospital cardiac arrest 5 (7%) 6 (8%) 1

Haemorrhagic stroke (operated) 2 (3%) 6 (8%) 0.28

Congestive heart failure 2 (3%) 4 (5%) 0.68

Haemorrhagic shock, non-traumatic 1 (1%) 3 (4%) 0.62

Meningitis, encephalitis 2 (3%) 2 (3%) 1

Other diagnoses 5 (7%) 3 (4%) 0.72

Time from admission to enrolment (hours)* 31.5±19.0 30.8±17.4 0.80

CCS31; IAPA ranges 0–8 with higher number meaning higher functional independence32; RAPA score ranges from 1 ‘I almost never do any physical activities’ to 5 ‘I do 30 min or 
more per day of moderate physical activity 5 or more days per week’33.
*Intervention began next calendar day after enrolment.
APACHE, Acute Physiology and Chronic Health Evaluation; CCS, Charlson Comorbidity Score; IAPA, Instrumental Activities Of Daily Living Scale; RAPA, Rapid Assessment of 
Physical Activity; SOFA, Sequential Organ Failure Assessment; TBI, traumatic brain injury.
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measured in ICU survivors at 6 months and calculated as per 
RAND methodology, V.1.34 Because there was no study in similar 
population reporting on PCS, we calculated the power of the 
study based on an important determinant of PCS, which is phys-
ical function. Based on the study by Kayambu et al,35 where 
physical function score was 60.0±29.4 points in the control 
group, 108 patients are required in order to have 80% chance to 
detect a difference (at p<0.05) a change by 15.8 points or more, 
which is within the limits determined as clinically important 
for patients with COPD, asthma and myocardial infarction.36 
To compensate for 28% mortality, we aimed to randomise 150 
patients. More details on power analysis are in online supple-
mental appendix 1.

Secondary outcomes were Four-item Physical Fitness in Inten-
sive Care Test (PFIT-s),37 rectus muscle cross-sectional diameter 
on B-mode ultrasound, mean daily nitrogen balance, muscle 
power as per the Medical Research Council score, number 
of ventilator-free days and ICU length of stay, all measured 
at discharge from ICU or day 28, whichever occurred earlier. 
Prespecified secondary safety outcomes were the number of 
episodes of elevated ICP and dialysis interruptions. Detailed 

description of secondary outcome assessment is in online supple-
mental appendix 1.

Randomisation
Eligible patients were randomly assigned (1:1) to receive either 
standard care or the intervention using offsite independent 
randomisation protocol embedded in the electronic case report 
form. Randomisation was stratified according to the presence 
or absence of sepsis and whether a specific consent was given to 
be involved in a nested metabolic substudy that included serial 
muscle biopsies.32 38 There were permuted blocks of four in each 
stratum. Both the study team and clinical personnel were aware 
of subject treatment allocation. The outcome assessors (JG, BB) 
were not involved in patient care and remained blinded to treat-
ment allocations.

Statistical methods
The primary outcome and all secondary outcomes were 
reported as medians (IQR) in an intention-to-treat population 
and compared between the intervention and standard of care 

Figure 2  Protocol implementation indices. (A) Average duration of rehabilitation in intervention (blue line) and control (red line) groups in all days 
of all patients (ie, including days without rehabilitation). Thin lines are individual patients (one outlier received up to 180 min of rehabilitation a day 
due to protocol violation). (B) Sedation level heatmap. (C) Average types of exercise delivered daily. FESCE, functional electrical stimulation-assisted 
cycle ergometry; RASS, Richmond Agitation-Sedation Scale, where 0 (alert and calm) or −1 (drowsy) were target levels of sedation management.
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groups, with all tests two-sided using the level of significance set 
at p<0.05. Normality of data distribution was tested by Shapiro-
Wilks’ test and data are reported as means±SD or median (IQR), 
as appropriate. We used log-rank test for time-to-event analyses, 
t-test or Wilcoxon test for continuous variables (depending on 
normality of distribution), and χ2 for frequency of event compar-
isons. No imputation of missing data was used. All calculations 
were performed in R, V.4.0.3 (updated on 10 October 2020) and 
ggplot2 package was used to create figures.

RESULTS
Between October 2016 and November 2019 (see online supple-
mental figure 3), 2071 patients were screened in order to enrol 
the prespecified number of 150 (7.2%) participants into the trial. 
Participant flow is shown in figure 1 and baseline characteristics 
of randomised patients in table 1.

Protocol implementation
Patients in intervention and control arms stayed for a median 
of 12 (IQR 7–21) and 12 (IQR 6–19) days in ICU (p=0.76 log-
rank test). Six and eleven patients randomised to intervention 
and control group, respectively, received no rehabilitation. At 
least one physiotherapy session was delivered in 817 out of 932 
(88%) versus 615 out of 895 (69%) ICU days (p<0.001, χ2 test) 
and the first rehabilitation occurred 63 (IQR 45–84) versus 68 
(48–95) hours after ICU admission (p=0.14 Wilcoxon) in the 

intervention versus control groups, respectively. During the days 
where rehabilitation was delivered, the median daily duration 
of it was 82.2 (IQR 65.6–96.6) versus 53.3 (IQR 50.1–57.1) 
min in the intervention and control group, respectively (median 
difference 29 min, p<0.001, Wilcoxon test). This included in 
the intervention group 33 (IQR 22–39) min per treatment day 
of FESCE (figure  2). Further details on rehabilitation in both 
groups can be found in online supplemental appendix 1 (online 
supplemental tables 2A, 2B and 3).

Outcomes
Forty-two (56%) and forty-six (61%) patients were alive and all 
available to follow-up at 6 months in intervention and control 
groups, respectively (p=0.51, χ2 test). This represents 81.5% 
(88/108) of prespecified sample size. Median physical compo-
nent score of SF-36 in survivors (primary outcome) was 50 
(IQR 21–69) in the intervention group and 49 (IQR 26–77) in 
controls (p=0.261, Wilcoxon test, see also online supplemental 
figures 4–6 and Table S5 in online supplemental data file). 
Patients’ in the intervention group had by 0.6 (95% CI 0.2 to 
1.0) g/m2 of body surface area less negative mean daily nitrogen 
balance (p=0.004, t-test) as compared with control group, in the 
small subgroup with ICP monitoring in place (n=4 vs 3) more 
ICP elevations in the interventional (23 elevations/15 ICP days 
vs 0/15; p=0.018, Wilcoxon test), none of which occur during 
or immediately after FESCE exercise (see online supplemental 

Figure 3  (A) Physical component summary of SF-36 score (primary outcome); (B) Kaplan-Meier curve of survival in the study; (C) Kaplan-Meier 
curve of patients in the ICU (censored for non-survivors); (D) Kaplan-Meier curve of patients at hospital (censored for non-survivors). P values are from 
Wilcoxon in (A) and log-rank test in (B), (C) and (D). ICU, intensive care unit; LOS, length of stay; PCS, Physical Component Summary.
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appendix 1). There were no significant differences in any of 
seven other prespecified secondary outcomes (see figure 3 and 
table 2).

Ancillary analyses
Of note, although not a prespecified outcome, in the interven-
tion group there was worse mental component summary score of 
SF-36 at 6 months 54.8 (IQR 37.1–69.6) versus 70.2 (IQR 51.5–
81.3), p=0.009, Wilcoxon test (see online supplemental figures 
5 and 7 in online supplemental appendix 1). Despite neither 
number of ICU days on pharmacological treatment for delirium 
(36% vs 37%, p=0.86, χ2 test) nor doses of sedatives (see online 
supplemental figure 8 in online supplemental appendix 1) were 
different, patients in the intervention group spent more time in 
the ICU either agitated or deeply sedated as seen on the heatmap 
in online supplemental figure 2B and online supplemental table 
10 in online supplemental appendix 1.

DISCUSSION
The main finding of this study is that in mechanically ventilated 
patients with anticipated long ICU length of stay, progressive 
mobility programme started very early and containing FESCE 
did not improve physical disability 6 months after surviving crit-
ical illness. The intervention led to 0.6 gN/m2/day improvement 
in nitrogen balance, which during a median of 11 days equals 
to sparing of approximately 380 g of lean body mass. This did 
not translate into measurable preservation into leg muscle mass, 
muscle power, physical fitness at ICU discharge or shortening of 
mechanical ventilation or ICU stay.

There are only limited number of other randomised controlled 
trials looking at long term effects on functional outcomes of 
a rehabilitation intervention delivered in ICU. Randomised 
controlled trials investigating in-bed cycling only39 40 and most 
studies on progressive mobility programmes7–10 41 42 demon-
strated no difference in physical health after 6 months. The 
lack of effect in these trials could have been caused by problems 
with protocol implementation6 as in the only study reporting on 
duration of rehabilitation that was delivered,7 it was only 24% 
of prescribed duration (22 min vs 90 min per protocol). Largest 

trial so far by Morris et al9 randomised 300 ICU patients very 
similar to ours to receive up to three sessions of resistance exer-
cise delivered 7 days/week or a standard rehabilitation. There 
was no effect on the duration of hospital stay (primary outcome) 
and physical function was identical at hospital discharge; inter-
estingly, patients in the intervention group improved faster 
after discharge and reached significantly better physical func-
tion scores after 6 months.9 Kayambu et al35 also demonstrated 
better physical function at 6 months in ICU patients with sepsis 
exposed to protocoled rehabilitation, but this study is criticised 
due to small sample size and 40% loss of follow-up. Therefore, 
when designing our trial, we put emphasis on achieving protocol 
implementation and minimising loss of follow-up. Indeed, rigor-
ously monitored delivery of exercise and successful protocol 
implementation is the main strength of this trial. Intervention 
group received exercise on 88% ICU days (as compared with 
66% in the control group, see also online supplemental figure 
9) with median duration per treatment day of 82 min with clear 
and significant separation of the rehabilitation duration from the 
control group. Despite successful implementation, we failed to 
demonstrate short-term or long-term effects, with the exception 
of the slight improvement of nitrogen economy. Preservation of 
lean body mass could be clinically meaningful, but in our study, 
it occurred unaccompanied by any signal of improvement of 
muscle function and its significance is therefore questionable. 
Indeed, the difference could have also occurred by chance due 
to multiple testing.

The lack of effect of the intervention could have been caused 
by multiple factors. First, median rehabilitation duration in our 
control group of 53 min per treatment day was far longer than 
expected and rare among rehabilitation trials.43 Our patients 
were discharged from ICU in better functional status (higher 
PFIT-s scores) then in other trials,44 45 which could mean that 
our discharge policy is conservative or reflect the fact that the 
rehabilitation in the control group was effective and FESCE-
based intervention added no further benefit. On the same note, 
if rehabilitation delivered to the control group was close to the 
tolerable maximum, the intervention could have overstretched 
physiological reserves of some patients and offset potential 

Table 2  Secondary outcomes

Secondary outcomes Intervention Standard of care P value

PFIT-s at ICU discharge 9.4
(8.0 to 10.8) n=37

9.6
(8.3 to 10.9) n=42

0.77*

Rectus muscle diameter at ICU discharge (mean difference from baseline (cm)) −11 (−17 to −6) % n=57 −13 (−19 to −7) % n=54 0.64

MRC score at ICU discharge 42.4
(39.2 to 45.6)

39.4
(36.5 to 42.4)

0.13

Nitrogen balance (gN/m2/day) −2.7
(−3.1 to −2.4)
n=852 days of 75 patients

−3.4
(−3.7 to −3.0)
n (days)=759 days of 75 patients

0.004

Ventilator-free days at D28 9.3
(6.5 to 12.0) n=75

11.0
(8.2 to 13.8) n=75

0.33

Number of untoward dialysis interruptions/days of rehabilitation during dialysis 0/17 0/41 N/A

Numbers of ICP elevations/days with ICP measured 1.5 (0.2 to 2.9)
(n=4 patients, 15 ICP days)

0 (n=3 patients, 15 ICP days) 0.018*

Unless stated otherwise, data presented as means (95% CIs) and p values are from t-test.
PFIT-s ranging from 0 to 12 points with lower scores meaning higher degree of disability, see also online supplemental figure 1 and online supplemental table 4 in online 
supplemental appendix 1.
MRC score ranging from 0 to 60 points with higher scores meaning increasing muscle power.
Bold values indicate statistical significance.
*Wilcoxon test.
ICP, intracranial pressure; ICU, intensive care unit; MRC, Medical Research Council; PFIT-s, Four-item Physical Fitness in Intensive Care Test.
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benefits. In a study on healthy volunteers26 we have found that 
unloaded FESCE as used in our study can lead to aerobic lactate 
production and increase whole-body energy to 138%±29% and 
leg blood flow to 160%±30% of baseline, analogously to 25 W 
aerobic exercise. In contrast, physical therapy in the critically ill 
is known to cause very little increase in energy expenditure only 
analogous to 6 W exercise.46 Second, as shown in figure 2, in the 
intervention group there were more patients who were either 
agitated or unresponsive, possibly due to unequal distribution of 
patients with traumatic brain injury at baseline (37% vs 25%, in 
the intervention vs control groups, respectively p=0.11). There-
fore, the increment in the duration of rehabilitation in the inter-
ventional group mostly consisted of passive elements of therapy 
(for details see online supplemental appendix 1) while out of bed 
mobilisation therapy duration was very similar to control group.

With regards of safety of the intervention, during 1000 FESCE 
sessions delivered to ICU patients, we have not observed any 
immediate impairment of cardiorespiratory function nor dialysis 
malfunction. We aimed to specifically look at safety of FESCE in 
patients with neurological injuries and allowed the intervention 
in patients with ICP monitoring in place, provided that ICP was 
normal and stable and the patient had not been receiving any 
second-tier therapy. The subgroup of enrolled patients with ICP 
monitoring in place was small (n=7) and we have not observed 
any immediate effect of FESCE or control rehabilitation on ICP. 
In line, none of the sessions had to be interrupted due to ICP 
elevation. Nonetheless, delayed ICP elevations only occurred in 
the intervention group and after 6 months mental health as well 
as emotional and social functions were worse in interventional 
compared with control group. The use of sedatives and anti-
psychotics was not different between groups offering no expla-
nation for these phenomena. It should be stressed that mental 
function after 6 months was measured as a part of SF-36 score, 
but on its own it was not a prespecified secondary outcome and 
the difference may have occurred by chance. Nonetheless, we 
cannot rule out that the use of FESCE itself was responsible for 
the impairment of central nervous system function, as progres-
sive mobility programme alone was safe in neuro patients47 
or led to improvement of mental functions in unselected ICU 
patients.39 In the most recent multicentre RCT of Berney et al34 
randomised 162 patients with sepsis or systemic inflammation 
to receive 60 min/day of FESCE in addition to usual rehabilita-
tion or usual rehabilitation alone (median of 15 min of active 
exercise per day). FESCE was delivered for a median of 53 min 
per day for a median of 5 days in the intervention group, there 
was no difference in muscle strength at hospital discharge and 
no major adverse events. Patients with neurological injuries at 
baseline had been excluded from Berney et al’s study. Although 
underpowered, this trial also did not demonstrate any influence 
of the intervention on the incidence of cognitive impairment at 
6 months, in keeping with our results.

Indeed, although our study adds important knowledge to the 
field, its limitations are to be recognised, too. Due to higher-
than-expected mortality (in fact, 41% of enrolled patients 
were not alive after 6 months) the study only achieved 81.5% 
of the prespecified sample size evaluated for primary outcome 
(88 out of 108) and it is therefore underpowered. In addition, 
our sample size was based on surrogate physical function in the 
control group of 16 patients in the study of Kayambu.35 Based 
on data in our study (PCS=51.7±28.8 in the control group), 
133 patients would be needed to demonstrate 15 points differ-
ence in PCS at α=0.8 and p<0.05. The generalisability of our 
results is limited by single-centre design and relatively very 
intensive exercise in the control group. It is possible and likely 

that in different clinical environment with less intense rehabilita-
tion in the control group, results would be different. In addition, 
we have not controlled nor monitored patient recovery pathway 
between ICU discharge and collection of the primary outcome.

Future outcome-based trials should certainly put emphasis 
on delivering progressive mobility element in the interventional 
group, enrol more homogeneous and specific patients’ popula-
tions.37 So far, the safety of FESCE-based is uncertain in patients 
with neurological injuries and needs investigation. There is also 
a burning need for studies focused on understanding physiology 
of FES-triggered contraction of healthy muscle versus muscle 
altered by underlying critical illness.3 In the meantime, proto-
colised physical therapy delivered by appropriately trained 
personnel remains the only evidence-based intervention to 
shorten duration of ICU stay and possibly improve long-term 
outcomes.

In conclusion, early FESCE-based protocolised physiotherapy 
delivered to mechanically ventilated patients does not change 
PCS score 6 months after discharge, nor duration of mechan-
ical ventilation or any parameters of skeletal muscle mass, power 
and function at ICU discharge, apart from borderline improve-
ment of nitrogen balance. These results must be interpreted in 
the context of very high dose and early start of rehabilitation in 
the control group, and relatively good physical functional status 
achieved by patients in the control group compared with other 
studies of long-stay ICU patients.
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CLINICAL RELEVANCY STATEMENT

Treatment of hyperglycemia in critical illness with continuous intra-

venous insulin infusion is not without risks. In this paper, we show

how the delivery of an early-mobility program, which includes electri-

cal exercise, influences insulin sensitivity and glucose control in enter-

ally fed general intensive care unit (ICU) patients. In addition, this study

is the first one to show the natural evolution of critical illness–induced

insulin resistance measured by serial hyperinsulinemic clamps in the

ICU and 6months afterward.

INTRODUCTION

Insulin resistance is a well-recognized phenomenon in critically ill

patients.1 Acute injury, inflammation, and catecholamine surge induce

a catabolic response in which glycogen, fat, and protein are degraded

to provide substrates for immune cells and wound healing. Bed rest,

insulin-counteracting drugs such as steroids or vasopressors, and car-

bohydrate delivery in the form of artificial nutrition may further exac-

erbate hyperglycemia, which has repeatedly been associated with

intensive care unit (ICU) morbidity and mortality, even after adjust-

ments to disease severity.2 Insulin infusion is effective in controlling

blood glucose levels, but it may increase the risk of hypoglycemia

and mortality.3,4 In healthy individuals, skeletal muscle is the main

organ responsible for insulin-mediated glucose disposal, and even a

short bout of aerobic exercise increases glucose uptake up to fivefold.5

Animal studies suggest that mechano-signaling pathways exist in

skeletal muscle and can circumvent molecular pathways affected by

insulin resistance.6 Technology advances, such as functional electri-

cal stimulation–assisted cycle ergometry (FESCE), allow the delivery

of active exercise even before the patient regains consciousness,7,8

and it is tempting to hypothesize that compared with standard of

care, an FESCE-based early-mobility program delivered to mechan-

ically ventilated patients would reduce intravenous insulin require-

ments and increase insulin-mediated glucose disposal during hyper-

insulinemic clamp. In this study, we also aimed to investigate the

dynamics of insulin sensitivity during and 6 months after critical

illness.

MATERIALS AND METHODS

We performed an a priori planned secondary analysis of an outcome-

based, prospective, randomized controlled trial, Electric Mobility

and Insulin Resistance (EMIR; ClinicalTrials.gov, NCT02864745), per-

formed in the ICU of FNKV University Hospital in Prague, Czech

Republic. Clinical outcomes are reported elsewhere [Waldauf, Thorax

2021], the full protocol of the study has been published,7 and details

can also be found in the supplementarymaterials.

In brief, mechanically ventilated adult critically ill patientswhowere

expected to need a protracted (>7 days) ICU stay were recruited

within 72 h of hospital admission. Exclusion criteria include bedrid-

den, premorbid status and contraindications to FESCE, such as limb

fractures or pacemaker. The standard care arm underwent standard

rehabilitation delivered by personnel not involved in the study. In

the intervention arm, the rehabilitation followed a protocol accord-

ing to the patient’s condition and degree of cooperation, with a ded-

icated full-time study physiotherapist aiming to deliver 90 min of

exercise a day, 7 days a week. Before patients regained the abil-

ity to engage in the mobilization program, they received two ses-

sions of FESCE (RT-300; Restorative Therapies, Baltimore, MD, USA)

per day. This technique involved synchronized transcutaneous elec-

trical stimulations of the gluteal, hamstrings, and quadriceps mus-

cles on both legs to produce a coordinated pattern of movements

on a supine bicycle. The exercise intervention continued until day 28

or ICU discharge, whichever occurred earlier. All other aspects of

intensive care (including nutrition and insulin treatment) were driven

by the clinical team, who were not directly involved in the study

but for whom patients’ treatment allocations were not anonymized.

Nutrition was delivered preferably enterally (Supportan; Fresenius

Kabi, Bad Homburg, Germany) as tolerated, with the aim to deliver

1.5 g/kg/day protein. Insulin was started when blood glucose level

reached 11 mM, and the sliding-scale insulin infusion rate was then

adjusted by a bedside nurse, aiming for blood glucose levels of 6–8mM.

Arterial blood glucose levels were checked in all patients at 5 AM, 5

PM, and 10 PM by blood gas analyzer ABL-90 (Radiometer, Denmark)

and ad hoc as per bedside nurse discretion by a portable glucometer.

Patients’ vital functions; all laboratory data, including blood glucose

levels; and data from syringe drivers are automatically and in real time

uploaded into the clinical information system (MetaVision, version 5;

IMD-Soft, Israel). We have extracted data on blood glucose levels, glu-

cose intake, and insulin dose from these (see the supplementary mate-

rials and Figure S1 for details).

Metabolic studies

In a subgroup of patientswhose representatives specifically consented

to it (see the flowchart in Figure S1), we performed hyperglycemic

euglycemic clamps at fasting state in the morning of day 1 (base-

line). These studies were repeated in the ICU after 7 days (n = 23)

and in outpatients after 180 days (range, 171–186; n = 11). At base-

line, an arterial blood sample for measurement of fasting blood glu-

cose, insulin, and C-peptide was taken. After a 10-min priming infu-

sion at a double rate, insulin infusion (1 unit/ml in 0.9% saline) was

held constant at 120 mIU/min/m2 body surface area (BSA) for 110

consecutive minutes. Blood glucose concentration was determined

every 5 min using StatStrip (Nova Biomedical, Waltham, MA, USA).

Blood glucose concentration was clamped at ∼5 mmol/L by an infu-

sion of variable amounts of glucose. The total body glucose disposal

rate (M-value) was calculated from the final 30 min (steady state) and

was used as a measure of insulin sensitivity after adjustment to body

weight. Insulin clamps at follow-up visit (day 180)were performed sim-

ilarly, with two intravenous cannulas—one in an antecubital vein for

the infusion of insulin and glucose and the other retrograde into a
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TABLE 1 Baseline study participant characteristics

Subgroups

Intervention group (n= 75) Control group (n= 75)

Characteristics

All patients

(n= 150)

Consent to

clamp: Yes

(n= 16)

Consent to

clamp: No

(n= 59)

Consent to

clamp: Yes

(n= 15)

Consent to

clamp: No

(n= 60) P-value

Age, mean± SD 61.1± 15.2 58± 17 61± 15 64± 11 62± 16 .665

Sex,M/F 110/40 12/4 41/18 10/5 47/13 .663

BMI 30.1± 7.4 29.2± 5.9 29.4± 6.5 33.3± 8.1 29.9± 8.1 .428

APACHE II, mean±SD 22± 6 22± 5 23± 5 27± 7 22± 7 .045

Days from ICU admission to

recruitment

1.2 (IQR,

0.8–1.8)

1.4± 0.8 1.3± 0.8 1.4± 0.7 1.2± 0.8 .895

History of diabetes, n (%) 34 (23%) 6 (38%) 11 (19%) 7 (47%) 10 (17%) .003

Preadmission Charlson comorbidity

score, median (IQR)

3 (IQR, 1–4) 2.9± 2.0 2.7± 2.4 3.7± 2.8 3.2± 2.2 .405

RAPA score, median (IQR) 1 (IQR, 1–4) 2.7± 2.3 2.4± 2.0 2.9± 2.3 3.0± 2.4 .556

Diagnostic category,

trauma/surgical/medical

51/19/81 8/3/5 20/3/36 4/1/10 19/12/29 .087

Sepsis or septic shock on admission,

yes/no (%yes)

37 (25%) 5(31%) 14 (24%) 5(33%) 13 (22%) .742

Abbreviations: APACHE, Acute Physiology andChronicHealth Evaluation; BMI, bodymass index; F, female; ICU, intensive care unit; IQR, interquartile range;

M, male; RAPA, Rapid Assessment of Physical Activity.

dorsal hand vein for sampling of arterialized blood using the heated-

hand technique.

Calculations and statistics

Differences between groupswere tested using two-sidedWelch t-test,

Wilcoxon rank sum test, or linear mixed-effect model with random

intercept, when appropriate, and P < .05 is considered significant. All

calculations were performed in R and RMarkdown, version 4.0.3.

RESULTS

We enrolled 150 patients into the trial, out of which 31 consented to

undergo serial insulin clamps. Baseline characteristics of enrolled par-

ticipants are given in Table 1.

Patients in intervention and control arms stayed for a median of 12

(interquartile range [IQR], 7–21) and 12 (IQR, 6–19) days in the ICU (P

= .76 log-rank test) and received 137 ± 65 and 137 ± 88 g/day carbo-

hydrate (P = .97) and 80 ± 24 vs 50 ± 10 min (P < 0.001) of rehabil-

itation a day. In total, there were 5659 and 5595 blood glucose mea-

surements in the study. There was no difference in blood glucose con-

trol between groups, as average blood glucose was 8.61± 2.82 vs 8.73

± 2.67 (P = .75) in the intervention vs control groups, respectively.

There were 11 (0.2%) and 16 (0.3%) blood glucose values below 3.4

mM in intervention and control arms, respectively (odds ratio of hypo-

glycemia, 0.7; 95% CI, 0.3–1.6; P = .44). To control blood glucose, 31

(41%) and 35 (47%) patients needed insulin infusion during their ICU

stay (odds ratio of needing insulin in intervention arm, 0.81; 95% CI,

0.4–1.6; P = .62). The median daily dose in those who received insulin

was 53 IU (IQR, 25–95) and 62 IU (26–96) of insulin in intervention

and control arms, respectively (P = .44). Mean daily dose of insulin

in all patients, adjusted to actual body weight, was 0.25 ± 0.35 and

0.27 ± 27 IU/kg/day (n = 150, P = .67), whereas mean adjusted dose

in patients receiving insulin was 0.60 ± 0.28 vs 0.58 ± 0.34 IU/kg/day

(n= 66, P= .83).

Insulin-mediated glucose disposal

Asshown inFigure1, insulin-mediatedglucosedisposal duringhyperin-

sulinemic clamp improved significantly in both groups throughout the

course of critical illness and continued during the recovery phase to

reach levels measured for healthy individuals.9 To rule out the effect

of nonsurvivors, we have also separately analyzed only patients who

survived ICU until day 7, and the improvement of insulin sensitivity

remained significant (see Table S2). There were no significant differ-

ences between intervention and control groups.

DISCUSSION

There are two main findings of this study. First, the early-mobility pro-

gram does not significantly improve glucose control or reduce insulin

requirements in critically ill patients. This is despite the exercise inter-

vention having been successfully delivered, and there is a clear and

significant separation of rehabilitation duration between treatment

 1
9
4
1
2
4
4
4
, 2

0
2
2
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://asp
en

jo
u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/jp

en
.2

2
1
3
 b

y
 C

h
arles U

n
iv

ersity
 T

.G
., W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

6
/0

2
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



252 WALDAUF ET AL

F IGURE 1 (A)Mean insulin doses (IU/day) in all patients, with 95%CIs. (B) Density diagram of blood glucose levels. (C) Prediction of difference

in study groups ofM-value corrected over different time visits. M-value is expressed as glucose infusion rate space corrected (mg/kg/min). The

gray-shaded zone represents the published9 reference range in an age-matched population

groups, which mostly consists of 29min/day of FESCE. There are a few

possible explanationsof these results,which contrastwith thoseofpre-

vious studies showing that early mobilization could decrease insulin

requirements in ICUpatients.10 In healthy volunteers, unloadedFESCE

increased energy expenditure similarly to 25-W aerobic exercise,9 but

across-leg metabolic characteristics differ from volitional cycling; it is

possible that FESCEalso fails to activatemechano-signaling pathways6

that would activate glucose uptake. In addition, it seems from glucose

profiles that the glucose control strategy was quite liberal compared

with that in Patel’s study.10 This, together with the fact that 23% of

our cohort had preexisting diabetes, resulted in relatively high insulin

requirements in those who needed insulin treatment (∼0.6 IU/kg/day),

whereas in Patel’s study,10 the effect of early mobilization was seen in

only the low-insulin subgroup (<0.15 IU/kg/day). In fact, wehave seen a

trend to a reduction of the proportion of patients needing insulin infu-

sion in the intervention arm, and it should be emphasized thatwith 150

participants and 47% insulin treatment in the control group, our study

was only powered to detect (at α = .05 and β = .2) a reduction of the

need for insulin treatment below 24% (or <18 of 75 patients) in the

intervention group. Last, the dose of exercise in the control group (50

min/day) in our study was unusually and unexpectedly high, possibly

owing to the Hawthorne effect.11

The second important and innovative finding of this study is that

we—to our knowledge, for the very first time—assessed by serial eug-

lycemic hyperinsulinemic clamps the evolution of insulin sensitivity in

acute and protracted critical illness and then 6 months afterward. We

have seen clear and significant increases of insulin-mediated insulin

sensitivity over time that were not significantly affected by treatment-

group allocation. After 6 months, high-dose insulin–mediated glucose

disposal was significantly better than during protracted critical ill-

ness and reached values comparable to those in patients with type 2

diabetes12 or cancer13 but remained lower than those in lean, healthy

individuals of similar age in some14 but not all9 studies. It should be

emphasized that although most baseline characteristics of patients

consenting to insulin clampswere not different from those in the over-

all study population, there seems to be a selection bias toward patients

with diabetes.

In conclusion, insulin sensitivity increases during the transition from

the acute to the chronic phase of critical illness and further improves

after 6 months. An early-mobility program based on functional electri-

cal stimulation–assisted supine cycle ergometry does not significantly

influence glucose control or insulin requirements in mechanically ven-

tilated, critically ill patients.
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