
In recent years, automated formal verification of software has progressed from a few research
labs into large-scale applications, such as cloud infrastructure and smart contracts. Formal
verification techniques based on model checking provide the necessary guarantees by exploring
systems’ behaviour exhaustively and automatically. Moreover, they provide witnesses (explana-
tions) for the result of their analysis: a faulty behaviour, if there exists one, or a proof of the
absence of such behaviour.

However, the general problem that automated software verification is trying to solve is un-
decidable. Despite this theoretical barrier, it is quite efficient on many instances that arise in
practice. We ascribe this (perhaps surprising) success to a combination of factors: the relentless
effort of researchers that come up with new verification procedures to tackle classes of problems
where existing techniques struggle; amazing progress in the foundational technologies of satis-
fiability solving, especially in Satisfiability Modulo Theories (SMT); and increase of available
computational power through parallel and cloud computing. Nevertheless, the growing complex-
ity of real-world systems poses new challenges for formal verification, especially for the scalability
of the techniques.

The task of automated software verification has two parts: modelling the task in a formal
framework and solving the resulting mathematical problem. While modelling is a non-trivial step
in the verification process, it has been addressed widely, and there exist numerous modelling
concepts suitable for various systems. Solving, on the other hand, is a bottleneck when it
comes to complex modern programs. This thesis focuses on the solving part of the task, where
there is a need for new effective solutions. We assume the problems are modelled symbolically,
with formulas in first-order logic. Specifically, we work in the logical framework of constrained
Horn clauses (CHC) and research the mathematical problem of deciding satisfiability of a CHC
system. CHC satisfiability generalizes the common task of verifying safety properties in transition
systems, a widespread model in formal verification. This task is complex and undecidable in
general already if the language of the constraints contains linear integer arithmetic. In our work,
we argue that this task can be approached by providing solutions at different levels, which we
identify as foundational, verification and cooperative layers of the problem. These correspond
to decision and interpolation procedures, sequential model-checking algorithms, and multi-agent
solving approaches. We further argue that the next (higher) layers build on, and interact with,
the previous (lower) layers and that working on the higher layers can significantly benefit from
a deep understanding of the layers beneath them. Overall, we advance the field of automated
software verification by contributing solutions on all three layers.

On the foundational layer, we contribute a new interpolation algorithm for conflicts in the
theory of linear arithmetic. It extends the standard approach based on the Farkas lemma and can
compute logically stronger interpolants. Experimental evaluation in a model-checking scenario
shows that with our interpolation algorithm, the same model-checking algorithm can successfully
solve some problems on which it diverges using the original interpolation algorithm.

On the verification layer, we invent the concept of transition power abstraction (TPA) se-
quence and contribute TPA-based model-checking algorithms that address the known problem
of detecting deep counterexamples in transition systems. Moreover, we show that the TPA se-
quence can be mined for candidates for transition invariants. This allows TPA-based algorithms
to prove systems safe by means largely orthogonal to existing techniques.

To support the development of verification techniques, we contribute Golem, a new solver
for the satisfiability of systems of constrained Horn clauses. The main features of Golem are its
tight integration with the underlying interpolating SMT solver and support for multiple back-end
solving algorithms. Golem is primarily meant to serve as a research tool for further investigation
of SMT-based algorithms for model checking and general Horn solving. It was instrumental in
developing our prototype implementation of the TPA-based algorithms. However, it is also



efficient compared to other Horn solvers in the latest edition of CHC-COMP. As such, it can be
used as the back end for domain-specific tools that model various verification tasks in the CHC
framework. It has already been included as a possible back end for the software verifier Korn.

On the cooperative layer, we contribute an abstract framework that generalizes concepts from
induction-based model-checking algorithms. The abstraction aims explicitly at the application in
a multi-agent solving scenario where multiple instances of the same solver exchange information
and, in this way, cooperate to solve a single problem instance. We instantiate the framework
to obtain a parallel version of a successful pd-kind algorithm and experimentally show that
exchanging information can significantly improve performance. Since pd-kind relies on inter-
polation as a sub-procedure, we use our novel interpolation algorithm to obtain more diverse
behaviour of the agents, and this constitutes a large part of the performance improvement.


