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Introduction
The ultrarelativistic heavy-ion collisions at the LHC create a hot and dense
medium of quasi-free quarks and gluons [1, 2, 3, 4]. Investigating this medium
and its properties is one of the primary goals of the LHC heavy-ion program. In
these collisions, an occasional hard scattering may happen between two colliding
partons leading to a production of new high energetic quarks and gluons; these
then radiate and create a flux of collimated particles called jet. It was shown [5]
that jets are suppressed in the central Pb+Pb collisions by approximately a fac-
tor of two compared to pp collisions. The process leading to this suppression is
called jet quenching. Strong suppression of jets was also observed in other sys-
tems such as gamma-jet or Z-jet systems [6, 7]. On the other hand, non-strongly
interacting particles like gamma, Z, and W bosons (and their non-strongly inter-
acting decay products) were measured in heavy-ion collisions and exhibited no
suppression [8, 9].

Up to now, only suppression of charged hadrons was measured in Xe+Xe col-
lision [10, 11, 12] and the jet energy loss in dijet system was measured only for
Pb+Pb collisions at the LHC. The 2017 Xe+Xe run gives a unique opportunity
to study jet quenching in collisions of lighter nuclei than Pb+Pb. This is at-
tractive for several reasons. First, the underlying event is smaller in the most
central collisions where the collision geometry is the most symmetric. Secondly,
the lower number of nucleons in Xe compared to Pb nuclei may affect the amount
of jet quenching through a reduction in both the overall energy density and path
lengths traversed by the hard-scattered quarks and gluons in the QGP. Conse-
quently, measurements in Xe+Xe collisions should provide more constraints on
the impact of energy density, fluctuations, path length dependence, and on jet
quenching. Studying the parton energy loss in a collision system that is smaller
than the Pb+Pb system may also help to predict the energy loss for oxygen–
oxygen collisions, which are intended to be performed during LHC Run 3 [13].

Measurements of imbalance in the transverse momenta of the two highest pT
jets can give us more insight into the processes influencing the jet quenching.
This imbalance studies how much more or less the highest-pT jet (leading jet)
is suppressed compared to the second highest-pT jet (subleading jet). A higher
imbalance was observed in Pb+Pb collisions compared to pp ones [14, 15]. This
suggests that momentum imbalance is an effect of interactions with the QGP. An
increased imbalance shows that the two jets lose energy unevenly in the QGP –
this may be due to various effects, for instance, their different path in the medium.

This thesis presents a momentum balance measurement of two highest pT
1

jets forming a dijet in Xe+Xe collisions. The measure of momentum balance is

1Throughout this thesis, the following notation is used: z-axis points along the direction of
the traveling particle, e.g., along the beam pipe. Cylindrical coordinates (r, ϕ) are used in the
transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined
in terms of the polar angle θ as η = − ln tan(θ/2) and the rapidity is defined in terms of the
energy E and z-component of the momentum, pz, as y = 1/2 ln((E +pz)/(E −pz)). Transverse
momentum and transverse energy are defined as pT = p sin(θ) and ET = E sin(θ), respectively.
The angular distance between two objects with relative differences ∆η in pseudorapidity and
∆ϕ in azimuth is given by ∆R =

√︁
(∆η)2 + (∆ϕ)2.
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defined by the ratio:
xJ = pT,2

pT,1
,

where pT,1 and pT,2 are transverse momenta of the leading and subleading jets,
respectively. The two jets must be back-to-back in azimuth, satisfying the condi-
tion |∆Φ| = |Φ1 − Φ2| > 7/8π, where Φ1 and Φ2 are azimuthal coordinates of the
leading and subleading jet, respectively. Both jets are required to be in rapidity
region |y| < 2.1.

Two normalizations are used for the xJ distributions. The first one is normal-
ization by the number of dijets (Npair):

1
Npair

dN
dxJ

, (1)

which is referred to as per-pair normalized momentum-balance distribution. The
second normalization is by the effective heavy-ion luminosity:

1
Nevt

1
⟨TAA⟩

dN
dxJ

, (2)

which is called absolutely normalized momentum-balance distribution. Here,
⟨TAA⟩ is the nuclear thickness function [16] and Nevt is the number of minimum
bias events in a given centrality interval. The self-normalized distributions were
measured in dijet asymmetry measurements [14, 15], and they allow to quantify
the impact of the jet quenching on the dijet momentum balance in the most sim-
ple way. The absolutely normalized distributions allow to directly compare the
absolute yields of jet pairs across different centralities. This normalization was
applied in the latest Pb+Pb measurement [15].

The presented analysis uses dijet yields to also calculate the ratio of pair
nuclear modification factor between Xe+Xe and Pb+Pb collisions for both leading
and subleading jets yield. For the leading jets yield, this ratio is defined as

ρXe,Pb(pT,1) = Rpair
AA (pT,1)|Xe+Xe

Rpair
AA (pT,1)|Pb+Pb

,

where Rpair
AA (pT,1)|AA is pair nuclear modification factor for leading jets in AA

collisions.

The first two chapters of the thesis give a theoretical introduction to Quan-
tum chromodynamics and heavy-ion collisions. Chapter 3 introduces the ATLAS
experiment. In Chapter 4, a detailed description of the jet reconstruction proce-
dure in ATLAS is provided. Chapter 5 presents the Xe+Xe dijet measurement
with the results.
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1. Strong Interaction at Particle
Colliders
The most successful description of elementary particles is provided by Standard
Model (SM), which was finalized in the late 1970s. It classifies all particles into
two main groups: fermions (particles with half-spins) and bosons (particles with
integer spins). There are 24 different fermions: six quarks (up, down, charm,
strange, top, and bottom), six leptons (electron, electron neutrino, muon, muon
neutrino, tauon, tauon neutrino), and 12 antiparticles — one for each particle.
Fermions respect Pauli exclusion principle — two fermions cannot occupy the
same quantum state [17]. On the other hand, bosons do not respect the exclusion
principle, and in SM, they are the force carriers. The known bosons are a photon,
Z, W±, gluons, and Higgs boson. In SM, all particles are represented by quantum
fields in four-dimensional space-time. The model has a local SU(3)×SU(2)×U(1)
gauge symmetry, which gives rise to the three fundamental interactions. The
SU(2)×U(1) symmetry is responsible for the electroweak interaction, a unification
of weak and electromagnetic interaction. SU(3) symmetry generates gluon fields
that interact with quarks and represent strong interaction. The results of this
thesis aim to investigate the properties of the SU(3) gauge symmetry group,
called Quantum Chromodynamics (QCD). In this chapter, we will provide a brief
introduction to the QCD. For a great introduction to quantum field theory and
the basics of the electroweak interaction, the reader is referred to [18, 19, 20].

1.1 Quantum Chromodynamics
We start with a Dirac equation of motion for a quark with a mass m [18]:

(iγµ∂µ −m)Ψ = 0, (1.1)

where γµ are Dirac matrices and the wave function Ψ = ψ(x)χc is a product of a
Dirac spinor ψ(x) and a color wave function χc. There are three different colors
with corresponding quantum states:

χRed =

⎛⎜⎝1
0
0

⎞⎟⎠ , χGreen =

⎛⎜⎝0
1
0

⎞⎟⎠ , χBlue =

⎛⎜⎝0
0
1

⎞⎟⎠ . (1.2)

Interaction carrier fields arise by requiring an invariance under a local gauge
transformation

Ψ → Ψ′ = eigs/2taωa(x)Ψ, (1.3)

where ta are generators of the SU(3) group, which in the matrix representation
are widely known as 3 × 3 Gell-Mann matrices. These generators satisfy a com-
mutation relation [ta, tb] = i2fabctc, where fabc are structure constants of SU(3)
Lie algebra. Invariance under the (1.3) is only possible, if we define the following

5



Figure 1.1: Feynman diagrams for interaction vertices of QCD represented by
interaction Langrangian Lint in eq. (1.6) from left to right .

transformations [20]:

∂µ → (Dµ)ij = ∂µδij + i
gs

2 ta,ijA
µ
a

Aµ
a → A′µ

a = Aµ
a + 1

gs
∂µωa(x) − fabcωb(x)Aµ

c

where Ai are eight gluon fields, and gs is the QCD coupling constant, which can
be equivalently expressed as gs =

√
4παS. Now we are ready to write SU(3) local

gauge invariant QCD Lagrangian [19]:

LQCD = −1
4G

a
µνG

a µν +
∑︂

f

ψ̄f,a(iγµ(Dµ)ab −mfδa,b)ψf,b, (1.4)

where index f runs for all different flavors of quarks, a and b are color indices
and run from 1 to the number of colors for quarks NC = 3, and GC

µν is a field
strength tensor defined as:

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gsf

abcAb
µA

c
ν . (1.5)

From (1.4), an interaction term Lint can be extracted:

Lint = gsAψ̄ψ + gsAA∂A+ g2
sAAAA. (1.6)

Three terms represent three different interaction vertices whose Feynman dia-
grams are shown in Figure 1.1 — ordered from left to right. The first term is
analogous to the quantum electrodynamics vertex with the photon. The lat-
ter two arise because the gluon, in contrast with a photon, carries a non-zero
color charge. This gluon self-interaction is a direct consequence of a non-abelian
property of the SU(3) group.

The non-abelian theory can be proven to have two interesting properties,
which turn out to have a crucial impact on the world we see: The first one is
color confinement — it means that all we can observe are color-neutral hadrons.
The second property is asymptotic freedom. It means that the interaction gets
weaker as the length scale decreases or, equivalently, the energy scale increases.
These properties result from a running coupling and a renormalization procedure
shown in the next section.

1.2 Running Coupling Constant
A renormalization procedure removes divergences from loop QCD diagrams. It is
far beyond the scope of this thesis to describe the renormalization procedure in
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Figure 1.2: Left: Landau poles for two signs of parameter b0. Right: A summary
of different measurements of αS for different energy scales Q. Figure is taken
from [23].

detail. A good introduction is provided in Part II of Ref. [19]. The whole Standard
Model, and QCD as its part, is renormalizable. This means that loop divergences
can be removed in the perturbative approach. After the renormalization, the
QCD coupling constant αS depends on a non-physical energy scale µ, and this
dependence is described by the renormalization group equation [19]:

β(αS) = µ2∂αS

∂µ
= −α2

S(b0 + αSb0 + . . .), (1.7)

where Nc is the number of colors and nf is the number of quark flavors. b0 =
(11Nc −2nf )/(12/π) [21, 22] and b1 = (17N2

c −19nf )/(24π) [23] are 1- and 2-loop
β-function coefficients, respectively. Up to 2 loops, coefficients b are independent
of the renormalization scheme when masses of quarks are zero. Choosing µ close
to the scale of the momentum transfer Q in a given process, then αS(µ2 = Q2) is
indicative of the effective strength of the strong interaction in that process [23].
The change of αS with µ is called the running of the coupling constant.

At the leading order (LO), αS(µ) is divergent at Q2 = Λ2
QCD which is called

Landau pole. Close to this pole, values of αS are too big for the perturbation
approach to be used. In general, for any coupling constant, these divergences can
be classified into two types by the sign of b0. Figure 1.2 (left) shows these two
possibilities. When b0 > 0, we have a divergence for small µ. For b0 < 0, the
divergent pole is for large µ values. The QCD has a positive b0 and therefore is of
the second type. This means that when we increase the energy of the interaction,
the strong force gets weaker, and quarks and gluons are becoming free in the
limit of µ → ∞. This is the explanation of the already mentioned asymptotic
freedom. On the other hand, for low µ values (and low energies), the perturbative
approach can no longer be used.
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From (1.7), one can get for αS in the LO

αS(µ) = 1
b0ln µ2

Λ2
QCD

, (1.8)

where ΛQCD is the Landau pole for QCD, and in the LO, it is ≈ 200 MeV [23].
This energy is in the order of mass scales in typical hadrons. For this reason, a
perturbative QCD cannot be used in the description of the structure of baryons
or mesons.

Figure 1.2 (right) summarizes values of αS measured at different processes
with various values of µ. Because the first precise measurement of αS was done
at LEP at the energy of Z boson mass (mZ ≈ 91 GeV), all other measurements
for different µ are recalculated to this value using the renormalization group
equation. The world average value of αS is then reported at µ = mZ and is [23]

αS(mZ) = 0.1179 ± 0.0009.

1.3 Jets and Jet Algorithms
During a hard scattering where high momentum is transferred, in both pp and
heavy-ion collisions, high-energy partons are created in the interaction vertex.
One would like to measure their distributions, but due to color confinement,
these partons are not the final observable states of the interaction. They radiate
quarks and gluons; these then hadronize into color-neutral hadrons, creating a
shower of particles. This shower is called jet. Ideally, we would like to identify
all particles in the jet and reverse-engineer their decays into the original parton.
This is difficult and ambiguous. As a consequence of that, we define and study
jets instead of the initial partons.

We need a reliable method to reconstruct the jets in theory and experiment
consistently. For this, we define a set of rules called jet algorithms. For one
collision, different algorithms will likely create a different set of jets. Therefore,
a jet is defined by the jet algorithm.

1.3.1 Jet Alorithms
There are two main requirements we impose on a jet algorithm. The first one is
infrared safety. The algorithm is infrared safe if adding a soft (low momentum)
particle does not change the definitions of jets in the event. Figure 1.3 (right)
shows an example of an unsafe infrared algorithm, where an added soft particle
in the middle of two jets merges them into one jet. The second requirement is
collinear safety. It can happen that a detector falsely identifies one particle as two
weaker colinear particles. The jet definition should stay the same if this happens.
Looking at Figure 1.3 (left), splitting a particle into two has missed a potential
jet in the event.

Because modern detectors have to process large amounts of collisions (e.g.,
LHC can deliver collisions every 25 ns), it is desired that the jet algorithms are
fast enough to process large volumes of data.

We can classify the most commonly used algorithms into two groups: The first
group is called cone algorithms. They identify jets as a set of particles within a

8



Figure 1.3: A demonstration of unstable behavior of jet algorithms. Left: Colin-
ear unstable. Right: Infrared unstable.

calculated cone in space. The basic cone algorithm identifies the highest momen-
tum particle and includes all particles in its predefined distance R into a jet. Such
a procedure was shown to be neither co-linear nor intra-red safe. Its improved
version — seedless cone algorithm (SISCone) removes these shortcomings but is
computationally more demanding.

The second group is clustering algorithms. They are sequentially joining par-
ticles nearby in phase space into new pseudoparticles. This joining of particles
continues iteratively until the pseudoparticles cannot be merged anymore. The
final pseudoparticles or clusters are the final jets. The distance in the phase space
can be defined in different ways, which will change the behavior of the algorithm,
as we will see below. The clustering algorithms are used in most modern particle
experiments, and their individual steps are described below.

As the first step in every iteration, the algorithm calculates the distance be-
tween each pair of particles,

dij = min(p2k
T,i, p

2k
T,j)

R2
ij

R2 (1.9)

and defines a measure diB for each particle,

diB = p2k
T,i. (1.10)

Here, pT,i and pT,j are transverse momenta of i-th and j-th particle, respectively.
The jet radius parameter, Rij, is the distance between the particles.

The algorithm then finds a minimum in the two sets: min{dij} and min{diB}.
If min{dij} < min{diB}, then i-th and j-th particles are recombined, else i is the
final jet and is removed from the sample. The algorithm then starts calculating
dij and diB again and repeats all steps until all particles are used. Clustering
algorithms were shown to be infrared and collinearly safe.

The clustering algorithm is determined by a predefined value k. For k = 1,
the algorithm is called kt algorithm [25, 26], k = 0 is called Cambridge-Aachen
algorithm [27, 28] and k = −1 is the anti-kt algorithm [24]. The kt algorithm
has the longest history and was the main jet finding algorithm, for instance, at
the Large electron-positron collider. It starts the recombination from the soft
particles first. Cambridge-Aachen algorithm does not include the pT of particles
in the distance measure, and as a result, it clusters based only on the spatial
position. The anti-kt algorithm is the youngest of the three and produces jets

9



Figure 1.4: Different jet shapes for different jet algorithms. Figure is taken
from [24].

with the most conical shape and is colinear and infrared safe. In a sense, it is
a perfect cone algorithm. The anti-kt algorithm starts clustering from the hard
particles. Figure 1.4 shows a comparison of four various algorithms and the jets
they produce. The anti-kt is the standard jet finding algorithm at the ATLAS
detector and is used to construct all jets in this thesis.

The recombination of two particles is defined by a recombination scheme,
which specifies how to add their four-vectors. The two most important schemes
are:

• ET scheme: In this scheme, jets are massless, and the distance is computed
as R =

√︂
(∆η)2 + (∆ϕ)2. When combining two particles, the scheme adds

their ET, η, and ϕ. The scheme was used at Tevatron [29].

• four-momentum scheme: This scheme uses massive jets, and the distance
is defined as R =

√︂
(∆y)2 + (∆ϕ)2. The recombination process sums the

4-momenta of the particles. The scheme is used at the LHC.

Until now, we have used a word particle for the inputs to the jet-finding algo-
rithms. This is only partially correct — the input can be many different objects,
for instance, tracks of charged particles, calorimetric clusters, and particles as
well. Different inputs have various advantages or disadvantages. For example,
tracks are objects with a good resolution but are slow to calculate and contain
only charged particles. Because neutral particles make up about 30% of the par-
ticles inside the jet, they will be missing in the track jets. On the other hand,

10



calorimeter cells or their clusters are very fast and contain neutral particles. An-
other essential difference between track and calorimeter jets is that the resolution
of track jets decreases with pT but increases with pT in for calorimeter jets.

For a real measurement, jets must be calibrated for each individual detector.
This calibration requires a proper simulation of jet showering and the showers’
interaction inside a detector. Chapter 4 presents the jet reconstruction procedure
used in ATLAS heavy-ion collisions in greater detail.
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2. Heavy-Ion Collisions
In the last few decades, physicists have been accelerating particles to higher and
higher energies and studying their collisions. During collisions of heavy ions,
physicists discovered a new form of matter consisting of quasi-free quarks and
gluons, which was present in the early stages of the evolution of the universe. This
chapter provides a brief introduction to these collisions, supported by selected
recent experimental observations.

In Figure 2.1 (left), two accelerated nuclei colliding with each other are de-
picted in the laboratory frame of reference. Each nucleus is Lorentz contracted
into a thin disk in the direction of travel. For a Pb nucleus in the LHC, the disk
has a height of about 14 fm [30] and a thickness of 14/γ fm, where the γ factor is
about 2600 for √

sNN = 5.02 TeV. The colliding discs are made of nucleons, which
consist of quarks and gluons, commonly called partons. There are thousands
of soft parton-parton interactions (soft means interaction with low momentum
transfer). The multiplicity of these soft interactions can get as high as 30 thou-
sand per nucleon-nucleon collision. Particles created in these soft collisions create
a hot and dense medium called quark-gluon plasma (QGP). The γ factor has a
non-trivial impact on the collision, as the two disks are shrunk more for higher
γ, which increases the density of parton interactions [31].

Figure 2.1: Left: Cartoon of an ultrarelativistic heavy-ion collision at different
times. From left, 5 fm/c before the collision, two Lorentz contracted nuclei are
shown in blue. Next, the moment when nuclei hit each other, followed by the
creation of QGP. The last cartoon 50 fm/c after the collision is freeze-out —
grey spheres represent hadrons. Right: A QGP phase diagram showing a region
of hadrons and QGP. A potential critical point and first-order phase transition
line are drawn as well. For very high baryon densities and low temperatures,
we expect the formation of cold nuclear matter, which is supposed to be a color
superconductor. This matter may also be found in the centers of neutron stars.
Both figures are taken from [30].

The energy density right after the collision, say 1 fm/c, when the remnants
of two nuclei are 2 fm apart, is much larger than a typical hadron energy density.
The overlapping time of high-energy two nuclei is very short. Therefore, all
secondary particles are created in a thin disk between the receding nuclei. The
volume-averaged energy density inside this disk at formation time, τform, can be
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estimated using the Bjorken energy density formula [2, 32, 33]:

εBJ(τform) = 1
A

1
τform

dET(τform)
dy , (2.1)

where A is the overlap of the two nuclei in the transverse plane with respect to
nuclei velocity, and dET/dy is transverse energy density per unit rapidity. In
Refs. [33, 34], εBJ(τform = 1 fm) was measured to be at least 12 GeV for the most
central Pb+Pb collision at √

sNN = 2.76 GeV at the LHC. This is much more
than an energy density inside a proton, which is about 938MeV/((4/3)π(1fm3)) ≈
250 MeV/fm3 [35]. In these conditions, quarks and gluons cannot be bound in
their colorless states but are freed from nucleons. Because they carry a color
charge, they interact with each other strongly. The medium they create is strongly
coupled and has a strong collective movement [36, 37]. It flows as a relativistic
fluid with the viscosity to entropy ratio η/s [38, 39], the lowest ever observed. As
this medium cools down, the quarks and gluons hadronize and can be observed.
The imprint of the medium can be studied using these final products.

An open question is a description of a transition between the QGP and
hadronic matter. Figure 2.1 (right) shows a temperature to baryon doping phase
diagram of the QGP. Baryon doping is an excess of quarks over anti-quarks and
can be expressed as baryochemical potential µB. The matter with equal quan-
tities of quarks and anti-quarks is represented by µB = 0. The µ approaching
zero is achieved in ultrarelativistic heavy-ion collisions at the LHC. The µ = 0
is achieved in the early universe. To map the whole phase diagram, we need
data with higher values of baryochemical potential, which can be done by lower-
ing the collision energy — this is being done, for instance, at Relativistic Heavy
Ion Collider (RHIC) [40]. RHIC is a particle accelerator dedicated to heavy-ion
collisions, operating at Brookhaven National Laboratory. A big focus is put on
establishing if there is the first order phase transition and a search for the crit-
ical point between the QGP and hadronic states. Confirming or ruling out the
first-order phase transition can help us understand the transition of the universe
in its early stages, which was mainly the QGP, to the preset baryonic state.

The two nuclei do not necessarily have to hit head-on, meaning that not all
nucleons in the nuclei must interact in the collision. The overlap can and will
vary from collision to collision. Only the nucleons in the overlap participate in the
collision and are called participants. The quantity of created QGP is proportional
to the overlap between them — that is, more overlap means more interacting
partons and a bigger droplet of the QGP [16]. The nucleons that do not interact
are called observers. These observers will travel down the beam pipe with almost
unaltered momentum. A special case is an ultra-pheripheral collision, where the
colliding nuclei miss each other completely. In these collisions, nuclei can still
interact via an electromagnetic interaction. It was in these collisions that the
first γγ scattering via QED box-diagram was observed [41].

Another interesting property of the QGP medium is its hydrodynamics, flow,
and collective movement of its constituents. An asymptotically free theory is
expected to have weakly coupled constituents at very high energies. However,
this is not seen. A strong coupling is observed between quarks and gluons. An
example of collective motion can be seen in Figure 2.2 (left), where azimuthal
correlations are observed in energies deposited in the calorimeter as measured
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by the Compact Muon Solenoid (CMS) [42] experiment. Correlations are seen
for particles with different rapidities, and by causality, their origin must come
from the early stages of the collision. These early collective motions are then
imprinted into the final hadrons we observe. Relativistic hydrodynamics simula-
tions show that the medium behaves like a liquid with remarkably low viscosity.
A good way to visualize this is: Collided nuclei are not perfect spheres. Their
mass distribution is certainly not constant, and their shape is a little lumpy as
well. Therefore, it is expected that pressure gradients are present right after
the medium is created. Should the medium be gas-like (constituents rarely in-
teracting), any initial anisotropy in the pressure would soon fade out, and no
azimuthal correlations will be observed. Should the medium behave as a liquid
with higher viscosity, any pressure-driven currents would also stop. Therefore, a
low-viscosity, strongly-coupled medium is a very coherent picture. We can say
that hydrodynamics converts spatial anisotropy into momentum anisotropy.

To quantify the azimuthal anisotropy, the azimuthal angular distribution of
produced particles is expanded in Fourier transformation [43, 44]:

dN
dϕ ∝ 1 + 2

∞∑︂
n=1

vncos
(︂
n(ϕ− Ψn)

)︂
, (2.2)

where ϕ is an angle of a particle in the transverse plane and Ψn is the event
plane angle [44, 45]. The event plane is calculated for each event so that, on
average, particles having its direction lose less energy. Such particles are called
in-plane. Particles going perpendicular to the event plane are then called out-
of-plane. The vn are anisotropic flow coefficients, and they are what is usually
reported in experiments. These coefficients are usually measured differentially
in particle pseudorapidity (η), particle-transverse momentum (pT), and different
colliding nuclei overlap (centrality). The most studied flow coefficient is that of
the second order — ν2 and is called eliptic flow. This eliptic flow is susceptible to
the initial asymmetry of the eliptic-shaped overlap between the two nuclei. The
higher order flow coefficients (n > 2) are sensitive, e.g., to viscous effects of the
QGP and fluctuations of the initial-stage geometry [43, 44, 46].

Figure 2.2 (right) shows six azimuthal flow coefficients as a function of particle
transverse momentum for the mid-centrality region. A typical trend for the flow
coefficients is seen: increasing values with pT up to pT ≈ 3 − 4 GeV and then
decreasing with pT. A non-zero vn coefficients are the direct evidence of the
angular anisotropies, a remnant of the initial geometry. Different measurements
at RHIC [47, 48] in Au+Au collisions, and at LHC [45, 49, 50, 51] in Pb+Pb
collisions have shown that these coefficients are independent of the collision energy
when compared in the comparable centrality intervals.

Rarely a hard collision with high energy transfer occurs between two partons.
This process creates high-energetic quarks or gluons with energies reaching up
to 1 TeV at the LHC. Each of these products radiates and creates a collimated
shower, or jet, in the direction of its travel. The creation and evolution of this
shower in a vacuum is well understood in perturbative QCD. In a heavy-ion
collision, this shower must propagate through the QGP. As it plows through, it
interacts with the medium and loses energy and momentum. What is lost in the
jet is deposited in the QGP droplet, creating a medium response — a wake. The
main work of this thesis is to investigate and further understand this energy loss.

15



Figure 2.2: Left: An event display showing energy deposited in CMS electro-
magnetic (blue) and hadronic (red) calorimeter for two heavy-ion collisions. An
apparent azimuthal anisotropy is seen in these events. Right: The distribution of
six different νn azimuthal flow coefficients as the function of particle pT in Pb+Pb
collisions measured by the ATLAS experiment. Figure is taken from [52].

We will return to these hard scatterings and how we measure them in Sec. 2.3.

2.1 Glauber Model
In the 1950s, Roy Glauber introduced a formalism to study the scattering of com-
posite objects at large energies [53]. His work was reviewed and updated to suit
the modern need for high-energy nucleus-nucleus collisions [16, 54]. This model
calculates geometric quantities in the heavy-ion collisions, namely the impact pa-
rameter — b, number of participating nucleons — Npart, and number of binary
collisions — Ncoll.

Glauber model assumes an optical limit approximation — fast and energetic
nucleons in the colliding nuclei will be undeflected as the two nuclei pass through
each other. The model sees the nucleons in the nucleus move independently of
each other; that is, in the time of the collisions, they all move in the linear path.
Consider a situation shown in Figure 2.3. Nucleus A and nucleus B are about to
collide with an impact factor b. The cylindrical flux at a distance s from the center
of nucleus A is shown in grey. The probability to have a nucleon in the nucleus
A at the position s is TA =

∫︁
ρA(s, zA)dzA, where ρA(s, zA) is a probability per

unit volume to find a nucleon in the grey cylinder. The analogous probability can
be calculated for nucleus B. TA(s)TB(s − b)d2s is then joint probability per unit
area that two nucleons of the opposing nuclei will be in the area d2s. Integrating
over all possible values of s one gets the nuclear thickness function TAB(b):

TAB(b) =
∫︂
TA(s)TB(s − b)d2s. (2.3)

The product TAB(b)σNN
inel, where σNN

inel is the cross-section of the inelastic nucleon-
nucleon scattering, gives the probability of the nucleon-nucleon interaction. Be-
cause the elastic collisions result in a very low energy losses, they are not consid-
ered in the Glauber-model calculations.
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Figure 2.3: Left: Glauber model schematic view of the collisions. Right: The
same collision as on the left, but along the moving nucleon. Figure is taken
from [16].

The probability that n such collisions occure between nucleus A with NA
nucleons and nucleus B with NB nucleons is given by the binomial distribution

P(n,b) =
(︄
NANB

n

)︄
[TAB(b)σNN

inel]n[1 − TAB(b)σNN
inel]NANB−n. (2.4)

With n binary (nucleon-nucleon) collisions, we have NANB − n misses. Now,
all necessary factors can be calculated very easily. The total number of binary
collisions is

Ncoll(b) =
AB∑︂
n=1

nP(n,b) = NANBTAB(b)σNN
inel, (2.5)

The number of nucleons in both nucleus A and B which interact with at least one
nucleon from the other nucleus is called the number of participants Npart, and is
equal to:

Npart(b) = NA

∫︂
TA(s)

{︃
1 −

[︃
1 − TB(s − b)σNN

inel

]︃B}︃
d2s+ (2.6)

NB

∫︂
TB(s − b)

{︃
1 −

[︃
1 − TA(s)σNN

inel

]︃A}︃
d2s. (2.7)

Nucleons that do not participate in the collision are called observers and continue
traveling with unaltered momentum. Obviously, Npart +Nobs = NA +NB, where
Nobs is the number of observers.

There are two inputs into the Glauber model. One is nucleon-nucleon inelastic
cross section σNN

inel, and the other is the nucleon density, described by a Wood-
Saxons distribution [55]:

ρ(r) = ρ0
1 + w(r/R)2

1 + exp
(︂
r − R
a

)︂ , (2.8)

where R is the radius of the nucleus and ρ0 is nucleon density in the middle of
the nucleus. Parameters a and w are corrections for skin depth and deviation
from spherical shape, respectively.
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Figure 2.4: Simulation of a collision between two gold nuclei using Glauber model
Monte Carlo. Darker colors denote participating nucleons, and lighter colors are
observers. Left: The red nucleus is going toward us, and the blue nucleus is going
away from us. Right: The nuclei go in the right-left direction, as indicated by
the arrows. Figure is taken from [16].

With the use of modern computers, a Monte Carlo Glauber model is a very
convenient way to calculate average values of geometric quantities. The computer
randomly selects an impact factor b and assembles nucleons in both nuclei based
on nucleon probability density. The collision is then viewed as a sequence of
many nucleon-nucleon collisions. It is assumed that nucleons travel in a straight
trajectory, independent of other nucleons or previous interactions (one nucleon
can hit multiple other nucleons). In the simplest case, the two nucleons hit each
other if their mutual distance d in a plane perpendicular to the beam axis is
d <

√︂
σNN

inelπ. Figure 2.4 shows a simulation of a collision of two gold nuclei.
Repeating the above procedure many times, average values of ⟨Npart⟩ and ⟨Ncoll⟩
can be calculated.

One has to keep in mind that there is a difference between the Glauber model
and the MC approach. This difference comes mainly from the Glaubers optical
limit where the incoming nucleons see the opposite nucleus as a smooth density,
while the MC generator assembles the nuclei in each collision [16].

2.2 Centrality of Collision
In an actual measurement, it is impossible to set up a collision for a particular
value of the impact factor, the number of participants, or the number of binary
collisions. Each collision has these randomly selected by nature. It is also im-
possible to determine these values after the collision. All we are left with is the
debris of produced particles. Mean values of geometric quantities can be ob-
tained from the Glauber model by mapping the selected measured distribution
and the same distribution obtained from the model. This mapping can vary be-
tween experiments. Here, we will describe the approach taken by the ATLAS
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Figure 2.5: The distribution of total energy deposited in the forward region of
the ATLAS detector for Pb+Pb collisions at √

sNN = 2.76 GeV. Vertical lines
indicate the centrality intervals. Figure is taken from [45].

experiment.
The number of participating nucleons Npart is monotonically proportional to

the energy deposited in the forward regions of the detector (3.2 < |η| < 4.9) [16].
Figure 2.5 shows the distribution of the total energy deposited in this forward
region per event. This distribution is calculated after we have all the collisions
measured. The distribution is divided into intervals based on their fraction of
the total integral. Intervals representing certain fractions are called centrality
intervals. A centrality interval of a total size of 10% (e.g., 0 − 10%) contains
10% of all collisions but with a specific range of energy deposited in the forward
region. In the MC Glauber model, we generate many collisions and produce the
same distribution, again with its own centrality intervals. Then, we can connect
the geometric quantities in the same centrality intervals between the data and
the MC. It is important to note that interval starting with zero (e.g., 0–10%)
contains the most central collisions, that is, collisions with the biggest mutual
overlap and the smallest impact factor. On the other side of the spectrum are
peripheral collisions, where the overlap between the nuclei is not very large —
these are represented typically by 60 − 80% centrality interval.

2.3 Jet Quenching

High pT objects created in the hard scattering can be used as probes for studying
the medium properties. Jets, charmonia, or bottomia, known as hard probes, can
be used for this purpose. Unless stated otherwise, we will reserve our arguments
in this section to jets. To quantify the effect of the QGP, a simple counting of
jets can be used. As was seen in Glauber model calculations, on average, Ncoll
binary scatterings take place during a heavy-ion collision. Therefore a natural
observable to investigate a potential change in jet production is a ratio called
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Figure 2.6: Left: Highly asymmetric event with one jet with pT > 100 GeV,
but no evident recoil jet. Figure is taken from [57]. Right: Nuclear modification
factor RAA as a function of inclusive jet pT for four centrality intervals in Pb+Pb
collisions at √

sNN = 5.02 TeV as measured by the ATLAS experiment. Figure is
taken from [5].

nuclear modification factor RAA defined as:

RAA =
dN
dpT

⃓⃓⃓⃓
AA

Ncoll × dN
dpT

⃓⃓⃓⃓
pp

, (2.9)

where dN/dpT are per-event yields of jets in an indicated system. If no QGP
was formed, RAA would be unity, and one heavy-ion collision would be equal
to Ncoll pp collisions. Because jets have a steeply falling spectrum in the order
of approximately p−5

T at the LHC, a significant deviation of RAA from unity is
expected for even a small energy loss [56].

Figure 2.6 (right) shows a measurement of the nuclear modification factor
RAA for jets in Pb+Pb collisions at √

sNN = 5.02 TeV. Clearly, RAA is below
unity for all centrality intervals. This leads to the conclusion that a heavy-ion
collision cannot be interpreted as a superposition of proton-proton collisions, and
suppression of jet yields is present. This suppression of jets is called jet quenching.
In the same figure, the RAA is measured for different centrality intervals; not
only do we see RAA < 1 for all of them, but a clear hierarchy can be seen —
the more central collision we have, the smaller the RAA is. This is a result of
different amounts of QGP created in different centrality intervals. The droplet
size increases with the increased overlap of the nuclei, and thus, more central
collisions are expected to show larger suppression. Jet suppression is also observed
in other LHC experiments, for instance, in Refs. [58, 59].

A crucial check is to look at the nuclear modification factor for colorless par-
ticles, where RAA = 1 is expected. Figure 2.7 shows two ATLAS measurements:
Left panel of Figure 2.7 shows scaled yields and the RAA for Z boson decaying
into a muon pair. The right panel of the same figure shows the RAA for W boson
leptonic decay. None of these interact via a strong interaction. For the Z boson,
we observe a clear consistency of the RAA with the unity. For W boson, the
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Figure 2.7: Left: Bottom panel shows the nuclear modification factor RAA for
Z bosons as a function of Npart. Right: The RAA as a function of Npartfor W±

bosons. Figures are taken from [60, 61].

situation is less straightforward, as there is an uneven number of valence up and
down quarks in the Pb+Pb and pp. This produces an isospin effect, where W+

and W− production is not the same between the two systems. Nevertheless, one
may conclude that no energy loss is seen for Z, W+, and W− bosons. Thus, these
measurements established the QGP as a purely strongly interacting medium.

A jet we measure is always altered by the QGP. We do not know what would
be the energy of the jet without the medium. Measuring jets recoiling against a
colorless particle like γ or Z boson can help us measure the unaltered momentum
of the jet. A sample with jets opposite to a high-pT photon was analyzed in
ATLAS γ-tagged jet measurement [62]. γ-tagged jets also provide a means to
study flavor energy loss dependence. As is shown in Figure 2.8 (left), γ-jets are
much more likely to be initiated by a quark than a gluon. Figure 2.8 (right)
shows the nuclear modification factor RAA as a function of jet pT for γ-jets and
inclusive jets. The γ-jets are suppressed in all pT intervals, and the suppression
increases with centrality. The RAA of γ-tagged jets is significantly higher than
that for inclusive jets in the same pT and centrality interval, indicating that
parton energy loss is sensitive to the color charge of the initiating parton. This
is due to the fact that gluons are 2.25 times more likely to radiate in the QGP
and therefore lose more energy.

The mass of the quark which initiated the jet can also play a role in the
suppression. This mass dependence is described by dead cone effect [63], where
gluon emission is suppressed in the angles smaller than quark’s mass-to-energy
ratio (see Figure 2.9 (left)). The effect is more pronounced for heavier quarks
at the same energy. A study measuring the suppression of muons coming from
heavy-flavor D(cc̄) and B(bb̄) mesons was done in Ref. [64]. The measurement of
the RAA indicates a significant suppression for both flavors and the suppression is
increasing with the event centrality. The suppression is stronger for c quarks than
for b quarks, as seen via muons at low pT < 10 GeV. This difference is quantified
in their respective RAA ratio shown in Figure 2.9 (right) and is due to b quark’s
bigger mass, which results in a more significant dead cone effect.

As was previously explained in Section 1.3, jets are constructed using a pre-
defined algorithm with a pre-defined radius R. But what if the medium cannot
resolve all internal structures? Figure 2.10 (left) shows the same jet but with two
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Figure 2.8: Left: Fraction of quark-initiated jets for inclusive jets (open markers)
and γ-tagged jets (full markers). Right: Nuclear modification factor RAA as a
function of jet pT for three different centralities for γ-tagged jets and inclusive
jets. Figures is taken from [62].

Figure 2.9: Left: Cartoon showing the dead cone effect for a quark traveling
from left to right. A cone has an angle of θ = m/E, where m and E are the
mass and energy of the quark, respectively. Right: A ratio between the nuclear
modification factor of charm and bottom quarks as a function of muon pT for
0 − 10% centrality interval. Figure is taken from [64].
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Figure 2.10: Left: Cartoon of the same jet but with different medium resolution
Λmed. The top figure represents a medium resolution smaller than the jet’s ra-
dius, and the bottom figure shows a resolution of approximately the same size
as the jet’s radius. Figure is taken from [66]. Right: Measurement of nuclear
modification factor as a function of rg, for different jet pT intervals and 10 − 40%
centrality. Figure is taken from [65].

different resolution scales of the medium Λmed. For the top plot, the medium can
resolve an internal structure of the jet and effectively sees two smaller sub-jets.
For the bottom plot, the resolution is too large to identify an internal structure
of a jet. In a recent ATLAS result [65], RAA was studied differentially in the
angle between the two sub-jets. This angle is defined as rg =

√
∆η2 + ∆ϕ2 and

the result is shown in Figure 2.10 (right). A steep rg dependence of the RAA
shows that the internal structure plays an important role in the suppression —
different colors represent different jet pT and in each bin, they are the same within
uncertainties. In general, jets with wider opening angles lose more energy than
narrow jets with the same energy.

Figure 2.11: Cartoon of two jets produced in a quark-gluon plasma (orange) in an
overlap of two nuclei (dashed circles). The vertex position and the non-circular
shape of the overlap cause a different path length in the medium. Figure is taken
from [66].
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Figure 2.12: A dijet asymmetry AJ distributions for four different Pb+Pb central-
ity intervals. Full markers represent Pb+Pb data measured at √

sNN = 2.76 TeV
and open markers are pp data at

√
s = 7 TeV. The yellow histogram shows the

AJ distribution from MC HIJING generator. Figure is taken from [57].

2.4 Dijet Balance Measurements

Jets are primarily produced in back-to-back pairs (dijets) in 2 → 2 processes. The
most likely situation in a vacuum is that the two jets in the dijet system have
the same energy. This balance can be slightly violated by higher-order processes.
Figure 2.11 (left) shows two jets produced in the overlap of two nuclei. In theory,
the vertex from where the two jets originate does not have to be in the middle of
the QGP droplet, and the dijet system can have any direction. The two jets will
therefore have different path lengths in the medium. Studying the dijet system
can provide more information about the dependence of path length on energy
losses and the role of fluctuations in the medium.

The first dijet balance measurement in heavy-ion collisions at ATLAS was
published in 2010 in Ref. [57]. In that measurement, a pp and Pb+Pb sample
at a collision energy of 2.76 TeV per nucleon were compared in different Pb+Pb
centrality intervals. The study focused on jet pairs in the opposite hemispheres,
with an azimuthal separation of ∆Φ > π/2. One jet is the highest transverse
energy (ET) jet in the event, called the leading jet, and the second jet is the
second highest ET jet, called the subleading jet. The analysis measured dijet
asymmetry, defined as:

AJ = ET,1 − ET,2

ET,1 + ET,2
, (2.10)

where ET,1 and ET,2 are ET of leading and subleading jet, respectively. The
results of this measurement for pp collisions and four Pb+Pb centrality intervals
are shown in Figure 2.12. In the peripheral collisions (40−100% centrality), where
the smallest amounts of QGP are created, Pb+Pb distribution is similar to that
in pp collisions. A different characteristic is developed for Pb+Pb distribution
with increasing centrality, which indicates an increased production rate of highly
asymmetric dijets. The AJ distribution broadens, shifts its mean to higher values,
and in the most central collisions (0 − 10%), a peak develops at AJ ≈ 0.5. This
enhancement of asymmetric dijet production pointed to a possible interpretation
that a hot and dense medium causes these effects.

A subsequent measurement at the same collision energy, also in Pb+Pb col-
lisions, was done in Ref. [14]. Here, two jets forming the dijet were separated in
azimuth by ∆Φ > 7/8π. A cartoon depicts this situation in Figure 2.13. The
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Figure 2.13: A cartoon of a dijet used in Ref. [14, 15] and Xe+Xe analysis pre-
sented in Chapter 5. The yellow arrows symbolize the leading and the subleading
jet, and the green cone sector represents |∆Φ| > 7/8π region. The dijet originates
at the coordinate system origin, and no QGP medium is shown.

measured quantity was dijet momentum balance xJ, defined as:

xJ = pT,2

pT,1
, (2.11)

where pT,1 and pT,2 are the transverse momenta (pT) of the leading and sublead-
ing jet, respectively. The xJ distribution was measured differentially in pT,1 (in
contrast to the AJ measurement above, where all jets with pT,1 > 100 GeV and
pT,2 > 25 GeV were used). While for the dijets in pp collisions, the most frequent
configuration are balanced jets with values near xJ = 1, a broadening of the
xJ distribution is observed in the Pb+Pb collisions. This broadening increases
smoothly with centrality, and in the most central collisions, the xJ distribution
develops a peak at xJ ≈ 0.5. Figure 2.14 (left) shows a comparison of the per-
pair normalized xJ distribution for 0–10% Pb+Pb collisions and pp collisions for
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Figure 2.14: The per-pair normalized xJ distributions in pp (blue) and Pb+Pb
(red) collisions at √

sNN = 2.76 TeV for different centrality and pT,1 selections.
Left: 0–10% centrality and 100 < pT,1 < 126 GeV. Middle: 60–80% centrality
and 100 < pT,1 < 126 GeV. Right: 0–10% centrality and pT,1 > 200 GeV. All
figures are taken from [14].

the lowest measured pT,1 interval: 100 < pT,1 < 112 GeV. Figure 2.14 (middle)
shows the same distribution as the figure on the left, but for peripheral colli-
sions (60–80%), where pp and Pb+Pb data are consistent. With increasing pT,1,
the differences between the xJ distributions in the two systems decrease. This
is compatible with the picture in which jets with higher pT lose a lower fraction
of their total energy. Figure 2.14 (right) shows the xJ distribution in the same
centrality interval as the left-most figure (0–10%), but for higher pT,1 interval:
pT,1 > 200 GeV.

A similar measurement was performed in Ref. [15], where dijet balance was
measured in pp and Pb+Pb collisions at √

sNN = 5.02 TeV. The evolution of
xJ distributions with centrality and pT,1 is comparable with the previous result
at √

sNN = 2.76 TeV [14]. That is, the broadening of the xJ distributions is
increasing with increasing centrality and decreasing pT,1. Figure 2.15 (left) shows
xJ distributions for pp collisions, and the most central (0–10%) and mid-central
(40–60%) Pb+Pb collisions and for 100 < pT,1 < 112 GeV interval.

Up to now, the xJ distributions were normalized by the number of dijets. In
this normalization, we can only compare relative shapes between the two distri-
butions. In the measurement published in Ref. [15] an absolute normalization
was used, where yields in pp collisions were scaled by the integrated luminosity of
pp collisions and Pb+Pb yields were scaled by a factor of TAANevent. Here, TAA
is the nuclear thickness function, previously defined in Section 2.1, and Nevent
is the number of events, both in the selected centrality interval. This allows
a direct comparison of dijet yields between the individual Pb+Pb centralities.
Figure 2.15 (right) shows absolutely normalized xJ distributions in pp collisions
and five Pb+Pb centrality intervals for 100 < pT,1 < 112 GeV interval. From
these, it is apparent that the depletion of balance jets in Pb+Pb collisions is
present in comparison with pp collisions, and this depletion increases smoothly
with centrality.

In the analysis presented in Chapter 5, the momentum balance xJ was mea-
sured in xenon-xenon collisions. Quantifying the disbalance in a much smaller
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Figure 2.15: Left: The per-pair normalized xJ distributions for pp collisions and
two Pb+Pb centrality intervals for 100 < pT,1 < 112 GeVinterval. Right: Ab-
solutely normalized xJ distribution for pp collisions and five Pb+Pb centrality
intervals for 100 < pT,1 < 112 GeV interval. All figures are taken from [15].

system and comparing it with Pb+Pb may provide additional constraints on the
path-length dependence of the energy loss and the role of fluctuations.
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3. Experimental setup
This thesis discusses a measurement done using the ATLAS detector — one of
the main four detectors built on the Large Hadron Collider (LHC). This section
describes both the accelerator and the detector itself.

3.1 The Large Hadron Collider
The Large Hadron Collider [67] (LHC) is the largest and the most powerful par-
ticle accelerator in the world. Built by the European Organization for Nuclear
Research (CERN), the accelerator itself is located underground on the border
between France and Switzerland. The tunnel where LHC was constructed previ-
ously belonged to the Large electron-positon collider (LEP) — its e−e+ predeces-
sor. The approval for a new hadron accelerator was made in 1994 by a the CERN
council (before even LEP was built), and the works began in 1998 [68]. The first
circulation of the beam took place on 10th September 2008, when the very first
collisions of pp were achieved. The original design was for center-of-mass energy
of

√
s = 14 TeV and √

sNN = 5.5 TeV1 for pp and Pb+Pb collisions, respectively.
Due to various technical faults and accidents, the energy had to be lowered for
the first run.

The accelerator tunnel is placed, on average, 100 meters underground, and its
circumference is approximately 26.7 km. The ring is divided into eight octants
which are depicted in Figure 3.1. The circle is divided into straight and curved
sections. Each of the straight sections has a specific purpose: injection, accel-
eration, physics experiments, beam cleaning, and beam dump. Inside the main
tube, two counter-rotating rings are used to speed up the particles. Acceleration
is done simultaneously on both beams by 16 radiofrequency cavities with a volt-
age of 2 MV and a frequency of 400 MHz. In the arc sections, particles are kept
on the correct trajectory by 1232 dipole magnets, each having a magnetic field of
approximately 8 Tesla. To keep the beam focused inside the vacuum chamber,
474 quadrupole magnets are installed in between the dipoles.

When the accelerated particles (protons or nuclei) are extracted from their
source, they are not sent to the LHC right away. The LHC ring is the last step
in a series of accelerators. The whole CERN accelerator complex is depicted in
Figure 3.2. As this thesis is focused on heavy-ion collisions, we will briefly describe
only the acceleration process of the nuclei. The source of Pb gives the nuclei in
a partially-stripped state Pb27+. These are accelerated sequentially by Linac
3, Low Energy Ion Ring (LEAR), Proton Synchrotron (PS), and Super Proton
Synchrotron (SPS). Before entering the LEAR, the mass spectrometer selects
Pb54+ ions, and right after PS, a thin aluminum foil provides the final stripping
of all the electrons. From the SPS, the nuclei have an energy of approximately
450 GeV and are injected into the LHC rings in both directions.

To increase the collision rate, particles are arranged into bunches. For proton-
proton collisions, there are approximately 2500 bunches per ring, with each bunch
having about 1011 protons. In this setup, the bunch-bunch collision frequency is

1Collision energy for nuclei is reported as per-nucleon.
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Figure 3.1: A schematics of eight LHC octant. Depicted are four main experi-
ments along with other accelerator parts — injection, beam cleaning, acceleration,
and beam dump. Figure from [69].

40 MHz. During Xe+Xe collisions, there were eight bunches per ring [70].
with a bunch-bunch collision frequency 40 MHz, that is, one bunch collision

every 25 ns.
A key characteristic of a particle collider is its instantaneous luminosity [71].

It is defined as the ratio of the number of particles that collided — dN to the
time period in which they were taken dt, normalized to the process cross-section
σ:

L = 1
σ

dN
dt . (3.1)

Multiplying the instantaneous luminosity by a selected process’s cross-section, we
get a collision rate for that process. The dimension of the luminosity in SI units
is s−1cm−2. Integrating instantaneous luminosity over a period of time, we get
integrated luminosity:

Lint =
∫︂

Ldt. (3.2)

From there, the number of collisions N can be expressed as N = σLint. The
integrated luminosity is often reported in barns, where one barn is 10−28m2. The
design luminosity for the LHC is 1034cm−2s−1 for pp and 1027cm−2s−1 for Pb+Pb
collisions [72]. Since 2017, LHC has doubled this and held the world record for the
largest instantaneous luminosity of 2.14×1034cm−2s−1 [73]. This record was lately
broken by SuperKEKB collider [74], having 2.22 × 1034cm−2s−1 [75]. The future
high luminosity upgrade is supposed to increase the design value of instantaneous
luminosity five times and of the integrated luminosity ten times [76].

To measure the collided particles, four main experiments are situated along the
LHC: A Toroidal LHC ApparatuS (ATLAS), Compact Muon Solenoid
(CMS) [42], A Large Ion Collider Experiment (ALICE) [77], and Large Hadron
Collider beauty (LHCb) [78].

The major success of the LHC and its experiments is the discovery of the Higgs
boson [79, 80] in 2012 simultaneously by the ATLAS and CMS experiment.
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Figure 3.2: A schematic of a complex of CERN accelerators used for accelerating
protons and heavy nuclei from the source to the LHC. Figure from [68].

3.2 The ATLAS Detector
A Large Toroidal LHC Apparatus (ATLAS) [72] is an all-purpose particle detector
built in Interaction Point 1 (IP1). It has a cylindrical shape with azimuthal
symmetry2 with respect to the beam pipe and forward-backward symmetry with
respect to the interaction point. The diameter and length of the cylinder are
25 m and 44 m, respectively. For the detector’s overall view, see Figure 3.3. The
detector weighs approximately 7000 tons.

The innermost part of ATLAS is called Inner Detector (ID). It is the closest
part to the beam pipe and the first one to interact with the collision particles.
The ID is ”wrapped” by a liquid-argon (LAr) sampling electromagnetic calorime-
ter, covering pseudorapidity η up to 3.2 in both directions. The next part is the
scintillator-tile hadron calorimeter covering |η| < 1.7. End-caps use LAr technol-
ogy for both electromagnetic and hadronic calorimeters reaching up to η = 4.9.
The detector ends with muon spectrometers covering |η| < 2.7. The important
part of the detector is the magnetic system, bending the trajectories of parti-
cles. A superconducting solenoid encapsulates the ID, providing it with a 2 T
magnetic field. Three large toroidal magnets are placed outside the calorimeters,
generating a magnetic field of up to 1 T for other detector parts.

3.2.1 The Magnet System
The magnet system consists of one solenoid and three toroidal magnets, capable
of storing 1.6 GJ of energy. The toroidal magnets have a central barrel with two
end-caps. All the magnets are superconducting and cooled to 4.5 K by liquid

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction
point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points
from the IP to the center of the LHC ring, and the y-axis points upward. The quantities like
pT, ET, η, etc. are defined in the footnote in the Introduction.
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Figure 3.3: Cut-away of the ATLAS detector with its main parts: The Inner
Detector, Calorimeters, Muon spectrometer, and magnet systems. Figure taken
from [72].

Figure 3.4: ATLAS magnet system: (blue) central solenoid, (red) central barrel
toroid, and (green) two end-cap toroids. Figure from [81].

helium. A schematic of the system is in Figure 3.4.
Central solenoid is aligned with the beam axis, having 5.8 m in length and

a bore of ≈ 2.4 m providing a central magnetic field of 2 T for the ID placed
inside it. As this magnet is placed in front of the calorimeter system, an extreme
minimization of material is desired. The resulting design has only 0.66 radiation
length at nominal incidence. To further reduce the impact on the energy loss, it
is placed in the same vacuum chamber as the LAr calorimeter. With a voltage
supply of 8 kA, the solenoid is capable of storing up to 40 MJ of energy.

Barell toroid and its two end-caps are each made of 8 separate coils, installed
symmetrically around the beam axis. The end-caps and the barrel are rotated
by 22.5◦ with respect to each other. The toroid has approximately 25 meters
in length, and its outer and inner diameter is 20 m and 9 m, respectively. The
barrel stores energy of 1.1 GJ, and both end-caps together an additional 0.5 GJ,
all powered by a 21 kA power supply. The main role of the end-caps is to generate
the magnetic field required to optimize the bending power near the end-cap region.
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Figure 3.5: Innder Detector cross-section, showing Pixel, SCT, and TRT sub-
detectors. Figure from [72].

3.2.2 Inner Detector
The Inner Detector (ID) is the innermost part of ATLAS and is the first point of
detection. With over 1000 particles produced every 25 ns, the detector was de-
signed to sustain large doses of radiation. Its main purpose is pattern recognition,
primary/secondary vertices identification, and excellent momentum measurement
of charged tracks with nominal minimum pT threshold of 500 MeV, all within a
pseudorapidity |η| < 2.5. It also provides electron identification, complementary
to LAr calorimeter, over |η| < 2.0 and energies between 0.5 GeV and 150 GeV.
The ID cross-section along the beam axis is shown in Figure 3.5, and a cross-
section perpendicular to the beam axis is in Figure 3.6. The construction is a
cylinder aligned with the beam axis and an interaction point in the middle, with
dimensions 7 m in length and a radius of 1.1 m. As this detector stands in front
of the calorimeter systems, minimalization of particle interaction was required.
ID is divided into three main parts:

Pixel detector is the innermost part of the detector. It has a barrel part,
which originally consisted of three layers. In May 2014, a fourth Insertable B-
Layer (IBL) was installed between the beam pipe and the existing Pixel detec-
tor [82]. The distance of individual layers from the beam pipe is 33 mm, 50 mm,
88 mm, and 122 mm. Two end-caps consisting of three disks each are installed
on both sides of the detector. The barrel and each end-cap have in total 1736
and 288 modules, respectively. These modules consist of 92 million pixels, with
individual pixel sizes of 50 × 250 µm2 for the IBL layer and 50 × 400 µm2 for the
outer layers.

SemiConductor Tracer (SCT) is the middle part of ID and can be divided
into a barrel with four layers and two end-caps with nine layers each. With over
4088 two-sided modules, SCT has over 6 million readout channels. The design
provides a spatial resolution of 15 µm.

Transition radiation tracker (TRT) consisting of over 370 thousand pro-
portional drift tubes, or straws, with 4 mm in diameter. On average, a track
hits 36 of these straws. This outer layer improves momentum measurements of
particles and provides a calorimeter-independent electron identification. Pixel
and SCT parts operate at temperatures below 0 ◦C, while TRT operates at room
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Figure 3.6: ATLAS Inner detector cut-away, showing the beam pipe and all barrel
layers. Figure from [72].

temperature.

3.2.3 Calorimeters
ATLAS calorimetric systems cover the range of |η| < 4.9. The electromagnetic
calorimeter has a very fine granularity to be able to do very precise measure-
ments of electrons and photons. The other parts of the detector have a coarser
granularity, however, sufficient for the required jet and Emiss

T measurements. The
cut-away of the ATLAS calorimeter system is shown in Figure 3.7. The parts of
the calorimetric system are:

LAr electromagnetic calorimeter consists of a barrel with a coverage of
|η| < 1.475 and two identical end-caps covering the 1.375 < |η| < 3.2 range.
The central barrel is split into two identical parts, 4 mm apart at z = 0. The
accordion geometry of the layers is displayed in Figure 3.8 (left).

Tile calormeter is a sampling hadronic calorimeter, using steel as the ab-
sorber and scintillating tiles as the active material, with a ratio of 4.7 to 1. The
central barrel has a coverage of |η| < 1.0, and two symmetrically placed end-caps
cover 0.8 < |η| < 1.7. Both the barrel and the end caps are divided into 64
azimuthal modules. The tile’s inner radius is 2.28 m and reaches up to 4.25 m.
A cross-section of the tile is shown in Figure 3.8 (right).

LAr hadronic end-cap calorimeter (HEC) is positioned right outside
the electromagnetic end-cap covering range 1.5 < |η| < 3.2 on both sides. Each
end-cap consists of two separate wheels.

LAr forward calorimeter (FCal) is covering the most forward regions of
the calorimetric system for η values between 1.5 to 4.9. Two parts are posi-
tioned at each side of the detector, and each part is divided into three segments:
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Figure 3.7: ATLAS hadron and electromagnetic calorimeter with a description
of the main parts. Figure from [72].

the first one is made out of copper to be optimized for electromagnetic measure-
ments, while the remaining two are made out of tungsten and measure dominantly
hadronic interactions.

LAr forward calorimeter (FCal) is covering the most forward regions of
the calorimetric system for η values between 1.5 to 4.9. Two parts are posi-
tioned at each side of the detector, and each part is divided into three segments:
the first one is made out of copper to be optimized for electromagnetic measure-
ments, while the remaining two are made out of tungsten and measure dominantly
hadronic interactions.

The EM calorimeter has more than 22 radiation lengths in thickness and
9.7 radiation lengths for electromagnetic+hadronic calorimetry. This provides a
good resolution for high-energy objects and lowers the punch-through limit to the
muon system.

3.2.4 Muon Spectrometer
ATLAS muon spectrometer is designed to measure charged particles exiting the
calorimeter system in pseudorapidity of |η| < 2.7. On top of that, it can trigger
these particles within |η| < 2.4. Precise measurements of muons with momentum
up to 1 TeV are highly desirable. Although the ID can measure muons as well,
for high momenta and forward regions, the precision is not sufficient. The MS
provides this extra level of required precision. The muon detector consists of
chambers arranged in cylindrical barrels with a distance from the beam axis of
5 m, 7.5 m, and 10 m as shown in Figure 3.9. Symmetric end-caps are installed
on both sides at a distance of |z| = 7.4 m, 10.8 m, 14 m, and 21.5 m. The
resolution of muon’s momentum is inversely proportional to BL2, with B being
the magnetic field and L the distance traveled. The big dimensions of the detector
take advantage of this. Several service gaps are left at η = 0 to allow repairs and
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Figure 3.8: (left) A cross-section of LAr calorimeter showing its accordion struc-
ture. (right) A cross-section of a hadronic Tile calorimeter. Figure from [72].

maintenance of the inside components. The biggest gap has about 1-2 m or
|η| < 0.08.

Monitor Drift Tube chambers (MDT), depicted in Figure 3.10, are used for
precision-momentum measurements. These are made of several layers of drift
tubes filled with Ar/CO2 gas and tungsten-rhenium wire in the middle. A resolu-
tion on average is 80 µm per tube and 35 µm per chamber. To achieve such high
precision, the position of the individual chambers must be known to 30 µm. This
is achieved by a dedicated alignment optical system between the MDT chambers.
However, this optical system can detect only relative changes in position. To get
an absolute position of the chambers between themselves and the other parts of
the detector, a track-based alignment between the ID and the muon system is
used.

The innermost end-cap has Cathode-Strip Chambers (CSC) instead of MDTs
in the |η| > 2.0 region. This is due to the much higher expected multiplicity,
which would overwhelm the MDTs.

The muon system must be able to trigger for traversing muons. To achieve
the necessary speeds required by the L1 trigger system, Resistive Plate Chambers
(RPC) and Thin Gap Chambers (TGP) were installed in the barrel and end-cap
region, respectively (see Figure 3.9). Tigger and MDT tracks are then matched
together, providing a fast and precise measurement of muons. Another benefit of
such a second independent system is the background rejection of n/γ-particles in
the experimental hall.

3.2.5 Zero Degree Calorimeter
The Zero Degree Calorimeter (ZDC) [83] consists of a sampling calorimeter lo-
cated 140 m from the IP symmetrically on both sides of the detector. ZDC can
detect neutral particles in heavy-ion (HI), pp and pA collisions. One electromag-
netic and three hadronic modules per side cover pseudorapidity interval |η| > 8.3.
In HI collisions, ZDC measures primarily spectator neutrons [16] and serves as a
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Figure 3.9: Cross section of ATLAS muon system perpendicular (left) and along
(right) the beam axis. Figure from [72].

Figure 3.10: (left) MDT drift tube cross-section. Individual chambers have two
multi-layers of four or three drift tubes. (right) MDT chamber with 2x3 layers of
drift tubes. Red lines show laser beams of the optical alignment system. Figure
taken from [72].

37



Figure 3.11: Four ZDC modules. Figure is taken from [83].

trigger, especially in ultra-peripheral collisions. Figure 3.11 shows the layout of
the ZDC modules. Each module consists of eleven absorber plates located per-
pendicularly to the beam direction. Between the plates, vertical quartz rods are
installed. Singal from these rods is read by photomultiplier tubes located above
each module.

3.2.6 ATLAS Triggers and Data Acquisition
ATLAS trigger system consists of two levels [84]. The first level is called the
Level-1 trigger (L1) and is implemented in the hardware of the detector. Its
primary purpose is to reduce the rate of events from 400 MHz to a maximum of
100 kHz. In each event, topological trigger processors [85] combine information
about multiple objects into summary-topological information. This information
is used by L1 to improve the background rejection.

The second level is a software-based high-level trigger (HLT). It is used to
further decrease the accepted collisions rate down to ≈1.2 kHz. Events that pass
the HLT trigger are used for physical analyses. When an event passes the L1
trigger, specific HLT objects, such as jets or leptons, are reconstructed. This
procedure is called online reconstruction. The events that pass the HLT trigger
are written to the Tier-0 computing center at CERN and are used for physical
analyses.

A trigger consists of one or more steps, and each step is encoded as a sequence
algorithms. An output of each algorithm is a binary logical decision; either an
event passes the trigger requirements or not. Typically, the L1 trigger identifies
Regions of Interest (RoI), and each step runs reconstruction algorithms on event-
data fragments in RoIs. RoI is usually a rectangular area in η × ϕ space. The
logical outputs are cached and can be requested by future steps. L1 and HLT
triggers have assigned prescale value, pL1 and pHLT, respectively. Prescale value
can only be equal to or greater than one. The pL1 value defines the maximum
number of events that pass the L1 trigger and are accepted by HLT. The pHLT is
the maximum number of events that pass L1 and are required to be processed by
HLT. Triggers for which pL1 = pHLT = 1 are called unprescaled. All L1 and HLT
triggers are listed on a trigger menu in Ref. [84].
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Minimum Bias Trigger in Xe+Xe Collisions

ATLAS used minimum bias (MB) triggers during the collection of Xe+Xe colli-
sions data. MB trigger is a trigger that selects inelastic hadronic events with the
smallest possible bias.

As the first step, L1 evaluates the total ET deposited in the calorimeter,∑︁
ET. Based on ∑︁ET, the logical OR operator is used between the following two

triggers:

1. HLT_mb_sptrk_L1VTE4: If ∑︁ET < 4 GeV, the HLT trigger requires at least
one reconstructed track in the Inner Detector.

2. HLT_noalg_mb_L1TE4: If ∑︁ET > 4 GeV, no other condition is required.

The TE4 part in the trigger names specify the boundary in the ∑︁ET. For the
first seven luminosity blocks of the Xe+Xe run, the TE4 triggers were not active
and TE5 triggers, HLT_noalg_mb_L1TE5 and HLT_mb_sptrk_L1VTE5, were used
instead. The TE5 trigger has the same algorithm, but the ∑︁ET cut is 5 GeV.
The ZDC was not used for triggering in Xe+Xe collisions.
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4. Jet Calibration
In this chapter, the calibration of heavy-ion (HI) jets is described in detail. The
jet energy scale calibration restores the jet energy to that of jets reconstructed
at the particle level. The process for heavy-ion jets is shown in Figure 4.1 and is
slightly different from the reconstruction applied on pp collisions used by ATLAS.
The first step is the removal of an underlying event (UE) and reconstruction of
jets with an anti-kt algorithm. This is followed by numerical inversion (NI),
which calibrates jets from electromagnetic (EM) scale to generator-level scale.
The last step combines in situ correction derived for jets reconstructed in 13 TeV
pp collisions and for cross-calibration that relates the JES between the pp and
HI style reconstructions. The procedure is the same for Pb+Pb and Xe+Xe
collisions.

4.1 Jet Reconstruction
The jet reconstruction procedure described in this section is used in all heavy-ion
analyses in the LHC Run 2 (2012-2017). It follows the procedure done for pp
collisions [86] but is slightly modified for significantly higher UE that is present
during heavy-ion collisions. Because UE varies event-by-event by several orders
of magnitude, it is required to do the subtraction on an event-by-event basis.
All heavy-ion jets are reconstructed using FastJet package [87] and anti-kt algo-
rithm [24]. As an input, the algorithm takes logical towers with a constant size
of ∆η × ∆ϕ = 0.1 × π/32. The center of each tower has an (ϕ, η) coordinate on
the geometric grid, and the total transverse energy (ET) in the tower is a sum of
energies in the individual calorimeter cells:

Etower
T =

∑︂
j

wjE
cell
T,j , (4.1)

where wj is a per-cell weight that is equal to the fraction of the overlap between
the cell and the tower. The positioning of the towers is selected so that most of
the weights are wi = 1. The exceptions are at the edges of the towers and in
some layers where one cell can span across several towers.

The energy deposited in the tower contains both signal and background com-
ponents:

d2Etotal
T

dηdϕ = d2EUE
T

dηdϕ + d2Esignal
T

dηdϕ . (4.2)

The ultimate goal is to remove the background component (denoted UE) and
measure the signal with the best possible precision. The background can be
factorized into an η- and ϕ-dependent components:

d2EUE
T

dηdϕ = A× ρ(η) ×H(ϕ) × λ(η, ϕ), (4.3)

where A = 0.1 × π/32 is the area of a tower,

ρ(η) =
⟨︂d2ET

dηdϕ
⟩︂
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Figure 4.1: The reconstruction procedure steps for heavy-ion jets. Blue boxes
show the naming of the objects that are the output of the individual steps.

Figure 4.2: A cartoon showing an η − ϕ map of the logical towers. Towers in
red are associated with jet seeds and are excluded from the calculations of all
variables. Towers in green are used only for calculations of ρ, and towers in blue
are used for all three ρ, νn, and Ψn. Figure is from [66].
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is an average ET density integrated over the whole 2π azimuth, λ(η, ϕ) is a cor-
rection accounting for local variations in the detector response, and H(ϕ) de-
scribes an azimuthal flow modulation. H(ϕ) can be decomposed into the following
Fourier series:

H(ϕ) def.= 1 + 2
2,3,4∑︂

n

νn cos
[︂
n(ϕ− Ψn)

]︂
, (4.4)

where index n denotes an order of the harmonic, νn is the magnitude of the flow,
ϕ is the azimuthal angle of the tower, and Ψn is an angle of a reaction plane of
the collision. Because the modulation is dominated by the lowest orders, only
the lowest three components are used. The highest contribution has the second
harmonic ν2 [52]. The values of νn and Ψn are defined as:

νn
def.=

√︂
⟨sin(nϕ)⟩2 + ⟨cos(nϕ)⟩2, (4.5)

and
Ψn

def.= 1
n

tan−1 ⟨sin(nϕ)⟩
⟨cos(nϕ)⟩ . (4.6)

The averaged sin and cos values are determined by equations:

⟨sin(nϕ)⟩ =

∑︁
|∆η|>0.4

(Ei

λi
sin(nϕi)∑︁

|∆η|>0.4
Eiλi

(4.7)

⟨cos(nϕ)⟩ =

∑︁
|∆η|>0.4

(Ei

λi
cos(nϕi)∑︁

|∆η|>0.4
Eiλi

(4.8)

where the sums go over all towers indicated in blue in Figure 4.2. The value of ρ
is determined by the equation:

ρ = 1
A

∑︁
∆R>0.4

EiHi

λi

1 − ∑︁
∆R>0.4

Hi

λi

, (4.9)

and the sum goes over all towers except those indicated in red in Figure 4.2. The
UE is subtracted on the level of individual towers using the following formula:

Etower
T |subtracted = Etower

T |total − d2EUE
T

dηdϕ . (4.10)

To minimize the jets’ self-energy bias, an iteration procedure is used. In each
iteration, the following steps are performed:

1. Identify jet seeds

2. Compute ρ, νn, and Ψn using regions of the calorimeter outside the jet
seeds.

3. Subtract the UE using Equation 4.10

4. Apply the energy scale calibration procedure
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The three iterations are:
1. Iteration 1: The subtraction procedure is applied to R = 0.2 jet seeds,

with Emax/⟨E⟩ > 4 GeV and Emax > 3 GeV where initial values of ρ1, ν1
n,

and Ψ1
n are estimated. Here, Emax is and ⟨E⟩ is . Even though the jet seeds

are of radius R = 0.2, the exclusion region has radius R = 0.4.

2. Iteration 2: UE from iteration 1 is subtracted, and new jet seeds are
identified. These seeds can be of two origins: R = 0.2 calorimeter jets with
pT > 25 GeV or track jets with pT > 7 GeV1. ρ2, ν2

n, and Ψ2
n are estimated

again.

3. Iteration 3: UE using new values from the previous step is subtracted,
and jets with R = 0.4 and pT > 25 GeV are used as jet seeds to estimate a
new set of ρ3, ν3

n, and Ψ3
n quantities again.

The ρ3, ν3
n, and Ψ3

n from the last iteration are then used to subtract UE from jets
of all radii.

4.2 Numerical Inversion
NI is a procedure to calibrate HI jets from the EM scale to the generator-level
scale. The procedure is the same as for pp jets used in pp collisions but cali-
brates jets that are the results of the procedure described in Section 4.1 above.
While there is no event centrality selection for pp and p+Pb jets, for the Pb+Pb
jets, only the peripheral events are used since the underlying event activity is
significantly smaller in these.

The central quantity used for calibration is the response:

R = EEM
T

Etruth
T

, (4.11)

where EEM
T is reconstructed ET at the EM scale, and Etruth

T is the ET of the
truth jet from the Monte Carlo (MC) generator. The response is evaluated for all
calorimeter jets differentially in pT and η. All jets used to evaluate R are isolated,
meaning that no other jet is in their ∆R =

√︂
(∆η)2 + (∆ϕ)2 = 0.3 vicinity.

For each (η; pT) bin, the response distribution is fitted with a gaussian, and the
gaussian mean is then taken as mean response ⟨R⟩. See Figure 4.3 for examples
of some fits. To remove statistical fluctuations, set of points {EEM

T j; ⟨R⟩j},where
index j runs over Etruth

T bins is then fitted with a function:

Fcalib(Etruth
T ) =

Nmax∑︂
i=0

ai

(︂
ln(Etruth

T )
)︂i
, (4.12)

where ai are free parameters of the fit and Nmax is chosen between 1 and 6,
depending on the goodness of the fit. The fit is done separately for each η
selection. The calibrated jet energy in the HI scale is then:

EEM+JES
T,calo = EEM

T
Fcalib(Etruth

T ) , (4.13)

1Track jets are anti-kt R = 0.4 jets reconstructed using tracks of charged particles with a
chosen pT selection.
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Figure 4.3: An example of gaussian fits of the response R. Blue points represent
the distribution, and the red line is a gaussian fit.

Figure 4.4: The mean response ⟨R⟩ values (black points) and the fit Fcalib (blue
line) defined in Equation (4.12) for one selected −0.1 < η < 0 interval.

where the denominator value is chosen on the jets corresponding η. An example
of response and the fit for one η-bin is shown in Figure 4.4.

4.3 Cross-Calibration
The performance of EM+JES jets is well understood in pp collisions and is de-
scribed in detail in Ref. [86]. In pp collisions, instead of logical towers, topological
clusters are used as input into anti-kt algorithm. The jet reconstructed with this
procedure, so-called EMTopo jets, differs from those reconstructed with the HI
algorithm. In situ techniques were used to relate the energy of EMTopo jets and
well-calibrated reference objects such as Z-boson and γ. The in situ corrections
cannot be directly derived for heavy-ion runs with the same precision as is done
in high statistics pp runs. The goal of cross-calibration (CC) is to apply these
EMTopo in situ factors on HI jets, while the difference in the algorithms has to
be taken into account. The differences arise for three reasons: different algorithm
inputs, different procedures, and in situ calibration, which is applied to EMTopo
jets but not to HI ones. The CC procedure is designed to relate the jet energy
scale between the two types of reconstructions in the data and MC. It results in
additional calibration factors defined as:

R =
pHI

T
pEM

T

⃓⃓⃓
DATA

pHI
T

pEM
T

⃓⃓⃓
MC

, (4.14)
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Figure 4.5: Cross-calibration factors (yellow points) as a function of pEM
T in 7

different η bins. Statistical uncertainties are represented by error bars, and sys-
tematic uncertainties are represented by the blue band. The red line represents
the fit defined in Equation (4.15).
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Figure 4.6: (left) Jet energy scale (JES) as a functino of ptruth
T . (right) The jet

energy resolution (JER) as a function of ptruth
T . Dashed lines represent fits defined

by Equation 4.18.

where pHI
T and pEM

T are the transverse momenta of jets reconstructed by HI and
EMTopo algorithms, respectively. The ratio is then fitted using a fit of polynomial
in logarithm:

CC(pEM
T ) = c0 + c1 ln(pEM

T ) + c2 ln2(pEM
T ) (4.15)

This fit is done for each of the 7 η bins in which the factors are evaluated.
Figure 4.5 shows the coefficients and their fits. The energy of HI jets which result
from the NI procedure is then scaled using these factors:

pHI+CC
T,calo =

pEM+JES
T,calo

CC(pHI
T ) . (4.16)

4.4 Jet Performance
The performance of jet reconstruction is characterized by statistical moments of
jet response preco

T /ptruth
T in MC, where ptruth

T and preco
T are transverse momenta of

MC generator-level jets and jets reconstructed using the simulation of jet shower-
ing and showers’ interaction with the material of the detector, respectively. The
first moment is called jet energy scale (JES):

JES =
⟨︄
preco

T
ptruth

T

⟩︄
(4.17)

and is used to evaluate the ability of reconstructed jets to have, on average, the
same pT as generator-level jets. The second moment is called jet energy resolution
(JER) and describes stochastic smearing of the energy due to noise and detector
imperfections. It can be parametrized as:

JER = σ

⎛⎝ preco
T

ptruth
T

⎞⎠ =

⌜⃓⃓⃓
⎷
⎛⎝ a√︂

ptruth
T

⎞⎠2

+
⎛⎝ b

ptruth
T

⎞⎠2

+ c2, (4.18)

where the terms with constants a, b, and c in Equation (4.18) are stochastic, noise,
and a constant term, respectively. Parameters a and c are detector specific, and
the term b represents fluctuations due to the noise and underlying event. The
performance of Xe+Xe jets at √

sNN = 5.44 TeV is shown in Figure 4.6.
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While the reconstructed jets can be quite easily corrected for JES (by rescaling
the jets with the JES ratio), the effects of JER are much harder to remove. The
standard option to mitigate the impact of JER is to use the unfolding procedure.
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5. Dijet Balance in Xe+Xe
Collisions
This chapter describes a dijet balance measurement of Xe+Xe collisions measured
at the ATLAS detector. The first Section 5.1 outlines the steps of the analysis,
sections 5.3 and 5.4 describe individual steps in more detail. Section 5.2 de-
scribes used datasets for both Xe+Xe collisions and Monte Carlo (MC) samples.
The systematic uncertainties are discussed in Section 5.5. The final Section 5.6
provides the measurement results with their discussion.

5.1 Analysis Procedure
Figure 5.1 shows a flowchart of individual steps described here. The primary
observable in this analysis is a dijet yield

d2N

dpT,1dpT,2
, (5.1)

measured differentially in pT,1 and pT,2, which are transverse momenta of the
highest and the second-highest pT jet in the event, respectively. The two jets are
referred to as leading and subleading jets. In order to form a dijet, the leading
and subleading jets are required to satisfy the following requirements:

• Rapidity selection for both jets: |y| < 2.1

• Back-to-back requirement: ∆Φ = |∆Φ1 − ∆Φ2| > 7/8π

• pT lower boundary: pT,1 > 79 GeV and pT,2 > 32 GeV

Events with dijets that do not pass these criteria are not used in the analysis.
The final results use leading jets with pT,1 > 100 GeV and subleading jets with
pT,2 > 32 GeV. To allow for a sufficient number of underflow bins for the unfolding
procedure, leading jets start at pT,1 > 79 GeV.

All dijets that pass the above requirements are filled into two-dimensional
(pT,1, pT,2) distributions. The distributions have a logarithmic binning with the
same bin boundaries along the x— and y— axis. For N bins starting at pT,0, and
going up to pT,N the bin boundaries are defined as:

pT,i = pT,0α
i, α =

(︃
pT,N

pT,0

)︃1/N

. (5.2)

In this analysis, N = 32 bins are used starting at pT,0 = 10 GeV up to pT,N =
320 GeV. This binning produces the same bin boundaries as those used in the
previous analyses [14, 15], where 40 bins from 10 GeV to 1 TeV were used. This
same binning enables to compare new results from Xe+Xe collisions with the
previous Pb+Pb ones.

To include the possibility that the leading and subleading jets are swapped
due to the detector’s resolution effects, we symmetrize the filled histogram with
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Figure 5.1: A flowchart of the analysis’s steps with indicated sections and figures.
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Figure 5.2: Cartoons showing the symmetrization (first to middle) and desym-
metrization (middle to right) procedure applied to the (pT,1, pT,2) distributions.

respect to the pT,1 = pT,2 diagonal axis — see Figure 5.2. For each bin in the
pT,2 < pT,1 region, we take half of the value of the bin and move it symmetrically
to the bin on the other side of the diagonal. This procedure does not affect bins
on the pT,1 = pT,2 diagonal.

Despite well working background subtraction procedure described in Chap-
ter 4, a residual combinatorial background needs to be subtracted from the
(pT,1, pT,2) distributions. This subtraction procedure is described in Section 5.3.
The subtracted (pT,1, pT,2) distributions are then corrected for detector effects
using a Bayesian unfolding [88] implemented in RooUnfold package [89]. This
unfolding procedure is described in detail in Section 5.4. After the unfolding, the
(pT,1, pT,2) distribution is desymmetrized using the inverse procedure to the sym-
metrization shown in Figure 5.2. The desymmetrized distributions are used to
calculate two final observables, which are described in the following Section 5.1.1.

5.1.1 Extraction of Observables
Although the unfolded (pT,1, pT,2) distributions are interesting by themselves,
they are used to calculate two other observables, which are easier to interpret
and which are reported as the main result. These observables are:

1. Dijet momentum balance — xJ

2. The ratio of pair nuclear modification factors between Xe+Xe and Pb+Pb
collisions — ρXe,Pb

The following text describes how these two observables are calculated.

Dijet momentum balance — xJ

Dijet momentum balance is defined as a ratio between the leading and subleading
jet transverse momenta:

xJ = pT,2

pT,1
. (5.3)

The xJ equals to 1 represent two balanced jets and xJ < 1 indicates an imbalance.
To account for bin-to-bin migration during the unfolding in both the leading and
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Figure 5.3: Cartoon depicting slicing of the (pT,1, pT,2) distributions and projec-
tion of the bins into xJ distribution.

subleading axis, we do not fill this ratio directly but make a projection from the
(pT,1, pT,2) distribution as depicted in Figure 5.3. The xJ distribution is created
by diagonally slicing the unfolded and desymmetrized distribution. The xJ bin
boundaries are defined as xJ,i = αi−N , where α was previously defined in Equa-
tion 5.2. For this bin selection, individual xJ values are diagonals cutting the
(pT,1, pT,2) distribution bins into halves. For each bin in the (pT,1, pT,2) distribu-
tion, half of the yield contributes to the upper xJ bin and half to the lower xJ bin.
Diagonal bins, which correspond to xJ = 1, are not halved, and their full yield
is moved to the highest xJ bin. The lowest xJ bin contains only one half of one
bin from the (pT,1, pT,2) distribution. These bottom bins are never used in the
analysis due to the appropriate choice of lower boundaries. The lowest reported
xJ bin is xJ = 0.32. The upper boundary xJ = 1 stems from the definition of the
dijet, as the subleading jet, must always have lower pT than the leading one. Two
normalizations of the xJ distributions are used, leading to: per-pair normalized
and absolutely normalized xJ distributions, and they are described in detail in
the Introduction.

A comparison of xJ distributions measured in Xe+Xe and Pb+Pb exhibited a
difference, as we will show in detail in Section 5.6. This difference may be partially
attributed to the difference in hard process cross-section due to the different
center-of-mass energy between Xe+Xe and Pb+Pb collisions. To quantify this
difference and correct for it, we evaluate the ratio of PYTHIA8 xJ distributions in
5.44 TeV pp collisions to the same quantity in 5.02 TeV pp collisions. The ratio
is defined as:

C(xJ) = 1/N dNpair
PYTHIA8(pp, 5.44 TeV)/dxJ

1/N dNpair
PYTHIA8(pp, 5.02 TeV)/dxJ

, (5.4)

where the normalization factor N is Nevt
⟨︂
TAA

⟩︂
and Npair for absolutely normal-

ized and per-pair normalized distributions, respectively. These coefficients are
used to scale Pb+Pb xJ distributions bin-by-bin. The factors for absolutely nor-
malized xJ distributions are shown in Figure 5.5 (left). Per-pair normalized xJ
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Figure 5.4: Cartoon showing projections of leading (left) and subleading (right)
jet yields from 2D (pT,1, pT,2) distributions. Content in bins with the same color
is added together and projected to the respective axis in the direction of the black
arrow.

distributions are not scaled by this factor because the C-factor is consistent with
the unity.

The Ratio of pair nuclear modification factors between Pb+Pb and
Xe+Xe — ρXe,Pb

A comparison between Pb+Pb and Xe+Xe dijet yields is a valuable physical re-
sult. Since we already have the unfolded (pT,1, pT,2) distributions, we can project
them to pT,1- and pT,2-axis, to produce leading and subleading jet yields, re-
spectively (see Figure 5.4). These can be used in the evaluation of pair nuclear
modification factor Rpair

AA for leading and subleading jets for Xe+Xe collisions at√
sNN = 5.44 TeV:

Rpair
Xe+Xe(pT,1) =

1⟨︂
T Xe+Xe

AA

⟩︂
NXe+Xe

evt

∫︂ pT,1

0.32×pT,1

d2Npair(Xe + Xe, 5.44 TeV)
dpT,1dpT,2

dpT,2

1
Lpp

∫︂ pT,1

0.32×pT,1

d2Npair(pp, 5.44 TeV)
dpT,1dpT,2

dpT,2

(5.5)

and for subleading jets:

Rpair
Xe+Xe(pT,2) =

1⟨︂
T Xe+Xe

AA

⟩︂
NXe+Xe

evt

∫︂ pT,2/0.32

pT,2

d2Npair(Xe + Xe, 5.44 TeV)
dpT,1dpT,2

dpT,1

1
Lpp

∫︂ pT,2/0.32

pT,2

d2Npair(pp, 5.44 TeV)
dpT,1dpT,2

dpT,1

.

(5.6)
The logic behind the pair nuclear modification factor Rpair

AA is the same as for the
standard RAA introduced in Section 2.9, but the yields for both heavy-ion and
pp are taken from jets forming a dijet. Therefore, it should not be interchanged
with an inclusive RAA.
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Since pp data are not available for 5.44 TeV, pp reference data at 5.02 TeV,
that were used in Pb+Pb analysis, are used instead. The pp yields are corrected
for a hard process cross-section by introducing correction factors C(pT,1) and
C(pT,2) for leading and subleading jets, respectively. These factors are defined
using PYTHIA8 MC:

C(pT,1) =

∫︂ pT,1

0.32×pT,1

d2Npair
PYTHIA88(pp, 5.44 TeV)

dpT,1dpT,2
dpT,2∫︂ pT,1

0.32×pT,1

d2Npair
PYTHIA88(pp, 5.02 TeV)

dpT,1dpT,2
dpT,2

(5.7)

and

C(pT,2) =

∫︂ pT,2/0.32

pT,2

d2Npair
PYTHIA88(pp, 5.44 TeV)

dpT,1dpT,2
dpT,2∫︂ pT,2/0.32

pT,2

d2Npair
PYTHIA88(pp, 5.02 TeV)

dpT,1dpT,2
dpT,2

. (5.8)

Figure 5.5 (middle and right) shows C(pT,1) and C(pT,2) factors along with fits.
The values of C-factors increase monotonically with pT, starting at 12% for
pT = 32 GeV and increasing to 31% for pT = 398 GeV. To remove statistical
fluctuations, the C-factor distributions were fitted with a linear function, and the
values from the fits were used in the analysis. Equation (5.5) can be rewritten
using the definition (5.7) as:

Rpair
Xe+Xe(pT,1) =

1⟨︂
T Xe+Xe

AA

⟩︂
NXe+Xe

evt

∫︂ pT,1

0.32×pT,1

d2Npair(Xe + Xe, 5.44 TeV)
dpT,1dpT,2

dpT,2

C lead × 1
Lpp

∫︂ pT,1

0.32×pT,1

d2Npair(pp, 5.02 TeV)
dpT,1dpT,2

dpT,2

,

(5.9)
For Pb+Pb collisions at 5.02 TeV we define pair Rpair

AA for leading jets as:

Rpair
Pb+Pb(pT,1) =

1⟨︂
T Xe+Xe

AA

⟩︂
NPb+Pb

evt

∫︂ pT,1

0.32×pT,1

d2Npair(Pb + Pb, 5.02 TeV)
dpT,1dpT,2

dpT,2

1
Lpp

∫︂ pT,1

0.32×pT,1

d2Npair(pp, 5.02 TeV)
dpT,1dpT,2

dpT,2

(5.10)
and analogically with (5.6) for subleading jets. To compare Xe+Xe and Pb+Pb
collisions, we can define a ratio ρXe,Pb between (5.9) and (5.10):

ρXe,Pb(pT,1) = Rpair
AA (pT,1)|Xe+Xe

Rpair
AA (pT,1)|Pb+Pb

=

1⟨︂
T Xe+Xe

AA

⟩︂
NXe+Xe

evt

∫︂ pT,1

0.32×pT,1

d2Npair(Xe + Xe, 5.44 TeV)
dpT,1dpT,2

dpT,2

C(pT,1) × 1⟨︂
T Xe+Xe

AA

⟩︂
NPb+Pb

evt

∫︂ pT,1

0.32×pT,1

d2Npair(Pb + Pb, 5.02 TeV)
dpT,1dpT,2

dpT,2

(5.11)
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Figure 5.5: Left: C(xJ) as defined in Eq. (5.4) for three different pT,1 intervals.
The error bars represent the systematic uncertainty. Middle and right: The values
and linear fits of C(pT,1) and C(pT,2), respectively. The orange bands represent
the systematic uncertainty. The systematic uncertainties are explained in detail
in Section 5.5.

and for subleading jets:

ρXe,Pb(pT,2) = Rpair
AA (pT,2)|Xe+Xe

Rpair
AA (pT,2)|Pb+Pb

=

1⟨︂
T Xe+Xe

AA

⟩︂
NXe+Xe

evt

∫︂ pT,2/0.32

pT,2

d2Npair(Xe + Xe, 5.44 TeV)
dpT,1dpT,2

dpT,1

C(pT,2) × 1⟨︂
T Xe+Xe

AA

⟩︂
NPb+Pb

evt

∫︂ pT,2/0.32

pT,2

d2Npair(Pb + Pb, 5.02 TeV)
dpT,1dpT,2

dpT,1

. (5.12)

The ρXe,Pb can be viewed as a ratio of Rpair
AA and the C-factors than as a

correction for the difference between pp cross-section at 5.44 TeV and pp cross-
section at 5.02 TeV. At the same time, one can interpret ρXe,Pb as a simple ratio
of yields where the yields measured in Pb+Pb are corrected for the difference
in the center-of-mass energy of the cross-section describing the hard process.
This correction, of course, does not correct all the differences between Xe+Xe
and Pb+Pb, namely the impact of nPDFs, the impact of the difference in the
geometry, etc.

5.2 Monte Carlo and Data Events
This section describes centrality definition, event selection and cleaning applied
on measured Xe+Xe data and MC events samples.

5.2.1 Centrality Definition
Centrality is an important concept in heavy-ion collisions. The centrality of the
collision is a degree of the overlap of two colliding nuclei that can be quantified by
the impact parameter, that is, the distance between the centers of the two nuclei.
If they collide head-on, the collision is central; if they just graze each other,
we speak about peripheral collisions. We cannot measure the impact parameter
to determine the centrality, but we can measure the overall event activity in
the collision, characterized, e.g., by the sum of ET measured in forward (FCal)
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calorimeters, ΣEFCal
T on both sides of the detector. Central collisions have large

ΣEFCal
T deposits, and peripheral have small ΣEFCal

T deposits. A more detailed
explanation of the centrality and its calculation is provided in Section 2.2.

The centrality estimation in this analysis follows the procedure used in Pb+Pb
collisions. The ΣEFCal

T distribution is divided into percentiles of the total inelastic
cross-section for Pb+Pb collisions. The first percentile, 0 − 10%, represents the
10% of collisions with the largest event activity and the smallest impact param-
eter. The last percentile, 90 − 100%, represents the 10% of collisions where there
is the smallest event activity and the largest impact parameter. The ΣEFCal

T dis-
tribution with the corresponding quantiles is shown in Figure 5.6, overlaid with
the 2015 Pb+Pb distribution since the two collision systems are compared in this
analysis.

Figure 5.6: The ΣEFCal
T distributions in Xe+Xe collisions at √

sNN = 5.44 TeV in
circles and Pb+Pb collisions at √

sNN = 5.02 TeV in square points. Dashed lines
on the figure indicate the respective centrality intervals for each collision system:
0 − 10%, 10 − 20%, 20 − 30%, 30 − 40%, 40 − 60%, and 60 − 80%.

The results of Xe+Xe collisions are reported in the following four centrality
intervals: 0 − 10%, 10 − 20%, 20 − 40%, 40 − 80%. The corresponding ΣEFCal

T
values are shown in Table 5.1. These results are compared with Pb+Pb results
evaluated in the same centrality bins.

The Xe+Xe results are compared to Pb+Pb results in Pb+Pb centralities
as well. That is, we take Pb+Pb centrality intervals and apply their ΣEFCal

T
boundaries to Xe+Xe collisions. This compares the two systems in events with the
same event activity. Centrality and ΣEFCal

T interval boundaries for this compaison
are summarized in Table 5.2.

5.2.2 Event Selection of Xe+Xe Data
The Xe+Xe data used in this analysis was taken during a short run in the 2017
data-taking period at √

sNN = 5.44 TeV with a total luminosity of 3µb−1. The
Xe+Xe events are selected with two minimum-bias triggers that are described in
Section 3.2.6. These triggers are fully efficient for all jets used in this analysis.
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Xe+Xe Cent. [%] ΣEFCal
T [TeV] NXe+Xe

coll

⟨︂
TXe+Xe

AA

⟩︂
[mb−1]

0 − 10 >1.887 879.15 ± 35.03 12.38 ± 0.08
10 − 20 1.887–1.303 535.17 ± 20.91 7.54 ± 0.09
20 − 40 1.303–0.572 249.66 ± 10.35 3.52 ± 0.09
40 − 80 0.572–0.049 44.71 ± 2.69 0.63 ± 0.04

Table 5.1: Centrality ranges for Xe+Xe collisions used in the analysis with their
corresponding ΣEFCal

T , NXe+Xe
coll , and

⟨︂
TXe+Xe

AA

⟩︂
values. Values are taken from [90].

Pb+Pb Cent. [%] ΣEFCal
T [TeV] NPb+Pb

coll

⟨︂
TXe+Xe

AA

⟩︂
[mb−1]

10 − 20 2.056–3.00 926.47 ± 37.05 13.05 ± 0.08
20 − 40 0.885–2.056 457.97 ± 17.85 6.45 ± 0.09
40 − 60 0.296–0.885 128.86 ± 6.14 1.81 ± 0.07
60 − 80 0.066–0.296 25.81 ± 1.85 0.36 ± 0.03

Table 5.2: Centrality ranges for Pb+Pb used to compare with Xe+Xe in the
analysis with their corresponding ΣEFCal

T , NPb+Pb
coll , and TAA values for Xe+Xe

collisions. Values are taken from [90, 91].

The events were also required to pass the standard ATLAS event-level selection
criteria:

• All the sub-detector systems were required to be fully functional: all the
data were required to pass the official good run list:
data17 hi.periodAllYear DetStatus-v97-pro21-14 PHYS StandardGRL All Good.xml.

• All events are required to have a good reconstructed primary vertex.

• Additional event cleaning to remove additional detector imperfections
(problematic events due to LAr, Tile, SCT, incomplete events) using AT-
LAS standard methods.

• The pile-up constribution is removed (≈ 0.1% events). These are events
with multiple inelastic scatterings during one bunch crossing.

The cut to remove a small number of pileup events is made through a simple
cut based on a tight correlation between the ΣEFCal

T and the number of recon-
structed tracks. This correlation is shown in Figure 5.7 along with a line repre-
senting the cut where anything below the line is rejected. Formally, this cut is
the following:

FCal ET < 0.21047 + 0.0015335 ·Ntrk,

where Ntrk is number of tracks with pT > 0.5 GeV that pass standard track
selections. This cut was derived previously for the centrality estimate. The right
panel of Figure 5.7 shows the fraction of events without pileup after the rejection
has been applied and indicates that the fraction of removed events is very small
for the majority of ΣEFCal

T values. Where it is the largest, i.e. for events with
ΣEFCal

T ∼ 2.9 TeV, around 1% contamination is present, while events with lower
ΣEFCal

T exhibit even smaller contamination.
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Figure 5.7: Left: Correlation between ΣEFCal
T and track multiplicity. The line

represents a cut to remove pileup events. Right: The fraction of events without
pileup. All for Xe+Xe collisions at √

sNN = 5.44 TeV.

Figure 5.8: The pT spectrum of inclusive reconstructed jets in Xe+Xe collisions
at √

sNN = 5.44 TeV for four centrality intervals (left) and four ΣEFCal
T intervals

(right).

There were 15.3 million events recorded after applying the event selection
criteria. The trigger sampled 82.4% of the total inelastic cross-section in Xe+Xe
with an uncertainty of 1% [92, 93].

Figure 5.8 shows inclusive jet pT spectrum in four centrality, and four ΣEFCal
T

intervals for Xe+Xe collisions data.

5.2.3 Monte Carlo Samples
Pythia

The analysis of 2017 Xe+Xe data uses the PYTHIA8 [94] pp jet events at
√
s =

5.44 TeV with the A14 tune [95] and the NNPDF23LO parton distribution func-
tions [96]. This signal is then overlaid with the real minimum bias 5.44 TeV
Xe+Xe data. The definitions of the overlay MC samples can be found in Tab. 5.3.

There is a difference between data and MC ΣEFCal
T spectra due to a differ-

ence in the trigger between the full dataset and the data used for the overlay.
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JZ R = 0.4 ptruth
T [GeV] σ [nb] ×ϵ # events

1 20–60 ( 6.87× 107) × ( 3.35× 10−3) 3 ∗ 106

2 60–160 ( 7.21× 105) × ( 4.51× 10−3) 4 ∗ 106

3 160–400 ( 5.52× 103) × ( 5.64× 10−3) 4 ∗ 106

Table 5.3: PYTHIA8 MC generator samples used in the Xe+Xe dijet balance
analysis. The table shows MC generator-level jets pT ranges (ptruth

T ), cross-sections
(σ), filtering efficiencies (ϵ), and number of events per JZ slice.

To take into account this diffference, MC PYTHIA8 samples were reweighted by
a DATA/MC ΣEFCal

T ratio. Figure 5.9 shows this ratio as well as individual MC
and Xe+Xe data ΣEFCal

T distributions. For ΣEFCal
T ≳ 3 TeV, the ratio is subject

to very high fluctuations coming from low statistics. These fluctuations were re-
moved by replacing the higher values with a constant value. The constant was
chosen as a value of the last bin used from the distribution before the fluctu-
ations were present. More than 99.9% of both data and MC events are below
ΣEFCal

T < 3 TeV — therefore, this simple removal of the fluctuations is a sufficient
replacement.

Figure 5.9: Left: PYTHIA8 MC (blue) and Xe+Xe data (red) ΣEFCal
T distribution

at √
sNN = 5.44 TeV. Right: The ratio of Xe+Xe data to PYTHIA8 MC — the

blue line represents the ratio, and the red line is the ratio corrected for statistical
fluctuations.

Herwig

A different MC generator — HERWIG7 was used to generate events with the same
setting as PYTHIA8. HERWIG7 samples also consisted of three JZ samples, each
containing 106 events. This HERWIG7 sample is used to generate systematic un-
certainties as discussed in Section 5.5.
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5.3 Combinatorial Background
The (pT,1, pT,2) distributions need to be corrected for the presence of the combina-
torial background coming from jet pairs not originating in the same hard process
and from spurious jets from fluctuations of the UE. The background subtraction
procedure consisting of two steps was developed. The first step is to subtract the
combinatorial background yields in each (pT,1, pT,2) bin. The method for the esti-
mation of the size of the background is described in detail in Section 5.3.1. This
subtraction, however, has an inefficiency, which results in an over-subtraction.
This effect was corrected by efficiency correction in the second step, which is de-
scribed in the next Section 5.3.2. The values of corrected yields, N corr, in each
(pT,1, pT,2) bin, are given by the following equation:

N corr = 1
ϵ
(N raw −B), (5.13)

where B and ϵ are the size of the combinatorial background dijet yield and the
size of the efficiency correction, respectively. N raw is a raw dijet yield in a given
bin before any correction.

5.3.1 Background Subtraction
The combinatorial background yield B from Equation (5.13) is estimated as a
yield of subleading jets in 1.0 < ∆Φ < 1.4 window, where ∆Φ is the absolute
difference in Φ of the two jets. This boundary was selected to minimize the
contribution from correlated dijet pairs, which have a maximum at ∆Φ = π, and
to minimize the contribution from split jets in the vicinity of ∆Φ = 0.

The performance of the subtraction procedure was checked in a well-controlled
environment of MC, where dijet yields could be divided into two disjoint groups:

1. Signal dijets — dijets where both leading and subleading jets are required
to be matched to a truth jet.

2. Combinatorial dijets — dijets where the leading jet is required to be
matched to a truth jet, and the subleading jet is required to have no truth
jet in its ∆R = 0.35 radius.

To verify that no bias from residual hydrodynamical flow is present, a ∆Φ dis-
tribution of combinatorial dijets was investigated. Such a distribution is expected
to be flat in the absence of the residual flow. Distributions for a few selected bins
are shown in Figure 5.10 along with a constant function fit. Because the distri-
butions show no ∆Φ dependence, no elliptic flow modulation is observed, and no
Φ-dependent correction on the background is needed. The background is, there-
fore, only a scale factor, subtracted from the measured (pT,1, pT,2) distributions
on a bin-by-bin basis. The size of the background in the background window is
scaled by a factor of (π/8)/0.4 to account for the difference in the area of the fidu-
cial region of the measurement and the area of the region where the background
is determined.

Figure 5.11 shows ∆Φ distributions of signal and combinatorial dijets for a
few selected bins in MC generator PYTHIA8. This figure demonstrates that in our
background window 1.0 < |∆Φ| < 1.4, dijets consist primarily of combinatorial
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Figure 5.10: Distribution of combinatorial dijets in MC PYTHIA8 at √
sNN =

5.44 TeV for two centrality and two ΣEFCal
T bins for one (pT,1, pT,2) bin. The

distributions are fitted with a constant function, shown as a black line.
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Figure 5.11: Two different bins of ∆ϕ distribution in MC PYTHIA at √
sNN =

5.44 TeV. Black — all dijets; green — signal dijets; purple — background dijets
(the purple distribution in this figure is the same as the distribution in Fig-
ure 5.10).

dijets. The absolute size of the background compared to the signal in Xe+Xe
collisions is shown in Figure 5.12 — here, the (pT,1, pT,2) distribution is projected
onto the pT,2 axis, and four pT,1 bins with the most dominant background are
shown. The background subtraction correction is the largest in the most central
collisions and at low-pT where it reaches 18%. For pT,1 > 100 GeV and pT,2 >
40 GeV the correction is smaller then 4% in the most central collisions. In other
centrality bins, the background contribution is smaller than 3% for all pT,1 and
pT,2 bins. The background size compared to the signal in MC PYTHIA8 is shown
in Figure 5.12 — here the (pT,1, pT,2) distribution is projected onto the pT,2 axis,
and four pT,1 bins with the most dominant background are shown. The relative
size of combinatorial background to signal in Xe+Xe collisions in 0–10% centrality
interval is shown in Figure 5.13. This correction is the largest in the most central
collisions and at low pT. In 0–10% centrality interval, for pT,1 > 100 GeV and
32 < pT,2 < 50 GeV, it subtracts up to 15% of dijets yields while for all other
centrality and pTbins, the correction subtracts less than 4% of dijet yields.
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Figure 5.12: The background distribution evaluated as a function of pT,2 in MC
PYTHIA8 at √

sNN = 5.44 TeV (black) compared to the signal (blue). Distributions
are evaluated for four centrality intervals and for the lowest pT,1 selection, where
the background is the most significant.
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Figure 5.13: A relative size in percentage of combinatorial background in Xe+Xe
collisions for 0–10% centrality interval.

5.3.2 Efficiency Correction
The combinatorial background subtraction described in the previous section leads
to inefficiency because there are real pairs that have a subleading jet that has lower
pT than the combinatoric subleading jet. This causes the pair to be subtracted
as a background when it is actually a real pair and should be considered a signal.
The inefficiency was calculated by first estimating the rate at which a jet is in
an event above a particular pT value using the inclusive jet spectrum from the
data. This rate was then used to calculate the probability this occurred zero
times using the Poisson distribution for zero number of occurrences:

ϵ(pT,2) = e
−
∫︁∞

pT
∆Φ
2π

dNjets
dpT

dpT
.

The spectrum over which one integrates is shown in Figure 5.8. This efficiency
is defined as the probability for a particular value of pT,2 and is independent of
pT,1.

Evaluated efficiencies for centrality and ΣEFCal
T intervals can be seen in Fig-

ure 5.14. The effect is the strongest in the most central collisions, and for the
lowest jet pT,2. With increasing pT,2 the efficiency quickly approaches the unity
and above pT,2 ≈ 40 GeV is below 1% in all centralities.

The final test that gives us confidence in the whole combinatorial background
procedure is shown in Figure 5.15. Here we compared signal dijets with dijets
where no truth information was used. We refer to the latter as unmatched dijets,
that is, dijets consisting of reconstructed jets, where no truth matching is applied.
A closure distribution shown in the bottom panel is defined as a ratio between
the selected xJ distribution with respect to the signal xJ distribution. In the
figure, the closure for unmatched dijets deviates from unity more than 15% for
low xJ. This indicates that the background contribution is the highest for low
xJ or low pT,2. After the combinatorial background subtraction is applied, the
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Figure 5.14: A size of efficiency correction ϵ(pT,2) in four different centrality (left)
and four different ΣEFCal

T intervals (right) in Xe+Xe collisions.

closure test for subtracted xJ distribution is much closer to unity, and the small
over subtraction is corrected by the pair efficiency correction.
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Figure 5.15: Left: Background subtraction is shown for the lowest pT,1 bins used
in the analysis 79-100 GeV and the most central collision interval (0−10%) as the
background is the strongest for these selections. (left top) xJ for MC reconstructed
jets: red — dijets consisting of reconstructed matched jets; blue — reconstructed
all jets; green — reconstructed all jets after the background subtraction; purple
— green + the efficiency correction. (left bottom) The closure test is evaluated
as a ratio to the reconstructed matched distribution (red) from the top panel:
Blue — closure of the unmatched reconstructed jets; green — closure after the
background subtraction; purple — closure after background subtraction and the
efficiency correction. Right: The same as in the left panel, but for the lowest
ΣEFCal

T interval.
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5.4 Unfolding
This section describes in detail the unfolding procedure used in the analysis. The
unfolding has a crucial impacton on the shapes of the final distributions and the
correction implementation of the unfolding was one of the most difficult parts of
the analysis.

5.4.1 Response Matrix
Response matrix was represented by RooUnfoldResponse object in RooUnfold
package. Because the unfolded distributions were two-dimensional, the response
matrix was a four-dimensional object. The matrix was filled with PYTHIA8 MC
samples for all three JZ samples. In each event, two truth jets with the highest
pT were selected and tested against the following criteria:

1. both jets need to have |y| < 2.1

2. leading jet pT,1 > 20 GeV

3. subleading jet pT,2 > 10 GeV

4. back-to-back requirement ∆Φ = |Φ1 − Φ2| > 7/8π

These are the same criteria as those imposed on reconstructed jets in the analysis,
with the difference that the pT thresholds were lower to allow for a better matching
with reconstructed jets. Dijets not fulfilling the above criteria are not used in the
analysis. Both truth jets were matched to the closest reconstructed jet in η × ϕ
space with a maximum distance of ∆R = 0.35. Both reconstructed jets were
then matched against the criteria mentioned in the list in section 5.1. If both,
truth and reco jets have required properties, the event was used and filled in
the Response matrix. The filling was done symmetrically in truth and reco, to
account for the switching of leading and subleading jet due to detector resolution.
If the truth jets passed the requirements, but the reco jets did not (or both did
not exist), the response matrix was corrected for this inefficiency.

Underlying (pT,1, pT,2) measured and truth distributions of the response ma-
trix for four different centrality intervals are shown in Figure 5.16 and 5.17, re-
spectively.

5.4.2 Reweighting the Response Matrix
Because PYTHIA8 does not simulate heavy-ion environment, our measured dis-
tributions are different from the distributions in data. Thus, the reweighting
procedure was applied. The weight was evaluated as a ratio between Xe+Xe
data and MC PYTHIA8 at the level of (pT,1, pT,2) distributions. This weight was
then used as a function of pT truth when filling the response matrix. In the edge
bins where the truth distribution is populated but the reconstructed is not, the
weight is extrapolated using information from higher pT bins. This weight is then
smoothed to remove any statistical fluctuations. Figure 5.18 shows the weight
for four different centrality intervals. The effect of the reweighting on the mea-
sured xJ distributions is shown in Figure 5.19, where the xJ distribution is shown
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Figure 5.16: Underlying measured distributions from the response matrix in four
centralities in PYTHIA8.
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Figure 5.17: Underlying truth distributions from the response matrix in four
centralities in PYTHIA8.
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Figure 5.18: Values of the weights used to reweight the response matrix for
four centrality intervals. The weights are scaled so that in each histogram,
(pT,1, pT,2) = (100 GeV, 100 GeV) bin is unity.

before and after weighting as well as in measured distributions in data. From
the Figure 5.19 one can see that the reweighted distribution in MC approximates
the data very well. For the rest of the document, we only use the reweighted
response matricies.

5.4.3 Statistical Uncertainties
This section explains how the statistical uncertainties are calculated for the un-
folded results. The statistical uncertainties were evaluated with the use of pseudo-
experiments, and there are two sources which contribute to the uncertainty: the
reconstructed data and the response matricies. To cover these sources, two pro-
cedures were applied:

1. Smearing of the reconstructed 2D histogram 100 times and then
unfolding each smeared version separately with the nominal response ma-
trix. The statistical variation Var(X) and the standard deviation σ were
calculated in each bin from the 100 different results using the standard
formulas [97]:

Var(X) =
∑︁
X2 − (

∑︁
X)2

N

N − 1 , σ =
√︂

Var(X),

where X is the variable of interest and N is the sample size (N = 100 in our
case). This smearing must reflect the initial symmetry of the (pT,1, pT,2) dis-
tributions, and therefore the smearing of the values was done symmetrically
with respect to the pT,1 = pT,2 diagonal.
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Figure 5.19: The xJ distributions for four different centralities and 100 < pT,1 <
112 GeV interval. (black) and (red) is, respectively, unweighted MC and Xe+Xe
data. (blue) represents weighted MC distribution using the weights from Fig-
ure 5.18.
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2. Smearing of the response matrix 100 times and using them to unfold
the nominal reconstructed (pT,1, pT,2) histogram. The same approach with
the sample variance calculation was used.

Both components were summed in quadrature to get the final statistical un-
certainty:

σstat =
√︂
σ2

hist + σ2
resp.

Figure 5.20 shows a contribution from the two sources in a few selected bins as well
as their quadrature sum. In general, the magnitude of the statistical uncertainty
due to the statistical imprecision of the reconstructed data is larger than the one
due to the response matrix. Figure 5.20 also shows the uncertainty evaluated by
the Roounfold package. When comparing the size of the uncertainties between the
RooUnfold and our method using pseudo-experiments, we see that uncertainties
from the RooUnfold package are systematically underestimated. The difference
between the two methods demonstrates the necessity of the pseudo-experiment
procedure.

5.4.4 Selecting the Number of Iterations
As the Bayesian unfolding is an iterative procedure, some finite number of itera-
tions has to be chosen. This is done by combining two properties:

1. The overall difference in the unfolded distributions between ith and (i−1)th

iteration
δval

i =
Nbins∑︂

k

(︂
Npair

i,k −Npair
i−1,k

)︂
, (5.14)

summed over all pT bins. This quantifies the overall convergence of the
unfolding.

2. The sum (again over all pT) of statistical uncertainties for the i-th iteration

δstat
i =

Nbins∑︂
k

δstat
i,k . (5.15)

This optimizes the total statistical uncertainty that might be significantly
increased with the high number of iterations. The statistical uncertainty
calculation, as described in the previous Section 5.4.3, had to be repeated
for each iteration separately.

Because both δval
i and δstat

i are evaluated at the level of (pT,1, pT,2) distributions,
the result is applicable to xJ and ρXe,Pb final projections. The two distributions
are summed in quadrature into the final δtot

i distribution:

δtot
i =

√︂
(δval

i )2 + (δstat
i )2 (5.16)

The final number of iterations is chosen as the minimum of the δtot
i distribution.

For this analysis, δtot
i was evaluated for each iteration between 1 and 10, and 3

iterations were chosen for all centrality and ΣEFCal
T intervals. The values of δtot

i in
4 different centrality intervals are shown in Figure 5.21 and values for the ΣEFCal

T
intervals are in the Appendix A, Figure A.2.
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Figure 5.20: Statistical uncertainties and their components for four different cen-
trality bins and 100 < pT,1 < 112 GeV in Xe+Xe collisions for three iterations
of the Bayesian unfolding. Green and blue lines represent components of the
statistical uncertainty from the smearing histogram and response matrix, respec-
tively, and the black line is their quadrature sum. The red line is the statistical
uncertainty given by RooUnfoldBayes.
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Figure 5.21: Convergence of the Bayesian unfolding in 4 centralities in Xe+Xe
collisions. Blue is δval

i , red is δstat
i , and black is δtot

i ; defined in Eqs. (5.14), (5.15),
and (5.16).
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5.4.5 MC Closure Test
In order to establish whether the unfolding procedure removes the detector res-
olution effects, two tests were done. We will refer to them as a full-full test and
half-half test. The first one is the full-full test, which populates the response
matrix and the measured distribution with the whole PYTHIA8 MC sample. This
is a very basic test and should tell if there is any inconsistency in the treatment of
the unfolding and closure. The closure, which is the ratio between the unfolded
and the truth distribution, tests how good the unfolding procedure is. A good
closure, well consistent with one, was observed in the full-full test.

A more informative test is the half-half test. Here, half of the events from the
MC are used to fill the response matrix and the other half to fill the (pT,1, pT,2)
measured distribution. The two halves are disjoint and statistically independent.
Closure is not expected to be the exact unity, but a better unfolding procedure
will be closer to it than a worse one. A closure tests result for the most central
collisions 0 − 10% and 2.06 − 3.0 TeV ΣEFCal

T values are shown in Figure 5.22.
The remaining centralities are in Appendix A. The most problematic region is the
low-xJ region, where due to small absolute values of the yields, a small fluctuation
can cause big non-closure (non-closure is a deviation from the unity of the closure
test). Another effect is the enhanced sensitivity to the statistical variations in
the response matrix due to a large number of bins being used. Due to this, the
response matrix may suffer from statistical fluctuations, which then affect the
closure.

As can be seen from all the closure histograms, the deviation from the unity
is not always covered by statistical uncertainty, and due to this, we are taking
the non-closure (that is, an absolute difference between 1 and the actual values of
closure) bin-by-bin and apply it as a relative systematic on the final distributions.

5.4.6 Refolding of MC and Data
A refolding procedure is an inverse procedure to the unfolding — it applies the
response matrix to the unfolded distribution. The result is a refolded distribution
which can be compared with the raw (not unfolded) measured distribution. Such
a comparison for PYTHIA8 is shown in Figure 5.23 for 0–10% centrality and 2.06−
3.0 TeV ΣEFCal

T interval. The ratio in bottom panels is well consistent with the
unity except for a few bins, which can be understood as a result of statistical
fluctuations in a ratio of small yields.

Figure 5.24 shows the same refolding test for Xe+Xe collisions. As expected,
the ratio between the refolded and the raw distribution deviates from the unity
a little bit more than for the test in PYTHIA8, but still shows good values in
general. Large refolding differences from the raw measured spectrum can be
mainly explained by fluctuations in data.
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Figure 5.22: Half-half unfolding closure in PYTHIA8 for three different pT,1 in-
tervals. The top three panels are for 0 − 10% centrality, and the bottom three
panels are for ΣEFCal

T 2.06−3.0 TeV interval. In each panel, the top section shows
truth distribution in orange circles and unfolded distribution in blue circles. The
bottom section is then their closure, which is defined as a ratio of the two.

Figure 5.23: Refolding test in PYTHIA8 for 0−10% centrality (top panels) and for
2.06−3.0 TeV ΣEFCal

T (bottom panels) and three different pT,1 bins. The top panel
shows the reconstructed raw xJ distribution (orange) and refolded distribution
(black). The bottom panel shows the ratio refolded/reconstructed from the top
panel.
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Figure 5.24: Refolding test in Xe+Xe collisions for 0−10% centrality (top panels)
and for 2.06 − 3.0 TeV ΣEFCal

T (bottom panels) and three different pT,1 bins.
The top panel shows the reconstructed raw xJ distribution (orange) and refolded
distribution (black). The bottom panel shows the ratio refolded/reconstructed
from the top panel.

5.5 Systematic Uncertainties
This section discusses in detail all systematic uncertainties applied in the analysis.
A summary is provided by the following list:

• Uncertainties related to jet reconstruction

– Jet energy scale (JES)*

– Jet energy resolution (JER)*

• Unfolding related uncertainties

– Prior sensitivity*

– Non-closure in MC half-half test

• Combinatorial background

– Change in background ∆Φ window*

– Pair efficiency correction*

• Glauber model systematics

– Systematic uncertainty on TAA and Ncoll

• ρXe,Pb specific uncertainties
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– Uncertainty on C-factors

All components of the uncertainties were evaluated and summed in quadrature to
obtain the final systematic uncertainty. Uncertainties for xJ and ρXe,Pb distribu-
tion were calculated separately. For each systematic uncertainty marked with an
asterisk(*), the whole analysis procedure was repeated, including the combina-
torial background subtraction and the unfolding. The uncertainty was taken as
a difference between the nominal value and the value obtained after changing a
specific aspect of the analysis. For uncertainties without the asterisk, the analysis
does not need to be repeated, and the uncertainties were evaluated by a different
method, as described below.

Jet energy scale (JES) systematic uncertainty. The uncertainty follows
the recommendations used in all HI jets and consists of three main components.
The first component is common with uncertainties on EMTopo jets, which are
the jets used in 13 TeV pp collisions. The second component is specific to the
heavy-ion (HI) jets and collision energies (for flavor-related uncertainties). The
third part is specific to HI jets in HI collisions and reflects a modification of
parton showers by the QCD matter.

The first component is established by calibrating HI jets with respect to jets
reconstructed with the EMTopo procedure in nominal condition 13 TeV pp colli-
sions. The component contains a set of 20 nuisance parameters, which are applied
to HI reconstructed jet transverse momentum pT, shifting it according to

pjet,shifted
T = pjet

T × (1 ± UJES(pT, η)),

where UJES(pT, η) is JES uncertainty as evaluated by the
HIJESUncertaintyProvider tool which is a part of ATLAS software. A cross-
calibration (CC) procedure, described in Section 4.3, adds an additional cross-
calibration-specific uncertainty component.

The heavy-ion-specific components are from the limitations of the CC pro-
cedure and the jet flavor uncertainties at 5.44 TeV. The former is applied using
the official JetUncertaintiestool, which is also a part of ATLAS software. The
flavor-related uncertainties account for limited knowledge of the quark to gluon
fractions and their responses. The uncertainty is evaluated in a standard way
based on the difference between two MC generators — PYTHIA8 and HERWIG7.
The mean response ⟨R⟩ is defined as:

⟨R⟩ = fg ∗ ⟨Rg⟩ + (1 − fq) ∗ ⟨Rq⟩, (5.17)

where fg and fq are fractions of jets initiated by gluons and quarks, respectively.
⟨Rg⟩ and ⟨Rq⟩ are response matrices for gluons and quarks, respectively. By
using the standard error propagation formula on ⟨R⟩ and setting quark variation
to zero, because their contribution is largely accounted for in the first component,
we arrive at two non-zero uncertainties:

σresponse =
⃓⃓⃓⃓
fPYTHIA

g (RPYTHIA
g −RHERWIG

g )
⃓⃓⃓⃓

(5.18)

and

σflavor =
⃓⃓⃓⃓
(RPYTHIA

g −RPYTHIA
q )(fPYTHIA

g − fHERWIG
g )/⟨R⟩

⃓⃓⃓⃓
. (5.19)
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Figure 5.25: Flavour uncertainties as a function of η and pT. The z-axis shows
the relative uncertainty of (left) flavor response and (right) flavor fraction.

Figure 5.25 shows η- and pT-dependence of uncertainties as they are defined in
Equations (5.18) and (5.19).

The last component is the centrality-dependent “quenching” component that
reflects a modification of parton showers by the HI environment. The resulting
jets may have different flavor compositions or, more generally, different particle
content. The impact of this on the JES was estimated using a data-driven study
of the ratio of pT of the calorimeter jet to the pT of the corresponding track
jet. The recommendation is to include uncertainty on the jet energy scale, which
is a linear function of the event centrality. The uncertainty was adapted from
Pb+Pb collisions and was applied as a function of ΣEFCal

T on Xe+Xe data. The
uncertainty is a linear function of the event centrality — 1.25% in the most
central 0–1% Pb+Pb collisions with linear decrease as a function of ΣEFCal

T to
0% uncertainty for events corresponding to 80% centrality in Pb+Pb.

The Xe+Xe data is unfolded with altered response matrices, and the variation
in the unfolded yields is taken as the systematic uncertainty. For the xJ distribu-
tions, the size of JES uncertainty is approximately 1–8% with the maximum for
xJ ≈ 0.32 in the most central 0–10% collisions. The uncertainty decreases with
xJ but increases again for the last bin at xJ = 1, where it reaches about 2%. For
the ρXe,Pb distributions, the JES systematic shows weak pT,1 or pT,2 dependence
and reaches maximal values of 5%.

Jet energy resolution (JER) systematic uncertainty. The unfolding
procedure was repeated with a modified response matrix to account for system-
atic uncertainties due to disagreement between the jet energy resolution in data
and MC. The matrix was generated by repeating the MC study with modifica-
tions to the ∆pT for each matched reconstructed-truth jet pair. The procedure
to generate modified migration matrices follows the recommended procedure at
ATLAS. The JetUncertainties tool was used to retrieve uncertainty on the
fractional resolution, σsyst

JER, as a function of jet pT and η. A simple JER set
of parameters is used. An additional HI jet-specific uncertainty from the cross-
calibration of the HI jet collections is applied to jets in Xe+Xe collisions. This
involves modifications of every component to account for missing Global Sequen-
tial Calibration in the HI calibration sequence and from a dedicated uncertainty
accounting for the difference in relative resolutions between HI and EMTopo jets
in MC and data.

The reconstructed jet transverse momentum pT was smeared by the official
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Figure 5.26: Example of smoothing procedure in one selected pT and centrality
bin. The blue line represents original JER relative uncertainties, while the green
line is the uncertainty after the smoothing procedure.

JetUncertainties tool according to the equation:

pjet,smear
T = pjet

T × (1 ± N syst
JER(1, σsys

JER)),

where N syst
JER(1, σsyst

JER) is the normal distribution with an effective resolution σeff
JER =√︂

(σJER − σsys
JER)2 − σJER). The resulting JER uncertainty is then symmetrized so

that up and down variations have the same size but different signs. For compar-
ison, JES can have different sizes for up and down variations.

Individual JER components are summed in quadrature and a sliding window
smearing procedure was used to remove statistical fluctuations. Figure 5.26 shows
an example of JER uncertainties before and after the smoothing in one selected
bin.

The JER uncertainty for xJ distributions is approximately 9% for xJ ≈ 0.32 in
the most central collisions. The uncertainty decreases with xJ, except for the last
two bins, where it increases again to values of approximately 5%. For the ρXe,Pb
distributions, the JER uncertainty is at most 2% and shows weak pT dependence.

The final JES uncertainty and smoothed JER uncertainty were summed in
quadrature to obtain the combined JES+JER uncertainty that we show in the
final figures.

Prior sensitivity. The unfolding procedure should not depend on the choice
of the prior, but because of the limited statistics, statistical fluctuations are
present. This systematic uncertainty should cover this imperfection. The whole
analysis is repeated for an unweighted response matrix, as opposed to the nominal
response matrix, which is weighted by the weight described in Section 5.4.2. The
difference between the two is taken as a systematic uncertainty. The uncertainty
is then symmetrized to have up and down components. The maximum contribu-
tion from this uncertainty is about 10% for the xJ distributions and approximately
5% for ρXe,Pb distributions.
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Non-closure in MC. To quantify some additional imperfections of the
Bayesian unfolding procedure, an additional uncertainty based on the half-half
unfolding closure test was added. This should cover the unknown uncertainties
which are coming from the unfolding and should complement the prior sensitiv-
ity uncertainty above. The size of the uncertainty is the size of the non-closure
unfolding test shown in Figure 5.22.

Change in the background window. The systematic is evaluated by
changing the background window we use to evaluate the combinatorial back-
ground. The nominal ∆Φ background window, 1.0 < ∆Φ < 1.4, was shifted to
an alternative window, 1.1 < ∆Φ < 1.5. This change varies the contribution of
the flow modulation and any residual contribution from the dijet signal leaking
into the background region. The whole analysis is repeated with this shifted
background, and the difference in the final unfolded result is taken as the un-
certainty. This uncertainty typically does not exceed 5% contribution for both
xJ and ρXe,Pb distributions. At low xJ the uncertainty can reach a few tens of
percents due to statistical fluctuations in the non-closure.

Pair efficiency correction. The correction itself was discussed in Sec-
tion 5.3.2. Since the correction is small and based on a statistical estimate of
the effect, for the systematic uncertainty, the whole analysis is repeated without
this correction. The difference in the final unfolded results between with and
without the correction is taken as a systematic uncertainty. Like the previous
one, this uncertainty is subdominant in all bins used in the analysis and does not
exceed 2%.

Systematic uncertainties coming from TAA and Ncoll. The uncertainty
on the TAA and Ncoll arise from geometric modeling uncertainty (e.g., Woods-
Saxon parameterization of the nucleon positions, nucleon-nucleon inelastic cross-
section) and the uncertainty on the fraction of selected inelastic Xe+Xe and
Pb+Pb collisions (the “efficiency” uncertainty). This uncertainty does not depend
on jet kinematics and only affects the overall normalization. The values of these
uncertainties are tabulated in Table 5.1 for Xe+Xe and Table 5.2 for Pb+Pb.

Collision Energy. This uncertainty comes from an uncertainty of C(pT,1),
C(pT,2) and C(xJ) coefficients. The coefficients were evaluated in two MC gener-
ators: HERWIG7 and PYTHIA8. Both were applied to the distributions separately,
and the difference in the final result was taken as an absolute uncertainty. The
uncertainty was then symmetrized to obtain up and down variations. This uncer-
tainty is below 2% for all pT intervals and is independent of the event centrality.

5.5.1 Systematic Uncertainty on the xJ Distribution
The above-discussed systematic uncertainties were computed for the xJ distribu-
tion, and the results for per-pair normalized xJ distributions for all centrality and
pT bins are presented in Figure 5.27. Systematic uncertainties for per-pair nor-
malized xJ distributions in ΣEFCal

T intervals, absolutely normalized xJ distribution
in centrality intervals, and absolutely normalized xJ distributions in ΣEFCal

T inter-
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vals are shown in Appendix A and Figures A.3, A.4, and A.5, respectively. There
is no difference between the per-pair and absolutely normalized xJ distributions,
except that the absolutely normalized ones have an additional uncertainty on
TAA. Systematic uncertainties are dominated by JES+JER and prior sensitivity
uncertainties in all pT,1 and centrality bins. MC closure systematic has a bigger
contribution in more central collisions. High values of the relative uncertainties
at low xJ bins are caused by low yields in these bins, where a small difference in
absolute yields will cause a high relative difference. For xJ ⪆ 0.5, total systematic
uncertainty is smaller than 10%.

5.5.2 Systematic Uncertainty on the ρXe,Pb Ratio
When evaluating systematic uncertainties on the ρXe,Pb ratio, JES and JER un-
certainties were correlated between Xe+Xe and Pb+Pb systems. They were cal-
culated with the formula for a function of the ratio of two quantities, f = A/B:

δf±|C = A± δA

B ± δB
− A

B
. (5.20)

All other systematic uncertainties were uncorrelated between the two systems,
and for their calculation, the following formula was used instead:

δf = A

B

√︄(︃
δA

A

)︃2
+
(︃
δB

B

)︃2
. (5.21)

Figures 5.28 and 5.29 show the relative uncertainties for centrality and ΣEFCal
T

intervals, respectively. Systematics in ρXe,Pb are dominated by JES+JER uncer-
tainties. In selected bins, MC non-closure also has a significant contribution.
Systematics do not show any trend and are smaller than approximately 10% in
all reported pT and centrality bins.
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Figure 5.27: Systematic uncertainties on xJ distribution for four different central-
ities and three different leading jet pT in Xe+Xe collisions at √

sNN = 5.44 TeV.
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Figure 5.28: Systematic uncertainties on ρXe,Pb in Xe+Xe collisions at √
sNN =

5.44 TeV. The top and the bottom row shows leading and subleading jets, respec-
tively, for three centrality intervals.

Figure 5.29: Systematic uncertainties for ρXe,Pb in Xe+Xe collisions at √
sNN =

5.44 TeV. The top and the bottom row shows leading and subleading jets, respec-
tively, for three ΣEFCal

T intervals.
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5.6 Results

Figure 5.30 shows the unfolded per-pair normalized xJ distributions evaluated in
four centrality intervals: 0–10%, 10–20%, 20–40%, and 40–80%, and three pT,1
intervals: 100 < pT,1 < 126 GeV, 126 < pT,1 < 158 GeV, and 158 < pT,1 <
199 GeV. A substantial difference in the shape of xJ distributions is seen between
the most central collisions (0–10%) and the most peripheral collisions (40–80%).
In peripheral collisions, the most frequent configurations are balanced dijets, while
in central collisions, the rate of imbalanced dijets is the same or higher than the
rate of balanced dijets. Narrowing of the xJ distribution with increasing pT,1 is
also observed for all centrality classes. These features were observed in Pb+Pb
collisions as well [15]. The peak structure at xJ = 0.6 previously measured in 0–
10% Pb+Pb collisions is, however, not present in 0–10% Xe+Xe collisions, which
may be connected with a smaller overlapping region of colliding nuclei in Xe+Xe
compared to Pb+Pb collisions. The evolution between the central and peripheral
Xe+Xe collisions is not as pronounced as in Pb+Pb collisions. The absence of
a clearly visible evolution is connected with a worse statistical precision of the
Xe+Xe measurement compared to Pb+Pb measurement.

Figure 5.31 shows the same distributions as Figure 5.30, but evaluated in
four ΣEFCal

T intervals. A similar broadening of the xJ distribution is seen when
comparing central (2.06 − 3 TeV) and peripheral collisions (0.07 − 0.3 TeV).

Figure 5.32 shows a comparison between Xe+Xe and Pb+Pb in matching
centrality intervals (e.g., 0 − 10% for both Xe+Xe and Pb+Pb collisions) for
three centrality and three pT,1 intervals. The biggest difference between the two
systems is in the most central collisions (0–10%) and the lowest pT,1 interval 100 <
pT,1 < 126 GeV, where the above-mentioned peak at xJ ≈ 0.6 in Pb+Pb collisions
is not seen in the Xe+Xe collisions. The smaller systematic uncertainties reported
for lower statistic Xe+Xe collisions are connected with the coarser binning used
in Xe+Xe data, which brought smaller bin-to-bin migrations and, consequently,
smaller systematic uncertainties related to the unfolding procedure.

To compare the xJ distribution between Xe+Xe and Pb+Pb in an unbiased
way, the xJ distributions were evaluated in intervals of the same event activity,

Figure 5.30: The unfolded per-pair normalized xJ distribution evaluated in four
centrality intervals and three pT,1 intervals : 100 < pT,1 < 126 GeV (left),
126 < pT,1 < 158 GeV (middle), and 158 < pT,1 < 199 GeV (right). Statisti-
cal and systematic uncertainties are represented by error bars and colored boxes,
respectively.
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Figure 5.31: The unfolded per-pair normalized xJ distribution evaluated in
four ΣEFCal

T intervals and three pT,1 intervals: 100 < pT,1 < 126 GeV (left),
126 < pT,1 < 158 GeV (middle), and 158 < pT,1 < 199 GeV (right). Statistical
and systematic uncertainties are represented by error bars and colored boxes,
respectively.

quantified by ΣEFCal
T . The choice of ΣEFCal

T intervals matches those measured in
Pb+Pb for centrality intervals 10–20%, 20–40%, and 40–60%. The corresponding
centrality intervals in Xe+Xe collisions are given in Table 5.2. The most central
Pb+Pb interval (0–10%) cannot be used since the equivalent event activity is
not present in Xe+Xe collisions. The Xe+Xe to Pb+Pb comparison of per-
pair normalized xJ distributions is presented in Figure 5.33 in three centrality
and three pT,1 intervals: 100 < pT,1 < 126 GeV, 126 < pT,1 < 158 GeV, and
158 < pT,1 < 199 GeV. The distributions measured within the same event activity
interval are consistent between Xe+Xe and Pb+Pb collisions.

Figure 5.34 shows the absolutely normalized distribution of xJ evaluated for
the same centrality and pT,1 selection as in Figure 5.30. It is observed that the
relative enhancement of imbalanced dijet topologies seen in Figure 5.30 is due
to the depletion in the absolute yield of balanced dijets — an observation valid
also in the Pb+Pb measurement. Results in Figure 5.34 exhibit a clear centrality
evolution where the suppression of balanced dijet yield gradually decreases from
central to peripheral collisions.

The comparison of absolutely normalized xJ distributions between Pb+Pb
and Xe+Xe in the same event activity intervals is presented in the upper panels
of Figure 5.35. A clear difference between Xe+Xe and Pb+Pb distributions
can be seen, with Xe+Xe having a larger absolute yield than Pb+Pb. This
difference may be partially attributed to the difference in hard process cross-
section due to the different center-of-mass energy of the initial hard scattering
between Xe+Xe and Pb+Pb collisions. To estimate the impact of the difference in
the center-of-mass energy, the absolutely normalized xJ distributions in Pb+Pb
collisions are scaled by C(xJ) defined in Equation (5.4). The scaled result is
shown in the bottom panels of Figure 5.35. After correcting for the difference in
the center-of-mass energy of the initial hard scattering, the absolutely normalized
xJ distributions agree between the two systems within uncertainties. The same
conclusion is also found for other pT,1 intervals, which are shown in Appendix A
(Figures A.6 and A.7). While the observed agreement could arise due to canceling
effects and large uncertainties, a natural explanation for this behavior is that the
difference in the energy of the hard scattering process plays a significant role in

86



Figure 5.32: Comparison of Xe+Xe (black) and Pb+Pb (orange) per-pair nor-
malized xJ distribution in three pT,1 intervals (rows: 100 < pT,1 < 126 GeV (top),
126 < pT,1 < 158 GeV (middle), and 158 < pT,1 < 199 GeV (bottom)) and three
Xe+Xe centrality intervals (columns: 10–20% (right), 20–40% (middle), 40–60%
(right)) and in the same Pb+Pb centrality intervals. Statistical and systematic
uncertainties are represented by error bars and colored boxes, respectively.
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Figure 5.33: Comparison of Xe+Xe (black) and Pb+Pb (orange) per-pair normal-
ized xJ distribution in three different pT,1 intervals (rows: 100 < pT,1 < 126 GeV
(top), 126 < pT,1 < 158 GeV (middle), and 158 < pT,1 < 199 GeV (bottom)) and
three Pb+Pb centrality intervals (columns: 10–20% (right), 20–40% (middle),
40–60% (right)) and in the corresponding Xe+Xe ΣEFCal

T intervals. Statistical
and systematic uncertainties are represented by error bars and colored boxes,
respectively.

88



Figure 5.34: Absolutely normalized xJ distribution evaluated in four centrality
intervals and three pT,1 intervals: 100 < pT,1 < 126 GeV (left), 126 < pT,1 <
158 GeV (middle), and 158 < pT,1 < 199 GeV (right). Statistical and systematic
uncertainties are represented by error bars and colored boxes, respectively.

absolutely normalized xJ distributions.
In the case of per-pair normalized xJ distributions, the correction factor C(xJ)

was found to be consistent with unity. This agrees with observing an agreement
of per-pair normalized xJ distributions between Xe+Xe and Pb+Pb collisions.

To characterize the differences between Xe+Xe and Pb+Pb dijet suppression
in a more quantitative way, we evaluate the Xe+Xe to Pb+Pb ratio of pair nu-
clear modification factors, ρXe,Pb defined in Section 5.1. The ρXe,Pb(pT,1) and
ρXe,Pb(pT,2) evaluated in the same Xe+Xe and Pb+Pb centrality intervals are
shown in Figure 5.36. The obtained ρXe,Pb values are systematically larger than
unity typically by 10% to 20% depending on centrality. The ρXe,Pb distributions
evaluated in the same event activity intervals are shown in Figure 5.37. In con-
trast to the centrality-based comparison, ρXe,Pb values are consistent with unity
within statistical and systematic uncertainties. This implies that the pair nuclear
modification factor in Xe+Xe collisions at √

sNN = 5.44 TeV is consistent with the
same quantity measured at √

sNN = 5.02 TeV in Pb+Pb collisions, which suggests
that the suppression of dijets does not differ in a significant way between Xe+Xe
and Pb+Pb collisions when measured in the same event activity intervals.

Despite the above-mentioned consistency of ρXe,Pb with the unity, we note that
it is not possible to directly interpret the difference between the pair RAA evalu-
ated as a function of pT,1 and pT,2 as the difference between the overall suppression
of leading and subleading jets. The reason is that the yields entering the pair RAA
are conditional yields mutually dependent on kinematic selection criteria. Conse-
quently, any interpretation of ρXe,Pb(pT,1), ρXe,Pb(pT,2) and Rpair

AA (pT,1), Rpair
AA (pT,2)

needs to be done within theoretical model predictions, which directly follow the
dijet definition and projection procedures described in this publication.
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Figure 5.35: Comparison of Xe+Xe (black) and Pb+Pb (orange) absolutely nor-
malized xJ distribution in 100 < pT,1 < 126 GeV and 10–20%, 20–40%,
and 40–60% Pb+Pb centrality interval and in the corresponding Xe+Xe ΣEFCal

T
intervals. The upper panels show directly measured distributions. The lower
panels show Pb+Pb distribution corrected for the impact of the difference in the
center-of-mass energy of the hard scattering process between Xe+Xe and Pb+Pb
collisions (see text). Statistical and systematic uncertainties are represented by
error bars and colored boxes, respectively.
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Figure 5.36: Ratio of Xe+Xe and Pb+Pb pair nuclear modification factors, ρXe,Pb,
evaluated as a function of pT,1 (upper panels) and pT,2 (lower panels) in the same
centrality intervals. Statistical and systematic uncertainties are represented by
error bars and colored boxes, respectively. The blue box represents systematic
uncertainty on ⟨TAA⟩.

Figure 5.37: Ratio of Xe+Xe and Pb+Pb pair nuclear modification factors, ρXe,Pb,
evaluated as a function of pT,1 (upper panels) and pT,2 (lower panels) in the same
ΣEFCal

T intervals (selecting equivalent event activity). Statistical and systematic
uncertainties are represented by error bars and colored boxes, respectively. The
blue box represents systematic uncertainty on ⟨TAA⟩.
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Conclusion
The measurement of dijet balance in Xe+Xe collisions at √

sNN = 5.44 TeV is
provided in terms of per-pair normalized xJ distributions and absolutely normal-
ized xJ distributions obtained using data collected by the ATLAS detector at the
LHC.

A higher relative rate of imbalanced dijets in central Xe+Xe collisions com-
pared to peripheral collisions is seen in the per-pair normalized xJ distributions.
The absolutely normalized xJ distributions then show that this feature arises pre-
dominantly from a decrease in the yields of more balanced dijets with xJ values
close to 1.

The results are compared to the already published measurement of dijets in
Pb+Pb collisions at √

sNN = 5.02 TeV done by ATLAS. The xJ distributions are
found to be consistent between Pb+Pb and Xe+Xe collisions when compared in
the same event activity intervals and after correcting the absolutely normalized
distributions for the expected difference in hard cross-section due to the different
center-of-mass energy between Xe+Xe and Pb+Pb collisions.

An alternative evaluation of the dijet suppression between the Xe+Xe and
Pb+Pb collisions is provided by the ratios of pair nuclear modification factors,
ρXe,Pb, which are found to be consistent with unity when evaluated in the same
event activity intervals.

These results should bring a better understanding of the role of path-length,
energy density, and fluctuations in the jet energy loss in the QGP and add a new
input to quantifying its system size dependence.
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A. Performance plots
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Figure A.1: Unfolding closure for three pT,1 intervals and for 10 − 20%, 20 − 40%
and 40 − 80% centrality intervals.
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Figure A.2: Evolution of iterations for unfolding in ΣEFCal
T intervals.
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Figure A.3: Systematic uncertainties for xJ distribution for four ΣEFCal
T intervals

and three leading jet pT in Xe+Xe collisions at √
sNN = 5.44 TeV.

102



Figure A.4: Systematic uncertainties for absolutely normalized xJ distribution for
four centralities and three leading jet pT in Xe+Xe collisions at √

sNN = 5.44 TeV.
The C Correction systematic is applied on Pb+Pb distributions.
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Figure A.5: Systematic uncertainties for absolutely normalized xJ distribution
for four ΣEFCal

T intervals and three leading jet pT in Xe+Xe collisions at √
sNN =

5.44 TeV. The C Correction systematic is applied on Pb+Pb distributions.
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Figure A.6: Comparison of Xe+Xe (black) and Pb+Pb (orange) absolutely nor-
malized xJ distribution in 126 < pT,1 < 158 GeV and 10–20%, 20–40%,
and 40–60% Pb+Pb centrality interval and in the corresponding Xe+Xe ΣEFCal

T
intervals. The upper panels show directly measured distributions. The lower
panels show Pb+Pb distribution corrected for the impact of the difference in the
center-of-mass energy of the hard scattering process between Xe+Xe and Pb+Pb
collisions (see text). Statistical and systematic uncertainties are represented by
error bars and colored boxes, respectively.
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Figure A.7: Comparison of Xe+Xe (black) and Pb+Pb (orange) absolutely nor-
malized xJ distribution in 158 < pT,1 < 199 GeV and 10–20%, 20–40%,
and 40–60% Pb+Pb centrality interval and in the corresponding Xe+Xe ΣEFCal

T
intervals. The upper panels show directly measured distributions. The lower
panels show Pb+Pb distribution corrected for the impact of the difference in the
center-of-mass energy of the hard scattering process between Xe+Xe and Pb+Pb
collisions (see text). Statistical and systematic uncertainties are represented by
error bars and colored boxes, respectively.
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