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Abstract

In recent years, automated formal verification of software has progressed from a few
research labs into large-scale applications, such as cloud infrastructure and smart contracts.
Formal verification techniques based on model checking provide the necessary guarantees
by exploring systems’ behaviour exhaustively and automatically. Moreover, they provide
witnesses (explanations) for the result of their analysis: a faulty behaviour, if there exists
one, or a proof of the absence of such behaviour.

However, the general problem that automated software verification is trying to solve
is undecidable. Despite this theoretical barrier, it is quite efficient on many instances
that arise in practice. We ascribe this (perhaps surprising) success to a combination of
factors: the relentless effort of researchers that come up with new verification procedures
to tackle classes of problems where existing techniques struggle; amazing progress in
the foundational technologies of satisfiability solving, especially in Satisfiability Modulo
Theories (SMT); and increase of available computational power through parallel and
cloud computing. Nevertheless, the growing complexity of real-world systems poses new
challenges for formal verification, especially for the scalability of the techniques.

The task of automated software verification has two parts: modelling the task in
a formal framework and solving the resulting mathematical problem. While modelling is
a non-trivial step in the verification process, it has been addressed widely, and there exist
numerous modelling concepts suitable for various systems. Solving, on the other hand, is a
bottleneck when it comes to complex modern programs. This thesis focuses on the solving
part of the task, where there is a need for new effective solutions. We assume the problems
are modelled symbolically, with formulas in first-order logic. Specifically, we work in the
logical framework of constrained Horn clauses (CHC) and research the mathematical
problem of deciding satisfiability of a CHC system. CHC satisfiability generalizes the
common task of verifying safety properties in transition systems, a widespread model
in formal verification. This task is complex and undecidable in general already if the
language of the constraints contains linear integer arithmetic. In our work, we argue that
this task can be approached by providing solutions at different levels, which we identify
as foundational, verification and cooperative layers of the problem. These correspond
to decision and interpolation procedures, sequential model-checking algorithms, and
multi-agent solving approaches. We further argue that the next (higher) layers build on,
and interact with, the previous (lower) layers and that working on the higher layers can
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significantly benefit from a deep understanding of the layers beneath them. Overall, we
advance the field of automated software verification by contributing solutions on all three
layers.

On the foundational layer, we contribute a new interpolation algorithm for conflicts
in the theory of linear arithmetic. It extends the standard approach based on the Farkas
lemma and can compute logically stronger interpolants. Experimental evaluation in a
model-checking scenario shows that with our interpolation algorithm, the same model-
checking algorithm can successfully solve some problems on which it diverges using the
original interpolation algorithm.

On the verification layer, we invent the concept of transition power abstraction (TPA)
sequence and contribute TPA-based model-checking algorithms that address the known
problem of detecting deep counterexamples in transition systems. Moreover, we show
that the TPA sequence can be mined for candidates for transition invariants. This allows
TPA-based algorithms to prove systems safe by means largely orthogonal to existing
techniques.

To support the development of verification techniques, we contribute Golem, a new
solver for the satisfiability of systems of constrained Horn clauses. The main features
of Golem are its tight integration with the underlying interpolating SMT solver and
support for multiple back-end solving algorithms. Golem is primarily meant to serve as
a research tool for further investigation of SMT-based algorithms for model checking and
general Horn solving. It was instrumental in developing our prototype implementation
of the TPA-based algorithms. However, it is also efficient compared to other Horn
solvers in the latest edition of CHC-COMP. As such, it can be used as the back end for
domain-specific tools that model various verification tasks in the CHC framework. It has
already been included as a possible back end for the software verifier Korn.

On the cooperative layer, we contribute an abstract framework that generalizes
concepts from induction-based model-checking algorithms. The abstraction aims explicitly
at the application in a multi-agent solving scenario where multiple instances of the same
solver exchange information and, in this way, cooperate to solve a single problem instance.
We instantiate the framework to obtain a parallel version of a successful pd-kind
algorithm and experimentally show that exchanging information can significantly improve
performance. Since pd-kind relies on interpolation as a sub-procedure, we use our
novel interpolation algorithm to obtain more diverse behaviour of the agents, and this
constitutes a large part of the performance improvement.
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Chapter 1

Introduction

Nowadays, the presence of software in our lives is inescapable. The problems caused
by software errors range from minor inconveniences to severe threats to human lives.
Significant resources are therefore applied to eliminate such errors and ensure that
programs conform to their specifications. Testing is the traditional method for detecting
bugs in software systems. Different testing methods, from unit tests through integration
tests to system tests, aim to detect problems in different phases of a development cycle.
While testing is very good at quickly detecting common issues, it suffers from two
deficiencies. Firstly, designing the tests requires a substantial manual effort. Secondly,
testing can uncover errors but cannot prove their absence.1 Moreover, testing often fails
to cover the corner cases of the system under test. These deficiencies of testing led to
the development of semi-automated and later fully automated formal methods that can
also prove the absence of errors, not only their presence. Such techniques fall under the
broad notion of automated software verification.

1.1 Automated Software Verification

Formal verification applies logic-based methods to prove, in a mathematical sense, that
a system satisfies its specification. In the software domain, formal verification can be
interactive or automated. In interactive verification, a human user guides the verification
tool in its search for mathematical proof of correctness. Several popular large projects,
such as Dafny [145], seL4 [134] or CompCert [147, 148] heavily rely on interactive theorem
provers for verification. While effective, interactive verification can be very tedious
and requires expert knowledge on the user’s side to guide the tool successfully. On the
other hand, automated formal verification aims to eliminate the human factor from the
process altogether. The growing complexity of the systems being built nowadays requires
automating the verification process as much as possible. For this reason, automated

1To quote Djikstra precisely: “Program testing can be used to show the presence of bugs, but never to
show their absence!” [76]
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2 1.1 Automated Software Verification

software verification has attracted much attention in the last two decades, not only in
the research community but also in the industry. Companies such as Microsoft, Amazon,
Meta and Ethereum Foundation are investing in automated reasoning with the goal
of providing formal proofs of correctness to their customers (see, e.g.,[53]). From the
theoretical perspective, the undecidability of the halting problem [70] represents the
fundamental barrier to what is possible to achieve in automated software verification.
We cannot hope to find an algorithm that would work and terminate on every single
problem instance of automated verification. Nevertheless, researchers from academia and
industry are developing new techniques and heuristics to constantly push the frontier of
what is possible in practice.

Logic plays a fundamental role in formal verification. The case for applying logic
to formally prove correctness of programs has been made very early in the history of
computers by such great names as Floyd, Hoare, Dijkstra and others [77, 97, 112]. Hoare
logic [112] (also Floyd-Hoare logic) is a paradigm for program verification that is still
widely used nowadays. The idea is to construct Hoare triples, annotations of the program
statements of the form {P}S{R} where S is the program statement, P is a precondition
and Q is a postcondition. Given a program state that satisfies the precondition P ,
executing the statement S yields a state that satisfies the postcondition R. Hoare triples
can serve as a proof of the correctness of a program. They are still used today, e.g., in a
modern automata-based approach to software verification [110].

Another logic-based method for automated verification is model checking [64, 167]. In
short, model checking consists of formally modelling a system and its specification—for
example, with finite-state transition graphs and temporal logic formulas—and automati-
cally deciding if the specification holds in the model using efficient decision procedures.
Full automation, together with the ability to produce counterexamples (error traces)
when the specification is not satisfied, has been the key ingredient in the success and
broader adoption of model checking. Although theoretically model checking can verify
finite-state systems completely, it was initially used mainly for bug-finding due to scaling
issues. A great leap in scalability has been achieved by a switch from explicit graph
representation to symbolic representation.2 The advantage of symbolic reasoning is the
ability to manipulate and reason about large sets of states, instead of one state at a time.
At first, binary decision diagrams (BDDs) were used for the symbolic representation [46].
However, with the significant advancement in satisfiability solving in the last two decades,
most symbolic model checkers now use logical formulas (propositional or first-order) to
represent and reason about the problem.

The first approach relying purely on a SAT solver was Bounded Model Checking
(BMC) [29]. BMC formulates the existence of a counterexample path of fixed length in
the system as a satisfiability query. It iteratively increases the considered length until
a counterexample is found. If an upper bound on possible lengths can be computed,

2Correspondingly, the original approach is now referred to as explicit-state model checking, while the
latter is now known as symbolic model checking.
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BMC can even prove the system safe by refuting the existence of a counterexample of
any possible length. However, such an upper bound might not exist (in infinite-state
systems) or might be prohibitively large in practice. Nevertheless, BMC has proven
to be an excellent bug-finding technique and is still considered state-of-the-art even
nowadays. A related technique, that aims to prove that a given (safety) property holds
in all states of the system, is k-induction [186]. It also uses a BMC-style search for
counterexamples, but it additionally attempts to construct an inductive proof of safety
(using increasing induction depth). This technique is complete for finite-state systems if
only loop-free paths are considered as potential counterexamples to induction. A different
approach based on BMC that can prove the system safe is Interpolation-based Model
Checking (IMC) [155]. IMC was the first algorithm to apply Craig interpolation [68] to
compute over-approximations of reachable states and use the over-approximations in a
fixed-point computation to prove that all reachable states satisfy the safety property.
IMC popularized the concept of Craig interpolation for abstraction in the verification
community, and this led to a large amount of research on interpolation procedures, as
well as to several new verification algorithms that rely on Craig interpolation to a lesser
or greater extent [2, 4, 129, 157, 176, 177, 183]. However, the concept of abstraction
in verification is more general, and its importance was recognized even before Craig
interpolation was introduced to the verification community. Abstraction, in general, means
deliberately ignoring properties of the system deemed unimportant for the property that
should be proven. It reduces the number of states in the model, preventing the state-space
explosion. If the abstract system is proven safe, the original system is also safe. However,
abstraction may introduce spurious behaviour. If an abstract counterexample is found
but does not correspond to a feasible behaviour of the original system, the abstraction
must be refined to exclude the spurious counterexample. Predicate abstraction [100] is
a common technique that abstracts a program using a fixed set of predicates over the
program variables. The construction of an abstract system is fully automatic; however,
initially, it could not refine the abstraction automatically. This missing piece was provided
by Counterexample-guided abstraction refinement (CEGAR) framework [63]. CEGAR
automatically analyzes spurious counterexamples and refines the abstraction to rule out
the infeasible path. Further improvements were achieved with Lazy Abstraction [111],
which refines the abstraction on demand instead of starting the analysis of the refined
system from scratch. Craig interpolants have also been successfully applied in the context
of lazy abstraction to discover relevant predicates automatically [157].

As mentioned before, many of the new model-checking techniques were enabled
by the incredible advancement in SAT solving [30]. However, in an orthogonal direc-
tion, the advancement in SAT solving also fueled advancement in Satisfiability Modulo
Theories (SMT) [17]. New efficient SMT solvers allowed the researchers to lift many
model-checking techniques, initially developed for hardware and relying on SAT solvers,
to software verification. The application of k-induction for software verification has been
studied, e.g., in [21, 43, 79, 80]. The combination of predicate abstraction and CEGAR
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is the core solving algorithm in the Eldarica Horn solver [117]. Interpolation-based
algorithms for the analysis of software were proposed, e.g., in [157, 158, 159]. A thorough
comparison of several SMT-based software verification techniques—BMC, k-induction,
predicate abstraction and lazy abstraction with interpolants—on a large set of C programs,
together with an overview of related work, can be found in [22].

Another breakthrough in symbolic model checking occurred with the introduction of
an algorithm called IC3 [41], later generalized to an approach dubbed Property Directed
Reachability (PDR) [85]. One of the key features of the algorithm is that, unlike the
previous algorithms, it does not require unrolling the transition relation. Relatively
quickly after its introduction, it has become the dominant approach in hardware verifica-
tion. The algorithm has been studied thoroughly [104], and various modifications have
been proposed [18, 82]. Similar to other hardware model-checking algorithms, IC3/PDR
has also been lifted and applied in the domain of software [58, 59, 113]. Soon after its
introduction, PDR was generalized from transition systems to non-linear fixed-point
operators, opening the door for efficient compositional analysis of programs with (recur-
sive) functions [113]. Continuing in this direction, Spacer algorithm [137] introduced
two novel aspects: under-approximating summaries and Model-based Projection (MBP).
Under-approximating summaries serve as caches of truly reachable states, which allow the
algorithm to avoid repeated work. MBP enables efficient computations of predecessors by
under-approximating quantifier elimination. The combination of CEGAR and IC3/PDR,
named Counterexample to Induction-guided Abstraction Refinement (CTIGAR), has been
proposed in [31]. Property-directed k-induction (PD-KIND) successfully replaced the
inductive reasoning in IC3/PDR with k-inductive reasoning [129].

1.1.1 Modelling Software Verification Problems as Constrained Horn Clauses

The earlier discussion highlighted that there is a large body of logic-based algorithms
for automated verification. These algorithms eventually represent the problem using
logical formulas and reduce subtasks to satisfiability checks, decided by underlying SAT
or SMT solver. However, software verifiers that implement these algorithms are typically
developed for a single domain, and non-trivial effort is required to successfully apply a
concrete algorithm in a concrete domain. Much of this work is repeated when the same
algorithm is applied in a new domain (such as a new programming language).

To overcome this problem hindering developments of software verification tools, the
framework of Constrained Horn Clauses (CHC) has been proposed as a unified, purely
logic-based, intermediate format for reasoning about software verification tasks [101].
Originally named Horn-like clauses [101], they use the language of logical constraints to
capture various verification tasks (e.g., safety, termination and loop invariants computa-
tion) from different domains such as transition systems, functional programs, procedural
and recursive programs, concurrent and distributed systems [101, 105, 118]. The advan-
tage of CHC representation is that it nicely separates the task of modelling a verification
problem from the actual solving. It represents an application of a well-known and
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cooperative layer

verification layer
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Decomposed Farkas
interpolants [Chap. 3]

Figure 1.1. Layered approach to CHC solving and our contributions

important principle in software design—separation of concerns. It avoids repeated engi-
neering effort: a specialized CHC solver can be re-used for different verification tasks
across domains and programming languages. On the side of the front end, the main
task becomes the translation of the source code to the language of constraints. Several
CHC-based verification frameworks have already been developed, for example, SeaHorn
for C/C++ [107], JayHorn for Java [132], RustHorn for Rust [154], HornDroid for
Android [48], SolCMC for Solidity [5, 153]. At the back end, developing the solver is freed
from the complexities and peculiarities of a given application domain. It can focus on a
well-defined formal problem—satisfiability of a system of constrained Horn clauses. Many
techniques developed in the context of model checking and software verification have
been lifted to the uniform setting of CHC. They are now implemented in the specialized
Horn solvers, for example, Spacer [137], Eldarica [117, 175], FreqHorn [93, 94],
HoIce [52] and others. Horn solvers now compete in an annual international competition
CHC-COMP3 on a large set of benchmarks from various domains.

1.2 Challenges and Contributions

As mentioned in the previous section, many interesting problems in automated software
verification can be reduced to the problem of the satisfiability of a system of constrained
Horn clauses. However, this means that one has to pay the price for the powerful
formalism of CHC: satisfiability of CHC over most interesting theories (e.g., linear real
or integer arithmetic) is undecidable [119, 126, 137, 176]. Thus, we cannot hope to find
a single algorithm to solve all instances of CHC satisfiability: there is no “holy grail”
that we could hope to discover. Nevertheless, there are compelling reasons for developing
techniques and tools for CHC solving. On the theoretical side, there are specific subclasses

3https://chc-comp.github.io

https://chc-comp.github.io
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of CHC satisfiability that are decidable, for example, CHC over propositional logic or
recursion-free CHC over linear integer arithmetic [137, 176]. On the practical side,
many interesting instances from industry can be solved very efficiently. Researchers
are continuously coming up with new improvements or even whole new algorithms to
attack the classes of problems not solvable before with existing resources. However, many
problems, especially related to scalability, persist.

In this thesis, we show how the challenge of automated software verification can be
approached on multiple levels and we present contributions on all layers. The layered
approach and our contributions are depicted on Figure 1.1. The foundational layer
represents decision and interpolation procedures which constitute the backbone of logic-
based verification algorithms. The verification layer represents sequential verification
algorithms which verify software systems against their specification. On the cooperative
layer, multiple agents cooperate on solving a single instance of the verification problem.
While research has been conducted on all layers, it is often narrow in scope, focusing
only on one layer at a time. For example, Satisfiability Modulo Theories (SMT) solvers,
which implement decision and interpolation procedures for various theories of first-order
logic, are often used as black boxes in traditional software verifiers. While possible,
we argue that such strict separation does not unlock the full potential of SMT-based
software verification. In our research we promote a tight integration of the verification
algorithm and the underlying SMT solver. This integration is quite natural in the CHC
framework; it can be found in the best CHC solvers Eldarica and Spacer. Similarly,
on the cooperative layer, the large amount of computational power available nowadays
with multi-core and cloud computing can be easily utilized to run multiple verification
algorithm in parallel with a portfolio approach. However, only full understanding of the
sequential algorithms enables information exchange between the individual agents and
consequently cooperative learning for all agents. Multi-agent solving with cooperative
learning achieves greater improvement over sequential algorithms than a pure portfolio.
In our work, we have identified challenges across all three layers and proposed solutions
that are the contributions of this thesis.

At the foundational layer, we studied interpolation procedures for conflicts in linear
real arithmetic (LRA). This is a core subprocedure in the computation of interpolants in
general problems, not only in linear real arithmetic but also in linear integer arithmetic. As
such, it can significantly affect the performance of any interpolation-based model-checking
algorithm that analyzes systems with discrete or continuous behaviour. This work was
motivated by the problems at the verification layer, where interpolation-based verification
algorithms relying on existing interpolation procedure were sometimes diverging even on
relatively simple programs. We have developed and implemented a new interpolation
algorithm for LRA to address this problem.

At the verification layer, we have developed a novel concept of transition power
abstraction and created a model-checking algorithm that builds on this idea, utilizing
interpolation and SMT solving. This technique addresses the apparent scalability issue in
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existing model-checking techniques when dealing with systems with deep counterexamples,
i.e., systems that exhibit faulty behaviour only after a very long time. Transition power
abstraction automatically computes abstract transitions that guide the search for faulty
behaviour. Additionally, it can be used to prove the absence of such faulty behaviour
by discovering safe transition invariant of the system. Another contribution at the
verification layer is our new efficient Horn solver Golem. Golem is tightly integrated
with the interpolating SMT solver OpenSMT [122] and offers several model-checking
algorithms as the back-end reasoning engine, including our novel algorithms based on
the transition power abstraction. It is implemented in C++ and publicly available on
GitHub4.

At the cooperative layer, we have formalized an abstract framework for induction-
based reasoning suitable for cooperative multi-agent solving with information exchange.
Leveraging the SMTS infrastructure for distributed constraint solving [152], we have
implemented a parallel version of the pd-kind algorithm [129] as an instance of our
proposed multi-agent architecture. Next, we describe each of the contributions in more
detail.

1.2.1 Decomposed Farkas Interpolants

Craig interpolants are key ingredients in interpolation-based model-checking algorithms,
used for computing abstractions or as candidates for inductive invariants. In the theory
of linear arithmetic—required for modelling any numerical properties of a system—an
interpolant is typically computed based on Farkas’ lemma [90]. Such an interpolant, called
Farkas interpolant, is always a single inequality. In model-checking, this property is not
always desirable and can even lead to divergence of the model-checking algorithm [179,
190]. This problem can be fixed on the level of the model checker, for example, by globally
monitoring progress and applying specialized techniques when a diverging behaviour
has been detected [190]. Alternatively, the model checker can apply Interpolation
abstraction [177] to restrict interpolants to conform to a prescribed form. A different
approach is to keep the model-checking algorithm unchanged and attempt to fix the
problem at the foundational layer by modifying the interpolation procedure. A specialized
interpolation procedure ensuring finite convergence property has been proposed to address
this divergence problem in model checking [179]. The disadvantage of these solutions is
that they are rather intrusive. They either introduce complexity to the model-checking
algorithm [177, 190] or require a less efficient decision procedure than the one used in
state-of-the-art SMT solvers [179].

A mechanism for controlling the strength of an arithmetic interpolant that is not
intrusive has been proposed in [8]. However, it can only compute interpolants weaker than
Farkas interpolant (and stronger than its dual). In Chapter 3, we propose an interpolation
procedure for theory conflict over linear arithmetic that uses the methods from linear

4https://github.com/usi-verification-and-security/golem/

https://github.com/usi-verification-and-security/golem/
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algebra to identify independent components in the Farkas coefficients and decompose the
Farkas interpolant into multiple linear inequalities. Our approach is simple yet powerful.
Similar to [8], it is not intrusive. It only requires minor changes in the interpolation
procedure, where the proof of unsatisfiability in the form of Farkas coefficients is analyzed
to discover linearly independent components. Decomposition to multiple independent
components yields a decomposed Farkas interpolant in the form of a conjunction of linear
inequalities. The decomposed interpolant always implies the Farkas interpolant, i.e., it
is logically stronger. Stronger interpolants can be beneficial, for example, to compute
tighter abstractions. We show that decomposed interpolants can prevent divergence of
the model-checking algorithm. The results presented in Chapter 3 were published in the
proceedings of TACAS 2019 [37] and in the extended journal publication [38].

1.2.2 Transition Power Abstraction

In this line of research, we investigated transition systems, a common formal model for
hardware and software. Transition systems are characterized by a set of initial states, a
set of bad states and a transition relation that defines reachability in the system. The
safety problem in transition systems translates to the problem if some error state is
reachable from the initial states in a finite number of steps of the transition relation.

Existing model-checking algorithms struggle to scale when faced with unsafe systems
where only deep counterexamples exist. Deep counterexamples represent behaviours of
the system that reach an error state after a large number of transition steps, roughly in
the order of thousands. The reason existing algorithms struggle to scale is the inherent
slow increment of the safety horizon—a number of steps for which an algorithm in the
current run has already proved that no counterexample of that length exists.

The concept of transition power abstraction (TPA) is a solution to this problem. The
idea is to maintain a sequence of transition formulas where each element over-approximates
twice as many steps as its predecessor. This doubling abstraction enables doubling the
safety horizon with a single SMT query if the current abstraction is sufficiently precise.
With this ability, the algorithm can quickly rule out the existence of short counterexamples
and focus the search on the deeper parts of the state space. The key point is that all
elements of the TPA sequence are quantifier-free transition formulas, i.e., containing
only two copies of the state variables. This keeps the satisfiability queries representing
the existence of (abstract) paths manageable for the underlying SMT solver. Craig
interpolation plays a crucial role in the computation and refinement of the TPA sequence.

With the TPA sequence, it is possible to quickly reach far greater depths in the
system than traditional algorithms. However, it can also serve as a source of candidates
for transition invariants. Transition invariants over-approximate unbounded reachability
in the system, regardless of the initial or bad states. Intuitively, if a state s1 can reach
state s2 in some number of transition steps, then the pair (s1, s2) satisfies the relational
property defined by the transition invariant. While transition invariants have been
studied in connection to termination and other liveness properties [141, 164, 165], they



9 1.2 Challenges and Contributions

can also be used to prove safety.
Chapter 4 presents a novel model-checking algorithm based on the TPA sequence. We

show how the construction and refinement of the TPA sequence are elegantly interwoven
with checking the existence of bounded paths from initial to bad states. The experiments
on a set of challenging safety problems of multi-phase loops show a substantial improve-
ment in detecting deep counterexamples. In proving safety, the ability of the proposed
algorithm is orthogonal to other model-checking techniques. These results were published
in the proceedings of TACAS 2022 [36] and in the proceedings of FMCAD 2022 [35].

1.2.3 The Golem Horn Solver

In Chapter 5, we present Golem, a new efficient Horn solver for CHCs over linear real
and integer arithmetic. It can serve as a research tool for prototyping new ideas related
to CHC solving and as a powerful back end for domain-specific verification tools. The
key features of Golem are:

• Tight integration with SMT solver Golem is tightly coupled with the
underlying interpolating SMT solver OpenSMT. Tight coupling brings several
advantages for Golem. The main advantage is full control over the solving and
interpolation processes in OpenSMT. From the engineering point of view, Golem
re-uses mature and efficient data structures of OpenSMT for term representation
and manipulation. This saves development time and makes Golem more efficient
and less error-prone.

• Modular architecture The process of deciding CHC satisfiability is separated
into normalization, preprocessing and actual solving. The normalization creates an
internal representation of a CHC system in the form of a labeled multi-hypergraph
which is the representation on which the transformations in preprocessing and the
solving algorithms (back-end engines) operate. Preprocessing consists of several
transformations that take as input the graph representation and output a modified
graph. These transformations are similar to the idea of optimization passes on
intermediate representation in compilers. The final graph of the preprocessed
system is passed to the model-checking algorithm in the chosen back-end engine.

• Multiple back-end solving engines The aim from the beginning of the develop-
ment was to implement multiple, mostly interpolation-based, algorithms for solving
CHC systems. Golem currently supports five different back-end engines: Bounded
Model Checking [29], k-induction [186], Lazy Abstraction with Interpolants [157]
(also known as Impact), Spacer [137], and TPA (Chapter 4). The modular archi-
tecture and tight integration with the SMT solver enable easy prototyping of new
algorithms as the infrastructure of Golem already provides procedures to handle
many subtasks, and the engine developer can focus on the algorithm itself.
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Golem has been crucial for developing and evaluating the TPA algorithms proposed in
this thesis. It was used in the experiments reported in TPA publications [35, 36]. It has
also successfully participated in the international CHC competition (CHC-COMP) in
2021 and 2022: It took second place in LRA-TS track and third place in LIA-Lin track in
2021. In 2022, it beat all solvers except the non-competing Spacer in the tracks LRA-TS,
LIA-Lin and LIA-nonlin. An official tool paper for Golem is currently under preparation.

1.2.4 The IcE/FiRE Framework for Cooperative Model Checking

Given that the problem we are trying to solve is undecidable in general, it is natural
that different solving techniques exhibit different strengths and weaknesses on various
instances of the problem. The straightforward way to harness the strengths of various
approaches is to run them in parallel in a portfolio manner [121]. The portfolio approach
represents concurrent and independent execution of multiple agents (different tools,
different configurations of the same tool) on the same problem instance. The advantage of
the portfolio is that no changes are required in the participating agents. However, there is
no communication between the agents, hence no cooperation, no learning from each other.

A potentially better approach is a cooperative one, where the agents share the
knowledge they acquire during the solving process. The knowledge sharing in the form of
lemmas has been successfully applied in SMT solving [151, 199], as well as in IC3-based
model checking [50, 150]. A push for cooperative solving is also present in the software
verification community [24, 27].

In Chapter 6, we generalize the concepts of recently developed induction-based
model-checking algorithms, especially pd-kind [129]. We propose an abstract IcE/FiRE
framework, whose instances can easily participate in cooperative parallel solving. Our
contribution is the theoretical IcE/FiRE framework and its concrete instantiation yielding
a parallel pd-kind algorithm. Using SMTS [152], a framework for distributed solving,
we experimentally show the viability and usefulness of parallel pd-kind. The results
show the importance of sharing information between solvers. Moreover, as pd-kind is
an interpolation-based algorithm, the experiments also show that using both Farkas
interpolants and decomposed Farkas interpolants from Chapter 3 is an important source
of diverse behaviour that leads to much better performance of our parallel solver. The
results presented in Chapter 6 were published in the proceedings of VMCAI 2020 [39].

1.3 Organization of This Thesis

After this Introduction, Chapter 2 gives an overview of the main notions we use through-
out this thesis, including Satisfiability Modulo Theories (SMT), interpolation, constrained
Horn clauses, and transition systems. The following chapters present our contributions
to automated software verification. Chapter 3 presents our main contribution at the foun-
dational layer: new interpolation algorithm for conflicts in the theory of linear arithmetic.

https://chc-comp.github.io
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Chapter 4 presents our new model-checking algorithm based on the concept of Transition
Power Abstraction (TPA) sequence. Chapter 5 describes our next contribution at the ver-
ification layer: the Horn solver Golem. Our final contribution, the IcE/FiRE framework
for cooperative parallel verification, is given in Chapter 6. We conclude in Chapter 7
with final remarks and outline future work based on the results presented in this thesis.

1.4 Publications Overview

1.4.1 Publication in Thesis

Much of the material presented in this thesis was published at conferences and in journals
as listed below:

• Blicha, M., Hyvärinen, A. E. J., Kofroň, J. and Sharygina, N. [2019]. Decomposing
Farkas interpolants, in T. Vojnar and L. Zhang (eds), Tools and Algorithms for the
Construction and Analysis of Systems, Springer International Publishing, Cham,
pp. 3–20.

• Blicha, M., Hyvärinen, A. E. J., Marescotti, M. and Sharygina, N. [2020]. A
cooperative parallelization approach for property-directed k-induction, in D. Beyer
and D. Zufferey (eds), Verification, Model Checking, and Abstract Interpretation,
Springer International Publishing, Cham, pp. 270–292.

• Blicha, M., Hyvärinen, A. E. J., Kofroň, J. and Sharygina, N. [2022]. Using linear
algebra in decomposition of Farkas interpolants, International Journal on Software
Tools for Technology Transfer 24(1): 111–125.

• Blicha, M., Fedyukovich, G., Hyvärinen, A. E. J. and Sharygina, N. [2022].
Transition power abstractions for deep counterexample detection, in D. Fisman and
G. Rosu (eds), Tools and Algorithms for the Construction and Analysis of Systems,
Springer International Publishing, Cham, pp. 524–542.

• Blicha, M., Fedyukovich, G., Hyvärinen, A. E. J. and Sharygina, N. [2022]. Split
transition power abstractions for unbounded safety, in A. Griggio and N. Rungta
(eds), Proceedings of the 22nd Conference on Formal Methods in Computer-Aided
Design - FMCAD 2022, TU Wien Academic Press, pp. 349–358.

1.4.2 Additional Publications

In addition to our main results, we participated in related projects whose results were
also published at conferences:

• Asadi, S., Blicha, M., Fedyukovich G., Hyvärinen, A. E. J., Even-Mendoza K.,
Sharygina N. and Chockler H. [2018]. Function Summarization Modulo Theories,
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Computer Science, vol 11247. Springer, Cham.

• Asadi, S., Blicha, M., Hyvärinen, A. E. J., Fedyukovich, G. and Sharygina, N.
[2020]. Farkas-Based Tree Interpolation. In: D. Pichardie, M. Sighireanu (eds),
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Chapter 2

Preliminaries

2.1 Satisfiability Modulo Theories

The question of determining the satisfiability of a boolean formula—the SAT problem—is
one of the most famous problems in computer science. The formulation of the problem is
simple: Given a boolean formula, decide if there exists an assignment of its variables under
which the formula evaluates to true (⊤). However, solving the SAT problem is complex. It
was the first problem shown to be an NP-complete problem, a result now known as Cook-
Levin theorem [66, 188]. Despite its theoretical complexity, there have been extensive
studies of algorithms for solving the SAT problem. The reason has been mostly pragmatic;
many interesting problems can be efficiently encoded to SAT, including problems from
hardware and software verification. However, problems from the verification domain often
require (or at least benefit from) a stronger modelling language, such as first-order logic.
Typically, the full power of first-order logic is not required; only satisfiability with respect
to some background theory needs to be decided. This observation led to the development
of specialized decision procedures that decide the satisfiability of formulas in a fragment
of first-order logic corresponding to a specific theory. The research field concerned with
this problem is called Satisfiability Modulo Theories (SMT) [14]. Following the SAT
terminology, the procedures for solving the SMT problem are called SMT solvers. After
initial independent efforts, an international initiative for standardization and benchmark
collection called SMT-LIB was formed in 2003 to facilitate research and development
in SMT [15]. The SMT-LIB initiative later established SMT workshop, an international
workshop for connecting SMT developers and users, and SMT-COMP, an international
competition of SMT solvers supporting the SMT-LIB input format.

We refer the reader to the excellent textbooks, e.g. [17, 142], for a detailed overview
of the field, architecture of the solvers and specific decision procedures. The chapter on
Satisfiability Modulo Theories [17] in the Handbook of Satisfiability [30] gives an excellent
general overview; the textbook Decision Procedures [142] focuses on decision procedures for
various theories. Here, we only give the necessary terminology used throughout the thesis.

13
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Syntax

We work in fragments of first-order logic defined by a signature Σ, a set of predicate
and function symbols with an associated arity. Besides the signature, the logic uses the
standard logical connectives ∧,∨,¬,→,↔ (conjunction, disjunction, negation, implication,
equivalence, respectively). A term is a variable or a function symbol applied to terms
(respecting the symbol’s arity). An atomic formula (or simply atom) is a predicate symbol
applied to terms (respecting the symbol’s arity). It is very convenient in SMT to view the
logic as multi-sorted logic, where variables are associated with a specific sort or type. The
prominent sort is Bool associated with the Boolean expressions. Similarly, the function
and predicate symbols prescribe sorts for their arguments; additionally, function symbols
have an return sort, while this is implicitly the sort Bool for predicate symbols. Variables
are sometimes viewed as 0-ary constant symbols with Bool variables as 0-ary predicate
symbols and other variables as 0-ary function symbols. Bool variables also count as
atomic formulas. SMT assumes that the equality symbol = is part of the signature for
every theory and is always interpreted as proper equality. A literal is either an atom or
its negation. A clause is a disjunction of literals. A formula is in conjunctive normal
form (CNF) if it is a conjunction of clauses. SAT solvers take as input a propositional
formula in CNF, and SMT solvers often internally translate the input formula to CNF.
In this thesis, we work, for the most part, with quantifier-free formulas.

Semantics

The goal in SMT is to decide satisfiability of a given formula. A model M for a signature
Σ consists of a non-empty set A called the universe of the model (or a set for each sort
in case of multi-sorted logic) and an interpretation for the symbols from Σ, which maps
function symbols to functions over the universe and predicate symbols to relations over
the universe. The value of terms and formulas in the given model is defined inductively,
as usual (see, e.g., [17]). A formula φ is satisfiable if there exist a model M, where it
evaluates to true, i.e., M |= φ. In SMT, the satisfiability is decided with respect to some
background theory T , which specifies the interpretation of the symbols of Σ. Then the
model only has to specify the interpretations of the formula’s variables. A formula is
T -valid if it evaluates to true in all models of T . A clause c that is T -valid is also called
a T -lemma. When the theory is known from the context or the context is independent of
a particular theory, we often refer to T -lemmas simply as theory lemmas. In this thesis,
we work with the theory of linear arithmetic.

2.1.1 Linear Real and Integer Arithmetic

One of the essential theories (not only in software verification) is linear arithmetic. The
following is the grammar from [142] for the conjunctive fragment of linear arithmetic.
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Definition 2.1 (linear arithmetic [142]). The syntax of a formula in linear arithmetic is
defined by the following rules:

formula : formula ∧ formula | (formula) | atom
atom : sum op sum

op : = | ≤ | <
sum : term | sum + term
term : identifier | constant | constant identifier

We consider linear arithmetic over the domain of integers and the domain of reals. In
the former case, we talk about linear integer arithmetic (LIA), and in the latter, about
linear real arithmetic (LRA). In the syntax of Definition 2.1, identifiers correspond to
variables, while constants are mathematical integer constants. LIA corresponds, up to a
syntactic sugar, to the theory of Presburger arithmetic with the signature (0, 1, +,−,≤)
and the usual interpretation of the symbols [17]. For example, multiplication by a positive

constant is just a sum, nx =
n times⏟ ⏞⏞ ⏟

x + . . . + x. Minus operation can also be expressed within
the syntax above: x− y can be written as x +−1y.

Quantifier-free fragments of both LRA and LIA are decidable. While the conjunctive
fragment of LRA is decidable in polynomial time, the conjunctive fragment of LIA is
NP-complete. Interestingly, even though polynomial algorithms for deciding LRA exist,
most SMT solvers use decision procedures based on the Simplex algorithm [84]. Simplex
is exponential in the worst case but typically very fast on real-world problems where the
exponential behaviour is rarely observed. Decision procedures for LIA in SMT solvers
typically follow the branch-and-bound or branch-and-cut paradigm. First, the relaxed
version of the problem is solved (as if with the domain of reals). If a solution for the
relaxed problem yielded a non-integer solution for some variable, new constraints are
added to exclude the non-integer solution but preserve the set of integer solutions. For
more details on decision procedures for linear arithmetic and their implementation in
SMT solvers, we refer the reader to [34, 44, 78, 84, 102, 142].

2.2 Craig Interpolation

Craig interpolant for a valid implication A → C is a formula I such that A → I ,
I → C and all free variables of I occur both in A and C . In verification, an alternative
formulation, obtained by replacing C with ¬B, is more common. Then the validity of the
implication A→ C is equivalent to the unsatisfiability of A ∧ B. The rationale is that A
represents the feasible behaviour of a system and B represents the error behaviour. In
this case, the interpolant over-approximates safe behaviour of the system.

Craig [68] showed that in the first-order logic an interpolant always exists for any
unsatisfiable pair A and B. However, for practical applications, it is crucial to compute
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the interpolants efficiently, and quantifier-free if possible. Interpolating SMT solvers
OpenSMT [122], MathSAT [60] and SMTInterpol [56] compute interpolants from a
proof of unsatisfiability. In propositional logic, an algorithm that computes interpolant
from a resolution proof in linear time with respect to the size of the proof was introduced
by Pudlák [166], Krajíček [139] and Huang [120] (note, however, that the proof itself
might be exponential with respect to the size of the formula). The algorithm traverses
the resolution proof, computing partial interpolant for each clause derived in the proof.
The partial interpolant for the clause ⊥ is an interpolant for A ∧ B. Another algorithm
based on the same proof traversal has been introduced by McMillan [155] and both have
been later showed to be an instantiation of the general framework of labeled interpolation
systems [81]. Further study of interpolation procedures in propositional context include,
e.g., proof manipulation for interpolant generation [170, 172], proof-sensitive interpolation
procedure [4, 6], generalization of the labeled interpolation systems [197], interpolant
computation from DRUP and DRAT proof systems [109, 169].

Moving from propositional logic to the first-order logic, modern SMT solvers based on
the framework known as CDCL(T ) or T -DPLL [17] combine propositional interpolation
algorithms with theory-specific interpolation procedures for theory lemmas. During
the search, a CDCL(T )-based SMT solver blocks satisfying assignments of the boolean
skeleton of the formula by generating T -lemmas falsified by the current assignment.
These T -lemmas generated on-the-fly are included in the resolution proof as a new type
of leaves, besides the input clauses. A theory-specific interpolation procedures, theory
interpolators, compute interpolants for each theory lemma; these are then treated as
partial interpolants for the corresponding proof leaves in the standard propositional
interpolation procedures. The combination of the propositional and theory-specific part
of the interpolation algorithm has been described in [200]. More recent work on proof-
preserving interpolation that does not restrict the SMT solver has been given in [55, 57].
Theory-specific interpolation procedures have been given for the theory of equality and
uninterpreted functions [7, 99, 156], linear arithmetic over rationals [8, 61, 156] and
integers [102, 103], and arrays [45, 114]. Interestingly, some theories, such as linear
integer arithmetic or theory of arrays with extensionality, do not admit quantifier-free
interpolation, i.e., there are instances of an interpolation problem with quantifier-free A
and B where all possible interpolants contain quantifiers. However, these theories can
be extended in a simple way to get a theory that admits quantifier-free interpolation.
This is the case for the theory of arrays with diff predicate [45] and for the theory of
linear integer arithmetic extended with a ceiling function [103] or division-by-constant
functions [55].

For many applications in model checking, the simple binary interpolant is not suf-
ficient; instead, a property of a collection of interpolants is required [108]. Examples of
such properties are path interpolation [128, 194], tree interpolation [55, 160, 182] and
simultaneous abstraction [127]. Some interpolation procedures guarantee these properties
for a collection of interpolants computed from a single proof of unsatisfiability, which
is important for efficiency in interpolation-based model-checking algorithms [55, 108].
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Path interpolation is of a particular interest in the context of this thesis. Our Horn
solver Golem, which we describe in Chapter 5, uses path interpolation in its engine
implementing Lazy Abstraction with Interpolants [157] and also for recomputation of
satisfiability witnesses required due to preprocessing transformations. The following
definition of path interpolation is taken from [128]. It also appeared under the name
interpolation sequence [194]. Given an inconsistent formula φ1 ∧ . . . ∧ φn, a sequence of
formula I0, . . . , In is a path interpolant iff

• I0 = true and In = false,

• for all 1 ≤ i ≤ n, Ii−1 ∧ φi implies Ii,

• for all 1 ≤ i < n, Ii uses only the common symbols of φi and φi+1.

2.3 OpenSMT Solver

OpenSMT is the in-house SMT solver of our group, Formal Verification and Security Lab,
at USI, Lugano, Switzerland. It is open-source software available at GitHub.1 OpenSMT
is currently one of the best SMT solvers for quantifier-free linear real and integer arithmetic
(QF_LRA and QF_LIA) according to the results from SMT-COMP [196], an annual
competition between SMT solvers.2 It was the best-performing competing solver for the
logic QF_LRA in the single-query track in 2020–2022 and for the logic QF_LIA in 2022.

Interpreter

API Simplification
φ1, . . . , φn

CNFizer
φs

Core
solver

φCNF

result

.smt2

Client
program

Figure 2.1. High-level architecture of OpenSMT

The high-level architecture of OpenSMT is depicted in Figure 2.1. It is the same as
described in the last publication on OpenSMT [122]. Interaction with OpenSMT is
available either through SMT-LIB scripts [15] or its application programming interface
(API). The problem is given to the solver as a sequence of SMT formulas φ1, . . . , φn

(asserted to the solver, in the terminology of SMT-LIB), and the goal is to decide if
the conjunction of these formulas is satisfiable. OpenSMT first applies general and
theory-specific preprocessing that yields an equisatisfiable formula φs. Then, the formula

1https://github.com/usi-verification-and-security/opensmt/
2https://smt-comp.github.io/

https://github.com/usi-verification-and-security/opensmt/
https://smt-comp.github.io/
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SAT
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TheoryPropositional
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Figure 2.2. Detailed view of OpenSMT’s core solver

is translated into a conjunctive normal form (CNF) and passed to the core solver. The
core solver in OpenSMT follows the CDCL(T ) framework (also known as T -DPLL) [17].
Figure 2.2 depicts its internal architecture. The core consists of an augmented CDCL-
based SAT solver connected to theory solvers able to decide the satisfiability of a
conjunction of theory literals. The SAT solver searches for a satisfiable assignment of the
propositional abstraction of the formula, and the theory solvers check the consistency of
the current assignment in the theory T . If the current assignment represents a T -conflict,
the theory solvers produce a T -lemma which is falsified by the current assignment. When
the theory lemma is added to the SAT solver, it backtracks and tries to find a different
assignment. When the SAT solver finds a full propositional assignment consistent with
the theory, the core solver finishes and reports the formula as satisfiable. If the SAT
solver derives the empty clause, the core solver reports the formulas as unsatisfiable.
Besides theory lemmas, the theory solvers typically apply theory propagation to derive
literals that must be true under the current (partial) assignment. Additionally, they
may produce new clauses and atoms that the SAT solver must decide before theory
consistency can be checked. The SAT solver in OpenSMT’s core solver is based on
MiniSAT 2.0 [86], and it has theory solvers for deciding the theories of uninterpreted
functions [74], linear real and integer arithmetic [78, 84] and arrays [54].

The interpolation module of OpenSMT follows the CDCL(T ) split to the proposi-
tional and the theory part. When requested, the SAT solver in the core keeps track of
the resolution chains that derive new clauses. From this information, the interpolation
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module reconstructs a detailed resolution proof and uses standard propositional interpo-
lation procedures to derive an interpolant from the proof. OpenSMT implements the
framework of Labeled Interpolation Systems (LIS) [81] for propositional interpolation,
which gives users some control over the process of interpolant generation. However, some
of the leaves in the proof are theory clauses. For the propositional interpolation procedure
to work, theory-specific interpolation procedures, theory interpolators, first compute
interpolants for these theory lemmas. The interpolants for theory lemmas are used to
annotate the corresponding leaves with partial interpolants, and the LIS interpolation
procedure then works as usual. OpenSMT implements specific theory interpolators
for the theory of equality and uninterpreted functions (EUF) and linear real arithmetic
(LRA) [4]. EUF-interpolation system implements the standard interpolation computation
from coloured congruence graphs [99, 156]. LRA-interpolation system is based on the
standard idea of computing interpolants from proof of unsatisfiability based on the Farkas’
lemma [156]. However, it does not require the detailed proof. Instead, it only needs the
Farkas coefficients that witness the unsatisfiability of a system of linear inequalities.3

Then, the interpolant is computed as the weighted sum of the A-part of the system of
inequalities. For linear integer arithmetic (LIA), more advanced solving techniques are
disabled when interpolation is required. Thus, the only theory lemmas that appear in
the proof are either LRA-lemmas or split lemmas of the form x ≤ c ∨ x ≥ c + 1 where x

is a variable, and c is an integer constant. For the former, LRA-interpolator is used, and
for the latter, OpenSMT implements a trick that treats such a clause as an input clause
from the partition of the variable x.

2.4 Constrained Horn Clauses

Our presentation of constrained Horn clauses (CHC) is based on presentations in the
existing literature [105, 176]. Consider a first-order theory T and a set R of uninterpreted
predicates of fixed arity disjoint from the signature of T . Then a constrained Horn clause
is a formula

φ ∧B1 ∧B2 ∧ . . . ∧Bn =⇒ H

where

• φ is a (interpreted) formula in the language of T ,

• each Bi is an application of a relation symbol p ∈ R to terms of T ,

• H is an application of a relation symbol p ∈ R to terms of T , or false.

• All variables in the formula are implicitly universally quantified.
3The weighted sum of the system using Farkas coefficients results in a contradictory inequality 1 ≤ 0.
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The antecedent of the implication is commonly denoted as the body and the consequent as
the head. φ is referred to as the constraint. A clause with head equal to false is commonly
called a query. A clause with no uninterpreted predicate in the body is called a fact.

Given a set of constrained Horn clauses HC over the uninterpreted predicates R and
theory T , we say that HC is satisfiable if there exists a model M of T extended with
an interpretation for all the uninterpreted predicates R, such that all the clauses are
valid in M. This is called semantic solvability in [176]. Often, we are interested not only
in deciding the satisfiability, but also in obtaining the solution. This means we want to
express the satisfying interpretation of predicates in the language of the theory T , i.e., we
want a mapping of the predicates to the set of formulas in the language of T , I : R → FLA,
such that each clause from HC is valid in T after the uninterpreted predicates are replaced
by their interpretations. This is called syntactic solvability in [176]. Note that every
system that is syntactically solvable is also semantically solvable, but not the other
way around. The prominent example of a system that is semantically solvable, but not
semantically solvable is the system that defines multiplication in Presburger arithmetic.

Example 2.2 ([176]). The following set of Horn clauses is semantically solvable, but not
syntactically solvable in Presburger arithmetic. The unique solution is the multiplication
relation, which is not definable in Presburger arithmetic.

X = 0 ∧ Z = 0 =⇒ multA(X, Y, Z)
multA(X1, Y, Z1) ∧X = X1 + 1 ∧ Z = Z1 + Y =⇒ multA(X, Y, Z)

X = 0 ∧ Z = 0 =⇒ multB(X, Y, Z)
multB(X1, Y, Z1) ∧X = X1 + 1 ∧ Z = Z1 + Y =⇒ multB(X, Y, Z)
multA(X, Y, Z1) ∧multB(X, Y, Z2) ∧ Z1 ̸= Z2 =⇒ false

Beside the question of solvability, it is often required to produce also a certificate
(witness) for the answer. If a set of constrained Horn clauses is satisfiable, then the
interpretation of the predicates is the certificate. On the other hand, the unsatisfiability
of the clauses can be witnessed by a ground derivation of false, using resolution.

There are various methods for solving the CHC satisfiability problem. These in-
clude, e.g., machine-learning-based approaches (HoIce [52]), syntax-based approaches
(FreqHorn [92, 93]), or automata-based approaches (Ultimate TreeAutomizer [75]).
However, the most successful approaches currently seem to be the generalizations of
classical model-checking techniques from software verification. These treat the CHC
satisfiability problem as a reachability problem where the query in the CHC system
defines the error states. The most successful and general CHC solvers Spacer [137] and
Eldarica [117] fall into this category. It is interesting that in this reachability paradigm,
the certificate of the system’s satisfiability can be equivalently viewed as a certificate for
unreachability of the error states defined by query, and similarly, the certificate of the
system’s unsatisfiability can be viewed as instructions how to reach an error state.
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2.5 Transition Systems

Transition systems are a standard tool in computer science for modelling changing
(evolving) systems. In particular, they can represent programs, where the states of a
transition system are defined by possible program states (represented by, among others,
values of program variables) and the instructions of the program define the possible
transitions between the states. There exist different flavors of transition systems [163].
In our work, we consider symbolic representation of transition systems.

A transition system has a fixed set of typed variables X called state variables. Let
X ′ denote the set of primed versions of variables from X, i.e., X ′ = {x′ | x ∈ X}.
These are commonly referred to as next-state variables. A state formula F (X) is any
quantifier-free formula over variables from X. A transition formula Tr(X, X ′) is any
quantifier-free formula over variables from X ∪X ′. A transition system S (over X) is a
pair ⟨Init, Tr⟩, where Init is a state formula denoting the initial states of the system and
Tr is a transition formula that defines the transition relation of the system. A state s

is a type-consistent assignment of variables from X, i.e., s(x) ∈ Dom(x) for all x ∈ X.
The transition relation Tr defines possible executions (transitions) of the system, i.e.,
how the system can change state. A state s can transition to a state s′ iff s, s′ |= Tr , i.e.,
Tr evaluates to true when the state variables X take the values assigned by s and the
next-state variables X ′ take the values assigned by s′. A sequence of states ⟨s0, s1, . . . , sk⟩
is called a trace if si−1, si |= Tr(X, X ′) for all 1 ≤ i ≤ k. A state s is k-reachable in S
(reachable in k steps) if there exists a trace ⟨s0, s1, . . . , sk⟩ such that s0 ⊨ Init and sk = s.
A state is reachable if it is k-reachable for some finite k.

A state formula F (X) holds in a state s if it evaluates to true under s and we write
s ⊨ F . The states s such that s ⊨ F are called the F -states. State formulas are often
identified with the set of states where they hold and we freely move between these two
representations. A state formula F is a k-invariant of the system if it holds in all states
reachable in k or less steps. If F is a k-invariant then ¬F is not reachable in k steps or
less and we say that ¬F is k-inconsistent with S. When a concrete k is not important or
not determined, or when we refer to multiple k-invariants but with different values of k,
we use a more general term bounded invariant. A bounded invariant F is thus a state
formula for which there exists k such that F is a k-invariant. An invariant is a state
formula that is a k-invariant for all k, i.e., it holds in all reachable states of S.

Similar to state formulas, transition formulas are identified with binary relations
over the set of states. For example, the identity relation Id(X, X ′) corresponds to the
transition formula ⋀︁x∈X x = x′.

In this thesis, we consider verification of safety properties of transition systems. Given
a transition system S and a state formula P , the goal of verification is to prove that P is
valid on all reachable states of S, or equivalently that ¬P is not reachable. We say that the
system is safe with respect to P if P is indeed an invariant of the system, and we say that it
is unsafe if there exists a finite trace starting from an initial state and ending in a ¬P -state.
We often refer to ¬P -states as error states and denote them as Error , i.e., Error ≡ ¬P .
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assume ( x <= 0 ) ;
whi l e ( x < 5) {

x = x + 1 ;
}
a s s e r t ( x < 1 0 ) ;

Init ≡ x ≤ 0
Tr ≡ x < 5 ∧ x′ = x + 1

Error ≡ x ≥ 5 ∧ ¬(x < 10)

x ≤ 0 =⇒ Inv(x)
Inv(x) ∧ x < 5 ∧ x′ = x + 1 =⇒ Inv(x′)
Inv(x) ∧ x ≥ 5 ∧ ¬(x < 10) =⇒ false

Figure 2.3. An example program with a loop, the corresponding transition system, and its
translation to CHC

2.5.1 Safety Verification of Transition Systems as CHC Satisfiability

In the context of transition systems, a safety verification problem is defined by a triple
⟨Init, Tr , Error⟩ where Init is a state formula defining the initial states of the system,
Tr is a transition formula defining the transition relation and Error is a state formula
defining the error states. If an error state is reachable, i.e., there exists a trace starting in
an initial state and ending in an error state, then system is unsafe. If no such trace exists,
it is safe. This can be easily modeled in the CHC framework with a single uninterpreted
predicate Inv and the following three clauses.

Init(X) =⇒ Inv(X)
Inv(X) ∧ Tr(X, X ′) =⇒ Inv(X ′)
Inv(X) ∧ Error(X) =⇒ false

The solution to this system, i.e., the interpretation of Inv that makes all clauses valid, is
a safe inductive invariant of the transition system. The first clause says that the invariant
must hold in all initial states. The second clause says that the invariant is inductive, i.e.,
it is closed under the transition relation of the system. The third clause says that the
invariant is safe, i.e., it is disjoint with the error states. Such safe inductive invariant is a
witness that no error state can be reached in the system. On the other hand, every proof
of unsatisfiability defines a trace of the system from some initial to some error state.

To illustrate the CHC modelling and its application in software verification, consider
the example program from [105] in Figure 2.3. This is a simple loop with a safety property
expressed as an assertion. The problem of program safety can be translated to a safety
verification problem of a transition system. One way to prove safety is to find a safe
inductive invariant. This is modelled as a system of Horn clauses. In this case, the system
of Horn clauses is satisfiable with a solution Inv(x) ≡ x ≤ 5. It is easy to verify that
this is indeed a safe inductive invariant of the transition system and consequently of our
example loop.



Chapter 3

Decomposing Farkas Interpolants

Craig interpolants play a crucial role in many modern verification techniques. Interpolation-
based model-checking algorithms typically rely on an interpolating SMT solver to generate
interpolants from unsatisfiable queries. Internally, SMT solvers produce interpolants by
structural induction over the proof of unsatisfiability. Interpolation procedures build the
interpolant while traversing the proof from leaf nodes to the root. In SMT, many of the
leaf nodes represent a theory conflict—a conjunction of theory literals that is unsatisfiable
in that theory. Proof-based interpolation procedures thus rely on subprocedures that
compute interpolants for the theory conflicts in the leaf nodes. Any theory that contains
integer or real linear arithmetic will produce theory conflicts that represent an unsatisfi-
able system of linear inequalities. Given such a system partitioned into two parts (A and
B), the main way to compute an interpolant is to utilize Farkas coefficients that witness
the unsatisfiability of the system, based on the Farkas’ lemma [90]. In modern SMT
solvers, Farkas coefficients are computed as a side product in the Simplex-based algorithm
of Dutertre and de Moura [84]. An interpolant can then be obtained by summing up
the A contribution to the conflict. We refer to an interpolant computed in this way as
Farkas interpolant. Farkas interpolant always takes the form of a single inequality. In an
application such as model checking, this can be both an advantage or disadvantage: In
some cases, the inequality introduces a new relation between variables into the abstraction
in the model-checking algorithm. Taking this relation into account then leads the model
checker to discover a key part of a safe inductive invariant. In other cases however, the
single inequality is too weak and is the source of divergence of the model checker.

In this chapter, we study Farkas interpolants and show that under some conditions,
it is possible to decompose the interpolant into a conjunction of inequalities that logically
implies the Farkas interpolant. Farkas interpolation summarizes the contribution of the
A-part of the conflict into a single inequality, losing information about finer constraints
on subsets of variables in the process. On the other hand, full quantifier elimination
preserves as much information about the variables from the A-part as possible; however,
this might be very expensive. Our approach represents a sweet spot between these two

23
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extremes. The decomposition of the weighted sum of the A-part can still be computed
efficiently and, if possible, preserves much more information about variables from the
A-part than Farkas interpolation.

3.1 Preliminaries

3.1.1 Linear Arithmetic and Linear Algebra

We use the letters x, y, z to denote variables and c, k to denote constants. Vector of n

variables is denoted by x = (x1, . . . , xn)⊺ where n is usually known from context. x[i]
denotes the element of x at position i, i.e. x[i] = xi. The vector of all zeroes is denoted
as 0, and ei denotes the unit vector with ei[i] = 1 and ei[j] = 0 for j ̸= i. For two
vectors x = (x1, . . . , xn)⊺ and y = (y1, . . . , yn)⊺ we say that x ≤ y iff xi ≤ yi for each
i ∈ {1, . . . , n}. Q denotes the set of rational numbers, Qn the n-dimensional vector space
of rational numbers and Qm×n the set of rational matrices with m rows and n columns.
A transpose of matrix M is denoted as M⊺. A kernel (or nullspace) of a matrix M is the
vector space ker(M) = {x |Mx = 0}. A matrix is said to be in Row Echelon Form (REF)
if all non-zero rows are above all rows containing only zeros and the leading coefficient
(first non-zero value) of each row is always strictly to the right of the leading coefficient
of the row above. A matrix is said to be in Reduced Row Echelon Form (RREF) if it
is in REF, the leading entry of each non-zero row is 1, and each column containing the
leading entry of some row has zeros everywhere else. REF of a matrix can be obtained
by Gaussian elimination, while RREF can be obtained by Gauss-Jordan elimination.

We adopt the notation of matrix product for linear arithmetic. For a linear term
l = c1x1 + · · ·+ cnxn, we write c⊺x to denote l. Without loss of generality we assume that
all linear inequalities are of the form c⊺x ▷◁ c with ▷◁∈ {≤, <}. By linear system over vari-
ables x we mean a finite set of linear inequalities S = {Ci | 1 ≤ i ≤ m}, where each Ci is a
linear inequality over x. Note that from the logical perspective, each Ci is an atom in the
language of the theory of linear arithmetic; thus system S can be expressed as a formula⋀︁m

i=1 Ci and we use these representations interchangeably. A linear system is satisfiable if
there exists an evaluation of variables that satisfies all inequalities; otherwise, it is unsat-
isfiable. This is the same as the (un)satisfiability of the formula representing the system.

We extend the matrix notation also to the whole linear system. For the sake of
simplicity we use ≤ instead of ▷◁, even if the system contains a mix of strict and non-strict
inequalities. The only important difference is that a (weighted) sum of a linear system
(as defined below) results in a strict inequality, instead of a non-strict one, when at least
one strict inequality is present in the sum with a non-zero coefficient. The theory, proofs
and algorithm remain valid also in the presence of strict inequalities. We write Cx ≤ c to
denote the linear system S where C denotes the matrix of all coefficients of the system, x
are the variables and c is the vector of the right sides of the inequalities. With the matrix
notation, we can easily express the sum of (multiples) of inequalities. Given a system of
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inequalities Cx ≤ c and a vector of “weights” (multiples) of the inequalities k ≥ 0, the
inequality that is the (weighted) sum of the system can be expressed as k⊺Cx ≤ k⊺c.

3.1.2 Craig Interpolation Based on Farkas’ Lemma

In linear arithmetic, the interpolation problem is an unsatisfiable linear system S of linear
inequalities partitioned into two parts: A and B. Modern SMT solvers typically compute
interpolant for such a system based on Farkas’ lemma [90, 181]. Farkas’ lemma states
that for an unsatisfiable system of linear inequalities S ≡ Cx ≤ c there exist Farkas
coefficients k ≥ 0 such that k⊺Cx ≤ k⊺c ≡ 0 ≤ −1. In other words, the weighted sum
of the system given by the Farkas coefficients is a contradictory inequality. If a strict
inequality is part of the sum, the result might also be 0 < 0.

The idea behind the interpolation algorithm based on Farkas coefficients is simple.
Intuitively, given the partitioning of the linear system into A and B, we compute only
the weighted sum of A. It is not hard to see that this sum is an interpolant. It follows
from A because a weighted sum of a linear system with non-negative weights is always
implied by the system. It is inconsistent with B because its sum with the weighted sum
of B (using Farkas coefficients) is a contradictory inequality by Farkas’ lemma. Finally,
it cannot contain any A-local variables, as can be seen from the following reasoning: All
variables are eliminated in the weighted sum of the whole system. Since A-local variables
are by definition absent in B, they must be eliminated already in the weighted sum of A.

More formally, for an unsatisfiable linear system S := Cx ≤ c over n variables, where
C ∈ Qm×n, c ∈ Qm, and its partition to A := CAx ≤ cA and B := CBx ≤ cB, where
CA ∈ Qk×n, CB ∈ Ql×n, cA ∈ Qk, cB ∈ Ql and k + l = m, there exist Farkas coefficients
k⊺ = (k⊺

A k⊺
B) such that

(k⊺
A k⊺

B)
(︄

CA

CB

)︄
= 0, (k⊺

A k⊺
B)
(︄

cA
cB

)︄
= −1,

and the Farkas interpolant for (A, B) is the inequality

IF := k⊺
ACAx ≤ k⊺

AcA. (3.1)

3.2 Motivation

To motivate our work, consider the code in Figure 3.1.1 In this code, the ‘∗’ character
represents a non-deterministic choice (e.g., user input); thus, the body of the while loop
can be executed any number of times. The assert statement captures the property of the
program that variable ‘x’ should always be non-negative after exiting the while loop.

This code can be modelled as a transition system S = (I, T, Err) given in Equa-
tion (3.2); here, I and Err are predicates that capture the initial and error states,

1This example is commonly used in the literature [42, 179].
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x = 0 ;
y = 0 ;
while (∗ ) {

x = x + y ;
y = y + 1 ;

}
assert ( x >= 0 ) ;

Figure 3.1. Motivating example

respectively, and T is the transition relation. The symbols x, y are real variables, and
x′, y′ are their next-state versions.

S =

⎧⎪⎨⎪⎩
I := (x = 0) ∧ (y = 0),
T := (x′ = x + y) ∧ (y′ = y + 1),
Err := (x < 0)

(3.2)

The aforementioned example is one variant from a family of similar transition systems that
are known not to converge in straightforward implementations of IC3-based algorithms
using LRA interpolation. To prove the safety of the transition system (I, T, Err) we
search for a safe inductive invariant, i.e., a predicate R that satisfies (1) I(X)→ R(X),
(2) R(X) ∧ T (X, X ′)→ R(X ′), and (3) R(X) ∧ Err(X)→ ⊥.

We demonstrate the problem that occurs in model checking when using Farkas
interpolants on a simplified run of a model checker for our example. After checking that
the initial state satisfies the property P := x ≥ 0 (the negation of Err), the inductiveness
of P is checked. The inductive check is reduced to a satisfiability check of a formula
representing the question whether it is possible to reach a ¬P -state (a state where ¬P

holds) by one step from any P -state:

x ≥ 0 ∧ x′ = x + y ∧ y′ = y + 1 ∧ x′ < 0.

This formula is satisfiable, and a generalized counterexample to induction (CTI) is
extracted. In our case, the CTI is x + y < 0.2 This means that if we make one step from
a P -state that additionally satisfies x + y < 0 we end up in a ¬P -state. Therefore, we
have to check if this CTI is consistent with the initial states. This is again encoded as a
satisfiability check of a formula

x = 0 ∧ y = 0 ∧ x + y < 0.

This formula is unsatisfiable, and we can extract an interpolant to obtain a generalized
reason why this CTI is not consistent with the initial states (not reachable in 0 steps in our

2The exact procedure for obtaining the CTI is not important for the current discussion.



27 3.3 Decomposed Interpolants

system). The interpolant is computed for the partitioning (x = 0∧ y = 0, x + y < 0). The
Farkas interpolant for this partitioning is x+y ≥ 0, and we denote it as L1. Interpolation
properties guarantee that L1 is valid in all initial states. Moreover, P is inductive relative
to L1, formally

x ≥ 0 ∧ x + y ≥ 0 ∧ x′ = x + y ∧ y′ = y + 1 =⇒ x′ ≥ 0.

This means that by making one step from a P -state that is also an L1-state we always
end up in a P -state again. However, now we need to show that L1 holds in all reachable
states. We check if L1 is inductive (even relative to P ). Similarly as before, we encode
this as a satisfiability check of a formula

x + y ≥ 0 ∧ x ≥ 0 ∧ x′ = x + y ∧ y′ = y + 1 ∧ x′ + y′ < 0.

Again, this formula is satisfiable, and a generalized CTI is x + 2y < −1. This CTI is
refuted as inconsistent with the initial states similarly to the first one. The formula

x = 0 ∧ y = 0 ∧ x + 2y < −1

is unsatisfiable and Farkas interpolant generalizing the refutation is L2 := x + 2y ≥ 0.
Similarly as before, it can be easily checked that L1 is inductive relative to L2, but L2 is
not inductive (not even relative to P and L1). The CTI is x + 3y < −1, it is refuted by
a Farkas interpolant L3 := x + 3y ≥ 0. L2 is now inductive relative to L3, but L3 is not
inductive, etc. The model checker diverges, since for Ln a CTI x + ny < −1 is discovered
and a new obligation to show inductiveness of Ln+1 is generated.

However, let us get back to the first interpolation query (x = 0 ∧ y = 0, x + y < 0).
Farkas interpolation, which always computes an interpolant in the form of a single
inequality, is not the only option. It is possible to compute an interpolant that is a
conjunction of inequalities. In our case, L := x ≥ 0 ∧ y ≥ 0 is also an interpolant. This
interpolant L is stronger than the Farkas interpolant; the property P is inductive relative
to L, and, most importantly, L is inductive:

(x ≥ 0 ∧ y ≥ 0) ∧ x′ = x + y ∧
∧ y′ = y + 1 =⇒ (x′ ≥ 0 ∧ y′ ≥ 0)

is a valid formula. Actually, P follows from L, so L represents the inductive strengthening
of P that witnesses the safety of our system.

In this work, we present an approach that allows the computation of Craig interpolants
in LRA in this conjunctive form.

3.3 Decomposed Interpolants

In this section, we present our new approach to computing interpolants in linear arithmetic
based on Farkas coefficients. The definition of Farkas interpolant in Equation (3.1)



28 3.3 Decomposed Interpolants

corresponds to the weighted sum of A-part of the unsatisfiable linear system. This sum
can be decomposed into j sums by decomposing the vector kA into j vectors

kA =
j∑︂

i=1
kA,i, with 0 ≤ kA,i ≤ kA for all i, (3.3)

thus obtaining j inequalities

Ii := k⊺
A,iCAx ≤ k⊺

A,icA (3.4)

If kA,i are such that the left-hand side of the inequalities Ii contains only shared variables,
the decomposition has an interesting application in interpolation, as illustrated below.

Definition 3.1 (decomposed interpolants). Given an interpolation instance (A, B), if
there exists a sum from Equation (3.3) such that the left side of Equation (3.4) contains
only shared variables for all 1 ≤ i ≤ j, then the set of inequalities D = {I1, . . . , Ij} is
a decomposition. In that case the formula

⋀︁j
i=1 Ii is a decomposed interpolant (DI) of

size j for (A, B).

The decomposed interpolants are proper interpolants, as stated in the following
theorem.

Theorem 3.2. Let (A, B) be an interpolation problem in linear arithmetic. If D =
{I1, . . . , Ik} is a decomposition, then ID = I1 ∧ . . . ∧ Ik is an interpolant for (A, B).

Proof. Let ID = I1 ∧ . . . ∧ Ik. First, A =⇒ ID since for all Ii, A =⇒ Ii. This
is immediate from the fact that A is a system of linear inequalities CAx ≤ cA, Ii =
(k⊺

A,iCAx ≤ k⊺
A,icA) and 0 ≤ kA,i.

Second, ID ∧B =⇒ ⊥ since ID implies Farkas interpolant IF . This holds because
kA = ∑︁

i kA,i and 0 ≤ kA,i.
Third, ID contains only the shared variables by the definition of decomposition

(Definition 3.1). Therefore, ID is an interpolant.

Each interpolation instance has a DI of size one, a trivial decomposition, correspond-
ing to the Farkas interpolant of Equation (3.1). However, interpolation problems, in
general, can admit bigger decompositions. In the following, we give a concrete example
of an instance with decomposition of size two.

Example 3.3. Let (A, B) be an interpolation problem in linear arithmetic with A =
(x1 + x2 ≤ 0)∧ (x1 + x3 ≤ 0)∧ (−x1 ≤ 0) and B = (−x2− x3 ≤ −1). The linear systems
corresponding to A and B are

CA =

⎛⎜⎝ 1 1 0
1 0 1
−1 0 0

⎞⎟⎠ , cA =

⎛⎜⎝0
0
0

⎞⎟⎠
CB =

(︂
0 −1 −1

)︂
, cB =

(︂
−1
)︂

.
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Farkas coefficients are
k⊺

A =
(︂
1 1 2

)︂
and k⊺

B =
(︂
1
)︂

,

while Farkas interpolant for (A, B) is the inequality IF := x2 + x3 ≤ 0. However, if we
decompose kA into

k⊺
A,1 =

(︂
1 0 1

)︂
and k⊺

A,2 =
(︂
0 1 1

)︂
,

we obtain the decomposition {x2 ≤ 0, x3 ≤ 0} producing the decomposed interpolant
IDI := x2 ≤ 0 ∧ x3 ≤ 0 of size two.

3.3.1 Strength-Based Ordering of Decompositions

Decomposition of Farkas coefficients for a single interpolation problem is in general not
unique. However, we can provide some structure to the space of possible interpolants by
ordering interpolants with respect to their logical strength. To achieve this, we define the
coarseness of a decomposition based on its ability to partition the terms of the interpolant
into finer sums, and then prove that coarseness provides us with a way of measuring the
interpolant strength.

Definition 3.4. Let D1, D2 denote two decompositions of the same interpolation problem
of size m, n, respectively, where n < m. Let (q1, . . . , qm) denote the decomposition of
Farkas coefficients corresponding to D1 and let (r1, . . . , rn) denote the decomposition of
Farkas coefficients corresponding to D2. We say that decomposition D1 is finer than D2
(or equivalently D2 is coarser than D1) and denote this as D1 ≺ D2 when there exists a
partitioning P = {p1, . . . , pn} of the set {q1, . . . , qm} such that for each i with 1 ≤ i ≤ n,
ri = ∑︁

q∈pi
q.

Interpolants of decompositions ordered by their coarseness can be ordered by logical
strength, as stated by the following lemma:

Lemma 3.5. Assume D1, D2 are two decompositions of the same interpolation problem
such that D1 ≺ D2. Let ID1 , ID2 be the decomposed interpolants corresponding to D1, D2.
Then ID1 implies ID2.

Proof. Informally, the implication follows from the fact that each linear inequality of ID2

is a sum of some inequalities in ID1 .
Formally, let Ii denote the i-th inequality in ID2 . Then Ii = (r⊺i CAx ≤ r⊺i cA).

Since D1 ≺ D2, there is a set {Ii1
, . . . , Iij

} ⊆ D1 such that for each k with 1 ≤ k ≤ j,
Iik

= (q⊺
ik

CAx ≤ q⊺
ik

cA) and ri = ∑︁j
k=1 qik

.
Since qik

≥ 0, it holds that Ii1
∧ · · · ∧ Iij

=⇒ Ii. This means that ID1 implies every
conjunct of ID2 .
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Note that the trivial, single-element decomposition corresponding to Farkas interpolant
is the greatest element of this decomposition ordering. Also, for any decomposition of
size more than one, replacing any number of elements by their sum yields a coarser
decomposition.

Finally, we emphasize that it is difficult to argue about the suitability of a decompo-
sition for a particular purpose based solely on strength. For example, a user may opt
for a coarser decomposition because summing up just some elements of a decomposition
may result in eliminating a shared variable.

3.3.2 Strength of Dual Interpolants

Before we describe the details of the decomposing interpolation procedure, we extend
the picture of interpolation strength related to the decomposed interpolants.

Some applications of interpolation can benefit from computing coarser over-approxima-
tion (i.e., weaker interpolants). For example, a weaker function summary can cover
more changes in an upgrade checking scenario [182], and weaker over-approximations of
reachability in a transition system can converge to fix-point faster [81]. Using the notion
of dual interpolation, decompositions can also be used to compute interpolants weaker
than Farkas interpolant (or even its dual).

Given an interpolation problem (A, B) and an interpolation procedure Itp, we denote
the interpolant computed by Itp for (A, B) as Itp(A, B). Then Itp′ denotes the dual
interpolation procedure, which works as follows: Itp′(A, B) = ¬Itp(B, A). The well-known
duality theorem for interpolation states that Itp′ is a correct interpolation procedure.

Let us denote the interpolation procedure based on Farkas’ lemma as ItpF and the
decomposing interpolation procedure as ItpDI . The relation between ItpF and its dual
Itp′

F has been established in [8], namely that ItpF (A, B) =⇒ Itp′
F (A, B). We have shown

in Lemma 3.5 that a decomposed interpolant always implies Farkas interpolant computed
from the same Farkas coefficients. Formally, ItpDI (A, B) =⇒ ItpF (A, B). Similar result
can be established for the dual interpolation procedures: As ItpDI (B, A) =⇒ ItpF (B, A), it
follows that ¬ItpF (B, A) =⇒ ¬ItpDI (B, A) and consequently Itp′

F (A, B) =⇒ Itp′
DI (A, B).

Combining the results on logical strength together we obtain a chain of implications

ItpDI (A, B) =⇒ ItpF (A, B) =⇒ Itp′
F (A, B) =⇒ Itp′

DI (A, B).

Note that while both ItpF and Itp′
F compute interpolants as a single inequality and

interpolants produced by ItpDI are conjunctions of inequalities, interpolants produced by
Itp′

DI are disjunctions of inequalities.
In the following section, we describe the details of the ItpDI interpolation procedure.

3.4 Finding Decompositions

In this section, we present our approach for finding decompositions for linear arithmetic
interpolation problems given their Farkas coefficients.
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We focus on the task of finding decomposition of k⊺
ACAx. Recall that CA ∈ Ql×n

and x is a vector of variables of length n. Without loss of generality assume that there
are no B-local variables since columns of CA corresponding to B-local variables would
contain all zeroes by definition in any case.

Furthermore, without loss of generality, assume the variables in the inequalities of A

are ordered such that all A-local variables are before the shared ones. Then let us write

CA =
(︂
L S

)︂
, x⊺ =

(︂
xL

⊺ xS
⊺
)︂

(3.5)

with xL the vector of A-local variables of size p, xS the vector of shared variables of size
q, n = p + q, L ∈ Ql×p and S ∈ Ql×q. We know that k⊺

AL = 0 and the goal is to find
kA,i such that ∑︁i kA,i = kA and for each i 0 ≤ kA,i ≤ kA and k⊺

A,iL = 0.
In the following, we will consider two cases for computing the decompositions. We

first study a common special case where system A contains rows with no local variables,
and give a linear-time algorithm for computing the decompositions. We then move to
the general case where the rows of A contain local variables and provide a decomposition
algorithm based on computing a vector basis for a null space of a matrix obtained from A.

3.4.1 Trivial Elements

First, consider a situation where there is a linear inequality with no local variables.
This means there is a row j in CA (denoted as CAj) such that all entries in columns
corresponding to local variables are 0, i.e., Lj = 0⊺. Then {I1, I2} for kA,1 = kA[j]× ej
and kA,2 = kA−kA,1 is a decomposition. Intuitively, any linear inequality that contains
only shared variables can form a stand-alone element of a decomposition. When looking
for finest decomposition, we do this iteratively for all inequalities with no local variables.
In the next part, we show how to look for a non-trivial decomposition when dealing with
local variables.

3.4.2 Decomposing in the Presence of Local Variables

For this section, assume that L has no zero rows (we have shown above how to deal with
such rows). We are going to search for a non-trivial decomposition starting with the
following observation:

Observation 3.6. k⊺
AL = 0. Equivalently, there are no A-local variables in the Farkas

interpolant. It follows that L⊺kA = 0 and kA is in the kernel of L⊺.

Let us denote by K = ker(L⊺) the kernel of L⊺.

Theorem 3.7. Let v1, . . . , vn be vectors from K such that ∃α1, . . . , αn with αivi ≥ 0
for all i and kA = ∑︁n

i=1 αivi. Then {w1, . . . , wn} for wi = αivi is a decomposition of
kA and D = {I1, . . . , In} for Ii := wiCAx ≤ cA is a decomposition, i.e., the formula
ID = ⋀︁n

i=1 Ii is a decomposed interpolant.



32 3.4 Finding Decompositions

input : matrix M , vector v such that v ∈ ker(M) and v > 0
output : {w1, . . . , wn}, a decomposition of v, such that wi ∈ ker(M), wi ≥ 0

and ∑︁wi = v
1 M ← RREF(M)
2 n← Nullity(M)
3 if n = 1 then return {v}
4 (b1, . . . , bn)← KernelBasis(M)
5 (α1, . . . , αn)← Coordinates(v, (b1, . . . , bn))
6 assert αk > 0 for each k = 1, . . . , n

7 while ∃i, j such that bij < 0 do
8 C ← 1 + −bijαi

vj

9 bi ← bi + −bij

vj
v

10 (α1, . . . , αn)← (α1
C , . . . , αn

C )
11 assert αk > 0 for each k = 1, . . . , n

12 assert v = ∑︁n
k=1 αkbk

13 assert bk ≥ 0 for each k = 1, . . . , n

14 return {α1b1, . . . , αnbn}
Algorithm 3.1 . Algorithm for decomposition of Farkas coefficients

Proof. The theorem follows from the definition of decomposition (Definition 3.1). From
the assumptions of the theorem, we immediately obtain kA = ∑︁n

i=1 wi and wi ≥ 0.
Moreover, wi ∈ K, since vi ∈ K and wi = αivi. As a consequence, L⊺wi = 0 and it
follows that there are no A-local variables in wi

⊺CAx.

Note that Theorem 3.7 permits redundant components of a decomposition. Consider
vectors w1, w2, w3 ∈ K that are part of a decomposition in the sense of Theorem 3.7
and that w3 = w1 + w2. Then I1 ∧ I2 =⇒ I3 and I3 is a redundant conjunct in the
corresponding decomposed interpolant.

Good candidates that satisfy most of the assumptions of Theorem 3.7 (and avoid
redundancies) are bases of the vector space K. If B = {b1, . . . , bn} is a basis of K such
that kA = ∑︁n

i=1 αibi with αibi ≥ 0 for all i, then {α1b1, . . . , αnbn} is a decomposition.
Our solution for computing the decomposition of Farkas coefficients kA is described in
Algorithm 3.1. It is based on the above idea of computing bases of ker(L⊺). First, after
transforming the matrix to the RREF form, we compute a basis of the kernel using the
standard linear-algebra algorithm. The basis is almost what we want, except that some
vectors of this basis can have negative coefficients. In such a case, our algorithm gradually
updates the basis until all vectors from the basis are non-negative while preserving all the
necessary properties. Such a basis is used to compute the desired decomposition. Now,
we describe our algorithm in detail, show its termination and correctness, and discuss its
complexity.
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The algorithm runs on the matrix M = L⊺ and vector v = kA. At the beginning,
the Reduced Row Echelon Form (RREF) of the matrix is computed (recall definition of
RREF from Section 3.1). Importantly, the transformation of a matrix to RREF preserves
its kernel. The dimension of the kernel, known as nullity, can now be efficiently computed
using Rank-Nullity Theorem, which states that the nullity of a matrix is equal to the
number of its columns minus its rank. For a matrix in RREF, the rank is simply the
number of non-zero rows.

We already know that there is a non-zero vector in the kernel; therefore the nullity of
the matrix is at least one. If it is exactly one (line 3), then no non-trivial decomposition
of the vector exists. Intuitively, this means that the Farkas coefficients represent the
unique way (up to positive scalar multiples) of summing up the inequalities of A-part to
eliminate the A-local variables. However, if the nullity is greater than one, it is possible
to compute a decomposition of size equal to the nullity.

Initial basis computation. First, a basis of the kernel of the matrix in RREF is computed
by a standard algorithm (see, e.g., [10]). This algorithm ensures that the coordinates of v,
with respect to the basis it computes, are positive (lines 5, 6). Since this is an important
property, we include the description of the algorithm with the proof. Given a matrix M

in RREF with m columns, each column is denoted as either pivot or non-pivot. A pivot
column contains the first non-zero entry for a particular row, non-pivot column does
not. We say that a non-pivot column is free. The number of free columns is exactly the
nullity of the matrix, i.e., n, and the number of pivot columns is m− n. Due to the need
to iterate over the pivot and free columns separately, we introduce additional notation:
we use f ∈ {1, . . . , n} to iterate over the free columns, p ∈ {1, . . . , m − n} to iterate
over the pivot columns, and we use mapping functions F : {1, . . . , n} → {1, . . . , m} and
P : {1, . . . , m− n} → {1, . . . , m} to get the original column indices in M .

Now, for each f ∈ {1, . . . , n} denote as bf the solution obtained by solving the system
Mx = 0 where all variables corresponding to free columns are set to 0, except for xF (f)
which is set to 1. Note that this uniquely determines the value of pivot variables since
M is in RREF; thus

xP (p) =
n∑︂

f=1
−MpF (f)xF (f), ∀p ∈ {1, . . . , m− n} (3.6)

Lemma 3.8. B = {bf | f ∈ {1, . . . , n}} is a basis of ker(M). Moreover, ∀v ∈ ker(M) :
v = ∑︁n

f=1 vF (f)bf .

Proof. Linear independence: For each f ∈ {1, . . . , n}, bf has 1 at position F (f) while
all other elements of B have 0 at position F (f). Consequently, bf cannot be expressed
as a linear combination of other elements of B.

Generators: We show that each vector v ∈ ker(M) can be written as a linear
combination of elements of B. More precisely, we show that v = ∑︁n

f=1 vF (f)bf .
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(a) For each f ∈ {1, . . . , n} : vF (f) = ∑︁n
f̂=1 vF (f̂)bf̂ F (f)

as bf F (f) = 1 and bf̂ F (f)
= 0

for f̂ ̸= f .

(b) Fix a pivot index p ∈ {1, . . . , m− n}. To see that vP (p) = ∑︁n
f=1 vF (f)bf P (p), note

that v and all elements of B are solutions to the system Mx = 0, so they satisfy
Equation (3.6). Instantiating Equation (3.6) with bf for f ∈ {1, . . . , n} we get

bf P (p) =
n∑︂

f̂=1

−MpF (f̂)bf F (f̂) = −MpF (f) (3.7)

since bf F (f̂) = 1 when f̂ = f and 0 otherwise. Now, vP (p) = ∑︁n
f=1 vF (f)bf P (p) is

obtained by instantiating Equation (3.6) with v and then replacing −MpF (f) by
bf P (p) using Equation (3.7).

Combining (a) and (b), we have shown that v can be expressed as a linear combination
of B, which together with the linear independence of B concludes the proof.

A direct consequence of Lemma 3.8 is that the coordinates of v ∈ ker(M) with respect
to basis B, i.e., the coefficients of elements of B in the linear combination expressing v,
are positive if v > 0. These coordinates are denoted as α1, . . . , αn in Algorithm 3.1, and
we have just shown that using this standard algorithm for the computation of a kernel’s
basis the coordinates are guaranteed to be positive (line 6). However, the elements of the
basis B are not guaranteed to be non-negative vectors.

Ensuring non-negativity of the basis. The second part of the algorithm, the loop on
lines 7-12, modifies the elements of the basis. It gradually makes all elements non-negative,
while at the same time it keeps the coordinates of vector v, corresponding to the current
basis, positive. Given an element of the basis bi such that its j-th element is negative, the
algorithm replaces the element bi with a new element b′

i := bi + −bij

vj
v. After replacing

bi with b′
i, the resulting set of vectors is still a basis of ker(M).

Lemma 3.9. The set of vectors B′ = (B \ {bi}) ∪ {b′
i} is a basis of ker(M).

Proof. We show that bi can be expressed as a linear combination of vectors from B′.
This is sufficient to show that B′ consists of linearly independent vectors and that it
generates ker(M). Let us denote the constant −bij

vj
as K and note that K > 0 since

vj > 0 and bij < 0. We first express b′
i as

b′
i = bi + Kv = bi + K

n∑︂
f=1

αf bf

= bi(1 + Kαi) + K
∑︂
f ̸=i

αf bf
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and now bi can be expressed as a linear combination of elements of B′:

bi(1 + Kαi) = b′
i −K

∑︂
f ̸=i

αf bf

bi =
b′

i +∑︁
f ̸=i−Kαf bf

1 + Kαi

After this replacement, (at least) one negative value has been successfully eliminated:
As K > 0 and v > 0, it follows that b′

i > bi and b′
ij = 0.

As the last step, we show that the new coordinates of v (with respect to the new
basis) are still positive.

Lemma 3.10. Let α′ denote the coordinates of v with respect to the new basis B′. Then
α′ > 0.

Proof. First, consider the result of a linear combination of the new basis B′ with the old
coefficients α:

α1b1 + . . . + αib
′
i + . . . + αnbn =

n∑︂
f=1

αf bf + αiKv = v + αiKv = v(1 + αiK)

Now, set C := 1 + αiK and note that C > 1 since K > 0 and αi > 0. It follows that

v = α1
C

b1 + . . . + αi

C
b′

i + . . . + αn

C
bn

and that α′ = α
C is the vector of coordinates of v with respect to the new basis B′. Since

α > 0 and C > 0, it follows that α′ > 0 as required.

We have shown that the loop on lines 7–12 preserves the invariant that the coordinates
of v with respect to the current basis are all positive (lines 11,12) and that each iteration
decreases the number of negative values of the basis vectors. As a result, Algorithm 3.1
terminates and returns a decomposition of the input vector v of size equal to the nullity
of the input matrix M .

We first simulate the run of the algorithm on an example, then discuss its complexity
and finally compare it to other approaches for computing interpolants as a conjunction
of inequalities.

Example 3.11. Consider an unsatisfiable system of inequalities A ∧ B where A =
{x1+x2 ≤ 0,−x1+x3 ≤ 0, x1+x4 ≤ 0,−x1+x5 ≤ 0} and B = {−x2−x3−x4−x5 ≤ −1}.
The vector of Farkas coefficients witnessing the unsatisfiability of A∧B is k =

(︂
1 1 1 1 1

)︂⊺
and its restriction to A-part is kA =

(︂
1 1 1 1

)︂⊺
. The only A-local variable is x1, so the

matrix of A-local coefficients is L⊺ =
(︂
1 −1 1 −1

)︂
. We simulate the run of Algorithm 3.1
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on kA and L⊺: Since L⊺ is already in RREF, nothing changes on line 1. Now, the rank
of L⊺ is 1 and it has 4 columns, thus its nullity is 3 and we can compute a decomposition
of kA of size 3. The first column of L⊺ is pivot while the other three columns are free.
The computation of the initial basis of ker(L⊺) (line 4) yields three vectors:

b1 =

⎛⎜⎜⎜⎝
1
1
0
0

⎞⎟⎟⎟⎠ , b2 =

⎛⎜⎜⎜⎝
−1
0
1
0

⎞⎟⎟⎟⎠ , b3 =

⎛⎜⎜⎜⎝
1
0
0
1

⎞⎟⎟⎟⎠ .

The coordinates of kA with respect to this basis is α =
(︂
1 1 1

)︂⊺
. As b21 < 0 we enter

the loop on line 7 where the new vector b′
2 is computed as b′

2 = b2 + kA =
(︂
0 1 2 1

)︂⊺
.

Then, the coordinates are divided by a constant C = 2 to obtain the new coordinates
α =

(︂
1/2 1/2 1/2

)︂⊺
. Since there are no more negative elements in the vectors of the

basis, the decomposition kA = 1/2 ∗
(︂
1 1 0 0

)︂
+ 1/2 ∗

(︂
0 1 2 1

)︂
+ 1/2 ∗

(︂
1 0 0 1

)︂
is

returned. This decomposition results in the decomposed interpolant

IDec = (x2 + x3 ≤ 0) ∧ (x3 + 2x4 + x5 ≤ 0) ∧ (x2 + x5 ≤ 0).

Complexity of Algorithm 3.1. Considering the matrix of A-local coefficients L for
m inequalities and l A-local variables, the algorithm runs on matrix M = L⊺ with m

columns and l rows. When the transformation of M to RREF is done by Gauss-Jordan
elimination, it needs to perform O(m2l) arithmetic operations. After the transformation,
the number of (non-zero) rows is r, which is the rank of M and we know that r ≤ l.
With n denoting the nullity of M , Rank-Nullity Theorem implies that r + n = m and
consequently that n < m. The complexity of the computation of an initial basis is O(nm)
since we are computing n basis vectors, each of size m. Determining the value for every
element of each basis vector is immediate: it is 0 or 1 for positions corresponding to the
free columns, and it is a negated coefficient from RREF(M) for positions corresponding
to the pivot columns, see Equation (3.7). Finally, one iteration of the loop that ensures
non-negativity of the basis needs just O(m) arithmetic operations and the termination
can be ensured after O(n) iteration. To see this, note that a basis vector bi can be made
non-negative in one iteration when the index j is used that maximizes −bij

vj
. The whole

loop thus requires O(nm) arithmetic operations. The complexity of the algorithm is thus
dominated by the first part—computing RREF of the input matrix.

3.4.3 Comparison with Other Approaches

Given an unsatisfiable system of inequalities (A, B), Cimatti et al. [61] recognized two
extreme points in the spectrum of possible interpolants. On one side, there is the Farkas
interpolant in the form of single inequality obtained as a weighted sum of inequalities from
A with weights given by Farkas coefficients. On the other side, it is possible to employ



37 3.4 Finding Decompositions

0 ≤ −1

1×(−x2 − x3 − x4 − x5 ≤ −1)x2 + x3 + x4 + x5 ≤ 0

1×(−x1 + x5 ≤ 0)x1 + x2 + x3 + x4 ≤ 0

1×(x1 + x4 ≤ 0)x2 + x3 ≤ 0

1×(−x1 + x3 ≤ 0)1×(x1 + x2 ≤ 0)

Figure 3.2. Proof of unsatisfiability of the system from Example 3.11.

quantifier elimination to compute the strongest possible interpolant for (A, B) which will
result in a conjunction of inequalities (if possible). If all A-local variables are existentially
quantified in A and eliminated, then this is guaranteed to yield an interpolant. However,
as Cimatti et al. note, quantifier elimination is potentially a very expensive operation.3

Therefore, they propose modifications to the procedure computing the interpolant from
the proof of unsatisfiability. The observation they make is that the only purpose of the
summation of inequalities when traversing the proof is to eliminate A-local variables. If
the leaves of the proof do not contain A-local variables, no summation is needed, and the
conjunction of the inequalities in the leaves is already an interpolant. This corresponds
to our notion of trivial elements of the decomposition. Based on this observation, they
proposed a modification to the proof-based algorithm that performs only the summations
that are necessary for eliminating A-local variables.

Example 3.12. Consider the unsatisfiable system of inequalities from Example 3.11.
Figure 3.2 shows a possible proof of unsatisfiability according to the description of [61].

The computation of Farkas interpolant as described by Equation (3.1) can be simulated
by replacing the leaves from B with 0 ≤ 0. The resulting Farkas interpolant is

IF = x2 + x3 + x4 + x5 ≤ 0.

Applying the modification from [61] avoids one unnecessary sum and results in an inter-
polant

IM = (x2 + x3 ≤ 0) ∧ (x4 + x5 ≤ 0).4

As seen in Example 3.11, our approach yields interpolant with three conjuncts

IDec = (x2 + x3 ≤ 0) ∧ (x3 + 2x4 + x5 ≤ 0) ∧ (x2 + x5 ≤ 0).
3Even when restricted to conjunction of inequalities, as is our case. For example, in Fourier-Motzkin

procedure eliminating one variable can increase the number of inequalities from m to m
2
/4 in the worst

case. Thus, eliminating n variables increases the number of inequalities to 4( m
4 )2n

in the worst case.
4This is indeed the interpolant computed by MathSAT 5.6.0
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Finally, existentially quantifying x1 in A and eliminating this quantifier yields interpolant
with four conjuncts

IQE = (x2 + x3 ≤ 0) ∧ (x2 + x5 ≤ 0) ∧ (x3 + x4 ≤ 0) ∧ (x4 + x5 ≤ 0).

Note that IQE is the strongest and IF is the weakest interpolant in this quadruple,
while IM and IDec are incomparable in terms of logical strength. However, the advantage
of our algorithm is that even though its result depends on the order of the inequalities (the
order of columns of L⊺), it guarantees to find a decomposition of size 3 in our example.
If the first and third inequalities are switched, the decomposed interpolant computed by
Algorithm 3.1 is

IDec′
= (x4 + x3 ≤ 0) ∧ (x3 + 2x2 + x5 ≤ 0) ∧ (x4 + x5 ≤ 0)

while if the first and second inequalities are switched, the computed interpolant is

IDec′′
= (x2 + x4 + 2x5 ≤ 0) ∧ (x3 + x4 ≤ 0) ∧ (x3 + x2 ≤ 0).

On the other hand, the approach of [61] is, in some sense, even more sensitive to the
order of the input inequalities (the shape of the proof) since the order can influence the
size of the decomposition. If the second and the third inequalities are switched, then
their approach does not detect the opportunity for decomposition and returns the Farkas
interpolant IF . Our algorithm in this situation returns an interpolant equivalent to IDec.

3.5 Experiments

We have implemented the computation of decomposed interpolants and their duals using
Algorithm 3.1 in our SMT solver OpenSMT [122], which already provided a variety
of interpolation algorithms for propositional logic [124, 171], theory of uninterpreted
functions [7] and theory of linear real arithmetic [8].

We evaluated the effect of decomposed interpolants in a model-checking scenario using
the model checker sally [129] with Yices [83] for satisfiability queries and OpenSMT
for interpolation queries5. We experimented with four LRA interpolation algorithms: the
original interpolation algorithms based on Farkas’ lemma, (i) ItpF and (ii) Itp′

F , and the
interpolation algorithm computing decomposed interpolants, (iii) ItpDI and (iv) Itp′

DI .
OpenSMT computes interpolants from the proof of unsatisfiability. In this approach,
the interpolants computed for LRA conflicts are combined based on interpolation rules
for propositional logic and the structure of the proof. In our experiments, we fixed
the propositional part of the interpolation algorithm to use McMillan’s interpolation
rules [155]. We split our analysis of the experiments into two parts. In Section 3.5.1, we

5Detailed description of the set-up and specifications of the experiments, together with all the results,
can be found at http://verify.inf.usi.ch/content/decomposed-interpolants

http://verify.inf.usi.ch/content/decomposed-interpolants
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ItpF Itp′
F ItpDI Itp′

DI

Problem set solved (V/I) time(s) solved (V/I) time(s) solved (V/I) time(s) solved (V/I) time(s)

approxagree (9) 9 (8/1) 127 9 (8/1) 138 9 (8/1) 106 9 (8/1) 126

azadmanesh (20) 20 (17/3) 418 20 (17/3) 639 20 (17/3) 422 20 (17/3) 1,202

cav12 (99) 68 (48/20) 2,097 67 (48/19) 2,580 66 (48/18) 1,441 66 (47/19) 2,446

conc (6) 3 (3/0) 20 3 (3/0) 22 5 (5/0) 313 3 (3/0) 21

ctigar (110) 74 (54/20) 3,066 70 (50/20) 1,919 71 (51/20) 3,077 58 (39/19) 1,701

hacms (5) 2 (2/0) 332 2 (1/1) 251 1 (1/0) 5 1 (1/0) 5

lfht (27) 17 (17/0) 319 18 (18/0) 448 22 (22/0) 2,784 16 (16/0) 26

lustre (790) 773 (437/336) 3,530 769 (436/333) 3,180 766 (433/333) 3,990 741 (416/325) 2,021

misc (10) 8 (7/1) 154 8 (7/1) 127 9 (7/2) 57 9 (7/2) 888

om (9) 9 (7/2) 6 9 (7/2) 4 9 (7/2) 6 9 (7/2) 4

ttastartup (3) 2 (1/1) 325 1 (1/0) 7 1 (1/0) 11 1 (1/0) 15

ttesynchro (6) 6 (3/3) 10 6 (3/3) 11 6 (3/3) 13 6 (3/3) 13

unifapprox (11) 11 (8/3) 71 11 (8/3) 64 11 (8/3) 71 11 (8/3) 448

Total (1,105) 1,002 (612/390) 10,475 993 (607/386) 9,390 996 (611/385) 12,296 950 (573/377) 8,916

Table 3.1. Performance of sally using different interpolation algorithms of OpenSMT

analyse the performance of the model checker using different LRA interpolation algorithms.
We focus specifically on a detailed comparison of ItpF and ItpDI , i.e., the default algorithm
and our proposed algorithm. In Section 3.5.2, we analyse the performance of a portfolio
of interpolation algorithms and measure the contribution of our proposed algorithm. For
comparison, we also run a version of sally using MathSAT as the interpolation engine
and compare to the contribution of the decomposing algorithm proposed in [61].

The experiments were run on a large set of benchmarks consisting of several problem
sets related to fault-tolerant algorithms (azadmanesh, approxagree, om, hacms,
misc, ttesynchro, ttastartup,unifapprox), software model checking (cav12, ctigar),
simple concurrent programs (conc), and a lock-free hash table (lfht). A benchmark suite
of the kind model checker is also included (lustre). Each benchmark is a transition
system with formulas characterizing initial states, a transition relation and a property
that should hold. sally can finish with two possible answers (or run out of resources
with no answer): valid means the property holds and an invariant implying the property
has been found; invalid means the property does not hold and a counterexample leading
to a state where the property does not hold has been found. In the plots, we denote the
answers as + and ◦, respectively. The benchmarks were run on Linux machines with
the Intel E5-2650 v3 processor (2.3 GHz) and 64GB of memory. Each benchmark was
restricted to 600 seconds of running time and to 4GB of memory.
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3.5.1 Comparing Individual Configurations

Table 3.1 presents the results of the model checker’s runs using different interpolation
algorithms. The results are summarized by category with the name of the category
and the number of corresponding benchmarks in the first column. The two columns
per interpolation algorithm show the number of benchmarks solved successfully (vali-
dated/invalidated) within the resource limits and the total running time for the solved
benchmarks.

The results suggest that ItpF interpolation algorithm achieves the best result overall.
However, there are certain cases where ItpDI is faring better, for example the lfht category.
Before we present a more thorough comparison between these two algorithms we note
that the configuration using Itp′

DI , which computes the weakest interpolants, performs
very poorly compared to the others. Closer inspection revealed that it did not solve any
benchmarks not solvable by other configurations. It did solve a few benchmarks faster
than others, but the improvement was negligible. On the other hand, the overall drop
in performance is large. We conclude that computing very weak interpolants is a bad
strategy in this model-checking scenario.
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Figure 3.3. Evaluation of the decomposed interpolants in model checking scenario: comparison
of performance of sally using OpenSMT with different interpolation procedures, ItpF and
ItpDI .

As mentioned before, the results summarized in Table 3.1 suggest that ItpF performs
better than ItpDI overall. However, a closer look reveals that the situation is more
complicated. Figure 3.3 illustrates a direct comparison between these two algorithms.
Each point represents one benchmark, x-axis corresponds to the runtime (in seconds) of
sally using ItpF as the interpolation algorithm in OpenSMT, and y-axis corresponds
to the runtime of sally using ItpDI . The direct comparison shows that in some cases
the use of decomposed interpolants outperforms the original procedure, sometimes by
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ItpF ItpDI
benchmark solved avg. time solved avg. time
fib_benc_safe_v1 0 - 100 46.5
fib_benc_safe_v2 0 - 100 0.01
dillig01.c 0 - 100 0.1
dillig03.c 0 - 100 0.1
lifnat.c 17 510 29 471
lfht_2_mini_cleaned.prop1 21 362 57 344
lfht_2_mini_lemma5c 18 257 69 293
lfht_2_mini_lemma5e 0 - 30 347
lfht_2_mini_lemma5f 1 188 39 363
lfht_2_mini_lemma5g 22 284 47 311
DRAGON_12_e2_1618_e2_138 99 25 100 19
mvs_with_timeouts3 73 251 98 64

Table 3.2. Aggregated results from 100 runs of the model checker on selected benchmarks

an order of magnitude. Even though ItpDI solved 6 benchmarks less than ItpF , it still
managed to solve 12 benchmarks that ItpF was not able to solve within the resource
limits. Moreover, on a common set of non-trivial (runtime at least 10 seconds) solved
benchmarks, it improved the performance by more than 10% on 45 benchmarks (out of
116 such benchmarks).

During the evaluation, we realized that a small modification in the SMT solver
sometimes had a huge effect on the performance of the model checker. It made previously
unsolved instance easily solvable or the other way around. To confirm that using ItpDI
is indeed better than using ItpF for particular benchmarks, we ran an additional set of
experiments. For each of the 12 benchmarks solved by ItpDI but not solved by ItpF we ran
the model checker 100 times, each time with a different random seed for the interpolating
solver. The results are summarized in Table 3.2. For each of the two configurations,
the table reports how many runs (out of 100) of the model checker finished successfully
within the resource limits and the average time of the successful runs. This experiment
demonstrates that there are indeed benchmarks where the decomposition is necessary,
while using the original Farkas algorithm leads to divergence. In other cases, the use of
decomposed interpolants leads to a higher chance of a successful result and/or better
runtime of the model checker. Note that these benchmarks were picked deliberately to
confirm that ItpDI performs better on them than ItpF , based on our experiments on the
whole benchmark set.

For the final aspect of the direct comparison of ItpF and ItpDI we collected statistics
from the runs of sally with ItpDI about how often ItpDI manages to decompose the
vector of Farkas coefficients, thus returning a different interpolant than ItpF would.
These results are summarized in Table 3.3. The second column reports the number of
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ItpDI

Problem set #problems with
some decomposition

#non-trivial
itp problems #decomposed itps

approxagree (9) 1 (1/1) 7 7 (4/3)
azadmanesh (20) 0 (0/0) 1,818 0 (0/0)
cav12 (99) 40 (30/29) 707,414 6,464 (747/5,719)
conc (6) 3 (3/3) 39,135 25,603 (4,030/21,033)
ctigar (110) 70 (58/69) 4,064,827 1,106,642 (61,371/1,049,904)
hacms (5) 5 (5/5) 424,532 32,331 (3,628/28,703)
lfht (27) 14 (14/14) 786,837 126,568 (5,464/121,104)
lustre (790) 327 (96/299) 2,916,829 2,001,503 (9,115/2,001,058)
misc (10) 8 (7/8) 59,266 12,054 (2,363/10,024)
om (9) 6 (6/0) 974 380 (380/0)
ttastartup (3) 3 (2/3) 117,303 12,165 (240/11,925)
ttesynchro (6) 4 (4/4) 90 90 (90/69)
unifapprox (11) 1 (1/0) 1 1 (1/0)

Table 3.3. Interpolation statistics. The numbers in parentheses count only situations where
decomposition contains some trivial and some non-trivial elements (trivial/non-trivial).

benchmarks with at least a single decomposition (any; with at least one trivial element;
with at least one non-trivial element). The third column reports the total number
of interpolation problems for theory conflict, excluding those without even theoretical
possibility for decomposition. There is no possibility for decomposition if all inequalities
are from one part of the problem (resulting in trivial interpolants, either ⊤ or ⊥) or there
is only a single inequality in the A-part (trivially yielding an interpolant equal to that
inequality). The last column reports the number of successfully decomposed interpolants
(with at least one trivial element; with at least one non-trivial element). Note that it can
happen that a successful decomposition contains both trivial and non-trivial elements.
We see that at least one decomposition was possible in only less than half of all the
benchmarks. This explains why there are many points on the diagonal in Figure 3.3.
On the other hand, it shows that the test for the possibility of decomposition is cheap
and does not represent a significant overhead. Another conclusion we can draw is that
when the structure of the benchmark enables decomposition, it can often be discovered
in many theory conflicts that appear during the solving.

3.5.2 Analysis of the Portfolio

In this part, we present yet another way to measure the contribution of the decomposed
interpolants: the contribution to the virtual best configuration. We consider a virtual
portfolio consisting of configurations of sally using different interpolation algorithms of
OpenSMT. In addition, we also consider a separate virtual portfolio of configurations
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config. #uniq.
solved PAR-2 regret

O
pe

nS
M

T ItpF 4 4046 3.5%

Itp′
F 3 4586 3.9%

ItpDI 10 10245 8.8%

M
at

hS
A

T ItpF 0 260 0.2%

Itp′
F 3 3594 3.3%

ItpM 6 7754 7%

Table 3.4. Contribution of the configurations to their respective portfolios.

of sally using MathSAT. The result of a virtual portfolio on a benchmark is the
best result achieved by any of the configurations of the portfolio. As noted before, the
configuration using Itp′

DI performed quite poorly on our benchmarks. Since MathSAT
can compute Farkas interpolants and its duals, and restricted form of decomposed
interpolants but not its dual, we also exclude Itp′

DI from the portfolio of OpenSMT’s
configurations, with minimal impact on the performance. We denote the heuristic for
computing decompositions described in [61] and available in MathSAT as ItpM . We use
the number of solved instances and PAR-2 score as a metric of measuring the performance.
PAR-2 score is computed as the sum of runtime on solved instances plus two times the
timeout for each unsolved instance. Finally, for each configuration we compute the number
of uniquely solved instances (not solved by any other configuration in the portfolio) and
regret, i.e., how much would the PAR-2 score of the portfolio worsen, if that particular
configuration was excluded from the portfolio. The results are summarized in Table 3.4.
Note that OpenSMT and MathSAT portfolios are considered separately.

OpenSMT configuration portfolio is able to solve 1,017 benchmarks with PAR-2
score 116,117. MathSAT configuration portfolio is able to solve 1,018 benchmarks with
PAR-2 score 110,356. We hypothesize that the better performance of MathSAT can
be at least partially attributed to the fact that it supports interpolation in combination
with incremental solving while OpenSMT does not. In both portfolios, the ability to
compute decomposed interpolants (even in the restricted form) significantly improves the
performance of the portfolio. We also see that the contribution of our algorithm based on
methods from linear algebra to OpenSMT portfolio is slightly larger than the contribution
of the heuristic ItpM to the MathSAT portfolio. Additionally, our algorithm solves more
instances uniquely within its portfolio. Interestingly, the contribution of the configuration
computing Farkas interpolants is non-trivial in OpenSMT, but almost non-existent in
MathSAT. Our hypothesis is that ItpM , compared to ItpDI , decomposes less often and
the decompositions are of smaller size (e.g., in the situation from Example 3.12). This
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would mean that the interpolants from ItpM are more often similar (or even identical) to
Farkas interpolants, which would make the MathSAT portfolio less diverse than the
OpenSMT portfolio.

3.6 Related Work

The possible weakness of Farkas interpolants for use in model checking was recognized
in [179]. The authors demonstrate that Farkas interpolation does not satisfy the condition
needed for proving convergence of a model-checking algorithm pd-kind [129]. Indeed,
the model checker sally [129], which implements pd-kind, diverges on our example
from Section 3.2 if Farkas interpolation is used in its underlying interpolation engine.
To resolve this problem [179] introduces a new interpolation procedure that guarantees
the convergence of a special sequence of interpolation problems often occurring in model
checking problems. However, this interpolation algorithm is based on a decision procedure
called conflict resolution [138], which is not as efficient as the Simplex-based decision
procedure used by most state-of-the-art SMT solvers. In contrast, we show how the
original Simplex-based decision procedure using Farkas coefficients can be modified
to produce interpolants not restricted to the single-inequality form, while additionally
obtaining strength guarantees with respect to the original Farkas interpolants.

The reasoning engine Spacer [137] was also known to be affected by this weakness of
Farkas interpolants. The verification framework SeaHorn [107], which relies on Spacer,
originally used to obtain additional invariants from abstract interpretation to avoid the
divergence. Recently, the algorithm in Spacer was enriched with global guidance [190].
One part of the global guidance is monitoring the progress of the model checker, detecting
an emergent diverging behaviour and applying a special rule to prevent the divergence.

A different approach to control the interpolants at the level of the model checking
algorithm is interpolation abstraction [177]. It is a powerful technique for restricting
interpolants to conform to a prescribed form. It enables fine-grained control over symbol
occurrences in an interpolant. The abstraction is expected to be provided by the
application, and a reasonable choice has been given for software model checking. The
disadvantage is that it requires auxiliary variables to be added to the original interpolation
problem to enforce the abstraction on the interpolant computation.

Besides the application in interpolation-based model checking, the interpolation itself
has received significant attention in the last two decades. The work on LRA interpolation
dates back to 1997 [166]. A compact set of rules for deriving LRA interpolants from the
proof of unsatisfiability in an inference system was presented in [156]. The interpolants
in these works were the Farkas interpolants. Current methods usually compute Farkas
interpolants from explanations of unsatisfiability extracted directly from the Simplex-
based decision procedure inside the SMT solver [84]. Recent investigations of controlling
the strength of LRA interpolants showed that the information from primal and dual Farkas
interpolants could be combined to obtain an interpolant of intermediate strength [8].
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There is an infinite family of interpolants between a primal and a dual interpolant, and
the strength can be controlled with a single strength factor. However, these interpolants
are still restricted to single inequalities and are always weaker than the primal Farkas
interpolant.

The first discussion on how to obtain interpolants in the form of a conjunction of
inequalities from Farkas coefficients is present in [61]. However, their approach is based
on a simple heuristic which does not discover the possibility for decompositions in some
cases where our approach finds the decomposition easily. Moreover, their focus was
purely on the interpolation techniques, and they did not discuss the application in model
checking. We provided a detailed comparison to our approach in Section 3.4.3.

Besides the computation of interpolants from refutation proof, linear programming
(LP) methods have been successfully used to compute interpolants [178]. LP solvers were
used to compute simple, or even beautiful LRA interpolants [3, 180]. In [3], the authors
use linear programming (LP) solver to check for the existence of a common half-plane
interpolant for increasingly larger subparts of the given LRA problem. In [180], the
authors use a similar method but only after the refutation proof has been constructed by
standard solving methods. Our focus is not on the overall interpolant but on a single
LRA conflict. However, in the context of interpolants from proofs produced by SMT
solvers, our approach also has the potential for re-using components of interpolants for
LRA conflicts across the whole proof.

Orthogonal to the studies of interpolation algorithms for LRA conflicts is the large
body of work on the propositional part of interpolation procedures, e.g., [6, 81, 108, 125,
172, 197].

3.7 Conclusion and Future work

In this chapter, we have contributed a new interpolation algorithm for conflicts in the
theory of linear real arithmetic. This algorithm generalizes the interpolation algorithm
based on Farkas’ lemma used in modern SMT solvers; it uses methods from linear algebra
to identify linearly indepedent components and decompose Farkas interpolant. We
showed that the algorithm is able to compute interpolants in the form of a conjunction of
inequalities that are logically stronger than the single inequality returned by the original
approach. This becomes useful in the IC3-style model-checking algorithms where Farkas
interpolants have been shown to be a source of incompleteness. In our experiments, we
have demonstrated that the opportunity to decompose Farkas interpolants frequently
occurs in practice and that the decomposition often leads to (i) lower solving time and,
in some cases, to (ii) solving a problem not solvable by the previous approach.

An interesting future research would be to go beyond a simple portfolio approach and
automatically determine what kind of interpolant would be more useful for the current
interpolation query in (not only) IC3-style model-checking algorithms.
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Chapter 4

Transition Power Abstraction

Automated formal verification by means of model checking is popular because of the
ability to both (1) find error paths for unsafe systems, and (2) prove the absence of
error paths for safe systems. Recent techniques based on Satisfiability Modulo Theories
(SMT), as well as the continuing improvements of SMT solvers [11, 60, 72, 83, 122],
enable scalable applications of model checking to software verification [22]. Specifically,
the idea of building a safe inductive invariant incrementally—pioneered by the hardware
model checking algorithm IC3/PDR [41, 85]—has been successfully applied in several
IC3-inspired approaches [58, 59, 93, 113, 129, 137], thus improving the capabilities of
verification tools significantly.

Although this progress is undeniably encouraging, model checking still suffers from
scalability issues associated with an exhaustive exploration of a system’s states. For many
systems, a large set of states must be observed to eventually detect a counterexample or
synthesize an invariant.

The basic template for reachability-based analysis originated with bounded model
checking (BMC) [29]. A typical BMC algorithm searches for counterexamples reachable
in a finite number of steps, and if nothing is found, it increases the search limits and
restarts. Most modern model-checking algorithms based on reachability analysis have
adopted this philosophy because one of the advantages of this approach is that it finds
the shortest counterexample (if one exists). However, it also results in scalability issues.
Specifically, in modern software systems, it is not uncommon that a program must iterate
through a particular loop thousands of times (or more) before it reaches some error state.
These deep counterexamples pose problems for reachability-based algorithms that rely on
unrolling the bounds of the system’s transition relation one transition at a time.

In this chapter, we present the concept of Transition Power Abstraction (TPA)
sequence and a novel model-checking algorithm for safety properties of transition systems.
One key feature of this algorithm is a shift from the focus on states and state abstractions
to the focus on transitions and transition abstractions [164]. TPA sequence is a sequence
of abstract relations that gradually summarize (in an over-approximating manner) an

47
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increasing number of steps of the transition relation. The distinguishing feature is that
the summarized number of steps increases exponentially, not linearly. The algorithm uses
the TPA sequence for answering bounded reachability queries about the system, but it
also extends and refines this sequence based on the information learned. Using the TPA
sequence, the algorithm can quickly focus on the essential part of the search space and not
waste time examining short paths that cannot lead to a counterexample. At the same time,
it can discover transition invariants of the system sufficient to prove the system’s safety.
In this chapter, we present the theoretical ideas and pseudocode of the algorithm. The
implementation details and experiments are given in Chapter 5 as part of the presentation
of our Horn solver Golem. In the experiments, we demonstrate that TPA can detect
counterexamples beyond the capabilities of state-of-the-art model checkers due to their
depth and that proving safety using transition invariants complements state-of-the-art
techniques for proving safety by discovering safe inductive invariant.

4.1 Preliminaries

In this chapter, we study the problem of whether or not a safety property holds in
a given transition system. The basic notions related to this problem were explained
in Section 2.5. A key concept in this problem is reachability, i.e., the existence of
a trace between states of the system. The transitions and reachability are captured
symbolically by binary relations over the set of states. Concatenation of relations is
used to define relations that represent reachability in a fixed number of steps. Given
two relations R1(x, y) and R2(y, z), their concatenation R = R1 ◦R2 is a relation over
x, z such that R(x, z) ⇐⇒ ∃y : R1(x, y) and R2(y, z). In transition systems, we
can define relations representing multiple steps of a transition relation. For example,
Tr2(X, X ′′) ≡ Tr(X, X ′) ◦Tr(X ′, X ′′) relates pairs of states (s, t) such that t is reachable
from s in exactly two steps of the transition relation Tr . We also write that (s, t) ∈ Tr2.
Existence of a counterexample (a trace from some initial to some bad state) of a fixed
length l can be encoded as a satisfiability check of the formula

Init(X(0)) ∧ Tr(X(0), X(1)) ∧ Tr(X(1), X(2)) ∧ . . . ∧ Tr(X(l−1), X(l)) ∧ Bad(X(l)),

where X(i) is a state variable shifted i steps, “with i primes”. A satisfying assignment
determines l + 1 states such that the first one is an initial state, the last one is a bad
state, and each successor can be reached from its predecessor by one step of the transition
relation Tr . If there is no satisfying assignment, no trace of l steps from Init to Bad
exists.

4.1.1 State and Transition Inductive Invariants

A set of states S is an inductive invariant iff

• Init(X) ∧ Tr(X, X ′) =⇒ S(X ′),
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• S(X) ∧ Tr(X, X ′) =⇒ S(X ′).

An inductive invariant is safe if it excludes all bad states. Proving safety of a transition
system by discovering a safe inductive invariant is one of the most popular approaches,
especially for infinite-state systems.

The idea of a safe inductive invariant can be lifted from states to transitions. Let
Tr∗ denote the reflexive transitive closure of Tr . Then Tr∗ represents reachability in any
number of steps (including 0) in the system. We say that a transition formula T (X, X ′)
is a transition invariant iff Tr∗ ⊆ T , i.e., ∀X, X ′ Tr∗(X, X ′) =⇒ T (X, X ′).1

A transition formula T (X, X ′) is an inductive transition invariant iff

1. Id(X, X ′) ⊆ T (X, X ′), and

2. either T (X, X ′) ∧ Tr(X ′, X ′′) =⇒ T (X, X ′′)
or Tr(X, X ′) ∧ T (X ′, X ′′) =⇒ T (X, X ′′).

Note that an inductive transition invariant T is indeed a transition invariant, i.e., it
over-approximates Tr∗. This can be easily proved by induction. Suppose that (s, t) ∈ Tr∗,
i.e., s can reach t. Consider the shortest trace from s to t. If its length is 0, then by
condition 1, (s, t) ∈ T . Suppose that the length of the shortest trace is l > 0. Then there
is t’s predecessor p on the trace, such that p can be reached from s in l − 1 steps and
(p, t) ∈ Tr . By the induction hypothesis, (s, p) ∈ T , and based on the first option in
condition 2, we get that (s, t) ∈ T , which concludes the proof. For the second option in
condition 2, it suffices to consider in the inductive step the first successor of s instead of
the first predecessor of t.

Note, however, that the two versions of condition 2 are not equivalent, as witnessed
by the following example.

Example 4.1. Consider the following transition relation Tr and a transition formula T :

Tr(x, y, x′, y′) ≡ y ≥ 0 ∧ x′ = x ∧ y′ = y + x (4.1)
T (x, y, x′, y′) ≡ y′ ≥ y ∨ y′ ≥ x (4.2)

It is not hard to verify that Tr ◦ T ⊆ T , but T ◦ Tr ⊈ T . For the first case, we need to
show that y ≥ 0 ∧ x′ = x ∧ y′ = y + x ∧ (y′′ ≥ y′ ∨ y′′ ≥ x′) implies y′′ ≥ y ∨ y′′ ≥ x. We
can do a case analysis for the disjunction in the antecedent: If y′′ ≥ x′ then y′′ ≥ x since
x′ = x. If y′′ ≥ y′ then y′′ ≥ x + y (since y′ = x + y) and thus y′′ ≥ x as y ≥ 0.

For the second case, consider the following three states (x = 0, y = 0), (x′ =
−1, y′ = 0) and (x′′ = −1, y′′ = −1). Then T (x, y, x′, y′) and Tr(x′, y′, x′′, y′′) hold, so
(T ◦ Tr)(x, y, x′′, y′′) holds; but T (x, y, x′′, y′′) does not hold.

1Note that our definition is slightly simpler than that of [164], as it only depends on the transition
relation and not on the initial states of the system.
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Similarly to inductive invariants, inductive transition invariants can be used as a
proof rule. If T is an inductive transition invariant and T does not relate any initial
state with a bad state, then T is safe. If a safe inductive transition invariant exists,
then the system is safe. Checking whether a transition formula T can be formulated as a
satisfiability query: T is safe iff Init(X) ∧ T (X, X ′) ∧ Bad(X ′) is unsatisfiable.

This proof rule can be further strengthened by weakening the assumption. We consider
the following notions:

Definition 4.2 (left- and right-grounded transition invariant). Let T be a transition
formula. If Init ◁ Tr∗ ⊆ Init ◁ T then we say T is a left-grounded transition invariant. If
Tr∗ ▷ Bad ⊆ T ▷ Bad then we say T is a right-grounded transition invariant.

We say that a transition formula is a grounded transition invariant if it is either left-
grounded or right-grounded. Note that grounded transition invariants are closely related
to the state invariants in the traditional sense: If T (X, X ′) is a left-grounded transition
invariant then ∃X : Init(X) ∧ T (X, X ′) is a state invariant, i.e., it over-approximates all
states reachable from Init. Additionally, we obtain a symmetric concept: If T (X, X ′) is
a right-grounded transition invariant then ∃X ′ : T (X, X ′) ∧ Bad(X ′) over-approximates
all states backward reachable from Bad.

The concept of a safe inductive transition invariant can be extended to grounded
transition invariants.

Definition 4.3. Let T be a transition formula with Id ⊆ T . If Init ◁ T ◦ Tr ⊆ Init ◁ T

then T is an inductive left-grounded transition invariant. If Tr ◦ T ▷ Bad ⊆ T ▷ Bad then
T is an inductive right-grounded transition invariant.

Observation 4.4. If a transition formula T is an inductive grounded transition invariant,
then it is indeed a grounded transition invariant according to Definition 4.2.

Proof. The proof is analogous to the proof that an inductive transition invariant is
indeed a transition invariant. We show only the case of the right-grounded invariant, the
left-grounded case is analogous. We want to show that if (s, t) ∈ Tr∗ and t ∈ Bad then
(s, t) ∈ T . The proof proceeds by induction on the length l of the shortest path from s to
t. The base case l = 0 holds because Id ⊆ T . For the inductive step, consider m, the
successor of s on the path to t. By induction, it holds that (m, t) ∈ T . Since (s, m) ∈ Tr ,
it follows by the assumption on T that (s, t) ∈ T .

Inductive grounded transition invariants can be used as a proof rule for safety in
the same way as inductive transition invariants: If a safe inductive grounded transition
invariant exists, then the system is safe.

4.2 Intuition behind Transition Power Abstraction

We explain the problem of slow progress in state-of-the-art algorithms and the intuition
that led to TPA in a simple example of a multi-phase loop (generalized from [185] where
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x = 0 ; y = N;
whi l e ( x < 2N){

x = x + 1 ;
i f ( x > N)

y = y + 1 ;
}
a s s e r t ( y != 2N) ;

Init(x, y) ≡ x = 0 ∧ y = N

Tr(x, y, x′, y′) ≡ x < 2N ∧ x′ = x + 1
∧ y′ = ite(x′ > N, y + 1, y)

Bad(x, y) ≡ x ≥ 2N ∧ y = 2N

Figure 4.1. An example of unsafe multi-phase loop

N=50), given in Figure 4.1. The program source code is given on the left, while the
corresponding transition system is given on the right. Note that N represents a parameter
of the system, not a nondeterministic variable.

Since the assertion is placed after the loop, any counterexample requires finding a
complete unrolling of the loop, i.e., all 2N iterations (or 2N steps in the corresponding
transition system). Interestingly, even a linear growth of N results in the exponential
growth of complexity of the search for counterexamples. Because of the control-flow
divergence in each iteration of the loop, the number of possible program paths (that a
verifier explores) doubles with each increment of counter x. Consider a run of BMC on
this example: Using SMT queries, it tests the existence of a counterexample of length
0, 1, 2, . . . , 2N . All queries except the last one are unsatisfiable since the loop requires
2N iterations to finish and reach the assertion. Thus BMC requires 2N SMT queries;
however, the queries get more and more complex. Each new query contains an additional
copy of the state variables, compared to the previous query.

This inefficient exploration of a state space caused by the slow increment of the
considered bound was the primary motivation for our search for an alternative approach.
We were inspired by the technique known as binary exponentiation or exponentiation by
squaring used in many areas of computer science (see, e.g., [161]). We can apply this idea
to a transition relation in the following way: Let R≤n denote a relation of reachability in
≤2n steps. The sequence of relations R≤ can be defined inductively as

R≤0 = Id ∪ Tr ,

R≤n+1 = R≤n ◦R≤n.
(4.3)

Note, however, that when representing these relations as formulas, the inductive step would
require quantification over the intermediate states, to keep the relation expressed only over
the source and target state variables, i.e., R≤n+1(X, X ′) ≡ ∃Y R≤n(X, Y ) ∧R≤n(Y, X ′).
Thus, quantifier elimination is required to avoid the accumulation of many copies of state
variables. One option is to apply quantifier elimination eagerly. A much more common
approach in verification is to use Craig interpolation to over-approximate quantifier
elimination and only lazily refine the abstraction on demand. The transition power
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input : transition system S = ⟨Init, Tr , Bad⟩
global : TPA sequence ATr≤0, . . . , ATr≤n, . . . (lazily initialized to true)
Function CheckSafetyTPA(⟨Init, Tr , Bad⟩):

1 ATr≤0 ← Id ∨ Tr ; n← 0
2 while TRUE do
3 if IsReachable(n, Init, Bad) ̸= ∅ then return UNSAFE
4 if HasInvariant(S, n) then return SAFE

Algorithm 4.1. Main procedure for checking safety

abstraction sequence captures the idea outlined above. Intuitively, the elements of the
sequence are formulas that over-approximate reachability in an exponentially increasing
number of steps of the transition relation. Moreover, they are always expressed only over
two copies of the state variables.2 For our example in Figure 4.1, first log2 N elements
could be x′ ≤ x + 1, x′ ≤ x + 2, x′ ≤ x + 4, x′ ≤ x + 8, . . . , x′ ≤ x + 2log2 N . We show how
to build a procedure for checking safety properties of transition systems based on the
idea of the TPA sequence.

4.3 Transition Power Abstraction for Checking Safety Properties

First, we present a simpler version of the algorithm for checking safety properties of
transition systems using the TPA sequence; later, we give an improved but more complex
version. The simpler version allows us to better explain the fundamental concepts of the
algorithm: answering bounded reachability queries with the TPA sequence, refinement of
the TPA sequence, and checks for inductive invariants.

Our main procedure—given in Algorithm 4.1—follows the typical scheme of bounded
model checking where, in each iteration, the reachability of Bad is checked within a certain
bounded number of steps, and the bound gradually increases. This scheme has also been
adopted by other model-checking algorithms, such as Spacer [137] and interpolation-based
model checking [91, 155, 194], which further support a generalization/adaptation of the
proof of bounded safety to a proof of unbounded safety.

The distinguishing feature of our approach is that it increases the bound for the safety
check exponentially in the number of iterations, while other approaches do this linearly.
That is, in the nth iteration, traditional algorithms check bounded safety up to n steps,
but our approach does up to 2n+1 steps. However, we do not unroll the transition relation
an exponential number of times. Instead, we maintain a sequence of transition formulas
(i.e., each formula contains only two copies of the state variables) where each element
over-approximates twice as many steps of transition relation Tr as its predecessor. This
is the Transition Power Abstraction (TPA) sequence. We denote the nth element of the

2This condition is important to prevent related SMT queries from growing in complexity in terms of
the number of variables.
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sequence as ATr≤n and we require that it over-approximates reachability in ≤2n steps of
Tr , i.e.,

Id(X, X ′) ∨ Tr(X, X ′) ∨ Tr2(X, X ′) ∨ . . . ∨ Tr2n

(X, X ′) =⇒ ATr≤n(X, X ′). (4.4)

Moreover, we require that ATr≤0 ≡ Id ∨ Tr . Thus, ATr≤0 is not an over-approximation
but a precise relation capturing true reachability in 0 or 1 steps.

4.3.1 TPA Sequence for Bounded Reachability Queries

The core of our model-checking algorithm lies in answering bounded reachability queries,
i.e., whether some target states are reachable from some source states within some
bounded number of steps. The algorithm uses the TPA sequence to answer such queries
and, at the same time, it extends the sequence and refines its existing elements.

Intuitively, the sub-procedure works as follows: Given two sets of states, Source and
Target, and nth element of the current TPA sequence ATr≤n, it issues the following SMT
query:

Sat?[Source(X) ∧ATr≤n(X, X ′) ∧ATr≤n(X ′, X ′′) ∧ Target(X ′′)]. (4.5)
If this query is unsatisfiable, there is no intermediate state reachable from Source

using one step of ATr≤n that, at the same time, can reach Target in yet another step
of ATr≤n. Since one step of ATr≤n over-approximates reachability in 0 to 2n steps of
Tr , no trace of length ≤2n+1 exists from Source to Target. Thus, the procedure can
immediately conclude that no state from Target is reachable from any state in Source in
≤2n+1 steps.

Additionally, it is also possible to learn new information about the reachability in
≤2n+1 steps in the form of an interpolant between ATr≤n(X, X ′) ∧ATr≤n(X ′, X ′′) and
Source(X) ∧ Target(X ′′). The properties of interpolation guarantee that the interpolant
contains only variables X, X ′′ (i.e., it does not contain X ′), it over-approximates ATr≤n ◦
ATr≤n, and it does not relate any source state with a target state. The relation defined by
such an interpolant satisfies the condition from Equation (4.4) for the n+1st element of
TPA sequence, and the current TPA sequence can be refined by conjoining the interpolant
(after renaming of variables) to its n+1st element.

If query from Equation (4.5) is satisfiable, there exists some intermediate state m that
can be reached from Source by one step of ATr≤n and can reach Target by yet another
step of ATr≤n. If n = 0, the procedure returns and reports the answer “reachable” as
ATr≤0 is precise, not over-approximating. Otherwise, such an intermediate state m can
be seen as a potential point on the trace from Source to Target, and this trace can be
shown to be real if there exist two real traces: from Source to m and from m to Target.
The existence of these two real traces can be checked recursively.

The pseudocode for the procedure is given in Algorithm 4.2. We first explain the steps
in more detail and demonstrate a run of the algorithm on our example from Section 4.2.
Then, we prove the correctness and termination of Algorithm 4.2, from which follow the
correctness of Algorithm 4.1 and its termination for unsafe systems.
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input : level n, source states Source, target states Target
output : subset of Target reachable from Source within 2n+1 steps
global : TPA sequence ATr≤0, . . . , ATr≤n, . . .

Function IsReachable(n,Source,Target):
1 while true do
2 query ← Source(X) ∧ATr≤n(X, X ′) ∧ATr≤n(X ′, X ′′) ∧ Target(X ′′)
3 sat_res← Sat?[query]
4 if sat_res = UNSAT then
5 I ← Itp(ATr≤n(X, X ′) ∧ATr≤n(X ′, X ′′), Source(X) ∧ Target(X ′′))
6 ATr≤n+1 ← ATr≤n+1 ∧ I[X ′′ ↦→ X ′]
7 return ∅
8 else
9 if n = 0 then return QE(∃X, X ′ query)[X ′′ ↦→ X]

10 Intermediate ← QE(∃X, X ′′ query)[X ′ ↦→ X]
11 IntermediateReached ← IsReachable(n− 1, Source, Intermediate)
12 if IntermediateReached = ∅ then continue
13 TargetReached ← IsReachable(n− 1, IntermediateReached, Target)
14 if TargetReached = ∅ then continue
15 return TargetReached

Algorithm 4.2 . Reachability query using TPA

Bounded Reachability Queries with TPA in Details

Function IsReachable takes as input an integer n ≥ 0, a set of source states, and a set
of target states. The output is a subset of target states that are reachable in ≤2n+1 steps
of transition relation Tr . The output set is empty if no target state is reachable from
any source state within the given bound.

The procedure loops until it computes a truly reachable subset of target states or
proves all target states unreachable. In each iteration, the procedure uses the current
nth element of the TPA sequence. Note that this will be different in each iteration as the
TPA sequence will be updated in the recursive calls on lines 12 and 14. The procedure
constructs a satisfiability query that represents whether or not an intermediate state is
reachable from Source using one step of ATr≤n and, at the same time, can reach Target
in yet another step of ATr≤n. This query is then passed to a decision procedure for the
background theory T (lines 2 and 3).

Query on line 3 is unsatisfiable. If the query is unsatisfiable, then no target state can be
reached from any source state in two steps of ATr≤n. It follows from Equation (4.4) that
no target state can be reached from any source state in ≤2n+1 steps. Before indicating
the unreachability by returning ∅ (line 7), the procedure updates the TPA sequence to
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ensure termination (discussed later): The procedure computes an interpolant between
ATr≤n(X, X ′) ∧ ATr≤n(X ′, X ′′) and Source(X) ∧ Target(X ′′) (line 5). After renaming
variables, the interpolant is conjoined to the n+1st element of the TPA sequence. In this
way, our algorithm is gradually learning new facts about reachability in the system under
inspection and refining the abstraction maintained in the TPA sequence. The following
example demonstrates this part of the procedure on our motivating example.

Example 4.5. Consider the system from Figure 4.1 for N = 3. This system is unsafe,
and the counterexample requires six steps of the transition relation Tr . Here, we focus on
the search for counterexample trace and omit the checks for invariant.

After Algorithm 4.1 initializes the base element of TPA sequence to (x′ = x ∧ y′ =
y) ∨ (x < 6 ∧ x′ = x + 1 ∧ y′ = ite(x′ > 3, y + 1, y)) it issues a reachability query
IsReachable(0, x = 0 ∧ y = 3, x ≥ 6 ∧ y = 6) in the first iteration of its loop. This
translates to a satisfiability check of the formula

x = 0 ∧ y = 3
∧ ((x′ = x ∧ y′ = y) ∨ (x < 6 ∧ x′ = x + 1 ∧ y′ = ite(x′ > 3, y + 1, y)))
∧ ((x′′ = x′ ∧ y′′ = y′) ∨ (x′ < 6 ∧ x′′ = x′ + 1 ∧ y′′ = ite(x′′ > 3, y′ + 1, y′)))
∧ x′′ ≥ 6 ∧ y′′ = 6

on line 3 of Algorithm 4.2. This query is unsatisfiable, and x′′ ≤ x + 2 is a possible
interpolant computed on line 5. After variable renaming, this interpolant refines ATr≤1,
which becomes x′ ≤ x + 2. Then this call to IsReachable terminates, and the main loop
issues a new reachability query for n = 1. This yields a satisfiability query x = 0 ∧ y =
3 ∧ x′ ≤ x + 2 ∧ x′′ ≤ x′ + 2 ∧ x′′ ≥ 6 ∧ y′′ = 6. Again, this formula is unsatisfiable, and
a possible interpolant is x′′ ≤ x + 4. The next element of the TPA sequence, ATr≤2 is
refined to x′ ≤ x + 4.

For n = 2 (reachability within eight steps), the query on line 3 is satisfiable, and the
procedure switches to checking if the counterexample from abstract transition is real or
exists only due to a coarse abstraction.

Query on line 3 is satisfiable. If the query on line 8 is satisfiable, a concrete trace of
length ≤2n+1 cannot be ruled out at this point. The algorithm proceeds to check the
existence of such a trace recursively. In the base case of the recursion, ATr≤0 is not an
over-approximation but a precise relation representing 0 or 1 steps of Tr . Thus, a real
trace exists from Source to Target. The algorithm computes a state formula representing a
truly reachable subset of Target. First, all except next-next state variables are eliminated
from the query by quantifier elimination (QE) (line 9). Then, the remaining variables
are renamed to state variables.3

3QE computes maximal reachable subsets. While this is convenient for proving termination of
Algorithm 4.2, in practice, quantifier elimination is a costly operation. Our implementation, therefore,
supports also the use of model-based projection to efficiently under-approximate quantifier elimination
(see Section 4.3.4).
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If the base case has not been reached yet (n > 0), the procedure first computes a set
of candidate intermediate states by eliminating all except next-state variables from the
query (line 10). Then, the procedure recursively calls itself to determine the existence of
a trace from Source to the newly computed intermediate set with the bound on length
halved (line 11). This check has two possible outcomes. If the recursive call returns ∅,
none of the intermediate candidates is reachable (within 2n steps). Moreover, ATr≤n

must have been strengthened (line 6) before the recursive call returned as to not relate
any of the source states and intermediate candidates. The procedure then continues to
the next iteration (line 12) where it tries to find new intermediate candidates or prove
there are none anymore. In case the set returned on line 11 is non-empty, it represents
a set of states reachable from Source within 2n steps of Tr . The procedure proceeds
to check the existence of a trace from these states to the target states (line 13). The
reasoning here is the same as for the first recursive call: If Target is not reachable, the
procedure attempts to find new intermediate candidates in a new iteration. Otherwise,
a real trace from Source to Target exists, and the computed truly reachable states are
returned. The returned states are reachable with 2n+1 steps as both recursive calls check
reachability within 2n steps.

We continue Example 4.5 to illustrate this phase of Algorithm 4.2.

Example 4.6. Following Example 4.5, the algorithm is checking bounded reachability
between Init and Bad for n = 2, i.e., within 8 steps. The issued satisfiability query
is x = 0 ∧ y = 3 ∧ x′ ≤ x + 4 ∧ x′′ ≤ x′ + 4 ∧ x′′ ≥ 6 ∧ y′′ = 6. Eliminating all
except next-state variables yields x′ ≤ 4 ∧ x′ ≥ 2. This results in the recursive call
IsReachable(1, x = 0 ∧ y = 3, x ≤ 4 ∧ x ≥ 2). The satisfiability query issued next is
x = 0 ∧ y = 3 ∧ x′ ≤ x + 2 ∧ x′′ ≤ x′ + 2 ∧ x′′ ≤ 4 ∧ x′′ ≥ 2. It is satisfiable and
yields x′ ≤ 2 ∧ x′ ≥ 0 after quantifier elimination. Now we reach level 0 with a call
IsReachable(0, x = 0∧y = 3, x ≤ 2∧x ≥ 0). The constructed satisfiability query is again
satisfiable, and since we are at level 0, the procedure returns a set of states truly reachable
from x = 0 ∧ y = 3 within 2 steps. These can be characterized as (x = 0 ∨ x = 1 ∨ x =
2)∧ y = 3. The reachable states are reported to level 1 which issues reachability query for
the second part: IsReachable(0, (x = 0∨ x = 1∨ x = 2)∧ y = 3, x ≤ 4∧ x ≥ 0). This is
also successful and returns reachable states (x = 0∨x = 1∨x = 2∨x = 3∨x = 4)∧y = 3.
These are states reachable from Init within 4 steps and they are reported to level 2.
There, the second part of the counterexample is found in a similar way, and the procedure
concludes that Bad is truly reachable from Init within 8 steps.

The algorithm’s behaviour on these examples can be generalized for the system of
Figure 4.1 for larger values of N . The length of the counterexample is 2N and let l

denote ⌊log2(2N)⌋. The bounded safety is quickly determined up to 2l steps with l calls to
IsReachable, which all return ∅ in their first iteration. On the next iteration, for n = l,
IsReachable finds the real counterexample, but it requires O(2l) recursive calls to find
the counterexample of length in the interval (2l, 2l+1].
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4.3.2 Correctness and Termination

We first prove the correctness and termination of Algorithm 4.2, which then entails
the correctness of Algorithm 4.1 and its termination for unsafe systems. We prove the
correctness of procedure IsReachable separately for the unreachable and the reachable
case.

Lemma 4.7. If IsReachable(n, Source, Target) returns ∅, then no state from Target
can be reached from Source within 2n+1 steps.

Proof. The proof relies on the invariant that the sequence ATr≤0, . . . , ATr≤n, . . . main-
tained by the algorithm satisfies the over-approximating property of the TPA sequence,
given in Equation (4.4). This condition holds at the initialization point in Algorithm 4.1.
The only update to the elements of the sequence happens in Algorithm 4.2 on line 6.
Consider an update on any level k ≤ n. From the properties of interpolation, we know
that I(X, X ′′) (on line 5) over-approximates ATr≤k(X, X ′) ∧ATr≤k(X ′, X ′′), which rep-
resents two steps of the relation ATr≤k. Since ATr≤k over-approximates ≤2k steps of Tr ,
it follows that I(X, X ′′) over-approximates ≤2k+1 steps of Tr . Thus, conjoining it to
ATr≤k+1 preserves the condition of Equation (4.4).

It follows from Equation (4.4) that when the query on line 3 is unsatisfiable, there
exists no trace of length ≤ 2× 2n = 2n+1 from any source state to any target state.

Lemma 4.8. If IsReachable(n, Source, Target) returns a non-empty set Res, then
Res ⊆ Target and every state in Res can be reached from some state in Source in ≤2n+1

steps.

Proof. The proof is by induction on n.
Base case: For n = 0 ATr≤0 represents precise reachability in 0 or 1 step. It follows

that if the query on line 3 is satisfiable, some target states are truly reachable from
the set of source states in ≤2 steps. Moreover, the properties of QE guarantee that
Res = QE(∃X, X ′ query)[X ′′ ↦→ X] is a subset of Target(X) that are reachable from
Source using ATr≤0 ◦ATr≤0.

Inductive case: Suppose the claim holds for n − 1. If at level n the procedure
returned a non-empty set, it must have been the case that the first recursive call (line 11)
returned a non-empty set IntermediateReached of states truly reachable from Source in
≤2n steps, by our induction hypothesis. Additionally, the second recursive call (line 13)
also returned a non-empty set TargetReached that, according to our induction hypothesis,
is a subset of Target truly reachable from IntermediateReached in ≤2n steps. It follows
that TargetReached is a subset of Target truly reachable from Source in ≤2n+1 steps.

The correctness of procedure IsReachable extends naturally to the correctness of
our main procedure.

Theorem 4.9 (Correctness). If Algorithm 4.1 returns UNSAFE, then the system S is
unsafe, i.e., some bad state is reachable from some initial state.
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Proof. Algorithm 4.1 returns UNSAFE only if IsReachable returns a non-empty set of
states for some n. From the correctness of IsReachable, it follows that the returned set
is a subset of Bad reachable from Init in ≤2n+1 steps. Thus there exists a counterexample
trace in the system.

Next, we want to show that if there exists a counterexample trace in the system, our
procedure will eventually report it. This boils down to the question of termination of a
single call to IsReachable.

Lemma 4.10. Assume that the satisfiability check (line 3) terminates, i.e., that the back-
ground theory T is decidable, and that T has procedures for interpolation and quantifier
elimination.4 Then, a single call to IsReachable always terminates.

Proof. The proof proceeds by induction on level n. The base case (n = 0) trivially
terminates after a single satisfiability query on line 3.

For the inductive case, consider the first iteration of the loop. If the query is
unsatisfiable, the procedure terminates. If it is satisfiable, quantifier elimination yields
a set of states Intermediate = {m | ∃s ∈ Source,∃t ∈ Target : (s, m) ∈ ATr≤n ∧ (m, t) ∈
ATr≤n}. Now consider the first recursive call (line 11). By induction, it terminates. If it
returns ∅, then, by properties of the interpolation, ATr≤n has been strengthened such
that ∀s ∈ Source,∀m ∈ Intermediate : (s, m) /∈ ATr≤n now holds. Consequently, in the
second iteration, the query on line 3 must be unsatisfiable, and the procedure terminates.

Now consider the situation when the recursive call on line 11 returned a non-empty
set IntermediateReached. The procedure continues to the second recursive call (line 13),
which also terminates, by induction. If the returned set TargetReached is non-empty,
the procedure terminates (line 15). If it is empty, no state reachable from Source in
≤2n steps of Tr can reach any state in Target in another ≤2n steps. Moreover, ATr≤n

has been strengthened to not relate any state from IntermediateReached with a state in
Target. In the second iteration, the query on line 3 could still be satisfiable. However, the
extracted Intermediate (of the second iteration) cannot contain states that are reachable
from Source in ≤2n steps. Thus, the first recursive call (line 11) in the second iteration
must return ∅. This is followed by an unsatisfiable query (line 3) in the third iteration,
after which the procedure terminates.

The immediate consequence of Lemma 4.10 is that our main procedure will find a
counterexample if one exists.

Theorem 4.11. If a counterexample exists in the system, Algorithm 4.1 terminates with
the UNSAFE result.

4The linear arithmetic theories satisfy these assumptions.
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4.3.3 Proving Safety

Besides the search for counterexample traces with IsReachable procedure, Algorithm 4.1
also attempts to prove safety by discovering safe inductive transition invariant in the
procedure HasInvariant. On one extreme, this procedure could be implemented to
always return False, which would turn Algorithm 4.1 into a BMC-like algorithm, though
with the bound increasing exponentially in the number of iterations. However, it is
possible to take advantage of the elements of the TPA sequence, which are guaranteed
to satisfy some of the properties of a safe inductive transition invariant. Moreover, the
missing property can be checked for with a satisfiability query.

It trivially follows from Equation (4.4) that each element of the TPA sequence satisfies
condition 1 of the inductive transition invariant. Moreover, from a certain point onwards,
the elements are also safe.

Observation 4.12. After call to IsReachable(n, Init, Bad) returns ∅, ATr≤n+1 is safe
for the rest of the run of Algorithm 4.1.

This follows from the properties of Craig interpolants and the fact that the elements
can only be strengthened afterwards. Thus, only the condition for the inductive step of
the inductive transition invariant needs to be checked.

Lemma 4.13. Assume that for some n > 0, Init ◁ ATr≤n ◦ Tr ⊆ Init ◁ ATr≤n or that
Tr ◦ATr≤n ▷ Bad ⊆ ATr≤n ▷ Bad after IsReachable(n− 1, Init, Bad) returned ∅. Then
ATr≤n is a safe inductive grounded transition invariant.

Proof. We have established above that ATr≤n is safe and satisfies the base condition for
inductive transition invariant. The assumption of the lemma is exactly the inductive
condition for inductive grounded transition invariant from Definition 4.3.

A possible implementation of HasInvariant, which we use in our implementation,
thus consists of checking the condition of Lemma 4.13 for each of the (updated) elements
of the TPA sequence. This corresponds to two SMT checks per element. If the condition
is satisfied for any element, a safe inductive (grounded) invariant has been discovered.
Algorithm 4.1 reports that no counterexample exists and the transition system is safe.

Note that it is sufficient to test for grounded transition invariants; if a transition
formula is an inductive transition invariant, it is also a grounded transition invariant.

4.3.4 Under-approximating Quantifier Elimination with Model-based Projection

Model-based projection (MBP) [137] is a recent technique for under-approximating quan-
tifier elimination for existentially quantified formulas. In short, given an existentially
quantified formula ∃Xϕ(X, Y ), MBP is a function that maps each model of ϕ to a
quantifier-free formula that implies ∃Xϕ(X, Y ) and is true in the model. Moreover, it is
required that the function has a finite image (it produces only finitely many quantifier-free
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under-approximations) and the disjunction of the image is equal to the quantified formula.
Efficient model-based projections have been discovered for various theories, most notably
for linear real and integer arithmetic [33, 137], but also for algebraic datatypes [33],
arithmetic signature of bit-vectors [191] and arrays5 [135].

Quantifier elimination in Algorithm 4.2 can be replaced by MBP in a straightforward
way. On line 3, if the query is satisfiable, we obtain from the SMT solver a model
witnessing the satisfiability. Then, we replace QE with MBP using the obtained model
on lines 9 and 10. It is easy to check that the proof of Lemma 4.8 remains valid with this
change, and thus also the result of Theorem 4.9. We demonstrate the practical advantage
of MBP over QE experimentally in Section 5.7.1.

4.4 Split Transition Power Abstraction

This section presents a variant of the TPA algorithm that is more tailored to proving
safety. The possible implementation of the procedure HasInvariant of Algorithm 4.1
proposed earlier uses only induction as a single proof rule, and the only candidates for
inductive transition invariants available are the elements of the TPA sequence. Here,
we show that it is possible to make the search for transition invariant more powerful;
however, the procedure for answering bounded reachability queries gets more complex.
First, we obtain an additional source of candidates for transition invariants by splitting
the TPA sequence. Then, we strengthen the proof rule for proving safety from induction
to k-induction. Thus, the algorithm will search not only for inductive but also k-inductive
transition invariants.

The splitting, combined with k-induction, results in much better performance in
discovering safe transition invariants, even solving benchmarks not solvable by state-
of-the-art tools. The experiments and analysis of the results are presented later, in
Section 5.7.1.

4.4.1 k-inductive Transition Invariants

k-induction principle [73, 186] generalizes induction and can also be used as a proof rule
for safety properties: A state formula S(X) is a k-inductive invariant iff

• Init(X(0)) ∧ Tr i(X(0), X(i)) =⇒ S(X(i)) for 0 ≤ i < k,

• ⋀︁k−1
i=0 S(X(i)) ∧ Tr(X(i), X(i+1)) =⇒ S(X(k)).

If a safe k-inductive invariant exists, the system is safe. Note that the definition of
inductive invariant coincides with 1-inductive invariant. k-inductive invariants can be
more compact than inductive invariants, and, for some theories, k-induction is strictly
stronger than induction [129].

5MBP for arrays does not satisfy the finite image condition
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The concept of inductive transition invariant can be generalized to k-inductive
transition invariant in the same way as for the state version.

Definition 4.14 (k-inductive transition invariant). A transition formula T (X, X ′) is a
k-inductive transition invariant iff the base condition

Tr i ⊆ T for 0 ≤ i < k, (k-base)

and either of the following inductive conditions hold

k⋀︂
i=1

T (X(0), X(i)) ∧ Tr(X(i), X(i+1)) =⇒ T (X(0), X(k+1)), (k-ind-fwd)

k⋀︂
i=1

T (X(i), X(k+1)) ∧ Tr(X(i−1), X(i)) =⇒ T (X(0), X(k+1)). (k-ind-bwd)

Observation 4.15. k-inductive transition invariant is indeed a transition invariant.

Proof. We need to show that if (s, t) ∈ Tr∗ then (s, t) ∈ T . The proof proceeds by strong
induction on the length l of the shortest trace from s to t. The base case covers all l < k,
in which case (s, t) ∈ T follows directly from (k-base).

For the induction step, suppose that l ≥ k and that the claim holds for all traces of
shorter length. We analyze the case of (k-ind-fwd): Take a state m that lies exactly k

steps before t on the trace from s. By the induction hypothesis, every state n that lies
between m (including) and t (excluding) can be reached from s by one step of T , i.e.,
(s, n) ∈ T . It follows by (k-ind-fwd) that (s, t) ∈ T . The case of (k-ind-bwd) is analogous;
only the k predecessors of t are replaced by k successors of s in the reasoning.

Similar to inductive transition invariants, it is possible to consider grounded version
of k-inductive transition invariant.

Definition 4.16 (left- and right-grounded k-inductive transition invariant). A transition
formula T (X, X ′) is a left-grounded k-inductive transition invariant if the following
conditions hold:

Init ◁ Tr i ⊆ Init ◁ T for 0 ≤ i < k, (left-k-base)

Init(X(0)) ∧
k⋀︂

i=1
T (X(0), X(i)) ∧ Tr(X(i), X(i+1)) =⇒ T (X(0), X(k+1)). (left-k-ind-fwd)

Similarly, the transition formula T (X, X ′) is a right-grounded k-inductive transition
invariant if the following conditions hold:

Tr i ▷ Bad ⊆ T ▷ Bad for 0 ≤ i < k, (right-k-base)
k⋀︂

i=1
T (X(0), X(i))∧Tr(X(i), X(i+1))∧Bad(X(k+1)) =⇒ T (X(0), X(k+1)). (right-k-ind-bwd)
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Observation 4.17. Grounded k-inductive transition invariant is indeed a grounded
transition invariant.

Proof. Same as the proof of Observation 4.15, with restricting s to belong to Init for the
left-grounded case and restricting t to belong to Bad for the right-grounded case.

Note that the stronger version (with weaker antecedent) of (left-k-ind-fwd) Init(X(0))∧
T (X(0), X(1))∧Trk(X(1), X(k+1)) =⇒ T (X(0), X(k+1)) can be nicely expressed in the set
notation as Init◁T ◦Trk ⊆ Init◁T . Analogously, the stronger version of (right-k-ind-bwd)
can be expressed as Trk ◦ T ▷ Bad ⊆ T ▷ Bad.

4.4.2 Intuition behind Splitting the TPA Sequence

Suppose that we want to improve the ability of Algorithm 4.1 to prove safety, but we
want to do as minimal changes as possible. We could try adding checks for k-inductive
transition invariant instead of just for inductive transition invariant. However, it is not
clear how to do it efficiently. ATr≤n, nth element of the TPA sequence, satisfies the base
case (k-base) for k up to 2n. But checking the inductive step for k = 2n translates into
a satisfiability query with 2n + 2 copies of the state variables. Thus the checks would get
too complex very quickly for increasing values of n. To remedy the situation, we could
apply the same idea that led to the TPA sequence. Instead of checking the implication
from (k-ind-fwd), we could consider a stronger implication (with weaker antecedent)
T (X, X ′)∧Trk(X ′, X ′′) =⇒ T (X, X ′′). Taking T := ATr≤n and k = 2n this amounts to
a check of ATr≤n ◦Tr2n

⊆ ATr≤n. Unfortunately, this would still require 2n + 2 copies of
the state variables. Now we could re-use the over-approximating properties of the TPA se-
quence and further weaken the antecedent, replacing Tr2n

with ATr≤n. However, this over-
approximation is too coarse, as the resulting check ATr≤n◦ATr≤n ⊆ ATr≤n is strictly sub-
sumed by our original check for inductive transition invariant ATr≤n◦Tr ⊆ ATr≤n. Thus,
this is not the right approach. Nevertheless, it hints at a possible improvement. Instead of
replacing Tr2n

with ATr≤n, which captures reachability in up to 2n steps, we could main-
tain more precise over-approximation that would capture reachability in exactly 2n steps.

We can arrive at the idea of maintaining another over-approximating sequence also
by identifying a potentially redundant work in the TPA algorithm and trying to resolve
the redundancy. Let’s revisit the inductive definition of R≤n, given in Equation (4.3).
The intuition behind this inductive definition is that every trace of length ≤2n+1 can be
obtained as a concatenation of two traces of length ≤2n. However, there can be multiple
ways to decompose such a trace into two smaller traces (see Figure 4.2). Proving one
such decomposition infeasible does not entail that others are also infeasible.

The idea of splitting the reachability sequence arises naturally from an attempt to fix
this redundancy. The reasoning is as follows: Instead of concatenating two steps of R≤n to
obtain R≤n+1, we replace one of these steps with a step of R=n = Tr2n

, which represents
reachability in exactly 2n steps. However, R≤n ◦R=n covers only traces of length from
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Tr Tr Tr Tr Tr Tr

R≤3

R≤2 R≤2

R≤2 R≤2

R≤2 R≤2

Figure 4.2. Three different ways of decomposing trace of length six into two traces of length
at most four

2n to 2n+1. To keep the smaller lengths covered as well, we can add R≤n. The result,
R≤n+1 = R≤n∪R≤n◦R=n, almost gives us the unique deconstruction we are seeking. The
exceptions are traces of length exactly 2n, which are covered by both R≤n and R≤n ◦R=n.
The final step is a realization that this last redundancy is removed by replacing the
relation R≤n by R<n. The sequence R< has the following inductive definition:6

R<0 = Id,

R<n+1 = R<n ∪R<n ◦R=n,
(4.6)

with the sequence R= also defined inductively:

R=0 = Tr ,

R=n+1 = R=n ◦R=n.
(4.7)

Notice that we have effectively split the R≤ sequence into two sequences R< and
R=, because R≤n = R<n ∪R=n. Now, decomposing a trace according to the inductive
definitions from Equations (4.6) and (4.7) is unique. For example, there is only one way
to decompose the trace of length six from Figure 4.2, now viewed as one step of R<3,
according to Equation (4.6): first two steps are covered by R<2 and the last four steps
are covered by R=2.

Following the TPA template, we do not use the sequences R< and R= directly. We
build over-approximating sequences TPA< and TPA= whose representation in terms
of copies of state variables does not blow up with increasing n. The elements of the
over-approximating sequences TPA< and TPA= are denoted as ATr<n and ATr=n,
respectively, and we require that

ATr<n ⊇ R<n = Id ∪ Tr ∪ Tr2 ∪ · · · ∪ Tr2n−1, (4.8)

ATr=n ⊇ R=n = Tr2n

. (4.9)

Next, we will see how splitting the TPA sequence affects the procedures for answering
bounded reachability queries and for discovering safe transition invariants.

6An alternative inductive definition R
<n+1 = R

<n ∪ R
=n ◦ R

<n leads to a different variant of our
algorithm.
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input : transition system S = ⟨Init, Tr , Bad⟩
global : TPA< sequence ATr<0, . . . , ATr<n, . . .

TPA= sequence ATr=0, . . . , ATr=n, . . . (lazily initialized to true)
Function IsSafeSplitTPA(⟨Init, Tr , Bad⟩):

1 ATr<0 ← Id; ATr=0 ← Tr ; n← 0
2 while true do
3 if IsReachableLt(n, Init, Bad) ̸= ∅ or IsReachableEq(n, Init, Bad) ̸= ∅

then return UNSAFE
4 if HasInvariant(S, n) then return SAFE
5 n← n + 1

Algorithm 4.3. split-TPA’s main procedure

4.4.3 Main Procedure

We refer to the version of the TPA algorithm that uses the split sequences as split-
TPA. Its main procedure follows the same template as Algorithm 4.1 and is given in
Algorithm 4.3. Next, we present the implementation of the methods IsReachableLt and
IsReachableEq for answering bounded reachability queries and the implementation of
the method HasInvariant for discovering safe transition invariant.

4.4.4 Bounded Reachability Checks with Split Sequences

Compared to the first algorithm, split-TPA performs the bounded reachability check at
level n in two phases. First, IsReachableLt checks all traces of length strictly smaller
than 2n+1. Then, IsReachableEq checks all traces of length exactly 2n+1.

Recall that the procedure IsReachable from Algorithm 4.2 follows the inductive
definition of R≤ (4.3). The procedures IsReachableEq and IsReachableLt follow in the
same way the inductive definitons of R= (4.7) and R< (4.6). Note that the inductive step
for R= has the same form as that for R≤. Consequently, IsReachableEq is the same as
IsReachable, with the modification that all references to TPA sequence and its elements
ATr≤n are replaced by TPA= sequence and its elements ATr=n. For completeness, we
give the pseudocode in Algorithm 4.4.

IsReachableEq takes as input state formulas representing source and target states
and a number n representing the current level. It outputs either a non-empty subset of
Target that is truly reachable from Source in exactly 2n+1 steps of Tr , or an empty set if
no trace from Source to Target of length 2n+1 exists. The procedure IsReachableLt is
designed to complement IsReachableEq by covering all traces with <2n+1 steps. It is
given in Algorithm 4.5.

Since the code of IsReachableLt is more complex, we explain it in more detail. It
first assembles the query for an abstract trace (lines 2–4) and sends it to the satisfiability
solver (line 5). Following the inductive definition of Equation (4.6), the abstract trace
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input : level n, source states Source, target states Target
output : subset of Target reachable from Source in exactly 2n+1 steps
global : TPA= sequence ATr=0, . . . , ATr=n, . . .

Function IsReachable(n,Source,Target):
1 while true do
2 query ← Source(X) ∧ATr=n(X, X ′) ∧ATr=n(X ′, X ′′) ∧ Target(X ′′)
3 sat_res← Sat?[query]
4 if sat_res = UNSAT then
5 I ← Itp(ATr=n(X, X ′) ∧ATr=n(X ′, X ′′), Source(X) ∧ Target(X ′′))
6 ATr=n+1 ← ATr=n+1 ∧ I[X ′′ ↦→ X ′]
7 return ∅
8 else
9 if n = 0 then return QE(∃X, X ′ query)[X ′′ ↦→ X]

10 Intermediate ← QE(∃X, X ′′ query)[X ′ ↦→ X]
11 IntermediateReached ← IsReachable(n− 1, Source, Intermediate)
12 if IntermediateReached = ∅ then continue
13 TargetReached ← IsReachable(n− 1, IntermediateReached, Target)
14 if TargetReached = ∅ then continue
15 return TargetReached

Algorithm 4.4 . Reachability query using TPA= sequence

consists of either one step of ATr<n or a step of ATr<n followed by a step of ATr=n. If
no such abstract trace exists (line 6), the procedure reports that no real trace of length
<2n+1 exists (line 9). Before reporting the result, it uses Craig interpolation [68] to refine
the abstraction at the next level (line 8).

If an abstract trace exists (line 10), the procedure checks whether there is a corre-
sponding real trace. On level 0 (line 11), the discovered abstract trace is real, and the
procedure returns a reachable subset of target states. On other levels, the procedure first
determines which abstract trace has been found and then tries to refine it.

The first possibility is that the abstract trace is a single step of ATr<n (line 12).
The refinement of this single abstract step is checked with a single recursive call. If the
refinement is not successful, the procedure attempts to find a new abstract trace (line 14).
Otherwise, the reached target states from the recursive call are returned (line 15).

The second possibility is that the abstract trace consists of one step of ATr<n followed
by one step of ATr=n (line 16). One after another, the procedure attempts to refine these
abstract steps into a real trace by calling the corresponding procedures IsReachableLt
and IsReachableEq with decreased bound. If any of the two steps cannot be refined,
that abstract trace has been refuted, and the procedure attempts to find a new abstract
trace (lines 19, 21). If both abstract steps have been successfully refined, a reachable
subset of target states is reported (line 22).



66 4.4 Split Transition Power Abstraction

input : level n, source states Source, target states Target
output : subset of target states truly reachable in <2n+1 steps
global : TPA< sequence ATr<0, . . . , ATr<n, . . .,

TPA= sequence ATr=0, . . . , ATr=n, . . .

Function IsReachable(n,Source,Target):
1 while true do
2 opt1← ATr<n[X ′ ↦→ X ′′]
3 opt2← ATr<n(X, X ′) ∧ATr=n(X ′, X ′′)
4 query ← Source(X) ∧ (opt1 ∨ opt2) ∧ Target(X ′′)
5 sat_res, model← Sat?[query]
6 if sat_res = UNSAT then
7 Itp(X, X ′′)← GetItp(opt1 ∨ opt2, Source(X) ∧ Target(X ′′))
8 ATr<n+1 ← ATr<n+1 ∧ Itp[X ′′ ↦→ X ′]
9 return ∅

10 else
11 if n = 0 then return QE(∃X, X ′ : query)[X ′′ ↦→ X]
12 if model |= opt1 then
13 TargetReached ← IsReachableLt(n−1, Source, Target)
14 if TargetReached = ∅ then continue
15 return TargetReached
16 else
17 Intermediate ← QE(∃X, X ′′ :

Source(X) ∧ opt2 ∧ Target(X ′′))[X ′ ↦→ X]
18 IntermediateReached ←

IsReachableLt(n−1, Source, Intermediate)
19 if IntermediateReached = ∅ then continue
20 TargetReached ←

IsReachableEq(n−1, IntermediateReached, Target)
21 if TargetReached = ∅ then continue
22 return TargetReached

Algorithm 4.5 . Reachability query using TPA< sequence

Similarly to Algorithm 4.2, quantifier elimination can be under-approximated with
model-based projection, and we do so in our implementation.

The correctness of the reachability procedures guarantees the correctness of the
UNSAFE answer of split-TPA.

Lemma 4.18. If IsReachableEq(n, Source, Target) or IsReachableLt(n, Source, Target)
returns a non-empty set Res, then Res ⊆ Target and every state in Res can be reached
from some state in Source in exactly 2n+1 steps (for IsReachableEq) or in <2n+1 steps
(for IsReachableLt).
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Proof. By induction on n, relying on the properties of quantifier elimination (QE) and
the fact that ATr<0 = Id and ATr=0 = Tr represent true reachability.

Theorem 4.19. If split-TPA (Algorithm 4.3) returns UNSAFE, then there exists a
counterexample trace in the system, i.e., some bad state is reachable from some initial
state.

Proof. Follows directly from Lemma 4.18.

4.4.5 Discovering Safe Transition Invariants in split-TPA

Similar to Algorithm 4.1, Algorithm 4.3 can prove the given system safe by discovering
a safe transition invariant. However, the split sequences TPA< and TPA= provide a
richer pool of candidates and allow easy use of k-induction as a proof rule instead of
just simple induction. Note that elements ATr<n and ATr=n are guaranteed to be
safe if IsReachableLt(n − 1, Init, Bad) and IsReachableEq(n − 1, Init, Bad) return ∅,
respectively. We show that it is possible to use satisfiability checks that do not grow in
complexity (in terms of the number of variables) to test the elements for the properties
of k-inductive transition invariants.

Lemma 4.20. Assume that for some n, Init ◁ ATr<n ◦ATr=m ⊆ Init ◁ ATr<n for some
0 ≤ m ≤ n. Then ATr<n is a left-grounded 2m-inductive transition invariant.

If ATr=m ◦ATr<n ▷ Bad ⊆ ATr<n ▷ Bad for some 0 ≤ m ≤ n, then ATr<n is a
right-grounded 2m-inductive transition invariant.

Proof. We prove only the first statement; the second one is analogous. We show that
ATr<n satisfies (left-k-base) and (left-k-ind-fwd). The base condition (left-k-base) follows
trivially from Equation (4.8) and the fact m ≤ n. The inductive condition (left-k-ind-fwd)
is satisfied because Init ◁ ATr<n ◦ATr=m ⊆ Init ◁ ATr<n implies Init ◁ ATr<n ◦ Tr2m

⊆
Init ◁ ATr<n which is a stronger version of (left-k-ind-fwd).

Note that the case of m = 0 in Lemma 4.20 corresponds to Lemma 4.13 as ATr=0 ≡ Tr .
If full transition invariants are required, we can instead check for the stronger condition:

Observation 4.21. If ATr<n ◦ATr=m ⊆ ATr<n or ATr=m ◦ATr<n ⊆ ATr<n for some
0 ≤ m ≤ n then ATr<n is 2m-inductive transition invariant.

Next, we show that checking a fixed-point condition on the elements of TPA= can
also yield a transition invariant.

Lemma 4.22. Assume that for some n, Init◁ATr<n ◦ATr=n ◦ATr=n⊆ Init◁ATr<n ◦ATr=n

then Init ◁ATr<n∪ATr<n ◦ATr=n is a left-grounded 2n-inductive transition invariant.
If ATr=n ◦ATr=n ◦ATr<n ▷Bad ⊆ ATr=n ◦ATr<n ▷Bad then ATr<n∪ATr=n ◦ATr<n ▷Bad
is a right-grounded 2n-inductive transition invariant.
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Proof. The proof uses the same ideas as the proof of Lemma 4.20. Again, we show the
proof only for the first claim. The base case (left-k-base) is satisfied by the first component
ATr<n of the formula. For the inductive case (left-k-ind-fwd) we show that even stronger
condition holds: Init◁ATr<n ∪ATr<n ◦ATr=n◦ATr=n ⊆ Init◁ATr<n ∪ATr<n ◦ATr=n.
Suppose that (s, t) ∈ (ATr<n ∪ ATr<n ◦ ATr=n) ◦ ATr=n and s ∈ Init. Then there is
m such that (s, m) ∈ ATr<n ∪ ATr<n ◦ ATr=n and (m, t) ∈ ATr=n. There are two
possibilities:

• (s, m) ∈ ATr<n: It follows that (s, t) ∈ ATr<n ◦ATr=n.

• (s, m) ∈ ATr<n ◦ATr=n: It follows that (s, t) ∈ ATr<n ◦ATr=n ◦ATr=n. But then
(s, t) ∈ ATr<n ◦ATr=n by the assumption of the lemma.

Similarly to Lemma 4.20, full transition invariants can be discovered by checking a
stronger condition:

Observation 4.23. If ATr=n ◦ATr=n ⊆ ATr=n then both ATr<n ∪ATr<n ◦ATr=n and
ATr<n ∪ATr=n ◦ATr<n are 2n-inductive transition invariants.

One difference compared to proving some ATr<n a transition invariant is that the
second component of the candidate formulas from Lemma 4.22, ATr<n ◦ ATr=n or
ATr=n ◦ ATr<n, is not necessarily safe. However, this can be easily checked by yet
another satisfiability query.

The procedure HasInvariant(S, n) thus checks the conditions of Lemma 4.20 and
Lemma 4.22 for elements of the TPA= and TPA< sequences up to ATr<n+1 and ATr=n+1.
These are already safe after IsReachableLt(n,Init,Bad) and IsReachableEq(n,Init,Bad)
returned ∅. The conditions are checked by issuing a series of satisfiability queries. For
example, the condition ATr=n ◦ATr=n ◦ATr<n ▷ Bad ⊆ ATr=n ◦ATr<n ▷ Bad holds if
and only if the formula ATr=n(X, X ′)∧ATr=n(X ′, X ′′)∧ATr<n(X ′′, X ′′′)∧Bad(X ′′′)∧
¬ATr=n(X, X ′′) is unsatisfiable. Note that each query uses at most 4 copies of the state
variables, no matter how large n is. This is achieved by using the over-approximating
elements of the TPA= sequence, instead of 2n copies of the transition relation Tr .

When the procedure HasInvariant returns true, it means a safe transition invariant
has been discovered. As a consequence, there is no counterexample trace in the system
from Init to Bad, and Algorithm 4.3 returns SAFE. The correctness of this answer is
guaranteed by Lemma 4.20 and Lemma 4.22.

Theorem 4.24 (Correctness of split-TPA). If split-TPA returns SAFE, there is no
counterexample trace from Init to Bad in S.

Example 4.25. As a short example, we consider the analysis of the following multi-phase
loop by the algorithm split-TPA:
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v = 0 ; w = 0 ;
assume( x > z ) ;
while ( v < 1000) {

i f ( x < z ) v = v + 1 ;
else w = w + 1;
x = x + 1 ; z = z + 2 ;

}
assert (w > 0) ;

First, split-TPA refutes the existence of a counterexample trace of length less
than two, because the assertion after the loop cannot be reached after less than two
iterations due to the loop condition. It learns that ATr<1 ≡ v′ ≤ v + 1. Then it
refutes the existence of a counterexample trace of length 2, not because of the loop vari-
able, but because of the interaction between variables x, z and w. Namely, it learns
that ATr=1 ≡ x > z → w′ ≥ w + 2. In the next iteration of the main loop, when
searching for counterexamples of length up to 4, ATr=1 is strengthened with the facts
x ≥ z → w′ ≥ w + 1 and x < z → w′ ≥ w. These three facts together concisely over-
approximate the change to w after precisely two iterations of the loop. Moreover, ATr=1

with these three components is closed under composition, i.e., ATr=1 ◦ATr=1 ⊆ ATr=1.
Thus, split-TPA already at this point discovers 2-inductive transition invariant (based
on Observation 4.23), which is also safe. The transition invariant, using a⃗ = (x, z, v, w),
is then ATr<1(a⃗, a⃗′′) ∨ (∃a⃗′ : ATr<1(a⃗, a⃗′) ∧ATr=1(a⃗′, a⃗′′)), where

ATr<1(a⃗, a⃗′) ≡ w′ ≥ w ∧ v′ ≤ v + 1 ∧ ((x′ ≥ x ∧ z′ ≤ z) ∨ (x′ ≥ x + 1 ∧ z′ ≤ z + 2)),

ATr=1(a⃗, a⃗′) ≡ x > z → w′ ≥ w + 2 ∧ x ≥ z → w′ ≥ w + 1 ∧ x < z → w′ ≥ w.

Note that the exact value of ATr<1 is not essential in this case, as long as it over-
approximates all traces of length less than two and both ATr<1 and ATr<1◦ATr=1 are safe.

4.5 Alternatives, Extensions and Future Work

The presented algorithms TPA and split-TPA represent a direct application of the main
idea behind transition power abstraction. However, there are variations and extensions
yet to be explored. One variation considers the base of the power in TPA. There is no
theoretical obstacle to using a different base, for example, three. The nth element ATr≤n

would then summarize 3n steps of the transition relation Tr instead of 2n. Evaluation of
the advantages and disadvantages of such a change requires further research.

Another variation of the algorithm is related to how the algorithm searches for the
counterexample path. Recall the inductive definition of R< (4.6). The inductive step of
the definition could be changed to R<n+1 = R<n ∪R=n ◦R<n. Though this would still
define the same relation, it would change Algorithm 4.5. The order of the two abstract
steps in the second part of the query (line 3) would be switched to ATr=n(X, X ′) ∧
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ATr<n(X ′, X ′′). Consequently, the recursive calls in the refinement of the two-step
abstract path (lines 18 and 20) would also be called in reverse order: IsReachableEq
would refine the step from the source to the intermediate states, and IsReachableLt
would refine the step from the reached intermediate states to the target states.

The search for the counterexample path can also be altered differently. In the
presented version, the real path is built from the source states towards the target states.
However, this can also be reversed. Building the real path from the target states towards
the source states is also possible. This “backward” flow would be more similar to how
PDR-based algorithms propagate proof obligations from the bad states towards the initial
states. The combination of the forward and backward analyses has a potential for a great
improvement [184] and is an intriguing future work.

The focus of the TPA-based algorithms on transitions rather than states opens up
possibilities for modular analysis of more complex systems, such as general systems of
constrained Horn clauses. The information learnt about transitions is not invalidated
even when the initial conditions change; this allows efficient independent analysis of
multiple connected loops that exchange information about reachable and unreachable
states. Our implementation already supports the first step in this direction: analysis
of chains of transition systems. The details of this implementation are discussed later,
in Section 5.5.5. We imagine the extension to nonlinear systems of Horn clauses as an
unbounded Spacer-like search over a network of transition systems. The proper design
and implementation of this extension is future work.

4.6 Related Work

Many model-checking algorithms search for a safe inductive invariant to prove safety.
Candidates for inductive invariants are typically obtained from proofs of bounded safety.
The algorithms try to construct the safe inductive invariant either in monolithic [155,
157, 176] or incremental way [41, 58, 85, 113, 137]. Our work follows a similar strategy,
but it primarily computes transition invariants, not state invariants.

Transition invariants have been introduced in [164] as a proof rule for program
verification, especially termination and other liveness properties. Transition predicate ab-
straction [165] has been introduced as a way to compute transition invariants. Transition
invariants have also been used for loop summarization with the goal of proving termi-
nation [141]. However, in that work candidates for transition invariants were obtained
from specialized abstract domains using techniques from abstract interpretation [67].
In contrast, we use transition invariants to prove safety, with candidates automatically
obtained from proofs of bounded safety using Craig interpolation.

Craig interpolation [68] is a popular abstraction technique widely used in model
checking. We use standard algorithms to compute interpolants from proofs of unsat-
isfiability [37, 61, 156]. The integration of domain-specific knowledge [146] is future
work.
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While in most model checking algorithms interpolants are used as over-approximations
of states, we use them to over-approximate transitions. The idea of abstracting transition
relation with interpolants originates from [127]. However, they maintained an abstraction
of only a single step of the transition relation. We build two sequences of relations
over-approximating doubling number of steps of the transition relation, which are useful
both for detecting deep counterexamples and as a source of candidates for safe transition
invariant.

Loop acceleration [12, 40, 98] is a loop analysis technique that can prove safety and
detect deep counterexamples. It transforms the loop to a single quantifier-free formula
representing all possible executions of the loop. While offering significant improvement
for a limited types of integer loops, it is not applicable for code with control-flow
divergence and/or data structures. Acceleration have also been successfully integrated
into interpolation-based model checking [49, 115] where interpolants computed from
accelerated paths lead to much better abstraction refinement in the traditional CEGAR
algorithm [63]. In contrast, our technique does not accelerate paths but builds over-
approximations of bounded number of iterations. It also computes transition interpolants,
instead of state interpolants. It is not restricted to any specific type of loops, and it
works over any theory supporting interpolation and quantifier elimination.

A speciliazed technique technique for fast detection of deep counterexamples for C
programs was proposed in [140]. Given a path through a loop, it computes a new path that
under-approximates an arbitrary number of iterations of the original path. In contrast to
loop acceleration, this technique only under-approximates the loop behaviour. On the
other hand, it can handle conditionals and richer background theories. Our technique also
focuses on the detection of deep counterexamples, but it is over-approximating, which
also allows for detecting transition invariants and proving safety. Their prototype aims
at C programs only (and does not seem to be maintained anymore). Our implementation
works on transition systems in the form of constrained Horn clauses (CHC) and thus is
agnostic to the programming language.

The k-induction principle [73, 186] has been successfully used as a replacement for
basic inductive reasoning in IC3-style algorithms [106, 129, 193]. k-inductive invariants
can be more compact than inductive invariants and for some theories k-induction is
a strictly stronger proof rule [129]. While the first, simpler version of our algorithm
could only use inductive reasoning for discovering transition invariants, the second
version, split-TPA, uses k-inductive reasoning. We believe that split-TPA’s success
on challenging systems can be in large part attributed to the inclusion of k-inductive
reasoning, which is missing from our first TPA algorithm.

4.7 Conclusion

In this chapter, we have introduced a novel model-checking algorithm for safety properties
of transition systems with a focus on finding deep counterexamples. The core component
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of the algorithm is a sequence of transition formulas, called transition power abstraction
(TPA) sequence, where each element over-approximates a sequence of transition steps
twice as long as its predecessor. TPA sequence allows the algorithm to quickly answer
bounded reachability queries, in ideal case doubling the size of the covered state space with
a single, relatively simple SMT query. Additionally, the elements of the TPA sequence
serve as automatically discovered candidates for safe transition invariants.

The basic version of the algorithm, with a single TPA sequence, is able to detect
an order of magnitude longer counterexamples that state-of-the-art model checking
algorithms within the same time contraints. However, its ability to prove system safe
is very limited. For this reason we introduced an improved version of the algorithm
obtained by splitting the TPA sequence into two separate sequences. The key ingredients
of split-TPA are more candidates for safe transition invariants and the ability to
efficiently check for k-inductive transition invariants, not only basic inductive transition
invariants. split-TPA not only retains the ability to detect deep counterexample, but
also significantly improves the ability to prove unbounded safety.



Chapter 5

The Golem Horn Solver

This chapter describes Golem, a solver for the satisfiability of constrained Horn clauses
(CHC) developed to support the research reported in this thesis. Golem is an open-source
program, written in C++17, and available at GitHub1. As input, it takes a system
of constrained Horn clauses in the format prescribed by the international competition
of Horn solvers (CHC-COMP).2 The goal is to decide the satisfiability of the input
system (see Section 2.4 for details). If there exists an interpretation of the uninterpreted
predicates (a model) that satisfies all the clauses, then the system is satisfiable. If a
derivation of false from the system of clauses exists, then it constitutes proof that the
system is unsatisfiable. Correspondingly, Golem outputs SAT when it finds a model or
UNSAT when it finds a proof of unsatisfiability. This output follows the usual semantics of
SMT solvers prescribed by SMT-LIB. CHC-COMP also uses this semantics. Optionally,
Golem can also output the model or the proof found.

Golem was designed to enable a controlled interaction between SMT-based model-
checking algorithms and the SMT solver used for various computational tasks. In
particular, the interpolating procedures of the SMT solver were designed to be easily
accessible and adaptable to the needs of the verifier engine. The open and modular
infrastructure of Golem allowed not only implementing state-of-the-art algorithms such
as BMC, k-induction, Impact and Spacer, but also rapidly prototyping our novel
TPA-based algorithms (Chapter 4). One of the key design choices was to tightly integrate
Golem with the underlying SMT solver OpenSMT. The practical consequences of the
tight integration are twofold: It enables fine-tuned use of the SMT solver, its decision and
interpolation procedures. Additionally, it enables the re-use of existing data structures
for term representation and manipulation, which saves development time and avoids
the runtime overhead of a translation between different term representations. During
the development of Golem, the integrated architecture allowed tuning of the overall
infrastructure and removing potential performance bottlenecks, both in Golem and in

1https://github.com/usi-verification-and-security/golem
2https://chc-comp.github.io/format.html
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OpenSMT. The drawback of this design choice is that it is not possible to easily replace
the underlying SMT solver or use multiple different SMT solvers. Other state-of-the-art
Horn solvers are integrated quite tightly with their underlying satisfiability engines as
well. Spacer [137] lives as a fixed-point engine inside the Z3 solver [72] and, as such,
has unrestricted access to its various utilities, including the core SMT solver. Similarly,
the interpolating theorem prover Princess [173] is integrated into Eldarica [117].

An official publication for Golem is currently being prepared for submission. However,
it was already used in the experiments for evaluating our TPA algorithms in [35, 36].
In the experiments, the implementation of TPA algorithms in Golem was compared
to the existing model-checking tools on a set of challenging benchmarks representing
multi-phase loops. Additionally, it participated in CHC-COMP in 2021 and 2022; in
the 2022 edition, it beat all other Horn solvers except the non-competing Spacer in
the LRA-TS, LIA-Lin and LIA-Nonlin tracks. A short description of Golem has been
published in the CHC-COMP-21 competition report [95].

The organization of this chapter is the following: First, we introduce terminology
regarding the internal representation of a CHC system in Golem. Then we describe
the high-level architecture of Golem and focus more on the CHC transformations and
reasoning engines it implements. We also briefly discuss some interesting details from
our work on OpenSMT as the core component of Golem. After the tool’s description,
we present results from several experiments. Finally, we discuss possible future directions
for Golem and related work.

5.1 Terminology

The terminology for Horn clauses has been introduced in Section 2.4. Golem uses
graph representation for a system of Horn clauses. Nodes in the graph correspond to the
uninterpreted predicates of the system; edges correspond to the clauses of the system.
Additionally, there are two particular nodes true and false, where true is understood as
the body predicate of facts, and false is the head predicate of queries. The graph has the
following properties:

• It is labeled. Each edge is labeled with the constraint of the clause represented by
the edge.

• It is possibly a hypergraph. Each edge connects all the body’s predicates to the
head’s predicate.

• It is directed. Each edge is oriented from the predicates of the body (source nodes)
to the predicate of the head (target node).

• It is possibly a multigraph. There can be multiple clauses with the same body and
head predicates. Each clause has a distinct edge in the graph, labeled with the
clause’s constraint.
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true

multA multB

false

X
′
A = 0 ∧ Z

′
A = 0 X

′
B = 0 ∧ Z

′
B = 0

X
′
A = XA + 1

∧ Y
′

A = YA

∧ Z
′
A = ZA + 1

X
′
B = XB + 1

∧ Y
′

B = YB

∧ Z
′
B = ZB + 1

XA = XB

∧ YA = YB

∧ ZA ̸= ZB

Figure 5.1. Graph representation of the CHC system from Example 5.1

Note that only a clause with multiple predicates in the body is represented by a hyperedge,
i.e., an edge with multiple source nodes. If the CHC system is linear (each clause has
at most one predicate in the body), then all edges are standard directed edges, with
one source node and one target node. In a standard graph (not hypergraph), we denote
a directed edge e as an ordered pair (s, t) where s is the source node of e and t is its
target node. We also use helper functions src and tgt where src(e) = s and tgt(e) = t.
For a node v we denote in(v) = {e | tgt(e) = v} the set of v’s incoming edges and
out(v) = {e | src(e) = v} the set of v’s outgoing edges. For an edge e, we denote its label,
the constraint of the corresponding clause, as L(e).

Example 5.1. To illustrate the graph representation, consider the normalized version of
the CHC system from Example 2.2 in Section 2.4.

true ∧X ′
A = 0∧Z ′

A = 0 =⇒ multA(X ′
A,Y ′

A,Z ′
A)

multA(XA,YA,ZA)∧X ′
A = XA + 1∧Z ′

A = ZA + YA ∧Y ′
A = YA =⇒ multA(X ′

A,Y ′
A,Z ′

A)
true ∧X ′

B = 0∧Z ′
B = 0 =⇒ multB(X ′

B,Y ′
B,Z ′

B)
multB(XB,YB,ZB)∧X ′

B = XB + 1∧Z ′
B = ZB + YB ∧Y ′

B = YB =⇒ multB(X ′
B,Y ′

B,Z ′
B)

multA(XA,YA,ZA)∧multB(XB,YB,ZB)∧XA = XB ∧YA = YB ∧ZA ̸= ZB =⇒ false

Compared to the original system, we assigned unique variables to each predicate and
rewrote the clauses with predicates in the heads using the primed (next-state) versions
of the variables. This rewriting is similar to what Golem uses internally.3 We also
explicitly added the predicate true to the facts of the system.

3The real representation in Golem is more complicated because it needs to take into account possibly
multiple occurrences of the same predicate in the body of the same clause.
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Interpreter Preprocessor Impact Spacer

TPA

BMC KIND

Engines

.smt2

SAT
+

model

UNSAT
+

proof

OpenSMT

Figure 5.2. High-level architecture of Golem

The graph representation of this system is depicted in Figure 5.1. The single incoming
edge of false is a hyperedge because it has two source nodes, multA and multB. Its label
is the constraint of the corresponding clause, i.e., XA = XB ∧YA = YB ∧ZA ̸= ZB.

As described in Section 2.5, the safety of transition systems can be encoded into a
CHC representation of a particular form. In the graph representation of a transition
system, there is a single node v, beside the special nodes true and false. Moreover, there
are only three edges: from true to v, from v to false and a self-loop on v. Self-loop on v

represents the transition relation, the incoming edge defines the initial states, and the
outgoing edge defines the error states. If this CHC system is satisfiable, the interpretation
of v’s uninterpreted predicate represents a safe inductive invariant of the transition
system.

5.2 Architecture

The flow of data inside Golem is depicted in Figure 5.2. The system of constrained
Horn clauses (CHCs) is read from .smt2 file, a script in an extension of the language of
SMT-LIB. Interpreter is responsible for interpreting the SMT-LIB script and building
the internal representation of the system of CHCs. In Golem, CHCs are first normalized,
and then the system is turned into the graph representation described in Section 5.1.
Normalization ensures that unique variables are used to obtain a canonical representation
of each predicate. With the canonical representation, clauses are rewritten such that
predicates contain only variables (no complex terms) as arguments.
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The graph representation of the system is then passed to the Preprocessor, which
applies various graph transformations. The goal of these transformations is to simplify
the graph and make it easier to solve by the chosen back-end engine. The transformations
implemented in Golem are described in detail in Section 5.4.

After the preprocessing phase, the transformed graph is sent to the chosen back-end
engine. Engines in Golem implement various algorithms for solving the CHC satisfiability
problem. Golem contains the implementation of our TPA-based algorithms (Chapter 4),
but also re-implementation of state-of-the-art algorithms BMC [29], KIND [186], Im-
pact [157], and Spacer [137]. Users pick the engine to run using a command-line option
--engine. A detailed description of the engines is given in Section 5.5.

Each engine in Golem implements an SMT-based algorithm; thus, they all rely on an
SMT solver for answering SMT queries and providing models and interpolants. Golem
relies entirely on OpenSMT [122] for these tasks. Additionally, Golem re-uses the data
structures of OpenSMT for representing and manipulating terms.

If an engine solves the CHC system, it reports the satisfiability result. If required,
it also reports the witness for its answer: a model for the uninterpreted predicates or a
proof of unsatisfiability. Note, however, that this would be a witness for the transformed
graph, the result of the preprocessing run. Thus, to obtain an accurate witness for
the input system, Preprocessor must be able to backtranslate the witness through the
transformations applied to the graph.4 Only after this backtranslation the answer and
the witness are reported to the user.

5.3 Witness Format

Witness for the satisfiability of a CHC system is a model—an interpretation for each
uninterpreted predicate that makes all clauses valid. Internally, Golem represents the
interpretations as formulas in the background theory, using only the variables of the
(normalized) uninterpreted predicate. All interpretations are kept in a single map that
maps uninterpreted predicate symbols to their interpretations.5 The model is presented
to the user in the format defined by SMT-LIB [16]: a sequence of SMT-LIB’s define-fun
commands, one for each uninterpreted predicate.

Witness for unsatisfiability of a CHC system is a derivation of false. As it stands
now, th research community has yet to agree on the exact output format for UNSAT
witnesses. Due to its simplicity, Golem follows the trace format used by the Eldarica
solver. Internally, Golem stores the derivation as a sequence of derivation steps. Every
derivation step is a ground instance of some clause from the system. The ground instances
of predicates from the body form the premises of the step, and the ground instance of
the head’s predicate forms the conclusion of the step. For the derivation to be valid,

4As the graph is translated moving forward through transformation passes, the witness must be
translated moving backwards through the same sequence of transformations.

5This corresponds to the relation symbol assignment for syntactic solvability of [176].
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the premises of each step must have been derived earlier, i.e., each premise must be
a conclusion of some derivation step earlier in the sequence. To the user, the proof is
presented as a sequence of derivations of ground instances of the predicates, where each
step is annotated with the indices of its premises.

Example 5.2. Consider the following CHC system and the proof of its unsatisfiability.

x > 0 =⇒ L1(x)
x′ = x + 1 =⇒ D(x, x′)

L1(x) ∧D(x, x′) =⇒ L2(x′)
L2(x) ∧ x ≤ 2 =⇒ false

1. L1(1)
2. D(1, 2)
3. L2(2) ; 1, 2
4. false ; 3

The derivation of false consists of four derivation steps. Step 1 instantiates the first
clause for x := 1. Step 2 instantiates the second clause for x := 1 and x′ := 2. Step 3
applies resolution to the instance of the third clause for x := 1 and x′ := 2 and facts
derived in steps 1 and 2. Finally, step 4 applies resolution to the instance of the fourth
clause for x := 2 and the fact derived in step 3.

5.4 Preprocessing of CHC Systems

Transformations of CHC systems play an important role in the performance of Horn
solvers; for example, both Eldarica and Z3 apply many powerful transformations in
the preprocessing phase. The goal of transformations is typically to simplify the problem
before it is passed to the actual solving algorithm. Some solving techniques apply only
to CHC systems of a particular form, and transformations are applied to make the
technique applicable. In state-of-the-art Horn solvers, transformations are applied mainly
as preprocessing, but they can constitute a solving method on their own. An overview of
CHC transformations can be found in [32]. Here we describe only the transformations
implemented in Golem, together with the backtranslations for models (witnesses of
satisfiability) and proofs (witnesses of unsatisfiability).

Simple-chain summarization

The goal of this transformation is to simplify the CHC graph by replacing a (possibly
long) path with a single edge, eliminating the intermediate nodes in the process. A simple
chain in the CHC graph is a path between two nodes containing only normal (not hyper)
edges such that each intermediate node does not have any other edges except the one
incoming and the one outgoing edge present in this path. Each simple chain is replaced
by a single edge from the first to the last node. The label of the new edge is a conjunction
of all the constraints on the path after an appropriate renaming of the variables. After
the addition of the summarizing edge, all the intermediate nodes are removed.
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To avoid quantifiers when backtranslating a model, Golem relies on interpolation.
Suppose that the transformation replaced a path with source node s, target node t and
n intermediate nodes i1, . . . , in with a new edge (s, t). Let M denote the model for the
transformed system. Then the following formula is unsatisfiable:

M(s) ∧ L(s, i1) ∧
n−1⋀︂
j=1
L(ij , ij+1) ∧ L(in, t) ∧ ¬M(t)

The unsatisfiability follows from the definition of the model and the fact that Ls, t ≡
L(s, i1) ∧ ⋀︁n−1

j=1 L(ij , ij+1) ∧ L(in, t). The interpretation for the intermediate nodes
i1, . . . , in can be obtained by computing a path interpolant for the formula. To perform
the backtranslation efficiently, Golem utilizes the abilities of OpenSMT to compute
path interpolants from a single proof of unsatisfiability.

The backtranslation of a witness of unsatisfiability is also possible. A single derivation
step corresponding to the summarizing edge is replaced by a sequence of steps corre-
sponding to the original chain. The values for the ground instances of the intermediate
nodes can be computed from the model of the path constraints, where the values for the
source and target variables are taken from the ground instances of the derived fact and
the premise of the derivation step.

Merging multiple edges with the same source and target

This relatively simple transformation aims to simplify the graph by reducing the number of
edges. It combines multiple edges with the same source and target nodes into a single edge.
The constraint on the new edge is a disjunction of the replaced edges’ constraints. After
adding the new edge, the previous edges are removed from the graph. We are effectively
shifting work from the reachability algorithm to the underlying SMT solver by applying
this transformation. Instead of the reachability algorithm trying to figure out which
edge can extend a feasible path, only a single edge is possible. However, the SMT solver
needs to determine which disjuncts (if any) can be used. This transformation is currently
implemented only for edges with a single source node, i.e., not proper hyperedges.

The backtranslation of a model does not require any change in the model. The
backtranslation of an unsatisfiability proof requires only changes in the bookkeeping
information, not in the derived facts. For the derivation step that uses the new edge, it
needs to choose one of the original edges that also enables the derivation. The right edge
can be found by checking which disjunct is satisfied in the satisfiable assignment of the
edge constraint using source and target values from the ground facts of the derivation step.

Contracting nodes

The goal of this transformation is to reduce the number of nodes in the graph and extend
the applicability of engines that operate on transition systems. This transformation
is currently limited to nodes that do not participate in hyperedges and do not have a
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self-looping edge. Contraction means that a node v and all its edges are removed from the
graph, and a new edge is added to the graph for every pair of edges (s, v) and (v, t). That
is, every source of some v’s incoming edge is now connected to every target of some v’s
outgoing edge. The label of the new edge is a conjunction of the labels of the two edges it
replaces, with appropriate renaming of the variables. In the terminology of the underlying
Horn clauses represented by the graph, this corresponds to the exhaustive application of
the resolution rule on clauses where the node’s predicate appears in the head and clauses
where it appears in the body. Afterwards, all clauses containing the predicate are removed
from the system. Note that while this transformation reduces the number of nodes in the
graph, it replaces n incoming and m outgoing edges with n×m new edges. To avoid blowup
in the number of edges, contraction can be limited to the case when either n or m is 1.

Summarization of a simple chain, described earlier, is a more efficient variant of
gradual contraction of every intermediate node on a simple chain. Similarly to the
summarization of simple chains, interpolation can be used for the backtranslation of a
model when node contraction has been applied. Let v be the contracted node in the
original graph. Given a model M for the transformed graph, we denote

A =
⋁︂

e∈in(v)
M(src(e)) ∧ L(e) and B =

⋁︂
e∈out(v)

L(e) ∧ ¬M(tgt(e)).

Since M is a model for the transformed graph, it follows that A ∧ B is unsatisfiable.
Extending the model M with an interpolant I = Itp(A, B) as the interpretation for v’s
predicate yields a valid model for the original graph.

The backtranslation of a proof consists of replacing the derivation step corresponding
to one of the new edges with two derivation steps corresponding to the original incoming-
outgoing pair of edges. The missing ground instance of the predicate of the removed
node is obtained in the same way as in the summarization of simple chains.

5.5 Back-end Engines of Golem

The core components of Golem that solve the problem of satisfiability of a CHC system
are referred to as back-end engines, or just engines. The engines of Golem implement
various algorithms from model checking and software verification that treat the problem
of solving a CHC system as a reachability problem in the graph representation. There
are currently five engines in Golem:

• BMC - Bounded Model Checking [29]

• KIND - k-induction [186]

• LAWI - Lazy Abstraction with Interpolants/Impact [157]

• Spacer [137]
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• TPA/split-TPA - Transition Power Abstraction (Chapter 4)

Below, we describe each of the engines separately.

5.5.1 Bounded Model Checking

BMC engine in Golem works only over graphs that represent transition systems. The
engine reconstructs the transition system’s initial states, transition relation, and error
states from the graph representation and then applies the basic bounded model checking
algorithm [29]. It checks the existence of a path of gradually increasing lengths between
the initial and error states. Formally, it checks the satisfiability of the formula

Init(x(0)) ∧
n−1⋀︂
i=0

Tr(x(i), x(i+1)) ∧ Bad(x(n))

for increasing value of n. If this formula is satisfiable for some value of n, a counterexample
path of length n has been found. To speed up the satisfiability checks, it uses incremental
SMT solving capabilities of OpenSMT.

By definition, BMC is capable of detecting the presence of a counterexample path
(unsatisfiability of the corresponding CHC system), but not its absence.6 The unsatis-
fiability proof of the CHC system is easily reconstructed from the model of the BMC
formula, which gives the values of the variables at each step along the path.

5.5.2 k-induction

The KIND engine in Golem implements k-induction [186], a widespread technique in
hardware and software verification. It was the first technique to extend the idea from
BMC—the possibility to check the existence of a counterexample path with a satisfiability
solver—to also prove the absence of counterexample paths. The basic idea of k-induction
has been later refined [73] and adopted for software verification [21, 22, 43, 79].

The implementation in Golem follows the basic version of the algorithm from [186]
and, as such, requires the input in the form of a transition system. The computation of
the unsatisfiability witness proceeds the same way as in the BMC engine. On the other
hand, the computation of the satisfiability witness is more complicated. This algorithm,
by definition, computes k-inductive invariant of the transition system. However, to honor
the semantics of the CHC system, 1-inductive invariant is required. Golem implements
a procedure that first computes quantified 1-inductive invariant from the k-inductive one
and then applies quantifier elimination (which is feasible for linear arithmetic) to obtain
quantifier-free inductive invariant.

6Unless the initial states or the bad states are empty sets, i.e., already the formula Init or Bad is
unsatisfiable.
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5.5.3 Lazy Abstractions with Interpolants

Lazy Abstractions with Interpolants (LAWI) is an algorithm introduced by McMillan for
verification of software [157]. It is sometimes known as the Impact algorithm, as that
was the first tool where the algorithm was implemented. Later, it was also implemented
in software verification tools Wolverine [143] and CPAchecker [22, 28].

The LAWI engine in Golem is a re-implementation of the original algorithm, as
described in [157]. The original LAWI algorithm was designed for sequential programs.
It operates on a program representation that maps straightforwardly to the graph
representation of linear CHC systems in Golem. It analyzes possible paths through
the graph, looking for a feasible path from true to false. It uses interpolation to learn
from infeasible paths and compute invariants for individual nodes in the graph. The
implementation in Golem leverages OpenSMT’s ability to compute path interpolants
from a single refutation proof of infeasibility for fast interpolant computation. As a
faithful implementation of the original algorithm, the LAWI engine in Golem works on
any graph without hyperedges, i.e., any linear, but not nonlinear, CHC systems.

5.5.4 Spacer

Spacer engine in Golem implements the algorithm originally named RecMC which was
introduced in [136, 137] and implemented in the tool Spacer. Original Spacer is now
the default fixed-point engine and Horn solver in Z3 [72]. Spacer in Z3, which we will
refer to as Z3-Spacer, has been extended several times with various optimizations and
support for theories beyond arithmetic since the original publication [135, 190, 191, 192].

The implementation in Golem follows the description from the journal publica-
tion [137]. Spacer algorithm heavily relies on efficient approximations for quantifier
elimination. Typically, Craig interpolation is used to over-approximate quantifier elimi-
nation and model-based projection (MBP) [137] is used to under-approximate it. Golem
relies on OpenSMT for interpolation but implements its own MBP procedure for integer
and real linear arithmetic, based on the description from [33].

The advantage of the Spacer algorithm is that it works over any CHC system, even
nonlinear ones. Nonlinear CHC systems can model programs with summaries, and in this
setting, Spacer computes both under-approximating and over-approximating summaries
of the procedures to achieve modular analysis of programs. Spacer is currently the only
engine in Golem capable of solving nonlinear CHC systems.

5.5.5 Transition Power Abstraction

The TPA engine in Golem implements the algorithms introduced in Chapter 4. It can
work in two modes: The first implements the basic TPA algorithm; the second imple-
ments the split-TPA algorithm. The implementation in Golem follows the algorithms
faithfully. However, by default, the implementation uses model-based projection, not full
quantifier elimination. Additionally, it uses incremental capabilities of OpenSMT to
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speed up the satisfiability queries. Consider the queries posed by Algorithm 4.2 on line 2.
During its run, the algorithm makes a lot of these queries. For a single level n, the source
and target states change, but the transition part ATr≤n(X, X ′) ∧ATr≤n(X ′, X ′′) is only
ever refined, i.e., new conjuncts are added, but existing ones are not removed. Thus,
these queries can be incremental when a separate solver is used for each level. Using
incremental solving in this context significantly improved the algorithm’s performance.
However, as the internal implementation of incrementality in OpenSMT uses frame
literals to track pushed and popped frames, these eventually clutter the solver. Thus,
these solvers are torn down and rebuilt after a fixed number of incremental queries.

TPA engine can find counterexample paths for transition systems, which easily trans-
late to unsatisfiability proofs for the corresponding CHC systems. For safe transition
systems, it can discover safe k-inductive transition invariants. If a model for the cor-
responding CHC system is required, the engine first computes a quantified inductive
invariant and then applies quantifier elimination to produce a quantifier-free inductive
invariant.

The algorithms, as described in Chapter 4, work on transition systems. However, the
engine in Golem already supports a more general class of graphs. Namely, it can analyze
chains of transition systems. The graph representing a chain of transition systems is
a sequence of nodes true, v0, v1, . . . , vn, false where each node vi has a self-loop and is
connected to its predecessor and successor with a single edge. In the software domain,
this represents a sequence of consecutive loops in a program. The idea is that each node
represents a transition system and maintains its own TPA sequence for that system.
Then, information flows along the chain. In the current implementation, nodes propagate
reachable states forward (from true to false) and safe states backward. The direction
of the flow could also be reversed, corresponding to the direction of information flow in
the Spacer algorithm. In such a scenario, transition systems on the chain are asked
various reachability queries for different initial and error states. However, their transition
relations always remain the same. Thus, focusing on transitions rather than states is
an advantage of the TPA algorithms. They learn information about transitions in the
underlying system that is not invalidated when the initial or error states change. This
information can be re-used across multiple reachability queries for the same transition
relation.

5.6 OpenSMT for Golem: Integration and Improvements

Constrained Horn clauses, by design, require manipulation of logical terms and all
approaches to CHC solving use an SMT solver as a sub-procedure in some way. Golem
relies on OpenSMT [122] for term representation, term manipulation, SMT solving and
interpolation. As part of the research on this thesis and the development of Golem,
several contributions to OpenSMT were made to streamline the integration with Golem
and improve the performance. The following are the changes most relevant for Golem.
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The theory solver for linear arithmetic (LA) follows the simplex-based algorithm
described in [84]. To support integer reasoning, OpenSMT initially implemented only the
basic branch-and-bound algorithm [181], which introduces new branches only on variables
from the original problem. Now, the LA solver also implements a basic version of the
cuts-from-proofs algorithm [78] that computes branches on general terms. This addition
significantly improved OpenSMT’s performance on integer problems and substantially
decreased the number of benchmarks where OpenSMT exhibits diverging behaviour.

The optimizations, which contributed the most to the performance improvement of
OpenSMT’s LA solver, are theory suggestions for deciding the polarity of a theory atom
in the SAT solver and quasi-basic variables in the tableau implementation.

• Theory suggestions: During the search for a satisfying assignment, a SAT solver
makes decisions: picks an unassigned atom and sets it either to true or false. When
choosing the atom’s polarity (whether to assign it to true or false), OpenSMT
originally defaulted to positive polarity. Now, for the atoms of the theory of linear
arithmetic, it picks the polarity that is consistent with the current assignment
maintained by Simplex. The intuition is that choosing a polarity which yields a
constraint that is not consistent with the current assignment in Simplex requires
unnecessary work: an update to the assignment and potentially many pivoting
operations over the tableau to make the assignment consistent again. Choosing a
consistent assignment avoids unnecessary work and leads to significant performance
improvement.

• Quasi-basic variables: In the typical implementation of the incremental Simplex
algorithm in SMT solvers, all linear expressions from the original problem participate
in the creation of the tableau. As constraints are asserted and retracted during the
SAT solver search, bounds on the linear expressions are activated and deactivated.
New bounds may violate the current satisfying assignment maintained by Simplex,
leading to an update of variables’ values and pivoting operations over the tableau.
Originally, OpenSMT was updating all affected rows during a pivot operation.
However, if no bound has been asserted yet for a row, it cannot participate in
a conflict, and its update can be delayed. Moreover, if backtracking is triggered
before the execution of the update, the update can be avoided altogether. This idea
to delay certain updates in the tableau has already been implemented in Z3, which
referred to the basic variables without an asserted bound as quasi-basic variables.
While in Z3, to the best of our knowledge, quasi-basic variables are not used by
default, in OpenSMT, they led to a significant performance improvement of the
Simplex algorithm.

Two architectural changes were necessary for streamlined integration and efficient
use of OpenSMT in the infrastructure of Golem. First, a clear separation between the
term manager and core solver has been made. The separation allowed multiple solver
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instances to share a single term manager. Golem uses a single instance of the term
manager across the whole architecture: for representation of the CHC system, for term
rewriting in the preprocessing, and for all solver instances in the back-end engine. TPA
algorithms especially take advantage of this feature as they maintain multiple solvers at
the same time.

The second change was improved interpolation support, especially making interpo-
lation a runtime option instead of a compile-time option. Moreover, the interpolation
module of OpenSMT was extended to work in the context of incremental SMT solving.
Previously, OpenSMT had support for incremental solving and interpolation but not
the combination of both features. Interpolation for incremental SMT solving is used
mainly in the TPA algorithms, which rely heavily on interpolation. However, it can
utilize incremental solving to maximize efficiency and avoid repeating redundant work.

Overall, OpenSMT was the key to quickly developing an efficient Horn solver. Relying
on the existing data structures of OpenSMT for term representation facilitated the
work on the solving algorithms. The term rewriting capabilities, decision procedures
and interpolation algorithms available in OpenSMT enabled rapid prototyping of the
back-end engines. In the other direction, Golem stresses various parts of OpenSMT,
e.g., efficient term rewriting, solving both a small number of complex queries and a
large number of easy queries, efficient incremental solving and interpolation. Heavy
use of OpenSMT uncovered several performance bottlenecks in the solver. Uncovering
and fixing these issues improved OpenSMT not only for Golem but also for other
applications.

5.7 Experiments

This section presents several experiments related to Golem and its engines. First,
we discuss the experiments and results related to the implementation of the TPA and
split-TPA algorithms from Chapter 4 in the TPA engine of Golem. Then we compare
individual engines of Golem among themselves and with the state-of-the-art tools. All
experiments were conducted on a machine with an AMD EPYC 7452 32-core processor
and 8x32 GiB of memory.

5.7.1 Evaluation of the TPA algorithms

The first set of experiments uses only the TPA algorithm and focuses on detecting deep
counterexamples. The second set additionally evaluates the split-TPA algorithm and
its ability to prove safety of transition systems. Experiment setup and the presentation
follow the respective publications on TPA and split-TPA [35, 36].
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Detecting Deep Counterexamples with TPA

In the first set of experiments, we evaluate the ability of TPA to detect long counterex-
amples and compare its performance with state-of-the-art tools Eldarica 2.0.6 [117],
IC3-IA 20.04.1 [59] and Z3 4.8.12 [72] (using both its BMC [29] and Spacer [137] engines).
These were the top competitors in CHC-COMP 2020 and 2021 [95, 174]. We use two
versions of the TPA algorithm in the experiments. One uses full quantifier elimination
as is denoted as TPA-QE. The other under-approximates quantifier elimination with
model-based projection and is denoted as TPA-MBP. All benchmarks are encoded as
CHC satisfiability problems using the format of CHC-COMP. Since IC3-IA’s input format
differs, all CHC benchmarks were translated to VMT format using the automated tool
packaged with IC3-IA.7

First, we investigated the scalability of the algorithms with respect to the length of
the counterexample. For this purpose, we used the parametrized transition system from
our motivating example in Section 4.2. The counterexample in this system has length 2N ,
and we ran the tools on instances for N ranging from 1 to 511. The timeout was set to
300 seconds. Figure 5.3 shows the runtime of the tools for the given value of N .

TPA-MBP was able to report all instances as unsafe, requiring less than two seconds
for each instance. Eldarica, IC3-IA and Z3-BMC exhibit relatively stable pattern where
the performance decreases rapidly with increasing N . Z3-Spacer, on the other hand,
exhibits a curious behaviour where it can solve most of the instances (even though it
is slower than TPA-MBP by at least an order of magnitude), but on a relatively large
number of instances, it times out.8 Finally, TPA-QE performed significantly worse than

7Artifact for these experiments is available at https://doi.org/10.5281/zenodo.5815911
8The authors of Z3-Spacer confirmed this behaviour. It seems the root cause is an interpolant which

https://doi.org/10.5281/zenodo.5815911
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Figure 5.4. Results on 54 multi-phase unsafe benchmarks

TPA-MBP, which benefited from the fact that the reason why shorter counterexamples
do not exist can be summarized relatively easily.

Continuing this line of experiments, we considered a second set of benchmarks
representing instances of challenging safety properties of multi-phase loops [185], which
are known to be difficult to analyze by state-of-the-art techniques. We took 54 safe
multi-phase benchmarks from CHC-COMP repository9 and then, for each benchmark,
created its unsafe version with a minor modification of the safety property.10 In most
cases, this was done by negating one of the conjuncts of the property. In a few cases, this
resulted in a simple benchmark with a very short CEX (< 10 steps), but in most cases,
the minimal counterexample is much larger, ranging from hundreds to tens of thousands
of steps. There are even a few extremes where the minimal counterexample requires
hundreds of thousands or even millions of steps. With the timeout of 300 seconds, out of
54 benchmarks, TPA-QE solved 20 and TPA-MBP solved 35 benchmarks, beating the
other tools, among which Z3-Spacer performed the best, solving 20 benchmarks. The
results are summarized in Figure 5.4, where the number of solved benchmarks by each
tool is plotted against the time needed for their solving.

Overall, TPA-MBP solved 15 benchmarks that none of the other tools was able to
solve and, in general, could be one or two orders of magnitude faster. There were two
noticeable exceptions: benchmark 24 was uniquely solved by Z3-Spacer, and IC3-IA
uniquely solved benchmark 39. In the latter case, our tool suffered from incompleteness in
the decision procedure of OpenSMT for integer arithmetic, while in the former case, the
interpolation was not producing good abstractions, and TPA-MBP suffered from the need

can either help the Spacer algorithm converge quickly or hinder its progress significantly, depending on
which of the possible interpolants is computed by Z3.

9https://github.com/chc-comp/aeval-benchmarks
10Benchmarks available at https://github.com/blishko/chc-benchmarks.

https://github.com/chc-comp/aeval-benchmarks
https://github.com/blishko/chc-benchmarks
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Benchmark suite split-TPA TPA Z3Spacer GSpacer Eldarica
multi-phase safe 19 (7) 12 (0) 6 (0) 24 (3) 26 (4)
multi-phase unsafe 37 (3) 35 (2) 20 (0) 17 (0) 17 (0)

Table 5.1. Summary of the experiments on multi-phase benchmarks: Solved (unique) instances
out of 54 benchmarks.

for frequent refinements. We also examined the solved benchmarks for the length of the
minimal counterexample they admit. The results are in line with the observations from
our first experiments: Other tools could only solve benchmarks with a counterexample
of up to a thousand steps (1001 steps in benchmark 17 solved by Z3-Spacer). TPA-QE
matched this performance (1001 steps in benchmark 27), but TPA-MBP managed to
solve benchmarks with a counterexample of more than ten thousand steps (17650 in
benchmark 42). Thus, our technique significantly improves upon state-of-the-art with
respect to the length of the counterexample it can detect.

Proving Safety with split-TPA

In the next set of experiments, we focused on evaluating the implementation of split-TPA
for its ability to prove systems safe. However, as split-TPA implements a more complex
procedure for answering bounded reachability queries, we also ran experiments on the
unsafe version of the problems. Note that compared to the previous set of experiments,
these are more recent and, as such, use later versions of the tools. In particular, here we
compared Golem 0.1.0 using OpenSMT 2.3.2, Eldarica 2.0.8 [117], Z3-Spacer [137]
implemented in Z3 4.8.17 [72], and GSpacer [190] a more recent version of Spacer
enriched with global guidance.11

For the evaluation, we used the same set of benchmarks representing multi-phase
loops as in the previous experiment, both safe and unsafe versions. The results are
summarized in Table 5.1, and times for each tool/benchmark pair are given in Table 5.2.

Regarding safety, Table 5.1 shows that split-TPA overall solved seven more bench-
marks than TPA, but still less than GSpacer or Eldarica. However, it solved seven
benchmarks uniquely (the other competitors did not solve them). This indicates that
split-TPA is quite orthogonal to the existing techniques for proving safety.

The results on unsafe benchmarks show that split-TPA not only preserves the
capability of TPA to detect deep counterexample, but it was even able to outperform it
by solving two more benchmarks overall.

11Artifact for these experiments is available at https://doi.org/10.5281/zenodo.6988735

https://doi.org/10.5281/zenodo.6988735
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Ben. split-TPA TPA Z3Spacer GSpacer Eldarica
01 26.28 TO TO TO TO
02 TO TO 133.28 <1 TO
03 TO TO TO TO 1.33
04 TO TO TO <1 3.70
05 <1 <1 <1 <1 1.19
06 TO TO TO TO 3.95
07 TO TO TO <1 1.32
08 TO TO TO TO TO
09 TO TO TO TO TO
10 TO TO TO TO TO
11 TO TO TO 5.68 TO
12 TO TO TO TO 1.62
13 <1 <1 ERR <1 1.16
14 53.94 TO TO TO 118.78
15 TO TO TO TO TO
16 TO TO TO TO TO
17 <1 37.50 TO <1 7.53
18 <1 <1 TO <1 3.66
19 TO TO <1 <1 1.22
20 TO TO TO TO TO
21 <1 10.39 TO <1 15.45
22 TO TO TO TO TO
23 <1 <1 ERR <1 1.79
24 TO TO TO TO TO
25 TO 45.93 TO TO 9.33
26 2.60 1.55 TO <1 TO
27 TO TO TO TO TO
28 <1 TO TO TO 1.61
29 3.94 TO TO 118.98 34.22
30 TO TO TO TO 20.48
31 TO TO TO <1 1.60
32 TO TO TO 11.49 TO
33 TO TO TO TO TO
34 TO TO TO <1 5.86
35 TO TO TO <1 1.80
36 <1 <1 TO <1 1.92
37 <1 <1 <1 <1 14.33
38 TO <1 TO <1 1.36
39 TO TO 67.41 58.73 2.48
40 109.05 TO TO TO ERR
41 TO TO TO TO TO
42 TO TO TO <1 4.37
43 TO TO TO 5.20 TO
44 TO TO TO TO TO
45 TO TO TO TO TO
46 TO 288.20 13.07 <1 1.28
47 TO TO TO TO TO
48 47.00 TO TO TO TO
49 122.96 TO TO TO TO
50 TO TO TO TO TO
51 TO TO TO TO TO
52 235.24 TO TO TO TO
53 147.28 TO TO TO TO
54 133.63 TO TO TO TO

Ben. split-TPA TPA Z3Spacer GSpacer Eldarica
01 14.53 10.12 TO TO TO
02 <1 <1 1.25 TO TO
03 <1 <1 <1 <1 1.16
04 TO TO TO TO TO
05 <1 <1 <1 <1 1.18
06 TO TO TO TO TO
07 TO TO TO TO TO
08 TO TO TO TO TO
09 TO TO TO TO TO
10 20.40 233.78 TO TO TO
11 152.28 TO TO TO TO
12 TO TO TO TO TO
13 <1 <1 <1 <1 1.13
14 <1 <1 <1 8.91 89.78
15 TO TO TO TO TO
16 TO TO TO TO TO
17 14.84 15.81 181.59 TO TO
18 <1 <1 <1 <1 1.57
19 <1 <1 <1 <1 20.74
20 TO TO TO TO TO
21 <1 <1 <1 <1 10.63
22 TO TO TO TO TO
23 <1 <1 <1 <1 1.17
24 <1 TO 96.64 TO TO
25 <1 <1 <1 <1 1.19
26 2.01 1.46 TO TO TO
27 <1 <1 TO TO TO
28 <1 <1 TO TO 162.43
29 <1 <1 2.76 32.56 45.75
30 <1 <1 <1 <1 10.22
31 TO TO TO TO TO
32 <1 <1 <1 <1 7.17
33 <1 <1 <1 <1 1.21
34 <1 <1 <1 <1 1.15
35 <1 <1 <1 <1 1.20
36 16.68 14.45 TO TO TO
37 <1 <1 <1 <1 13.37
38 262.18 TO TO TO TO
39 TO TO TO ERR TO
40 <1 <1 <1 133.07 ERR
41 TO 4.60 TO TO TO
42 18.31 40.39 TO TO TO
43 TO TO TO TO TO
44 34.18 TO TO TO TO
45 TO TO TO TO TO
46 TO 239.05 TO TO TO
47 5.71 6.79 TO TO TO
48 17.52 12.10 TO TO TO
49 32.59 12.49 TO TO TO
50 TO TO TO TO TO
51 6.71 11.57 TO TO TO
52 70.83 82.43 TO TO TO
53 57.42 33.00 TO TO TO
54 40.74 15.15 TO TO TO

Table 5.2. Full results on safe (left) and unsafe benchmarks (right). TO: timeout;
ERR: memory out or other inconclusive answer.

5.7.2 Evaluation on CHC-COMP Benchmarks

The benchmark collections of CHC-COMP represent a rich source of problems from
various domains.12 We evaluate the performance of Golem and its engines on different
categories of these benchmarks. For these experiments, Golem 0.3.1 was used, which is
a more recent version than in the experiments of the previous section. The timeout for
all experiments was set to 300 seconds.

12https://github.com/orgs/chc-comp/repositories
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Figure 5.5. Performance of Golem on the 498 benchmarks of the LRA-TS track

BMC KIND LAWI Spacer split-TPA TPA
SAT 0 260 279 190 127 66
UNSAT 86 84 76 69 72 67

Table 5.3. Number of solved benchmarks from LRA-TS track for each engine of Golem

Category LRA-TS

The first category of benchmarks considered is the LRA-TS category of CHC-COMP.
It consists of problems that model the safety of transition systems using linear real
arithmetic as the background theory. There are 498 unique benchmarks in this category,
and all were used in the 2021 and 2022 editions of CHC-COMP. All engines of Golem
can solve benchmarks in this category. The results for this benchmark set are presented
in Figure 5.5 and Table 5.3.

Figure 5.5 plots, for each engine, the number of solved benchmarks (x-axis) within the
given time limit (y-axis, log scale). The results are split into satisfiable and unsatisfiable
problems. As the BMC engine does not make any attempt beyond trivial cases to solve
satisfiable instances, it did not solve any satisfiable benchmark in this experiment and is
omitted from the corresponding plot. Table 5.3 summarizes the results with the total
number of benchmarks solved for each engine.

For the unsatisfiable problems, the performance is similar across all engines, with
the BMC engine performing the best. This is expected as the BMC algorithm does
not make any extra effort to discover invariants and focuses purely on the search for a
counterexample trace in the transition system. However, the extra check for k-inductive
invariants on top of the BMC-style search for counterexamples, as implemented in the
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Golem-TPA Golem-split-TPA Golem-LAWI Golem-Spacer Z3-Spacer Eldarica
31 44 12 18 16 36

Table 5.4. Number of solved benchmarks from extra-small-lia subcategory

KIND engine, incurs a relatively small overhead in unsatisfiable problems compared to
the impressive success in solving satisfiable problems.

For the satisfiable problems, the performance varies widely across the different engines.
With the timeout of 300 seconds, the LAWI engine solved the largest number of satisfiable
problems, followed closely by the KIND engine. The Spacer engine solved significantly
fewer benchmarks than LAWI and KIND but still outperformed both algorithms of the
TPA engine.

We make the following observations regarding the performance of the two TPA-based
algorithms. Firstly, the results show the superiority of split-TPA over the basic TPA
algorithm for satisfiable problems, with comparable performance on unsatisfiable problems.
This is in line with the results on problems representing multi-phase loops. Secondly,
the performance of TPA-based algorithms lacks behind the other engines. The nature
of the benchmarks in the LRA-TS category partially explains this underperformance.
These benchmarks come from relatively few sources (see [95]) and often contain many
boolean variables and a transition relation with complex boolean structure. These factors
complicate the discovery of useful summaries for multiple transition steps in the TPA-
based algorithms. However, as we will see next, there is a benchmark set in LIA-Lin
category where TPA-based algorithms excel.

Category LIA-Lin

The next category of benchmarks is the LIA-Lin category of CHC-COMP. These are
linear systems of CHCs with linear integer arithmetic as the background theory. There
are many benchmarks in this category, and for the evaluation at the competition, a
subset of benchmarks is selected (see [71, 95] for the selection process). We evaluate the
LAWI and Spacer engines of Golem (the engines capable of solving general linear CHC
systems) on the benchmarks selected at CHC-COMP 2022 and compare their performance
with Z3-Spacer (Z3 4.11.2) and Eldarica 2.0.8. However, we first examine a specific
subcategory of LIA-lin, namely extra-small-lia13. The benchmarks in this subcategory
are also solvable by Golem’s TPA engine, with compelling results.

The benchmarks in extra-small-lia subcategory are syntactically relatively simple,
and all are satisfiable. Semantically, they represent one or more loops that exercise
various properties of linear integer arithmetic and often require invariants that are hard
to find even by state-of-the-art algorithms. Overall there are 55 benchmarks in this
subcategory, and the performance of the considered tools is summarized in Table 5.4.

13https://github.com/chc-comp/extra-small-lia

https://github.com/chc-comp/extra-small-lia
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Golem-LAWI Golem-Spacer Z3-Spacer Eldarica
SAT 131 184 211 183

UNSAT 77 82 96 60

Table 5.5. Number of solved benchmarks from LIA-Lin track of CHC-COMP 2022.

Golem-Spacer Z3-Spacer Eldarica
SAT 239 (4) 248 (13) 221 (6)

UNSAT 124 (2) 139 (5) 122 (0)

Table 5.6. Number of solved benchmarks from LIA-Nonlin track of CHC-COMP 2022.
Number of uniquely solved benchmarks in parenthesis.

The TPA engine of Golem solves many more benchmarks than its LAWI and Spacer
engine in this subcategory. The split-TPA variant also beats the competitors, solving 44
out of 55 benchmarks, while Eldarica, the second best, solves 36 of these benchmarks.

For the whole LIA-Lin category, 499 benchmarks were selected in the 2022 edition
of CHC-COMP [71]. The performance of the LAWI and Spacer engines of Golem,
Z3-Spacer and Eldarica on this selection is summarized in Table 5.5. In this category,
the Spacer engine of Golem significantly outperforms the LAWI engine. Moreover,
it also outperforms Eldarica due to the much better performance on unsatisfiable
instances. However, there is still a significant performance gap compared to Z3-Spacer.

Category LIA-Nonlin

Finally, we consider the LIA-Nonlin category of benchmarks of CHC-COMP, which
consists of nonlinear systems of CHCs with linear integer arithmetic as the background
theory. Similarly to LIA-Lin, there is a large number of benchmarks in this category
collected in various repositories of CHC-COMP. For the competition, a subset of the
benchmarks is selected (see [71, 95] for the selection process). For the 2022 edition
of CHC-COMP, 456 benchmarks were selected. Spacer is the only engine in Golem
capable of solving nonlinear CHC systems; thus, we focus on a more detailed comparison
of its performance against Z3-Spacer and Eldarica. The results of the experiments
are summarized in Table 5.6 and Figure 5.6.

The summary results are in line with the results from CHC-COMP 2022 [71], even
though we used a smaller timeout and ran the experiments in a different environment.
Overall, Golem solved fewer problems than Z3-Spacer but more than Eldarica. A
detailed comparison is depicted in Figure 5.6. For each benchmark, its data point on the
plot reflects the runtime of Golem (x-axis) and the runtime of the competitor (y-axis).
The plots suggest that the performance of Golem is often orthogonal to Eldarica,14

but highly correlated with the performance of Z3-Spacer. This is not surprising as the
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Figure 5.6. Comparison of Golem against state-of-the-art tools on LIA-Nonlin track on SAT
(×) and UNSAT (⊡) instances.

Spacer engine in Golem is built on the same core algorithm. Even though Golem is
often an order of magnitude slower than Z3-Spacer, there is a non-trivial amount of
benchmarks on which Z3-Spacer times out, but which Golem solves fairly quickly.

5.8 Future Work

There are multiple possible directions for Golem’s future development. Some require
mostly engineering effort, while others could lead to interesting new research topics.

At the front end, support for more input formats can be added. For example, Z3’s
Datalog input format represents systems of Horn clauses more compactly than the
standard format used in CHC-COMP. A front end for VMT input format [62] would
allow Golem to access new benchmark sets. It would also be the first step towards
extending Golem solving capabilities beyond safety properties.

In the preprocessing phase, Golem could apply more transformation passes, such
as cone-of-influence reduction and constant propagation. Moreover, some of the already
implemented transformation passes do not support nonlinear clauses (hyperedges in
the graph representation), which limits their applicability for nonlinear CHC systems.
Improving this support would improve the performance of Golem on nonlinear problems.

In the back end, more engines could be added, and the existing ones could be improved.
Natural candidates for new engines are pd-kind algorithm [129] and algorithms based on
(implicit) predicate abstraction, such as those implemented in the tools Eldarica [117]

14The requirement of the Java Virtual Machine runtime environment adds approximately one second
overhead to each run of Eldarica.
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and IC3-IA [59]. Regarding the existing engines, the performance of Spacer engine
could be improved by adding missing optimizations and global guidance [190]. The
TPA engine could be extended to handle more general CHC systems. Investigating the
combination of the TPA-style analysis of loops with Spacer-like search can yield an
efficient algorithm for modular analysis of complex nonlinear CHC systems. Such an
algorithm would work as an unbounded Spacer-like traversal of the hypergraph. While
the traversal in Spacer is bounded, with gradually increasing bound, combination with
TPA would allow it to handle self-loop nodes directly. Similarly, the LAWI engine could
be extended to support nonlinear CHC systems, following the approach implemented in
the tool Duality [159, 160].

Extending the support for SMT theories in Golem beyond linear arithmetic would
open up more opportunities for further research in tailored decision and interpolation
procedures. With support for arrays, Golem could be used for a much broader set of
problems from software verification, while with support for bit-vectors, it could also be
used for word-level hardware model checking. Golem can already be used as the back
end of C verifier Korn [87]. With support for more complex SMT theories, it could also
serve as the back end, for example, for SolCMC [5].

5.9 Related Work

There is a fair amount of Horn solvers, model checkers, and software verifiers from both
academia and industry. We discuss only the ones closely related to Golem.

According to the results of the last couple of editions of CHC-COMP, the most
prominent Horn solvers are Eldarica [117] and Spacer [137]. Golem follows the trend
of tigher integration with the underlying SMT solver outlined by these two Horn solvers,
but offers more choices for the back-end solving algorithm.

Eldarica has been developed since 2013. It implements many sophisticated transfor-
mation passes to simplify the input CHC system. The preprocessing phase in Eldarica
is followed by its main reasoning engine, which combines Predicate Abstraction [100] with
Counterexample-Guided Abstraction Refinement (CEGAR) [63] to solve the resulting
system. The algorithm is described in detail in [176]. Eldarica relies on Craig interpola-
tion [68] to compute predicates for predicate abstraction. Moreover, it controls the form
of the interpolants with interpolation abstraction [146, 177]. Besides the standard input
format used in CHC-COMP, Eldarica accepts Horn clause systems written in Prolog
style. Additionally, it accepts as input Numerical Transition Systems [116], programs in
a fragment of the C language and networks of timed-automata in a C-like language [118].
Eldarica uses Princess [173] for SMT solving and Craig interpolation. It supports
multiple SMT theories, including integers, bit-vectors, arrays and algebraic data types.
Eldarica is used as a back-end solver for several verification tools, e.g., TriCera [88],
SolCMC [5], Korn [87], CoCoSim [65], JayHorn [132], Vac [96].

Spacer is likely the most-known Horn solver at the moment. The updates since
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its beginning [136, 137] include global guidance [191] and improved support for the
theory of arrays [135], bit-vectors [190], algebraic data types and recursive functions [192].
It now lives as the default fixed-point engine in Z3 [72]. The terminology of “fixed
point” comes from Datalog [1], which was the original front end supported by Z3 for
this class of problems.15 Like Eldarica, Z3 implements several preprocessing passes
over the system of Horn clauses. They simplify the input system before it is passed to
Spacer. Unfortunately, not all transformations have a corresponding backtranslation,
so some transformations need to be disabled to obtain full proof of unsatisfiability, for
example, clause inlining. Spacer is used as the back-end solver for several verification
tools, e.g., SeaHorn [107], SolCMC [5], Korn [87], RustHorn [154], CoCoSim [65],
SolType [187]. Recently, it was also used in a new reduction approach for reasoning
about data structures with CHCs [89].

Besides Eldarica and Spacer, there exist several other Horn solvers: HoIce [52]
implements a machine-learning-based technique for solving CHC systems, adapted from
the ICE framework originally developed for discovering inductive invariants of transition
systems [51]. FreqHorn [92, 93] implements an algorithm based on Syntax-Guided
Synthesis (SyGuS) [9] to discover the interpretations of the unknown predicates. It
combines the basic SyGuS approach with data derived from unrollings of the CHC
system. Ultimate TreeAutomizer [75] implements automata-based approaches to
CHC solving [130, 195]. PCSat [189] is a solver for a general class of second-order
constraints on predicate and function variables. CHC satisfiability problem is just a
subset of this general class.

Many model checkers and software verifiers implement similar algorithms as Horn
solvers in general and as Golem in particular. While model checkers typically verify
safety properties of transition systems, there are approaches for dealing with more
complex CHC systems. Linear systems of Horn clauses can be encoded as transition
systems [47]; this approach has been successfully applied for the model checker IC3-
IA [59, 69]. An approach to solve nonlinear CHC systems using a solver for linear
CHCs has also been proposed [131], but it does not appear to be competitive so far.
Model checker Pono [149] is a highly configurable and extensible tool that implements
several model-checking algorithms as the back-end reasoning engines, similar to Golem.
Besides the standard algorithms such as BMC [29] and k-induction [186], it also offers an
implementation of McMillan’s interpolation-based model checking [155] and an impressive
list of IC3-based algorithms. Although all its engines operate over transition systems,
Pono could be used to solve more general CHC systems with the help of the reduction
techniques mentioned above. Compared to Pono, Golem can solve nonlinear CHC
systems directly. This is crucial for domains such as software verification where programs
with functions are naturally modeled with nonlinear CHC systems.

In software verification, software verifiers implement many algorithms that originated
in the context of model checking. Moreover, almost all verifiers now implement more than

15Datalog programs are written as a set of Horn clauses.
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one technique, as described in the 2022 report from Software Verification Competition
(SV-COMP) [19]. As an example, CPAchecker [25] uses a framework of Configurable
Program Analysis (CPA) [23] to implement a group of algorithms similar to Golem
engines: BMC, k-induction, Impact, McMillan’s original interpolation-based model
checking algorithm, and IC3/PDR [20, 21, 22, 26, 28]. However, traditional software
verifiers use SMT solvers as black boxes. The tight coupling of Golem with its underlying
SMT solver provides full control over their interaction. It allows Golem to detect and
resolve (or at least avoid) many of the pitfalls and bottlenecks in the SMT solver.

5.10 Conclusion

In this chapter, we presented Golem, an efficient Horn solver with multiple back-end
engines and tight integration with the underlying SMT solver OpenSMT. In our work,
Golem was instrumental in prototyping the TPA algorithms described in Chapter 4;
however, there is much more potential for further applications.

The common framework makes it easy to compare different algorithms for model
checking and CHC solving directly. It eliminates unrelated differences when comparing
algorithms in different tools, for example, a different SMT solver, which plays a significant
role in the efficiency of these algorithms. Moreover, using the existing infrastructure
of Golem, new back-end engines can be added easily. This possibility facilitates the
reproduction of results for novel algorithms, which increases trust in the original results
and validates the contributions of such novel algorithms.

There are a lot of possible applications of Golem than can build on the current
foundations. We have outlined several directions in Section 5.8. In the short term, we
plan to improve and extend Golem to serve as the back end for software verifiers, such
as Korn [87] and SolCMC [5]. In the longer term, Golem can further improve the
tool support for CHC solving and help academia and industry deal with complex tasks
from verification and other domains by leveraging the powerful framework of constrained
Horn clauses. Additionally, it can serve as a research tool for experimenting with novel
techniques in SMT solving and interpolation. One such project, which evaluates the
benefits of lookahead-based SMT solving for interpolation and model checking, is currently
underway.



Chapter 6

Cooperative Parallelization Approach
for Property-directed k-induction

A sequential approach to model checking has inherent limitations due to the undecidable
nature of the problem. Different model-checking algorithms are better suited for different
types of problems. Moreover, even within a single algorithm, many parameters and
strategies can be adjusted. Such tuning is known to affect dramatically not only the
algorithm run time but also its convergence. The variety of algorithms and heuristics
naturally leads to the parallelization of model-checking algorithms. Recent results [50,
150, 162] show that even a simple algorithm portfolio leads to substantial improvements
in performance. However, the key to a truly scalable solution is the sharing of information
among the solvers of the portfolio (see, e.g., [150]), a usually much more complicated
task than constructing a portfolio.

This chapter describes an abstract framework IcE/FiRE that generalizes the concepts
from a recently introduced class of model-checking algorithms that combine the strength of
k-induction with IC3-style search for safe inductive invariants [106, 129]. The framework
consists of two components, the induction-checking engine and the finite reachability
engine. We show that the components are general enough to enable not only internal
learning but also external learning. While internal learning happens as part of the
execution of the sequential algorithm, external learning happens in the parallel setting
where multiple instances share information discovered about the system under analysis.
We describe how to arrive at a parallel version of an efficient model checking algorithm pd-
kind, implement it in SMTS framework for parallel solving [152], and show with a robust
experimental analysis that pd-kind and related algorithms can profit significantly from
this type of parallelization already in a multi-core environment.

Internally, pd-kind relies on interpolation for learning facts about reachability in the
analyzed system; thus, the results of Chapter 3 provide a possibility to compute different
interpolants and consequently learn different facts about the system. As part of the
experiments, we evaluate the benefit of applying decomposed Farkas interpolants in this
setting. The results show that computing diverse reachability facts by means of different
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interpolation algorithms significantly contributes to the performance improvement of
parallel pd-kind.

6.1 Preliminaries

In this chapter we use the terminology related to transition systems as given in Section 2.5.
Given a transition system S = ⟨I, T ⟩, a state formula P and a set of state formulas F ,
we say that P is Fk-inductive if

k−1⋀︂
i=0

((F(Xi) ∧ P (Xi)) ∧ T (Xi, Xi+1)) =⇒ P (Xk) (6.1)

If F = {P} and P is a (k− 1)-invariant, then P is a k-inductive invariant of S, meaning
it is valid in all reachable states of S. When P is not Fk-inductive, the negation of (6.1)
is satisfiable and each satisfying assignment defines a trace ⟨s0, . . . , sk⟩ of k+1 states
called a counterexample to (k-)induction (CTI). We say that a CTI is reachable in S
when s0 is reachable. A central task of the algorithm presented in this paper is to check
if elements of F are Fk-inductive. Checking this for an element P of F and placing P to
another set G if P is Fk-inductive is referred to as pushing P to G.

6.2 The IcE/FiRE Framework

induction-checking
engine

finite
reachability

engine

bounded
invariants

bounded reachability queries

traces/bounded invariants

(I, T, P )

SAFE UNSAFE

Figure 6.1. The IcE/FiRE framework for solving safety of transition systems

This section formalizes a general approach for checking the safety of symbolically
represented transition systems in a way that allows us to present our parallelization
techniques naturally. The approach splits the reasoning about safety into two separate
components (Figure 6.1). The main component is an induction-checking engine (IcE),
also referred to shortly as an induction engine. The goal of the induction engine is to
decide the safety problem. It searches for a k-inductive strengthening of the property
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P being checked. If it finds such a strengthening, it reports the system as safe. During
the search, it may discover that no such strengthening exists since the negation of the
property is reachable from the initial states. In this case, it reports the system as unsafe.
To make progress in its search, to remove spurious counterexamples to induction, and to
confirm real ones, IcE relies on the services of the second component, finite reachability
engine (FiRE). The role of FiRE is to answer bounded reachability queries issued by
IcE. Given a state formula s and a number n, a bounded reachability query asks if any
s-state is reachable from initial states in exactly n steps. The finite reachability engine
answers these queries and provides a reason for the answer. In the case of reachability,
the reason is a trace of n + 1 states leading from an initial state to an s-state. In the
case of unreachability, the reason is an n-invariant blocking s.

The cooperation of these two engines is depicted in Figure 6.1. During the run,
FiRE accumulates knowledge about the system in the form of bounded invariants. This
knowledge helps it to answer subsequent queries faster. The progress of IcE during its
run is modelled using a set of rules that capture and evolve the state of IcE. We discuss
these rules in the next section.

The idea of separate components for inductive and bounded reachability reasoning
is present already in [129]. However, our formalization enables us to easily extend
the framework to the parallel setting with information sharing and reason about its
correctness. In addition, thanks to its abstract nature, it covers not only pd-kind [129]
but also other algorithms, such as KIC3 [106]. In Section 6.3, we present pd-kind as an
instance of this framework in details.

6.2.1 Induction-Checking Engine

Given a safety problem for a transition system (I, T, P ) the induction-checking engine
(IcE) searches for k-inductive strengthening of P . It maintains two distinct sets of state
formulas: a base frame F and a successor frame G. In addition, it maintains information
about its current level n. Intuitively, if IcE is currently working on level n, it already
knows that the system is safe up to level n, i.e., ¬P is not reachable in n steps or less. The
base frame F serves both as a witness that ¬P is not reachable, as well as a candidate
for the inductive strengthening of P . IcE maintains an invariant that on level n every
element of F is an n-invariant. Moreover, P is always an element of F . The successor
frame G collects those elements of F that are Fk-inductive for some fixed k ≤ n+1. Since⋀︁
F is an n-invariant, this means that all elements of G are at least (n+1)-invariants.

When all elements of the base frame are checked and either successfully pushed to G
or dropped, and no termination condition has been hit, G becomes the new base frame
and the successor frame is emptied. If at any point F = G then F is a k-inductive
strengthening of P , proving that P holds in the system (as shown later in Lemma 6.1).
In addition to the two frames IcE maintains a queue Q. The queue contains the elements
of F that still need to be processed at the current level. We also refer to the elements of
Q as obligations.
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We now formalize the workings of the induction engine as a set of rules that work on
and modify the current state of IcE. The current state of IcE is a 5-tuple ⟨F ,G, n, k, Q⟩
with F being the base frame, G the successor frame, n the current level, Q the current
queue of obligations, and k defining the current depth of induction. We refer to the state of
IcE as configuration. For brevity we also sometimes refer to the elements of F as lemmas
instead of bounded invariants. The initial configuration of IcE is ⟨{P}, ∅, 0, 1, {P}⟩ and
IcE makes progress by applying the following rules. Note that the rules Safe and Unsafe
are special, terminating rules.

Safe:
⟨F ,G, n, k, ∅⟩

SAFE

if
{︂
F = G

Unsafe:
⟨F ,G, n, k, Q⟩

UNSAFE

if
{︂
¬P is reachable in [n + 1, n + k] steps.

Next-Level:
⟨F ,G, n, k, ∅⟩
⟨G, ∅, n′, k′,G⟩

if

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F ̸= G
n′ > n⋀︁
G is n′-invariant

1 ≤ k′ ≤ n′ + 1

Push-Lemma:
⟨F ,G, n, k, Q ∪ {l}⟩
⟨F ,G ∪ {l}, n, k, Q⟩

if
{︂

l is Fk-inductive

Add-Lemma:
⟨F ,G, n, k, Q⟩

⟨F ∪ {l},G, n, k, Q ∪ {l}⟩
if
{︂

l is an n-invariant

Drop-Lemma:
⟨F ,G, n, k, Q ∪ {l}⟩
⟨F ,G, n, k, Q⟩

if
{︂

l ̸= P

The rules of IcE, namely Add-Lemma and Drop-Lemma, are abstract in the sense
that we do not prescribe when or how are the new lemmas learnt, nor when they should
be dropped. In sequential setting, new lemmas are typically learnt from FiRE when a
counterexample to induction of some obligation is showed to be unreachable by FiRE. We
discuss this in detail in Section 6.3 when we instantiate the abstract IcE for a concrete
algorithm.
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One specific thing that we would like to point out is that Add-Lemma is general
enough to cover not only the internal learning, but also external learning. By internal
learning we mean the learning of lemmas from FiRE. The external learning means that
the lemmas can come from any other source. This is important for parallelization as it
enables incorporating bounded invariants discovered by other instances working on the
same problem.

Correctness of the induction-checking engine.

The abstract nature of the rules of IcE allows us to easily prove it correctness. That is, if
the engine terminates by applying the rule Safe (Unsafe) then the system really is safe
(unsafe).

Given our assumption that I =⇒ P , the following invariants are valid for the initial
configuration and are maintained by every rule (excluding the terminating rules Safe,
Unsafe):

1. P ∈ F

2. For each l ∈ F ∪ G ∪Q at level n, l is an n-invariant of S.

3. For each l ∈ G, l is Fk-inductive.

It is easy to verify that all invariants are valid for the initial configuration. The first
invariant is trivially preserved by all rules except Next-Level as F either stays the
same or grows. When Next-Level is applied that it must hold that P ∈ G since it is
put in Q at the beginning of each level and can never be dropped. Since Q is empty
when Next-Level is being applied, P must have been successfully pushed to G using
Push-Lemma.

The second invariant is preserved by the rules Next-Level, Push-Lemma and
Drop-Lemma since the set of formulas in consideration stays the same or becomes
smaller. The invariant is also preserved by Add-Lemma because of the condition of the
rule.

The third invariant trivially holds after applying Next-Level as the successor frame
is empty at that moment. For the other rules, let us use G′ to denote the successor frame
after a rule has been applied. The invariant is also preserved by rules Add-Lemma
and Drop-Lemma since G′ = G. Finally, the invariant is preserved by Push-Lemma
because of the condition of the rule.

Lemma 6.1. When the algorithm terminates by applying Safe, the system satisfies the
property P and

⋀︁
F is a safe k-inductive invariant. When the algorithm terminates by

applying Unsafe, the system can reach a state where P does not hold.

Proof. The first part follows from the invariants. When Safe is applied, then it must be
the case that F = G. This means that F is Fk-inductive and consists of n-invariants



102 6.2 The IcE/FiRE Framework

of the system with k ≤ n + 1. It follows that ⋀︁F is a k-inductive invariant of the
system. Moreover, P ∈ F , so P is an invariant. The second part follows trivially from
the condition of the rule Unsafe.

6.2.2 Finite Reachability Engine

The finite reachability engine (FiRE) is responsible for answering bounded reachability
queries issued by IcE. A bounded reachability query for a system S is simply a pair ⟨s, i⟩
where s is a state formula and i is a natural number. It represents a question if any
s-state is reachable in S by exactly i steps. This is naturally generalized to queries of
the form ⟨s, [i, j]⟩, meaning reachability in at least i and at most j steps. An answer to a
bounded reachability query ⟨s, i⟩ is either an i-invariant l such that l =⇒ ¬s in case of
unreachability, or a trace of i + 1 states starting from an initial state and ending in an
s-state in case of reachability.

We do not prescribe how FiRE should be implemented, but we note two known
instances: bounded model checking [29] and IC3/PDR [41]. An interesting observation
[129] is that when IC3/PDR only needs to answer bounded reachability queries then the
requirements on the frames it maintains can be relaxed. The frames do not need to be
inductive nor form a monotone sequence.

From the parallelization perspective the advantage of FiRE based on bounded invari-
ants is two-fold. First, the correctness of FiRE is maintained when bounded invariants
are exchanged between different instances. Second, there is freedom in generalizing the
bounded invariants computed as certificates of unreachability and this freedom can be
exploited for portfolio approach to discover a variety of interesting bounded invariants
across multiple instances.

6.2.3 Cooperation of Multiple Instance

We base our parallelization on the portfolio approach running multiple instances of the
same algorithm with different parameters on a single problem. However, we aim to go
beyond that. We want the instances to cooperate and to share information they discover
about the problem they are solving. Our approach to cooperation of multiple instances
of IcE/FiRE framework is depicted in Figure 6.2.

In our approach, several instances of IcE/FiRE framework (see Figure 6.1) work on the
same problem and share information among themselves. However, the communication is
split to that between the finite reachability engines and to that between induction-checking
engines.
Cooperation of FiREs. Each reachability engine is gradually building and refining its
representation of the state space by discovering and accumulating bounded invariants of
the system. Since all instances work on the same transition system, a bounded invariant
discovered by one instance is valid for other instances as well. Thus, multiple reachability
engines can share their information through a global database of bounded invariants.
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Figure 6.2. Multiple instances of IcE/FiRE framework sharing information

Additionally, in this setting each FiRE has a filter which controls which invariants are
sent and received. The filter can be set to send and receive all or none invariants, or it can
implement a heuristic. For example, it might be beneficial to send out only sufficiently
small invariants to avoid burdening the other instances too much.
Cooperation of IcEs. Unlike FiREs, it is not immediately obvious what information
IcEs could share between themselves. Natural candidates are elements of the base frame
or the successor frame. However, one needs to be careful since different IcEs could be
working on different levels and thus directly including lemmas from other instance might
violate the invariants of these frames. Our solution is to accept external information in a
way that can be modelled using the rule Add-Lemma and thus guarantee to preserve
the correctness of the engine. Each engine sends out elements of the successor frame G.
When an engine is working on a level n and a lemma is pushed to G, it is guaranteed to
be at least (n+1)-invariant. Moreover, it is an interesting bounded invariant in the sense
that this engine so far believes it should be part of the inductive strengthening. The
engine sends such lemma to the global pool for other instances to see. When another
engine receives this (n+1)-invariant, it checks if it can apply Add-Lemma to add it to
its base frame. If the engine’s current working level is higher than n+1, such bounded
invariant cannot be added. Moreover, our preliminary experiments showed that it is
better to have additional checks in the filter for incoming lemmas in order not to spend
too much time processing useless external lemmas. We discuss our implementation and
the experimental results with different settings of sharing information in Section 6.4.
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6.3 PD-KIND as an Instance of IcE/FiRE

In this section, we reformulate the original description of pd-kind [129] in terms of
our IcE/FiRE framework. This reformulation enables us to identify the freedom in the
algorithm that can be utilized for the portfolio approach to parallelization. Additionally,
the techniques mentioned in Section 6.2 for sharing information between cooperating
instances will become directly applicable for pd-kind. On top of that, it allows us to
prove the correctness of the parallel version of the algorithm.

6.3.1 Induction-Checking Engine of PD-KIND

The induction-checking engine of pd-kind uses an extended configuration ⟨F ,G, n, k, Q, n
CTI
⟩,

where n
CTI

remembers the number of steps needed to reach a non-F state from an F
state. This helps to determine n′ > n such that all elements of G are n′-invariants when
applying Next-Level.

Additionally, IcE of pd-kind maintains a mapping CEX of elements of F to potential
counterexamples they block. Formally, CEX is a function from F to state formulas such
that for each l ∈ F , l =⇒ ¬CEX(l) and every CEX(l)-state can reach a ¬P -state.
Maintaining the potential counterexamples in addition to the bounded invariants allows
for the earlier discovery of genuine counterexamples. It also provides a possible fallback
in case the bounded invariant is too strong to be inductive.

The initial configuration of IcE is ⟨{P}, ∅, 0, 1, {P}, 1⟩, with CEX(P ) = ¬P . The
engine makes progress using the following set of rules.

Safe:
⟨F ,G, n, k, ∅, nCTI ⟩

SAFE

if
{︂
F = G

Next-Level:
⟨F ,G, n, k, ∅, nCTI ⟩
⟨G, ∅, n′, k′,G, n′ + k′⟩

if

⎧⎪⎨⎪⎩
F ̸= G
n′ = n + nCTI
1 ≤ k′ ≤ n′ + 1

Push-Lemma:
⟨F ,G, n, k, Q ∪ {l}, nCTI ⟩
⟨F ,G ∪ {l}, n, k, Q, nCTI ⟩

if
{︂

l is Fk-inductive

Unsafe:
⟨F ,G, n, k, Q ∪ {l}, nCTI ⟩

UNSAFE

if
{︂

CEX(l) is reachable in [n+1, n+k] steps
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Add-Lemma:
⟨F ,G, n, k, Q, n

CTI
⟩

⟨F ∪ {l′},G, n, k, Q ∪ {l′}, n
CTI
⟩

if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃l ∈ Q s.t.
¬CEX(l) is not Fk-inductive
with c′ being its CTI
Unsafe is not applicable
l′ is n-invariant that blocks c′

CEX(l′) = c′

Bad-Lemma:
⟨F ,G, n, k, Q ∪ {l}, nCTI ⟩

⟨F ∪ {l′},G ∪ {l′}, n, k, Q, n′
CTI )⟩

if

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N ∈ [n+1, n+k]
¬l reachable in N steps
l′ = ¬CEX(l)
¬CEX(l) is Fk-inductive
n′

CT I = min(N, nCT I)

Strengthen-Lemma:
⟨F ,G, n, k, Q ∪ {l}, nCTI ⟩

⟨F ∪ {l′},G, n, k, Q ∪ {l′}, nCTI ⟩
if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬CEX(l) is Fk-inductive
l is not Fk-inductive
with c′ being CTI
Bad-Lemma is not applicable
l′ is n-lemma s.t.
l′ =⇒ l ∧ ¬c′

CEX(l′) = CEX(l)

A run of the engine starts from the initial configuration and applies the rules until Safe
or Unsafe is applicable (which is generally not guaranteed to happen). The engine can be
viewed as operating on a certain level, defined by the parameter n. At each level, the engine
attempts to prove that the n-invariants from F are Fk-inductive, strengthening the frame
in the process if necessary or giving up on n-invariants that do not hold for higher levels.
Two cases can happen when all elements of the (refined) frame F have been processed.
Either the whole frame F has been pushed, in which case the engine can terminate using
Safe, or some element could not be pushed, and thus Next-Level is applied.

If all elements have not been pushed yet, that is, Q is not empty, then an n-invariant l

from Q is picked and processed in the following way: When l is Fk-inductive then l, and
consequently ¬CEX(l), is in fact at least (n+1)-invariant. In this case, Push-Lemma
is applied, and l is removed from Q.

If Push-Lemma is not applicable and ¬CEX(l) is not Fk-inductive, then there
exists a CTI witnessing this. This CTI can be either real (reachable in S) or spurious
(not reachable in S). A bounded reachability query is issued to FiRE to determine the
status. If it is real, the system S is unsafe because CEX(l) is reachable, and ¬P is
reachable from CEX(l). In this case, the algorithm terminates by applying Unsafe. If
CTI is spurious, then a new lemma blocking it is returned from FiRE and added to F
by applying Add-Lemma.

The last possibility is that l is not Fk-inductive, but ¬CEX(l) is Fk-inductive. Now
the reachability query regarding the CTI for l is issued to FiRE. If it is not reachable,
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then l is strengthened using the reason of unreachability returned by FiRE – Strengthen-
Lemma is applied. If it is reachable, then l is not an invariant of the system and must
be discarded. Bad-Lemma is applied and l is replaced by ¬CEX(l). Since we already
know that ¬CEX(l) is Fk-inductive, it can be immediately pushed to the next frame.

This formalization of pd-kind allows us to prove its correctness, building on the
correctness of the abstract induction-checking engine (see Lemma 6.1). We extend the
proof for the parallel version in Section 6.3.3.

Lemma 6.2. If pd-kind terminates using the rule Safe (Unsafe), the transition system
is safe (unsafe).

Proof. For Safe, notice that pd-kind’s run can be viewed as a run of the abstract
engine, as described in Section 6.2.1. To avoid name clashes, we use a prime to denote
the pd-kind’s rules in this proof. All four rules Safe’, Push-Lemma’, Next-Level’
and Add-Lemma’ directly map to their abstract counterpart. Bad-Lemma is just
Drop-Lemma applied on l followed by Add-Lemma and Push-Lemma on ¬CEX(l).
Finally, Strengthen-Lemma is Drop-Lemma applied on l, followed by Add-Lemma
applied on l′. Consequently, each pd-kind’s run terminating with Safe’ is mapped to
the abstract engine’s run terminating with Safe. By Lemma 6.1, the system is safe.

For Unsafe, we show that the following invariant is preserved throughout the run:
For each l in F ∪ G ∪ Q, CEX(l) can reach ¬P . The invariant holds for the initial
configuration since F ∪ G ∪Q = {P} and CEX(P ) = ¬P . Add-Lemma preserves the
invariant since for the only new lemma l′, CEX(l′) can reach CEX(l), which can reach
¬P by the induction hypothesis. The invariant is also preserved by Bad-Lemma and
Strengthen-Lemma as CEX(l′) = CEX(l) for the only new lemma l′ and the old
lemma l. As the other rules do not change the set F ∪ G ∪Q, we can conclude that the
invariant is always preserved. Thus, when the algorithm terminates by rule Unsafe, ¬P

is reachable, and the system is unsafe.

6.3.2 Finite Reachability Engine of PD-KIND

The finite reachability engine used in pd-kind [129] can be described as an IC3-like
algorithm. It answers bounded reachability queries using a sequence of reachability frames
and local reasoning only, i.e., it does not unroll the transition relation. A reachability
frame at level n, Rn, is a set of n-invariants. Consequently, the set of Rn-states over-
approximates the set of states reachable in n steps or less. Unlike IC3, there is no further
condition on the reachability frames. They do not need to be monotone nor form an
inductive sequence. Like IC3, when FiRE receives a query ⟨s, i⟩, it checks if it is reachable
in one step from Ri−1 using a simple satisfiability query Ri−1 ∧ T ∧ s′. In the negative
case, FiRE generalizes the reason for unreachability using Craig interpolation and reports
the answer together with the reason. In the positive case, FiRE computes a predecessor
t of s and recursively calls itself with query ⟨t, i−1⟩. If this predecessor turns out to be
unreachable, the (i−1)-invariant witnessing the unreachability is used to refine Ri−1 and
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s is rechecked. If the recursive sequence of calls ever reaches an initial state, then FiRE
reports the query as reachable and returns the trace of the predecessors.

Note that the only requirement for the reachability frame Rn is that it contains only
n-invariants. In the sequential setting, FiRE learns new bounded invariants on its own
as it processes more and more reachability queries. However, in a parallel setting, it can
also receive bounded invariants from an external source. More specifically, it can receive
bounded invariants discovered by other instances of the same engine working in parallel on
the same problem. Additionally, different interpolation algorithms can be used in different
instances, thus allowing the engines to spread the search for useful bounded invariants.

6.3.3 Parallel PD-KIND

Since pd-kind is an instantiation of the IcE/FiRE framework, it can be readily plugged
into the abstract parallel framework with information sharing described in Section 6.2.3.

The bounded reachability information is stored in reachability frames consisting of
bounded invariants. Whenever FiRE learns a new bounded invariant as a response to a
bounded reachability query made by IcE, it can send it to the other instances. It can
also periodically query the shared pool for new bounded invariants, and when it receives
an external i-invariant, it can directly add it to its reachability frame Ri.

Similarly, IcE sends out bounded invariants when it manages to push them to the
successor frame. When it receives an external bounded invariant, it must check the
necessary condition for adding it to the base frame. If the condition is not met, it
simply drops the lemma. Otherwise, it uses a heuristic to determine the usefulness of the
lemma. pd-kind assumes that each base frame element is associated with a potential
counterexample through the mapping CEX . Therefore, each bounded invariant l sent
out by IcE must also be accompanied by its companion CEX(l).

It is important for the success of a parallel approach to diversify the search for the
solution. It was not possible to discuss this for the abstract framework as it requires the
concrete algorithm with its concrete settings that drive the behaviour of the algorithm.
Here we identify the key points where the behaviour of pd-kind can be adjusted and
finally give an algorithm capturing pd-kind as an instance of IcE/FiRE framework in
the parallel setting.
Choosing the depth of induction. When the induction engine moves to the next level
n by applying Next-Level, there is freedom to choose a new value k of the induction
depth from the interval [1, n+1]. The behaviour of the algorithm can be greatly influenced
by the value of the induction depth it uses. For example, choosing large k requires a large
unwinding of the transition relation when SAT/SMT solver is used and the inductive
checks become slower. On the other hand, preferring larger k can lead to faster exploration
of the search space. Moreover an obligation might be Fk-inductive, and thus successfully
pushed, but not Fk

′
-inductive for k′ < k. We denote the strategy to choose the new

value of induction depth whenever Next-Level is applied as κ.
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Obligation processing strategy. Several rules might be applicable given a configuration
with a nonempty queue of obligations Q. However, once the obligation to be processed is
chosen, there is no more freedom. The conditions of the rules are mutually exclusive for
a fixed obligation l ∈ Q. Which rule applies for a particular obligation l is determined by
its properties and the properties of CEX(l). Therefore, the behaviour of the algorithm
can be controlled through the strategy for picking the next obligation from the queue Q.
We denote this strategy as ω.
Learning strategy. The finite reachability engine computes bounded invariants as
certificates of unreachability. Theoretically, the certificate of unreachability for a query
⟨s, i⟩ could be ¬s. However, this leads to terrible performance in practice as it excludes
only s and nothing else. Therefore, FiRE uses more sophisticated techniques to compute
bounded invariants that are stronger and exclude more unreachable states. FiRE of pd-
kind uses Craig interpolation to compute bounded invariants. However, an interpolant
for a given problem is generally not unique, and there exist techniques for computing
different interpolants in propositional logic and theories of first-order logic. The use
of different interpolation algorithms leads to different bounded invariants, which can
significantly influence the performance of the whole algorithm (see Section 6.4). We
denote the strategy for computing the bounded invariants as σ.

The run of a single instantiation of IcE/FiRE as pd-kind in a parallel setting with
information sharing is presented in pseudocode as Algorithm 6.1. The input is a triple
S = ⟨I, T, P ⟩ representing the transition system and the property together with the
three strategies κ, ω, σ that determine the behaviour of the algorithm at the previously
identified non-deterministic steps.

Lemma 6.3. The parallel version of pd-kind with information exchange is correct. If it
reports SAFE (UNSAFE), the system is safe (unsafe).

Proof. The correctness of exchanging the bounded invariants between reachability engines
has already been discussed in Section 6.2.3. The only new step IcE does, is incorporating
an external lemma l from another pd-kind instance, together with a potential counterex-
ample that it blocks. An external lemma is learnt only if the condition of the abstract
rule Add-Lemma is satisfied, and thus the invariants ensuring the correctness of the
SAFE answer are preserved. Moreover, the invariant from the proof of Lemma 6.2 is
preserved, and thus the UNSAFE answer is also correct.

6.4 Implementation and Experiments

Our implementation of the parallel pd-kind algorithm is based on the open-source
model checker sally [129] and uses the SMTS framework [152] for parallelization and
information exchange. We have extended sally with API for sending and receiving
information. In our experiments sally was using Yices [83] for checking satisfiability
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Procedure Run(S, κ, ω, σ):
1 C = ⟨F ,G, n, k, Q, n

CTI
⟩ ← ⟨{P}, ∅, 0, 1, {P}, 1⟩ // Initial configuration

2 while TRUE do
3 if Q = ∅ then
4 if F= G then return SAFE // Terminate using rule Safe
5 else
6 Apply Next-Level on C with κ

7 continue
8 FiRE.SendReceive() // FiRE sends and receives bounded

invariants
9 C ← IcE.Receive(C) // IcE receives bounded invariants

10 l← ω(Q) // Pick obligation to process
11 c← CEX(l)
12 switch ⟨l, c⟩ // Pick rule based on properties of l, c

13 case l is Fk-inductive
14 Apply Push-Lemma for l on C

15 IcE.Send(⟨l, c, n+1⟩) // IcE sends pushed bounded invariant
16 case c is reachable in [n+1, n+k] steps
17 return UNSAFE // Terminate using rule Unsafe
18 case ¬c is not Fk-inductive
19 Apply Add-Lemma with σ on C

20 case ¬l is reachable in [n+1, n+k] steps
21 Apply Bad-Lemma for l

22 otherwise
23 Apply Strengthen-Lemma with σ on C for l

Algorithm 6.1 . PD-KIND in the parallel setting of IcE/FiRE

and OpenSMT [122] for the interpolation queries.1

The benchmarks were taken from the transition systems category of CHC COMP
20192, where the problem is encoded using the theory of linear real arithmetic. Out of 244
benchmarks, seven problematic ones were excluded due to the presence of a non-linear
operation. All experiments were run on a single multi-core machine with 16 Intel® Xeon®

X5687 @ 3.6 GHz CPUs and 180 GB of RAM. The resources were restricted to 1000
seconds of timeout and 6GB of memory per one instance of sally. This means that
configurations with more instances are effectively granted more memory and CPU time.
This choice is in line with our goal of improving the solver’s wall clock time.

All instances use the default strategy of sally when they are choosing the depth
1All benchmarks, tools and results are bundled together in an artifact available at https://doi.org/

10.5281/zenodo.3484097
2https://github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts

https://doi.org/10.5281/zenodo.3484097
https://doi.org/10.5281/zenodo.3484097
https://github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts
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of induction (κ from Algorithm 6.1). The obligation processing strategy ω is a priority
queue based on a score assigned to obligations, randomized to diversify the behaviour
of different instances. The learning strategy σ is diversified primarily by using different
interpolation algorithms in OpenSMT and secondary by using different random seeds
for the SMT search. Three different LRA interpolation algorithms were used: Farkas
interpolation algorithm [156], dual Farkas, and an interpolation algorithm based on
decomposing Farkas interpolants [37]. We denote these as PF, DF and PD, respectively.

In the experiments, we seek answers to the following questions:

1. How does the system compare to the state-of-the-art?

2. How important is the sharing of information between various instances?

3. How does the approach scale when the number of instances is increased?

4. How do different interpolation algorithms contribute to the overall performance?

Figure 6.3. Best parallel configuration against the winner of LRA-TS category of CHC COMP
2019

Comparison to the state-of-the-art. The main result of the experiments is summa-
rized in Figure 6.3 that compares the performance of the winner of the transition systems
category of CHC COMP 2019 (sequential sally using PD interpolation algorithm in
OpenSMT) with our parallel implementation with nine instances sharing information
between IcEs and between FiREs. The parallel implementation achieves a 4-fold speedup
on many instances and solves 224 instances compared to 197 instances solved by the
sequential version.

We also compared our parallel implementation to P3 [150], the parallel implementation
of Spacer [137] that also allows sharing information between solver instances. We also
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add the comparison with the sequential Spacer, the default Horn clause engine in Z3 [72].3

The results are summarized in Figure 6.4. Our framework significantly outperforms
Spacer on safe instances. Interestingly, Spacer fares better on unsafe instances.

Figure 6.4. Comparison of parallel sally and parallel Spacer using 6 communicating
instances

Figure 6.5. The effect of sharing information

Information sharing. Figure 6.5 summarizes the performance of 4 configurations: no
information sharing (sno), sharing between FiREs only (sreach), sharing between IcEs
only (sind), and all sharing enabled (sall). In these configurations, six instances ran in

3Results for Z3-4.8.5 with default settings.
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parallel (two for each interpolation algorithm PF, DF and PD). For comparison, the
figure includes results of sequential versions with different interpolation algorithms. Note
that the runtimes of the parallel implementation were rounded to whole seconds, creating
an effect of "stairs" for the low runtimes in cactus plots with a logarithmic scale. There
is also a significant number of instances solved almost instantly; for this reason, the axes
start at 1-second runtime and 50 instances solved.

A clear gap is visible between the best sequential version and the parallel versions,
indicating that the parallel approach yields a significant improvement even without
information sharing. Sharing information between FiREs is helpful, but the effect is
not that significant compared to sharing information between IcEs, which is crucial for
improving performance on many benchmarks. Configurations with sharing reachability
information disabled (p6-sally-sno, p6-sally-sind) do not profit much from enabling
it (p6-sally-sreach, p6-sally-sall). However, some hard benchmarks could only be
solved by sharing reachability information. On the other hand, sharing the induction
information boosts performance significantly. We conclude that the best performance
was achieved by enabling sharing information between both IcEs and FiREs.

Figure 6.6. Scalability experiments

Scalability. We compared the performance of one, two, six and nine instances with all
information sharing enabled. The results, summarized in Figure 6.6, show that adding
more instances improves the performance, both decreasing the runtime and solving more
benchmarks with the configurations solving 197, 213, 221 and 224 instances, respectively.
The effect of interpolation. The large jump when moving from sequential solving
to two instances running in parallel can be in part attributed to different interpolation
algorithms. We investigate this further in Figure 6.7. We compared configurations
using six instances when the interpolation algorithm varies (p6-sally-sall), when the
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interpolation algorithm is fixed to PF for all instances (p6-sally-sall-PF), and when it is
fixed to PD (p6-sally-sall-PD). We also added a configuration of just two instances (one
with PF and one with PD). The results show that varying the interpolation algorithm is
very important as the performance of p2-sally-sall is comparable to that of p6-sally-
sall-PD and p6-sally-sall-PF while p6-sally-sall performs significantly better.

Figure 6.7. The effect of using different interpolation algorithms

The experiments show that our parallel algorithm performs substantially better
than its sequential version. Its success can be attributed to more than one factor: The
use of different interpolation algorithms helps to solve more benchmarks compared to
a single interpolation algorithm used by all instances. Sharing information between
solver instances can significantly reduce the runtime and thus solve more instances
within the time limit. The major part of this can be attributed to the sharing of
induction information, but sharing reachability information does help as well. The
scalability experiments show continuing improvement up to nine instances. Additionally,
our algorithm compares favorably with the state-of-the-art parallel implementation of
Spacer, outperforming it significantly on the safe instances. Since Spacer is performing
better on unsafe instances, the integration of the two algorithms within the SMTS
framework to get the best of both tools is an interesting possibility for future work.

6.5 Related Work

Parallelization is a natural way of improving scalability of model-checking algorithms, for
example, when facing the complexity of real-world problems. Below, we review the work
that we deem most relevant to our results.

In [150], the authors presented the P3 system for parallelizing the IC3-inspired
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algorithm IC3/PDR for computing clusters using a portfolio of lemma-sharing solvers
and search-space partitioning. The current work differs from that in several important
aspects. First, we study a different class of algorithms, based on a combination of IC3
and k-induction. Second, in the implementation our emphasis in this work is on multicore
environments instead of computing clusters. We also target a different application
domain, studying transition systems instead of general constrained Horn clauses. Finally,
in comparing the current system against P3 we measure a significant improvement on the
set of instances that both tools can solve, providing practical evidence on the importance
of the contribution.

Approaches for parallel IC3 were suggested, for example, in the original publica-
tion [41], and more recently in [50]. The current system differs from both, in addition to
basing on k-induction, by allowing constraints expressible in first-order logic through an
SMT encoding instead of purely propositional encoding, therefore being more readily
applicable in software model checking.

The Tarmo system [198] allows SAT-based bounded model checkers to share learned
clauses between queries of different execution bounds. The approach could be applied
at least in the FiRE systems underlying our bounded reachability queries by allowing
the SMT solvers to share clauses as in [123, 151]. However, we leave the study of the
performance effects of such a technique for future work.

A system presented in [168] follows a different approach to determining the feasibility
of symbolic execution paths in parallel. Our approach is more symbolic in the sense that
it does not require the explicit enumeration of, in general, an exponential number of paths
done in [168]. Algorithms for parallel LTL model checking are presented in [13]. The
general approach relies on an automata-theoretic formulation of reducing model checking
to determining the emptiness of Büchi automata. The parallelization idea focuses on
using algorithms based on DFS and BFS for this purpose. We consider this approach
orthogonal to ours and leave it for future work to study the possible synergies. In [133],
the authors use three processes to parallelize a standard k-induction algorithm enriched
with invariants generated from predefined templates. This approach was generalized
in [21] where program analysis with dynamic precision refinement generates continuously-
refined invariants for the k-induction. Our parallelization approach is based on a more
general framework, and allows scalability to arbitrary number of cores. In [162], the
authors present a more general approach of parallelizing model checking by running
several model checkers in parallel. However, the paper does not address the problem of
sharing information between the solvers, a topic central to our work.

Finally, our approach is greatly inspired by the sequential approaches combining
k-induction with IC3, in particular the pd-kind algorithm [129] but also the KIC3
framework [106]. The aim of IcE/FiRE is to capture the class of these algorithms from
the point of view of information sharing between different solvers, and apply these results
to parallelize these algorithms.

A recent work [20] presents another approach of combining k-induction and IC3/PDR.
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It extends the framework of [21] and employs IC3/PDR (not only) for the generation of
auxiliary invariants for k-induction.

Combining and unifying different approaches to software verification, such as IC3/PDR
[41, 85], k-induction [186] and BMC [29], is becoming increasingly popular [21, 22, 43, 106,
129]. Both combination and parallelization techniques benefit from relentless continuous
improvements [31, 58, 113, 144, 193] of the original algorithms.

6.6 Conclusions and Future Work

In this chapter, we contributed IcE/FiRE framework, which generalizes the concepts from
a recently developed class of algorithms combining IC3 and k-induction, with pd-kind
being the prominent representative. The architecture consists of separate components
for inductive reasoning and bounded reachability, which is particularly suitable for
exchanging learnt information in a parallel setting.

Using the setting of IcE/FiRE framework, we have derived a parallel version of
pd-kind algorithm and implemented it in SMTS framework for distributed solving.
We show experimentally that this approach provides a good speed-up in multi-core
environments; the parallel solver surpasses the current state-of-the-art in proving safety
of transitions systems both in speed and the number of instances solved.

As a future direction, an interesting line of research would be to incorporate techniques
for search space partitioning and study closer possible heuristics for sharing lemmas
between the solvers. It remains an open question how to extend the framework to capture
not only algorithms that learn information about states, but also algorithms that learn
information about transitions, such as the TPA algorithm from Chapter 4.
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Chapter 7

Conclusions

This thesis studied the problem of automated formal verification, a task to automatically
prove, in the mathematical sense, that a system satisfies its specification, or find a
behaviour of the system that violates the specification. We chose to study the task in
the modelling framework of constrained Horn clauses (CHC) and its particular fragment
represented by symbolic transition systems. The logical representation of this modelling
language enables simpler formal reasoning about the problem and proposed solving
techniques, as well as direct integration with powerful SMT solvers as the underlying
reasoning engines.

The main message of this thesis is that formal verification is a complex task consisting
of more than one layer, and a successful approach to solving this task requires deep
knowledge of the whole stack. We divide the task into foundational, verification, and
cooperative layers, which correspond to decision and interpolation procedures implemented
in SMT solvers, SMT-based model checking algorithms and multi-agent parallel solving,
respectively. Although SMT solvers can be used as black boxes in model checking and
software verification algorithms, we argue that true efficiency is obtained only with
tight integration of the verifier with the underlying SMT solver as the foundational
component. An efficient integration requires full utilization of the strengths of the SMT
solver and avoidance of its weaknesses, which is possible only with an understanding
of its inner workings. Similarly, designing a parallel solving algorithm in a multi-agent
setting requires intimate knowledge of the single solver instance, including its foundational
component. Awareness of the essential parameters, such as an interpolation algorithm,
and how to tune them can significantly affect the performance already in a simple parallel
portfolio. However, cooperation in the form of information exchange between agents is
required to achieve truly scalable performance. The decisions of what information can be
exchanged and how the sequential agent can integrate the external information require
an understanding of the underlying model-checking algorithm.

In Chapter 3, we proposed a way to decompose Farkas interpolants using techniques
from linear algebra. If such decomposition is possible, this yields a logically stronger
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interpolant in the form of a conjunction of inequalities. In the SMT setting where
interpolants are computed from proofs of unsatisfiability, logically stronger interpolants
for theory conflicts yield a logically stronger interpolant for the overall SMT problem.
This novel interpolation algorithm is successfully applied in the rest of our work. In
the multi-agent setting in Chapter 6, using multiple interpolation algorithms results
in more diverse behaviour across a group of agents and leads to better performance of
our implementation of the parallel PD-KIND algorithm. The TPA algorithm given in
Chapter 4 heavily relies on interpolants, and decomposed Farkas interpolants are used in
our implementation, as adding them improved performance.

In Chapter 4 we focused on the verification layer and scalability problem of existing
model checking techniques on systems with faulty behaviour that requires a long time
to manifest. In the language of model checking, these are transition systems with only
a very long counterexample path. Based on our experience with existing techniques
and their weaknesses, we developed a concept of transition power abstraction sequence
and a model-checking algorithm based on this concept. This algorithm is relatively
simple yet powerful, as we have experimentally demonstrated on problems representing
challenging multi-phase loops. Additionally, we showed that TPA sequence can also
be used to prove safety by discovering safe inductive transition invariant. Since the
original algorithm was not sufficiently effective in proving safety, we developed the concept
further and introduced split-TPA. split-TPA is based on the idea of splitting the
original TPA sequence into two components. The splitting introduced more candidates
for transition invariants and enabled the application of efficient k-inductive reasoning.
The experimental evaluation confirmed that split-TPA dominates TPA in proving safety
while retaining the ability to detect deep counterexamples. Additionally, it can prove
safe some problems not solvable by other state-of-the-art techniques, demonstrating the
usefulness of transition invariants as a proof rule.

In Chapter 5 we described the Horn solver Golem that we developed as part of our
research. Golem has been developed to implement and study interpolation-based (and
other SMT-based) model-checking algorithms, providing infrastructure and efficiency
by tight integration with the underlying SMT solver OpenSMT. The comparison with
other Horn solvers in the latest edition of CHC-COMP1 shows that Golem has great
potential to join the ranks of Spacer and Eldarica as the go-to back-end solver for
the growing number of applications that model their problems using the language of
constrained Horn clauses and rely on off-the-shelf Horn solvers for solving. Besides the
use as the back-end solver for domain-specific tools, Golem can also drive the research
at the foundational layer, as different engines of Golem stress various aspects of SMT
solving and related procedures of interpolation and model-based projection. This leads
to new challenges, especially for richer SMT theories, including arrays, bit-vectors and
algebraic data types.

1Golem outperformed all other solvers except Spacer in LRA-TS, LIA-lin and LIA-nonlin tracks,
which were all the tracks where Golem participated.
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In Chapter 6, we proposed the IcE/FiRE framework, which abstracts concepts from
a recently developed class of algorithms based on a combination of IC3 and k-induction.
IcE/FiRE was explicitly designed with the application in a multi-agent setting with
information exchange in mind. Instantiating the parallel IcE/FiRE framework with
pd-kind algorithm [129], we obtained a parallel pd-kind solver that showed substantial
improvements over the sequential version, as well as over another parallel model checker
P3 [150].

In conclusion, this thesis presents our work that successfully advanced the state-of-
the-art in automated verification. By taking a layered approach to the general verification
problem, we made contributions to the foundational techniques with a new interpolation
algorithm for LRA; to model checking with the concept of transition power abstraction
sequence and algorithms TPA and split-TPA; to the application of parallel multi-agent
solving in model checking with IcE/FiRE framework and parallel pd-kind that instan-
tiates this framework; and to the tool support with our Horn solver Golem. We hope
our work encourages more researchers to pursue deeper knowledge of the components
they work with rather than treating them as black boxes. Deep knowledge is especially
powerful for using SMT solvers in verification, but also for using Horn solvers in domain-
specific verification tools and in multi-agent settings. The awareness of the strengths and
weaknesses of the underlying solvers should guide the modelling part of the verification
task. Often there are multiple ways of encoding a domain-specific verification task, and
the chosen approach can significantly help or hinder the underlying solver.

Future work

Several directions for future research can build on the work presented in this thesis.
Regarding interpolation-based model-checking algorithms, where interpolant computation
is a procedure invoked frequently, choosing the best interpolation procedure for each
interpolation task remains an open question.

Parallelization and multi-agent approaches to verification represent a research direction
on their own. While applying a portfolio approach is typically straightforward, more
sophisticated techniques like partitioning and information exchange are much more
challenging. While partitioning techniques in the context of CHC can be general,
information exchange depends on the particular back-end algorithm. In the context of
parallel pd-kind, we investigated the exchange of positive information, i.e., bounded
invariants of the system that are likely to participate in the final invariant. However, it
might be beneficial to exchange also negative information. For example, the information
that certain bounded invariant has been proven not to be unbounded and thus cannot
participate in the final inductive invariant.

We believe the concept of transition power abstraction offers many opportunities for
further study. The algorithms TPA and split-TPA utilize this concept for detecting
deep counterexamples and discovering safe transition invariants. However, we see much
more potential here. There are variants of the algorithms that could be more efficient,
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more suitable for a particular class of problems, or more suitable for generalization
to nonlinear Horn-clause systems. The possibility of connecting the TPA approach
with Spacer-like search is especially intriguing. Additionally, the automatic discovery
of transition invariants in TPA could find new applications in the analysis of liveness
properties and analysis of termination or non-termination. Another exciting possibility is
to investigate if TPA can discover deep counterexamples in the hardware model checking
domain, with systems modelled at the word level, using the SMT theory of bit-vectors.

Golem also offers many different possibilities, as we outlined in Section 5.8, and
we plan to continue developing the tool. To make Golem more attractive for domain-
specific verification tools, the support of more background theories, including arrays,
bit-vectors and algebraic data types, is desired. This requires mainly the support of the
theories in OpenSMT, but also offers research opportunities regarding new procedures
for interpolation and model-based projection. Implementing additional preprocessing
transformations and extending the set of back-end engines will also make Golem more
powerful. Implementing existing (and potentially new) algorithms in the same tool
facilitates their understanding and comparison. This is important for new research ideas
that address the weaknesses of existing techniques while drawing inspiration from their
strengths.
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