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CSc., Department of Surface and Plasma Science

Abstract: The presented thesis deals with the study of the sheath layer which is
formed during the interaction of a low-temperature plasma with a solid object
using computer modelling techniques. The theoretical part of the thesis sum-
marizes knowledge about the physics of the sheath layer of electropositive and
electronegative plasma and presents the theory of measuring plasma parameters
using a Langmuir probe, including a discussion of the effect of collisions of charged
particles with neutrals on the probe measurements. Further, theoretical descrip-
tions of the plasma are presented which are the basis of the computer models
created in the framework of the thesis: a particle model based on the Particle-in-
Cell method and a fluid model of the drift-diffusion approximation of the plasma.
The developed particle model works in 3D space, uses the null-collision Monte
Carlo method to account for the effects of collisions of charged particles with
neutrals and implements the Intel R⃝ Math Kernel Library functions to solve the
Poisson’s equation. The fluid model is implemented using FeniCS software. At
first, the developed models are used for the calculation of the sheath layer and the
current-voltage characteristics of free-standing Langmuir probes of several types:
a 1D model of an infinitely large planar probe, a 2D model of a cylindrical probe
and a 3D model of a planar probe of finite dimensions. Calculations are success-
fully compared with theory and mutual differences when using different modelling
techniques are discussed. Attention is also paid to the interaction of the sheath
layers of two Langmuir probes at a close distance to each other. It is observed that
the interaction can occur over a long distance thanks to the long-range electric
field in the pre-sheath. With the selected pressure regime, a decreasing profile
of the number density of charged particles is observed towards the surface of the
probe according to the solution of the diffusion equation – if the probe comes close
to another one that measures the current-voltage characteristic, its presence leads
to a decrease in the measured current and an underestimation of the evaluated
plasma density. If a probe with a constant bias voltage is placed near the probe
measuring the current-voltage characteristic, the measured electron temperature
is also distorted; if the interacting probe is held at a floating potential, then the
influence of its presence on the measured value of the electron temperature is not
observed.
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Introduction
The beginnings of the field of plasma physics date back to the 1920s when electric
discharges under reduced pressure were intensively investigated. During these
experiments, an ionized gas was observed and it was first labeled as ’plasma’ in
1928 by Irving Langmuir. Since then, the field of plasma physics has undergone
very dynamic development both in theory and experiment, and plasma has found
application in many fields of human activity. To this day, plasma is the subject
of intensive scientific research worldwide.

One of the most important topics in the research field of the low-temperature
plasma physics is the study of plasma-solid interaction. At this interface, the
so-called sheath layer with a drop of electric potential is created and its existence
significantly influences properties of charged particles (e. g. energy distribution,
fluxes) which pass from the bulk plasma to the surface of the solid object. There-
fore, investigation of plasma sheath properties at different physical conditions
is of great importance for all applications where the plasma-solid interaction
takes place, e. g. plasma processing techniques of material surface treatment
in industry applications (e. g. surface etching of materials, plasma immersion
ion implantation, ionized plasma vapour deposition IPVD, thin film deposition
PECVD, etc.), diagnostic methods based on the Langmuir probe measurement,
procedures of plasma medicine, design of plasma facing components in fusion de-
vices, etc. Due to the wide variety of the low-temperature plasma applications,
parameters of the respective plasma discharges also vary in wide ranges (e. g.
mean energies of the charged particles, their number densities, multiple parti-
cle species in chemically active plasmas, different kinds of scattering processes,
energy dependent cross sections, non-equilibrium energy distribution functions,
etc.). Therefore, there exist rather various theories of plasma sheath, which cover
only certain specific ranges of the plasma parameters, than one universal theory.
Since low-temperature plasma is an environment where phenomena over multiple
length and time scales are coupled and its description can thus become quite
complex, computer models can well support the research in this field.

Application of computer modelling techniques in plasma physics research has
been investigated since the very early days when computers became available for
scientific research. Numerous computational studies of plasma discharges were
performed in the second half of the 20th century to propose and verify suitable
numerical schemes. These efforts were summarized in the works Hockney and
Eastwood [1988] and Birdsall and Langdon [1991] which are widely used references
for particle modelling methods until today. Particle models are able to provide
detailed microscopic information about the modelled plasma discharge; on the
other hand, they suffer from large demands on the computational resources. In
case of low Knudsen number (Kn = λ/L ≪ 1), when the mean free path λ
of the charged particles is much lower than the length scale of the problem L,
fluid modelling techniques can be advantageously applied as their demands on
the computational resources are much lower compared to the particle modelling
techniques [Alves, 2007]. Sometimes, both modelling techniques are coupled into
the so-called hybrid models which combine their advantages – solution speed of
the fluid models and sufficiently precise microscopic description of the particle
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models. Such a technique was presented e. g. in the works Bogaerts et al. [1999],
Kushner [2009], Hruby and Hrach [2010].

Since particle models provide the most accurate results, considerable attention
has been paid to their development, optimization and parallelization. Over the
years, models based on the so-called Particle-in-Cell method (PIC) became the
most widespread – it was implemented in different types of codes that developed
it in different directions. The paper Vahedi and Surendra [1995], for example,
describes an implementation that includes the effects of collisions of charged par-
ticles with neutrals modelled using the nul-collision method and Monte Carlo
techniques. The article Verboncoeur et al. [1995] describes a modular implemen-
tation of 2D PIC code using object-oriented programming techniques that also
takes into account relativistic effects. In the work of Markidis and Lapenta [2011],
we find an implicit implementation of the PIC algorithm which solves the equa-
tions of motion of particles and Maxwell’s equations implicitly in time and thus
eliminates the effects of finite grid instability, which in common implementations
of the PIC algorithm leads to an unphysical increase in the energy of the modelled
ensemble of particles.

Particle models based on the PIC method have evolved over the years to the
extent that they can be incorporated into the research in various areas of plasma
physics. An example is the work of Matyash et al. [2007] which describes the use of
this method for the study of capacitive radiofrequency discharges in oxygen, dusty
plasmas and negative ion sources for heating of fusion plasmas. Another example
is the works of Keller et al. [2000] and Miyagawa et al. [2007] which use the
2D PIC method to study one of the plasma processing techniques called plasma
immersion ion implantation – in them the influence of various input parameters
of the discharge is investigated (e.g. the type of working gas, its pressure, the
length of the electric pulse, geometric parameters, effect of secondary emission)
on the size of the sheath, the spatial distribution of number densities of electrons,
ions and neutrals, the ion flux and its spatial distribution. The application of
the PIC modelling methodology for the study of the IPVD process is presented
in the works of Lu and Kushner [2001] and Ibehej et al. [2017] which on the one
hand use it for precise determination of plasma behavior near the substrate, but
also include processes on its surface – the deposition itself including resputtering
and movement of physisorbed particles on the surface.

Many studies based on the PIC method were carried out using 1D or 2D
models in cases where the geometric symmetry of the studied problem could be
exploited. Thanks to the advanced computing technology and especially thanks
to the progress in methods of massive parallelization of codes, it has recently
become possible to study problems in 3D space as well. An example is the work
of Fubiani and Boeuf [2013] where the PIC method is used for modelling of a high
power fusion-type negative ion source – the model is used to calculate the plasma
characteristics of the ion source and special emphasis is put on the production of
negative ions on the plasma grid surface. The work Teunissen and Ebert [2016]
presents 3D PIC/MCC simulations of discharge inception around a sharp anode
in nitrogen/oxygen mixtures – the study was carried out in a needle-to-plane
geometry using different nitrogen/oxygen mixtures at atmospheric pressure.

Since the very beginnings of plasma physics, considerable attention has been
devoted to the theoretical description of the sheath layer that forms at the in-
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terface between plasma and solid matter. Over the years, a number of works
have been created that presented analytical models of the sheath layer under
various conditions (e.g. pressure, chemical composition of the plasma, geometric
arrangement, collisions with neutral particles, etc.). A very good summary of
this effort in terms of electropositive plasma is the work of Riemann [1991] which
was supplemented by a theory for multicomponent plasma in the work Riemann
[1995].

It turned out that, thanks to its chemical composition, an electronegative
plasma (i.e. a plasma that contains negative ions in addition to positive ions and
electrons) can be important for practical use. Much attention was paid to its
theoretical study and various models were proposed for its description, e.g. the
work of Braithwaite and Allen [1988] or the work of Franklin and Snell [1992].
Some of these models were also compared with one dimensional PIC simulations
[Lichtenberg et al., 1994] and it was thus shown how the main characteristics of
electronegative plasma are varied with pressure or power of plasma discharge and
how these parameters change in a large range of electronegativity [Oudini et al.,
2013].

Despite the fact that many works dealt with the description of the plasma
sheath, only very little attention (to the best of our knowledge) was devoted to
the study of the mutual interaction of several plasma sheaths. A unique example
is the work of Barnat and Hebner [2007] in which the coupling between the
cylindrical probe sheath and the powered planar electrode is described for several
mutual positions. In most cases (e.g. double probe method), experimenters try to
avoid mutual interaction of plasma sheaths; however, this is not possible in some
cases (e.g. at low pressures when plasma sheaths are very large or when dust
particles with their own sheath are present nearby the sheath of a probe) and it
would therefore be useful to know how much the fluxes of charged particles on a
solid object change if its sheath is disturbed by another sheath. Such information
can be used for the correct interpretation of measurements using a Langmuir
probe whose sheath interacts with another one. The application of computer
models developed in the framework of the presented work is aimed at this not
very explored area.

The presented work is organized in such a way that in the chapter 1 the theory
of the formation of low temperature plasma sheath and the theory of Langmuir
probe diagnostics are presented; for both topics, the effects of collisions between
charged and neutral particles are also discussed. The chapter 2 summarizes the
theory of computer models that were used in the work and the chapter 3 describes
their concrete implementation in detail. The chapter 4 presents physical results
for selected probe diagnostics topics obtained by the developed computer models.
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1. Plasma theory

1.1 Theory of plasma sheath
Plasma sheath is a layer which is created between plasma and a solid surface
(figure 1.1). It is a region where the assumption of plasma quasi-neutrality is
violated. Characteristic measure of plasma sheath is Debye length λD [Lieberman
and Lichtenberg, 2005]

λD =
(
ϵ0kBTe

e2ne

) 1
2

,

where Te, ne is temperature and number density of electrons, respectively. Plasma
sheath parameters (e.g. size, voltage drop) depend on plasma properties (e.g.
composition, energy of particle species). On the contrary, presence of plasma
sheath strongly affects characteristics of particles impinging on the surface of a
solid object (e.g. energy distribution, flux). Study of plasma sheath is therefore
of great importance for all applications where plasma-solid interaction comes
into a play (e.g. plasma-assisted techniques of material surface treatment, fusion
applications).

Figure 1.1: Scheme of plasma sheath and presheath created in front of a metal
solid wall (n – number density of charged species, ϕ – electric potential). The
figure is taken from the book Lieberman and Lichtenberg [2005].

1.1.1 Collisionless sheath
The first insight into the problem of plasma sheath creation can be provided by
one dimensional collisionless model which is presented e.g. in the book Lieberman
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and Lichtenberg [2005] and which we present in this chapter. The model is based
on several assumptions:

• Maxwellian electrons with temperature Te,

• cold ion approximation (Ti = 0),

• ne(0) = ni(0) = ns at the plasma-sheath boundary.

The situation on the interface between plasma and a solid object is schemat-
ically shown in the figure 1.1 in terms of electric potential ϕ and number density
of electrons ne and positive ions ni (us – velocity of ions at the sheath boundary,
n0 – number density of charged particles in the bulk plasma).

The following equations can be used for the sheath description. Energy con-
servation for positive ions (Es – kinetic energy of ions at the sheath boundary):

1
2miu

2
i = 1

2miu
2
s − eϕ = Es − eϕ.

Continuity of ion flux (ionization is not assumed in the sheath):

niui = nsus.

Combination of the given equations leads to an expression for ion number density
ni:

ni = ns

(
1 − 2eϕ

miu2
s

)− 1
2

. (1.1.1)

Boltzmann relation can be considered for number density of electrons:

ne = ns exp
(

eϕ
kBTe

)
. (1.1.2)

The expressions for electron and ion number density can be inserted into the
Poisson equation for electric potential ϕ:

d2ϕ

dx2 = e
ϵ0

(ne − ni) = ens

ϵ0

⎡⎣exp
(

eϕ
kBTe

)
−
(

1 − eϕ
Es

)− 1
2
⎤⎦ . (1.1.3)

The equations (1.1.1) – (1.1.3) form closed system of non-linear equations for
description of the simple collisionless plasma sheath. The equations can be further
reformulated and expressions for characteristic properties of plasma sheath can
be derived.

Let us multiply the equation (1.1.3) by dϕ
dx

and let us perform integration with
respect to x coordinate on an interval [0, ϕ]. Let us also assume that ϕ(0) =
dϕ
dx

(0) = 0 (figure 1.1). Then,

ϕ∫
0

dϕ
dx

d
dx

(
dϕ
dx

)
dx = ens

ϵ0

ϕ∫
0

⎡⎣exp
(

eϕ
kBTe

)
−
(

1 − eϕ
Es

)− 1
2
⎤⎦ dϕ

dxdx,

1
2

(
dϕ
dx

)2

= ens

ϵ0

⎡⎣kBTe exp
(

eϕ
kBTe

)
− kBTe + 2Es

(
1 − eϕ

Es

) 1
2

− 2Es

⎤⎦ .
(1.1.4)
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The solution of equation (1.1.4) exists only when its right-hand side is greater
than zero. After making Taylor’s series expansion up to the second order, the
following condition is obtained:

1
2
ϕ2

kBTe

− 1
4
ϕ2

Es

≥ 0 ⇒ Es ≥ kBTe

2 .

Finally, the so-called Bohm criterion is derived:

us ≥ uB =
(
kBTe

mi

) 1
2

. (1.1.5)

In order for a sheath in front of a solid object existed, kinetic energy of the
ions entering the sheath region must be high enough so they are able to overcome
thermal energy of the electrons and build positive space charge area in the sheath.

Positive ions are accelerated to the Bohm velocity uB in a region which pre-
ceeds the sheath and which is called presheath. It is a region where plasma is
quasineutral and where non-zero electric field is present. On the border between
sheath and presheath, subsonic ion flux (ui < uB) changes into the supersonic
one (ui > uB).

Size of the potential drop ϕp in the presheath can be derived from the following
equality where the already derived expression for Bohm velocity uB is inserted
into the expression for the kinetic energy of the ions:

1
2miu

2
B = eϕp,

ϕp = kBTe

2e . (1.1.6)

If the Boltzmann relation for number density of electrons is considered also
in presheath, an expression for plasma density ns at the edge of the sheath can
be derived

ns = n0 exp
(

− eϕp

kBTe

)
≈ 0.61n0. (1.1.7)

Expression for the floating potential ϕw of the metal wall (with respect to the
sheath-presheath edge) which is in contact with plasma can be derived from the
equality of electron Γe and ion Γi fluxes on the wall

Γi = nsuB = Γe = ns exp
(

eϕw

kBTe

)
1
4vth, (1.1.8)

ns

(
kBTe

mi

) 1
2

= ns exp
(

eϕw

kBTe

)
1
4

(
8kBTe

πme

) 1
2

,

ϕw = kBTe

e ln
(2πme

mi

) 1
2
, (1.1.9)

where vth is the mean speed of the thermal motion of the electrons.
Energy Ei of the positive ions which land on the metal wall is given by the

sum of energy which they gain in the presheath and energy gained in the sheath

Ei = e (ϕp + |ϕw|) = kBTe

[
1
2 + ln

(
mi

2πme

) 1
2
]
.
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Size s of the sheath can be evaluated in such a way that expression (1.1.4) is
numerically integrated to obtain the expression for distribution of potential ϕ(x)
in the sheath and consequently the equation

ϕ(s) = ϕw,

is solved for the size s of the sheath.

1.1.2 Sheaths in electronegative plasma
Bohm sheath criterion in the form (1.1.5) was derived under several specific as-
sumptions. The criterion can be extended to the more general conditions, e.
g. for electronegative plasma which includes also negatively charged ions. Such
general criterion was derived in the article Riemann [1991] in the form

1
mi

∞∫
0

1
v2f(v)dv ≤ 1

e
d (ne + n−)

dϕ

⏐⏐⏐⏐
ϕ=0

, (1.1.10)

where n− denotes the number density of negatively charged ions and f(v) is
the velocity distribution funtion of positive ions. The generalized criterion can
be useful for better understanding of sheath creation in electronegative plasma
as it is presented in the works Boyd and Thompson [1959] and Lieberman and
Lichtenberg [2005].

If negative ions are present in the plasma, the Poisson equation for the electric
potential ϕ can be written in the from

∆ϕ = − e
ϵ0

(ni − ne − n−) ,

where ni, ne and n− are positive ion, electron and negative ion number densities.
Plasma quasi-neutrality is assumed at the sheath edge: nsi = nse +ns−. Further,
the ratio of negative ions to electrons is defined: αs = ns−/nse. As a result, the
quasi-neutrality condition can be written as

ns+ = (1 + αs)nse.

If the distributions of electrons and negative ions are Maxwellian, the temperature
ratio γ = Te/T− can be introduced. Considering the Boltzmann relation for
electrons and negative ions, we obtain

ne + n− = nse exp
(

eϕ
kBTe

)
+ αsnse exp

(
γ

eϕ
kBTe

)
.

Using the already derived quasi-neutrality condition at the sheath edge, we get

ne + n− = ns+

1 + αs

[
exp

(
eϕ

kBTe

)
+ αs exp

(
γ

eϕ
kBTe

)]
.

This expression can be inserted into the generalized Bohm criterion (1.1.10).
Once the derivative on the right-hand side is performed, we get

kBTe

mi

∞∫
0

1
v2f(v)dv ≤ ns+

(1 + αsγ

1 + αs

)
.
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Taking into account the assumption of cold ions, the following condition for the
velocity of positive ion at the sheath edge is obtained

us ≥ uB =
[
kBTe (1 + αs)
mi (1 + αsγ)

] 1
2

. (1.1.11)

It can be seen that for high γ and not too small αs, the presence of negative ions
can significantly reduce the required velocity of positive ions at the sheath edge.
In this situation, the positive ion temperature cannot be neglected and integration
over the ion velocity distribution in the generalized expression (1.1.10) should be
performed.

Further, the negative potential in the sheath and presheath causes that the
negative ions are repelled from this region. As a result, electronegativity at the
sheath edge αs is lower with respect to the electronegativity in the plasma bulk
αb and the role of electrons in the sheath region gets more important. Using the
Boltzmann relation for electrons and negative ions, their number density at the
sheath edge can be related to that one in the plasma bulk

nse = nbe exp
(

− eϕp

kbTe

)
,

ns− = nb− exp
(

−γ eϕp

kbTe

)
,

where ϕp is the potential drop in the presheath (figure 1.1). Using the definition
of electronegativity α and the relations for number density above, the following
expression is obtained

αs = αb exp
[

eϕp(1 − γ)
kBTe

]
. (1.1.12)

In the chapter 1.1.1, expresssion for the potential drop in the presheath (1.1.6)
was derived using the consideration of energy conservation of the positive ions in
the presheath

1
2miu

2
B = eϕp.

If the same consideration is done taking into account the generalized Bohm cri-
terion (1.1.11), the following expression for the potential drop in the presheath
in case of electronegative plasma is obtained

ϕp = kBTe

e
1 + αs

2(1 + γαs)
.

It can be seen that it gives the same value of ϕp for αs = 0 as the expression
(1.1.6). If the expression for ϕp is inserted into the equation (1.1.12), the relation
between αb and αs is obtained

αb = αs exp
[

(1 + αs)(γ − 1)
2(1 + γαs)

]
.

Typically, αb is known and αs can be evaluated from the last derived equation
(e. g. numerically). Dependence of electronegativity at the sheath edge αs and
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potential drop in the presheath ϕp on the electronegativity of the plasma bulk αb

according to the derived expressions is shown in the figure 1.2 for several values
of the γ = Te/T− parameter [Boyd and Thompson, 1959].

It can be seen that in case of γ > 30, which is typical condition for electroneg-
ative discharges, the influence of electrons on plasma sheath is more significant
than that one of negative ions. Even for values of αb close to 1 and slightly
above, quite low electronegativity at the sheath edge αs is observed and potential
drop in the presheath is close to the value expected for electropositive plasma
ϕp = kBTe/2e.

It should be mentioned that the expressions derived above provide descrip-
tion of the electronegative sheaths only in the first approximation – e. g. the
assumption of the Boltzmann relation for negative ions does not have to be valid;
there might be also additional effects if plasma is collisional.

(a) Electronegativity at the sheath edge αs (b) Potential drop ϕp in presheath

Figure 1.2: Parameters of the electronegative plasma sheaths with respect to the
electronegativity in the plasma bulk αb for different values of the γ = Te/T−
parameter. The figures are based on the work Boyd and Thompson [1959].

1.1.3 Plasma sheath in the presence of collisions
Collisionless plasma sheath is a quite special case for which the exact position
of the sheath edge can be relatively easily defined – it is at the point where the
quasi-neutral presheath solution becomes singular and positive ions reach the
Bohm velocity. In the case of weakly collisional plasma, the situation at the
sheath-presheath interface is more complicated and it is not possible to define its
exact position. The problem was adressed in numerous works, e. g. Riemann
[1991], Riemann [1997], Godyak and Sternberg [1990]. It turned out that two
characteristic scales which are well separated can be defined for weakly collisional
plasma: presheath scale length which is given by ion-neutral mean free path λi

and sheath scale length given by a few Debye lengths λD with λi ≫ λD. In
addition, there is an intermediate length scale λ1/5

i λ
4/5
D which characterizes the

transition region between the presheath and the sheath. The ion drift speed is
lower than the Bohm speed in this region.

In the case of highly collisional plasmas with λi ≤ λD, the ion transport is well
described by mobility coefficient (ui ≈ µiE), the intermediate transition region is
not present anymore and breakdown of the plasma quasi-neutrality happens at a
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sheath width
s ≈ K

(
λ2

Dl
) 1

3 ≈
(
πK3

) 1
2 λDs,

where λD is the Debye length of a bulk plasma, λDs is Debye length at the sheath
edge, l is the characteristic length of the plasma discharge. K is coefficient of
order unity and it was derived e. g. in the work Franklin and Snell [2000]:
K ≈ 2.2 + 0.125 log10 (νiz/νmi), where νiz is the ionization frequency and νmi is
the ion-neutral momentum transfer frequency. The ion speed at the sheath edge
is below the Bohm speed which is described by expression [Franklin, 2002]

us ≈ uB

(
C
λi

λDs

) 1
2

, (1.1.13)

where C is a coefficient of order unity, or by expression [Godyak and Sternberg,
1990]

us ≈ uB

(1 + πλDs/2λi)
1
2
. (1.1.14)

Since the situation at the interface between bulk plasma and sheath region is
quite complicated as many parameters come into play, the exact position of the
sheath edge is a matter of definition. However, it is mainly the ion flux entering
the sheath which determines the sheath properties and which has some physical
meaning. It can be utilized in the definition of boundary conditions for solution
of diffusion problems

−D(∇n)s = nsuB.

For highly collisional plasma, it turns out that the diffusion solutions are quite
insensitive to the edge ion drift speed and simple boundary condition

n ≈ 0

at the perfectly absorbing wall can be used instead.

1.2 Theory of Langmuir probe measurement
To understand plasma behavior in different operating conditions, measurements
of its local basic parameters is crucial. Since the very beginning of plasma physics
in the 1920’s, one of the most common diagnostic tools, which is still used also
nowadays, is the Langmuir probe. It is a small metallic electrode with a well
defined geometry (planar, cylindrical or spherical) which is immersed into the
plasma. Voltage bias Up with respect to the local space plasma potential is then
applied on the probe and the drained current Ip for different probe potentials
Up is monitored. Finally, plasma parameters are calculated from this current-
voltage (IV) characteristics. In this way, the following plasma parameters can
be obtained: plasma density (ne, ni), electron temperature (Te), electron en-
ergy distribution function, plasma potential and ion flux. The simplicity of the
Langmuir probe construction and of the associated electronics is its very valuable
benefit. The other one is that apart of the other diagnostic methods (such as
e. g. spectroscopy) it can provide measurement of the local parameters since
the disturbance caused by the probe can be well localized under a wide range of
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conditions. To achieve this, the probe has to be, however, very carefully designed.
On the other hand, the interpretation of the measured IV characteristics is often
difficult. The probe can be used in a wide range of working conditions (pressures
10−5 - 103 Torr, plasma density 1015 - 1024m−3) and there is no universal probe
theory which would describe IV characteristics over such a wide parametric range.
When the probe is immersed into the plasma, sheath region where large electric
fields can be present appears and its relative dimension with respect to the char-
acteristic size of the probe affects the trajectory of the charged particles which
approach the probe. Further, collisions of charged particles with the neutrals can
also significantly affect their motion in the sheath region if the mean free paths
are comparable to the Debye length. Since the nature of the charged particles
motion is different under these various conditions, there are multiple probe theo-
ries which can be applied in the specific working regimes of the Langmuir probe
as can be seen in the schematic figure 1.3 (taken from the article Bose et al.
[2017]). In the following sections, the collisionless theories are described in detail
and effects of collisions on the probe measurements are discussed as well.

Figure 1.3: Different operating regimes of a Langmuir probe and probe theories
[Bose et al., 2017]. S denotes the dimension of the sheath, λen and λin represent
the electron-neutral and ion-neutral mean free path, rp is the probe radius, λD

is the Debye length and CF represents the correction factor to the normalized
Laframboise current.

1.2.1 Collisionless probe theories
The simplest probe theory was formulated in the article by Mott-Smith and
Langmuir [Mott-Smith and Langmuir, 1926] and it is valid for unmagnetized
collisionless Maxwellian plasmas. The theory is based on several assumptions:

• The bulk plasma is considered as infinite, stationary, homogeneous, Max-
wellian and quasineutral.

• The presence of the probe causes perturbation which is confined to a space
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charge sheath with a well defined boundary. Outside the sheath, the electric
potential is assumed uniform.

• The sheath size is small compared to the characteristic probe dimension
and edge effects can be thus neglected.

• The collisional mean free path λ of the charged particles is larger than the
Debye length λD and than the characteristic probe dimension.

• The charged particles which reach the probe surface are always collected.
The particles do not chemically react with the probe material; the probe
does not emit.

• The electric potential in the vicinity of the probe preserves the symmetry
(planar, cylindrical or spherical) and it is a monotonic function between the
sheath edge and the probe surface.

• The electric currents of the different charged particle species on the probe
are independent of each other and can be calculated separately.

In the following paragraphs, the expressions which relate the plasma proper-
ties with current voltage curves are presented for planar, cylindrical and spherical
probes. Derivation of the expression for electric current on the planar probe is
quite straightforward; for the cylindrical and the spherical probes, more compli-
cated expressions are obtained since the orbital motions of the charged particles
have to be also taken into account. For a detailed derivation of these expressions,
we refer to the article Mott-Smith and Langmuir [1926]. For the spherical and the
cylindrical probes, the expressions in the thin sheath (rs − rp ≪ rp) and the thick
sheath (rs ≫ rp) limits are presented (rp is the probe radius, rs is the sheath ra-
dius). The expressions in the thick sheath limit correspond to the so-called OML
theory (orbital motion limited theory). At this place, we define the expressions
for thermal velocity vth, saturation current density j0 and dimensionless probe
potential η which we use in the next paragraphs:

vth =
(

8kBT

πm

) 1
2

,

j0 = 1
4n0vthq,

η = qUp

kBT
,

where Up is the bias of the probe with respect to the plasma potential.

Planar probe

At first, electric current of the charged particles which are repelled from the
planar probe (qUp > 0) is investigated. Providing that the normal to the surface
of the probe is oriented in the positive direction of the x axis of the Cartesian
coordinate system, the following expression for the current density j on the probe
can be written

I = qApln

∞∫
−∞

∞∫
−∞

−vmin∫
−∞

f(r,v, t)vxdvxdvydvz,
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where Apln is the area of the planar probe, f(r,v, t) is the velocity distribution
function of the charged particles and vmin = (2qUp/me)1/2 – the particles must
have sufficiently high velocity in the negative direction of the x axis so they are
able to overcome braking electrostatic field of the probe and they can reach its
surface. If the isotropic Maxwellian distribution of the particles is assumed, we
can write

I = qApln

(
m

2πkBT

) 3
2

∞∫
−∞

∞∫
−∞

−vmin∫
−∞

exp
(

− mv2

2kBT

)
vxdvxdvydvz. (1.2.1)

Performing integration in the considered limits, we obtain

I (η) = 1
4n0vthqApln exp (−η) = j0Apln exp (−η) . (1.2.2)

If the potential of the probe is attractive for the charged particles (qUp < 0),
the integration of the vx component in the equation (1.2.1) can be performed over
the entire interval (−∞; ∞) and we get

I (η) = j0Apln. (1.2.3)
In the view of the derived expressions, the knowledge of the dependance of

the electron current Ie on the bias of the probe Up (I-V characteristics) allows
us to write the following expressions for the electron temperature Te and number
density ne

Te = e
kB

(
d

dUp

ln |Ie|
)−1

, (1.2.4)

ne = (Ie)Up=0

eApln

(2πme

kBTe

) 1
2
. (1.2.5)

Cylindrical probe

• Repelled particles (qUp > 0 ⇒ η > 0):
I (η) = j0Acyl exp (−η) ,

where Acyl is the area of the cylindrical probe.

• Attracted particles (qUp < 0 ⇒ η < 0):

I (η) = j0Acyl

⎧⎨⎩rs

rp

erf
⎡⎣( r2

p

r2
s − r2

p

|η|
) 1

2
⎤⎦+ exp (|η|) erfc

⎡⎣( r2
s

r2
s − r2

p

|η|
) 1

2
⎤⎦⎫⎬⎭ ,

where erfc (x) = 1 − erf (x).

– Thin sheath limit (rs − rp ≪ rp):
I (η) = j0Acyl.

– Thick sheath limit (rs ≫ rp):

I (η) = j0Acyl

[
2√
π
η

1
2 + exp (|η|) erfc

(
|η|

1
2
)]
,

or even more simplified expression can be considered

I (η) = j0Acyl
2√
π

(1 + |η|)
1
2 .
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Spherical probe

• Repelled particles (qUp > 0 ⇒ η > 0):

I (η) = j0Asph exp (−η) ,

where Asph is the area of the spherical probe.

• Attracted particles (qUp < 0 ⇒ η < 0):

I (η) = j0Asph
r2

s

r2
p

[
1 −

(
1 −

r2
p

r2
s

)
exp

(
−

r2
p

r2
s − r2

p

|η|
)]

.

– Thin sheath limit (rs − rp ≪ rp):

I (η) = j0Asph.

– Thick sheath limit (rs ≫ rp):

I (η) = j0Asph (1 + |η|) . (1.2.6)

The presented expressions suggest that the probe current is independent of the
probe voltage in the thin sheath limit. The sheath has, however, finite thickness
which varies depending on the probe voltage. If we assume that all particles
which enter the sheath hit the probe, the probe current can be written as

I = j0As, (1.2.7)

where As is the area of the sheath. If we neglect density of the charged particles
which are repelled by the probe in the sheath, then its thickness can be calculated
from the equations describing the space charge limited emmision from one plane
(= the sheath edge in our case) to the other one (= the probe surface)

j = 4
9ϵ0

(2q
m

) 1
2 |Up − Us|

3
2

(rs − rp)2 . (1.2.8)

This is the well-known Child-Langmuir law for space-charge-limited current be-
tween two planes. If we consider Us = 0 and j = j0, then we can use the
Child-Langmuir law to obtain the value of sheath thickness (rs − rp) for a given
probe voltage Up. Consequently, the sheath thickness can be used for evaluation
of the sheath area and inserted into the equation (1.2.7). Child-Langmuir law
in the form of equation (1.2.8) is derived with the assumption that particles are
emitted from the plane with zero kinetic energy. If Maxwellian distribution of the
emitted particles is assumed, more precise expression for the space-charge-limited
current can be taken into account [Mott-Smith and Langmuir, 1926]

j = 4
9ϵ0

(2q
m

) 1
2 |Up − Us|

3
2

(rs − rp)2

⎡⎣1 + 2.66
(

kBT

qUp

) 1
2
⎤⎦ . (1.2.9)

Last two equations describe space charge limited emission in the planar geometry.
In the case of cylinders, it is more precise to use the expression [Langmuir and
Blodgett, 1923]

j = 4
9ϵ0

(2q
m

) 1
2 |Up − Us|

3
2

r2
pβ

2

⎡⎣1 + 2.66
(

kBT

qUp

) 1
2
⎤⎦ , (1.2.10)
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and in the case of spheres [Langmuir and Blodgett, 1924]

j = 4
9ϵ0

(2q
m

) 1
2 |Up − Us|

3
2

r2
pα

2

⎡⎣1 + 2.66
(

kBT

qUp

) 1
2
⎤⎦ , (1.2.11)

where β = γ − 0.4γ2 + ..., α = γ2 − 0.6γ3 + ... and γ = ln (rp/rs). These are the
so-called Langmuir-Blodgett space-charge equations.

Usually, measurement of plasma density n from electron saturation current is
not convenient. The electron saturation current is usually relatively high and can
be dangerous for the probe itself. Moreover, the current collected by the probe can
be so large that the significant number of electrons is drained from plasma and it
can thus significantly change plasma parameters in the surroundings of the probe.
Thus, it is much better to derive plasma density n from the ion saturation current.
However, interpretation of the ion current part of the IV characteristics can be
difficult since the assumptions of the simple OML theory which was described
in the previous paragraphs are not usually satisfied and different theories must
be applied. As it was derived in the section 1.1.1, the ions must have a drift
velocity when entering the sheath and their velocity distribution is not thus purely
Maxwellian at the sheath edge. Moreover, in order for the OML theory to be
valid, potential variation has to be gentle enough so that there does not exist an
”absorption radius” inside of which the electric field is so strong that no charged
particles can escape and are collected by the probe. This condition is not satisfied
in the case of ions when sheath edge has to be considered far away to include also
electric field which imparts the drift velocity to the ions. As a result, ion current is
not independent of the potential shape and one must solve the Poisson’s equation
for the potential distribution in the surroundings of the probe. For spherical
probes and cold ions (Ti = 0, meaning that there are no orbital motions and all of
the ions are approaching the probe radially), it was done by Allen et al. [1957] and
their result is recognized as ABR theory. Later, it was extended to the cylindrical
probes by Chen [1965b]. Theory which accounts for both sheath formation and
orbital motions was formulated by Bernstein and Rabinowitz [1959] who assumed
ions of a single energy Ei. The assumption of monoenergetic ions was abandoned
by Laframboise [1966] who extended the theory for Maxwellian ion distribution.
The theory is now known as BRL theory and it has been verified by numerous
experiments in different operating conditions. However, direct application of the
BRL theory on the experimental measurements is not easy task since it requires a
lot of complicated computations which has to be done numerically. To overcome
this complication, different kinds of approximate fits of the BRL theory which
can be directly applied to the experimental results were proposed and plasma
density can be thus evaluated from the measured ion current for a wide operating
range.

In the thin sheath limit approximation (rs − rp ≪ rp or λD ≪ rp), which can
be considered in sufficiently dense plasma, the ions enter the sheath with Bohm
velocity uB and plasma density n can be evaluated from the expression for the
ion saturation current given by

IB = nsqApuB = 0.61nqAp

(
kBTe

mi

) 1
2

, (1.2.12)
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where ns denotes plasma density at the sheath edge, Ap is the probe surface and
the factor 0.61 comes from the estimation of the potential drop in the presheath
region, see equation (1.1.7). The formula (1.2.12) for the Bohm current is often
used to determine plasma density from the ion saturation current due to its
simplicity. However, application of this approach in low density plasma (λD ≫ rp)
can lead to overestimation of plasma density. Therefore, it is recommended to
determine plasma density using the BRL theory if rp ≲ 35λD [Bose et al., 2017].

1.2.2 Effects of collisions on the probe measurement
The expressions in the previous chapter were derived based on the assumption
that the charged particles do not undergo collision events with the neutral ones.
Clearly, such an assumption is not satisfied in plasmas of medium and high pres-
sures. More precisely, collision events have to be considered if the mean free path
λ is not considerably larger than the probe radius rp or if the mean free path is
less than the characteristic length λD of the potential change in the sheath. In the
first case (λ ≲ rp), the probe is large enough that it blocks significant portion of
particles arriving at the sheath edge from the direction of the probe and velocity
distribution cannot be thus considered as undisturbed here. In the second case
(λ ≲ λD), the motion of the particles in the sheath is affected by collisions and it
differs from the free-fall motion which was assumed so far. As a result, potential
profile and hence probe current is modified.

If the operating pressure of plasma is higher, collisions of charged particles
with the neutrals start to appear in the sheath (λ ≲ λD) and their occurence can
affect the current collected by the probe in the two major ways in the OML limit
(= thick sheath limit, rp ≲ 3λD):

• Collisions with neutrals can lead to destruction of the orbital motion of the
charged particles. They lose their energy and they are not able to escape
from the attractive electrive field. Ultimately, they reach the probe and the
probe current is thus increased. It was shown that this effect is dominant
when approximately one collision occurs in the sheath region.

• Scattering of the charged particles on the neutrals in the sheath changes
direction of their movement and it leads to decrease of the current collected
by the probe. This reduction is dominant at higher pressures when multiple
collisions appear in the sheath.

One of the first theories that predicted decrease of the ion current due to elastic
scattering of ions on the neutral particles in the sheath was the Talbot and Chou
theory [Chou et al., 1966], [Talbot and Chou, 1969]. Their theory describes the
effect of collisions as a correction to the Laframboise ion current IL

Ii = γIL,

where the correction factor γ depends on the Knudsen number Kni = λi/rp and
anisothermicity parameter τ = Te/Ti. The first theory which accounted for both
the increase of the probe current due to destruction of the orbital motions and the
decrease due to elastic scattering was introduced by Zakrzewski and Kopiczynski

19



[1974]. The authors also speak about the correction of Laframboise current IL

but they introduce two correction factors

Ii = γ1γ2IL,

where γ1 stands for the increase of the probe current due to the destruction of the
orbital motions and γ2 for decrease of the probe current due to the scattering on
neutrals. The correction factors generally depend on the number of collisions in
the sheath and on the current predicted by ABR theory. The theory of Zakrzewski
and Kopiczynski is, however, limited to the cases when only few collisions appear
within the probe sheath. The extension of their theory was proposed by Tichy
et al. [1994] who suggest to use the scaling factor γ given by Talbot and Chou
theory for description of the probe current decrease due to scattering on neutrals
instaed of the factor γ2

Ii = γ1γIL.

The model is known as ”modified Talbot and Chou” theory and it is valid for any
Knudsen number within the OML regime.

In this place, we present some basic considerations of the collision effects on the
Langmuir probe measurements which are summarized in the work Chen [1965a].
The situation λ ≲ rp can be investigated in the case of a probe which is at plasma
potential since there are no electric fields to be taken into account. Let Ap be the
surface of a probe immersed in a plasma and let Aλ denote surface which is one
mean free path λ from the surface of the probe. In the case of isotropic velocity
distribution at the surface Aλ (λ ≫ rp), the random flux crossing the surface Aλ

inwards is
Γ = 1

4nλvth,

where nλ is plasma density at the surface Aλ and vth is the thermal velocity.
Current on the probe is then

I = 1
4nλvthqAp. (1.2.13)

In the case when λ ≲ rp, surfaces Aλ and Ap are close to each other and velocity
distribution at Aλ cannot be isotropic since there are no particles coming from
the probe. As a result, density nλ is only half as large and the probe current is

I = 1
2nλvthqAp.

Generally, the expression for the probe current can be written in the form

I = nλvthqAp

4K , (1.2.14)

where the constant K varies between 1/2 and 1, depending on the relative mag-
nitude of Aλ and Ap.

The probe current in presence of collisions can be also evaluated using drift-
diffusion approximation of the particle flux

Γ = sgn (q)µnE −D∇n,
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where µ and D are the coefficients of mobility and diffusion. Electric field can
be omitted since we assume that the probe is at space potential. Assuming the
conservation of the particle flux, we can write

∇ · Γ = −D∆n = 0.

Making an analogy with electrostatics (with Poisson’s equation, in particular),
the following expression for the probe current can be derived

I = qD(n0 − nλ)C
ϵ0
, (1.2.15)

where n0 is the undisturbed plasma density and C is the probe capacitance. We
now consider the case of spherical probe with radius rp and we further use the
capacitance of a sphere of radius rp + λ

C = 4πϵ0 (rp + λ) .

If the two equations (1.2.14) and (1.2.15) for the probe current are now
equated and solved for nλ, we can derive an expression for the probe current
in the form

I = 1
4n0vthqAp

(
3
4
rp

λ

rp

rp + λ
+K

)−1

, (1.2.16)

where the classical diffusion coefficient D = λvth/3 was assumed. In the case of
large λ/rp, K is equal to 1 and the expression (1.2.16) simplifies to the equation
(1.2.13) for the collisionless random current. In the opposite case (λ ≪ rp), the
equation (1.2.16) becomes

I = 1
4n0vthqAp

3
4
λ

rp

, (1.2.17)

which suggests that the probe current is reduced by approximately a factor λ/rp

due to the collisions.
Let us now consider the case of a cylindrical probe of radius rp which is at

very large potential Up and mean free path λ is much shorter than the Debye
length λD, so that the motion of particles is affected by collisions everywhere,
including the sheath. Let the probe potential Up be such that the particle of the
first species are collected (q1Up < 0) and let Up be so high that the particles of
the second species are Maxwellian. Under these assumptions, the flux of the first
particle species can be described by the drift-diffusion approximation

Γ1 = −sgn (q1)µn1∇U −D∇n1, (1.2.18)

and Poisson’s equation can be considered in a form

∆U = −q1

ϵ0

[
n1 − n0 exp

(−q2U

kBT2

)]
,

where n0 is density of undistrubed plasma. Since we assume very large potential
(large compared to kBT1), the diffusion term in the equation (1.2.18) can be
neglected. Thus, we get an expression for the number density n1

n1 = − Γ1

sgn (q1)µ∇U
,
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and for the total probe current I per unit length

I = −2πrΓ1.

Considering q2 = −q1, we can write Poisson’s equation in cylindrical coordinates

1
r

d
dr

(
r

dU
dr

)
= −q1

ϵ0

⎡⎣ I

2πrµ

(
dU
dr

)−1

− n0 exp
(
q1U

kBT2

)⎤⎦ .
In dimensionless form, the equation can be written as

1
ρ

d
dρ

(
ρ

dη
dρ

)
= − i

ρ

(
dη
dρ

)−1

− exp (−η) ,

where η = −q1U/kBT2, ρ = r/λD, λ2
D = ϵ0kBT2/n0q

2
1, i = I/I0 and I0 =

2πn0µkBT2/q1. Detailed analysis of the asymptotic behavior of the last equa-
tion shows that he problem in cylindrical geometry is not well-formulated one.
In reality, the current I is not constant with radius due to ionization and end
effects, which were neglected in the present analysis. However, the solution of the
equation can be still found if we impose a ”sheath edge” at some distance from
the probe r = s (or in dimensionless units ρ = σ) and assume that dη/dρ = 0
here. Further, we will assume that the probe potential is so highthat the density
of the second particle species can be neglected. In these condition, the following
relation between the probe potential and its current can be derived

η − ηs = i
1
2

⎧⎨⎩(σ2 − ρ2
) 1

2 − σ log
⎡⎣σ
ρ

+
(
σ2

ρ2 − 1
) 1

2
⎤⎦⎫⎬⎭ ,

which can be viewed as the high-pressure equivalent of the Langmuir-Blodgett
space-charge equation (1.2.10). If one turns back to the original units, it can be
seen that the dependences on kBT2 and n0 cancel out and, apart from the geomet-
ric factor, the current I is proportional to (U − Us)2 as opposed to (U − Us)3/2

dependence in the collisionless case (1.2.10). A similar procedure for finding
the relationship between the probe current and voltage can be applied also in
the case of the spherical probe; however, the final integration can be done only
numerically.
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2. Computer modelling in plasma
physics
Computer modelling techniques which are commonly used in plasma physics re-
search are based on the Boltzmann equation for the phase space distribution
function fi(x,v, t) of the particular particle species present in the plasma

∂fi

∂t
+ v · ∂fi

∂x
+ q

m
(E + v × B) · ∂fi

∂v
=
[
∂fi

∂t

]
coll

.

There are multiple approaches to the solution of this equation. The most gen-
eral are kinetic models whose subject is the direct solution of the Boltzmann
equation. However, such an approach leads to computationally very demanding
calculations since the distribution function is defined in 6D space (3 velocity + 3
spatial coordinates). Moreover, the collision term [∂fi/∂t]coll might be of compli-
cated forms what further makes the calculations difficult. Another approach to
the solution of the Boltzmann equation are the so-called particle models (Particle-
in-Cell method in particular). Their principle consists in sampling of the phase
space by numerical superparticles which cover only the most important parts of
the phase space and thus keep the kinetic information of the modelled particle
ensemble while reducing the computational demands. The advantage of the par-
ticle models over the kinetic ones is schematically illustrated in the figure 2.1.
If appropriate assumptions on the distribution function in the velocity space are
made, velocity moments of the Boltzmann equation can be calculated and the
so-called fluid models are derived. Sometimes, the advantages of the above men-
tioned modelling techniques are combined into the so-called hybrid models. In the
proposed thesis, we focus mainly on the Particle-in-Cell method in the chapter
2.1 and on the fluid models in the chapter 2.2.

Figure 2.1: Difference between (a) direct solution of the Boltzmann equation and
(b) Particle-In-Cell method which uses numerical superparticles for sampling of
the phase space. The figure is taken from the article Pukhov [2016].
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2.1 Particle-in-Cell (PIC) method

2.1.1 Motivation
Strongly and weakly coupled systems Definition of strongly and weakly
coupled systems [Colonna and D’Angola, 2016, Chapter 4.1]:

• Plasma parameter Λ
Λ = 4πnλ3

D.

• Number of charged particles in the Debye sphere ND

ND = 4π
3 nλ3

D = 4π
3 n

(
ϵ0kBT

q2n

) 3
2

= 4π
3

(ϵ0kBT )
3
2

q3n
1
2

,

N
2
3

D =
(4π

3

) 2
3 ϵ0kBT

q2n
1
3
.

• Plasma coupling parameter Γ is defined as a ratio of electrostatic potential
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.

• System of charged particles is strongly coupled if ND is small (Γ is large)
and weakly coupled if ND is large (Γ is small).

• Strongly coupled system - only few charged particles in Debye sphere;
potential energy dominates over the thermal energy. Evolution of this
system is driven by pairwise electrostatic interactions (collisions) between
the charged particles. Relative configuration of any two pairs of particles
strongly affects behavior of the system.

• Weakly coupled system - large number of particles in Debye sphere;
thermal energy dominates over the potential energy. Trajectory of a particle
is only little influenced by interactions with other particles since the field
in its position is given by superposition of many contributions.

Low temperature plasma and plasma in magnetic fusion devices are examples
of weakly coupled systems. The number of particles in the volume of interest
in the weakly coupled system is quite large and it is not possible from the com-
putational point of view to follow every single particle in the system. However,
the nature of the weakly coupled system allows to make the computational effort
manageable by using the finite-size particle approach.
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Finite-size particles In the weakly coupled systems, charged particles can
be viewed as they interact rather with smooth background field than through
pairwise interactions (collision). Therefore, there is no need to model mutual
interactions of all particles in the system. In that perspective, the so-called
computational particles or super-particles which represent clouds of real particles
can be used instead. Computational particles interact more weakly than point
particles (figure 2.2): at large distances they interact according to the Coulomb
force law; however, when the computational particles start to overlap the force
between them decreases since the overlapping area does not contribute to the
resultant force and becomes zero at zero distance between the computational
particles. Thus, the usage of finite-size particles allows to describe the system by
lower number of particles while keeping the nature of weakly coupled system.

Figure 2.2: Force law between finite-size particles in two dimensions for particles
of various size. A Gaussian-shaped charge density profile was used. Taken from
the article Dawson [1983].

2.1.2 Theory
Description of the Particle-in-Cell method in this paragraph is based on the
derivation which is given in the article Lapenta [2012]. At this place, the Particle-
in-Cell method is described in absence of collisions between the charged particles
and the neutrals. However, the PIC models are often supplemented by Monte
Carlo collision (MCC) modules which account for the collision effects. This is
described in more detail in the section 3.2.4.

Let us consider Vlasov equation for the phase space distribution function
f(x,v, t) of a given charged particle species,

∂f

∂t
+ v · ∂f

∂x
+ q

m
(E + v × B) · ∂f

∂v
= 0.
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In the view of the PIC method, the distribution function can be regarded as a
superposition of Ns moving elements of phase space, the so-called superparticles,
which represent clouds of Np physical particles,

f(x,v, t) =
Ns∑
i=1

fi(x,v, t),

fi(x,v, t) = NpSx (x − xi)Sv (v − vi) . (2.1.1)

Sx, Sv are the superparticle shape functions and (xi,vi) is time dependent vector
of superparticle position in the phase space.

There are several requirements which the shape functions should satisfy:

1. The support of the shape function is compact, so it describes only a small
portion of the phase space.

2. The integral over any direction ξ of the phase space is unitary:∫
Vξ

Sξ (ξ − ξi) dξ = 1.

3. The shape function is symmetric:

Sξ (ξ − ξi) = Sξ (ξi − ξ) .

The common choice of the shape function in the velocity space is Dirac’s delta
in each direction:

Sv = δ (vx − vxi) δ (vy − vyi) δ (vz − vzi) .

It means that the physical particles which are represented by the computational
superparticle have the same velocity and they remain close in the phase space
during the time evolution. Obviously, it is an approximation since the shape
function which initially correctly discretizes phase space would be distorted by
electric and magnetic fields during the time evolution in reality. This effect is
neglected by the PIC method.

The common choice for the spatial shape functions are the so-called b-splines
which are a series of consecutively higher order functions obtained from each
other by integration. The zero order b-spline function is the flat-top function
b0(ξ):

b0(ξ) = 1 for |ξ| < 1
2 ,

= 0 otherwise.

Higher order b-splines are obtained by integration:

bl(ξ) =
∫ ∞

−∞
b0(ξ − ξ′)bl−1ξ

′dξ′. (2.1.2)

The spatial shape function based on the b-splines which is used in the PIC method
is defined as:

Sx(x − xi) = 1
∆xi∆yi∆zi

bl

(
x− xi

∆xi

)
bl

(
y − yi

∆yi

)
bl

(
z − zi

∆zi

)
,
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where ∆xi, ∆yi, ∆zi are the sizes of the superparticles in each direction. The
most common choice for spatial shape function is the b-spline of the zero order
– it leads to the PIC method implementation which is referred as Cloud-in-Cell
(CIC).

To derive equations of motion for superparticles, we take first velocity mo-
ments of the Vlasov equation with distribution function in a form (2.1.1). Deriva-
tion is described in the article Lapenta [2012] in detail. As a result, we get the
following set of equations

dxi

dt = vi,

dvi

dt = q

m
(Ei + vi × Bi) ,

where i = 1, ..., Ns and Ei, Bi are the electric and magnetic field in the position
of the superparticle. The equations of motion for superparticles have the same
form as the equations of motion for the real physical particles.

As the cases which are investigated by the developed PIC code in the further
sections allow us to use electrostatic approximation of the Maxwell’s set of equa-
tions, the equations of motion for the superparticles are coupled only with the
equation for the electric field:

∇ · E = ρ

ϵ0
.

The equation for electric field is solved on the discrete calculation grid. The
situation is a lot simplified if the grid is chosen as uniform, Cartesian and with cell
sizes in each direction equal to particle sizes: ∆xg = ∆xi = ∆x, ∆yg = ∆yi = ∆y,
∆zg = ∆zi = ∆z.

We assume that the motion of the superparticles can be still affected by the
constant external magnetic field which then figures in the right-hand-side of the
velocity equation for the superparticle.

Solution of the equations of motion provide spatial distribution of the su-
perparticles and thus, spatial distribution of the charge density is obtained. On
the other hand, the calculated electric field is used in the equation of motion
for the superparticles. The following equations which relate quantities at grid
points (marked with index g) with those at the superparticle position (marked
with index i) can be derived [Lapenta, 2012]

ρg = qNp

∆x∆y∆z

Ns∑
i=1

W (xg − xi),

Ei =
∑

g

EgW (xg − xi),

where

W (xg − xi) = bl+1

(
xg − xi

∆x

)
bl+1

(
yg − yi

∆y

)
bl+1

(
zg − zi

∆z

)
.

For the most common CIC scheme of the PIC method (l = 0), it means linear
interpolation between the grid points and superparticle positions.
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2.1.3 Stability
The following conditions should be satisfied so that the PIC simulation provides
correct and reliable results.

Stability of the explicit time differencing The von Neumann stability anal-
ysis for the explicit time differencing leap-frog algorithm for the discretization of
the equations of motion [Lapenta, 2012] leads to the condition

ωp∆t < 2,

where ωp =
(

e2ne

ϵ0me

) 1
2 is plasma frequency. If the condition is not met, the numer-

ical solution becomes unstable and significant numerical heating of the particles
which discards the results appears. It is advised that the time step is even smaller:
ωp∆t = 0.1.

Finite grid instability The usage of discrete computational grid is charac-
teristic for the Particle-In-Cell method. The grid is used for calculation of the
electromagnetic fields, which values are then interpolated to the particle posi-
tions. The particles move in continuum space but their information is projected
onto the grid in order to obtain the source terms for the electromagnetic field
solution. Thus, part of the information carried by the particles is lost (in partic-
ular, it leads to grid aliasing of high-frequency modes, which are not resolved by
the grid, to low frequencies) and the so-called finite grid instability can appear.
The detailed mathematical analysis of this phenomena was given in the works
of Birdsall and Langdon [1991] and Hockney and Eastwood [1988]. In order to
avoid the finite grid instability, which also causes numerical heating of the moving
particles, the following condition has to be satisfied

∆x

λD

< C,

where λD is the Debye length, ∆x is the size of the computational grid cell and
C is a constant (C = π for CIC scheme).

Courant-Friedrichs-Lewy (CFL) condition In our work, we are dealing
only with electrostatic PIC simulations; thus, the classical CFL condition for
electromagnetic wave propagation (c∆t/∆x < 1) does not have to be satisfied.
However, in order that the motion of a charged particle was sufficiently precisely
described, we require that the particle does not move (in average) more than 1
cell of the computational mesh per a time step, which leads to a condition similar
to the CFL condition:

v∆t

∆x
< 1,

where v is a characteristic velocity of the particles (e. g. thermal velocity).

Number of superparticles per Debye sphere It was already stated that
PIC simulations are intended for weakly coupled systems where there is large
number of real physical particles per Debye sphere (ND ≫ 1). It is also required
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that there is sufficiently large number of computational superparticles per Debye
sphere [Hockney and Eastwood, 1988] (in order that there are a sufficiently large
number of computational superparticles in the range of velocities near the phase
velocity of unstable waves)

Ns

V

4
3πλ

3
D ≫ 1.

Collisions of superparticles If the number of superparticles per a compu-
tational grid cell is too low, the fluctuations of number of superparticles per a
grid cell during their movement can lead to large, random fluctuations of electric
potential leading to a large local electric field on which the superparticles are
scattered off. It was shown that this effect can lead to significant artificial heat-
ing (e. g. [Hockney and Eastwood, 1988], [Ueda et al., 1994], [Cormier-Michel
et al., 2008]) and that the following condition is necessary:

Ns

Nc

≫ 1,

where Nc is the total number of the computational grid cells.

Characteristic size and time of the simulation In addition, we impose
several other conditions regarding the characteristic size L of the computational
domain and the total time T of the simulation. It is required that the character-
istic length L is much larger than the Debye length λD

L ≫ λD.

Further, it is required that the length of the path which the charged particle moves
after the whole time interval T of the simulation is comparable to the character-
istic length L so that the initial solution (density and velocity distribution of the
particles) can evolve into the meaningful final solution

vT > L.

Finally, it is required that the length of the path of the charged particle movement
between two times (Tavg) when the current solution is taken as a statictical sample
for the subsequent averaging is larger then the computational cell size ∆x so that
the statistical samples are independent

vTavg > ∆x.

2.2 Fluid models
Under the assumption of the local thermodynamic equilibrium, plasma can be
considered as a continuum and can be described by spatial distribution of macro-
scopic quantities which are the velocity moments of the phase space distribution
function f(x,v, t) of a given charged particle species. Usually, first three velocity
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moments are used for plasma description – number density n, flux Γ and energy
ϵ:

n(t,x) =
∫
f(t,x,v)dv,

Γ (t,x) = nu(t,x) =
∫

vf(t,x,v)dv,

ϵ(t,x) = 1
2mn

∫
v2f(t,x,v)dv.

The zero velocity moment is obtained by pure integration over the velocity sub-
space of the phase space∫ ∂f

∂t
dv +

∫
v · ∂f

∂x
dv + q

m

∫
(E + v × B) · ∂f

∂v
dv =

∫ [
δf

δt

]
coll

dv,

which leads to the continuity equation

∂n

∂t
+ ∇ · (nu) = I −R, (2.2.1)

where the terms I and R describe production and loss of the charged particles due
to the collision processes. Similarly, the first velocity moment of the Boltzmann
equation can be obtained which leads to the equation of momentum conservation.
In a general form, it can be written as

∂(mnu)
∂t

+ ∇ · (mnu ⊗ u) = qn(E + u × B) − ∇ ·T + C, (2.2.2)

where T denotes the stress tensor, C express the momentum balance during the
collision processes and operator ⊗ stands for the tensor product of two vectors.
Stress tensor describes pressure which is a consequence of the thermal motion
of the charged particles. Generally, the components of the stress tensor can be
written as

Tkl = mnwkwl = mn
∫
wkwlf(v)dv,

where wk is a component of the chaotic thermal velocity w which is given by
expression

v = u + w = 1
n

∫
vf(t,x,v)dv + w.

Generally, the non-diagonal terms of the stress tensor are related to the viscosity
of the particular fluid. In case of plasma, it is very small and the non-diagonal
terms can be thus neglected. If take into account the assumption of an isotropic
and Maxwellian velocity distribution function and if we consider plasma as an
ideal gas (pressure p = nkBT ), the stress tensor T can be written in a very simple
form

T = pI ,

where I is the identity tensor.
The second velocity moment of the Boltzmann equation leads to the energy

conservation equation which can be written as

∂ϵ

∂t
+ ∇ · (ϵu) = qnu · E − ∇ · (T · u) − ∇ · q + S, (2.2.3)
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where ϵ is energy density, q is thermal flux and the term S expresses energy
change due to the collision proceses. We can write the following relations:

ϵ =
(
mnu2

2 + e

)
, e = mn

2 w2, q = mn

2 w2w,

where e is internal energy which is (as well as thermal flux q) given by the chaotic
thermal velocity w.

Equations (2.2.1), (2.2.2), (2.2.3) together with Maxwell equations for electro-
magnetic field create a system of equations for the unknown macroscopic variables
n,u, p, ϵ,E,B and constitute magneto-hydrodynamic model in a general form.
The system can be further simplified if additional assumptions are taken into
account.

Drift-diffusion approximation Taking into account several assumptions, the
equation of momentum conservation (2.2.2) can be simplified to the so-called
drift- diffusion approximation which is applicable to the modelling of low-tempe-
rature plasma in regimes when the collision processes are dominant. Under the as-
sumption of isotropic Maxwell velocity distribution, the momentum conservation
equation (without magnetic field) can be written in the form

nm

(
∂u

∂t
+ u · ∇u

)
= qnE − ∇p+ C. (2.2.4)

The pressure term can be written in the form p = nkBT and momentum change
caused by collision events in the form C = −nmνu, where ν is the collision
frequency. The term ∂u

∂t
is equal to zero in the steady state analysis. In the case

of low-temperature plasma, the drift velocity u of electrons is much smaller than
the thermal velocity. Moreover, the mass of electrons is very low. As a result, the
second term on the left side of the equation (2.2.4), which expresses the inertia,
can be neglected in the case of electrons. This leads to the equation for particle
flux Γ [m−2 · s−1]

Γ = nu = qnE − ∇(nkBT )
mν

= sgn (q)µnE −D∇n, (2.2.5)

where the last equality holds in the case of constant temperature distribution
in the space. The equation (2.2.5) suggests that the flux of charged particles
is caused by electric field (drift) and by gradient of number density (diffusion).
Coefficients µ and D are mobility and diffusion coefficients, respectively, and
describe transport of charged particles

µ = |q|
mν

, D = kBT

mν
. (2.2.6)

The equation (2.2.5) is derived using several assumptions which are valid only
for electrons. However, the drift-diffusion approximation is often used also for
description of positive ions. This approach is not universally applicable since
the mass of ions is much larger. Drift-diffusion approximation brings sufficiently
precise results in the cases when the collision frequency of ions is high enough (i.
e. bulk plasma). In such conditions, positive ions are not enough to get during
the time between subsequent collisions to the area where E and ∇p have different
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values. As a result, convective derivation on the left side of the equation (2.2.4)
can be neglected also in the case of positive ions. One has to be very careful if
the drift diffusion approximation is to be used for modelling of the sheath layer
since its characteristic size, Debye length, might be smaller than the mean free
path, depending on the plasma parameters.

Two-term approximation The two-term approximation is a more general
approach to the solution of the Boltzmann equation

∇r · (vf) + ∂

∂v
·
(
qE

m
f

)
=
(
∂f

∂t

)
c

, (2.2.7)

than the drift-diffusion approximation presented in the previous paragraph. It is
based on an assumption that the distribution function f is developed in spherical
harmonics, of which only the first two terms are considered

f(r,v) ≃ f 0(r, v) + v

v
· f1(r, v), (2.2.8)

where f 0 and f1 are the isotropic and the anisotropic component of the dis-
tribution function f and

∫∞
0 f 0(r, v)4πv2dv = n(r). Such an approach is valid

when the distribution function exhibits only small anisotropic deviations from
the isotropic solution in both configuration and velocity space. At this place, we
present derivation of the two-term approximation only briefly, more details can
be found e. g. in the article Alves [2007]. The model is commonly applied to an
axially infinite cylindrical discharge maintained by a constant axial electric field,
so that equations become one-dimensional in the radial position r. Total electric
field can be thus written as E(r) = Er(r)er +Ezez, where Ez is the axial applied
field and Er is the radial space-charge field.

Substituting the approximation (2.2.8) into the Boltzmann equation (2.2.7)
one gets development for each of its terms:

∇r · (vf) ≃ v

3∇r · f1 + v · ∇rf
0, (2.2.9)

∂

∂v
·
(
qE

m
f

)
≃ 1

3v2
∂

∂v

[
qv2

m

(
E · f1

)]
+ qE

m
· v

v

∂f 0

∂v
, (2.2.10)(

∂f

∂t

)
c

≃
(
∂f 0

∂t

)
elastic

+
(
∂f 0

∂t

)
inelastic

− νc
v

v
· f1, (2.2.11)

where (
∂f 0

∂t

)
elastic

≃ m

M

1
v2

∂

∂v

(
νcv

3f 0
)
, (2.2.12)(

∂f 0

∂t

)
inelastic

≃ (k − νx − νi) f 0. (2.2.13)

Here, M is the mass of neutral particles, νc is the momentum-transfer collision
frequency, νx is the collision frequency for total excitation, νi is the collision
frequency for ionization and k represents re-introduction of charged particles in
the distribution after inelastic collisions. After regrouping terms in equations
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(2.2.9) – (2.2.13), the Boltzmann equation decouples into scalar equation in f 0

and vector equation in f1

v

3∇r · f1 − 1
v2

∂

∂v

(
m

M
νcv

3f 0 − qv2

3mE · f1
)

= (k − νx − νi) , (2.2.14)

νcf
1 = −v∇rf

0 − q

m
E
∂f 0

∂v
. (2.2.15)

The left hand side of the first equation contains terms which represent divergence
of the particle flux in configuration and in velocity space, which accounts for the
fluxes driven by the total electric field and by collision effects. The particle flux
in configuration space in the second equation is given by a diffusion gradient term
and by an electric drift term.

The continuity equation is obtained by integrating equation (2.2.14) over the
velocity space taking into account condition∫ ∞

0
kf 04πv2dv = ne [⟨νx⟩ + 2⟨νi⟩] .

Performing the integration, one gets

∇r ·
∫ ∞

0
f1 4πv3

3 dv = ne⟨νi⟩, (2.2.16)

since the term of divergence in velocity space vanishes by using Green’s theorem.
The integral on the left-hand side represents the total particle flux and it can be
obtained using equation (2.2.15)

Γr ≡
∫ ∞

0
f 1

r

4πv3

3 dv = −∇r (Dn) + sgn(q)µnEr, (2.2.17)

Γz ≡
∫ ∞

0
f 1

z

4πv3

3 dv = sgn(q)µnEz,

where Γr and Γz are the radial and axial components of the total flux Γ and
quantities D and µ are diffusion coefficient and mobility, respectively, which are
given by

D(r)n(r) ≡
∫ ∞

0

v2

3νc(v)f
0 (r, v) 4πv2dv, (2.2.18)

µ(r)n(r) ≡
∫ ∞

0

|q|v
3mνc(v)

∂f 0 (r, v)
∂v

4πv2dv (2.2.19)

Finally, the continuity equation can be written based on the equations (2.2.16)
and (2.2.17) as

∇r · Γr = n⟨νi⟩. (2.2.20)

In summary, the description of the particle transport includes the continuity
equation (2.2.20) and the momentum transfer equation (2.2.17) whose solution is
density n and particle flux Γ .
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3. Developed plasma models
In this section, we present computer models which were applied to obtain physical
results that are presented in the section 4. The 2D PIC/MCC code was developed
within the diploma thesis Hromádka [2013], the other models were built within
the work on the proposed doctoral thesis.

3.1 Particle 2D PIC/MCC code
The 2D PIC/MCC code was developed and described in detail in the thesis
Hromádka [2013]. Thus, we bring only very brief description of the code at this
place.

The code is written in C programming language and takes advantage of the
procedural programming techniques. It is a 2d3v electrostatic model of argon
plasma; the code resolves motion of charged particles in the background created
by neutral argon atoms and in the presence of generally biased solids immersed
in the modelled plasma. The code works with electrons and positive argon ions
Ar+; optionally, negative oxygen ions O−, which are the most dominant negative
ion species in oxygen plasma, can be also included in the simulation and a very
simple model of Ar/O2 plasma can be thus created and investigated. The charged
particles can undergo several types of collision events with the neutrals: elastic
scattering, excitation, ionization or charge exchange event. Collision events are
resolved according to the modified null collision method which is described in
detail in the article Roucka and Hrach [2011]. The model works on a rectangu-
lar computational domain which is discretized by cartesian computational mesh.
Poisson equation is resolved by finite difference method using the central differ-
ence scheme. The resultant sparse linear system of equations is solved by means
of UMFPACK library [Davis, 2004] which takes advantage of the unsymmetric
multifrontal method. Zero Dirichlet boundary condition is prescribed on the outer
boundary of the computational domain which represents interface with the bulk
plasma. Generally, non-zero Dirichlet boundary conditions are prescribed on the
surfaces of the solids which are immersed into the computational domain. In
case of cylindrical probes, discretization scheme is adjusted in such a way that its
curved surface is approximated with second order of accuracy. This is achieved
by moving the particular nodes of the cartesian computational mesh onto the
curved boundary of the probe. The immersed solids are considered as perfectly
absorbing, no secondary emission is supposed. The computational domain is
surrounded by the source of the charged particles with Maxwellian velocity dis-
tribution. Cloud-in-Cell algorithm is employed for the collection of the charge
density and velocity Verlet algorithm is used for time integration of the equations
of motion of the charged particles. The code was used to investigate only the
steady state cases; this allowed us to use different time steps of the simulation
for different particle species to speed up the needed calculation time.

Characteristic parameters of the simulations

• Typical size of computational grid: (400 × 400) cells
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• Typical number of charged particles: 2.0 × 106 particles (≈ 12 particles per
cell)

• Typical dimensions of the computational domain: (4.0 × 4.0) × 10−2 m

• Typical number of simulated time steps: (2 − 5) × 105 time steps to reach
steady state, additional (1 − 2)×105 time steps to collect stochastic samples
and get averaged results

• Typical duration of 1 time step: 0.5 s

• Typical clock time of a simulation run: (42 − 97) hours

3.2 Particle 3D PIC/MCC code

3.2.1 Code characteristics
The 3D particle code which was developed within the framework of the proposed
thesis is based on the explicit Particle-In-Cell method (PIC) with Monte Carlo
implementation of the collision module (MCC). The code was developed in C++
programming language and takes advantage of object-oriented programming tech-
niques. The code has altogether 8 380 lines of the source code and it is supplied
with a package of Python scripts for post-postprocessing of the results.

The developed model is able to work with an arbitrary number of the charged
particle species. An arbitrary number of collision types can be defined for each
charged particle species and these might happen with an arbitrary number of
neutral species. Energy dependent collision cross sections are provided to the code
by means of text files. Collision events can happen not only in the computational
domain but also in the source of the charged particles so that the distribution
function of the particles which enter the computational domain can be in general
non-maxwellian. The code works with regular Cartesian computational mesh and
only probes of rectangular shapes can be modelled. The code is written in a very
modular way so that its modifications can be done easily, e. g. adding a new
probe type or import of electric field which was calculated outside the developed
PIC code (an extension towards the hybrid modelling techniques). The only part
of the code which is parallelized is the Poisson solver.

The code works with the following C++ classes:

• Initializer – it is a container where all input parameters of the code
are stored and with the help of which the values of input parameters are
delivered to the particular other objects. It has a method which allows
reading of the input parameters from a configuration file.

• Simulation – it is a class which is responsible for performing the main time
cycle of the calculation. It calls the methods of the particular objects in
the order which corresponds to the classical PIC/MCC scheme: 1. Update
the positions of the charged particles, 2. Solution of the Poisson equation,
3. Update the velocities of the charged particles, 4. Collisions with the
neutrals, 5. Post-processing methods.
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• Particle – it is the basic data structure of the code. It contains information
about the position and velocity of the particular charged particle. Physical
properties of the charged species (e.g. mass, charge) which are represented
in the simulation are stored as static variables of this class.

• Bulk – it represents a volume which is filled with the ensemble of the par-
ticles and where their movement takes place. It has two subclasses imple-
mented:

– Domain – it resolves the movement of the charged particles in the self-
consistent electrostatic field which is provided by Poisson solver. It
also has multiple methods which allow to obtain different kinds of
post-processing quantities.

– Source – it does not have the Poisson solver implemented. Charged
particles do not mutually interact, their movement can be affected only
by uniform external electric field.

• Mesh – it represents regular Cartesian mesh which is used by the Poisson
solver. It has methods for interpolation of the respective quantities between
the particle positions and the mesh nodes.

• Scatter – it implements methods which resolve collisions of the charged
particles with the neutral ones. The implementation of the collision module
is described in detail in the chapter 3.2.4.

• Probe – it represents metal probes which are immersed into the modelled
plasma. It implements methods which ensure that the particles which land
on the probe are excluded from the modelled ensemble of particles and
methods for calculation of the current density on the probe. It has multiple
subclasses which implement probes of different geometries:

– Wall – it is a model of an infinitely large planar probe which can
be assigned to an outer face of the computational domain with the
modelled plasma.

– Rectangular – it is a model of a 3D probe of a rectangular shape
which can be immersed inside the computational domain.

The 3D PIC/MCC code was developed in Microsoft Visual Studio Community
2015 (Version 14.0.25431.01 Update 3) and Intel R⃝ Compiler 17.0 Update 5 for
C++ Windows was used for its compilation. Calculations were performed on the
workstation which was equipped by 2 processors Intel R⃝ Xeon R⃝ E5-2687W v2 @
3.40 GHz, each having 8 cores/16 threads, and by 64 GB of RAM memory (4
modules of Kingston 9965516-138.A 16GB DDR3-1600MHz PC3-12800).

Characteristic parameters of the simulations

• Typical size of computational grid: (80 × 80 × 80) cells

• Typical number of charged particles: 2.0 × 106 of computational superpar-
ticles, each representing 1.0 × 103 of real physical particles
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• Typical dimensions of the computational domain: (1.0 × 1.0 × 1.0)×10−2 m

• Typical number of simulated time steps: (1 − 2) × 105 time steps to reach
steady state, additional (1 − 2)×105 time steps to collect stochastic samples
and get averaged results

• Typical duration of 1 time step: (1.5 − 2.0) s

• Typical clock time of a simulation run: (80 − 200) hours

Post-processing quantities It is the main benefit of the PIC method that
it provides detailed microscopic information about the modelled ensemble of the
particles – positions and velocities of all charged particles. The developed code
processes this information and derives macroscopic quantities which can be fur-
ther used for interpretation of the modelled case or for monitoring of the running
calculation. For the purpose of the post-processing, Python package of the scripts
based on the Matplotlib library [Hunter, 2007] was developed.

The first group of the post-processing quantities are global monitors which
are evaluated at each time step (index i denotes the particular particle species):

• Current number Ni of the particles of each species in the simulation

• Mean kinetic energy ϵi

ϵi = 1
2mi

∑Ni
j=1 v

2
j

Ni

• Drift velocity ui

ui =
∑Ni

j=1 vj

Ni

• Collision frequency νi

νi = Ncoll,i

dt ,

whereNcoll is the number of particles which underwent collision event during
the current time iteration and dt is the time step of the simulation

• Current density of each particle species on the probes which are present in
the simulation

ji = qi

A

Nl,i

dt ,

where Nl is the number of particles which landed on the probe and A is the
area of the probe surface

• Execution time of the particular parts of the code: solution of the Poisson
equation, time integration of the equations of motion for each particle,
resolution of the colisional events, post-processing.

The other group of the post-processing quantities are those which are evalu-
ated in the nodes of the computational mesh; linear interpolation (Cloud-in-Cell
scheme) is used to transfer the particular information from the position of a par-
ticle to the position of a mesh node (index k denotes the particular mesh node).
Due to the stochastic nature of the PIC/MCC model, quantities evaluated on
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the computational mesh show a considerable degree of fluctuations. To get suffi-
ciently smooth solution, defined number of the solution samples (∼ hundreds of
samples) is averaged after the steady state solution is reached.

• Electric potential ϕk – it is directly provided by the implemented Poisson
solver.

• Electric field intensity Ek

Ek,x = −ϕk+1 − ϕk−1

2dx ;

y and z component of the electric field are derived analogically.

• Number density ni,k

ni,k =
∑Ni

j=1 wj,k

dxdydz ,

where wj,k is the weighting factor of the linear interpolation belonging to a
particle j of a species i for the mesh node k (for the nodes which belong to
the mesh cell inside which the particle is present, wj,k reflects the distance
between the particle position and the mesh node in the sense of the CIC
scheme; wj,k = 0 for the other nodes; ∑Nn

k wj,k = 1, where Nn is the total
number of the mesh nodes).

• Velocity distribution ui,k

ui,k =
∑Ni

j=1 wj,kvj

ni,kdxdydz ,

where vj is the velocity of a particle.

• Particle flux Γi,k

Γi,k = ni,kui,k.

• Pressure tensor Ti,k

(Ti,k)rs = mini,k

∑Ni
j=1 wj,k(vj,r − ui,k,r)(vj,s − ui,k,s)

ni,kdxdydz ,

where indexes r, s denote the rs component of the pressure tensor.

• Internal energy (ϵint)i,k

(ϵint)i,k = 1
2

(Ti,k)11 + (Ti,k)22 + (Ti,k)33
ni,k

.

• Flow energy (ϵflw)i,k

(ϵflw)i,k = 1
2mi|ui,k|2.

• Total energy (ϵtot)i,k

(ϵtot)i,k = (ϵint)i,k + (ϵflw)i,k.
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• Diffusion coefficient Di,k – calculation of the diffusion coefficient is based
on the expression (2.2.18) which was derived within the framework of the
two-term approximation. The expression can be rewritten in the form

D = 1
3

⟨
v2

ngσ(v)v

⟩
, (3.2.1)

which can be further used for the calculation of the distribution of the
diffusion coefficient on the computational mesh

Di,k = 1
3ng

1
ni,kdxdydz

Ni∑
j=1

wj,k
vj

σ (vj)
.

• Mobility coefficient µi,k – calculation of the mobility coefficient is based on
the expression

µ = |q|
m ⟨ngσ(v)v⟩

, (3.2.2)

which leads to the expression

µi,k = |q|
mng

(∑Ni
j=1 wj,kvjσ (vj)
ni,kdxdydz

)−1

.

• Energy distribution function fi,k(ϵ) – histograms of the charged particles
according to their energy are recorded in every node of the computational
mesh; energy distribution function can be thus found at any point.

3.2.2 Poisson solver
Cartesian computational mesh with cubic cells was cosidered for solution of the
Poisson equation. Cloud-in-Cell algorithm, which was more discussed in the
chapter 2.1, was implemented for interpolation between the mesh nodes and su-
perparticle positions.

Fast Poisson solver routines of the Intel R⃝ Math Kernel Library (MKL) [Intel
Corporation, 2017] were implemented in the developed code for the solution of
the Poisson equation

∆ϕ = − ρ

ϵ0
.

The MKL library involves the standard software libraries for numerical linear
algebra as BLAS, BLACS, LAPACK, ScaLAPACK. For a solution of the Poisson
equation, it offers a group of highly parallelized routines which are based on
the discrete Fourier transform. It was shown in various works (e. g. [Gholami
et al., 2016], [Garcia-Risueno et al., 2014], [Ibeid et al., 2020]) that methods for
solving the Poisson equation on the uniform computational grid which are based
on the fast Fourier transform are methods of choice from the point of view of
the computational speed and accuracy compared to the other methods which
also scale well up to very large number of unknowns (such as fast multipole
method, multigrid methods or method of conjugate gradients). Fast Poisson
solver methods of the Intel R⃝ MKL library were used in the 3D PIC/MCC code
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because the routines of this library are highly optimized for Intel R⃝ processors and
show very good performance compared to the alternative implementations (e. g.
[Khokhriakov et al., 2018], [Gambron and Thorne, 2020], [Kalinkin et al., 2009]).

In the developed 3D PIC/MCC code, we took advantage of the 3D fast Poisson
solver of the MKL libtrary in a Cartesian coordinate system which works on
parallelepiped domain ax < x < bx, ay < y < by, az < z < bz. Two types
of boundary conditions (BC) which MKL library provides were implemented on
the outer boundaries of the computational domain in the 3D PIC/MCC code:
Dirichlet BC modelling a wall with a fixed value of the electric potential and
periodic BC modelling symmetrical cases. MKL library Poisson solver routines,
however, do not allow to precribe Dirichlet BC on the mesh nodes which are
inside the computational domain. This is needed for modelling of the metal solids
immersed into the plasma in the computational domain. The MKL routines allow
only charge density to be the source of the electric field in the computational
domain. Modelling of the internal potentials was thus adressed by a workaround
in the developed code. In the first step, electrostatic solver of the ANSYS R⃝

Maxwell Academic Student software [ANSYS, Inc., 2021] was used to calculate
electrostatic solution of the modelled immersed solid object with prescribed value
of the electric potential. Zero potential boundary condition was applied on the
outer boundaries of the computational domain. Apart from the distribution of the
electric potential, the ANSYS R⃝ Maxwell software provides also distribution of the
surface charge density σ on the surface of the modelled solid object. According to
the Gauss’s law, the entirety of the charge of the conductor resides on its surface
and can be expressed by the equation

σ = ϵ0E,

where E is the electric field measured at an infinitesimally small distance from the
surface of the conductor. Consequently, the obtained surface charge density was
exported for the purpose of the 3D PIC/MCC code and converted to the volume
charge density ρ by dividing by the size of a computational grid cell. Finally,
this pattern of the volume charge density was superposed to the plasma space
charge density in every time step of the simulation and thus, it was modelling the
immersed biased solid. It should be noted that it is the normal component of the
electric field E on the surface of the immersed solid which is prescribed in this
way (= Neumann boundary condition for the electric potential ϕ) rather than
the fixed value of the electric potential on the solid. During the run of the 3D
PIC/MCC code, plasma creates sheath in the surroundings of the immersed solid
and electric potential which is finally established on its surface might be different
from that one which was an input for the vacuum solution in the ANSYS R⃝

Maxwell software.
The methodology of modelling of the internal potentials immersed in the com-

putational domain is illustrated in the figure 3.1 where the calculation of electric
field of a rectangular probe (2 × 2 × 0.5) mm with 1 V of electric potential is
shown. Cubic computational domain of 1 × 10−2 m edge and zero potential
boundary condition on its outer surface was considered for the calculation. Sur-
face charge density calculated by the ANSYS R⃝ Maxwell software was converted
to the volume charge density using three different meshes and vacuum electric
field (without plasma) was evaluated by the 3D PIC/MCC code (figure 3.1b,
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3.1b). It can be seen that with finer mesh, the 3D PIC/MCC code solution ap-
proaches to the original solution obtained by the ANSYS R⃝ Maxwell software. In
the subsequent physical calculations presented in the chapters 4.2 and 4.4, the
mesh with cell size of dx = 1.25 × 10−4 m was used as a trade-off between the
solution accuracy and the needed solution time.

(a) Geometry of the rectangular probe and
computational domain.

(b) Surface charge density on the rectan-
gular probe with 1 V of electric potential
calculated by ANSYS R⃝ Maxwell software.

(c) Comparison of electric potential calcu-
lated by the 3D PIC/MCC code for differ-
ent mesh cell sizes with original solution
provided by ANSYS R⃝ Maxwell software.

(d) Distribution of electric potential in the
surroundings of the rectangular probe cal-
culated by the 3D PIC/MCC code. Mesh
cell size dx = 1.25 × 10−4 m, white arrows
represent unit vector of electric field E.

Figure 3.1: Methodology of the modelling of the internal potentials in the devel-
oped 3D PIC/MCC code.

3.2.3 Particle mover

Integration of the equations of motion for the charged particles is done by explicit
particle mover based on the velocity Verlet algorithm which is a good compromise
between the accuracy of the solution and computational costs. The algorithm for
transition from the time level tk to the level tk+1 for the i-th charged particle of
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the simulated ensemble can be written in the form

xk+1
i = xk

i + vk
i ∆t+ 1

2mi

F k
i ∆t

2,

F k+1
i = . . . ,

vk+1
i = vk

i + 1
2mi

(
F k

i + F k+1
i

)
∆t.

Global discretization error of the velocity Verlet algorithm is O(∆t2) in both
position and velocity. Stability condition of the second order explicit time differ-
encing schemes used in the PIC codes was discussed in the chapter 2.1.3. Velocity
Verlet algorithm can be used only in cases when the force does not depend on the
velocity of the particle since the velocity vk+1

i is calculated after the evaluation
of the force F k+1

i . In our case, the velocity Verlet algorithm can be used only
for electrostatic calculations. In the developed 3D PIC/MCC code, the Verlet
integration is implemented in the following way (Eext denotes electric field given
by external sources):

1. Calculate ak
i = qi

mi

(
Ek + Eext

)
.

2. Calculate v
k+1/2
i = vk

i + ak
i

∆t
2 .

3. Calculate xk+1
i = xk

i + v
k+1/2
i ∆t.

4. Solve Poisson equation to obtain electric field Ek+1.

5. Calculate ak+1
i = qi

mi

(
Ek+1 + Eext

)
.

6. Calculate vk+1
i = v

k+1/2
i + ak+1

i
∆t
2 .

3.2.4 Collision module
Scattering processes of charged particles with neutrals are resolved by null colli-
sion method [Skullerud, 1968], [Roucka and Hrach, 2011]. More details about the
particular implementation that was used in the developed code can be found in
appendix A.2. After certain time given by the collisions cross sections and particle
energy, charged particle collides with neutral particle and its velocity is appro-
priately modified. Movement of neutral particles is not resolved by the model.
In case of a collision, neutral particle is randomly generated from Maxwellian
velocity distribution.

At the beginning of the simulation each particle that undergoes collisions is
assigned time-to-scatter τi which is randomly generated from distribution

f(t) = νmax exp (−νmaxt) . (3.2.3)

The constant νmax is unique for each charged particle species and it is determined
as

νmax = ng max
vr

{|vr|
∑

i

σi(vr))}, (3.2.4)

where ng is the number density of the neutrals and the maximum is consid-
ered over all possible relative velocities between charged and neutral particles
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vr = v1 − v2 that might occur in the simulation. The sum is taken over all
collision types (described by cross sections σi) that the charged particle species
can undergo. During the simulation each charged particle is checked whether its
time-to-scatter was already reached. If yes, the concrete collision type is selected
and the velocity of the particle is appropriately modified. New time-to-scatter
for the charged particle is then generated.

The collision module is implemented in such a way that the collision effects
are applied continuously with respect to the time axis. It means that collision
events happen not only in the time steps of the main time cycle of the simulation
but it might happen also in between the two following time steps. This approach
is beneficial especially for modelling of medium and high pressure plasma where
time-to-scatter is quite low. Particle mover (which updates particle positions and
velocities) is applied only in the time steps of the main time cycle.

Cross sections of charged species collision types are energy dependent in gen-
eral. To be able to use the expression 3.2.3 for generation of time-to-scatter we
introduced new collision type called null collision which cross section is

σ0(v) = νmax

ng|v|
−
∑

i

σi(v).

Null collision does not have any effect on the charged particle velocity when
selected.

When it is decided that the charged particle undergoes a collision, modifica-
tion of its velocity then happens in the way described further (for more detailed
description of the following steps, we refer to appendix A.3). Let us denote 2
particles that collide: incident particle no. 1 with mass m1 and velocity v1 and
target particle no. 2 with mass m2 and velocity v2. It is assumed that the col-
lision is in general inelastic, no external forces act on the particles and there is
also zero mutual force between the particles. The particles are treated as mass
points. Particle velocities v′

1, v′
2 after the collision are to be determined.

1. step: Determine the following quantities

Relative velocity vr = v1 − v2, vr = |vr|
Reduced mass µr = m1m2

m1+m2
Velocity of centre-of-mass vCM = m1v1+m2v2

m1+m2
Relative kinetic energy ϵr = 1

2µrv
2
r

2. step: Determine cross section σi(vr) and collision frequency νi = ngvrσi(vr)
for each collision type applicable for given incident and target particle (including
null collision). Then, select one collision type with probability proportional to the
particular collision frequencies. If null collision is selected, step no. 7 is applied
directly.
3. step: Determine magnitude v′

r of the relative velocity vector v′
r = v′

1 − v′
2

after the collision.
• Elastic collision

v′
r = vr.

• Excitation

v′
r =

(
v2

r − 2ϵexc

µr

) 1
2

,
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where ϵexc is excitation energy.

• Ionization

v′
r =

(
v2

r − 2∆E
µr

) 1
2

,

∆E = ϵion + ϵej,

where ϵion is ionization energy and ϵej is energy taken by ejected electron.
Energy ϵej can be determined in several ways.

– Generally, energy ϵej has distribution described by differential ioniza-
tion cross section dσion

dϵ
(ϵr, ϵ). Energy ϵej can then be determined

rion =
∫ ϵej

0
dσion

dϵ
(ϵr, ϵ)dϵ

σion(ϵr)
,

where rion ∈ [0, 1] is random number generated from uniform dis-
tribution and σion(ϵr) is integral ionization cross section; σion(ϵr) =∫ ϵej,max

0
dσion

dϵ
(ϵr, ϵ)dϵ, where ϵej,max = ϵr − ϵion.

– As a special case, differential ionization cross section can be indepen-
dent of the energy ϵ of the ejected electron, dσion

dϵ
(ϵr, ϵ) = dσion

dϵ
(ϵr),

and the resultant kinetic energy is then divided among scattered and
ejected electrons according to random uniform distribution

ϵej = rion

(1
2µrv

2
r − ϵion

)
, (3.2.5)

where rion ∈ [0, 1] is random number generated from uniform distribu-
tion.

4. step: Determine direction of the relative velocity vector v′
r after the collision

→ determine polar and azimuthal scattering angles χ and η.

• Polar angle χ ∈ [0, π]

– Anisotropic scattering: distribution of deflection polar angle χ is given
by differential cross section σd(ϵr, χ) and angle χ can be determined
according to

rχ =
∫ χ

0 σd(ϵr, χ
′) sinχ′dχ′∫ π

0 σd(ϵr, χ′) sinχ′dχ′ , (3.2.6)

where rχ ∈ [0, 1] is random variable generated from the uniform dis-
tribution.

– Isotropic scattering: in this case, σd(ϵr, χ) = σd(ϵr) and expression
3.2.6 is simplified to

cosχ = 1 − 2rχ.

• Azimuthal angle η ∈ [0, 2π]
η = 2πrη,

where rη ∈ [0, 1] is random variable generated from the uniform distribution.
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5. step: Transformation of the relative velocity vector v′
r

v′
r =

(
v′

r,x̂, v
′
r,ŷ, v

′
r,ẑ

)
= (v′

r cos η sinχ, v′
r sin η sinχ, v′

r cosχ)

from the local coordinate system (x̂, ŷ, ẑ) to the laboratory one (x, y, z) – see
more in the figure 3.2 and appendix A.4⎛⎜⎝v

′
r,x

v′
r,y

v′
r,z

⎞⎟⎠ =

⎛⎜⎝cosϕ − sinϕ cos θ sinϕ sin θ
sinϕ cosϕ cos θ − cosϕ sin θ

0 sin θ cos θ

⎞⎟⎠
⎛⎜⎝cos η sinχ

sin η sinχ
cosχ

⎞⎟⎠ v′
r,

where

sin θ =

√
v2

r,x + v2
r,y

vr

, cos θ = vr,z

vr

,

sinϕ = vr,x√
v2

r,x + v2
r,y

, cosϕ = − vr,y√
v2

r,x + v2
r,y

.

6. step: Determine velocity v′
1 of the incident particle after the collision

v′
1 = vCM + m2

m1 +m2
v′

r.

7. step: New time-to-scatter τi for the charged particle is generated from the
random distribution

f(t) = νmax exp (−νmaxt) .

Figure 3.2: Transformation from the local coordinate system (x̂, ŷ, ẑ) to the lab-
oratory one (x, y, z).

3.2.5 Code tests
Stability tests

At first, we bring stability test of the explicit time differencing scheme. Colli-
sionless bulk argon plasma composed of Ar+ ions and electrons was modelled;
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input parameters of the PIC simulation are listed in the table 3.1. The simula-
tion was done in a cubic computational domain of 1.0 mm3 volume. Number of
real particles within one computational superparticle was set to Np = 1 which
led to Ns = 2.0×106 of the computational superparticles for which the equations
of motion were solved. The product ωp∆t ranges from ωp∆t = 1.78 × 10−2 rad
(which is well bellow the needed 0.1 rad limit discussed in the chapter 2.1.3) for
the smallest time step ∆t = 1.0 × 10−11 s up to ωp∆t = 1.78 rad for the largest
considered time step. Size of the computational mesh cell ∆x was such that the
condition controlling the finite grid instability ∆x/λD = 1.70 × 10−2 < π was
satisfied. Time evolution of the mean energy of the electrons was monitored for
different time steps of the simulation and it is depicted in the figure 3.3. It can be
seen that the increase of the electron mean energy during the simulation is lower
with decreasing time step. This result is in agreement with theory – energy of
the moving particles is well preserved if the condition ωp∆t < 0.1 rad is satisfied.
It can be seen that for the three smallest selected time steps of the simulation the
increase of the electron mean energy is well below 0.1 % increase from the initial
energy.

Temperature Te = 11 600 K (= 1 eV), Ti = 300 K
Number density ne = ni = 1015 m−3

Plasma frequency ωp = 1.78 × 109 rad · s−1

Debye length λD = 2.35 × 10−4 m
Size of a grid cell ∆x = 4.0 × 10−5 m
Time step ∆t = {1.0 × 10−11, 5.0 × 10−11, 1.0 × 10−10,

5.0 × 10−10, 1.0 × 10−9} s

Table 3.1: Input parameters of the simulations for stability tests of the explicit
time differencing scheme used in the developed 3D PIC/MCC code. Plasma pa-
rameters are typical e. g. for positive column of low-temperature glow discharge
plasma.

Figure 3.3: Time evolution of the mean energy ϵ of the electrons for various time
steps of the PIC simulation (ϵ0 – initial mean energy of the electrons). Number
of real physical particles per one computational superparticle Np = 1.

In the next step, finite grid instability of the developed 3D PIC/MCC code
was tested. The test was done also for collisionless argon plasma of the parameters
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which are listed in the table 3.2. Temperature 300 K was considered for electrons.
Such low value is not typical for low-temperature plasma; however, it was used
in order to obtain sufficiently low Debye length for the subsequent parametric
study. The ratio ∆x/λD ranged from ∆x/λD = 0.53 (which is well below the
needed limit ∆x/λD = π discussed in the chapter 2.1.3) for the smallest grid cell
size considered in the table 3.2 up to ∆x/λD = 5.29 for the largest size of the grid
cell. Apart from the three cases considered in the table 3.2, plasma with electrons
of 3 000 K temperature was investigated with grid cell size ∆x = 2.0 × 10−5 m
to obtain even lower ratio ∆x/λD = 0.17. Similarly, plasma of number density
n = 2.0 × 1015 m−3 with grid cell size ∆x = 2.0 × 10−4 m leading to high ratio
∆x/λD = 7.48 was also investigated. All of the cases are depicted in the figure
3.3 in terms of mean electron energy time evolution. It can be clearly seen that
the non-physical increase of electron energy is lower for lower grid cell size which
is well in agreement with theory. The three investigated cases which satisfy
condition ∆x/λD < π preserve electron energy up to 2.5 % in the considered time
interval.

Temperature Te = 300 K, Ti = 300 K
Number density ne = ni = 1015 m−3

Plasma frequency ωp = 1.78 × 109 rad · s−1

Debye length λD = 3.78 × 10−5 m
Size of a grid cell ∆x = {2.0 × 10−5, 4.0 × 10−5, 2.0 × 10−4} m
Time step ∆t = 1.0 × 10−11 s

Table 3.2: Input parameters of the simulations for tests of the finite grid instabil-
ity of the developed 3D PIC/MCC code. Plasma parameters correspond to rather
hypothetical plasma which was used only for the stability tests of the developed
particle code.

Figure 3.4: Time evolution of the mean energy ϵ of the electrons for various ratios
of the computational grid cell size ∆x to the Debye length λD (ϵ0 – initial mean
energy of the electrons). Number of real physical particles per one computational
superparticle Np = 1.
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Reid’s benchmark

In the article Reid [1979], a couple of tests that are suitable for validation collision
modules implemented in PIC codes were proposed. The tests consist in deter-
mination of transport properties of electron swarms in model gases with various
combinations of elastic and inelastic cross sections, in some cases with anisotropic
scattering distribution. The authors compare two methods of determination elec-
tron energy distribution functions and transport coefficients: Monte Carlo sim-
ulations and analytical solution of the Boltzmann equation in the two-term ap-
proximation. Below, results obtained by the developed collision module for the
3D PIC/MCC model are compared with the original Reid results in terms of drift
velocity vdr of the electron swarm and mean energy ⟨ϵ⟩ of the electrons. First,
simple isotropic scattering models are proposed; further, hydrogen-like model to
examine the effect of anisotropic elastic and inelastic scattering is proposed.

In the original Reid’s work [Reid, 1979], it is assumed that the electron which
is ejected during the ionization process takes zero energy. In the developed 3D
PIC/MCC code, it is assumed (by default) that the resultant kinetic energy after
the ionization is divided among the incident and ejected electrons according to
random uniform distribution (equation 3.2.5). For the purpose of comparison with
the original Reid’s results, the code was temporarily changed and zero energy of
the ejected electron was assumed.

Typical values of the 3D PIC/MCC simulation parameters were the following:
number of the monitored electrons Ne = 3.0 × 106, time step of the simulation
dt = 5.0 × 10−13 s, number of the iterations Niter = 5.0 × 105, maximal kinetic
energy for determination of νmax (equation 3.2.4) in the null collision method
Emax = 4 eV (up to 30 eV in some cases), discretization of the energy axis in the
definition of collision cross sections dE = 0.1 eV.

Isotropic scattering models

Constant cross sections The first model used elastic cross section which
was everywhere independent of energy and inelastic ionization cross section which
increased discontinuously to a constant value at the treshold energy. Model pa-
rameters are listed in the table 3.3. Simulations were carried out for multiple
values Q of the inelastic cross section σi and at the two values of the reduced
electric field E/N = {1.0, 24} Td. Comparison of the 3D PIC/MCC code results
with the original Reid’s results is presented in the figures 3.5 and 3.6.

Very good agreement between the results of the 3D PIC/MCC code and the
original Reid’s results is observed in the case of E/N = 1 Td for all values of σi.
In the case E/N = 24 Td, significant differences between the particle models and
Boltzmann analysis are observed for larger values of σi (σi > 0.5σe), especially for
the values of the drift velocity vdr. However, the 3D PIC/MCC model results are
still well in agreement with the Reid’s results obtained by Monte Carlo solution.
The discrepancies between the particle models and Boltzmann analysis originate
from the errors introduced by the two-term approximation used in the Boltzmann
analysis solution as it was explained and verified in the original Reid’s work.
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Molecular weight M = 4.0 a.m.u.
Gas temperature T = 0 K
Gas number density N = 1023 m−3

Reduced electric field E/N = {1.0, 24} Td
Elastic cross section σe = σm,e = 6.0 × 10−20 m2

Inelastic treshold ϵi = 0.2 eV
Inelastic cross section σi(ϵ) = 0 for ϵ < ϵi

σi(ϵ) = Q for ϵ ≥ ϵi

Q = (0 − 6) × 10−20 m2 for E/N = 1 Td
Q = (0 − 10) × 10−20 m2 for E/N = 24 Td

Table 3.3: Parameters of the isotropic scattering models with constant cross
sections.

Figure 3.5: Comparison of the original Reid’s results [Reid, 1979] (BA – Boltz-
mann analysis, MC – Monte Carlo solution) with the results of the developed 3D
PIC/MCC code. Isotropic scattering model with constant cross section of both
elastic and inelastic collisions, E/N = 1 Td.

’Ramp’ inelastic cross sections More realistic model of the inelastic cross
section was used in the next step. The model had the same properties as that one
used in the previous paragraph (table 3.3) except that the inelastic cross section
was a linear function of energy beyond the treshold energy. The calculations were
done for multiple values of the slope k of the inelastic cross section and at the
two values of the reduced electric field E/N = {1.0, 24} Td (table 3.4). Further,
the simulations were also carried out for multiple values of E/N while keeping
k = 10−19 m2 eV−1. Results of the performed study are presented in the figures
3.7, 3.8 and 3.9.

Inelastic cross section σi(ϵ) = 0 for ϵ < ϵi

σi(ϵ) = k (ϵ− ϵi) for ϵ ≥ ϵi

k = (3 − 50) × 10−20 m2 eV−1 for E/N = 1 Td
k = (1 − 10) × 10−20 m2 eV−1 for E/N = 24 Td
E/N = (1 − 40) Td for k = 10−19 m2 eV−1

Table 3.4: Parameters of the isotropic scattering models with ’ramp’ cross sec-
tions.

It can be stated that similar trends as in the constant cross section case can be
observed – difference between the Boltzmann analysis results and particle model
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Figure 3.6: Comparison of the original Reid’s results [Reid, 1979] (BA – Boltz-
mann analysis, MC – Monte Carlo solution) with the results of the developed 3D
PIC/MCC code. Isotropic scattering model with constant cross section of both
elastic and inelastic collisions, E/N = 24 Td.

Figure 3.7: Comparison of the original Reid’s results [Reid, 1979] (BA – Boltz-
mann analysis, MC – Monte Carlo solution) with the results of the developed 3D
PIC/MCC code. Isotropic scattering model with constant cross section of the
elastic collisions and ’ramp’ cross section of the inelastic collisions, E/N = 1 Td.

results are larger for higher ratio σi to σe as can be clearly seen for the case
E/N = 24 Td. It is a consequence of the errors introduced by the two-term
approximation in the Boltzmann analysis solution. In the case E/N = 1 Td, it
can be seen that the 3D PIC/MCC model results are closer to the Boltzmann
analysis results than to the Reid’s Monte Carlo solution. Both particle models
differ in the implementation of the collision module which might be the reason
of the observed differences. However, at the low values of σi/σe ratio, Boltz-
mann analysis should provide satisfactorily precise results and therefore, the 3D
PIC/MCC model results can be also regarded as sufficiently precise in this re-
gion. The results in the figure 3.9 show increasing difference between the particle
models results and the results of the Boltmann analysis with increasing electric
field E/N – it is due to the increasing ratio of σi to σe which is a consequence of
the linear energy dependence of the inelastic cross section.

Anisotropic scattering models In this section, we consider that total scat-
tering is anisotropic. The anisotropy is described by function I(χ), χ ∈ [0, π] and
differential cross section is assumed in the form

σd(ϵr, χ) = 1
2πσ(ϵr)I(χ),
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Figure 3.8: Comparison of the original Reid’s results [Reid, 1979] (BA – Boltz-
mann analysis, MC – Monte Carlo solution) with the results of the developed 3D
PIC/MCC code. Isotropic scattering model with constant cross section of the
elastic collisions and ’ramp’ cross section of the inelastic collisions, E/N = 24 Td.

Figure 3.9: Comparison of the original Reid’s results [Reid, 1979] (BA – Boltz-
mann analysis, MC – Monte Carlo solution) with the results of the devel-
oped 3D PIC/MCC code. Isotropic scattering model with constant cross sec-
tion of the elastic collisions and ’ramp’ cross section of the inelastic collisions,
k = 10−19 m2 eV−1.

where
I(χ) = I(χ)∫ π

0 I(χ) sinχdχ.

If the assumed form of the differential cross section is inserted into the general
expression 3.2.6, we get the following expression which relates random variable
rχ ∈ [0, 1] and polar angle χ which is to be selected by the Monte Carlo method

rχ =
∫ χ

0
I(χ′) sinχ′dχ′.

The study was done for four generally anisotropic models – two models were
symmetric about χ = π/2, the other two were asymmetric. For each of the
models, we also present the resultant expression for calculation of the polar angle
χ.

1. Symmetric scattering

(a) Isotropic scattering (model A)

I(χ) = 1,
cosχ = 1 − 2rχ.
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(b) Pronounced forward and back scattering (model B)

I(χ) = cos4 χ,

cosχ = (1 − 2rχ)
1
5 .

2. Asymmetric scattering

(a) Predominantly back scattering (model C)

I(χ) = exp [−1.5 (cosχ+ 1)] ,

cosχ = −2
3 ln{rχ [1 − exp (−3)] + exp (−3)} − 1.

(b) Predominantly back and forward scattering (model D)

I(θ) = 1 for 0 < θ < 0.134π
= 0 for 0.134π ≤ θ < 3π/4
= 1 for 3π/4 ≤ θ

Let us define C = 2+cos 3π
4 −cos (0.134π). Polar angle χ is then given

in the following way:

rχ <
1
C

[1 − cos (0.134π)] ⇒ cosχ = 1 − rχC,

rχ ≥ 1
C

[1 − cos (0.134π)] ⇒ cosχ = 1 − rχC + cos 3π
4 − cos (0.134π) .

The computational study of anisotropic scattering models was done for hydro-
gen-like model at the reduced field E/N = 25 Td. Constant elastic cross section
and linearly ramped inelastic cross setion with energy treshold 0.516 eV, which
corresponds to the vibrational excitation cross section, were considered in the
calculations. All of the simulation parameters are summarized in the table 3.5.
Investigation of the asymmetric anisotropic scattering was done for two distribu-
tions with the same ratio of σm,e to σe (σm,e = 1.438σe). In order to keep the
transport properties approximately the same as those for symmetric scattering
models, the total elastic scattering cross section was reduced to 6.954 × 10−20 m2;
thus, maintaining σm,e = 10.0 × 10−20 m2. Results of the anisotropic scattering
study are presented in the figure 3.10.

Molecular weight M = 2.0 a.m.u.
Gas temperature T = 0 K
Gas number density N = 1023 m−3

Drift field E = 2.5 × 103 Vm−1

Elastic momentum transfer cross section σm,e = 10.0 × 10−20 m2

Inelastic treshold ϵi = 0.516 eV
Inelastic cross section σi(ϵ) = 0 for ϵ < ϵi

σi(ϵ) = 0.4 (ϵ− ϵi) for ϵ ≥ ϵi

Table 3.5: Parameters of the anisotropic scattering models.
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Figure 3.10: Comparison of the original Reid’s results [Reid, 1979] (BA – Boltz-
mann analysis, MC – Monte Carlo solution) with the results of the developed 3D
PIC/MCC code. Comparison of different anisotropic scattering models.

The results obtained by the developed 3D PIC/MCC code show the same
trends as the original Reid’s results of the Monte Carlo analysis – it means very
good agreement with the Botzmann analysis results for the symmetric scattering
models A and B, while differences in the vdr and ϵ values of the order 2 − 3% in
the case of the asymmetrical models C and D. It is caused by the approximation
used in the Boltzmann analysis which assumes that the momentum transfer cross
section of the inelastic collision is equal to the total cross section and which is
valid only for the models A and B.

Conclusion of the 3D PIC/MCC code tests according to the Reid’s
benchmark The vast majority of the results obtained by the developed 3D
PIC/MCC code shows very good agreement (differences up to ∼ 3%) with the
original Reid’s results obtained by the Monte Carlo analysis and similar trends
with respect to the original Reid’s results based on the Boltzmann analysis.

3.3 3D fluid code
Finite element method was employed for the solution of the partial differential
equations originating from the fluid description of plasma. The FEniCS project
[Alnæs et al., 2015] was used for the numerical solution of the fluid plasma models.
The FEniCS project allows to turn the weak formulation of the respective set of
equations into the numerical scheme by means of Python scripting interface.

Weak formulation of the drift-diffusion approximation Let us consider
plasma containing multiple charged particle species. The minimal self-consistent
steady-state model based on the drift-diffusion approximation is the following set
of continuity and momentum conservation equations for the unknown density nj

and potential ϕ distribution functions:

∇ · Γj = 0,
Γj = −sgn (qj)µjnj∇ϕ−Dj∇nj,

∆ϕ = − 1
ϵ0

∑
j

qjnj, (3.3.1)
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where the index j denotes the respective particle species.
Let us first derive the weak formulation of the Poisson equation. The equation

is supplemented by Dirichlet and Neumann boundary conditions for the potential
ϕ:

ϕ = ϕi
D on ∂Ωi

D, i = 0, 1, ...
n · ∇ϕ = 0 on ∂Ωi

N , i = 0, 1, ...

At first, the equation is multiplied by test function v and integration over the
computational domain Ω by parts is then performed.∫

Ω
∆ϕvdx = − 1

ϵ0

∫
Ω

∑
j

qjnjvdx,
∫

Ω
∇ϕ · ∇vdx−

∫
∂Ω

n · ∇ϕvds = 1
ϵ0

∫
Ω

∑
j

qjnjvdx.

The boundary integral vanishes on the Dirichlet part of the boundary since v = 0
here. It also vanishes on the Neumann part of the boundary since homogeneous
Neumann boundary condition is considered there. Finally, we get the following
variational problem

F (ϕ, v) =
∫

Ω
∇ϕ · ∇vdx− 1

ϵ0

∫
Ω

∑
j

qjnjvdx = 0.

Similarly, weak formulation of the continuity equation, which can be regarded
as the equation for the unknown density function nj, is derived. The continuity
equation is supplied by the following Dirichlet and Neumann boundary conditions:

nj = ni
j,D on ∂Ωi

D, i = 0, 1, ...
n · Γj = 0 on ∂Ωi

N , i = 0, 1, ...

If the homogeneous Neumann boundary conditions are applied in the model,
they are used at the outer boundaries of the computational domain and repre-
sent planes of symmetry to which the particle flux is tangential. In this case,
homogenous Neumann boundary condition is applied also for potential on this
part of the boundary. Neumann parts of the boundaries are the same ones for
Poisson and also continuity equation. In this view, we can consider

n · ∇nj = 0 on ∂Ωi
N , i = 0, 1, ...

Weak formulation of the continuity equation is obtained by its multiplication
by test function vj and integration by parts over the whole computational domain:∫

Ω
∇ · Γjvjdx = 0,∫

Ω
Γj · ∇vjdx−

∫
∂Ω

n · Γjvjds = 0,

∫
Ω

[sgn(qj)µjnj∇ϕ+Dj∇nj] · ∇vjdx−

−
∫

∂Ω
[sgn(qj)µjnjn · ∇ϕ+Djn · ∇nj] vjds = 0.

55



The boundary integral vanishes on the Dirichlet part of the boundary since vj = 0
here. It also vanishes on the Neumann part of the boundary since homogeneous
Neumann boundary condition for density and potential is considered there. As a
result, we get the following variational problem:

Fj(nj, vj) =
∫

Ω
[sgn(qj)µjnj∇ϕ+Dj∇nj] · ∇vjdx = 0. (3.3.2)

Weak formulations of the Poisson and continuity equations create a nonlinear
coupled system of equations which can be implemented within the FEniCS project
as a coupled nonlinear variational problem in the form

F +
∑

j

Fj = 0. (3.3.3)
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4. Physical results

4.1 1D models of plasma sheath
This chapter brings results of a computational study of plasma sheaths created
in front of an infinitely large planar probe. Geometry configuration of the inves-
tigated problem is depicted in the Figure 4.1. The nature of the problem is one
dimensional; however, 3D PIC/MCC model with periodic boundary conditions
applied in Y, Z directions was used for its solution. Charged particles were in-
jected to the computational domain from the source of particles with Maxwellian
velocity distribution. The results of the particle model are compared to the par-
ticular 1D fluid models and differences between these two modelling approaches
are discussed. The object of the study is electropositive argon plasma consisting
of electrons e− and simple argon ions Ar+; plasma parameters and settings of the
model are listed in the Table 4.1. Number of physical particles per one computa-
tional superparticle was set to Np = 1. Both collisionless and collisional plasma
was investigated.

Figure 4.1: Geometry of 1D plasma sheath model.

Temperature Te = 11 600 K (= 1 eV), Ti = 300 K
Number density ne = ni = 1015 m−3

Plasma frequency ωp = 1.78 × 109 rad · s−1

Debye length λD = 2.35 × 10−4 m
Size of a grid cell ∆x = 4.0 × 10−5 m
Time step ∆t = 1.0 × 10−11 s
Computational domain (10 × 0.4 × 0.4) × 10−3 m

Table 4.1: Plasma parameters and settings of the 3D PIC/MCC model used for
the study of 1D plasma sheaths.

4.1.1 Collisionless plasma
The calculation of collisionless plasma sheath was performed mainly to validate
that the developed 3D PIC/MCC code is able to reproduce the results predicted
by the theory which was presented in the chapter 1.1.1. Only the sheath region
was covered by the simulation – this was achieved by the fact that the positive
argon ions entered the computational domain already at Bohm velocity (uB =√
kBTe/mi = 1.55×103m ·s−1 in the considered case) directed towards the planar

probe. In reality, pre-sheath with potential drop ϕp = kBTe/2e would be created
in front of the sheath region.
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(a) Number density and potential profiles in front
of a metal wall which is at the floating potential
Uf = −4.68 V. (Solid lines – 3D PIC/MCC model
results, dashed lines – analytical predictions.)

(b) Fluxes of charged particles on
the metal wall for its different bi-
ases. Black cross marks the value
Γ = niuB.

Figure 4.2: Collisionless plasma sheath in front of an infinitely large metal wall.

Very good agreement can be seen between the number density and potential
profiles in front of a metal wall at floating potential (Uf = −4.68 V for given
plasma conditions) predicted by equations (1.1.1), (1.1.2), (1.1.3) and those which
were calculated by the developed 3D PIC/MCC code (Figure 4.2a). As the fluxes
of positively and negatively charged particles on the wall at the floating potential
should be equal, the accuracy of the 3D PIC/MCC model can be assessed also
from their mismatch which is about 2.5 % of their nominal value (Figure 4.2b).
As expected, variation of the bias of the metal wall around the floating potential
value leads to an increasing inequality of the positive and negative fluxes.

4.1.2 Collisional plasma
To study sheaths in collisional plasma, scattering processes between charged and
neutral particles were taken into account for the considered argon plasma (table
4.1). For simplicity, only isotropic elastic scattering on argon neutrals with con-
stant collision cross section σ was defined for both electrons (σe = 2.0×10−20 m2)
and argon ions Ar+ (σi = 7.0 × 10−19 m2). The used values of the cross sections
are based on the work Bogaerts et al. [1999] in the case of electrons and on the
database Phelps [2013] in the case of Ar+ ions. Several values of the neutral gas
pressure ranging from 13.3 Pa to 532 Pa were considered. The temperature of the
neutral gas was 300 K. (In particular, electrons scattered on the neutral argon
particles of 1 eV temperature, so the same temperature as the electrons had. In
such (rather artificial) settings, electrons did not loose their energy during the
collisions with neutrals. In reality, electrons would be cooled down by the elas-
tic collisions with neutrals; however, their energy would be supplemented by an
energy source maintaining plasma which was not modelled in the 3D PIC/MCC
calculations.)

The figure 4.3 shows how the profile of plasma number density in front of an
infinitely large planar probe, which is kept at plasma potential (probe bias Up =
0 V), changes for different values of neutral gas pressure. It can be clearly seen
that the solution gets closer to the analytical solution of diffusion equation with
increasing neutral gas pressure. The simple diffusion equation describing steady
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Figure 4.3: Electron number density profiles in front of an infinitely large planar
probe with 0 V bias (= the probe is at plasma potential) for different values
of neutral gas pressure. The dashed black line represents analytical solution of
diffusion equation in 1D geometry.

state situation can be obtained from the continuity equation (2.2.1) where the
expression for particle flux in the drift-diffusion approximation (2.2.5) is inserted

∂n

∂t
+ ∇ · (nu) = I −R,

∇ · (nu) = ∇ · [sgn (q)µnE −D∇n] = 0,
−D∆n = 0.

We assume that production I and loss R of charged particles is perfectly balanced;
further, electric field can be neglected since no external potentials are considered
in the investigated case and plasma can be regarded as quasi-neutral. Taking
into account boundary conditions n(x = xA) = 0 at the probe surface and n(x =
xB) = n0 at the edge of bulk plasma, linear profile of the number density in front of
the planar probe is obtained in the investigated 1D geometry. At higher pressures,
the collisions between charged and neutral particles are frequent enough so the
velocity distribution of the charged particles is isotropic and the assumptions of
the drif-difusion approximation are well satisfied. It can be seen in the table
4.2 that the mean free path of electrons is much lower than the characteristic
dimension of the considered computational domain in the case of the highest
considered neutral gas pressure. On the contrary, large mean free path at low
pressure is the reason why the number density profile approaches constant value of
0.5n0 – this would be a solution in the limit of collisionless plasma since only half
of the particles with isotropic velocity distribution which are present in the plasma
source enter the computational domain (only those with velocity directed towards
the computational domain) and as there is no mechanism which would change the
direction of the charged particle movement, strongly anisotropic half-Maxwellian
velocity distribution of the charged particles is observed in the computational
domain as a result.

Clearly, the solutions of the number density profile at higher considered gas
pressures strongly depend on the size of the computational domain – in case
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Neutral gas Electrons Ar+ ions
p [Pa] ng [m−3] λe [m] τe [s] λi [m] τi [s]

1.33 × 101 3.21 × 1021 1.56 × 10−2 2.33 × 10−8 4.45 × 10−4 1.12 × 10−6

5.32 × 101 1.28 × 1022 3.91 × 10−3 5.84 × 10−9 1.12 × 10−4 2.80 × 10−7

1.33 × 102 3.21 × 1022 1.56 × 10−3 2.33 × 10−9 4.45 × 10−5 1.12 × 10−7

5.32 × 102 1.28 × 1023 3.91 × 10−4 5.84 × 10−10 1.12 × 10−5 2.80 × 10−8

Table 4.2: Characteristic parameters of electron and Ar+ ion collisions at different
values of neutral gas pressure.

of the larger computational domain, the gradient of number density would be
lower. It is a consequence of the fact that an ideal 1D case with infinitely large
metal wall is being resolved. Further, it can be seen that in the selected settings,
really the transition regime between collisional and collisionless plasma has been
captured. In the following paragraphs, the case of neutral gas pressure 532
Pa is investigated in detail. Such a pressure is high enough for the drift-diffusion
approximation to be valid with sufficient accuracy, and results of the developed
3D PIC/MCC model could thus be directly compared with fluid models based
on the drift-diffusion approximation.

If electric bias (with respect to the plasma potential) is applied on the probe,
sheath layer is created. In the figures 4.4 and 4.5, solution of the sheath layer
which was obtained by particle and fluid models is presented for different values of
the probe bias. Fluid model results are based on the drift-diffusion approximation
(3.3.1). Two variants of the fluid model were implemented: the first one with
constant transport coefficients µ and D whose values are given by expressions
(2.2.6)

µ = |q|
mν

, D = kBT

mν
. (4.1.1)

Collision frequency in these expressions was evaluated according to the relation

ν = ngσvth = ngσ

(
8kBT

πm

)1/2

, (4.1.2)

which follows from the more general expression

ν = ng

∫
σ(vr)vrf1(v1)f2(v2)dv1dv2, (4.1.3)

taking into account several assumptions: collision cross section is independent
of the relative velocity vr = |v1 − v2|; the characteristic velocities of the target
particles are much less than those of the incident particles (vr ≈ |v1|); velocity
distribution of the incident particles is isotropic and Maxwellian. Taking into
account the simplified relations (4.1.1) for the considered plasma (table 4.1), the
values presented in the table 4.3 are obtained.

The second variant of the fluid model used spatially varying profiles of the
transport coefficients which were calculated by the 3D PIC/MCC model according
to the expressions (3.2.1), (3.2.2)

µP IC = |q|
m ⟨ngσ(v)v⟩

, DP IC = 1
3

⟨
v2

ngσ(v)v

⟩
. (4.1.4)
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Electrons Ar+ ions
νconst [s−1] 1.71 × 109 3.57 × 107

µconst [m2 · V−1 · s−1] 1.03 × 102 6.76 × 10−2

Dconst [m2 · s−1] 1.03 × 102 1.75 × 10−3

Table 4.3: Collision frequency ν and transport coefficients µ and D of the mod-
elled plasma evaluated according to the equations (4.1.1) and (4.1.2).

Electrons Ar+ ions
νP IC [s−1] 1.70 × 109 5.05 × 107

µP IC [m2 · V−1 · s−1] 1.03 × 102 6.76 × 10−2

DP IC [m2 · s−1] 8.68 × 101 1.48 × 10−3

Table 4.4: Collision frequency ν and transport coefficients µ and D of the mod-
elled plasma evaluated by the 3D PIC/MCC code in the case when the probe is
at plasma potential (Up = 0 V).

In the case when the probe is at plasma potential (Up = 0 V), the particle model
provides spatially constant transport coefficients of the values which are presented
in the table 4.4.

Comparing the values in the tables 4.3 and 4.4, it can be seen that the 3D
PIC/MCC model provides the same value of the electron collision frequency as the
analytical prediction whereas it shows different value for the Ar+ ions. The reason
of this discrepancy is that the analytical prediction according to the expression
(4.1.2) neglects the movement of neutral gas particles. In the case of Ar+ ions,
this effect has to be taken into account since their mass and temperature is the
same as of the argon neutrals; even stationary Ar+ ion might undergo significant
number of collisions with the neutral particles in the background. This effect is
implicitly involved in the 3D PIC/MCC model results and thus, it shows larger
value of the Ar+ ion collision frequency. Further, it can be seen that the values
of the mobility coefficients provided by the 3D PIC/MCC model are exactly the
same as the analytical prediction. The reason is that the 3D PIC/MCC model
uses simplified way for mobility coefficient evaluation which lies in the averaging
of the expression ngσ(v)v over the velocity distribution of the charged particles.
If the velocity distribution function is isotropic and Maxwellian, it is equivalent
to the expression (4.1.2). However, it should be noted that this approach does
not provide correct values of the mobility coefficient for Ar+ ions for which the
more general and more computationally demanding expression (4.1.3) should be
used instead. Finally, it can be seen that the values of diffusion coefficients for
both electrons and Ar+ ions which are evaluated by the 3D PIC/MCC model are
about 15% lower than the analytical prediction. The reason is inconsistency of
both definitions of the diffusion coefficient. If Maxwellian distribution function is
assumed, the expression (4.1.4) for the diffusion coefficient can be written in the
form

DP IC = 1
3

⟨
v2

ngσ(v)v

⟩
= 1

3

⟨
v

ngσ(v)

⟩
= 1

3
vth

ngσ
= 1

3ngσ

(
8kBT

πm

)1/2

.
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According to this expression, we obtain De = 8.71×101 m2 · s−1 for electrons and
DAr = 1.48 × 10−3 m2 · s−1 for Ar+ ions of the considered plasma. These values
well agree with the results of the 3D PIC/MCC model reported in the table 4.4.
Taking into account the equality 1/2mv2

rms = 3/2kBT which holds for the ideal
monatomic gas, the expression (4.1.1) for the diffusion coefficient can be written
in the form

Dconst = kBT

mν
= kBT

mngσvth

= 1
3
v2

rms

ngσvth

= 1
ngσ

(
πkBT

8m

)1/2

.

As a result, there is a difference between both definitions
DP IC

Dconst

= 8
3π .

It can be seen that the expression Dconst could be obtained from definition of
DP IC if the mean value over the particle distribution function in the expression
(4.1.4) would be considered separately in the numerator and denominator

Dconst = D′
P IC = 1

3
⟨v2⟩

⟨ngσ(v)v⟩
.

Let us now consider the case when the planar probe is at the plasma potential
(Up = 0 V). Flux on the probe is given only by diffusion in this case since the
electric field is zero and density of electric current j on the probe can be evaluated
using the following expression

j = qΓ = qD|∇n| = qDn0/L, (4.1.5)

where Γ is the charged particle flux on the probe which is perpendicular to
the probe in the considered geometry, n0 is plasma density and L is the size of
the computational domain. 1D nature of the problem with linear decrease of
plasma number density from n0 at the plasma source towards zero at the probe
surface allows us to consider the equality |∇n| = n0/L. In the table 4.5, currrent
densities on the probe according to the expression (4.1.5) for previously discussed
diffusion coefficients Dconst and DP IC are compared to the values calculated by
the 3D PIC/MCC model. It can be seen that very good agreement between
electron current density calculated by 3D PIC/MCC model and its value based
on the DP IC coefficient is obtained. On the contrary, quite different values of
Ar+ ion current density are reported, especially for the 3D PIC/MCC model
results. The reason of this discrepancy might be the fact that both predictions
of the current density based on the diffusion coefficients Dconst and DP IC use
the simplified expression for the collision frequency (4.1.2) instead of the more
accurate expression (4.1.3) which is implicitly involved in the calculations by the
3D PIC/MCC model. Another reason might be the accuracy of the 3D PIC/MCC
model which is limited by the discrete nature of the modelled particle ensemble.
The ion current is very low, particles impinge the probe surface only occasionally
and this might distort the value of the current density which is obtained by
averaging of its fluctuations in time.

Before we get to the detailed discussion of the obtained results, we will sum-
marize the general observations regarding the differences between each of the
modelling techniques used in this place.
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Model je [A · m−2] jAr [A · m−2]
j = qDconst|∇n| −1.64 2.80 × 10−5

j = qDP IC |∇n| −1.39 2.38 × 10−5

3D PIC/MCC −1.33 3.71 × 10−5

Table 4.5: Comparison of the analytical predictions and 3D PIC/MCC model
results of the current density on the solid wall which is at the plasma potential.

Inertial term The developed fluid models are based on the drift-diffusion ap-
proximation which can be considered at high enough pressure when the movement
of the charged particles is significantly determined by their collisions with neu-
trals. This assumption is certainly fulfilled in the studied case of neutral gas
pressure 532 Pa, as can be seen in the figure 4.3. The usage of drift-diffusion ap-
proximation is well defensible for electrons with their low mass and high thermal
energy. In their case, it is possible to neglect the inertial term on the left side of
the equation of motion (2.2.4), which is not possible to do in the case of positive
ions with their large mass and low temperature. In this aspect, fluid models differ
from the PIC/MCC model, which implicitly includes the influence of the inertial
term for positive ions in its results.

And what does neglection of the inertial term actually means? Let us consider
the equation of motion of the charged particles in the following form

nm

(
∂u

∂t
+ u · ∇u

)
= qnE − ∇p− nmνu.

Let us further consider steady state and let us neglect collisions at the moment
(assuming e. g. that the drift velocity u is very low). Thus, we end up with the
following equation of motion

nmu · ∇u = qnE − ∇p.

Neglection of the inertial term on the left side of the equation of motion leads to
the equation

0 = qnE − ∇p,

which leads to the Boltzmann expression for number density (assuming E = −∇ϕ
and p = nkBT )

n = n0 exp
(

− qϕ

kBT

)
.

Neglection of the inertial term thus means that positive ions are in thermal equi-
librium with the electric field.

Anisotropy of the distribution function In its simplest form, drift-diffusion
approximation (2.2.5) assumes isotropic Maxwellian distribution function, or very
small deviations from this distribution in the case of a two-term approximation
(2.2.8). On the contrary, PIC/MCC model does not impose any assumptions on
the distribution function and it is able to precisely describe cases with general,
(strongly) anisotropic distribution function. In the case of the studied infinitely
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large planar probe, this condition can occur in the close proximity to the probe,
where no charged particles come from its direction. The strong anisotropy of the
distribution function manifests itself only in a region with a characteristic size
corresponding to the mean free path of the particles, which is very low in the
studied case of 532 Pa pressure (see table 4.2). In the rest of the computational
domain, the distribution function is only weakly anisotropic – a directed flow of
charged particles towards the probe is observed which means that the number
of particles with velocity directed towards the probe must prevail over those
which move in the opposite direction at each point of the computational domain.
Since the modelled planar probe is infinitely large, the disturbance caused by
its presence manifests itself even at great distances. As a consequence, linear
profile of number density between the probe and source of the charged particles
is established.

Boundary conditions For calculation of the electric potential and number
density distribution in the computational domain, the developed fluid models
impose Dirichlet boundary conditions (BC) at its outer boundaries correspond-
ing to the probe surface and to the interface with undisturbed plasma. The
PIC/MCC model also uses Dirichlet BC for calculation of the electric potential
distribution – probe bias Up with respect to the plasma potential is prescribed on
the probe surface and Up = 0 V is prescribed at the boundary between the com-
putational domain and the source of the charged particles. It turns out that in
the case of negative probe bias it would be advisable to perform the calculations
on larger computational domain. In the current settings, it can be seen (e. g.
figure 4.4a) that the decrease of the negative potential in the direction from the
probe is relatively slow and there is a non-zero electric field at the outer boundary
of the computational domain which is adjacent to the charged particle source. In
contrast, the electric field is zero in the particle source, where undisturbed plasma
is assumed, and it leads to a ”jump” in the distribution function of the charged
particles at this boundary. Computational domain should be larger in order to
model the pre-sheath region accurately enough. (In fact, the calculated profile of
the electric field should be independent of the chosen size of the computational
domain.) In the PIC/MCC model, number density of the charged particles at
the boundaries of the computational domain is established self-consistently, ac-
cording to the solution of the equations of motion. In the fluid models, Dirichlet
BC are prescribed at the outer faces of the computational domain: n = n0 at the
interface with undisturbed plasma and n = 0 on the probe surface. (The usage
of the Dirichlet BC n = 0 on the probe surface is questionable – in some cases, it
is more appropriate to prescribe flux of the charged particles on the probe which
corresponds to the Neumman boundary condition. Prescription n = 0 on the
probe surface can significantly affect number density profile in the sheath which
influences its size and also distance at which the electric bias of the probe is
shielded off.)

General comparison of the models The fluid model with constant trans-
port coefficients does not include their dependence on the mean energy of the
particles (through the temperature and collision frequency) which can vary a lot
in the computational domain. In this view, it is the simplest and least accu-
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rate model used. The fluid model with variable transport coefficients is more
accurate; however, it is still limited by the assumptions of the fluid modelling
approach which were discussed in the previous paragraphs. Implicitly, the most
accurate is the PIC/MCC model. The results of the fluid models are presented
primarily for a deeper understanding of the achieved results. Comparison of dif-
ferent modelling approaches allows us to distinguish manifestations of different
physical mechanisms in the results.

In total, we can summarize the following:

• The developed fluid models neglect the inertial term in the equation of
motion which can be important for positive ions.

• The fluid models assume isotropic Maxwellian distribution functions of the
charged particles and dominance of collisions with neutral particles.

• The applied boundary conditions can significantly affect the obtained solu-
tion, especially in the case of negative probe bias.

• Transport coefficients can significantly vary within the computational do-
main.

Characteristic lengths The modelled plasma has the following characteristic
lengths:

• Debye length: λD = 2.35 × 10−4 m,

• Mean free path of electrons: λe = 3.91 × 10−4 m,

• Mean free path of Ar+ ions: λi = 1.12 × 10−5 m.

It can be seen that λi ≪ λD and we can thus speak about collisional sheath in
the case of positive ions where dozens of collisions can happen (λD/λi ≈ 20).
In the case of electrons, λe > λD does apply, but if we consider that sheath
typically has a size of several Debye lengths (≈ 3λD), then we can also speak of
a collisional sheath for electrons where units of collisions can happen (3λD/λe ≈
1.8). Moreover, Debye length λD can be higher at the sheath edge because lower
number density of the charged particles is observed here.

Description of the sheath structures In the figures 4.4 and 4.5, sheath
structures in front of the infinitely large planar probe are presented in terms of
the spatial profiles of electric potential and number density of the charged parti-
cles. Profiles of the transport coefficients calculated by the 3D PIC/MCC model
are presented as well. The figures display plasma sheaths for various values of the
electric bias (negative and positive) of the probe with respect to the plasma poten-
tial. The figures show results of three different modelling approaches (those ones
which were already discussed in the previous paragraphs) – 3D PIC/MCC model,
fluid model with constant transport coefficients given by expressions (4.1.1) and
fluid model with variable transport coefficients which were evaluated by the 3D
PIC/MCC model.
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It can be seen that the character of the plasma sheath is different when the
probe is biased negatively or positively. In the case of positive bias, the probe po-
tential is well shielded within the computational domain and the applied bound-
ary conditions do not have a major effect on the solution. In the case of negative
bias, the shielding is ensured by positive ions whose shielding effect is weakened
by electrons which, thanks to their high thermal energy, can get very close to
the probe. Further, part of the electric field penetrates into the pre-sheath so
that the ions can be accelerated to a high enough speed to overcome the thermal
energy of electrons and to be able to create positive space charge in front of the
probe. As a result, negative probe potential is shielded on larger distance and
the applied boundary conditions can significantly affect the obtained solution.

Let us now look at the results in more detail. In the case of the positive
bias of the probe, both fluid models give similar results regarding the shape
of the sheath. It is due to the fact that the transport coefficients do not change
much in the computational domain and both fluid models are therefore equivalent
here. Transport coefficients begin to change more significantly only in the sheath
area, where the concentration of charged particles is relatively low. It can be
seen that both fluid models differ quite a lot from the 3D PIC/MCC model –
they show that the shielding of the electric potential occurs at greater distance
and the area where quasi-neutrality is violated is also larger. In the end, the
fluid models and the 3D PIC/MCC model use the similar amount of charge to
shield the probe potential – the 3D PIC/MCC model shows a higher value of
negative charge density on a smaller area, compared to a lower value of charge
density on a larger area in the case of the fluid model. The reason for the different
behavior of both types of models is apparently the neglect of the inertial term
in the case of the drift-diffusion approximation, on which both fluid models are
based. Neglecting the inertial term in the equation of motion of the ion (if we do
not consider collisions at the moment) means that their distribution follows the
Boltzmann relation for number density as in the case of electrons and they are
therefore in thermal equilibrium with the electric field. As a result, the ions are
more mobile, no energy of the electric field is consumed on the inertial term and
they can thus significantly reduce the shielding effect of the electrons which are
in front of the positively biased probe. In this consequence, the electric potential
is shielded at greater distance and greater electron flow into the sheath is needed,
which is manifested by a steeper number density profile in the area between
the undisturbed plasma and the sheath edge. This can be also observed in the
figure with IV characteristics (figure 4.7), where for the positive probe bias higher
values of the electron current can be observed in the fluid model than in the 3D
PIC/MCC model.

Let us now take a closer look at the case of negative probe bias. It can be
seen that electric field penetrates outside of the sheath area, which we consider
to be the area of quasi-neutrality violation. Here, the electric field accelerates the
positive ions to a sufficiently high directional speed so that they can overcome
the thermal energy of the electrons and form a shielding layer with a positive
space charge density. This behavior is demonstrated e. g. in the figure 4.6
where the sheath structure in front of the planar probe at Up = −8 V bias is
shown. Such a bias approximately corresponds to the floating potential, which
was evaluated at Uf = −8.79 V from the IV characteristic calculated by the
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3D PIC/MCC model (see figure 4.7 and table 4.6). It can be seen from the 3D
PIC/MCC model results that the positive ions have a directed velocity of about
40 m · s−1 at the sheath edge (at x = −1.0 × 10−3 m). This value is many times
lower than the theoretical value of the Bohm velocity uB, which for the electrons
with a temperature of Te = 1 eV is about uB = 1550 m · s−1 (equation (1.1.5)).
According to the theory, in the presence of collisions between the charged particles
and neutrals, the velocity of the ions at the sheath edge is actually lower than
the Bohm velocity. The equation (1.1.13) predicts the value us = 240 m · s−1 and
the equation (1.1.14) predicts us = 190 m · s−1. (These values are obtained for
Te = 1 eV and ne = 2.5 × 1014 m−3 which corresponds to the electron number
density at the sheath edge.) The value predicted by the 3D PIC/MCC model is
still lower than the values predicted by the theory of the collisional sheaths. One
of the reasons could be that the expressions (1.1.13) and (1.1.14) include only
the effect of ion collisions and do not take into account electron collisions with
neutrals. Another reason could be that the energy of the electrons at the sheath
edge is lower than 1 eV since they are slowed down by the repulsive electric field
of the probe here. As a result, the Bohm velocity is also lower, from which the
ion velocity at the sheath edge is calculated according to the relations (1.1.13)
and (1.1.14). A third reason for the lower observed ion velocity at the sheath
edge than predicted by the theory may be the effect of the Dirichlet boundary
condition applied to the electric field at the interface between the computational
domain and the source of the charged particles, which significantly affects the
distribution of the electric field.

In general, in the case of a negative bias of the probe, it can be observed
that the potential is shielded in fluid models at shorter distances than shown by
the 3D PIC/MCC model. This is the opposite situation than in the case of a
positive probe bias, where the potential given by the fluid models is attenuated
at greater distances. The reason is apparently again related to the neglect of the
inertial term for positive ions in the case of fluid models. Due to the neglect of
the inertial term, the positive ions are more mobile, they shield the negative bias
of the probe well and do not allow the electrons to interfere as much with the
positive sheath.

In the case of the probe bias of Up = −2 V (figure 4.4a) it can be observed
that the number density profile given by the fluid model with variable transport
coefficients is closer to the results of the 3D PIC/MCC model at a greater distance
from the probe than to the results of the fluid model with constant transport
coefficients. The reason is a significant decrease in the diffusion coefficient in the
direction towards the probe (figure 4.4b) – in order to maintain the flux of charged
particles, gradient of the number density must increase in this direction, leading
to a concave number density profile in the case of 3D PIC/MCC model and fluid
model with variable transport coefficients. Near the probe, both fluid models give
the same results, which differ from the 3D PIC/MCC model – it is apparently
due to the application of the Dirichlet boundary condition n = 0 on the probe
surface in the case of the fluid models. Due to the fact that both fluid models
in the sheath area are identical in terms of the number density distribution, the
potential is shielded by the sheath in the same way and the electric field that
gets outside the sheath decreases at the same rate. As a result, both fluid models
give the same course of the electric potential in the entire computational domain,
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(a) Potential and number density profiles
in case of Up = −2 V probe bias

(b) Profiles of transport coefficients in case
of Up = −2 V probe bias

(c) Potential and number density profiles
in case of Up = −6 V probe bias

(d) Profiles of transport coefficients in case
of Up = −6 V probe bias

Figure 4.4: Sheath structure in front of an infinitely large planar probe which is
kept at negative electric bias with respect to the plasma potential, neutral gas
pressure 532 Pa. Figures on the left compare results of 3D PIC/MCC model (full
line) with those of fluid model with constant (dashed line) and with spatially
dependent transport coefficients (dotted line). Profiles of transport coefficients
on the right were calculated by 3D PIC/MCC model.

despite the fact that they differ in the course of the number density of the charged
particles in the region of the quasi-neutral plasma.

Interestingly, for the probe bias of Up = −6 V, all models show the same
number density and electric potential profiles. The fact that the 3D PIC/MCC
model approaches fluid models at higher voltages would indicate that the positive
ions start to behave according to the Boltzmann relation for the number density
in these conditions – at a higher electric field, the ratio between the potential
energy of the positive ions and their kinetic energy is greater, and the inertial
term thus apparently loses its meaning. However, the models still show different
values of the (primarily electron) current, as can be seen in the figure 4.7 with
IV characteristics. This is apparently due to the different values of the diffusion
coefficients used in the models.
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(a) Potential and number density profiles
in case of Up = 4 V probe bias

(b) Profiles of transport coefficients in case
of Up = 4 V probe bias

(c) Potential and number density profiles
in case of Up = 8 V probe bias

(d) Profiles of transport coefficients in case
of Up = 8 V probe bias

Figure 4.5: Sheath structure in front of an infinitely large planar probe which is
kept at positive electric bias with respect to the plasma potential, neutral gas
pressure 532 Pa. Figures on the left compare results of 3D PIC/MCC model (full
line) with those of fluid model with constant (dashed line) and with spatially
dependent transport coefficients (dotted line). Profiles of transport coefficients
on the right were calculated by 3D PIC/MCC model.

IV characteristics Figure 4.7 shows the IV characteristics calculated using
the particular models, and table 4.6 presents the values of the plasma parameters
that were derived from them.

Let us now look in more detail at the calculated IV characteristics in the figure
4.7. The gray lines in the figure represent the linear fits of the electron current in
the area of the negative probe bias from which the electron temperature is derived.
In the case of the IV characteristic calculated using the 3D PIC/MCC model, one
point was omitted – the one for the probe bias of Up = −12 V, because it deviated
significantly from the linear dependence. In the case of the IV characteristics
calculated using the fluid model with constant transport coefficients, two fits are
presented. The first fit (solid line) is done for all values of the electron current at
the negative probe bias. However, it can be seen that for a low probe voltage the
dependence is not exactly linear and therefore it is more appropriate to perform
the fitting only in the linear part of the characteristic, which can be observed for
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(a) Electric potential and number density (b) Net space charge density and drift ve-
locity of positive ions

Figure 4.6: Sheath structure in front of an infinitely large planar probe which is
kept at negative electric bias Up = −8 V with respect to the plasma potential
calculated by the 3D PIC/MCC model, neutral gas pressure 532 Pa.

a higher negative probe voltage, and it is the second fit (dashed line).
In the case of the positive probe bias, both fluid models show a larger

electron current than the 3D PIC/MCC model and also show its faster growth
with increasing probe bias. The fluid model with variable transport coefficients
and the 3D PIC/MCC model show a very good agreement of the magnitude
of the electron current for the probe bias voltage Up = 0 V. The fluid model
with constant transport coefficients, in contrast to them, shows a higher value of
the electron current, precisely in proportion to the diffusion coefficients used in
the particular models (see the discussion on the coefficients Dconst and DP IC for
tables 4.3, 4.4, 4.5 and 4.6). As the positive bias of the probe increases, both fluid
models maintain this systematic offset in the value of the electron current drained
by the probe. Compared to the 3D PIC/MCC model, they show a faster growth
of the electron current with increasing positive probe bias. This is apparently
related to differences in the shape of the sheath at positive probe bias, which
lead to a steeper number density profile between the undisturbed plasma and the
sheath edge and thus to a higher flux of charged particles to the probe (see the
detailed discussion of the sheath shape in the case of the positive probe bias in
one of the previous paragraphs).

In the case of the negative probe bias, it can be observed that the electron
current given by the fluid model with constant transport coefficients is much
larger than the current given by the 3D PIC/MCC model. This is due to the
fact that the fluid model with constant transport coefficients neglects the drop
in electron diffusivity towards the probe – it thus overestimates their thermal
energy and as a result a higher electron current is observed. Further, it can
be observed that the fluid model with constant transport coefficients does not
follow linear dependence of the electron current for the small negative bias of
the probe which would indicate that the electrons do not behave according to
the Maxwellian distribution in this region. On the contrary, the fluid model with
variable transport coefficients show lower electron current than the 3D PIC/MCC
model. With the 3D PIC/MCC model, it has the same profile of transport
coefficients, so the reason for the difference is rather the neglect of the inertial
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(a) Full voltage range (b) Detail on the electron current density

Figure 4.7: IV characteristics of an infinitely large planar probe. Three mod-
elling approaches are compared: 3D PIC/MCC model (full line), drift-diffusion
fluid model with constant transport coefficients (dashed line) and drift-diffusion
model with spatially dependent transport coefficients (dotted line). Black dashed
line denotes current density of electrons with temperature Te = 11 605 K in the
collisionless case according to the equation (1.2.2). Gray lines represent linear
fits of the particular IV characteristics.

term in the drift-diffusion approximation of the fluid model – the more mobile
ions shield the negative bias of the probe well and do not allow the electrons
(with their high thermal energy) to interfere so much with the positive sheath.
As a result, lower electron current is observed by the fluid model with variable
transport coefficients. It is interesting that the ion current values match fairly
well for all the models used.

Let us now focus on the values of plasma parameters which are listed in the
table 4.6; let us first explain what they mean. The values in the row labeled ”Col-
lisionless” correspond to either the analytical values for the collisionless plasma
or to the input parameters of the models: je,0 is the electron saturation current
given by expression

je,0 = 1
4en0vth = 1

4en0

(
8kBTe

πme

) 1
2

,

Uf is the floating potential given by equation (1.1.9) and jf is the current density
of the charged particles on the probe which is at the floating potential (equa-
tion (1.1.8)). Number density ne and temperature Te are the parameters of the
undisturbed plasma – from the point of view of the models, these are the input
parameters defining the charged particles in the source. We want to obtain these
values by evaluating the calculated IV characteristics and verify in this way that
the models give correct results and the methodology for evaluating the IV charac-
teristics is correct. The values in the remaining rows of the table 4.6 are obtained
from the outputs of the particular models used. Current density je,0 is direct
output of the models and it is the current density of electrons on the probe which
is at the plasma potential (Up = 0 V). These values were already discussed in the
table 4.5. The temperature Te was obtained by fitting the electron current in the
region of the negative bias of the probe and calculating according to the formula
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Model je,0 [A · m−2] Te [K] ne [m−3] Uf [V] jf [A · m−2]

Collisionless 26.8 11 605 1.00 × 1015 −4.68 1.52 × 10−1

3D PIC/MCC 1.33 13 884 4.54 × 1013 −8.79 1.58 × 10−3

Fluid – variable µ, D 1.39 12 632 4.97 × 1013 −7.80 1.48 × 10−3

Fluid – constant µ, D 1.65 18 614 4.86 × 1013 −10.9 1.57 × 10−3

Table 4.6: Evaluation of the IV characteristics of an infinitely large planar probe
which are presented in the figure 4.7.

(1.2.4). Number density ne was evaluated according to the formula (1.2.5) where
je,0 given by the particular model and Te obtained by the fitting procedure were
substituted. The floating potential Uf and its corresponding current density jf

were read from the IV characteristics graph as the intersection of the electron
and ion current densities.

In the case when the probe is at the plasma potential (Up = 0 V), the
values of the electron current obtained from the 3D PIC/MCC model (je,0 =
1.33 A · m−2) and from the fluid model with variable transport coefficients (je,0 =
1.39 A · m−2) match very well. In contrast, the current given by the fluid model
with constant transport coefficients is higher, precisely in proportion to the mag-
nitude of the diffusion coefficients used (jconst = jvarDconst/DP IC = 1.39 · 1.03 ×
102/ (8.68 × 101) = 1.65 A · m−2, see also the tables 4.3 and 4.4). Compared
to the Maxwellian flow of a collisionless plasma, these values are approximately
20× smaller. It should be noted that the values of the current given by all of the
used computer models are closely related to the size of the computational domain
which directly affects the magnitude of the number density gradient and thus the
flux of the charged particles.

It can be seen that all the used computer models show a higher electron
temperature than their temperature entered in the undisturbed plasma (Te =
11 605 K). All models show a higher electron current in the area of the negative
bias of the probe than would correspond to Maxwellian electrons at a temperature
of Te = 11 605 K. The biggest deviation (+60%) can be seen in the results of the
fluid model with constant transport coefficients, where the reason is the neglect
of the drop in diffusivity of electrons near the probe due to their decreasing root
mean square velocity in this direction which ultimately leads to an overestimation
of their thermal energy (see also discussion on the figure 4.7). However, higher
electron temperature is observed also for the 3D PIC/MCC model (+20%) and
for the fluid model with variable transport coefficients (+9%). The reason for the
increased observed temperature cannot be the neglect of the inertial term in the
drift-diffusion approximation in the fluid models, since the increased temperature
is also observed for the 3D PIC/MCC model. Collisions with neutral particles
should also not be a reason, as these do not increase the temperature of charged
particles. In the 3D PIC/MCC model, we try to keep the numerical heating
under control by choosing the appropriate time step and the size of the grid
cells. However, it can have a smaller effect and may be the reason why the 3D
PIC/MCC model gives higher values of the electron current (and thus also the
temperature) than the fluid model with variable transport coefficients in the area
of the negative bias of the probe. Perhaps the higher than expected value of
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the electron current (by all used computer models) could be due to the presence
of positive ions in front of the negatively biased probe. Indeed, the collisionless
theory of probe measurements (see the chapter 1.2.1) assumes that the fluxes of
the different charged particle species to the probe are independent of each other
and can be calculated separately. Formula 1.2.2, from which follows relation 1.2.4
for evaluating the electron temperature, was derived without taking into account
the presence of positive ions in front of the negatively charged probe. Their
presence effectively reduces the negative potential of the probe which is ”seen”
by electrons and more of them can thus reach its surface.

Due to the lower observed electron current je,0 in the case of the probe bias
Up = 0 V, we observe for all models after evaluation according to formula 1.2.5 a
proportionally lower (≈ 20×) number density of electrons ne than that prescribed
in the source of the charged particles. We can therefore conclude that the used
methodology for evaluating the IV characteristic is not appropriate in the studied
case.

All the models used show a lower value of the floating potential Uf than the
theoretical value corresponding to a collisionless plasma. The reason is apparently
the slower decreasing observed electron current on the probe in the case of its
negative bias (due to the effectively higher electron temperature) and apparently
also a lower ion current. It can be observed that the value of the current density
jf at the floating potential is similar for all used models, but it is two orders
of magnitude lower than the theoretical value corresponding to a collisionless
plasma. The reason can be both collisions with neutral particles, which limit the
flux of charged particles, and also low number density of the charged particles at
the sheath edge.

4.2 Plasma sheath of a planar probe in 3D
The results in this chapter demonstrate the ability of the developed 3D PIC/MCC
code to resolve 3D problems. For that purpose, sheath profiles and IV character-
istic of a simple planar probe in 3D space were calculated. The investigation was
done for argon plasma of the same properties as in the previous chapter 4.1.2.
Plasma parameters and settings of the 3D PIC/MCC model are summarized in
the table 4.7. Geometry of the computational domain with the planar probe is
depicted in the figure 4.8. The particle source adjoins the computational domain
on all of its outer faces.

At first, characteristic lengths of the modelled case will are discussed. They
are as follows:

• Debye length: λD = 2.35 × 10−4 m,

• Mean free path of electrons: λe = 3.91 × 10−4 m,

• Mean free path of Ar+ ions: λi = 1.12 × 10−5 m,

• Equivalent probe radius: rp = 7.82 × 10−4 m. (We model a planar probe
of finite dimensions, which can be viewed from a sufficiently large distance
as a spherical probe of equivalent radius rp. The radius rp corresponds to
a sphere that has the same volume as the modelled planar probe of finite
dimensions.)
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Figure 4.8: Geometry of the planar probe and 3D computational domain.

Temperature Te = 11 600 K (= 1 eV), Ti = 300 K
Number density ne = ni = 1015 m−3

Plasma frequency ωp = 1.78 × 109 rad · s−1

Debye length λD = 2.35 × 10−4 m
Elastic cross section σe = 2.0 × 10−20 m2, σi = 7.0 × 10−19 m2

Neutral gas p = 532 Pa(= 4 Torr), T = 300 K
No. particles per a superparticle Np = 2.0 × 103 particles
Size of a grid cell ∆x = 1.25 × 10−4 m
Time step ∆te = 1.0 × 10−11 s, ∆ti = 1.0 × 10−9 s
Planar probe dimensions (2 × 2 × 0.5) × 10−3 m
Computational domain (10 × 10 × 10) × 10−3 m

Table 4.7: Plasma parameters and settings of the 3D PIC/MCC model used for
the study of plasma sheath of a planar probe in 3D.

Debye length λD and mean free paths λe, λi are exactly the same as in the
case which was studied in the previous chapter 4.1.2. By comparing Debye length
λD and mean free paths λe, λi, we come to the same conclusion that in the case
of both types of charged particles, we can speak of a collisional sheath, where one
can observe units of collisions of electrons with neutral particles (3λD/λe ≈ 1.8)
and dozens of collisions of positive ions with neutrals (λD/λi ≈ 20).

From the figure 1.3 it can be seen that if the probe radius rp is at least three
times the Debye length λD (rp > 3λD), we can speak of a thin sheath. This is
also our studied case, since rp = 3.33λD. The required inequality is only closely
satisfied and we can thus speak of a borderline case that corresponds to a rather
thin sheath.

If the mean free path λ is smaller than the probe radius rp, then there is a situ-
ation where we cannot speak of undisturbed plasma at the sheath edge, since the
probe, by its presence, blocks a significant amount of the charged particles that
would otherwise come to the sheath edge from its direction, which was discussed
in the chapter 1.2.2. As a result, a number density profile is established, which
decreases towards the probe according to the solution of the diffusion equation.
This situation is also our studied case, since both λe < rp and λi < rp.

Let us look at the figures 4.9 and 4.10 where the distribution of electric po-
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(a) XY plane cut, z = 0 m (b) XZ plane cut, y = 0 m

(c) XY plane cut, z = 0 m (d) XZ plane cut, y = 0 m

Figure 4.9: Electric potential and space charge density distribution in the sur-
roundings of the negatively biased planar probe modelled in 3D space, Up =
−7.0 V.

tential and space charge density in the vicinity of the probe is plotted. It can be
observed that the probe potential is not constant across the surface of the probe
as it should actually be. It is the effect of the finite cell size of the computational
grid that affects the ”smearing” of the surface charge density on the probe (see
also chapter 3.2.2, figure 3.1). The situation would be better if a finer computa-
tional mesh was used, which would, however, lead to much longer calculations.
For evaluation purposes, the probe potential is thus reported as the average value
of the electrical potential over the probe volume. Further, relatively large spatial
fluctuations of the results can be observed, especially of the space charge density.
The presented results were obtained by averaging the total number of 200 solu-
tion samples, which were taken in the steady state of the calculation and between
which 2 000 time iterations took place. The results would be smoother if a higher
number of samples were averaged, which would, once again, lead to much longer
calculations.

Again, the negative probe potential is shielded at greater distances compared
to the positive probe bias, which was also observed in the previous chapter 4.1.2.
Also now, the reason is the large thermal energy of the electrons, which weaken
the effect of positive ions shielding the negative bias of the probe, and also the
need for an electric field in the pre-sheath, which would sufficiently accelerate the
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(a) XY plane cut, z = 0 m (b) XZ plane cut, y = 0 m

(c) XY plane cut, z = 0 m (d) XZ plane cut, y = 0 m

Figure 4.10: Electric potential and space charge density distribution in the sur-
roundings of the negatively biased planar probe modelled in 3D space, Up = 8.0 V.

positive ions so that they could create an area of positive space charge in front
of the negatively charged probe. In the figures 4.9c and 4.9d, we see that the
positive space charge density in this case accumulates at the edges and corners of
the probe, which are the places of strong electric field. In contrast, in the case of
a positive bias of the probe, the negative space charge density remains rather at
the flat surface of the probe (figures 4.10c and 4.10d). In the case of the positive
probe bias, we also observe that the sheath edge is clearly defined – the sheath
is formed by a negative charge, and the low thermal energy of positive ions does
not allow them to weaken the shielding effect of electrons, as happens in the case
of a negative probe bias, when electrons with high thermal energy weaken the
shielding effect of the positive ions.

In the figures 4.11 and 4.12, profiles of electric potential, number density and
transport coefficients along the z axis, which is perpendicular to the probe surface,
are depicted for the negative and positive probe bias cases. It can be observed
that the number density of the charged particles decreases towards the surface of
the probe just as it was observed in the 1D case in the chapter 4.1.2. Compared
to the 1D case, where the decrease was linear, however, we now observe a 1/r
decrease (r – radial distance from the probe), which corresponds to the solution of
the diffusion equation in spherical symmetry. Ideally, the computational domain
should be larger, as it can be seen from the figures that its limited size can,
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(a) Profiles of electric potential and num-
ber density of the charged particles (b) Profiles of transport coefficients

Figure 4.11: Sheath structure in front of the negatively biased planar probe
modelled in 3D space, Up = −7.0 V.

(a) Profiles of electric potential and num-
ber density of the charged particles (b) Profiles of transport coefficients

Figure 4.12: Sheath structure in front of the negatively biased planar probe
modelled in 3D space, Up = 8.0 V.

through the applied boundary conditions, significantly affect the distribution of
the number density of the charged particles and the profile of the electric potential
of the negatively biased probe. However, a larger computational domain would
mean significantly longer calculations and was therefore not used.

In the case of negative and positive bias of the probe, which are more or less
comparable in their absolute value in the figures 4.11a and 4.12a, the sheath,
which we consider to be the region in which the quasi-neutrality of the plasma is
disturbed, is comparatively large – it extends to a distance of approx. 1.75 mm
from the probe, which is approx. 7 × λD. This is perhaps a bit surprising as we
would expect a larger sheath in the case of a negative probe bias. In this case,
we observe that the positive space charge density is accumulated more near the
surface of the probe, in the case of a positive bias of the probe, it is kept more
near the sheath edge.

Let us focus more on the figure 4.11a. It corresponds approximately to the
situation when the probe is at floating potential – from the IV characteristic, its
value was evaluated at Uf = −6.79 V (see the table 4.8 below). It can be seen
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Figure 4.13: Net space charge density and drift velocity of positive ions in front
of the planar probe which is approximately at floating potential, comparison of
1D and 3D model results.

that the potential drop in the pre-sheath is approx. Ups = 1 V (the sheath, i.e.
the region of disturbed quasi-neutrality of the plasma, is approximately 2 mm
large; at this distance the potential drop with respect to the undisturbed plasma
is just approx. 1 V), which is a value higher than the expected value Ups =
0.5 V in the case of a collisionless plasma (according to the equation (1.1.6)
assuming an electron temperature of 1 eV). The reason is apparently collisions
with neutral particles, which cause a resistance force that the positive ions must
overcome so that they can be accelerated to a sufficiently high velocity (= Bohm
velocity), which apparently requires a higher potential drop than in the case of
a collisionless plasma. Further, for a collisionless plasma, the expected number
density of the charged particles at the sheath edge is ns = 0.61n0 (according to
the equation (1.1.7)), but in the modelled case the number density at the sheath
edge is lower, only about ns = 0.4n0. It can be due to the diffusion 1/r profile
of the number density, which is established due to the presence of collisions with
neutral particles.

In the figure 4.13, it can be seen how the positive ions before entering the
sheath are accelerated by an electric field that penetrates outside the sheath into
the pre-sheath. Positive ions upon entering the sheath reach directed velocity
of approximately 50 m · s−1, which, as in the 1D case described in the chap-
ter 4.1.2, is less than the theoretical value for collisional plasma: the equation
(1.1.13) predicts the value us = 270 m · s−1 and the equation (1.1.14) predicts
us = 213 m · s−1. (These values are obtained for Te = 1 eV and ne = 4.0×1014 m−3

which corresponds to the electron number density at the sheath edge.) The rea-
sons for this difference between the calculated and theoretical values are appar-
ently the same as in the 1D case. Further, it can be noticed that the higher values
of the directed velocity of ions entering the sheath (both observed and theoret-
ically predicted) compared to the 1D case are apparently related to the higher
number density of the charged particles at the sheath edge (ns = 4.0 × 1014 m−3)
than in the 1D case (ns = 2.5 × 1014 m−3), which leads to a lower value of the
Debye length λDs at the sheath edge, which is applied in the equations (1.1.13)
and (1.1.14), and thus to a higher value of us.
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(a) Negatively biased probe (b) Positively biased probe

Figure 4.14: Comparison of electric potential and space charge density in front
of the finite planar probe modelled in the 3D space with infinitely large planar
probe described by symmetrical 1D model.

Figure 4.14 shows a comparison of the obtained results with the 1D model of
the planar probe that was presented in the chapter 4.1.2. (Note that the probe
bias is not exactly the same in both cases.) The 3D model shows that the electric
potential is shielded at shorter distances for both positive and negative probe
bias compared to the 1D model. Further, it can be seen that the maximum
value of the charge density in the sheath is significantly lower in the 1D case
than in the 3D model. The reason for these differences is apparently the different
value of the number density of charged particles in the area of the sheath edge.
In the vicinity of the probe, the number density of charged particles in the 3D
model decreases as 1/r, and a higher number density can be thus observed at
the sheath edge than in the case of the 1D model, which shows linear decrease of
the number density towards the probe. Another reason is also the choice of the
dimensions of the computational domain. In the 1D model, the distance between
the probe surface and the undisturbed plasma is equal to 10 mm. In the 3D
model, the planar probe is embedded in the center of the computational domain,
and the distance between the probe surface and the undisturbed plasma is only
about 5 mm. Consequently, in the 3D model, the gradient of the number density
between the undisturbed plasma and the probe is higher, and a higher number
density of charged particles can be observed in the sheath edge region. It can also
be seen that the charge density profile in the sheath has a similar character in
both cases, i.e. in the 3D and in the 1D model – in the case of a negative probe
bias, it accumulates at the surface of the probe, while in the case of a positive
bias, it stays more at the sheath edge.

Now let us take a closer look at the figure 4.15, where the calculated IV
characteristic is shown. From the figure 4.15a, we can see that the calculated
IV characteristic has a typical course and that the electron current in the region
of the negative bias of the probe is higher than what would correspond to the
Maxwellian electrons with a temperature of 1 eV. This behavior was also observed
in the case of the 1D model of the infinitely large planar probe described in
the previous chapter 4.1.2. Figure 4.15b then shows a comparison of the IV
characteristics resulting from the 1D and 3D model of the planar probe – the
currents on the probe (ion and electron) were renormalized by such a factor that
the electron current je,0 on the probe at its zero bias is equal to 1 in both cases.
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(a) 3D model results. (b) Comparison between 1D and 3D model
results.

Figure 4.15: IV characteristics of the planar probe modelled in 3D space. (Black
dashed line marks current density which would correspond to the Maxwellian
electrons of temperature Te = 11 605 K.)

From this graph it can be seen that in the 3D model we observe a steeper drop
in the electron current in the area of the negative bias of the probe which leads
to a lower electron temperature evaluated from the IV characteristic. We can
also observe that in the case of the 3D model, the ratio between ion and electron
current is higher than in the 1D model, leading to a higher floating potential Uf

than that observed in the 1D model. Further, we observe a faster growth of the
electron current in the case of a positive probe bias in the 3D model compared to
the 1D model. To a certain extent (at a sufficiently large distance), a 3D model
of a planar probe of finite dimensions can be considered a spherical probe, and
for it the collisionless theory of probe measurements predicts a linear growth of
the electron current with increasing probe bias (see equation (1.2.6)). Electron
collisions with neutrals, which perturb the orbital motions of the electrons around
the probe, appear to cause the observed current growth to be slower than linear
growth; however, the growth is still nonzero (zero growth = constant current
is predicted by the collisionless theory for an infinitely large planar probe, see
equation (1.2.3)).

Let us discuss plasma parameters which were obtained by evaluation of the
calculated IV characteristic and which are listed in the table 4.8, where they are
compared with the values relevant to the ideal collisionless case and with the
values obtained in the previous chapter 4.1.2 from 1D model of the infinitely
large planar probe. At first, let us focus on the value of the electron current at
zero bias of the probe and let us compare it with the value predicted by theory
according to the equation (1.2.17). We consider the following values: mean free
path of electrons λe = 3.91 × 10−4 m, mean free path of ions λi = 1.12 × 10−5 m,
equivalent probe radius rp = 7.82×10−4 m. Collisionless thermal flux of electrons
at the given conditions (ne = 1 × 1015 m−3, Te = 1 eV) is

je,th = 1
4qne

(
8kBTe

πm

) 1
2

= 26.8 A · m−2.

If we insert this value into the equation (1.2.17) for the collisional current density,
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Model je,0 [A · m−2] Te [K] ne [m−3] Uf [V] jf [A · m−2]

Collisionless 26.8 11 605 1.00 × 1015 −4.68 1.52 × 10−1

PIC/MCC – 3D 10.8 13 294 3.77 × 1014 −6.79 2.93 × 10−2

PIC/MCC – 1D 1.33 13 884 4.54 × 1013 −8.79 1.58 × 10−3

Table 4.8: Evaluation of the IV characteristics of the planar probe modelled in
3D space and comparison with 1D model results.

we obtain the value
je,c = je,th

3
4
λe

rp

= 10.1 A · m−2,

which is in very good agreement with the result of the PIC/MCC model,
je,c = 10.8 A · m−2 (i.e. only +7 % difference).

Using the standard evaluation of the IV characteristic, we also see that the
temperature of the electrons is 14.5 % higher than their temperature in the par-
ticle source (11 605 K). A similar difference was also observed in the case of the
1D model of the infinitely large planar probe in the previous chapter. Even in the
case of the 3D model, this difference can apparently be explained by the presence
of a positive charge in front of the negatively charged probe, the effect of which is
not included in the formula (1.2.4) for the evaluation of the electron temperature
and which may play a role in the case of the collisional plasma sheath. The stan-
dard evaluation of the IV characteristic also shows significantly lower electron
number density (ne = 3.77 × 1014 m−3) than its value in an undisturbed plasma
(n0 = 1.0 × 1015 m−3). This lower value corresponds rather to the value of the
electron number density at the sheath edge which is lower than n0 due to the
diffusion profile of the solution between the undisturbed plasma and the sheath
edge. If the correct value of the number density of charged particles in the undis-
turbed plasma should be obtained from the IV characteristic measured under the
given conditions, to evaluate the electron current to the probe, which is at the
plasma potential, relation (1.2.17) for collisional plasma would have to be used
instead of the relation (1.2.5) for collisionless plasma. In the table 4.8, we can
also observe that the floating potential Uf is higher in the case of the 3D model
of the probe compared to the 1D model, but still lower than the theoretical value
for collisionless plasma. The reason for the higher value of Uf compared to the
1D model will probably be a higher ratio of the ion current to the electron current
which can probably be attributed to the edge effects that lead to an increased
accumulation of positive charge at the edges of the negatively charged probe (see
the figures 4.9c and 4.9d) and thus proportionally increase the ion current to the
probe.

4.3 Mutual interaction of plasma sheaths in 2D

4.3.1 Electropositive plasma
Results presented in this section were published in the article Hromadka et al.
[2014] and were obtained by means of the developed 2D PIC/MCC model which
was described in the section 3.1.
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Figure 4.16: Potential distribution and electron number density in the computa-
tional domain for two positions and two biases of the smaller probe. The distances
between the centers of the probes are 10 mm and 2.5 mm.

Motivation Measurement of plasma parameters by means of cylindrical Lang-
muir probe is well established technique to determine basic plasma parameters.
Classical theories of the probe measurement assume that the probe is immersed
into quasi-neutral plasma. However, is it possible to obtain plasma parameters
by probe measurement also in areas where quasi-neutrality is broken? Exam-
ple of such a case might be the situation when the measuring probe is present
in the sheath layer of the another one. Further, biased auxiliary probe can be
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used to regulate charged particle fluxes and their energy distribution on the other
immersed solid [Zeng et al., 1998].

Model settings Electropositive argon plasma of 133 Pa pressure was mod-
elled. Number density of charged particles (electrons and Ar+ ions) was set to
ne,i = 1.0 × 1015 m−3, electron temperature Te = 2 eV. Collisions of electrons e−

with argon neutrals that were considered: elastic scattering, excitation (11.55 eV)
and ionization (15.76 eV); collisions of Ar+ ions with neutrals: elastic scattering
and charge transfer. Energy dependance of the particular cross sections were
prescribed according to the article Havlickova et al. [2007]. Two different geome-
try configurations were investigated: a large cylindrical probe with a smaller test
cylindrincal probe immersed in its sheath structure and a cylindrical probe near
a flat surface with rectangular trench.

Interaction of the two cylindrical probe sheaths Two parallel cylindrical
probes were placed at several mutual distances (2.5 mm, 5.0 mm and 10 mm)
into the rectangular computational domain of (5 × 4) × 10−2 m dimensions, the
size of the cell of the computational grid was 1 × 10−4 m. The large probe of
1 mm radius was kept at +10 V bias with respect to the plasma potential. To
obtain IV characteristic of the smaller probe (0.2 mm radius), its bias was swept
between −20 V and +20 V. The 2D PIC/MCC model was used to obtain spatial
distribution of the electric potential and number densities of the charged particles
in the vicinity of the probes (figure 4.16) and IV characteristic of the smaller probe
(figure 4.17). The electric current on the large probe for different biases of the
smaller probe was also monitored (figure 4.17).

In the figure 4.16, it can be seen that the presence of the smaller probe de-
creases the number density of the charged particles in the vicinity of the large
probe – since the modelled plasma is collisional (Debye length 0.33 mm, electron
mean free path 0.74 mm), diffusion logarithmic profile of the number density is
created in the vicinity of the both cylindrical probes. The figure 4.16 also shows
that the potential of the negatively biased smaller probe is shielded off at longer
distances and thus, the negative probe affects larger area than the positive one
– the reason is large enough thermal energy of electrons which are able to over-
come potential barrier created by the negatively biased probe, get into its close
vicinity and weaken the shielding electric field of the positive Ar+ ions which are
cumulated at the probe.

In the table 4.9, plasma parameters obtained by the standard analysis of the
IV characteristic of the smaller probe (figure 4.17) are listed for different mutual
distances of the probes. It can be seen that even in the case when the large
probe is not present in the computational domain, we observe a lower evaluated
number density of the charged particles (ne = 5.90 × 1014 m−3) than what is in
the particle source (ne = 1.0 × 1015 m−3). A similar observation was made in the
previous chapters when we examined a planar probe (see e.g. the table 4.8). The
reason for this difference is that we use the collisionless plasma theory to evaluate
the IV characteristic, which is not suitable, because in the case studied, collisions
dominate and manifest themselves by creating a logarithmic diffusion profile of the
number density of the charged particles in the vicinity of the cylindrical probe. By
applying the collisionless plasma theory, we evaluate rather the number density of
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Figure 4.17: IV characteristics of the smaller cylindrical probe for different dis-
tances from the large probe and the current collected by the large probe.

Distance [mm] Te [K] ne [1014 m−3]
No large probe 18 960 5.90
10.0 18 280 4.36
5.0 17 570 3.58
1.0 17 120 2.37

Table 4.9: Analysis of the IV characteristics of the smaller probe.

particles at the sheath edge, which, due to the presence of collisions, is lower than
in the undisturbed plasma in the particle source. If the large probe is present
in the computational area, then it can be seen that for a closer mutual distance
between the probes, the observed current and the evaluated number density of
the particles are lower. This trend is in agreement with the calculated number
density distribution which is decreasing towards the large probe according to the
logarithmic diffusion profile.

Even in the case when the large probe is not present in the computational
domain, the evaluation of the IV characteristic yields a lower electron temperature
(Te = 18 960 K) than that in the particle source (Te = 23 210 K = 2 eV). This is
the opposite observation to the case of the planar probe studied in the previous
chapters (see e.g. the table 4.8). The reason is apparently that in the currently
studied case of cylindrical probes, inelastic collisions (excitation, ionization) were
taken into account for the electrons which cool them when they move in the
computational domain. If a large probe is present in the region, then we see that
the electron temperature evaluated from the IV characteristic is lower for a closer
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Figure 4.18: 2D model of the flat surface with a rectangular trench and positions
1 – 5 of the cylindrical probe.

mutual distance between the probes. It is the effect of the strong electric field
between the probes: high energetic electrons are rather attracted by the positive
large probe in the case of negative smaller probe which leads to the lower electron
current on the smaller probe, greater derivative of the current and consequently
to the lower evaluated electron temperature.

The figure 4.17 shows that the electric current (formed mainly by electrons)
on the positive large probe decreases for both positive and negative bias of the
smaller probe; this effect is more significant for closer mutual distance of the
probes. Positive smaller probe apparently collects part of the electrons which
would otherwise end up at the positive large probe. On the contrary, negative
smaller probe repels also those electrons which are heading towards the positive
large probe.

Interaction of the cylindrical probe sheath with the sheath of uneven
surface A cylindrical Langmuir probe of 0.2 mm radius was placed at several
positions near a flat surface with a rectangular trench (figure 4.18). The question
is whether the presence of the flat surface and of the trench, in particular, affects
the IV characteristic measured by the probe at these positions. Bias of the uneven
surface was kept at 0 V with respect to the plasma potential, bias of the probe
was swept between −20 V and +20 V.

IV characteristics in the figure 4.19 show that the electric current on the
probe decreases with the decreasing distance between the probe and the flat
surface. It is due to the linearly decreasing diffusion profile of the charged particles
number density towards the surface. On the other hand, no significant effect is
observed when the probe approaches the trench along the flat surface. Presence
of the trench in the flat surface does not influence the sheath structure of the
flat surface much as can be seen in the figure 4.20. In the investigated case,
sheath surrounding the cylindrical probe is of comparable size with the trench.
More significant effect of the trench on the calculated IV characteristics would be
probably observed if the trench had larger dimensions than the sheath.
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Figure 4.19: IV characteristics of the cylindrical probe near the uneven surface
at different positions.

Figure 4.20: Number density of Ar+ ions for +10 V bias of the cylindrical probe
and position no. 4.

Summary Mutual interaction of the plasma sheaths has significant influence
on the fluxes of the charged particles on the solids immersed in plasma. The 2D
PIC/MCC model is able to provide trends of the observed phenomena; however,
for quantitative comparison, 3D model is needed because interpretation of the
2D model results is problematic.

4.3.2 Electronegative plasma
Results that are presented in this section were published in the article Hromadka
et al. [2015] and were obtained by means of the developed 2D PIC/MCC model
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which was described in the section 3.1.

Motivation Electronegative plasma, in which part of the negative electric char-
ge is formed by negative ions, is also widely used in different plasma-assisted
techniques of material surface treatment (e.g. surface etching, ion implantation,
thin film deposition). Presence of negative ions in the plasma significantly af-
fects its response to external electromagnetic fields and also its chemical activity.
This strongly depends on the ratio between number density of electrons (ne)
and number density of negative ions (n−). For this reason, we define plasma
electronegativity α as

α = n−

n− + ne

.

The most common electronegative plasmas used in semiconductor manufacturing
are plasmas in gases which contain e.g. H2, F2, O2, Cl2, SF6. Electronegativity
can vary in a wide range from tenths of a per cent up to almost 100%.

Theory of electronegative plasma sheath has been adressed in numerous works
so far, e.g. Swift and Schwar [1969], Braithwaite and Allen [1988], Riemann
[1995]. In this section, 2D PIC/MCC study of plasma sheath of a single cylindrical
Langmuir probe in argon plasma with admixture of negative oxygen ions O− is
studied. Further, mutual interaction of multiple plasma sheaths in this kind
of plasma is presented (similar study as in the section 4.3.1 for electropositive
plasma).

Model settings The object of the presented study is an artificial mixture of
positive argon ions Ar+, electrons e− and negative oxygen ions O− with neutral
argon gas Ar in the background. It is a very simple model of Ar/O2 plasma which
contains much more charged species in reality. In this way, the model remained
as simple as possible and still able to show the effect negative O− ions on the
sheath structures. The computational study was done by means of 2D PIC/MCC
model which is described in more detail in the section 3.1. In the table 4.10, there
are values of the model parameters which were used in the presented study. The
model resolved trajectories of 2×106 charged particles in total. Typically, it took
1.5×105 iterations of the main time cycle to reach the steady state and additional
1 × 105 iterations to get sufficiently smooth solution. The following scattering
processes of the charged particles with argon neutrals were taken into account:
electron collisions [Bogaerts et al., 1999] – elastic scattering, excitation (11.55 eV)
and ionization (15.76 eV) ; Ar+ collisions [Phelps, 2013] – elastic scattering and
charge transfer; O− collisions [Vahedi and Surendra, 1995] – elastic scattering.

Sheath of a single probe in the electronegative plasma Sheath struc-
ture in the vicinity of a biased cylindrical probe of 0.2 mm radius was stud-
ied for two different values of its bias UB with respect to the plasma potential:
UB = {−10,+10} V. The study was done for plasma of three different electroneg-
ativities: α = {10%, 50%, 90%}. In the figure 4.21, profile of number density of
the charged particles for α = 50% case is presented. (Note that only the detail of
the sheath region is captured in the figure. The electronegativity of 50% applies
only to the bulk plasma which is at a distance of 20 mm from the probe. At
the sheath edge, i.e. 1.5 mm or 5 mm from the probe, the electronegativity is
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Model parameter Value
Computational domain (4 × 4) × 10−2 m
Computational mesh 400 × 400 nodes
Pressure 133 Pa
Plasma density 1.59 × 1015 m−3

Plasma electronegativity 10%, 50%, 90%
Temperature (e−, Ar+, O−) 23 600 K, 300 K, 300 K
Time steps (e−, Ar+, O−) 10−11 s, 10−8 s, 10−8 s
Probe radius (smaller, large) 0.2 mm, 1.0 mm

Table 4.10: 2D PIC/MCC model parameters applied in the study of electroneg-
ative plasma sheaths.

significantly lower.) Profiles of net space charge density and electric field in the
case of all considered plasma electronegativities are also given in the figure 4.21.

In the case of α = 50% and UB = +10 V, shielding of the external probe
potential is ensured rather by e− than O− ions. It can be seen that number
density of O− ions is lower than density of e− also just behind the sheath edge.
In the case of negative probe bias UB = −10 V, positive space charge of Ar+ ions
which shields off the probe bias originates; however, this region is infiltrated by
those electrons which have sufficiently high thermal energy and thus, they are
able to overcome repelling force of the negatively biased probe. On the contrary,
O− ions stay further from the non-quasineutral sheath, their thermal energy is not
high enough to penetrate the sheath. These observations are well in agreement
with the article Franklin and Snell [1992] where it is stated that negative ions
are confined to bulk of plasma by the space charge fields caused by electrons
with their lighter mass and higher thermal energy. The presented observation
is also in accordance with the theory presented in the chapter 1.1.2 where for
γ = Te/T− = 78.7 and the same ratio of electrons and negative ions we observe a
very low electronegativity at the sheath edge (see the figure 1.2).

The figure 4.21 shows that the distribution of the net space charge density
around the probe varies with changing electronegativity. It can be seen that at low
electronegativity, for both positive and negative probe biases, the charge density
accumulates closer to the probe, while at higher electronegativity, the charge
density profile is more flat and the region of non-zero charge density extends to
a greater distance from the probe. With a negative bias, this area is generally
larger than with the same amount of positive probe bias. The explanation for the
different charge density profile with varying electronegativity can be as follows:

• With a positive bias and low electronegativity, the potential of the probe
is mostly shielded by electrons. They have a significantly higher thermal
energy compared to positive ions and it is not difficult for them to break
out of the quasi-neutral plasma and create a region of negative charge with
a relatively high density and low thickness in front of the probe – electrons
do not need pre-sheath in which they would be accelerated. This can be
seen in the left part of the figure 4.22 where for a positively charged smaller
probe we observe that the region of non-zero electric field (i.e. the directed
vectors of the electric field in the figure at bottom) corresponds to the region
of non-zero space charge density and the electric field does not penetrate
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the quasi-neutral plasma. At high electronegativity, negative ions must
participate in the shielding of the positive potential of the probe. However,
these have an energy comparable to the thermal energy of positive ions,
and therefore in this case a pre-sheath must be formed, where the negative
ions would be accelerated by the electric field so that they could leave the
quasi-neutral plasma and create a region of negative charge in front of the
probe (the existence of a pre-sheath at a higher electronegativity is indicated
by the right part of the figure 4.22 where for the smaller probe it can be
observed that the region of non-zero electric field, i.e. the directed vectors,
is larger than the region of non-zero charge density). Even so, the negative
ions are not able to leave the quasi-neutral plasma in large quantities – the
negative charge density in the sheath is thus lower and potential shielding
occurs at greater distances.

• In the case of negative bias of the probe and low electronegativity, the ions
must be accelerated to a very high velocity in the pre-sheath so that they
are able to overcome the thermal velocity of the electrons and create a
region of positive charge in front of the probe. The potential drop in the
pre-sheath is relatively high and the pre-sheath extends a large distance
from the probe (see the left part of the figure 4.22 where for a smaller,
negatively charged probe, the electric field extends into a much larger area
than the non-zero charge density area). But the electrons have a lot of
thermal energy and thanks to it they can get relatively close to the probe,
into the region of the negative field of the probe. As a result, an area of
positive charge density is formed only in the immediate vicinity of the probe.
At a higher electronegativity, according to the theory (the chapter 1.1.2),
the required directed velocity of positive ions upon entering the sheath is
lower than the Bohm velocity. In this case, such a high potential drop
in the pre-sheath is not necessary and it does not have to extend over
a long distance (see the right part of the figure 4.22 where we observe
for a smaller, negatively charged probe that the region of the non-zero
electric field approximately corresponds to the region of the non-zero space
charge density). The situation is thus ultimately analogous to the case of a
positively charged probe at a higher electronegativity (where, of course, the
positive and negative ions have reversed roles), where the non-zero charge
density also has a flat profile. As a result, the region of non-zero charge
density is larger than in the case of low electronegativity.

Interaction of plasma sheaths in electronegative plasma Interaction of
plasma sheaths of a smaller cylindrical probe (0.2 mm radius) and a large probe
(1.0 mm radius) was studied. The study was done for one particular bias of the
large probe, Ubp = +10 V. Parameters that were varied: distance between the
probes d = {2.5, 10} mm, bias of the smaller probe Usp = {+10,−10} V and
plasma electronegativity α = {10%, 90%}. Interaction of the sheaths is depicted
in the figures 4.22 and 4.23 in terms of net space charge density and electric field
distribution around the probes for all of the studied variants. The figure 4.22
presents results for positive bias of the smaller probe Usp = +10 V, whereas the
figure 4.23 for its negative bias Usp = −10 V.
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Figure 4.21: Number density of charged particles, net charge density and electric
field intensity in the sheath structure around a single cylindrical probe for various
voltage biases Ub and electronegativities α of the studied plasma. The probe is
located on the left-hand side of the graphs, radial distance from the surface of
the probe is depicted on the horizontal axis.

Positive bias of the smaller probe Usp = +10 V: In case of large mutual dis-
tance of the probes (d = 10 mm), sheath structures do not significantly interact.
External potentials of the probes are well shielded out by electrons and they do
not penetrate far from the probes. If the distance between the probes (d = 2.5
mm) is lower than the characteristic size of the sheaths, one large sheath struc-
ture which is the sum of the particular sheaths is created. In general, sheaths
do not interact unless they start to spatially overlap. Mutual interaction of the
sheaths has quite similar character for different electronegativities; for higher
electronegativity, sheaths are only spatially larger.

Negative bias of the smaller probe Usp = −10 V: Positive Ar+ ions shield
the external potential of the small probe and area of positive space charge is
created in its surroundings. In the case of low electronegativity, electric field
penetrates quite far from the smaller probe; even beyond the area of non-zero
space charge. Positive ions have to be accelerated first in the pre-sheath region
to be able to overcome high thermal velocity of electrons in order to be able to
create positive space charge area in the probe surroundings (Bohm condition).
As a result, electric field of the smaller probe repels electrons which shield the
positive potential of the large probe even in case of large distance (d = 10 mm)
between the probes. This effect is stronger for closer distance between the probes.
In the case of high electronegativity, electric field of the smaller probe does not
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penetrate so far and areas of non-zero space charge and non-zero electric field
in the probe surroundings are almost identical. As there are rather O− ions of
thermal energy which is comparable to that of Ar+ ions than electrons, Ar+ ions
does not have to be accelerated so much before entering the sheath and presheath
region does not need to extend so far from the probe. The sheath of the positive
large probe is enlarged for higher α. However, the interaction of the probes can
be classiffied as less intensive in the case of high electronegativy, mainly due to
the lower dimension of the smaller probe pre-sheath.

α = 10%, Usp = +10 V, Ubp = +10 Vα = 10%, Usp = +10 V, Ubp = +10 Vα = 10%, Usp = +10 V, Ubp = +10 V α = 90%, Usp = +10 V, Ubp = +10 Vα = 10%, Usp = +10 V, Ubp = +10 V α = 90%, Usp = +10 V, Ubp = +10 V
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Figure 4.22: Net charge density and electric field intensity in the sheath structure
around two cylindrical probes for various positions of the smaller probe with bias
Usp = +10 V and various electronegativities of the studied plasma. Solid lines
mark isolines of charge density with 1 · 10−5 C · m−3 step and isolines of electric
field intensity with 3 · 103 V · m−1 step. Big probe bias Ubp = +10 V.

91



α = 10%, Usp = -10 V, Ubp = +10 Vα = 10%, Usp = -10 V, Ubp = +10 Vα = 10%, Usp = -10 V, Ubp = +10 V α = 90%, Usp = -10 V, Ubp = +10 Vα = 10%, Usp = -10 V, Ubp = +10 V α = 90%, Usp = -10 V, Ubp = +10 V

-4

0

4

y
[m

m
]

-8 -4 0 4 8

x [mm]

-4

0

4

y
[m

m
]

-4

-3

-2

-1

0

1

2

3

4

ρ
[1

0
-5

C
·m

-3
]

-8 -4 0 4 8

x [mm]

-4

-3

-2

-1

0

1

2

3

4

ρ
[1

0
-5

C
·m

-3
]

α = 10%, Usp = -10 V, Ubp = +10 Vα = 10%, Usp = -10 V, Ubp = +10 Vα = 10%, Usp = -10 V, Ubp = +10 V α = 90%, Usp = -10 V, Ubp = +10 Vα = 10%, Usp = -10 V, Ubp = +10 V α = 90%, Usp = -10 V, Ubp = +10 V

-4

0

4

y
[m

m
]

-8 -4 0 4 8

x [mm]

-4

0

4

y
[m

m
]

0

5

10

15

20

25

E
[1

0
3

V
·m

-1
]

-8 -4 0 4 8

x [mm]

0

5

10

15

20

25

E
[1

0
3

V
·m

-1
]

Figure 4.23: Net charge density and electric field intensity in the sheath structure
around two cylindrical probes for various positions of the smaller probe with bias
Usp = −10 V and various electronegativities of studied plasma. Solid lines mark
isolines of charge density with 1 · 10−5 C · m−3 step and isolines of electric field
intensity with 3 · 103 V · m−1 step. Big probe bias Ubp = +10 V.

Effect of the presence of the negatively biased smaller probe (Usp = −10 V)
on the sheath structure of the positively biased large probe (Ubp = +10 V) is
documented also in the figure 4.24 where flux of negatively charged particles on
the large probe is depicted for different conditions. Reduction of the flux from
direction of the smaller probe position (ψ = π) can be observed for all studied
variants. The reason is the electric field in the pre-sheath of the smaller probe
which repels the negative particles. The decrease of flux is more significant for
closer distance between the probes and it is also more significant for O− ions than
for electrons which have higher thermal energy and thus, they are able to better
overcome repelling field of the smaller probe.
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Figure 4.24: Fluxes of negatively charged particles on the large probe (Ubp = +10
V) for different values of plasma electronegativity α and positions of the smaller
probe (Usp = −10 V).

Summary The study of a single probe sheath in electronegative plasma proved
that negative O− ions stay rather in a bulk plasma while electrons with higher
mobility, higher thermal energy and lower values of elastic scattering cross section
ensure shielding out of the external potentials. The study of mutual interaction
of multiple plasma sheaths showed that even low electric field in the pre-sheath
of a smaller probe can considerably affect fluxes of the charged particles on the
large probe placed in its surroundings.

4.4 Mutual interaction of plasma sheaths in 3D
The results presented in this chapter follow the 2D study of the interaction of
plasma sheaths formed around two cylindrical probes, which was presented in the
chapter 4.3, and extend the study of this issue to 3D space. Here, two planar
probes of finite dimensions are studied – a larger probe whose dimensions are
identical to the planar probe studied in the chapter 4.2 and a smaller probe
whose dimensions in the x and y directions are half that. The geometry of the
probes, including the used computational domain, can be seen in the figure 4.25,
which also presents two relative positions of the probes for which the study was
carried out – i.e. for mutual distances of d = 5.0 mm and d = 2.5 mm in the
normal direction to the planes of the probes. The choice of the dimensions of the
probes is a little artificial and is limited by the chosen step of the computational
grid – in fact, the thickness of the probes in the z-axis should be much smaller,
for which it would be necessary to choose a smaller step of the computational
grid, which would lead to more time-consuming calculations. As a result, for
the smaller probe, its dimensions are comparable in all directions and even at a
relatively close distance it can be thought of as a spherical probe.

The study was performed by placing the smaller probe in two different po-
sitions relative to the large probe for which the IV characteristic was calculated
in each of these configurations. For each bias of the large probe, the potential of
the smaller probe was adjusted to equalize the flows of positively and negatively
charged particles on it, i.e. the smaller probe was assigned a voltage correspond-
ing to the floating potential under the given situation. In this way, it was possible
to find out what influence the presence of a smaller conductive object in the vicin-
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(a) Distance d = 5.0 mm (b) Distance d = 2.5 mm

Figure 4.25: Geometry of two interacting planar probes and 3D computational
domain.

ity of the planar probe has on its IV characteristic and on the plasma parameters
derived from it.

The calculations were performed for an electropositive argon plasma with the
same properties as those considered in the chapter 4.2. The plasma parameters
used and the settings of the 3D PIC/MCC model are summarized in the table
4.11. By modeling a plasma with the same parameters, the mutual relations
between the Debye length (λD = 2.35 × 10−4 m), the mean free path of electrons
(λe = 3.91 × 10−4 m), the mean free path of ions (λi = 1.12 × 10−5 m) and the
equivalent radius of the large probe (rLP = 7.82 × 10−4 m) did not change. So
we can still talk about a collisional sheath, both in the case of electrons and ions,
and also about a rather thin sheath around the large probe (for more detail, see
the discussion of the characteristic lengths in the chapter 4.2). The discussion
of the characteristic lengths now needs to be supplemented with the relationship
between the equivalent radius of the smaller probe, which is rSP = 4.92×10−4 m,
and between the Debye length λD and the mean free paths of the charged particles
λe, λi.

We can see that rSP/λD = 2.09 applies to the smaller probe and according to
the figure 1.3, it is necessary to consider its sheath rather as a thick sheath. In
the case of the relation of the equivalent radius of the smaller probe to the mean
free paths of the charged particles, the same applies as in the case of the large
probe: λi < rSP and λe < rSP . So even in this case, we have to consider that
the smaller probe can block a significant part of the particles that would come to
the sheath edge and we cannot thus talk about an undisturbed plasma here. It
should be noted that the inequality λe < rSP is only partially satisfied compared
to the similar inequality for ions and may be the reason for the different behavior
of electrons and ions in the vicinity of the smaller probe.

In the 4.2 chapter, it was shown that at the negative probe bias of Up = −7 V,
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Temperature Te = 11 600 K (= 1 eV), Ti = 300 K
Number density ne = ni = 1015 m−3

Plasma frequency ωp = 1.78 × 109 rad · s−1

Debye length λD = 2.35 × 10−4 m
Elastic cross section σe = 2.0 × 10−20 m2, σi = 7.0 × 10−19 m2

Neutral gas p = 532 Pa(= 4 Torr), T = 300 K
No. particles per a superparticle Np = 2.0 × 103 particles
Size of a grid cell ∆x = 1.25 × 10−4 m
Time step ∆te = 1.0 × 10−11 s, ∆ti = 1.0 × 10−9 s
Large probe dimensions (2 × 2 × 0.5) × 10−3 m
Smaller probe dimensions (1 × 1 × 0.5) × 10−3 m
Computational domain (10 × 10 × 15) × 10−3 m

Table 4.11: Plasma parameters and settings of the 3D PIC/MCC model used for
the study of plasma sheath interaction of two planar probes in 3D.

which is approximately equivalent to the floating potential, the sheath size is
approximately s = 1.75 mm (see the figure 4.11). We therefore expect that when
the probes are at a mutual distance of d = 5.0 mm, the sheaths around the probes
will not interact, while at a closer distance of d = 2.5 mm they will.

Let us discuss results presented in the figures 4.26, 4.27, 4.28, 4.29, 4.30
and 4.31 which show the sheath structures for different mutual positions of both
probes and for different biases (positive and negative) of the large probe. The
smaller probe is kept at floating potential in each situation, meaning it is nega-
tively biased with respect to the plasma potential. As observed in the previous
chapters, the electric field of the negatively charged probe is not completely at-
tenuated in the sheath region (that is, the region where the quasi-neutrality of
the plasma is disturbed) and partially penetrates into the pre-sheath where it
accelerates the positive ions so that they are able to create a region with pos-
itive charge density in front of the probe. As a result, the electric field of the
negatively charged smaller probe reaches a relatively large distance and can be
seen to affect, albeit slightly, the sheath of the large probe (both positively and
negatively charged) even at a large mutual distance of d = 5.0 mm. Through
this electric field, the smaller probe either takes away the positive charge density
from the negatively charged large probe, or begins to repel the negative charge
density from the positively charged large probe.

If the (negatively charged) smaller probe approaches a negatively charged
large probe, the positive charge densities attached to the surface of the individual
probes begin to repel each other and the charge density in the space between the
probes is neutralized. As a result, the electric potential in the region between
the probes will decrease. If the smaller probe were to get even closer, the array
of probes would begin to behave as a single structure manifesting outwardly
as a single resulting shielding layer. If the (negatively charged) smaller probe
approaches a positively charged large probe, then also in this case the charge
density in the space between the probes is neutralized – the positive charge density
of the smaller probe is neutralized with the negative charge density of the large
probe and as a result, high intensity electric field sets up between the probes.
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(a) Electric potential, d = 5.0 mm (b) Electric potential, d = 2.5 mm

(c) Charge density, d = 5.0 mm (d) Charge density, d = 2.5 mm

Figure 4.26: Electric potential and space charge density distribution in the sur-
roundings of two interacting planar probes in 3D space, XZ plane cut at y = 0 m.
The large probe is negatively biased (ULP = −6.65 V), the smaller probe is at
floating potential (USP = −6.50 V).

In both cases of positive and negative bias of the large probe, the effect of
the fact that there is a 1/r diffusion profile of the number density of the charged
particles in the vicinity of the smaller probe, which limits the number density
in the area between the probes, is apparently applied. It also holds that in all
cases shown, the sheath layer does not change at the surface of the probe, which
is turned away from the second, interacting probe.

Now let us take a look at the figure 4.32 and the table 4.12 where IV charac-
teristics of the large probe for different mutual positions of the interacting probes
are shown and compared to the IV characteristic of the single planar probe mod-
elled in 3D space, which was presented in the chapter 4.2. From the figure 4.32,
it can be seen that the differences in the values of the electron and ion current
flowing to the large probe are relatively small and become apparent only when
using a logarithmic scale. A lower current flowing to the large probe is observed
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for the closer distance between the probes; however, the overall shape of the IV
characteristic remains the same for different distances between the probes.

(a) Electric potential, d = 5.0 mm (b) Electric potential, d = 2.5 mm

(c) Charge density, d = 5.0 mm (d) Charge density, d = 2.5 mm

Figure 4.27: Electric potential and space charge density distribution in the sur-
roundings of two interacting planar probes in 3D space, XZ plane cut at y = 0 m.
The large probe is positively biased (ULP = 7.86 V), the smaller probe is at
floating potential (USP = −6.50 V).

From the table 4.12 it can be seen that due to the lower current on the
large probe, after evaluating the IV characteristics, we get a proportionally lower
number density of electrons ne for the closer distance between the probes. In
contrast, the electron temperature Te evaluated from the IV characteristic remains
approximately the same for different probe positions and the presence of the
smaller probe at the floating potential therefore has no effect on it. Furthermore,
we observe that as the probes are closer, the value of the floating potential Uf

evaluated from the IV characteristic of the large probe decreases, and at the same
time the value of the current density of the charged particles jf also decreases at
this bias. A lower value of the floating potential Uf indicates that positive ions
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are more sensitive to the presence of the smaller probe, whose flow to the large
probe decreases more than the flow of electrons when the probes are closer, and
the floating potential thus reaches a lower value.

(a) Profiles of electric potential and num-
ber density of the charged particles (b) Profiles of transport coefficients

Figure 4.28: Sheath structure in the surroundings of two interacting planar probes
modelled in 3D space. The large probe is negatively biased (ULP = −6.65 V),
the smaller probe is at floating potential (USP = −6.50 V) and mutual distance
between the probes is d = 5 mm.

(a) Profiles of electric potential and num-
ber density of the charged particles (b) Profiles of transport coefficients

Figure 4.29: Sheath structure in the surroundings of two interacting planar probes
modelled in 3D space. The large probe is negatively biased (ULP = −6.56 V),
the smaller probe is at floating potential (USP = −6.80 V) and mutual distance
between the probes is d = 2.5 mm.

Figure 4.33 shows the situation on the smaller probe at different biases of the
large probe. It can be seen that if the large probe is at the plasma potential
(ULP = 0 V), then the potential of the smaller probe required to equalize the
electron and ion current on it is slightly lower than the floating potential evaluated
in the chapter 4.2 for a single planar probe, which, however, had dimensions
corresponding to the large probe in the currently studied case.
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(a) Profiles of electric potential and num-
ber density of the charged particles (b) Profiles of transport coefficients

Figure 4.30: Sheath structure in the surroundings of two interacting planar probes
modelled in 3D space. The large probe is positively biased (ULP = 7.86 V), the
smaller probe is at floating potential (USP = −6.50 V) and mutual distance
between the probes is d = 5 mm.

(a) Profiles of electric potential and num-
ber density of the charged particles (b) Profiles of transport coefficients

Figure 4.31: Sheath structure in the surroundings of two interacting planar probes
modelled in 3D space. The large probe is positively biased (ULP = 8.87 V), the
smaller probe is at floating potential (USP = −6.72 V) and mutual distance
between the probes is d = 2.5 mm.

Furthermore, under these conditions, we observe that the flux of the charged
particles to a smaller probe is greater than the flux of the charged particles to
the single planar probe at the floating potential. The reason is probably related
to the shape of the probe – the smaller probe is more similar to a spherical probe
and a 1/r number density profile is indeed formed around it. In the case of the
larger probe, the number density profile is not exactly 1/r, but for straight parts
it can locally transition to a linear profile and thus to a smaller number density
of particles in the vicinity of the probe (see e.g. the figure 4.28a). As a result,
we apparently observe a lower current density for the large probe than for the
smaller one. Since the observed current density is greater with the smaller probe,
the floating potential can apparently drop slightly as such a large value is not
required to maintain a sufficiently large ion current.
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(a) Logarithmic scale (b) Linear scale

Figure 4.32: IV characteristics of the large planar probe for two positions of the
interacting smaller planar probe which is at floating potential and comparison
with IV characteristics of a single planar probe modelled in 3D space. (Black
dashed line marks current density which would correspond to the Maxwellian
electrons of temperature Te = 11 605 K.)

Model je,0 [A · m−2] Te [K] ne [m−3] Uf [V] jf [A · m−2]

2 probes, d = 2.5 mm 8.956 13 580 3.09 × 1014 −7.49 2.48 × 10−2

2 probes, d = 5.0 mm 10.25 13 135 3.60 × 1014 −7.07 2.61 × 10−2

Single probe 10.82 13 294 3.77 × 1014 −6.79 2.93 × 10−2

Table 4.12: Evaluation of the IV characteristics of the large planar probe modelled
in 3D space which interacts with the smaller planar probe, comparison with values
obtained for the single planar probe modelled in 3D space is provided.

Further, we observe that both in the case of positive and negative biasing
of the large probe, the value of the bias voltage of the smaller probe, which is
needed to equalize the electron and ion flux on it, decreases, and these fluxes
themselves also decrease. So what seems to be crucial is what effect the large
probe has on the positive ions – if the large probe is negatively biased, it will take
over the positive ions of the smaller probe, as a result of which its voltage must
be decreased to maintain a large enough flow of positive ions. If the large probe
is positively biased, it will repel positive ions from around the smaller probe and
the smaller probe must lower its voltage again to maintain a sufficiently high ion
current.
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(a) Bias of the smaller planar probe at
which the fluxes of electrons and Ar+ ions
are equal

(b) Current density of the charged particles
on the smaller probe

Figure 4.33: Parameters of the smaller planar probe for different values of the
electric bias of the large planar probe. (Black dashed line marks values obtained
for the single planar probe modelled in 3D space.)
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Conclusion
The thesis deals with the study of the sheath layer which is formed during the
interaction of a low-temperature plasma with a solid object using computer mod-
elling techniques.

In the theoretical part of the thesis (chapter 1), the findings available from the
literature on the physics of the sheath layer of low-temperature electropositive and
electronegative collisionless plasma were summarized. In a separate subchapter,
it was described what effect collisions of charged particles with neutrals have on
the sheath layer. A collisonless theory of measuring plasma parameters using a
Langmuir probe was also presented, which was also supplemented with findings
regarding the effect of collisions on the probe measurements.

The next chapter of the thesis (chapter 2) was devoted to the theoretical
foundations of computer models that were developed and used within the frame-
work of the thesis. The basic idea of the Particle-in-Cell method, which is a
well-established method in plasma research, was presented. The theory needed
for its practical implementation was described, including a discussion of the con-
ditions that must be met for its stability. Furthermore, the theory of fluid low-
temperature plasma modelling based on the drift-diffusion approximation was
described.

The part of the thesis in which the achieved results are described is made
up of two chapters. In the first chapter (chapter 3), the implementation of the
developed computer models is described in detail, mainly of the 3D PIC/MCC
code. In addition to the standard procedures used in the Particle-in-Cell mod-
elling methodology, the unique elements of our implementation are described here,
which are:

• Application of the Intel R⃝ Math Kernel Library (MKL) [Intel Corporation,
2017] routines to solve the Poisson’s equation.

• Methodology for modelling electrically charged objects immersed in a 3D
computational domain using the definition of the equivalent charge density
distribution at their location. This methodology makes it possible to use
the extremely fast functions of the Intel MKL library based on the fast
Fourier transform for solving the Poisson’s equation.

• The enhanced null collision method [Roucka and Hrach, 2011] for dealing
with collisions of the charged particles with neutrals.

Stability and accuracy tests of the developed 3D PIC/MCC model were success-
fully performed as well as its comparison with the results of the Reid’s benchmark.
In the paragraph dedicated to the implementation of the fluid model based on
the drift-diffusion approximation, we describe the formulation of the problem in
the form that was needed to create a model using the finite element method using
the FEniCS software [Alnæs et al., 2015].

The second chapter (chapter 4) dedicated to the achieved results describes a
total of five physical problems that were solved with the help of the developed
computer models.

103



The first physical problem (the chapter 4.1.2) was the study of the sheath
layer and the IV characteristics of an infinitely large planar probe in the medium
pressure range (4 torr = 532 Pa), where 1D symmetry could be used. Much space
has been devoted here to discussing the differences between fluid models based on
the drift-diffusion approximation and particle models based on the Particle-in-Cell
method, which is inherently more accurate, which has also been confirmed. All
the values of the physical parameters obtained from the models were explained,
but in conclusion it can be stated that 1D symmetric models of the sheath layer
are more suitable for qualitative analysis than for quantitative, since in a given
pressure regime the results of the models directly depend on the selected size of
the computational domain. The 1D planar probe model is also highly idealized
in that it does not include boundary effects and effects of the finite dimensions
of the probe, e.g. orbital motions of charged particles in its surroundings.

The second investigated case (the chapter 4.2) was the modelling of the sheath
layer and IV characteristics of a planar probe of finite dimensions in 3D space.
The study was again performed for electropositive argon medium pressure plasma.
The real geometry of the probe made it possible to include edge effects in the
calculations as well as possible orbital motions of the charged particles in its
vicinity. At a sufficiently large distance, it is possible to consider a planar probe
of finite dimensions as a spherical probe. This was manifested, for example, by the
observation of the 1/r diffusion profile of the number density of charged particles
in the vicinity of the probe compared to the linear profile observed in the 1D
case or by the increasing electron current observed on the IV characteristic at
a positive bias of the probe compared to the constant current in the 1D case.
As in the 1D case, it was observed that a positive probe bias is well shielded by
electrons, while at a negative probe bias, the electric field reaches a relatively
large distance from the probe due to the existence of the pre-sheath. Compared
to the 1D model, in the 3D model, potential shielding generally occurs at shorter
distances, which is due to the higher number density of particles at the sheath
edge due to the 1/r diffusion profile of the number density of charged particles in
the vicinity of the probe. The 3D model of the probe pointed to the accumulation
of (mainly positive) space charge density in the places of a strong electric field at
the edges of the probe, which led us to hypothesize that this could be the reason
for the higher detected floating potential compared to the 1D model – a strong
electric field at the edges of the probe could increase the ion current relative to
the electron one and thus increase the floating potential. Further, in accordance
with the theory, it was observed that the directed velocity of the positive ions
upon entering the sheath is lower than the value of the Bohm velocity due to the
collisions with neutrals. An excellent agreement with the theory was achieved in
the case of the electron current on the probe maintained at the plasma potential
– the calculated value was in excellent agreement with the value given by the
relation that took into account the collision effects. This led us to the conclusion
that, under the given conditions, for the correct determination of the number
density of the particles from the IV characteristic, it is not possible to use the
relation for a collisionless plasma, and the effect of collisions must be definitely
taken into account. The electron temperature evaluated from the calculated IV
characteristic was 14.5% higher than the value in the source of the particles.
The reason for such a difference could be the presence of a positive space charge
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in front of the negatively charged probe sensing the electron current, which is
apparently not included in the classical expression for collisionless plasma which
is used to evaluate the electron temperature from the IV characteristic.

The third case studied (the chapter 4.3.1) was the interaction of the sheaths of
two cylindrical probes in an electropositive argon plasma. A 2D PIC/MCC model
was used to calculate the IV characteristics of a smaller cylindrical probe that was
placed at different positions relative to a large cylindrical probe with a positive
electrical bias. By evaluating the calculated IV characteristics, it was found
that the smaller cylindrical probe is able to capture the decrease in the number
density of charged particles in the vicinity of the large cylindrical probe. It turns
out that the presence of the positively charged large probe significantly distorts
the temperature of the electrons measured with the smaller probe – for the closer
distance between the probes we get a lower temperature which is probably due
to the fact that the positively charged large probe attracts electrons that would
otherwise end up on the negatively charged smaller probe measuring electron
current. It is consequently smaller which leads to a lower measured temperature.
The observed effect is stronger for closer probe spacing. An interesting finding
was that the (electron) current on the positively charged large probe decreases
for both positive and negative biasing of the smaller probe. The smaller probe
therefore either repels electrons from the surroundings of the large probe with
its negative potential, or, on the contrary, accepts them in the case of a positive
bias. The current drop on the large probe is more significant when the smaller
probe is negatively biased, since due to the need for a pre-sheath, a relatively
high electric field reaches a relatively large distance from the smaller probe. The
observed current drop per large probe is higher at closer probe spacing.

The subject of the fourth studied physical problem were the sheath structures
created around cylindrical probes in an electronegative plasma containing elec-
trons, negative O− ions and positive Ar+ ions (i.e. a very simplified model of
Ar/O2 plasma). The study was carried out using a 2D PIC/MCC model; at first,
the sheath of a single cylindrical probe was examined for its positive and negative
bias and for different values of plasma electronegativity. In accordance with the
theory, it was found that even with the same ratio of electrons and negative ions,
these are rather electrons which contribute to the shielding of external potentials
and negative ions tend to remain in the plasma bulk. Further, the interaction
of the sheath of the positively biased larger cylindrical probe with the sheath
of the smaller probe (positively and negatively biased) was studied for various
mutual positions and different values of plasma electronegativity. It was found
that with greater electronegativity, the sheaths have a larger size and can thus
begin to overlap already at a greater distance between the probes. On the other
hand, with a higher electronegativity, the required directed velocity of positive
ions upon entering the sheath of negatively biased probe is lower than Bohm
velocity since positive and negative ions have comparable thermal energy. As a
result, lower potential drop is needed in the pre-sheath and electric field does not
reach such large distances as in the case of low electronegativity. The interaction
of the probes, whose sheaths do not spatially overlap, is thus less intense.

The last investigated physical problem was the interaction of the sheaths of
two planar probes of finite dimensions in 3D space (the chapter 4.4). Using
the developed 3D PIC/MCC model, the IV characteristic of a larger probe was
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calculated near which a smaller half-sized probe was placed. The potential of
this smaller probe was maintained at such a value as to equalize the flow of
electrons and positive ions to it in each situation. The study was performed
for an electropositive argon plasma and two relative positions of the probes. It
was observed that the number density of the charged particles in the vicinity
of the large probe was reduced due to the presence of the smaller probe simply
by creating a diffuse 1/r profile of the number density in its vicinity. Since the
smaller probe was maintained at a floating potential all the time, it had a negative
bias with respect to the plasma potential and its electric field thus penetrated
to a relatively large distance thanks to the existence of the pre-sheath. As a
result, the smaller probe influenced, albeit slightly, the sheath structure of the
large probe even at a greater distance between the probes. It was observed that
the smaller probe with its electric field either removed the positive charge density
from the negatively biased large probe or repelled the negative charge density
from it during its positive bias. As expected, the sheath structure of the large
probe did not change much on the side away from the smaller probe. From the
calculated IV characteristics, it was seen that when the probes were closer, both
the electron and ion current to the large probe was lower. This resulted in a lower
number density of the charged particles evaluated in the standard way from the
IV characteristic. The presence of the smaller probe, on the other hand, had
no effect on the electron temperature value evaluated from the IV characteristic.
This is a somewhat different observation compared to the chapter 4.3.1 where a
lower temperature was observed for closer probe spacing – however, in that study
the calculation setup was different (the IV characteristic was measured with a
smaller probe and the large probe was held at a constant positive bias, not at a
floating potential). At a closer distance, the calculated IV characteristic resulted
in a lower floating potential – positive ions were apparently more sensitive to
the presence of a smaller probe, the flow of which to the probe decreased more
than the flow of electrons, and the floating potential thus reached a lower value.
It was interesting to observe that the voltage of the smaller probe required to
maintain a balanced flow of electrons and ions on it dropped for both the positive
and negative bias of the large probe. So the effect of the large probe on the
positive ions prevailed – if the large probe had a negative bias, it began to take
over the positive ions of the smaller probe, as a result of which its voltage had
to be reduced in order to maintain a sufficiently large flow of the positive ions.
If the large probe had a positive bias, it began to repel positive ions from the
surroundings of the smaller probe, and the smaller probe had to lower its voltage
again to maintain a sufficiently high ion current.

As a great contribution of the work, we see the successful implementation of a
3D PIC/MCC plasma-solid interaction model that can be used to solve problems
of up to macroscopic dimensions on an average workstation with 32 computational
cores and 64 GB of RAM memory.

In conclusion, it can be stated that within the framework of the presented
work, 2D and 3D computer models of the interaction of low-temperature plasma
with a solid object were successfully developed, the results of which were verified
by comparison with theory and with the help of which it was possible to describe
in detail the unique issue of the interaction of several sheath layers.
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thesis, Charles University, Prague, Czech Republic, 2008.

H. R. Skullerud. The stochastic computer simulation of ion motion in a gas
subjected to a constant electric field. Journal of Physics D: Applied Physics, 1
(11):1567–1568, 1968. doi: 10.1088/0022-3727/1/11/423.

J. D. Swift and M. J. R. Schwar. Electrical probes for plasma diagnostics. Iliffe
Books, London, 1969. ISBN 9780444196941.

L. Talbot and Y. Chou. Langmuir probe response in the transition regime. In
C. L. Brundin, editor, 6th Rarefied Gas Dynamics Conference, Volume II, pages
1723–1737, New York, 1969. Academic Press.

111

http://jila.colorado.edu/avp/collision_data/
http://jila.colorado.edu/avp/collision_data/


J. Teunissen and U. Ebert. 3D PIC-MCC simulations of discharge inception
around a sharp anode in nitrogen/oxygen mixtures. Plasma Sources Science
and Technology, 25(4):044005, 2016. doi: 10.1088/0963-0252/25/4/044005.

M. Tichy, M. Sicha, P. David, and T. David. A collisional model of the positive ion
collection by a cylindrical Langmuir probe. Contributions to Plasma Physics,
34(1):59–68, 1994. doi: 10.1002/ctpp.2150340108.

H. Ueda, Y. Omura, H. Matsumoto, and T. Okuzawa. A study of the numerical
heating in electrostatic particle simulations. Computer Physics Communica-
tions, 79(2):249–259, 1994. doi: 10.1016/0010-4655(94)90071-X.

V. Vahedi and M. Surendra. A Monte Carlo collision model for the particle-in-
cell method: applications to argon and oxygen discharges. Computer Physics
Communications, 87(1):179–198, 1995. doi: 10.1016/0010-4655(94)00171-W.

J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd. An object-oriented electro-
magnetic PIC code. Computer Physics Communications, 87(1):199–211, 1995.
doi: 10.1016/0010-4655(94)00173-Y.

Z. Zakrzewski and T. Kopiczynski. Effect of collisions on positive ion collection
by a cylindrical Langmuir probe. Plasma Physics, 16(12):1195, 1974. doi:
10.1088/0032-1028/16/12/011.

X. C. Zeng, T. K. Kwok, A. G. Liu, P. K. Chu, and B. Y. Tang. Plasma immersion
ion implantation of the interior surface of a large cylindrical bore using an
auxiliary electrode. Journal of Applied Physics, 83(1):44–49, 1998. doi: 10.
1063/1.366699.

112



List of Figures

1.1 Scheme of plasma sheath and presheath . . . . . . . . . . . . . . . 7
1.2 Parameters of the electronegative plasma sheaths . . . . . . . . . 12
1.3 Different operating regimes of a Langmuir probe and probe theories 14

2.1 Schematic difference between direct solution of the Boltzmann
equation and Particle-In-Cell method . . . . . . . . . . . . . . . . 23

2.2 Force law between finite-size particles in two dimensions . . . . . 25

3.1 Methodology of the modelling of the internal potentials in the de-
veloped 3D PIC/MCC code . . . . . . . . . . . . . . . . . . . . . 42

3.2 Transformation from the local coordinate system to the laboratory
one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Time evolution of the electron mean energy for various time steps
of the PIC simulation . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Time evolution of the electron mean energy for various ratios of
the computational grid cell size to the Debye length . . . . . . . . 48

3.5 Results of the Reid’s benchmark for isotropic scattering model with
constant collision cross section, E/N = 1 Td . . . . . . . . . . . . 50

3.6 Results of the Reid’s benchmark for isotropic scattering model with
constant collision cross section, E/N = 24 Td . . . . . . . . . . . . 51

3.7 Results of the Reid’s benchmark for isotropic scattering model with
’ramped’ collision cross section, E/N = 1 Td . . . . . . . . . . . . 51

3.8 Results of the Reid’s benchmark for isotropic scattering model with
’ramped’ collision cross section, E/N = 24 Td . . . . . . . . . . . 52

3.9 Results of the Reid’s benchmark for isotropic scattering model with
’ramped’ collision cross section, k = 10−19 m2 eV−1 . . . . . . . . . 52

3.10 Results of the Reid’s benchmark for different anisotropic scattering
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Geometry of 1D plasma sheath model . . . . . . . . . . . . . . . . 57
4.2 Collisionless plasma sheath in front of an infinitely large metal wall 58
4.3 Electron number density profiles in front of an infinitely large pla-

nar probe which is kept at plasma potential for different values of
neutral gas pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Sheath structure in front of an infinitely large planar probe which
is kept at negative electric bias with respect to the plasma potential 68

4.5 Sheath structure in front of an infinitely large planar probe which
is kept at positive electric bias with respect to the plasma potential 69

4.6 Sheath structure in front of an infinitely large planar probe which
is kept at negative electric bias Up = −8 V . . . . . . . . . . . . . 70

4.7 IV characteristics of an infinitely large planar probe . . . . . . . . 71
4.8 Geometry of a planar probe and 3D computational domain. . . . 74
4.9 Electric potential and space charge density distribution in the sur-

roundings of the negatively biased planar probe modelled in 3D
space, Up = −7.0 V . . . . . . . . . . . . . . . . . . . . . . . . . . 75

113



4.10 Electric potential and space charge density distribution in the sur-
roundings of the positively biased planar probe modelled in 3D
space, Up = 8.0 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.11 Sheath structure in front of the negatively biased planar probe
modelled in 3D space, Up = −7.0 V . . . . . . . . . . . . . . . . . 77

4.12 Sheath structure in front of the positively biased planar probe mod-
elled in 3D space, Up = 8.0 V . . . . . . . . . . . . . . . . . . . . 77

4.13 Net space charge density and drift velocity of positive ions in front
of the planar probe which is approximately at floating potential,
comparison of 1D and 3D model results . . . . . . . . . . . . . . . 78

4.14 Comparison of electric potential and space charge density in front
of the finite planar probe modelled in the 3D space with infinitely
large planar probe described by symmetrical 1D model . . . . . . 79

4.15 IV characteristics of the planar probe modelled in 3D space . . . . 80
4.16 Mutual interaction of two cylindrical probes immersed in elec-

tropositive plasma in terms of electric potential and electron num-
ber density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.17 IV characteristics of a cylindrical probe in electropositive plasma
in presence of an interacting sheath . . . . . . . . . . . . . . . . . 84

4.18 Scheme of an uneven surface with various positions of an interact-
ing cylindrical probe . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.19 IV characteristics of a cylindrical probe near an uneven surface at
different positions . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.20 Number density of Ar+ ions for positive bias of a cylindrical probe
which is near to the uneven surface . . . . . . . . . . . . . . . . . 86

4.21 Plasma sheath of a cylindrical probe immersed in electronegative
plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.22 Mutual interaction of two cylindrical probes immersed in elec-
tronegative plasma; both probes are at positive bias with respect
to the plasma potential . . . . . . . . . . . . . . . . . . . . . . . . 91

4.23 Mutual interaction of two cylindrical probes immersed in elec-
tronegative plasma; one probe is at positive bias with respect to
the plasma potential, the other one at negative bias . . . . . . . . 92

4.24 Fluxes of negatively charged particles on a cylindrical probe im-
mersed in electronegative plasma in presence of an interacting sheath 93

4.25 Geometry of two interacting planar probes in 3D space . . . . . . 94
4.26 Electric potential and space charge density distribution in the sur-

roundings of two interacting planar probes in 3D space (the large
probe is negatively biased, the smaller probe is at floating potential) 96

4.27 Electric potential and space charge density distribution in the sur-
roundings of two interacting planar probes in 3D space (the large
probe is positively biased, the smaller probe is at floating potential) 97

4.28 Sheath structure in the surroundings of two interacting planar
probes modelled in 3D space. The large probe is negatively bi-
ased and mutual distance between the probes is d = 5 mm . . . . 98

4.29 Sheath structure in the surroundings of two interacting planar
probes modelled in 3D space. The large probe is negatively bi-
ased and mutual distance between the probes is d = 2.5 mm . . . 98

114



4.30 Sheath structure in the surroundings of two interacting planar
probes modelled in 3D space. The large probe is positively biased
and mutual distance between the probes is d = 5 mm . . . . . . . 99

4.31 Sheath structure in the surroundings of two interacting planar
probes modelled in 3D space. The large probe is positively biased
and mutual distance between the probes is d = 2.5 mm . . . . . . 99

4.32 IV characteristics of the large planar probe for two positions of
the interacting smaller planar probe which is at floating potential
and comparison with IV characteristics of a single planar probe
modelled in 3D space . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.33 Parameters of the smaller planar probe for different values of the
electric bias of the large planar probe . . . . . . . . . . . . . . . . 101

A.1 Uncollided and collided flux of incident particles . . . . . . . . . . 123
A.2 Probability functions for a collision event . . . . . . . . . . . . . . 124
A.3 Scheme of incident particles impinging on a single target . . . . . 125
A.4 Collision frequency and mean free path of an Ar+ ion moving in

neutral argon gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
A.5 Explanation of a null collision event . . . . . . . . . . . . . . . . . 130
A.6 Transformation from the local coordinate system to the laboratory

one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

115



116



List of Tables

3.1 Input parameters of the simulations for stability tests of the explicit
time differencing scheme used in the developed 3D PIC/MCC code 47

3.2 Input parameters of the simulations for tests of the finite grid in-
stability of the developed 3D PIC/MCC code . . . . . . . . . . . 48

3.3 Parameters of the isotropic scattering models with constant cross
sections considered for the comparison of the 3D PIC/MCC model
with Reid’s benchmark results . . . . . . . . . . . . . . . . . . . . 50

3.4 Parameters of the isotropic scattering models with ’ramp’ cross sec-
tions considered for the comparison of the developed 3D PIC/MCC
model with Reid’s benchmark results . . . . . . . . . . . . . . . . 50

3.5 Parameters of the anisotropic scattering models considered for the
comparison of the developed 3D PIC/MCC model with Reid’s
benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Plasma parameters and settings of the 3D PIC/MCC model used
for the study of 1D plasma sheaths . . . . . . . . . . . . . . . . . 57

4.2 Characteristic parameters of electron and Ar+ ion collisions at dif-
ferent values of neutral gas pressure . . . . . . . . . . . . . . . . . 60

4.3 Collision frequency ν and transport coefficients µ and D of the
modelled collisional plasma . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Collision frequency ν and transport coefficients µ and D of the
modelled collisional plasma evaluated by the 3D PIC/MCC code . 61

4.5 Current density on an infinitely large planar probe which is at the
plasma potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Evaluation of the IV characteristics of an infinitely large planar
probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Plasma parameters and settings of the 3D PIC/MCC model used
for the study of plasma sheath of a planar probe in 3D . . . . . . 74

4.8 Evaluation of the IV characteristics of the planar probe modelled
in 3D space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 Analysis of IV characteristics of a cylindrical probe in electroposi-
tive plasma in presence of an interacting sheath . . . . . . . . . . 84

4.10 Parameters of 2D PIC/MCC model used in the study of electroneg-
ative plasma sheaths . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.11 Plasma parameters and settings of the 3D PIC/MCC model used
for the study of plasma sheath interaction of two planar probes in
3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.12 Evaluation of the IV characteristics of the large planar probe mod-
elled in 3D space which interacts with a smaller planar probe . . . 100

117



118



List of Abbreviations

ABR Allen-Boyd-Reynolds theory
BC Boundary condition
BRL Bernstein-Rabinowitz-Laframboise theory
CIC Cloud-in-Cell algorithm
CFL Courant-Friedrichs-Lewy condition
IV Current-voltage characteristic of a Langmuir probe
MCC Monte Carlo collision module
MKL Intel R⃝ Math Kernel Library
OML Orbital-motion-limited theory
PIC Particle-in-Cell method

119



120



List of Publications
Impacted publications

J. Hromadka, T. Ibehej and R. Hrach. Computational study of plasma sheath
interaction. Physica Scripta, 2014(T161):014068, 2014.

J. Hromadka, T. Ibehej and R. Hrach. Computer modelling of electronegative
plasma sheaths and their mutual interaction. Physica Scripta, 90(10):105603,
2015.

T. Ibehej, J. Hromadka and R. Hrach. Computer simulation of metal ions trans-
port to uneven substrates during ionized plasma vapour deposition. Advances in
Materials Science and Engineering, 2017:4283547, 2017.

Conference proceedings (peer-reviewed)

J. Hromadka, T. Ibehej and R. Hrach. Computer modelling of sheaths in multi-
component plasma. In: WDS’14 Proceedings of Contributed Papers — Physics.
Prague: Matfyzpress, 2014, pp. 255 – 260. ISBN 978-80-7378-276-4.

J. Hromadka, T. Ibehej and R. Hrach. Hybrid computer modelling in plasma
physics. Journal of Physics: Conference Series, 759(1):012066, 2016.

J. Hromadka, T. Ibehej and R. Hrach. Parametric computational study of
sheaths in multicomponent Ar/O2 plasma. Journal of Physics: Conference Se-
ries, 982:012008, 2018.

Conference proceedings (not peer-reviewed)

J. Hromadka, T. Ibehej and R. Hrach. Interaction of sheaths in multicomponent
plasma via computer modelling. In: 41st EPS Conference on Plasma Physics,
Berlin, Germany. European Physical Society, 2014. ISBN 2-914771-90-8.

J. Hromadka, T. Ibehej and R. Hrach. Fluid modelling of plasma at low pres-
sures. In: 42nd EPS Conference on Plasma Physics, Lisbon, Portugal. European
Physical Society, 2015. ISBN 2-914771-98-3.

J. Hromadka, T. Ibehej and R. Hrach. Applications of hybrid computer models
in plasma sheath physics. In: 44th EPS Conference on Plasma Physics, Belfast,
UK. European Physical Society, 2017. ISBN 979-10-96389-07-0.

121



122



A. Attachments

A.1 Collision cross section – definition and in-
terpretation

General definition Let there be a beam of incident particles with density n
and velocity v which enters a thin layer of material of thickness dx. The flux of
the beam Γ = nv decreases by dΓ

dΓ

dx = −ngσ(v)Γ , (A.1.1)

where σ(v) is the collision cross section, which generally depends on the velocity
v of the incident particles, and ng is number density of the scattering centers
(targets). Solving the equation above, we can write that the flux of incident
particles that did not undergo collision (= uncollided flux) is at the distance x
given by

Γ1 = Γ0 exp (−ngσx) ,
where Γ0 is flux of the beam at x = 0 (figure A.1). Similarly, we can write the
flux of incident particles that already collided (= collided flux) at the distance x

Γ2 = Γ0 − Γ1 = Γ0 [1 − exp (−ngσx)] .

Figure A.1: Uncollided Γ1 and collided Γ2 flux of incident particles.

Similar expressions are valid for number density n. If the velocity v of the
incident particles is constant along x axis, equation A.1.1 can be written as

v
dn
dx = −ngσ(v)nv. (A.1.2)

Then, we can write number density n1 of incident particles at x that did not
undergo collision yet and number density n2 of those that already underwent
collision

n1 = n0 exp (−ngσx) ,
n2 = n0 − n1 = n0 [1 − exp (−ngσx)] .

Further, we can write expression

p(x) = n2(x)
n0

= 1 − exp (−ngσx) ∈ (0, 1] ,
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which is obviously the ratio of the particles that already underwent collision at
x to the initial number density. This expression can be also interpreted as a
probability that a concrete particle of interest from the beam already underwent
collision at x (= cumulative distribution function), figure A.2. Expression for the
probability density function in this case can be written as

f(x) = dp
dx = ngσ exp (−ngσx) = 1

λ
exp

(
−x

λ

)
,

where parameter λ = 1
ngσ

is called mean free path and it is the mean value of this
probability distribution. Probability density function f(x) above is normalized.
Further, we define mean time between collisions τ

τ = λ

v
= 1
ngσv

,

and collision frequency ν
ν = 1

τ
= ngσv.

Figure A.2: Cumulative distribution function p(x) for a probability that a con-
crete particle from the incident beam already underwent collision at x and prob-
ability density function f(x).

Alternative interpretation 1 Let there be a target slab of thickness dx and
of a very large area. Density of the scattering centers in the slab is ng, each
scattering center has a tiny projected area, cross section, σ. Let there be a beam
of incoming particles (considered as point-like) of flux J [m−1] and cross section A
[m2] which is smaller than the target area. If N is the number of particles fallen
on the target, then number of particles coming through dx thickness without
scattering event is N + dN where

dN = −ngAdxσ
A

N = −ngσNdx.

Meaning of the expression above: number of particles that undergo scattering
event is ”some” ratio of the incoming N particles. This ratio corresponds to the
ratio of all scattering center areas that are present in the beam area to the overall
area available for the beam (ngAdx = number of scattering centers, σ = cross
section of a single scattering center). In terms of number densities, we can write

dn = dN
V

= −ngσndx,

which is equivalent to the equation A.1.2.
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Alternative interpretation 2 Let there be a beam of incident particles of
density n and velocity v. We denote

σ = π (a1 + a2)2 ,

where a1 is radius of the incident projectiles and a2 is radius of the targets.
According to the figure A.3 we can write expression for the number of projectiles
which hit a single particular target in time interval dt

Ndt = nσvdt.

If there is Ng targets, they are hit by

NgNdt = Ngnσvdt

projectiles during time interval dt. There are Ng targets in the volume Vg, ng =
Ng

Vg
. Per unit volume, there is

NgNdt

Vg

= ngnσvdt = dn

interactions between projectiles and targets, this means number of projectiles per
unit volume which hit some target in time dt. As a result, we have

dn = ngσndx,

which is equivalent to the equation A.1.2.

Figure A.3: Incident particles impinging on a single target.

Alternative interpretation 3 Let there be situation similar to that one pre-
sented in alternative definition 2 except: the concrete ion is at rest in the origin
of the coordinate system, target particles of number density ng and velocity v are
moving towards the ion. In time interval dt, there will be

Ndt = ngσvdt

hits of the ion by the targets.

Total and differential cross section Generally, collision cross section is de-
pendent on the relative kinetic energy ϵr of the incident and target particles. For
more precise way of description of the scattering processes we can introduce dif-
ferential cross section σd which takes into account dependance of the cross section
on the scattering (polar) angle χ. Total scattering cross section σt is related to
the differential cross section σd by

σt (ϵr) = 2π
∫ π

0
σd (ϵr, χ) sinχdχ.
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A.2 Null collision method
Implementation of the null collision method [Skullerud, 1968] in the developed
plasma models is based on the approach which is described in the diploma thesis
Roučka [2008] and in the article Roucka and Hrach [2011].

To model collisions of charged particles with neutral gas in background by
Monte Carlo method, we need to know the following:

1. How often does the concrete charged particle collide with neutral ones?

2. What is the velocity distribution of the neutrals with which the charged
particle interacts?

Let the concrete charged particle be e. g. ion moving in the neutral gas.
According to the alternative interpretation of cross section no. 3 in section A.1
(the ion does not move, all neutral particles of ng density move with velocity v),
there will be Ndt neutrals that hit the ion in time interval (t, t+ dt)

Ndt = νtdt = ngσ(v) |v| dt,

where νt [s−1] is current collision frequency at time t. If the ion moves with
velocity v0, we can write

Ndt = νtdt = ngσ(v − v0) |v − v0| dt. (A.2.1)

If the neutrals have velocity distribution f(v), which is normalized
∫
f(v)dv = 1,

we can write

Ndt = νtdt = ng

∫
f(v)σ(v − v0) |v − v0| dvdt.

We can denote

Ndvdt = νvtdvdt = ngf(v)σ(v − v0) |v − v0| dvdt, (A.2.2)

which is the number of neutrals with velocity (v,v + dv) that hit the ion in time
interval (t, t+ dt). Further, we can introduce normalized velocity distribution
g(v) of neutrals that hit the ion in time interval (t, t+ dt)

g(v)dv = Ndvdt

Ndt

= νvtdvdt
νtdt

= ngf(v)σ(v − v0) |v − v0| dv

ng

∫
f(v)σ(v − v0) |v − v0| dv

=

= ng

νt

f(v)σ(v − v0) |v − v0| dv.

Let us suppose that the velocity distribution of neutrals is Maxwellian

f(v)dv = 1
v3

mπ
3
2

exp
(

− v2

v2
m

)
dv,

vm =
(

2kBT

m

) 1
2

.

Further, let us suppose that the collision cross section is independent of the
relative velocity σ(v − v0) = σ = const. and velocity of the ion is v0 = (0, 0, v0).
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Roučka [2008] shows that if the isotropic Maxwellian velocity distribution of
neutrals is inserted into the equation A.2.2 and integration over solid angle is
performed, we get

Ndvdt = νvtdvdt = 4π
3 ngf(v)σv3

(
3v0

v
+ v

v0

)
dvdt . . . for v < v0,

= 4π
3 ngf(v)σv3

(
3 + v2

0
v

)
dvdt . . . for v > v0. (A.2.3)

If the integration over velocitities is also performed, we get

νt(v0) = ngσv0

[
1
π

1
2

vm

v0
exp − v2

0
v2

m

+ erf
(
v0

vm

)(
1 + 1

2
v2

m

v2
0

)]
, (A.2.4)

λt(v0) = v0

νt(v0)
.

Velocity dependance of the collision frequency νt A.2.4 and mean free path λt

of an Ar+ ion which is moving in neutral argon gas with Maxwellian velocity
distribution f(v) is shown in the figure A.4. It can be seen that for small v0
collision frequency (and thus time to the next collision) is constant. It can be
also seen that for large v0, mean free path λ is constant and collisions can be
resolved by null collision method based on generation of random free path between
collisions with a mean value λ = 1

σn
. This corresponds to the situation when

targets can be considered as stationary, e. g. in case of an electron moving
in argon gas. In this approximation we can consider that velocity v of all the
neutrals is v = 0 and thus equation A.2.1 is simplified to

Ndt = νtdt = ngσ(v0) |v0| dt,
⇒ νt = ngσ(v0)v0,

⇒ λ = v0

νt

= 1
ngσ(v0) .

If we further assume that σ(v0) = σ = const., we get

νt = ngσv0,

λ = v0

νt

= 1
ngσ

.

These dependencies can be seen in the figure A.4 as dashed asymptotes for v0 →
∞.

Finally, we can outline how to proceed with collision treatment in a general
case:

1. Every time step, probability that the concrete charged particle collides in
time interval ∆t is calculated according to (see also general definition of
collision cross section in section A.1)

p = 1 − exp (−ngσ∆x) = 1 − exp
[
− ∆x

λ(v)

]
= 1 − exp

[
− v∆t

λ(v)

]
=

= 1 − exp
[
− ∆t

τ(v)

]
= 1 − exp [−νt(v)∆t] ,

where νt is in case of Maxwellian neutrals given by equation A.2.4.
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2. In case of a collision, neutral particle with which the charged particle collides
is generated from the normalized velocity distribution

g(v) = νvt

νt

,

where νvt and νt are in case of Maxwellian neutrals given by equations A.2.3
and A.2.4.

The outlined general procedure has two disadvantages that significantly affect
calculation time: First, probability of a collision has to be calculated every time
step for every charged particle in the simulation. Second, interacting neutral
particle is generated from quite complicated velocity distribution which is even
more complicated in the case of anisotropic scattering.

Figure A.4: Velocity dependance of the collision frequency ν and mean free path
λ of an Ar+ ion which is moving in neutral argon gas with Maxwellian velocity
distribution f(v). Taken from the diploma thesis Roučka [2008].

Null collision method To overcome the above mentioned disadvantages of
the general procedure, we can take advantage of the null collision method. Let
us consider the general expression A.2.2

Ndvdt = νvtdvdt = ngf(v)σ(v − v0) |v − v0| dvdt.

Let us introduce a constant νmax

νmax = ng max
vr

{|vr|σ(vr)},
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where maximum is considered over all possible relative velocities vr = v − v0
that can occur in the simulation. It corresponds to introduction of a new collision
process called null collision (see also figure A.5) which does not have any effect
and which cross section is

σ0(v) = νmax

ng|v|
−
∑

i

σi(v),

where the sum is performed over all real collision processes that the charged
particle can undergo with the given neutral species. Thus, we can write

νmax = ng|v|
[
σ0(v) +

∑
i

σi(v)
]

= const..

As a result, we get
Ndvdt = νvtdvdt = νmaxf(v)dv,

Ndt = νtdt =
∫

v
νvtdvdt =

∫
v
νmaxf(v)dvdt = νmaxdt,

since velocity distribution f(v) is normalized,
∫
f(v)dv = 1. For the velocity

distribution g(v) of neutrals which hit the charged particle in the time interval
(t, t+ dt) we can write

g(v)dv = Ndvdt

Ndt

= νmaxf(v)dvdt
νmaxdt = f(v)dv.

It means that the distribution g(v) is exactly the same as the distribution of all
neutrals in the background.

Finally, the probability p that the charged particle collides in the time interval
∆t is:

p = 1 − exp (−νmax∆t) ,

and velocity distribution of the interacting neutrals is

g(v) = f(v).

It can be stated that there are two significant advantages of the proposed null
collision method:

• Probability p is independent of velocity of the particle and it is the same for
all particles in the simulated ensemble. Thus, it is not necessary to evaluate
p for every particle in every time step; instead, we can perform collisions
for randomly chosen

NC = pNT = [1 − exp (−νmax∆t)]NT ,

particles in every time step (NT is the total number of the charged particles
in the simulation).

• The ineracting neutral can be generated from the same velocity distribution
as the neutrals in the background have. Often, it is Maxwellian distribution.
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If the collision occurs, cross section σi and collision frequency

νi = ng |v − v0|σi(v − v0)

are determined for all possible collision types that the charged particle can un-
dergo. Then, one collision type is selected with probability proportional to the
particular collision frequencies.

Time step of the simulation ∆t has to be set up with respect to τmin = 1
νmax

.
The implementation of the null collision method described above allows us to
treat only one collision event for a given particle per single ∆t; as a consequence,
∆t must be less than τmin. Roucka and Hrach [2011] show that in a special
case (charged particles in homogeneous electric field that collide with particles of
neutral background gas with cross section independent of the particle velocity,
collision is simulated by stopping the charged particle ⇒ simple model of resonant
charge transfer interaction of ions with cold neutrals), the mean error in energy
determination can still be around 10% for time steps ∆t = τmin

10 .

Figure A.5: The addition of the null collision process results in a constant collision
frequency over all energies. Taken from the article Vahedi and Surendra [1995].

Null collision method based on time-to-scatter evaluation Condition
∆t < τmin can lead to computationally expensive simulations, especially in the
cases when νmax is high (e. g. medium and high pressure plasmas). For that rea-
son, we can introduce an alternative implementation of the null collision method
which is based on the continuous time axis for collision treatment during the
simulation.

In view of the null collision method, the probability that the charged particle
undergoes a collision in time t is

p(t) = 1 − exp (−νmaxt) = 1 − exp
(

− t

τmin

)
.

This expression can be regarded as a cumulative distribution function for the
probability that the charged particle undergoes a collision. Probability density
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function f(t) for time to the collision can be written as

f(t) = dp(t)
dt = 1

τmin

exp
(

− t

τmin

)
,

where τmin is the mean value of this probability distribution.
Instead of performing colision for NC = pNT particles every time step ∆t, we

can generate time-to-scatter τi for each particle from distribution

f(t) = 1
τmin

exp
(

− t

τmin

)
,

and check each particle in every time step of the simulation whether this time
was already reached. This method seems to be less efficient than the previous
approach but it allows us to introduce continuous time axis for collision treatment
during the simulation: if time-to-scatter is larger than ∆t, we can calculate cla-
sically trajectory of the particle over ∆t and subtract ∆t from time-to-scatter. If
time-to-scatter is smaller than ∆t, we integrate equation of motion for the particle
till time-to-scatter, collision and its effects is performed and new time-to-scatter
is generated. We repeat this process until ∆t is reached.

A.3 Mechanics of particle collisions
Let us have 2 particles that collide: particle 1 (= incident particle) with mass
m1 and velocity v1 and particle 2 (= target particle) with mass m2 and velocity
v2. It is assumed that the collision is in general inelastic, no external forces act
on the particles and there is also zero mutual force between the particles. The
particles are treated as mass points. Particle velocities v′

1, v′
2 after the collision

are to be determined (⇒ it means 6 unknowns).
To determine unknown velocities v′

1 and v′
2, 3 equations of momentum con-

servation and 1 equation of energy conservation can be used. Additionally, 2
independent parameters representing scattering angles have to be set down.

Momentum conservation equation

m1v1 +m2v2 = m1v
′
1 +m2v

′
2. (A.3.1)

Energy conservation equation

K = 1
2m1v

2
1 + 1

2m2v
2
2 = 1

2m1v
′2
1 + 1

2m2v
′2
2 +∆E = K ′ +∆E,

where ∆E is the energy loss (in case of e. g. excitation process, ∆E = ϵexc =
excitation energy) or energy gain (in case of superelastic collisions) in the inelastic
collision.

Let us define velocity of centre-of-mass of the 2 particles (M := m1 +m2)

vCM := 1
M

(m1v1 +m2v2) .

Further, we introduce

v′
r = v′

1 − v′
2

⇒ v′
1 = v′

2 + v′
r

⇒ v′
2 = v′

1 − v′
r.
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Equation A.3.1 then becomes

P = MvCM = m1v1 +m2v2 = m1v
′
1 +m2v

′
2.

This equation can be reformulated using velocity v′
r

MvCM = m1v
′
1 +m2v

′
2 = m1v

′
1 +m2v

′
1 −m2v

′
r = Mv′

1 −m2v
′
r

⇒ v′
1 = vCM + m2

M
v′

r,

MvCM = m1v
′
1 +m2v

′
2 = m1v

′
2 +m1v

′
r +m2v

′
2 = Mv′

2 +m1v
′
r

⇒ v′
2 = vCM − m1

M
v′

r.

Usage of momentum conservation equation and reformulation of the problem
allowed us to reduce the problem of finding 6 components of vectors v′

1, v′
2 to the

problem of finding 3 components of vector v′
r: magnitude vr will be determined

from energy conservation equation, direction of v′
r will be given by 2 independent

variables χ, η representing scattering angles.
Usage of energy conservation equation to determine vr

K = 1
2m1v

2
1 + 1

2m2v
2
2 = 1

2m1v
′2
1 + 1

2m2v
′2
2 +∆E = K ′ +∆E.

LHS can be reformulated

K = P 2

2(m1 +m2)
+ m1m2

2(m1 +m2)
v2

r = P 2

2M + 1
2µrv

2
r ,

where P = |P | = |m1v1+m2v2|, vr = |vr| = |v1−v2|, M = m1+m2, µr = m1m2
m1+m2

.
Proof:

P 2 = (m1v1 +m2v2)2 = m2
1v

2
1 +m2

2v
2
2 + 2m1m2v1 · v2,

v2
r = (v1 − v2)2 = v2

1 + v2
2 − 2v1 · v2,

P 2 +m1m2v
2
r =m2

1v
2
1 +m2

2v
2
2 + 2m1m2v1 · v2+

+m1m2v
2
1 +m1m2v

2
2 − 2m1m2v1 · v2 =

=m2
1v

2
1 +m1m2v

2
1 +m2

2v
2
2 +m1m2v

2
2 =

=m1v
2
1(m1 +m2) +m2v

2
2(m1 +m2) =

= (m1 +m2)(m1v
2
1 +m2v

2
2),

P 2 +m1m2v
2
r

2(m1 +m2)
= (m1 +m2)(m1v

2
1 +m2v

2
2)

2(m1 +m2)
= 1

2m1v
2
1 + 1

2m2v
2
2 = K.

Similarly

K ′ = P ′2

2(m1 +m2)
+ m1m2

2(m1 +m2)
v′2

r = P ′2

2M + 1
2µrv

′2
r,
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where P ′ = |P ′| = |m1v
′
1 + m2v

′
2| = |P | = P (momentum conservation), v′

r =
|v′

r| = |v′
1 − v′

2|. Finally, we can write:

K = K ′ +∆E,

P 2

2M + 1
2µrv

2
r = P ′2

2M + 1
2µrv

′2
r +∆E,

1
2µrv

′2
r = 1

2µrv
2
r −∆E,

v′
r =

(
v2

r − 2∆E
µr

) 1
2

. (A.3.2)

What is ∆E?

• Elastic collision: ∆E = 0,

• Inelastic collision: ∆E ̸= 0,

– excitation: ∆E = ϵexc > 0 . . . excitation energy,
– superelastic collision: ∆E = ϵde−exc < 0 . . . de-excitation energy from

upper level to lower level,
– ionization: ∆E = ϵion + ϵej > 0 . . . ϵion = ionization energy, ϵej =

energy of ejected electron which might have distribution σion(ϵ1, ϵej),
where ϵ1 is energy of the incident electron.

How to determine ∆E in case of ionization? Let us consider several aux-
iliary approximations that lead us to the expressions for general case.

Auxiliary approximation 1 : Target neutral particle can be considered at rest
(v2 ∼ v′

2 ∼ 0) since ionization processes generally involve energy much higher than
the energy of the neutral gas in the background. Moreover, it can be assumed
that m2 >> m1. Energy conservation equation then becomes (particle 1 is the
incident electron)

ϵ1 = 1
2m1v

2
1 = 1

2m1v
′2
1 + ϵej + ϵion.

Generally, ϵej depends on differential ionization cross section dσion

dϵ
(ϵ1, ϵ). Energy

ϵej can then be determined

rion =
∫ ϵej

0
dσion

dϵ
(ϵ1, ϵ)dϵ

σion(ϵ1)
,

where rion ∈ [0, 1] is random number generated from uniform distribution and
σion(ϵ1) is integral ionization cross section; σion(ϵ1) =

∫ ϵej,max

0
dσion

dϵ
(ϵ1, ϵ)dϵ, where

ϵej,max = ϵ1 − ϵion.
Auxiliary approximation 2 : Let us assume that the differential ionization

cross section is independent of the energy ϵ of the ejected electron, dσion

dϵ
(ϵ1, ϵ) =

dσion

dϵ
(ϵ1). It is equivalent to the situation when energy is divided among scattered

and ejected electron according to random uniform distribution
1
2m1v

′2
1 + ϵej = 1

2m1v
2
1 − ϵion,

ϵej = rion

(1
2m1v

2
1 − ϵion

)
,

133



where rion ∈ [0, 1] is random number generated from uniform distribution.
1
2m1v

′2
1 = (1 − rion)

(1
2m1v

2
1 − ϵion

)
,

v′2
1 = (1 − rion)

(
v2

1 − 2ϵion

m1

)
. (A.3.3)

Auxiliary approximation 3 : half energy is taken by scattered electron, the
other half is taken by ejected electron (rion = 0.5 in equation A.3.3)

v′
1 = 1√

2

(
v2

1 − 2ϵion

m1

) 1
2
.

Let us consider general case without any approximation. According to the
equation A.3.2 relative velocity v′

r is given by

v′2
r = v2

r − 2∆E
µr

, (A.3.4)

∆E = ϵion + ϵej. (A.3.5)
In the most general case, energy of the ejected electron ϵej has distribution de-
scribed by differential ionization cross section dσion

dϵ
(ϵr, ϵ), where ϵr = 1

2µrv
2
r . En-

ergy ϵej can then be determined

rion =
∫ ϵej

0
dσion

dϵ
(ϵr, ϵ)dϵ

σion(ϵr)
,

where rion ∈ [0, 1] is random number generated from uniform distribution and
σion(ϵr) is integral ionization cross section; σion(ϵr) =

∫ ϵej,max

0
dσion

dϵ
(ϵr, ϵ)dϵ, where

ϵej,max = ϵr − ϵion.
If we want to introduce an approximation at this point that energy is divided

among scattered and ejected electron according to random uniform distribution,
we can first find the maximal possible energy of the ejected electron ϵej,max from
equations A.3.4 and A.3.5. This corresponds to the situation when all resultant
kinetic energy in the centre-of-mass frame is taken by the ejected electron:

ϵej,max ⇔ v′
r = 0 ⇔ v2

r − 2∆E
µr

= 0,

∆E = 1
2µrv

2
r ,

ϵion + ϵej,max = 1
2µrv

2
r ,

ϵej,max = 1
2µrv

2
r − ϵion.

Energy of the ejected electron ϵej can then be determined

ϵej = rion

(1
2µrv

2
r − ϵion

)
,

where rion ∈ [0, 1] is random number generated from uniform distribution. Fi-
nally, we get expression for magnitude of relative velocity v′

r

µr

2 v
′2
r = µr

2 v
2
r − ϵion − ϵej = (1 − rion)

(
µr

2 v
2
r − ϵion

)
,

v′
r = (1 − rion) 1

2

(
v2

r − 2ϵion

µr

) 1
2

. (A.3.6)
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In special case (rion = 0.5) when energy is distributed equally between scattered
and ejected electron, we get

v′
r = 1√

2

(
v2

r − 2ϵion

µr

) 1
2

.

If we take into account approximation m2 >> m1 and v2 ∼ v′
2 ∼ 0, equation

A.3.6 passes to the equation A.3.3 since µr = m1m2
m1+m2

= m1
m1/m2+1 ∼ m1, vr =

|v1 − v2| ∼ v1 and v′
r = |v′

1 − v′
2| ∼ v′

1 in this approximation.
As a last step, direction of vector v′

r has to be determined. For that purpose,
polar angle χ ∈ [0, π] and azimuthal angle η ∈ [0, 2π] has to be determined.
Generally, in the approximation that we use (particles treated as mass points
with zero mutual force) these are 2 independent parameters.

• Polar angle χ

– Anisotropic scattering: distribution of deflection polar angle χ is given
by differential cross section σd(ϵr, χ) and angle χ can be determined
according to

rχ =
∫ χ

0 σd(ϵr, χ
′) sinχ′dχ′∫ π

0 σd(ϵr, χ′) sinχ′dχ′ , (A.3.7)

where rχ ∈ [0, 1] is random variable generated from the uniform dis-
tribution.
[Total cross section σt is given by σt(vr) = 2π

∫ π
0 σd(vr, χ) sinχdχ.]

– Isotropic scattering: we can consider σd(ϵr, χ) = σd(ϵr) and expression
A.3.7 is simplified to

cosχ = 1 − 2rχ.

• Azimuthal angle η
η = 2πrη, (A.3.8)

where rη ∈ [0, 1] is random variable generated from the uniform distribution.

If there is non-zero mutual force between the interacting particles (e. g.
Coulomb collisions), there is additional condition based on which scattering an-
gles can be determined.

A.4 Transformations of vectors and coordinate
systems

Notes to the transformations between local and laboratory coordinate systems
when treating collision processes.

• Let us have velocity v1 of the incident particle, velocity v2 of the target
particle, relative velocity vr = v1 − v2 before the collision and relative
velocity v′

r after the collision.
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• Let us have some laboratory system (x, y, z), figure A.6. Local system
(x̂, ŷ, ẑ) is created in a way that ẑ axis is aligned with the direction of the
relative velocity vr. Angles θ and ϕ are given by the components of the
vector vr in the system (x, y, z):

sin θ =

√
v2

r,x + v2
r,y

vr

, cos θ = vr,z

vr

,

sinϕ = vr,x√
v2

r,x + v2
r,y

, cosϕ = − vr,y√
v2

r,x + v2
r,y

.

• How is the laboratory system (x, y, z) turned to the local system (x̂, ŷ, ẑ):
1. Rotation about z axis by an angle ϕ. This gives system (x∗, y∗, z∗). 2.
Rotation about x∗ axis by an angle θ. This gives system (x̂, ŷ, ẑ).

• Vector v′
r is generated in the local system (x̂, ŷ, ẑ), angles η and χ are

random variables generated from appropriate distribution:

v′
r,x̂ = v′

r cos η sinχ,
v′

r,ŷ = v′
r sin η sinχ,

v′
r,ẑ = v′

r cosχ.

For further calculations, coordinates of updated relative velocity in the lab-
oratory system are needed: v′

r,x, v
′
r,y, v

′
r,z.

• Example: A′ = [T ]A

– A′ . . . coordinates of vector A in the system (x′, y′, z′)
– A . . . coordinates of vector A in the system (x, y, z)
– [T ] . . . transformation matrix for transition from system (x, y, z) to the

system (x′, y′, z′). E. g. for system (x′, y′, z′) which originated from
system (x, y, z) by rotation around z axis by angle γ, it means:

[T ] =

⎛⎜⎝ cos γ sin γ 0
− sin γ cos γ 0

0 0 1

⎞⎟⎠ .
• The vector v′

r is needed to be transformed 2 times:

1. Transformation from system (x̂, ŷ, ẑ) to the system (x∗, y∗, z∗) which
originated by rotation around x̂ axis by angle (−θ):

⎛⎜⎝v
′
r,x∗

v′
r,y∗

v′
r,z∗

⎞⎟⎠ =

⎛⎜⎝1 0 0
0 cos (−θ) sin (−θ)
0 − sin (−θ) cos (−θ)

⎞⎟⎠
⎛⎜⎜⎝
v′

r,x̂

v′
r,ŷ

v′
r,ẑ

⎞⎟⎟⎠ =

=

⎛⎜⎝1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞⎟⎠
⎛⎜⎜⎝
v′

r,x̂

v′
r,ŷ

v′
r,ẑ

⎞⎟⎟⎠ .
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2. Transformation from system (x∗, y∗, z∗) to the system (x, y, z) which
originated by rotation around z∗ axis by angle (−ϕ):⎛⎜⎝v

′
r,x

v′
r,y

v′
r,z

⎞⎟⎠ =

⎛⎜⎝ cos (−ϕ) sin (−ϕ) 0
− sin (−ϕ) cos (−ϕ) 0

0 0 1

⎞⎟⎠
⎛⎜⎝v

′
r,x∗

v′
r,y∗

v′
r,z∗

⎞⎟⎠ =

=

⎛⎜⎝cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

⎞⎟⎠
⎛⎜⎝v

′
r,x∗

v′
r,y∗

v′
r,z∗

⎞⎟⎠ .
• Finally:⎛⎜⎝v

′
r,x

v′
r,y

v′
r,z

⎞⎟⎠ =

⎛⎜⎝cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

⎞⎟⎠
⎛⎜⎝1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎞⎟⎠
⎛⎜⎜⎝
v′

r,x̂

v′
r,ŷ

v′
r,ẑ

⎞⎟⎟⎠ =

=

⎛⎜⎝cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

⎞⎟⎠
⎛⎜⎝1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎞⎟⎠
⎛⎜⎝cos η sinχ

sin η sinχ
cosχ

⎞⎟⎠ v′
r =

=

⎛⎜⎝cosϕ − sinϕ cos θ sinϕ sin θ
sinϕ cosϕ cos θ − cosϕ sin θ

0 sin θ cos θ

⎞⎟⎠
⎛⎜⎝cos η sinχ

sin η sinχ
cosχ

⎞⎟⎠ v′
r.

Figure A.6: Transformation from the local coordinate system (x̂, ŷ, ẑ) to the
laboratory one (x, y, z).

A.5 Source codes
As an appendix to the thesis, the source codes of the developed computer models
are provided. We attach them to the printed version of the thesis on a CD and
to the electronic version of the work as an electronic attachment.

The following source codes are provided:
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• 2D-PIC-MCC: the source code of the 2D PIC/MCC plasma model devel-
oped in C programming language.

• 3D-PIC-MCC: the source code of the 3D PIC/MCC plasma model devel-
oped in C++ programming language.

• 3D-FLUID: drift-diffusion fluid model of plasma based on the FEniCS
software.

• POSTPROCESSING: Python package of scripts for post-processing of
the developed model results.
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