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Abstract: The thesis consists of three articles. The common theme of the first two
articles is the possibility of iterating weak™ derived sets in dual Banach spaces.
In the first article we prove that in the dual of any non-reflexive Banach space
we can always find a convex set of order n for any n € N, and a convex set of
order w + 1. This result extends Ostrovskii’s characterization of reflexive spaces
as those spaces for which weak* derived sets coincide with weak* closures for
convex sets. In the second article we prove an iterated version of another result
of Ostrovskii, that a dual to a Banach space X contains a subspace whose weak*
derived set is proper and norm dense, if and only if X is non-quasi-reflexive
and contains an infinite-dimensional subspace with separable dual. In the third
article we study quantitative results concerning &-Banach-Saks sets and weak
&-Banach-Saks sets. We provide quantitative analogues to characterizations of
weak ¢-Banach-Saks sets using Eﬁ“ spreading models and a quantitative version
of the relation of £-Banach-Saks sets, weak £-Banach-Saks sets, norm compactness
and weak compactness. We use these results to define a new measure of weak
non-compactness and finally give some relevant examples.
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Introduction

This thesis consists of a compilation of three papers by the author as well as this
introductory section. Each paper constitutes one chapter:

1. Weak* derived sets of convex sets in duals of non-reflexive spaces,
J. Funct. Anal. 281 (2021), no. 12, Paper No. 109259, 19 pp.;

2. On subspaces whose weak* derived sets are proper and norm dense,
accepted in Studia Mathematica, arXiv:2203.00288;

3. Quantification of Banach-Saks properties of higher orders,
submitted, arXiv:2111.12773.

The papers are presented in the original form, with the change that the list
of references is unified and moved to the end of the thesis. Any new remarks and
comments not present in the original papers are added to footnotes.

Let us briefly introduce the topics of the thesis. As its name suggests, the
main focus of this thesis is the study of properties of Banach spaces which are
defined by some notion of convergence.

First of these notions is a weak® derived set. Recall that the weak™ derived set
of a subset A of a dual Banach space X* is the set A1) consisting of all limits of
bounded weak* convergent nets in A. This notion is closely tied to another — the
weak” sequential closure. Indeed, if the predual space X is separable, the weak*
derived set AW is the weak* sequential closure of A as bounded sets in X* are
weak® metrizable and thus limits of bounded nets can be attained by sequences.
Weak* derived sets and sequential closures have many applications in Banach
space theory (see the introductions of the first two papers of this thesis). Taking
a weak® derived set is not a closure operation as it is not idempotent — it can

happen that AM is a proper subset of (A(1)>(1). Hence, it makes sense to define
iterated weak* derived sets in the natural recursive way. Those will be denoted
by A for an ordinal o. One of key aspects of the study of weak* derived sets is
that they can be used to characterize reflexivity and quasi-reflexivity. A Banach
space X is reflexive (resp. quasi-reflexive) if and only if A = A" for every
convex subset (resp. every vector subspace) A of X*. Let us define the order of
A to be the least ordinal a such that A® = A+ It follows that in duals of
quasi-reflexive spaces the only possible orders of a subspace A are 0, if A is weak*
closed, or 1, if it is not. However, if the space is not quasi-reflexive, iterating weak*
derived sets of subspaces can stabilize much later — in the dual of any non-quasi-
reflexive space there are subspaces of any countable non-limit order [25] (and if
the predual is moreover separable, these orders are the only possible ones). The
aim of the first paper was to provide a partial analogue to this statement for
convex subsets in duals of non-reflexive spaces — we managed to show that in
the dual of any non-reflexive space we can find a convex set of any finite order
and a convex set of order w + 1. Let us note that this result has been already
generalized for any countable non-limit ordinals in [24]. It still remains open if
the order of a convex set can be a countable limit ordinal. The second paper
deals with a more special result which is motivated by the study of extensions
of holomorphic functions on dual Banach spaces. We showed that in the dual of



any non-quasi-reflexive Banach space containing an infinite-dimensional subspace
with separable dual we can, for any countable non-limit ordinal «, find a subspace
A, such that A C Al@) = av.

The second notion is Cesdro summability. Recall that a sequence (x,)nen is
Cesaro summable (or Cesdro limitable in some literature) if the sequence or arith-
metic means (% Y ohq xk)neN is convergent. A Banach space X has the Banach-
Saks property if every bounded sequence in X admits a Cesaro summable subse-
quence, and the weak Banach-Saks property if every weakly convergent sequence
in X admits a Cesaro summable subsequence. The Banach-Saks property is
a notion weaker than super-reflexivity but stronger than reflexivity. There are
also localized versions of these properties — a subset A of a Banach space X is
a Banach-Saks set (resp. weak Banach-Saks set) if every (resp. every weakly
convergent) sequence in A has a Cesaro summable subsequence. It follows from
the Mazur theorem that if we have a weakly null sequence (x,),en in a Banach
space X, then there is a sequence of convex combinations which converges to zero
in norm. The weak Banach-Saks property of X then means that these convex
combinations can be chosen to be the Cesaro means of some subsequence. In [3]
the authors investigated how regular these convex combinations can be in spaces
failing the weak Banach-Saks property and defined the &£-Banach-Saks property
and the weak £-Banach-Saks property for a countable ordinal £. Roughly speak-
ing, a Banach space X has the £-Banach-Saks property if any bounded sequence
in X has a subsequence, whose £-times iterated Cesaro means are convergent
(for precise definition see the introduction to the third paper). X is said to have
the weak ¢-Banach-Saks property if the same holds for any weakly convergents
sequence in X. Some quantitative results concerning the weak Banach-Saks sets
and Banach-Saks sets were given in [7]. We provided analogous quantitative re-
sults for the Banach-Saks properties of higher orders in the third paper of this
thesis. This investigation led to a new measure of weak compactness.



1. Weak™ derived sets of convex
sets in duals of non-reflexive
spaces

Abstract: We investigate weak® derived sets, that is the sets of weak® limits
of bounded nets, of convex subsets of duals of non-reflexive Banach spaces and
their possible iterations. We prove that a dual space of any non-reflexive Banach
space contains convex subsets of any finite order and a convex subset of order
w+ 1.

1.1 Introduction and formulation of main re-
sults

Let A be a subset of a dual Banach space X*. The weak* derived set A1) of the
set A is the set of all weak® limits of bounded convergent nets in A, i.e.

AD = | JAAnBx-",

n=1

where By« denotes the closed unit ball of X* and Hw* denotes the weak™ closure
of M for any subset M of X*. If X is separable, the weak* derived set A coin-
cides with the weak* sequential closure of A. Indeed, the weak® topology of the
dual of any separable Banach space restricted to any bounded set is metrizable,
and thus AM is the set of all weak* limits of bounded sequences in A, which is,
by the uniform boundedness principle, the set of all weak* limits of sequences in
A.

The study of weak* derived sets of subspaces in duals of separable spaces
(or rather weak* sequential closures, but as we have seen, for duals of separable
spaces these notions coincide) was initiated by Banach [5] and his school in 1930’s.
It can be, however, natural to suppose that their interest in weak* derived sets
was due the lack of acquaintance with the concepts of general topology. Later
weak® derived sets found significant applications. To name a few, they were
applied by Piatetski-Shapiro [30] for characterization of sets of uniqueness in
harmonic analysis, used by Saint-Raymond [32] for Borel and Baire classification
of inverses of continuous injective linear operators, by Dierolf and Moscatelli [12]
in the structure theory of Fréchet spaces, or by Plichko [29] to solve a problem on
universal Markushevich bases posed by Kalton. For additional information and a
historical account, see the survey on weak* sequential closures by Ostrovskii [26].

The theory of weak* derived sets of subspaces was essentially completed by
Ostrovskii [25]. On the other hand, the study of weak* derived sets of convex sub-
sets was initiated much later by Garcia, Kalenda and Maestre [15] in 2010 in their
study of extension problems for holomorphic functions on dual Banach spaces,
where they asked whether the theory will remain the same if we consider convex
sets instead of subspaces. This question was answered negatively by Ostrovskii
[27]. Let us explain the situation in more detail.
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Recall that a Banach space X is called quasi-reflexive if its canonical embed-
ding into its bidual X** is of finite codimension. All reflexive spaces are also
quasi-reflexive and there are non-reflexive quasi-reflexive spaces, e.g. the James’
space [17]. Reflexivity or quasi-reflexivity of X is closely related to the behaviour
of weak* derived sets of convex subsets of X*. We summarize known results in
the following theorem. We use the notation A CC X to say that A is a subspace
of X.

Theorem A. Let X be a Banach space.
1. X is reflexive if and only if A = A for every convex set A C X*.
2. X is quasi-reflexive if and only if AV = A for every subspace A CC X*.

The proof of (2), using the notion of norming subspaces, can be done using
the results of [I1]. The implication from left to right of (1) can be easily shown
using the Mazur’s theorem. The other implication, i.e. the existence of a convex
subset A of the dual space of every non-reflexive space for which A1) C Zw*, is
the mentioned result of Ostrovskii [27]. In [27] Ostrovskii also proved a stronger

version of (2): A Banach space X is quasi-reflexive if and only if A1) = A" for
every absolutely convex set A C X*.

A convex subset A of a dual Banach space X™* is weak® closed if and only if
it equals its weak* derived set, i.e. A = A" if and only if A = AM. This is a
formulation of the Krein—émulyan theorem. The existence of subsets A C X* such
that A1) +# av inspires the definition of weak* derived sets of higher orders: For

1
a successor ordinal a, the weak™ derived set of A of order o is A = (A(afl))( ).

For a limit ordinal o we define A® = {J;., A¥. The order of A is the least
ordinal «, such that A = A1) We use the convention that A©) = A.

In [25] it is shown that for every non-quasi-reflexive separable Banach space
X and every countable ordinal @ we can find a subspace A CC X* of order
a+ 1. It also holds, that in separable Banach spaces countable non-limit ordinals
are the only possible orders of subspaces [16]. This gives a complete description
of possible orders of subspaces of duals of non-quasi-reflexive separable Banach
spaces.

In this paper we prove some partial results regarding orders of convex subsets
of duals of non-reflexive Banach spaces. The main results are:

Theorem B. Let X be a non-reflexive Banach space and n € N. Then there is
a convex subset of X* of order n.

Theorem C. Let X be a non-reflexive Banach space. Then there is a convex
subset of X* of order w + 1.

These results are proved below in Theorems [1.8 and [I.13] Note that we can
restrict ourselves to the case of non-reflexive quasi-reflexive Banach spaces. In
the case of reflexive spaces the only possible orders of convex sets are 0, if the
set is already weak™ closed, or 1, if the set is not weak™* closed. The case of non-
quasi-reflexive separable spaces is already solved in [25]. The proofs of Theorems
B and C use a modified construction of Ostrovskii used in [27].



1.2 Proofs of main results

Lemma 1.1. Let X be a Banach space and Z CC X its closed subspace. Denote
by E : Z — X the identity embedding. Then for every ordinal o and A C Z* we
have

(B)H(AW) = ((B") ().

This lemma is proved in [27, Lemma 1] for « = 1. For general « the lemma
follows by transfinite induction. Note that the weak® derived set A(®) is taken in
Z* and ((E*)7Y(A))@ is taken in X*.

We say that a sequence (z,)5%, in a Banach space X is seminormalized if
there are constants C7,Cy > 0 such that for all n € N we have Cy < ||z,|| < Cs,
and we say that (z,)%; has bounded partial sums if there is C' > 0 such that for

all N € N we have || =, z,|] < C.

Lemma 1.2. Let X be a non-reflexive Banach space. Then X contains a semi-
normalized basic sequence (z,)22, which has bounded partial sums.

Proof. This lemma is proved for a non-reflexive space with a basis in [34, Theorem
3, (1° & 3°)]. As any non-reflexive space contains a non-reflexive subspace with
a basis [28, Theorem 1], the lemma follows. O

For the rest of this paper we pick and fix such seminormalized basic sequence
(2,)22, in X with bounded partial sums and denote its closed linear span by
Z. For further reference, we also fix the constants C,C7,Cs > 0 such that
[N 2] < Cforall N € Nand C) < ||z,|] < Cy for all n € N. Let us
denote by (z*)%2, the biorthogonal functionals of (z,)%2; and by K the positive
cone of Z*. That is the weak* closed convex set

K ={z"e€Z"; 2"(z;) > 0 for each j € N}.

Note that as Z is separable, weak* derived sets in Z* coincide with weak*
sequential closures. Also note, that as the basis (z,)%2, is seminormalized, we

n=1
get that 27 — 0.

*

Lemma 1.3. For every z* € K we have z* = Y00, 2*(z,)z%,
converges absolutely. Further, we have ||2*|| > C71320% 2*(2,).

where the series

Proof. For each N € N we have

N N
[|2*|| > Ol (Z zn> =C! Z 2% (zn)-
n=1 n=1

Hence, as 2*(z,) > 0 for each n € N, we get ||z*|| > C7' 3%, 2*(2,) and the
series >°° | 2*(2,)z" converges absolutely in Z*. As it also converges to z* in the
weak* topology, we get that > 0° | 2*(2,)z) = 2*. O

Now, let us partition N into countably many subsequences: There will be the
set Ng = {i1 < is < ...}. Then for each n € N there will be the set N(i,),
for each j; € N(i,,) there will be the set N(i,, 1) and so on up to for each
Jn € N(in, j1, -, Jn_1) there will be the set N(i,, j1, ..., Jn)-



Fix a sequence of positive numbers (fx)7,, such that 0 # Sy 7 oo, and
a sequence (o), of numbers in the interval [0, 1), such that for each n € N
we have that (o, );,eng,) IS a sequence increasing monotonically to 1 with the
first element equal to 0. We will say that a finite sequence of positive integers
(ny,...,ng) is admissible if ny € Ny and for each 2 < i < k we have that
n; € N(ny,...,ni_1).

For each n € N define

n
A,, = conv {%‘1 z; + E BixZi 1 (Try J1y - -+ Jna1) 18 adm1581ble}
k=1

and, moreover, define

A = conv U A,.
n=1

Let us further denote by N,, the support of A, i.e.
Nn = {Zn} U U{N(Zn7jl) U N(in7jlaj2>u ) N(inajla s 7jn);
(4ns J1s - - -5 Jn) is admissible}.

Later we will prove that those A,’s are the desired convex sets of order n + 1
and A is the desired convex set of order w + 1.

Proposition 1.4. A, is the set of those x* € Z* which have finite support in N,
and which satisfy the following equations:

1= ¥ " (25)
J1EN(in) B
J2€N(in,j1)

N T
jQEN(in,jl)
3 x*(255)5; . . . o
x (Zj2) = Z <6]3)]1 NIRS N(Zn)7 J2 € N(Znajl)
jSEN(i’ﬂvjlva) J2
" (2j) = > (B“)B” J1 € N(in), ..., js € N(in, j1, jo)
J4EN(in,j1,52,53) J3
. (2500 ) Biny . . . o .
x (Zjn): Z (ng)Jl J GN(Zn)a"'ajnGN(Znajla"anfl)-
jn+1€N(’inyjly--~7jn) Jn

Proof. Each element of A, has finite support in N,, and satisfies the required
equations, as the vectors oy zf + ¢ ; B;,%, | satisfy them and the validity
of these equations is preserved by taking convex combinations. To prove the
converse inclusion, let us have z* € Z* with finite support in N,, and satisfying
these equations. Set ¢;, = 2*(z;, )", if *(2;,) # 0, and ¢;, = 0 otherwise. Then



it follows from convexity of A, and the choice of ¢;, that for each admissible
(4n, J1, - - - 5 Jn) We have

ci x*(z; ; n
.T;kn = Z 308" (Znin) B <ajlzfn + Zﬁjkz;k+1> cA,.

jn+1€N(in:j17~~-7jn) /3‘7” k=1

In a similar way it follows that for each 1 < m < n and each admissible
(4n, J1, - - - » jm) We have

* o Cjan*(ijJfl)/Bjmfl *
xjm T Z B Jm+1 € An
Fm+1EN(insj1seesim) Jm
and finally that
¥ (z;
y* — Z ( 32)1_* c An

j1EN(in) By
jQEN(in,j1)
Hence, we just need to show that y* = z*. If k ¢ N,, we have that x*(z;) =

y*(z) = 0. Let m < n and fix an admissible (i, j1,...,jm). Then for each
admissible (i, j1, ..., jn) We have

, B 2 (2008
:Cj;;(z]m) - Z /67' 5jm—l
In

jn+1€N(in7jl ----- Jn)

if jm = jm (and therefore j; = j; for each i < m) and x;‘;(zjm) = 0 otherwise.

Hence, for each admissible (i,, T j:l), we have
ek . ek o o
* ( . ) _ Z Cjn—laj (Z]n>/8]n—2 Cjnm <Zjn+1>/8jn—1 /8
x]l\—/l Zgm) = . — 5/\/ 57 Jm—1
]ﬂ\eJN(l"’Jl’NJ"—j) In—1 Jn

jnJrl EN(invjlv---vjn)

if jpu = jm and x;;, (2j,,) = 0 otherwise. Iterating this, we get for m+1 <k <n
n—1

and admissible (i, J1, . . . , jr)

cﬁx*(ZN)ﬂ,AJ c-ax*(z—)pB—

Ik’ g1 Tin 41’ jn-1 5
Jm—1

B A

*

T~\Z; = Z

OB Y
jkj;lEN(inJl:"'vjk):-“v

jn+1 EN(i’erle"?j’!L)

if j, = jr and x;i (2j,,) = 0 otherwise. Hence, we get
k

T

* _ C]mx*(zjm+l)/8]m—1 Cjnx*(’z]n+1)/8]n—l

]m( j’m)_ Z ﬁ 5 B]mfl
jm+1EN(in7j17“'7jm)7"'7 Jm In

jn+1€N(in7j17"'7j7’b)

and for admissible (in, J1, . . ., jm) such that jm, # j., we get x;ﬁv(zjm) = 0. We can

then inductively prove that if 2 < k < m — 1, the only admissible (i, i, ... ,]A;;)



with nonzero x;i (2j,.) are the initial segments of (i, ji, ..., jm) and for them we
k
have

Z Cjkx*(zjk+l)ﬁjk—l . Cjnx*(zjn+1)6jn—1 B
Im—1"

* —
jm-i,-leN(in,jl7--~7jm)7~~-, Tk Jn
Jnt1EN(in,J1,e50n)

Then, as ¢j, = x*(z;,)"", we can finally show that

3 (%)) %" (23) B3 G (Zjuir) Bjus

jm+1€N(74n7]1,,]m)77 6‘]1 /8']2 /6]77.
Jn+1€N(in,J1,.-,0n)

. Bjmfl * .
— > 5 (24,11 )-
jm+1GN(in,jl,m,jm)vmv Jn
In+1€N(in,j1,-.0n)

y*(zjm) = ﬁjm—l

Now, by consecutive application of the equations of the proposition, we get

* . .
" (2,,) = > - <Z]w;1)5]m_l
Jm+1EN(in,J1,5015m) Jm

o Z " (ij+2)ﬁjm—1 5jm

jm+1€N(in1j17---ajm) Bjm BJMJA
Jm+2€EN(in,J1,.,Jm+1)

_ Z z” (ij+2)ﬁjm—1

jm+l€N(i'll1j17"'7jm) B]th
Im+2EN(in,J1,-,0m+1)

_ 6jm—1 * i
t= Z /B x (Z]n+1)'
jm+1eN(ln7]177jm)77 In
In+1EN(in,j1,-.,5n)

Hence, 2*(2;,,) = y*(%j,.). Analogically

O{<
* ok . J1 %
jm+1EN(in,jl,-qu)p--, Jn
Jn+1€EN(in,j1,...0n)
o . : . s
and for admissible (i, j1,...,Jnt1) we have that 2*(2;,,,) = y*(2j,,,). Hence,
x* = y* and we are done. O]

Proposition 1.5. Let 0 < m < n — 1 and z* be an element of A,(lm). Then z*

satisfies the equations of Proposition possibly except for the equations on the
bottom m lines. Precisely:

1 = Z x*(zjé)
j1EN(in) Bi
J2€N(in,j1)

N S
J1EN(in) J
j2€N(in7j1)

and for 2 < k <n —m and admissible (in, 1, ..., k)

x*(2,) = > %
Jk4+1EN(in,J1500k) B‘jk

9



Proof. We shall proceed by induction. We have already shown in Proposition [1.4
that the proposition holds for m = 0. Now, let us suppose that the proposition
holds for m — 1 and take z* € A . There is a sequence ()2, in A1 such

that =} Y, 2*. Take admissible (Tny J1s - - - Jr) Where & < mn — m. Suppose, for a
contradiction, that

ZU*(Z]k) 7& Z x*(zjk+l)5jk—l ‘

Jk+1EN(in,J1,,Jk) Bjk

Take

§=12"(2,) — > %

G4 1 €N (i 1,0om) B
By the induction hypothesis, as 2¥ € A1 we have

Z 'I;k(zjk-&-z)ﬁjk

z:(zjk+1) = ﬁ
jk+2€N(inyjl7~-~7jk+l) Tt
7 (20) = <5>5
Jk

Jk+1EN(in,J150,0k)

Hence, by Fatou’s lemma, we get that § > 0 and as J is nonzero we get 6 > 0.
For ¢ > 0 take

Fc = {jk’-i—l S N@najla cee 7]]@)’ Bjk_,_l < C}
G.= N(in,jl, ey Jk) \ F..

Then F, is a finite set and x vy x*, therefore there is 75 € N, such that for i > 14
we have

3 7 Zi) B < 3 " B )Bin s 1 6/2
ijrlch ﬁ]k jk+1€FC /Bjk
< Z M +6/2
ﬁjk

Jk+1EN(in,j1,.,0k)

= ’I*<ij) - 5/27
and therefore

Z ‘T’.z((zjk+2>ﬁjk—l _ Z x;(’zijrl)ﬁjk—l < x*(z' ) N 5/2
B v = TN ot —_re P it .

Jk+1€FC ﬁjkﬂ Je+1€FC Bjk

Jh42EN(in 1, 00k+1)

Then there is i; > 7o such that
Z $;‘k1(zjk+2)/6jk—1 _ Z x;‘kl(zjkﬂ)ﬁjk—l > 5/47

Jr+1€Ge ﬁj’”l Jr+1€Ge Bjk
Jk+2€N(in,J1,0Jk+1)

10



as otherwise z}(z;,) < x*(z;,)—0/4 for all i > iy, which would contradict =} = z*.
But then it follows from Lemma [[.3] that

o || > ¢ 3 25 (2j,,.) > C7'B3;1 e 6/4.

Jk+1€Ge
Jk+2€N(in,J15 0Tk +1)

*
QTZ-I

As ¢ > 0 was chosen arbitrarily, we get that (z})$2, is unbounded. But this
contradicts the Banach-Steinhaus theorem. Hence,

T (ij) _ Z ‘T*(ijgl)B]kl .

Je+1EN(in,j1,--,0k)
Now suppose for a contradiction that
* .13*(Zj2)06j1
" (z,) — Z ———= =0 #0.

jQGN(in’jl)

By the same argument as above we get that § > 0. As ¥ € A1 we get by
the induction hypothesis that

)=y AR
J1EN(in) J1
jQEN(in,jl)
and for admissible (i, j1, jo)
Z; (ZjZ) = Z BJS o
jSGN(invjlsz) J2
Now, for ¢ > 0 set
F.={j2; Bj, < cand (in, j1, j2) is admissible}
Ge = J{N(in,j1); j1 € N(in)} \ Fe.

Then, as F, is finite and z; vy x*, we get in the same way as above that there is
10 € N such that for i > i

Z L (z]é)ajl < x*(zzn) . 6/2,

jQGFc /8]1

and therefore there is 7; > iy such that

:C;‘I(st)ozjl Z x;'kl(zjz)aﬁ
v TlE)% s TalER)% gy
j2€Ge Bis Jj2€G. Bin
J3EN(in,J1,52)

But then again by Lemma we have, for j being the second element of N(i,),

27,1 = C™ aj e 6/4,

11



which contradicts boundedness of the sequence (z})$2,. Hence,

x*(zzn> _ Z m*(ZjQ)ajl )
j1EN(in) Bin
jQGN(in,jl)

In exactly the same way we can show that

I x(zj2>:5>0
§1EN(in) Bin
J2E€N(in,Jj1)

leads to the fact that for all ¢ > 0 there is iy € N such that
|25l > C™le 6 /4,

and contradicts boundedness of the sequence (z})$°,. Hence,

1 = Z z* (Zj2).
j1EN(in) Bin
J2€N(in,j1)

O
Lemma 1.6. The order of A, is at least n + 1. Specifically z; € AlrtD\ A,

Proof. First, observe that z; € A" as

n
j— *13 PR * 13 . * . *
z; =w lim---w" lim (ahzin + E ﬁ]kzij) .

J1 In+1 b1

Now, suppose for a contradiction that z; € Al™. There is a sequence (z}); in

A1) which weak* converges to z; . By Proposition we have

* . .
)=y f
J1EN(in) g
J2€N(in,j1)
1= Z x;k (Zj2) ’
J1E€N(in) le
j2EN(i7zaj1)

12



Now fix an arbitrary M € N, then

1 =2 (z,) = limz;(z,)
A
— lim 3 i () 3 7 (2)5) o
' J1EN(in), 1<M 5j1 J1EN(in), 1>M ﬂjl
J2€N(in,j1) J2€N(in,j1)
S hmlnf an Z xi (ZJQ) 4 Z 'rz (ZJ2)
3 . .
J1EN(in), j1<M 6]1 J1EN(in), j1>M 631
J2€N(in,j1) J2€N(in,j1)
R 7 (2),) z; (25,)
_llInilIlf Z 5, + (apy — 1) Z 5
J1EN(in) J1 J1€N(in), j1<M J1

jQEN(inajl)

<1+ (ap —1) liminf

J1EN(in), 1<M

J2€N(in,j1)

xf(%z)

Z ﬂj&

J2€N (in,j1)

As ap — 1 < 0, we get, up to passing

lim

D

J1EN(in), <M

to a subsequence if necessary,

x?(zjz)

=0.
le

jQGN(in,j1)

Then

x;k (ZjQ)

Z ﬁ]i

jleN(in)v J>M
J2€N(in,j1)

lim

Hence, there is ¢ € N, such that

>

jleN(in)v .71>M

J2€N (in,j1)

1’,7(2]'2)

2 Bix

jl EN(in)a
J2E€N(in,j1)

= lim

x;k (Zj2)

5, > 1/2.

But then it follows from Lemma [L.3] that

>

leN(in), jl>M
J2€N(in,j1)

31l > ¢~ 7} (2) > C7 B /2.

Hence, as M was chosen arbitrarily, we get that (z})°, is unbounded, which is a
contradiction. O

*

Lemma 1.7. The order of A,, is at most n+1. Specifically A = At = A
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Proof. As A™ ¢ Alntl) C fnw*, we just need to show that each element of aw
is a norm limit of elements of AM™. For y* € K (recall that K is the positive cone
of Z*) we define

J1€N(in) le
J2€N(in,j1)
’y(y*) _ y*(z- ) N Z y*(zjé)o‘jl.
J1EN(in) B
72€N(in,j1)

Take any x* € K with finite support in IN,, and which satisfies 6(z*) > v(z*) > 0.
Let us consider

a; 1
D =conv<a ﬁ,);aZO,j GNin}.
{ (le 6j1 ' ( )

Then D is the cone formed by rays with gradients in [min o, sup ;) = [0, 1).
Hence, (y(z*),d(x*)) is in D and we can write it as a convex combination

(1), 0 = Y ay (% 1).

J1EN(in) ﬁjl , ﬁjl
We now introduce some new notation. For jp € N(ip, j1, ..., jk_1) we define jx (1)
to be the I element of N(iy, j1, ..., jr). We write jx(ly, lo) instead of (ji.(11))(l2)
for shortness. Now let us inductively define for [,1;,...,l, € N
y()=2"+ > a3
J1EN(in)
* * * y* l Zj 6'1 z; l B
y (I, l) = y* (L) + Z (y (11)(25,) — Z (1)6(']3) ’ ) ]2(52,) =
j1€N(in) j3EN(in,j1,52) 72 )

J2E€N(in,j1)

71EN(in),..
jneN(i’nvj17"'7jn—l)

Yl sln) =y (s lea) + > (y*(lla"wln—l)(zjn)_

Z y*(lh s 7ln—1)(zjn+1>ﬁjn—1 Z;n(ln)ﬁj" '
Bjn Bjnfl

jn+1€N(in7j1 ----- ]n)

It is easily proved by induction over k = 1,...,n that y*(I1,...,lx) have finite
support in N,,. Further,

y*(ll, ce ,lk)

y* (1)

S5y (e le) 2<k<n
k

w* *

l

i

14



To see this, consider

y*(ll,...,lk) _y*(lly-”alk—l) = Z Cij;fk(lk),

jleN(in)7“'
JREN(in,J1,,Jk—1)

where

Cir = (y*(h, . ,lk—l)(zjk) B Z vl ’lk_l)(zmrl)ﬁjk_l) 5

Ikt 1 EN(insjiyeejk) B B
Then only finitely many c;, are nonzero, as y*(I1,...,l;—1) has finite support,
and c;, are independent of [;. Hence, y*(l1,...,lx) — y*(l1,...,ly—1) is a finite

linear combination of 2} (Ix). Now, we just need to notice that the sequences
(25, (1) )ir=1 are subsequences of (z7)72;, which is weak” null as the basis (z,)72,; is
seminormalized. Similarly we get that y*(l) weak® converges to * as y*(I) — z*
is a finite linear combination of weak* null sequences.

Hence, if we prove that the elements y*(I1, .. .,1,) € A,, we get that 2* € A",
We will prove this using Proposition (1.4, For the sake of brevity let us denote
y* =vy*(l1,...,l,) and show that y* € A,. As we have already shown that y* has
finite support in N,,, we just need to prove that the equations of Proposition
hold for y*. Take admissible (i, j1,...,Jx) for 2 < k <mn. Then

y*(zjk> = y*(lh i .,ln,l)(ij) == y*(lb . '7lk*1)(zjk)

as for k < m <n we have that y*(l1,...,0,) —vy*(l1,...,l,_1) has support in the
sets of type N(ip, 1, .. .,jm) (that is indexed by sequences of length m + 1) and
Jk € N(in, j1,---,Jk—1), which is not a set of this type as k < m. Likewise for
Jk+1 € N(in, j1, - ., Jx) we have

y* (ij+1) = y*(llv v 7lk‘)(zjk+1)‘
Then

Z y*(ZjHl)ﬁjk,l . Z y*(lb s 7lk)(zjk+1)6jk—1

Jk+1EN(in,j1,.-,5k) Bi Jk+1EN(in,J1,0,0k) Bi
_ > Yl ) (20 Bi
G 1 €N (i1 jik) B
5 v Ly, . .. ,zk_l)(zjkﬂ)ﬁjk_l)
Gkt 1 ENCiyd1 i) Bin

=y (b ) (25) = 47 (2.

_|_

+ (y*(lb B lk’—l)<zjk-) -

The second equality holds by the definition of y*(l1,...,l;) and the fact that
Je(lk) = iy for exactly one jr11 € N(in, j1, -, Jr)-
Recall that the coefficients (a;, );,en,) Were chosen in such a way that
6" = > %1 and Y(z*) = > 8%
5j1 6j1
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Hence, as y*(z;,) = y*({1)(2},), we get by the definition of y*(l;) and the fact that
25,1y (%j,) = 1 for exactly one zj, € N(in, j1) and is zero otherwise that

3 y(zn) _ > " (25) . a5,
J1€N(in) 5j1 J1EN(in) ﬁjl J1E€N(in) le
J2 €N (in,j1) J2€N(in,j1)

J1E€N(in) le
jQEN(invjl)

5 Y (2, 3 fﬂ*(zjz)aj1+ 3 aj, oy

j1EN(in) Bin j1EN(in) Bin J1EN(in) Pin
J2€N(in,j1) J2€N(in,j1)
J1EN(in) J

J2€N(in,j1)

The last equality holds as z;, is not in the support of y* — z*. Therefore y* € A,
and z* € A,

Now take z* € an As fnw* C K, z* is norm limit of its partial sums by the
virtue of Lemma [1.3] Therefore we just need to show that the partial sums of z*
are elements of A", For any such partial sum v* we have that § (v*) > ~v(v*) >0,

as this holds on A, " and taking partial sums increases 0 more than it increases
7. Then vi = (1 — k~)v* has finite support in N,, and &(v;) > ~(v;) > 0.

Hence, by the previous part of the proposition, v; € A, v* = limv} € A and
e AP, O

Now we can formulate and prove the first main result of this paper.

Theorem 1.8. Let X be a non-reflexive Banach space and n € N. Then there is
a convex subset B C X* of order n.

Proof. Lemma [1.2] gives us a subspace Z of the space X with semi-normalized
basis (z,)5°; with bounded partial sums. By Lemmata and there is a

—w

convex subset A,_; of Z* for which A%"_l) - Aﬁl”) = A, . Let us consider the
identity embedding £ : Z — X and define B = (F*)"!(A,_1). Then Lemma

gives us

*

Br=1) c pn) — BY
]

Now we prove that the convex set A C Z* has order w + 1. First we show
that the positive cone K behaves nicely with respect to restrictions on subsets of
N.

For this sake we define, for 2* = Y72, 2*(2;)2; € Z* and n € N, the restriction
of * on N,, as the formal sum Y ,cn. 2*(2;)2;. Note that in general this sum is
not necessarily convergent in Z*. If it is, we denote by x* | IN,, its limit.
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Lemma 1.9. Let y* be an element of K and n € N. Then y* | N,, is a well-
defined element of K.
Further, if we have a sequence (x})52, C K which weak® converges to z* € K,

then for all n € N we have that xj, | N, wT*) * | N,,.

Proof. For the first part we notice that > pcn, v*(2x)2; is a subseries of the series
>, vyt (2x) 25, which is absolutely convergent by Lemma Hence, it is also
absolutely convergent. The fact that its limit is an element of K is clear by the
definitions.

For the second part we first prove that the sequence (z} | IN,,)%,, which is
well defined by the first part of the lemma, is bounded. Recall that, as the basis
(2,)2°, is seminormalized, the biorthogonal basic sequence (z;)>° ; is bounded by
some constant C3 > 0. Then for k € N

Ik I Null < D [lek(2)z]] < Cs 3 ai(z) < Cs ) xi(z) < C Gyl

leEN, lEN, =1

We used that 2} € K and Lemma [1.3] Boundedness of (z} | N,,)72; now follows
from the boundedness of the weak* convergent sequence (x})%2,. Notice that
the sequence (z [ N,)52, converges to z* [ N,, in the topology of pointwise
convergence (that is the topology on Z* generated by {zx; k € N} C Z). Hence,
as the topology of pointwise convergence is a weaker Hausdorff topology than
the weak® topology, they coincide on bounded subsets of Z*. Therefore, as the
sequence of restrictions (z} | N,,)%2; is bounded, it converges to z* | N,, also in
the weak™ topology. O

Now let us recall that the set A C K was defined as

A = conv U A,.

n=1
and that the sets A,, have support in the sets N,,, which form a partition of N.

Lemma 1.10. Let z* be an element of A®) for some k € w. Then for alln € N
there is t, € [0,1] and v € A® such that x* | N,, =tz and Y22, t, < 1.

Proof. We will proceed by induction. For k& = 0 the result follows by the definition
of A, as any z* € A is a convex combination » 0°, ¢,z where z € A,. Then
x* | N, = t,x) as the sets N,, are pairwise disjoint.

Now let us suppose that the lemma holds for k& € w and take any z* € A*+D.
Then we can find a sequence (7})7°, C A% which weak* converges to z*. By the

induction hypothesis we have

) [ Ny =t1n 77, Ty, € A;’“), tin € 10,1], Z tin < 1.

n=1

By Lemma [1.9) we have for each n € N

* * w* *
tin ), =] [ Ny 5 | N,,.

17



Now we can, up to passing to a subsequence, assume that ¢, - t, € [0,1]. If

t, = 0, we set ¥ to be any element of A**+1. Otherwise we set 2 = =~ [N", which
is the weak” limit of the sequence (z},,)i2;. In either case we have z* [ N,, = t,2},
where t, € [0,1] and x € A®*D_ Tt remains to show that >°° ¢, < 1. For this

we use the Fatou’s lemma:

o0 o0

nzzjltn = ;}E&t,,n < 1i{g£f;tl,m <1.

Lemma 1.11. The order of A is at least w + 1.

Proof. Consider the element z* = >>° 27”27 . Then 2* € A as it is an infinite
convex combination of the elements z; and by Lemma we have that 2} €
A1) € AW, Hence, we need to prove that z* is not an element of A, that is
to prove that it is not an element of any A™ m € N. Suppose for a contradiction

that 2* € A for some m € N. Then by Lemma we have that

* (m)

27l =2 I[N =t2h for some t € (0,1], 2., € A,y

Zim+1

In other words, z7 . is a positive multiple of an element of Aﬁiﬁ@l. But then by
Proposition [1.5( we have

Z’ka+1 (Zj2 )aj1

1= Z:m+1(zim+l> = Z 8 =0,
jleN(i'nH»l) J1
J2€N(im+1.51)
as m < (m + 1) — 1. But this is a contradiction. Hence, z* ¢ A“). O

Lemma 1.12. The order of A is at most w + 1. Specifically A = AW,

Proof. First we notice that for each n € N it holds that 0 is an element of A
as 0 = ayz; € AW, where j is the first element of N(i,) (see the paragraph
preceding the definition of A,,).

Set

B = {Ztnx;; T € /an*, t, €[0,1], > t, < 1}.
n=1 n=1

Then B is a subset of A@W. To see this, cosider z* = Y% t,z* € B, where
Ty € /an*, t, € [0,1] and 322, ¢, < 1. Now we will show that for each N € N
the partial sum yi = 2N | #,2% is an element of A“). By Lemma we have for
each n =1,..., N that an* = ANFD | Hence, for these n = 1,..., N we have
T, € A = ANHD € ANFD € A@). But then, as 0 € A,

N N
YNy = Z thx, + (1 — Z tn> 0 € conv AW = AW,
n=1 n=1

Therefore z* = limy o0 Y3 € AW and B C AW),
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Now we show that B is actually already weak* closed. As B is convex, it is
enough to show that B = B by the Krein—émulyan theorem. Let us have a
sequence (7})?, in B which weak* converges to z* € BM. We want to show
that z* € B. As xj, € B, we can write it as zj, = >_)°; g n 2%, With z,, € an*,
tkn € [0,1] and 320 ¢, < 1. By Lemma it holds for each n € N that

w*
ten@r, = o | Ny, — 2% [ N,,.
? k—oo

Now we can, using the diagonal argument to pass to a subsequence if necessary,
assume that for each n € N it holds that ¢, k—> t, for some ¢, € [0,1]. Set
— 00

yr = 0 if t, = 0 and otherwise set y = m*t[N”, which is the weak® limit of

the sequence (x,,)72,. In either case we get that 2* | N,, = t,y*, where y* €

— o\ (1 —w*
(An )( ) A, t, €]0,1] and >20° ¢, < 1 (where the last inequality follows

again from the Fatou’s lemma). Now we notice that x* = > 2, (z* [ N,,), as the
series x = > o0, x*(z,)z% is absolutely convergent and the sets N,,, n € N, form

a partition of N.
Now, as obviously A C B, we have

*

BC Aw c 4Y ¢ BY = B.

Therefore we have equalities and specifically A = AW, O
Now we are all prepared to prove the second main theorem of this paper.

Theorem 1.13. Let X be a non-reflexive Banach space. Then there is a convex
set B C X* of order w+ 1.

Proof. Lemma [1.2| gives us a subspace Z of the space X with semi-normalized
basis (2,)5, with bounded partial sums. By Lemmata and there is
a convex subset A of Z* for which A C AW = A" Let us consider the
identity embedding £ : Z — X and define B = (E*)7'(A,_1). Then Lemma

gives us

*

B(w) C B(w+1) _ E’w )

1.3 Remarks and open problems

The order of any subset of the dual of a separable space must be a countable
ordinal (see e.g. [16]). It follows from the Baire category theorem, that the order
of a subspace of the dual of a separable Banach space cannot be a limit ordinal.
This approach, however, cannot be used for convex sets. So the following question
still remains open.

Question 1. Can the order of a convex subset of the dual to a separable Banach
space be a limit ordinal?
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Ostrovskii proved in [25] that in the dual of any non-quasi-reflexive separable
Banach space we can find for any non-limit ordinal o < w; a subspace of order a.
Can we prove an analogous statement for convex subsets of duals of non-reflexive
quasi-reflexive Banach spaces?

Question 2. Let X be a non-reflexive quasi-reflexive Banach space. Are there
any convex subsets of X* with order higher than w + 1 QEI
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!This question was answered positively by Ostrovskii [24] — there are indeed convex subsets
of arbitrary countable non-limit order in dual of any non-reflexive space.
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2. On subspaces whose weak”
derived sets are proper and norm
dense

Abstract: We study long chains of iterated weak* derived sets, that is sets of
all weak® limits of bounded nets, of subspaces with the additional property that
the penultimate weak* derived set is a proper norm dense subspace of the dual.
We extend the result of Ostrovskii and show, that in the dual of any non-quasi-
reflexive Banach space containing an infinite-dimensional subspace with separable
dual, we can find for any countable successor ordinal « a subspace, whose weak*
derived set of order « is proper and norm dense.

2.1 Introduction

The weak* derived set of a subset A of a dual space X* is defined as the set of all
weak® limits of bounded nets from A, i.e.

AD = | JANnBx-".

n=1

If X is separable, bounded sets of X* are weak® metrizable, and thus the weak*
derived set A coincides with the weak® sequential closure of A, that is the set
of all weak* limits of sequences from A. The study of weak* sequential closures
of subspaces in duals of separable spaces was initiated by Banach [5] and his
school in 1930’s. Later, weak® derived sets and weak* sequential closures found
significant applications. To name a few, they were applied by Piatetski-Shapiro
[30] to characterization of sets of uniqueness in harmonic analysis, used by Saint-
Raymond [32] for Borel and Baire classification of inverses of continuous injective
linear operators (see also [31] for application for non-separable spaces), by Dierolf
and Moscatelli [12] in the structure theory of Fréchet spaces, or by Plichko [29] to
solve a problem on universal Markushevich bases posed by Kalton. For additional
information and a historical account, see the survey on weak* sequential closures
by Ostrovskii [26] and the introduction to his new paper [24].

The weak* derived set needs not to be closed under taking weak* limits of

1
bounded nets, that is A® can be a proper subset of (A(1)>( ), even if A is a
subspace. This inspires the definition of weak® derived sets of higher order. We
use the convention that A® = A. For a successor ordinal «, the weak* derived
1
set of A of order a is A = (A(afl))( ). For a limit ordinal o we define A =
Upea AP, The order of A is defined to be the least ordinal a, such that A =

A+ Note that it follows from the Krein—émulyan theorem that if A is convex,
then A = AW if and only if A is weak* closed. Hence, if A is convex, the order

of A is the least ordinal a such that A = A"
It is readily proved that a subspace A of X* is norming, if and only if AY) =
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X*. Recall that A is said to be norming if
ga(x) =sup{|f(z)|: f€ AN Bx+}

defines an equivalent norm on X. Davis and Lindenstrauss [11] have shown that
a Banach space is quasi-reflexive if and only if every subspace of its dual which
separates points is also norming. Recall that a Banach space X is quasi-refiexive,
if it is of finite codimension in its bidual. It thus follows by a quotient argument
that a Banach space X is quasi-reflexive if and only if A = A" for every
subspace A of X*, or in other words, if and only if the order of any subspace of
X* is at most one. The study of possible orders of subspaces in duals of separable
non-quasi-reflexive spaces was completed by the following theorem of Ostrovskii
[25]:

Theorem 2.1. Let X be a separable non-quasi-reflexive Banach space. Then for
every countable successor ordinal o there is a subspace A of X* of order «.

Further, the orders of subspaces in a dual to a separable Banach space must
be countable and cannot be limit, see for example [16]. Later, Garcia, Kalenda
and Maestre [I5] asked the following questions in their paper about extension
problems for holomorphic functions on dual Banach spaces.

o Let X be a quasi-reflexive Banach space. Is it true that A = A for
every convex set A in X*7

o For which Banach space X does there exist a subspace A of X* such that
AW ig a proper norm dense subspace of X*?

Both of these questions were solved by Ostrovskii in his paper [27]. He showed

that AV = A" for every convex subset A of X*, if and only if X is reflexive.
This result was later developed by the author [33][] and Ostrovskii [24] in the
spirit of Theorem 2.1} Let us note that it is still an open problem if the order
of a convex set can be a countable limit ordinal. Regarding the second question,
Ostrovskii proved the following theorem [27, Theorem 1]:

Theorem 2.2. The dual Banach space X* contains a linear subspace A such that
AW 4s a proper norm dense subset of X*, if and only if X is a non-quasi-reflexive
Banach space containing an infinite-dimensional subspace with separable dual.

The aim of this paper is to extend the result of Theorem [2.2|for higher ordinals
in the spirit of Theorem 2.1} The results will be valid for both real and complex
scalars.

We will use the following notation. We write F for the underlying field R or C.
For a sequence (x,)22; in a Banach space X we denote its closed linear span by
[2,]5%,. Analogically, [z,]"_, will denote the linear span of (z,,)"_,. Recall that
a couple ({z;}icr, {z} }icr) is called a biorthoganal system in X if for all 4,j € I
we have x73(i) = d;;, where 0;; = 1 if i = j and 6; ; = 0 otherwise. An indexed
family {z;};,c; in X is said to be minimal if there is an indexed family {z}};cs
in X*, such that ({z;}icr, {2} }ics) forms a biorthoganal system. For a subset
A of a Banach space X we denote by A+ the annihilator of A in X*, that is
At = {2 € X*: 2*(a) = O0foralla € A} C X*. For a subser B of X* we
denote by B, the preannihilator of B in X, that is B, = ,ep Kerb C X.

I The first paper of this thesis.
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2.2 The results

The statement of the main theorem is the following.
Theorem 2.3. Let X be a Banach space. Then the following are equivalent:

1. X is non-quasi-reflexive and contains an infinite-dimensional subspace with
separable dual.

2. There is a subspace A in X*, such that AV is a proper norm dense subspace
of X*.

3. For each countable successor ordinal o there is a subspace A in X*, such
that A is a proper norm dense subspace of X*.

The equivalence (1) <= (2) follows from Theorem [2.2| and clearly (3) =
(2). The strategy to prove the implication (1) = (3) is to combine the
construction from [25], that is the proof of Theorem [2.1] and the construction
from [27], which is the proof of Theorem We will first find a subspace W
of X spanned by a nice biorthogonal system and find a suitable subspace K in
W=*. In the following lemma we use the notation n; = k(kjl), k € N. Then the
sequences {(nm, +0)5°_;} U{(n, +i—1)2_, ;: i > 2} form a partition of N, as
illustrated in the following table.

(nm + 0)%:1 (nm +)oeoy (1 + 2)%0:2 (M + 3)?;10:3 (nm +4)e_y

1 2
3 4 )
6 7 8 9

. =
(@]
—_
—_

12 13 14

Lemma 2.4. [27, Lemma 2] Let X be a non-quasi-reflexive Banach space con-
taining an infinite-dimensional subspace with separable dual. Then there is a
minimal system

W = A{zn}nen U {unnen
satisfying:
(i) W and its biorthogonal functionals are uniformly bounded.
(ii) The sequence (un)nen @S a shrinking basic sequence.

(iii) The sequences (Tn,)p2y and (Tn, 1), 1, J = 2, have uniformly bounded
partial sums.

(iv) The sequence of subspaces

[3317 T2, ul]a [:C?n Ty, L5, u2]7 ttt [xnpa xanrl s axanrp? up]? s

forms a finite-dimensional decomposition of W := span)/V.
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Note that assertions (i) — (ii7) follow from the statement of [27, Lemma 2.
Assertion (iv) is shown within its proof. We will now prove that assertion (3)
of Theorem is satisfied for the space W. For information about shrinking
bases see Section 3.2. of [I] or Section 1.b. of [20]. For more information about
finite-dimensional decompositions see Section 1.g. od [20].

Notation 2.5. We will further use the following notation.

1.

For p € N we set ), = x,,. For j >2and p € N we set L) = Ty gt
In this notation, the sequences (Ig,);il, j € N, form a partition of the set
{z,}°2; and have uniformly bounded partial sums by Lemma (ii7).

For w € W we shall denote by @w the biorthogonal functional of w (with
respect to W). We differ from the usual notation w* since we use upper
indices for some elements of W.

For each n € N we fix a weak™ cluster point f,, of the sequence (Z?Zl xgl):o_l

in W**. Note that its existence is guaranteed by Lemma (77i) and 1.
and that those elements are also uniformly bounded.

For n € N we write P, for the canonical projection onto

[xly Loy, U1, T3, T4y L5, Uy ... 7$nn7 xnn—&-l s 7'xnn+n7 un]

The projections P,, n € N, are uniformly bounded by Lemma (1v) and
the properties of finite-dimensional decompositions, see the discussion after
[20, Definition 1.g.1.]. The adjoint P} is then a projection of W* onto

[T1, To, U1, Ty, Tay T, Uy -y Typys Ty t1 -+ + 5 Tyt Un)-

These projections satisfy P*(z*) 2> z* for each 2* € W* (again, see the
discussion after [20], Definition 1.g.1.]).

. Let i,k € N. We say that g € W** is of type (i, k), if either

e i #kand g=a}+afy for some a € Fand j €N, or

e g=u; + afy for some a € F.

Let A C N. We say that a vector g of type t(i, k) is compatible with A C N
if

e g=a}+afyand i,k ¢ Aor
e g=u;+afyand k ¢ A.

. We denote the closed span of (u,)neny by U. Then by Lemma (7i) the

[eo]

o0 | is a basis of U*.

sequence (a, | U)

We will say that a vector z € W is finitely supported if z € span V.
Similarly, we will say that a vector z* € W* is finitely supported if z* €
span{w : w € W}.
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Construction 2.6. For a < wy, A C N infinite with infinite complement and a
vector z + afy of type t(i, k) compatible with A, we define sets Q(a, A, z 4+ af)
in the following recursive way:

o U0,A z+afy) ={z+afc};

o If a > 0isa successor ordinal, we split A into infinitely many infinite subsets
(An)22, and take a summable sequence (a,)>°; of positive numbers. Let
(p(n))se, be the increasing enumeration of Ay. We set

Qo, A,z +afy) ={z+afi} U U Qv — l,An,fo +anfp(n)).

n=1

o If @ > 0 is a countable limit ordinal, we fix an increasing sequence (a,)>2 ;

of ordinals such that «,, — « and again split A into infinitely many infinite
subsets (A,)5, and take a summable sequence (a,,)2 ; of positive numbers.
Let (p(n))22, be the increasing enumeration of Ay. We set

Qa, A, z+afy) ={z+afi} U U Q(a, Amxfl + n fon))-

n=1

e We set K(OZ,A,Z + afk) = (Q(Oé7sz + afk))J_'

Remark. Note that if we set a,, = av—1 for a successor ordinal & > 0 and n € N,
we can cover both cases of successor or limit a0 by the definition

Qa, A, z+afy) ={z+afi} U Ej Q0 Any 2F + an fomy)- (%)

n=1

We will use this notation later, if the proofs do not depend on whether « is a
successor or limit ordinal.

Lemma 2.7. Let a < wy, A C N infinite with infinite complement and a vector
z+afy of type t(i, k) compatible with A. Then every element of Q(a, A, z + afy)
is either z + afy or an element of type t(l,m) forl € AU{k} and m € A.

Proof. We shall proceed by induction over a. If o = 0, the only element of
00, A,z + afy) is z + afy and the claim holds. Suppose the claim holds for all
B < a. By Construction [2.6| and the remark following it

Qa, A, z+afy) ={z+afi} U U Qo Ap, 2 + an fpn))-

n=1

It follows that any element of Q(«, A,z + afy) is either z + afy or an element
of Q(an, Ap, 2E + ap fym)) for some n € N. By the induction hypothesis, for all
n € N, all elements of Q(aw,, A, 2k + an fpn)) are either z + a, fou or of type
t(l,m) where l € A, U{p(n)} C Aand m € A, C A. Hence, in either case, they
are of type t(l,m) where | € AU {k} and m € A. O

Proposition 2.8. Let a < wy, A C N infinite with infinite complement and
let z + afy be of type t(i, k) compatible with A. Then (K(a, A,z + afk))(a) C
Ker(z + afy).
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Proof. We will proceed by induction over a. It obviously holds for a« = 0 as
z+afy € Qa, A,z + afy). Let us suppose that the claim holds for all ordinals
smaller than a. We will prove that (K (a, A, z 4+ af))"”) C Ker(z + afy) for all
B < a by induction over 8. Again, the case 8 = 0 is clear. Now, suppose it holds
for some < «a. Take y* € (K(a, A, z+ afk))(ﬁﬂ). Then there is a sequence
(y£)oe, of elements in (K(«, A, z + afi))? which weak* converges to y*. Recall
that by Construction there is ng € N such that g < a,, for all n > ng. Hence,

% (8)
(K(a, A,z + af)?) = (Ker(z +afy) N () K(an, An, 2k + anfp(n))>

n=1
0 )
C N (K (e An 2l + anfym))
n=ng

€ ) Ker(z, + anfym).

n=ng

where the first equality follows from and the last inclusion follows from the
induction hypothesis for 8 < a,, and for n > ny. Hence, there is C' > 0 such that
for every n € N and 7 > ng we have

Y (@] = a;1 o) ()| < Cay. (2.1)

Indeed, the sequence (y;,);2, is weak” convergent and thus bounded, and (f,;))52,
is also bounded, see point 3 of Notation

We will show that fi(y:) — fu(y*). Fix ¢ > 0. By inequality there is
mo > ng such that

Z |y (2 M| < e/8. (2.2)

Jj=mo
As fi. is a weak™ cluster point of ( i) :r;;“)oo there exists m; > mg such that
mi
fely®) =Dyt (=h)] < e/4. (2.3)
j=1

Let us now show that for any n € N it holds that

Indeed, for any n € N there is r, > my such that | fi(y;) — X5z, v (2F)] < €/8.
Since my > my, it follows from (2.2)) that

| fi(ys) — Zyn O < | fulyr) Zyn O+ | Zyn

j=mi1+1

<e€/8+ Z lyn(zh)] < e/8+¢€/8 < e/4.

j=mi+1

26



It follows easily from the fact that (y})52, is weak® convergent to y* that there
is n’ € N such that for all n > n’ it holds that

\Zyn g_: )| < e/4. (2.5)

By applying the triangle inequality and (2.3)), (2.4)) and (2.5]), we finally get that
for all n > n’

|fevl) — fe(y®)]| < e€/d+e/d+e/d <e

But this precisely means that indeed fi,(y) — fr(y*).
Since z € W and thus y(2) — y*(2), it follows that

(z+afe)(y") = lim(z + afi)(y,) =0

as y- € Ker(z + afy) by the induction hypothesis. Hence, y* € Ker(z + afy).
What is left is the induction step for a limit ordinal # which follows easily from
the definition of weak® derived sets for limit ordinals. ]

Definition. Let a < w;, A C N infinite with infinite complement, z + af;. a
vector of type (i, k) compatible with A. For d € F define

Qa(a, A,z +afy) = K(a, A,z 4+ afy) N (d?—l— span{z’ : seN, t € AU{k:}})

That is, Qq(a, A, z + afy) are those elements from K(«, A, z + af;) which have
finite support in the relevant set and have d as the coefficient at Z.

Lemma 2.9. Let k,i,j € N. Then fi(%}) = 0 and fi(t;) = 0.

Proof. Note that fi(4;) is a cluster point of the sequence (ﬂ, (Zl";l xf))oo_l. It
thus follows from biorthogonality that fi(u;) is a cluster point of a sequence of
zeroes, and thus fi(@;) = 0. Further, fi(7}) is a cluster point of the sequence

(i; (Z;’;l :L’f’))ooil, and again by biorthogonality, 7 (E}’;l xf) =1ifi=k and
m > 1, and T} (Z}Zl ;Ef) = 0 otherwise. Hence, if i # k, fp(Z}) = 0 as it is a

cluster point of a sequence of zeroes, and if i = k, fk(f;) = 1 as is is a cluster
point of a sequence which eventually equals one. O

Lemma 2.10. Let a < wy, A C N infinite with infinite complement, z + afy a
vector of type t(i, k) compatible with A. Let b € F and y* € bz + span{Z : s €
N, t € AU{k}}. Then

(a) y* € Qv A,z +afi)) ",
(b) If moreover y* € Ker(z + afy), then y* € (Qp(a, A, 2z + afk:))(a)

Proof. First we will show that (b) implies (a). Indeed, if we set for n € N

* * 1 *\ ~
v =y = —(z+afi)ly )T,
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then for each n € N clearly v € bz + span{z’, : s € N, t € AU {k}}. Also,
by Lemma 2.9) (z + afy)(#%) = a, and thus y € Ker(z + afy). Tt thus follows
from (b) that 7 € (Qy(a, A, z + afi))®. Further, the sequence (), weak*
converges to y* as the sequence (7%)2, is weak* null. Indeed, (7%)°, is bounded
and pointwise null (that is converging to zero in the topology generated by W),
and hence it is also weak® null as these topologies coincide on bounded sets. Thus,
vt € (Qu(a, A,z +afi)) ™ and (a) is true.

We will prove (b) by induction over a. The case ov = 0 is clear as K(0, A, z +
af) = Ker(z + afy), see Construction 2.6 Let us suppose that both (a) and (b)
hold for all § < a and take y* € Ker(z + af;) as in the statement of the lemma,
that is

Yy =bz+ i (cjff + v;) ,
j=1

where ¢; € F and v} € span{Z} : s € N, s € A;U{p(j)}} (recall that A; and p(j)
are defined in Construction 2.6). It follows from Lemma and the fact that
y* € Ker(z+afy) that X7, ¢; = —2. Indeed, y*(z) = b and afi(y*) = a X ¢;.
Recall that by Construction and

K(a, A,z + afy) = Ker(z 4+ afy) N ﬂ Koy, An, 2% + n fon))-

n=1
It follows from (a) of the induction hypothesis for a; < o, j = 1,...,m, that

_ . (aj+1)
cjxf +v; € (ch(&j7 Aj7x§ + ajfp(]’))) ’

()
C (Qe s, Ajy 2k + a;fy)

Let us now show that

bz + Z Qc, (aj, Ay, xf +a;fp) C Qo(a, A,z +afy). (2.6)

Jj=1

Indeed, let us fix an element of the set on the left-hand side of (2.6)),

where w} € Q. (aj, 4j, xf + a; fp(j)). For later convenience set w; = 0 for j > m.

As Ag = {p(y)}2,, and thus

j=1

AU = (10 U4 0 (00
=
we get that w* € bz + span{Z’ : s € N, t € AU{k}}. What is left is to show is
that w* € K(a, A, z+afy) = (o, A,z + afy)),. Take any g € Q(a, A, z+afy).
Then by Construction either g = z + afy or g € Q(aj,Aj,xé? + a; fp(y)) for
some j € N. We shall first deal with the second case. By Lemma either g is
of type t(l1,15), where [y € A; U {p(j)} and Iy € A;, or g = z% + a; fp(;)- In both
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cases, as the sets A, U {p(l)}, | € N, are disjoint, we get, using Lemma [2.9] that
g(wy) = 0 for [ # j. Hence, as w} € K(aj,Aj,x;? + a; fp(i)),

g(w*) = g(wy) = 0.

Now we deal with the case g = z 4+ af;. We have that

g(w') = (2 + afi)(w) = b+ ac; = 0

=1

as w} € Q, (o, Aj, ¥ 4+ a; fo;)) and YT ¢; = —2. We have shown that for any
g€ Qa, A z+afy), g(w*) =0, and thus w* € K(a, A, z + afy). Hence, (2.6) is
proved.

Finally,

* ~ ~ * S (@)
Yy = bz + Z (ijf? + Uj) S bz + Z (QCJ- (aj7 Aj’ I? + ajfp(j)))
j=1

Jj=1

- (@)
C (bg—i— Z Qc, (aj, Aj, xf + ajfp(j))> C (Qp(a, A,z + afk))(a)

=1
and (b) is proved. O

Corollary 2.11. Let a < wy, A C N be infinite with infinite complement and
let z + afy be a vector of type t(i, k) which is compatible with A. Then W* =
(K(a, A,z + afk))(a+1). Moreover, any finitely supported y* € Ker(z + afy) is an
element of (K (o, A, z + afi))'.

Proof. Let us first prove the second statement. Take a finitely supported vector
y* € Ker(z + afy). As y* is finitely supported, we have

y = > y(w)w,

wew

where only finitely many of the summands are nonzero. We can thus set

2= > Y (w)w.
weW\ ({z}u{zt: seN, te AU{k}})
Then y* — z* € y*(2)Z+span{Z’ : s € N, t € AU{k}} and y* —z* € Ker(z+afy)
* Lk (a)

by Lemma . It follows from Lemma that y* — 2* € (K(a, A,z + afg))' ™.
Hence, also y* € (K(o, A,z 4 af)), as 2* € K(o, A, z + afy,) by Lemmata
and 2.9

Now let us prove the first statement. Take any y* € W* and define for n € N

v = P — - (o afi) (P

Then each y is finitely supported and is also an element of Ker(z + afy) as
by Lemma we have that (2 + afi)(Z%) = a. Hence, y’ is an element of
(K(a, A,z +a fk))(a) by the already proved part of the corollary. It thus follows
that y*, which is the weak® limit of the sequence (y7)°°, as the sequence (z¥)>,
is weak® null, is an element of (K (a, A,z + af;,)) Y. O
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Theorem 2.12. Let 0 < o < wy be a successor ordinal and (a,)5%, be a summable
sequence of positive numbers. Let (A,,)SS, be a partition of N into countably many
infinite subsets and let (q(n))>2, be the increasing enumeration of Ag. Set

K= ﬂ Koo =1, A,y + ap forn))-

n=1
Then K C K@ = W*,

Proof. We will prove the following claims:

Claim 1 K@ 2 W*. Indeed, by Prop051t10n

(e}

(a=1) g ﬂ un‘l'an.fq(n)

Hence, there is C' > 0 such that any functional y* € K1 of norm at most one
satisfies for each n € N

’y*(un” = an‘fq(n)@*)‘ <Ca,

(recall that (fys))22; is bounded). It follows that K~ is not norming. Indeed,
if K@= was norming, the sequence (u,)°%; would be norm null. But this cannot
happen as the biorthogonal functionals (%,)%°, are bounded. Hence, K(®) =

(K(a—l)) ) £ W,

Claim 2 @, € K@ for each n € N. It follows from Lemma a) that

U, € (Ql(a -1, A, u, + anfq(n)))(a). Further, it follows from Lemma and
Lemma that for any j # n we have that Qi (o — 1, Ay, Uy + @; fyn)) € K(ov —
1, Aj, uj+a;fe)). Moreover, Qi(a—1, Ap, tn+a; fon)) C K(a—1, Ay, tn+an fym))
by definition. Hence,

~ (@)
Up € (Ql(a - 1a Ana Up + anfq(n)))

. (@)
< (ﬂ K(a—l,Aj,uj+aij(j))> = K.
j=1

Claim 3 U+t C K@, Recall that U = [u,]>2,. Let y* € Ut and for n € N set
Y = Bi(y") and

[e.e]

Zy = Yp — Z A fa(m) (Yn ) U

m=1

Then, for each n € N, the element ¥ is finitely supported. It follows from Lemma
that for each n € N the number fy,)(y;) is nonzero for only finitely many
m € N. Hence, for all n € N, 2% is also finitely supported. Further, as

W= J{wlu{zl: seN, teAU{qi)}},

1€EN
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each z; can be decomposed as z;, = 371", wy, ; for some m € N, where
W) ; € aniti; +span{Zy : s € N, t € A;U{q(i)}}
for a,,; = 2} (w) =y, (wi) — a; fou)(Yh) = —aifoy(ys). Indeed,
Yn(wi) = (P y")(w) = 4" (P us) = 0

as either Pyu; = u; if i < n, or P,u; = 0 if ¢ > n — in both cases y*(P,u;) = 0
as y* € U*. Moreover, for i = 1,...,m, we have that w}; is an element of
Ker(u; + a; f40)) as

(ui + aifo@) (wn ) = (i + aifow)(2n) = (wi + aifo@) (Yn) — aifow (Un)
where the first equality follows from Lemma[2.9] Recall that fori,j € Nandc € F

it holds that Q.(ov — 1, A;, u; 4 a; fo)) € K(a 1 Aj,uJ +a; fq)) by Lemma.
and Lemma 2.9 It then follows from Lemma [2.10] (b) that for i = 1,.

- (Q“””’(O‘ — 1 Ai,ui + az‘fq(i)))(a_l)

i, (a—1)
g (m K(CY — 1, Aj,Uj + aij(j))) = K(ail).
j=1

Hence, 2z € K@V for each n € N. It follows from boundedness and a diagonal
argument that there is an increasing sequence (n)?2 ; of integers and a sequence of
scalars (¢ )men such that an, fom) (¥, ) — cm for each m € N. Further, (¢, )5—; is
absolutely summable as |c,,| < sup; || fo;) |l supg |45, [|am < Cay, for some C' > 0
which does not depend on m. Then

— y" —Zcmum— z*

Zn
k k—oo

Hence, 2* € K@ and since

Y 711131010 <z + Z cmum>

m=1

and 2* + 3" _| el € K@ by Claim 2, it follows that y* € K(@),

Claim 4 K@ = W*. Take any y* € W* and ¢ > 0. Since (u,)2, is shrinking
(by Lemma. 2.4 (i) there is a finite linear combination u* = }7", \ju; [ U € U™,
such that ||y* | U — u*|| < e. Let w* be a Hahn-Banach extension of y* | U — u*
to W. That is ||w*|| < eand w* [ U =y* | U — u*. Then

yr—wt =Y Ny € UN C KO,

J=1

by Claim 3. Claim 2 thus yields that y* — w* € K. Moreover, as ||w*|| <€, we
get dist(y*, K(@) < e. As € was arbitrary, we get y* € K(), O
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Now we are all prepared to prove Theorem [2.3]

Proof of Theorem [2.3 The equivalence (1) <= (2) follows from [27, Theorem
1] and the implication (3) = (2)1is clear. To prove the implication (1) = (3)
we fix a successor ordinal a@ < w; and use Lemma [2.4] and Theorem to find
a subspace W of X and a subspace K of W*, such that K(®) C K@ = W*, Let
E : W — X be the identity embedding. Then E* : X* — W™ is the restriction
map. Set A = (E*)"'(K). It follows from [25, Lemma 1] and the fact that E* is
onto that A = (E*)~1(K(®) C X*. As E* is an open mapping, the preimage
of a dense set is dense. Thus A(®) = X*, O

Note that in Theorem (8) we restrict ourselves only to successor ordinals.
The reason lies in the proof of Claim 3 of Theorem [2.12] More specifically, we
needed to pass from a general y* € U™t to elements y: = P’(y*) with finite
support. Following the proof of Claim 3 for limit ordinal «, with considering

()2, instead of a — 1 (see Construction , we would end with z; € K@),
1
and thus z* € (UZO:1 K(a"k))( ) C K@+t We would, however, need z* to be in

K. The problem for limit ordinals thus remains open:

Question 3. Let o be a limit ordinal and X be a non-quasi-reflexive Banach
space containing an infinite-dimensional subspace with separable dual. Is there a

subspace A of X* such that A C Ale) = X* Qﬂ

It can be shown that if the dual projections P} from Notation 4. satisfy a stronger
property Pf(z*) — a* for each z* € W* (that is if the FDD is shrinking), then the answer
is positive. Hence, for example if X = ¢y and W is just the cannonical basis, we can find a
subspace A of X* such that A(®) C A(®) = X* even for limit ordinals c.
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3. Quantification of Banach-Saks
properties of higher orders

Abstract: We investigate possible quantifications of Banach-Saks sets and weak
Banach-Saks sets of higher orders and their relations to other quantities. We prove
a quantitative version of the characterization of weak £-Banach-Saks sets using
Eﬁ“—spreading models and a quantitative version of the relation of ¢-Banach-
Saks sets, weak £-Banach-Saks sets, norm compactness and weak compactness.
We further introduce a new measure of weak compactness. Finally, we provide
some examples showing the limitations of these quantifications.

3.1 Introduction

A Banach space X is said to have the Banach-Saks property if every bounded
sequence in X admits a Cesaro summable subsequence. This property was first
investigated by Banach and Saks in [6], where they showed that the spaces L,
for 1 < p < oo enjoy this property. Every space with the Banach-Saks property
is reflexive [23] but there are reflexive spaces which do not have the Banach-Saks
property, see [4] or Example below. However, every uniformly convex space
(or more generally every super-reflexive space, as super-reflexive spaces admit a
uniformly convex renorming [13]) has the Banach-Saks property [19].

A Banach space X has the weak Banach-Saks property if every weakly con-
vergent sequence in X admits a Cesaro summable subsequence. For reflexive
spaces the weak Banach-Saks property and Banach-Saks property are equivalent
but there are non-reflexive spaces that have the weak Banach-Saks property, like
co or Ly, see [14] and [35].

There is a localized version of these properties — a bounded set A in a Banach
space X is said to be a Banach-Saks set, if every sequence in A admits a Cesaro
summable subsequence, and is called a weak Banach-Saks set, if every weakly
convergent sequence in A admits a Cesaro summable subsequence. It follows
that a Banach space X has the Banach-Saks property, resp. the weak Banach-
Saks property, if and only if its closed unit ball By is a Banach-Saks set, resp.
a weak Banach-Saks set. It is easy to see that a relatively weakly compact weak
Banach-Saks set is a Banach-Saks set. The other implication also holds. Indeed,
a Banach-Saks set is obviously a weak Banach-Saks set and the fact that it is
also relatively weakly compact follows from [21 Proposition 2.3.]. A quantitative
version of this statement was investigated in [7].

The property of being a weak Banach-Saks set is closely tied to two other
notions, which will be explained in detail in Section below. First of them is
the notion of an ¢;-spreading model. Recall that a bounded sequence (z,,)nen in
a Banach space X is said to generate an ¢;-spreading model if there is a positive
constant ¢ such that for all finite subsets F' of N satisfying |F| < min F', where
|F'| is the cardinality of the set F', and all sequences (a;);cr of scalars we have

Zaixi > cz |a;].

i€l i€l
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The second related notion is uniform weak convergence. A sequence (,)nen is
uniformly weakly convergent to x if for each € > 0 there exists n € N such that
for all * € Bx+ we have

#{k e N: |2%(zx —x)|] > €} < n,

where #A is another notation for the cardinality of a set A. Tt follows from [21],
Section 2| that a bounded set A in a Banach space X is a weak Banach-Saks set, if
and only if no weakly convergent sequence in A generates an ¢;-spreading model,
if and only if every weakly convergent sequence in A admits a uniformly weakly
convergent subsequence. Quantitative version of this result was also provided in
[7.

It follows from the Mazur’s theorem that if we have a weakly null sequence
(Zn)nen in a Banach space X, then there is a sequence of convex combinations
which converges to zero in norm. The weak Banach-Saks property of X then
means that these convex combinations can be chosen to be the Cesaro sums.
In [3] the authors investigated how regular these convex combinations can be
in spaces failing the weak Banach-Saks property and defined the &-Banach-Saks
property and the weak &-Banach-Saks property for a countable ordinal £ (see
Section . The main goal of this paper is to provide quantifications, analogous
to those provided in [7], for the properties of higher orders. The investigation of
these properties also led to a new measure of weak non-compactness.

3.2 Preparation

3.2.1 Notation

For an infinite subset M of N we will denote by [M] the set of all infinite subsets
of M. On the other hand, for any subset M of N we will denote by [M]|<* the
set of all finite subsets of M. If n € N we will denote by [M]<" the sets of all
subsets of M of cardinality less than n.

If M is an infinite subset of N and we write M = (m,,),en, then we always
mean that M = {m,, : n € N} and m; < mg < .... We also use an analogous
convention for finite subsets of N.

For a Banach space X we will denote by By the closed unit ball of X and by
Sx the unit sphere of X. In the special case where X = {1, we will denote by SZ
the set of those elements of Sy, which have non-negative coordinates.

If (an)nen € £1, F is a subset of integers and (z,)nen is a bounded sequence
in a Banach space X, we set

o ((@n)nen, F) = X ap;

neF

° (an)neN ' (xn)nEN = Z ApTp-
neN

We denote the canonical basis of the space ¢gp of eventually zero sequences by

(en)nEN-

Let A, B be subsets of N. If we write A < B, then we mean that max A <
min B. Analogously, A < B means that max A < min B. We write n < A, resp.
n < A, instead of {n} < A, resp. {n} < A.

34



If F is a finite set, we will write |F'| or #F for the cardinality of F.
If (x,)nen is a sequence and M = (my,)nen € [N], then we denote the subse-
quence (xmn)nGN by (xn)nGM

3.2.2 Families of subsets of integers

We identify subsets of N with their characteristic functions, and thus with ele-
ments of the Cantor set {0, 1}Y. This characterization provides us with a metriz-
able topology on the power set of N.

Definition. Let F be a family of finite sets of integers. We say that F is
o Hereditary, if A € F and B C A implies B € F;
o Precompact, if the closure of F consists only of finite sets;
o Adequate, if it is both hereditary and precompact.

If M € [N], we define the trace of F on M by
FIM|={FNM: FeF}
Note that the trace of an adequate family is also adequate. If F is hereditary,

then FIM| ={FeF: FC M}

3.2.3 Schreier families and Repeated Averages

In this subsection we will define the Schreier families and the Repeated Averages.
For a countable limit ordinal £ we fix an increasing sequence (&, )nen of successor
ordinals with £ = sup &,,. This choice is necessary for us to define the Schreier fam-
ilies and Repeated Averages for limit ordinals. While these definitions certainly
depend on this choice, some of the quantities defined in the following subsection
do not. The independence on this choice will be discussed in detail in Section
below.

Definition. The Schreier families (S¢)e<., are defined recursively. First we de-
fine the family Sy as

So = {{n} :n e N} U {0}.

For a successor ordinal £ + 1 < w; we define
S§+1:{UEC n§F1<F2<---<Fn, FiES@ TLEN}U{(Z)}
i=1

and for a limit ordinal £ < w; we take the fixed increasing sequence of successor
ordinals (&, )neny With £ = sup¢,, and define

Se={FeS,: n<F neN}U{d}.
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Note that the family S¢yq always contains the family S¢. On the other hand,
it is not generally true that the family S; contains the family Sg for ¢ > £. It does,
however, contain all the sets from S¢ with sufficiently large minimal element, see
[3, Lemma 2.1.8.(a)]. The family &; is the classical Schreier family

S ={F € [N]**: |F| <min F'} U{0}.

It is readily proved by induction that the families S¢, £ < wy, are adequate and
have the following spreading property:

IfF=(fi,....,fn) €Seand G = (g1,...,9,) is such
that f; <g¢g;, i=1,...,n, then G € S;.

Definition. Let £ < w; and M = (my,)nen € [N]. We define
Séw = {(mz)lep F e Sg}
In the case that & = 0, we have that
S = S[M] = {{m,} : n e N}u{D}.

However, if & > 0, then Sé‘/f C S¢[M]. Indeed Sé‘/f is a subset of S¢ by the
spreading property of the family S as @ < m; for each i € N, and the sets from
Sé\/[ are obviously subsets of M. The fact that the inclusion is strict can be proved
by induction and is illustrated by the following example: If we set m,, = n + 1
and M = (my)nen € [N], then the set {2,3} € S;[M]\SM. For more information
about the relation of the families SM and S¢[M] see [3, Remark 2.1.12.

Definition. Let M € [N]. An M-summability method is a sequence (A, )nen
where A, € SZ are such that supp A, < supp 4,41 for all m € N and M =
U2, supp A,,, where supp F' denotes the support of an element F' of ¢;, that is
the set of coordinates where F' is nonzero.

We say that a bounded sequence (x,,),en in some Banach space X is (A,,)nen-
summable if the sequence (A, - (T )ren), ey 18 Cesaro summable.

Note that if A, = e,,, for some increasing sequence M = (my,)nen of integers,
then the (A, )nen-summability of a sequence (2, )nen is just the Cesaro summa-
bility of the subsequence (,, )nen. One important fact we will need later is the
simple observation that the summability methods preserve convergence. We will
specifically use that if a sequence (2, )nen is weakly null, then (A, - (2x)ken)nen
is also weakly null for any M-summability method (A, ),en-

The Repeated Averages are a special type of summability methods that arise
by iterating consecutive averages.

Definition. Let M = (my)nen € [N]. The Repeated Averages are the M-
summability methods (£M),en, € < wi, which are defined recursively in the
following way:.

1. If £ =0, we set €Y =e,,, ,neN.
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2. If ¢ = ¢+ 1 and (¢M),en have already been defined, we recursively define
&M in the following way

1 &

k1 =0, s; = minsupp (¥ = min M, &M = ZC
51 =1
1 kn-+sn

kn = kn—l + Sp-1, Sn = min supp gli\y{-i-la Z C
S”i fen+1

3. If ¢ is a limit ordinal and (¢Y),en have already been defined for all ¢ < &
and N € [N], we take the increasing sequence of successor ordinals (&, ),en
which was used to define the Schreier family S¢. We use the notation [£,]
for the already defined summability method ¢ ]N for ( = ¢&,. Set

Ml == M7 ny = my,
My = M, \ Supp[fnl]iwl, ng = min My,
M; = M;_1 \ supp|é,,_ 1] =t n; = min M;,

Finally we set for j € N
M]
g]]w = [gnj]l

It is readily proved by induction that for each £ < w; and M € [N] the
sequence (€M), ey is an M-summability method. We say that a sequence (,,)nen
is (¢, M)-summable instead of (¢M),cn-summable.

A nice property of the Repeated Averages is that their supports are elements
of the corresponding Schreier family, that is supp&M € S¢[M] for all M € [N]

and n € N.

3.2.4 (-spreading models and (weak) ¢-Banach-Saks sets

Definition. Let (z,),eny be a bounded sequence in a Banach space X, & < w;
and ¢ > 0. We say that (2, )nen generates an (5-spreading model with constant ¢
if

VF € Sg V(Oél ieF € R

Z ;x;

i€F

> oyl

1€EF

We say that (z,),eny generates an K%—spreading model if it generates an Eﬁ—
spreading model with some constant ¢ > 0.

This definition generalises the classical notion of an ¢;-spreading model, which
corresponds to the case £ = 1.
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Definition. Let A be a bounded subset of a Banach space X and £ < w;. We
say that A is a £&-Banach-Saks set if for every sequence (z,,)nen in A there is some
M € [N] such that (x,)nen is (M, §)-summable.

A is called a weak £-Banach-Saks set if the same property holds for weakly
convergent sequences in A, that is, if for every sequence (z,),en in A weakly
convergent to some x € X there is some M € [N] such that (x,),en is (M, €)-
summable.

These definitions generalise the notion of a Banach-Saks set and a weak
Banach-Saks set, which correspond to the case £ = 0. Following [7], we will now
define some quantities that we will later use to quantify the notions of (weak)
¢-Banach-Saks sets and Eﬁ—spreading models.

Definition. Let (x,),en be a bounded sequence in a Banach space X. We define
the following two quantities

o ca(x,) = irellgsup{ka —xy|| - k1 >n};

e cca(x,) = ca (% i xl)

The quantity ca measures how far a given sequence is from being norm Cauchy.
Indeed, ca(z,) = 0 if and only if the sequence (x,)nen is norm Cauchy. The
quantity cca then measures how far are the Cesaro sums of a given sequence from
being norm Cauchy.

Definition. Let (x,),en be a bounded sequence in a Banach space X and £ < wy.
We define

c@ag((wn)nen) = inf (cca(& - (wi)nen))

cil(anen) = sup (ut, ccale) (i) ).

Me[N] \N€[M]

The quantity ccag is the quantity cca used in [7] and measures how far a given
sequence is from containing a Cesaro summable subsequence. We will, however,
mostly work with the quantity ccag, which measures if all subsequences of a given
sequence contain a further subsequence which is Cesaro summable, and with its
generalizations for & > 0. The precise correspondence between these quantities
for £ =0 is

ccagy((zn)nen) = sup{ccao((yn)nen) : (Yn)nen is a subsequence of (x,,)nen’,

for larger £ the correspondence is not so clear.
Now we can define the quantifications of the notions of (weak) {-Banach-Saks
sets and Eﬁ—spreading models.

Definition. Let A be a bounded subset of a Banach space X and £ < w;. We
define the following quantities:

sme(A) = sup{c > 0 : there is a sequence (z,),en in A weakly convergent

to some z € X such that (z, — x),en generates

an f5-spreading model with constant c},
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where we set the supremum of the empty set to be zero, and

Tn)nen 1S a sequence in A}

)
)
Jne
)

nen is a weakly convergent sequence in A}
Tn)nen 1S a sequence in A}

whsg(A) = sup{@g(xn) (n)nen is a weakly convergent sequence in A}.

It follows from the definition that sm¢(A) = 0 if and only if A contains no
sequence (T, )neny weakly convergent to some x € X such that (x,, — x),en gener-
ates an (-spreading model. The fact that bse(A) = 0 (resp. whse(A) = 0) if and
only if A is a {-Banach-Saks set (resp. weak {-Banach-Saks set) will be shown
later in Proposition for ¢-Banach-Saks sets and Propostion for weak
¢-Banach-Saks sets. For & = 0 we have bsg(A) = bsj(A) and whsy(A) = whbsi(A)
as any subsequence of a sequence in A is also a sequence in A. For larger £ we
trivially have bs¢(A) < bsi(A) and wbsg(A) < wbsg(A). We will show later in
Theorem that the quantities whse and whs; are equivalent for § > 0.

3.2.5 (¢, c)-large sets and uniformly weakly converging se-
quences

Definition. Let (x,),en be a weakly null sequence in a Banach space X and
0 > 0. We define the family

Fs((zn)nen) = {F € [N]=*°: there is 2* € By« with z*(x,) >0, n € F}.
We will usually write only Fs instead of Fs((2,)nen) if it causes no confusion.

Note that the family Fj is obviously hereditary and is also precompact as the
sequence (z,)nen is weakly null. Indeed, suppose there is a sequence (F},)5°; of
sets from the family Fs that converges to an infinite set F' € [N]. For n € N
let =7 be an element of Bx+ witnessing that F), belongs to F; and let * be any
weak* cluster point of (2%)%°,. Then, for a fixed k € F, we have x*(xy) > § for
all but finitely many n € N. Hence, x*(xy) > § > 0 for infinitely many k& € N and
()22, is not weakly null — a contradiction. Hence, Fs is an adequate family of
subsets of N.

To use some of the results of [3], we need to present an alternative definition
of F using weakly compact subsets of ¢y. Let us define D = {(a*(z,))22, : z* €
Bx-+}. Then D is a weakly compact subset of ¢y. Indeed, D is the image of Bx-
under the weak*-to-weak continuous mapping z* — (z (xn)) . It follows that

Fs={F € [N]*®: thereis f € D with f(n) >d, n € F}.
We now recall the definition of uniformly weakly convergent sequences.

Definition. A sequence (z,),en in a Banach space X is said to be uniformly
weakly convergent to some z in X if for each € > 0

dn e NVz* € By« #{k e N: |2%(z; — )| > €} <n.

Note that the absolute value in this definition can be omitted, that is (z,),en is
uniformly weakly convergent to x € X if and only if for all € > 0

dn e NVz* € By« : #{keN: 2%(z), —x) > €} <n,
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Uniform weak convergence can be used to characterize Banach-Saks (resp.
weak Banach-Saks) sets. Precisely, a bounded set A in a Banach space X is
a Banach-Saks (resp. weak Banach-Saks) set, if and only if every (resp. every
weakly convergent) sequence in A has a uniformly weakly convergent subsequence,
see [21, Theorem 2.4.].

Definition. Let (z,).en be a sequence in a Banach space X weakly converging
tor € X, ¢>0and £ <w;. Wesay that (x,)nen is (§, ¢)-large if there is M € |N]
such that SM C Fo((zn — #)nen)-

Definition. Let A be a bounded subset of a Banach space X and £ < w;. We
define the quantity

wusg(A) = sup{c > 0 : there is a sequence (z,)nen in A
weakly convergent to some x € X

such that (z,)nen is (€, ¢)-large},
where we again set the supremum of the empty set to be zero.

The quantity wuse is a generalization of the quantity wus used in [7] which
measures how far is A from having the property that every weakly convergent
sequence in A has a uniformly weakly convergent subsequence. Indeed, for a
bounded set A we have wus;(A) = wus(A) which will follow from the following
lemma for sequences. It uses the quantity wu, which is defined in [7] and used to
define the quantity wus.

Lemma 3.1. Let (z,)nen be a sequence in a Banach space X weakly convergent
to some x € X and let ¢ > 0. Then

(i) If (zn)nen s (1,c)-large, then there is M € [N] such that wu((xy,)ner) > c.

(i) If wa((zn)nen) > ¢, then (z,)nen @s (1, c)-large.

Proof. If (x,)nen is (1, ¢)-large, then there is M € [N] such that SM C F.((z, —
T)nen). We will show that wu((x,)nens) > ¢. Indeed, any subsequence of (x,,)nem
is of the form (x,),en for some N € [M]. It follows from the spreading property
of §; that & C SM. Hence, ¥ C F.((x, — z)nen) which is easily seen to be
equivalent to saying S; C F.((x, — x)nen). Therefore, as S; contains sets of
arbitrarily large cardinality, there is no n € N such that

Vo* € Bxs: #{k e N: |z (zx — )| > ¢} <n

and wu((x,)nen) > c. It now follows from the definition that wu((x,).enr) > c.

The other inequality follows from the proof of [22] Lemma 1.13.] (note that
we apply the lemma for § = ¢, I' = Bx+ and that the family As in this proof is
nothing else than F. in our notation). This lemma yields that if wu((x,,)nen) > ¢,
then there is M = (mq, ma,...) € [N] such that, if we set My = (my, mgy1,...)
for k € N, then [My]* C Fo((z,, — ¥)nen). But

U [Mk]k = {(mi)ier : mip| < Muminr} = {(Mi)icr : |F| <min F} = wa.
k=1
Hence, SM C F.((xn — 2)nen) and (2, )nen is (1, ¢)-large. O
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3.3 Quantitative characterization of
weak ¢-Banach-Saks sets

In this section we will prove a quantified version of the following theorem from
[3], which is a natural generalization of the characterization of weakly null se-
quences with no Cesaro summable subsequences using ¢;-spreading models (see
[21), Section 2]).

Theorem 3.2. [3, Theorem 2.4.1] Let (x,)nen be a weakly null sequence in a
Banach space X and & < wy. Then ezactly one of the following holds.

(a) For every M € [N] there is L € [M] such that for every P € [L] the sequence
(Zn)nen 18 (P, €)-summable.

(b) There is M = (mp)nen € [N] such that the sequence (T, )nen generates an
5+ spreading model.

More precisely, we will prove a formulation of the above-mentioned result for
a bounded subset of a Banach space instead of a weakly null sequence and we will
add the quantities wbse and wusgi; (qualitative version of the quantity wuseyq
was also used in the proof of the Theorem [3.2| from [3]).

Theorem 3.3. Let A be a bounded set in a Banach space X and & < wy. Then
2smey1(A) < whse(A) < whsg(A) < 2wusgy(A) < dsmeiq(A). (%)

As we have already mentioned, the inequality whse(A) < wbsi(A) is trivial.
Recall that S} C S¢[M] for all M € [N] but in general we do not have equality.
We have already noted that the support of £ is in the family S¢[M] for every
n € N and M € |[N]. The following lemma from [3] will allow us to find an
infinite subset of M for which the £-summability methods are very close to being
supported on the sets from the smaller family Sé‘/[ . Note that in the following
lemma the set L does not depend on &.

Lemma 3.4. [3, Proposition 2.1.10.] For every M € |[N] and ¢ > 0 there is
L € [M] such that for any P € [L], £ <w; and n € N there is G € Sé‘/f such that

(P G) >1—e

n’

The following lemma provides sufficient conditions on an adequate family F
so that the family S, embeds into F for some N € [N].

Lemma 3.5. [3, Theorem 2.2.6, Proposition 2.3.6] Let F be an adequate family,
€ <wy and € > 0. Suppose that there is L = (I,)nen € [N] satisfying

e Foralln € N and N € [L] with I, < min N there is F € F such that
(ENF) > € fork=1,...,n.
Then there is N € [L] such that S, € F.
Note that [3, Proposition 2.3.6.] has a slightly different formulation than
Lemma [3.5] More specifically, the condition on L is formulated for all N € [L]
with n < min N instead of [, < min N. However, the proof of 3, Proposition

2.3.6.] works for our formulation as well.
The following lemma is a quantified version of [3, Lemma 2.4.8].
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Lemma 3.6. Let (x,)nen be a weakly null sequence in Bx, 6 > 0 and € € (0,1).
Then for every M € [N] there is N € [M] satisfying the following property:

o If (ap)nen € Sey, supp((an)nen) € N and F € Fs, then

> anay

neN

> (1—€)0- ((an)nen, F) — €.

Proof. We use [3, Lemma 2.4.7] to find N € [M] such that for each F' € Fs[N]
there is #* € Bx+ such that

(a) z*(x,) > (1 —¢)d foralln € F,

(b) ZnEN\F ’x*($n)| < €0.
Fix (an)nen € Se, With supp((an)new) € N and F € Fs. Take

F'={neFNN: a, >0} € Fs[N].

We find z* € By« such that the properties (a), (b) are satisfied for F’. Then

> anzy

neN

> anx(wn) = Y anat(zn) — Y Jana(2,)]

nenN neF’ neN\F’
> (1—€)d - {(an)nen, F') — €0
> (1—=¢€)d- {(an)nen, F') — €0.

The inequality >,c n\ p [@n2*(2)| < €6 follows from (b) and the fact that |a,| < 1
for each n € N. The last inequality holds as a,, <0 on F'\ F". O

We are all prepared to prove the first inequality of (ED We will use the natural
generalization of the idea of [7, Lemma 4.5.].

Proposition 3.7. Let (x,)nen be a sequence in a Banach space X which weakly
converges to some x. If (x, — x),en generates an Eﬁ“—spreadmg model with a
constant ¢, then

ccag((Tps )nen) > 2¢.

Proof. We may without loss of generality assume that (z,),en € Bx and that
z = 0. We will show that for every P € [N] we have cca (f (azks)keN) > 2¢, and
thus ccag((,3)nen) > 2c.

Take | € N and set n = > + [ and m = [ + [. For the sake of brevity we will
write z; = &f - (2y3)ren. Then

m

1 1)l (1 1> n i
ZJ Z] <m nj:lj m nj:lzilj jZXTL;rl]
1 n m 1 1 !
J@-Dg0es 2o E-DE
m njzzl;rl] j=zn:+1j m n;]




It follows from the triangle inequality that

R ZZ <l < 1>:l3_l2l_>_0>00
¢ m (Z+ D)3 +1) '

For j € N set { = (b )keN and F; = suppfp We define F' = /2, F; and the
finite sequence (ak)ke F by

{@,ﬁﬁ@ L ifkeFforl+1<j<n,
ag =

bl . ifke Fjforn+1<j<m,
Then

11y &

-0 S a3 4= an

m-onsom misah keF

We have already observed that the sets F}’s belong to the family S¢. Hence, the
sets G; = {k® : k € F}} are also in the family S¢ by its spreading property, and
the set G = UpL,,; Gy is in Sepq as min Gy > (14 1)° > 1P = m — [. Hence,

= >cy aypl =c¢) |

keG kel

Z apT3

keF

Za%xk

keG

as (Tg)ken 18 an Eﬁ“—spreading model with constant ¢. Therefore we have

(-t

mons T j=n+1

zczwam:c(i (G-7)+ % 1)

keF j=lp1 NV m j=nt+1 M

B (13— 1?2 P—1?\ 1500
_C<(l2—|—l)(l3—|—l)+l3+l — 2c.

Z QT

keF

Hence,

lim inf > 2c.
l—00

DICEEDS
mjzlj njzlj

It follows that cca(z,) = cca (55 . ($k3)keN) > 2c. Since P € [N] was chosen
arbitrarily, we get ccag((2,3)nen) > 2¢. O

A version of the preceding proposition can be also shown using the approach
of [3]. However, the best result we were able to get using this approach was
ccai((Tn)nen) = ¢ The approach of [7] is more elementary and gives a better
constant. Note that the first inequality of @ from Theorem E 3.3|is an immediate
consequence of Proposition [3.7 We proceed with proving the third inequality,
using the approach of [3].

Proposition 3.8. Let (x,)nen be a sequence in a Banach space X which weakly
converges to some x € X and let ¢ > 0 and § < wy. Suppose that ccai((vn)nen) >
c. Then (Tn)nen is (£ + 1, 5)-large.
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Proof. We can assume that = 0 and (z,),eny € Bx. Take ¢ > ¢ such that
ccai((Tn)nen) > ¢ and fix € > 0 small enough so that (1 —2¢)c’ > c.

As ccai((Tn)nen) > ¢, we can find M € [N] such that for all N € [M] we have
cca(EN - (zp)ren) > . Tt follows from the triangle inequality that for all N € [M]
we have

l Zﬁiv ) (Ik)keN

=1

lim sup
n—oo

‘ n

>c
2

Now we will recursively construct a sequence (Ly,)nen of infinite subsets of M
such that

(a) Ly € [M], Ly, € [Ly—1] for n > 2.

(b) For every n € N and N € [L,] there is z* € Bx+ with

CI

z* (@}N . (xk)keN) > (1-— 6)5, j=1,...,n.

We shall proceed by induction over n € N. For convenience we set Ly = M. Let
us assume that L, _; was already defined. We partition [L,_;| into two subsets

A = {P € [L,—1] : 32" € Bx« such that z* <§P ($k)keN) > (1— e)%, j< n}

Ag = [Ln—l] \Al

The set A; is open. Indeed, for a fixed set P € A; the sets P’ € [L,_4] for
which xp(j) = xp/(j) for j = 1,... , maxsupp &’ form a neighbourhood of P in
[L,,—1] which is contained in A; as ff = JPI, j=1,...,n, for such sets by P.3 in
[3, page 171]. Hence, A; is a Borel set, and thus a completely Ramsey set. By
the infinite Ramsey theorem [I, Theorem 10.1.3.] there is L,, € [L,_1] such that
either [L,] C A; or [L,] C As. We will show that the second case is not possible.

We recall that limsup, H% S & (xk)keN‘L> % Therefore, we can find
large enough s € N and x* € By« such that the following two conditions are

satisfied.
c /
( ZﬁL"' (x keN) 3 Se— >n
Set
/

h= {1 <i<s:oat (g (an)ren) > (1 6>€2}

IQ_{L '78}\[1
Then

~

o | Q
AN
W | =
ilng
*
/—\
h
—~
)
ES
N—
=
m
Z,
N—

w | = [V

i€l i€l
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( v (& (@rken) + D 2 (g8 'l“kkeN))
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But that implies

C/
|| > se5 > n.
i (@R)ken) > (1—0)%
But now we can pick P € [L,], such that Si” = ]P, see P4 in [3| page 171], and
for this P we have P € A;. Hence, [L,] € Ay, and therefore [L,]| C A;.
Now we take a diagonal subsequence L = (Ij)ren of the sequences (Ly)gen.
For all n € N and P € [L] with [, < min P there is some z* € By- such that

Hence, we can find iy < iy < --- < i, < s satisfying z*(

/

o (& (zh)en) > (1 — 6)% fori=1,... n.

Indeed, as [,, < min P, we have P € [L,| and are done by property (b).

Let us denote for brevity ¢/ = (1 — 26)%/. We take a further subset P =
(pn)nen € [L] such that the conclusion of Lemma [3.6] is satisfied on P for 6 = ¢”
and e.

We will show that F,.» and P satisfy the assumptions of Lemma for ¢ = e%.
That is, we want to show that for every n € N and P’ € [P] with p, < min P’
there is F' € F.r with (¢, F) > € for i = 1,...,n. Take such n € N and
P € [P]. As P' € [L] and [,, < p, < min P’, we can find some z* € By« such
that

/
(& (@ren) > (1 - e)% — 1, i=1,...,n.
But then for F = {n € N: z*(x,) > ¢’} € For we have that (¢, F) > ¢ for
i = 1,...,n as otherwise, if we set & = (bg)ren, we would get the following
contradiction
e <D et (m) =D b (ze) + Y, bra(wk)
keN kEF kEN\F
<D b+ Y b <€+
kEF kEN\F

Hence, the assumptions of Lemma are satisfied and we can find QQ = (¢;)ien €
[P] such that SgQ+1 C F.r. But this means that (z,)nen is (§ + 1, ¢”)-large. Recall
that

~

d=01- 26)0— > E,
2 72
and thus For C Fe and (7, )nen is also (£ + 1, §)-large. O

The third inequality of @ from Theorem follows from Proposition .
We finish the proof of Theorem by proving the last inequality, for which we
also use the approach of [3].

Proposition 3.9. Let (x,)nen be a sequence in a Banach space X which weakly
converges to some x € X. Let ¢ > 0 and £ < wy be such that (z,)nen is (&, ¢)-
large. Then for any d < § there is N € [N] such that (x, — 7),en generates an

ﬁ -spreading model with constant d.
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Proof. Without loss of generality we can assume that = 0 and (z,),en € By
As (Tp)nen is (€, ¢)-large, there is M € [N] such that Séw C F.. We can take
€ > 0 small enough such that (1 —¢€)§ — ec > d. We will use Lemma to find
N = (ng)ren € [M] such that the conclusion of Lemma [3.6] is satisfied on N for
eand 0 = c.

Now we will show that (x,),cn generates an (5-speading model with constant
d. Fix F € S¢ and a sequence of scalars (by)rer. We can assume without loss of
generality that Y ,cp |bx| = 1. Then it is enough to show that

keF

We define the sequence of scalars (ay)ren by the rule a; = by, if j = ny for some
k € F, and a; = 0 otherwise. Then (ay)ren € Sy, and supp((ag)ren) € N. Hence,
we get that the following inequality holds for any G € F..

Z kT

keN

(1 =€) ((an)nen, G) — ec.

We can also assume, if we define F* = {k € F: b, >0} and F” = {k € F:
br < 0}, that > pcp+ [bk| > 1 . If not, we can consider (—by)xer instead of (by)xe
Note that G = {ny : k € F+} € SN C F.as 't € S¢. Then we have

<(an neN, G Z Qp,, = Z by, Z

keF+ keF+

e

Therefore

Z bkxnk

keF

Z (0793

> 1—6)E—€C>d
keN 2

]

Remark. The proof of Theorem combines the approach of 7], which is gener-
alised for arbitrary £ < w; and used to prove Proposition 3.7, and the approach of
[3], which is used to prove Propositions and . More precisely, the proofs of
Propositions and mimic the proof of [3, Theorem 2.4.1] with quantitative
interpretation of [3, Lemmata 2.4.3, 2.4.8]. We also needed Lemmata and
(that is [3, Propositions 2.1.10, 2.3.6 and Theorem 2.2.6]), but these results offer
no quantitative improvement, and so are presented here without proof.

Now we will prove two corollaries to Theorem [3.3] The first one is that the
quantity wbs, indeed characterizes weak {-Banach-Saks sets.

Proposition 3.10. Let A be a bounded set in a Banach space X and £ < w;.
Then A is a weak &-Banach-Saks set, if and only if wbse(A) = 0.

Proof. 1t is straightforward that if whse(A) > 0 then A is not a weak ¢-Banach-
Saks set. On the other hand, suppose that wbs¢(A) = 0 and fix a sequence (x,,)nen
in A which is weakly convergent to some x € X. It follows from Theorem [3.3|that
smei1(A) = 0, and therefore (z,, — z),en contains no subsequence that generates
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an Eﬁ“—spreading model. Hence, by Theorem , we get that for every M € [N]
there is L € [M] such that for all P € [L] the sequence (z, — x)nen, and thus
also the sequence (x,)nen, is (P, §)-summable. Therefore, we can take M = N
and P = L, and get that A is a weak {-Banach-Saks set. m

The second corollary shows that weak £-Banach-Saks sets enjoy a formally
stronger property analogous to the fact that any weakly convergent sequence in a
weak Banach-Saks set admits a subequence with every further subsequence being
Cesaro summable (indeed, in this case it is enough to consider a uniformly weakly
convergent subsequence). Note that the following proposition is, in essence, a
qualitative version of the inequalities whs¢(A) < whsi(A4) < 2wbsg(A) from
Theorem B.3

Proposition 3.11. Let A be a bounded subset of a Banach space X. Then the
following are equivalent:

(a) For every weakly convergent sequence (x,)nen in A and every M € [N] there
is N € M such that for all P € [N] the sequence (zy,)nen is (P, §)-summable;

(b) A is a weak &-Banach-Saks set.

Proof. The fact that (a) implies (b) follows immediately from the definitions.
We will show the other implication. Suppose that (a) does not hold. Then by
Theorem there is a sequence (x,),en in A which converges weakly to some
xr € X such that (z, — x),en generates an f?“—spreading model with constant ¢
for some ¢ > 0. But then sm¢y1(A) > ¢ and thus by Theorem [3.3| whs¢(A) > 2¢
and A cannot be a weak {-Banach-Saks set by Proposition [3.10] O

3.4 ¢-Banach-Saks sets and compactness

Following [7], in this section we will show the quantitative interpretation of the
following implications for a bounded subset A of a Banach space X and & < wy:

A is relatively norm compact

4
A is a £-Banach-Saks set

4

A is relatively weakly compact and a weak {-Banach-Saks set.

Note that the second implication can be reversed but the converse implication
cannot be quantified for £ = 0, as illustrated by [7, Example 3.3.].
We will first define the quantities measuring weak and norm non-compactness.

Definition. Let (x,),en be a bounded sequence in a Banach space X. We define
the quantity

ca(z,) = inf{ca(y,) : (Yn)nen is a subsequence of (x,)nent-

Let A be a bounded subset of a Banach space X. We define

B(A) = sup{ca(x,) : (z,)nen is a sequence in A}
wekx (A) = sup{d(clustx«(x,), X) : (Zn)nen is a sequence in A},
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where d(B,C) = inf{||b —¢|| : b€ B,c € C} is the standard distance of sets and
clust x+«(x,) is the set of all weak* cluster points of the sequence (z,),en in the
space X**.

Note that the quantity § indeed measures non-compactness and the quantity
wckx indeed measures weak non-compactness. That is, 3(A) = 0 if and only if
A is relatively compact and wcky(A) = 0 if and only if A is relatively weakly
compact. For more information about these quantities and their relation to other
quantities see [7]. Now we are all prepared to prove the following theorem.

Theorem 3.12. Let A be a bounded subset of a Banach space X and £ < w;.
Then

max{wcky (A), whse(A)} < bse(A) < bsg(A) < B(A).

To prove the inequality wcky(A) < bs¢(A) we will need to define an auxiliary
quantity vo. For a bounded subset A of a Banach space X we define

Y0(A) = sup{| lim lim 7, (2,)] :
() men 18 @ weak™ null sequence in By,
(Tn)nen is a sequence in A

and all the involved limits exist}.

The quantity 7o was introduced in [9] as a measure of weak compactness in
spaces whose duals have weak* angelic unit balls. Later, it was used [7] to prove
a version of Theorem for £ = 1.

Lemma 3.13. Let A be a bounded subset of a Banach space X and & < wy. Then
Yo(A) < bse(A).

Proof. Suppose that vo(A) > ¢ for some ¢ > 0. Then there is a sequence (z)zen
in A and a weak* null sequence (z}),en such that

lim lim z%(z;) > c.
Jj—o0 k—o0 J( k)

We can assume without loss of generality that limy . x;‘(mk) > ¢ for all j € N.

Fix P € [N] and define, for k € N,

We want to show that ca(y,) > ¢. Note that for each j € N we have

Jim 3 06) = fim 35 (00) >

Now fix € > 0 and k£ € N. Using weak* nullness of the sequence (:c;) jeN, We can
find j € N such that z}(yr) < e. Then we can find [ > k such that z}(y;) > c.
But then

e =yl > 25y — yx) > c— e

As e and k were chosen arbitrarily, we get that ca(y,) > ¢. As P € [N] was also
chosen arbitrarily, we get ccag((z,)nen) > ¢, and this implies that bs¢(A) > c¢. O
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Proof of Theorem[3.13. We first note that the inequality bs¢(A) < bsg(A) is triv-
ial. We proceed with the first inequality. That bsg(A) > wbse(A) is clear. If X
is separable, then the closed unit ball of X* is metrizable and y(A) = wckx(A)
by [9, Theorem 6.1.]. Hence, for separable X we get the inequality bs¢(A) >
~Yo(A) = wekx (A).

If X is arbitrary and wckx(A) > ¢ for some ¢ > 0, we can find a sequence
(r)ken in A with d(clustx«(xy), X) > c. If we set Y = span{z; : k € N}, then
Y is a separable subspace of X and d(clusty«(xy),Y) > d(clustx=«(xx), X) (see
the proof of [7, Theorem 3.1.]). Therefore

d(clusty«(zg),Y) > d(clust x+ (zx), X) > c.
It follows that wcky (ANY') > ¢, and therefore
bs¢(A) > bse(ANY) > weky(ANY) > ¢

by the already proved separable case.
The last inequality we need to prove is bsi(A) < B(A). For this we use to
following lemma.

Lemma 3.14. Let (x,)nen be a bounded sequence in a Banach space X and
€ <wy. Let there be ¢ > 0 and N € [N] such that ca((x,)nen) < c¢. Then for any
P € [N] we have cca(&X - (zp)ren) < c.

Proof. As ca((xn)nen) < ¢, we can find ny € N such that
|len — 2wl <ec, for n,m € N and n,m > ny.
We define y,, = £ - (zx)ren for n € N. Note that
[9n — ymll < c, for n, m > ny.

To prove it we notice that ||z, — yn| < ¢ for each n,m > ng, n € N as such
Ym 1s a convex combination of elements x;’s for which |z, —z;|| < ¢. Hence,
for n > ny we have that y, is a convex combination of elements z,’s for which
|z; — yml|| < ¢ for each m > ng, and thus also ||y, — ym|| < ¢ for each m > ny.
Hence, ca((yn)nen) < ¢ and by [7, Lemma 3.4.] cca(&l - (zg)ren) = ccaly,) <
c. [l

The only inequality left is 3(A) > bsi(A). Let B(A) < c for some ¢ >
0 and take an arbitrary sequence (z,)neny in A. What we want to show is
ccag((Tn)nen) < c. Let M € [N] be arbitrary, then we can find N € [M] such
that ca((@n)nen) < c. It then follows from Lemma that for any P € [N]
we have cca(f - (1)ren) < c. In particular, cca(€Y - (23)pen) < ¢ As M was
arbitrary, ccag((n)nen) < ¢ As (7,)neny Was also chosen arbitrarily, bsi(A) < ¢
and we are done. Thus, Theorem [3.12is proved. [

In the following propositions we show the converse to the second implica-
tion mentioned at the beginning of this section, that is that a relatively weakly
compact weak &-Banach-Saks set is a {-Banach-Saks set. As mentioned, this
implication cannot be fully quantified.
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Proposition 3.15. Let A be relatively weakly compact subset of a Banach space
X and § < w;. Then whs{(A) = bsi(A).

Proof. For any bounded set A we have wbs{(A) < bs{(A). For the converse, let
(Zn)nen be a sequence in A and M € [N]. As A is relatively weakly compact,
we can use the Eberlein-Smulyan theorem to find N = (ny)ren € [M] such that
(zg)ren is weakly convergent to some x € X. Denote by N© = N\ N. We
define y, = w,,, for k € N¢ and y, = zj, for £k € N. Then (yx)ren is a
sequence in A weakly converging to x. Hence, for any € > 0 there is L. € [N]
such that cca(§le - (yr)ren) < whbsi(A) + e But & - (yr)ren = &5 - (Tr)ren,
as yp = xy for k € L C N. Thus, as M € [N] and e > 0 were arbitrary, we

have shown that ccai((wn)nen) < Whbsi(A). As (zn)nen was arbitrary, we get
bsi(A) < wbsi(A). O

We can use the same trick (that is replacing a bounded sequence (2, )nen With
a weakly convergent sequence (Y, )nen as in the proof of Proposition to prove
the promised converse to the second implication mentioned at the beginning of
this section as well as an analogue of Proposition for the £&-Banach-Saks

property.

Proposition 3.16. Let £ < wy and A be a bounded set in a Banach space X .
Then the following are equivalent:

(i) A is a £-Banach-Saks set;

(ii) For every sequence (x,)nen in A and every M € [N] there is L € [M] such
that for all P € [L] the sequence (zy,)nen is (P,&)-summable;

(iii) A is a relatively weakly compact weak §-Banach-Saks set.

Proof. If A ia a £&-Banach-Saks set, then it is trivially a weak ¢-Banach-Saks set.
Further bs¢(A) = 0, and thus A is relatively weakly compact by Theorem m
Hence, (i) implies (iii). Clearly, (ii) implies (i).

What is left is the implication (iii) implies (ii). Let us suppose that A is a
relatively weakly compact weak {-Banach-Saks set. Let (z,).en be a sequence
in A and M € [N]. It follows from the Eberlein-Smulyan theorem that there
is N € [M] such that (x,)n,en is weakly convergent. We define the sequence
(Yn)nen in exactly the same way as in the proof of Proposition[3.15] Then (y,)nen
is a weakly convergent sequence in the weak ¢-Banach-Saks set A, and thus by
Proposition there is L € [N] such that for all P € [L] the sequence (¥n,)nen
is (P, ¢)-summable. But then again we have z; = y. for k € L, and therefore the
sequence (x,)nen is also (P, §)-summable. Hence, we have found for any sequence
(Zn)nen in A and M € [N] a further subset L € [M] such that for all P € [L] the
sequence (2, )nen is (P, §)-summable and (ii) holds. O

In the following proposition we prove that both of the quantities bsg and sz-
quantify the £-Banach-Saks property.

Proposition 3.17. Let A be a bounded set in a Banach space X and £ < wy.
Then A is a {-Banach-Saks set, if and only if bs¢(A) = 0, if and only if bsi(A) =
0.
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Proof. 1f bsi(A) = 0, then trivially bs¢(A) = 0. If bs¢(A) = 0, we get by Theorem
and Proposition that A is a relatively weakly compact weak £-Banach-
Saks set, and thus A is a &-Banach-Saks set by Proposition [3.16] Now suppose
that A is a ¢&-Banach-Saks set. Then by Proposition A is a relatively weakly
compact weak {-Banach-Saks set. Therefore, whbsi(A) = 0 by Proposition
and Theorem . Hence, bsg(A) = 0 by Proposition m O

3.5 The quantities as functions of &

In this section we will analyse the functions bsg(A), whsg(A), wusg(A) and sm¢(A)
for a fixed bounded subset A of a Banach space X as functions of £&. We begin
with the quantities wusg and sm¢ and prove the simple observation that they are
non-increasing.

Lemma 3.18. Let A be a bounded subset of a Banach space X and let ( < & < w;
be ordinals. Then wusg(A) < wus¢(A) and sme(A) < sm¢(A).

Proof. 1t follows from [3, Lemma 2.1.8.(a)] that there is n = n((,&), such that
for all ' € S¢ with n < F', we have F' € S¢. In other words, if we set N = {m €
N: n <m}, then §|N| C S;.

Let (z,)nen be a sequence in A which generates an Eﬁ—spreading model with
constant ¢ > 0 then the sequence (x,),cn generates an Ef—spreading model with
constant ¢, which gives us the inequality for the quantity sm.

Now, let (z,)nen be a sequence in A which weakly converges to some x € X
and is (£, c)-large for some ¢ > 0. Then there is M € [N] such that S C
Fe((z, — )nen). It is easy to check that this is equivalent to saying that S¢ C
Fe((xy — )nerr). Tt follows that

SY C 8¢[N] C 8 C Fol(mn — T)nenr)
and (z,)nen is (C, ¢)-large, which gives us the inequality for the quantity wus. [

Now we turn our attention to the quantities bsz and Wbsz. We will first need
the following definition.

Definition. Let (y,)nen and (2, )nen be two sequences in a Banach space X. We
say that the sequence (z,)nen is & non-increasing block convexr combination of the

sequence (Yn )nen if

knt1

n = Z a(7)y;
]:kn+1
where (k,)nen is an increasing sequence of integers with £y = 0 and («(j));en is

a non-increasing sequence of real numbers satisfying Z?Zl;; 41 a(j) =1 for each
n € N.

For example, the M-summability method ([¢ + 1]M),cy is a non-increasing
block convex combination of the M-summability method (§M),cy for any € < w,;
and M € [N]. It is readily proved that if a sequence (z,)nen iS @ non-increasing
block convex combination of a sequence (¥, )nen, Which is a non-increasing block
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convex combination of a sequence (2, )nen, then (z,),en is a non-increasing block
convex combination of (2, )nen.

Now we will prove an auxiliary lemma which shows that the quantity cca
behaves well with respect to taking non-increasing block convex combinations.

Lemma 3.19. Let (yn)nen and (2,)nen be two sequences in a Banach space X
such that (zp)nen 1S a non-increasing block convex combination of (Yn)nen. Then
cca(z,) < ccalyy).

Proof. Let (ky)nen and (a(j))jen be the sequences from the definition of non-
increasing block convex combination. Let ¢ > 0 and suppose that cca(y,) < c.
Let us define u,, = %Z?Zl y;. The strategy is to show that the Cesaro means of
the sequence (z,),en can be written as convex combinations of u,’s.

Fix € > 0 and define ¢ = c+¢€. As ca(u,) = cca(y,) < ¢, we can find N; € N
such that ||u; —w;|| < ¢ for all ¢, 7 > Ny. We define for n € N and j < k,, 44

Bn(]) _ Oé(kT-l-‘rl)kn-i-‘l . s ] - kn—i—l
() —a(i+1)j - J<knp
Then we have for n € N
k; k
1 1 b 1 Ko
— D % == a(i)y; = — ) a(f)y;
1 n+1 ]
:; Ent1 Z%"‘Z —ozj—irl))z:yZ
i=1
kn
= - a(kn+1)kn+lukn+1 + Z(a<j> - Oé(j + 1))]“]
j=1
1 R
- E = 671(])“]

We will now prove by induction over n that Z?ﬁll Bn(j) =n. Ifn =1, we
have, since k; = 0,

k‘z 1 k'2
251 )=alk)ke+ Y (a(j) —a(G+1)j= > a@i) =1
Jj=k1+1 Jj=ki1+1

Now suppose that for n € N the equality Zf;“{l Bn(j) = n holds. Notice that if
J < knt1, we have (,,(j) = Bns1(j). Hence,

kni2 kni2 knt1 knt2
Z Bn—&-l (]) —n= Z Bn—&-l Z 571 Z Bn—&-l (]) - Bn(kn—i-l)
j=1 J=knt1
kn+2 1
= a(kny2)knio + Z —a(j+1))j — alkpi1)kni
J=kn+1
kn+2
= > a@y)=1
kn+1+1
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and the induction step follows.
We proceed with estimating

n m kn+l km+1

szJ m;zi Zﬁn _725771

n

Since Z?Ql B,(j) =n and S B, (i) = m, we have

kn+1 km+1 1 kn+1 Em+

*Zﬂn _7ZBm Zlﬁn m _Ui)

jlzl

(iﬁf@ (i) (15 — )

7j=1 =1

n+1 1

2 D Bu(5)Bm (i) (uy — w)

Jj= N1+11 1

j=N1+1i=N1+1

It follows from boundedness of the sequence (y,)nen that the sequence (uy,)nen
is also bounded. Let M > 0 be such that ||u,|| < M for all n € N. We can find
Ny > Nj such that for all £k > N, we have % < e. Fix any m,n > Ns.
Then

1 Y OM(N; + 1)m
3> ) ni) s — ] < (M +Dm
j 1 i=1 nm
ki1 IMn(N; + 1
LY S a0 u%—ww——i——i<e
m o Ni+1i=1 nm

The first inequalities on each line above hold as

kN +1

Ny N,
Y Buld) =D Byi1(4) Z Brni1(j) =N +1
j=1 j=1

and analogically >N, 8,,(7) < Ny + 1.
What is left is the estimate of the third term, which follows easily from the
choice of NV;

kn+1 knz+1

/
Z Z Bn(J i) [Juj — 4| < chm _

J=N1+1i=N1+1 nm

nm

We have thus shown that for m,n > Ny we have

<2+ =3e+c.

ZZJ ZZZ

=1

As € > 0 was arbitrary, we get cca(z,) < c. ]
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Lemma 3.20. For every £ < ( < wy and M € |N] there is N € [M] such that
the following statements hold:

(a) There is an increasing sequence of integers (ng)ken such that we have N =
Ure, supp &t

(b) ((f-v)jeN is a non-increasing block convex combination of (ij)jeN.

Proof. Let us abbreviate by S(&, (, M) the statement of the lemma for £ < ¢ and
M € [N]. We will prove the lemma by induction over ¢. Note that the statement
S(&,¢, M) is true if £ = (, just take N = M. Hence, we just need to prove the
statements with strict inequality & < (. If ( = 0, then the only possible choice
for ¢ < (is ¢ = ( =0 and we are done.

Let (+1 > 0 be a successor ordinal and suppose that S(&,n, M) holds for any
E<n<(+1land M € |N]. Fix £ < (+ 1 and M € |[N]. By the induction hy-
pothesis the statement S(&, ¢, M) is valid. Let N € [M] be witnessing that. Then
the property (a) of S(&,( + 1, M) is the same as the property (a) of S(§, ¢, M),
and so is satisfied. It follows from the definition of the N-summability method
(IC + 1] )nen that ([¢ + 1]7);en is a non-increasing block convex combination of
(CJN )jen. But (CJN )jen is in turn a non-increasing block convex combination of
(&V)jen. It follows that ([¢ 4 1])jen is a non-increasing block convex combi-
nation of (£§V)j€N and the property (b) of S(&,( + 1, M) also holds. Hence, the
statement S(&, ¢ + 1, M) holds.

Let ¢ > 0 be a limit ordinal and suppose that S(&,n, M) holds for any & <
n<Cand M € [N]. Fix { < ¢ and M € |[N]. Let (¢,)nen be the sequence of
successor ordinals increasing to ¢ used to define the Schreier family S.. Then
€ < (p, for some nyg € N. Let Ny € [M] be the set witnessing the validity of
S(&, Cny, M) and set My = Ny \ (supp[(no}iv"). We proceed recursively: suppose
that for £ > 0 the set M} has already been defined. Set

e Njy1 to be the set witnessing the validity of S(Cugtks Crothr1s Mi);

o Mit1 = Npy1 \ (SUPP[CnOJrkH]]leH)-

Let
00 no—1
N = U Supp[CnoJrkHVk and P=NU U Supp C’i\/l
k=0 k=1

By the definition of the P-summability method (¢{)zen we have (f = [Ck]f * where
P, = P and Ppyy = P, \ supp[G]i*. By P.3. in [3, p. 171] we get that ¢/ = ¢V

for k=1,...,n9 — 1. It follows that supp[Cu,+x]1* is an initial segment of P, 4
for kK > 0. Hence, again by P.3. in [3, p. 171], we get [Cnﬁk}f"“*k = [Cgsr] V¥ for
k > 0. Now we can use P.4. in [3, p. 171] and the fact that
o o Pn oo o
N = supp[Gupat™ = U supp[Guoali ™ = U supp ¢p 1 = U supp ¢
k=0 k=0 k=0 k=no

to conclude that for k > 0

P,
(]f:\-]i-]_ = 711304-]@ = [Cno+k]1n0+k = [Cno+k]11\7k
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We will now show that N € [M] witnesses the validity of S(&,(, M).

First, let us prove by induction that for each n > 0 the sequence ([(yg-tn) ;V ")jen
is a non-increasing block convex combination of (@N”) jen. The case n = 0 follows
immediately from the choice of Ny and property (b) of S(&, (., M). Suppose
the claim holds for some n > 0. By the choice of N, ; as the set witnessing
S(Cngtns Cngrna1, My), we can use property (b) to get that ([CnOJrnH];y”“)jeN is
a non-increasing block convex combination of ([§n0+n];y”“)jeN. But by the in-
duction hypothesis ([(uo4n]}")jen is @ non-increasing block convex combination
of (§")jen, and hence, by property (a) of S(Cugtns Cnont1, Mp) and P4, in [3]

p. 171], also ([§n0+n]§y”“)j€N is a non-increasing block convex combination of

(§JN ") en. Thus ([§n0+n+1]§v"“) jen is a non-increasing block convex combination
of a non-increasing block convex combination of (§JN ") jen, and hence is itself
a non-increasing block convex combination of (§JN ") en. Therefore the claim is
proved.

It follows that for each n € N we have

n
kj+1

Gaotnal; " = D (@&

i=k7?+1

where (k7);en is an increasing sequence of integers with A7 = 0 and (au,(i))ien is
the sequence of coefficients of non-increasing block convex combinations.

Let us recursively define an increasing sequence of integers (k,)n,eny and a
sequence of positive numbers (a(j));en satisfying j’iﬁ L1a(j) =1 for each n €
N. Set ky = 0, ky = ki and a(j) = ay(j) for 1 < j < ki. If for some n € N the
number k,, has already been defined, set k,,1; = k,+ k% and for b, +1 < 7 < k49
set a(j) = apt1(j — k). We will also need the fact that

Np— N
fj ! :gknJrj

which is readily proved by induction over j using P.3. and P.4. in [3, p. 171] and
the fact that

n
o0 k2

N = U supp[<n0+n71]f7nf1 = U U SUpp énj{Vn,l'
n=1 W11

We will now show that the sequence (a(j));en in non-increasing. The only
part that does not follow from the choice of the sequences (a,(j))52; is that
a(kni1) > a(knp1 + 1), that is ap(k5) > a,11(1), for every n € N. This follows
from the property S(Cng+n—1,Cngtn, Mn—1). Indeed, by property (a) and P.4. in
[3, p. 171] we have that for each k € N

[Cno+n— l]ivn = Kno +n—1]nNkn71

for some increasing sequence of integers (ny)gen. Further, by property (b) of
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S(Cno—f—n—l; Cno—‘rn, Mn—l) we have

CTJLV+1 [Cno—&-n Zﬁ] Cno+n 1 Zﬁ] Cno—l-n 1]n] -

nj +1
_Z Z (Bjoun (i) fknﬂ
j=li=hy +1

for some m € N and a non-increasing sequence (;)7, satisfying 51 < 1. As we
also have

k;H-l k;H—l
Cﬁrl Kno+n]Nn = Z O‘n—‘rl(i)gan = Z O‘n—l-l(i)fljg\iﬂﬂ
=k 41 i=kP T +1

and ij , 7 € N, have disjoint supports, we get
(1) = Braa (K, +1) < (K2, +1) < 0, (h),
where the last inequality holds as n; > 2, which in turn follows from the choice

of My = N1\ (supp[(nom,l]]lv"’l) — the set N,, € [M,_;] cannot contain

SUPP[Crgan_1]1"", and the fact that the sequence (v, (j ))jen in non-increasing.
Hence, for any n € N

kn+1

QN [Cro+n— I]Nn t= Z O‘(])@N

j=kn+1

and property (b) of S(&,(, M) is valid for N. Property (a) is also valid as we
have already shown:

N = J supp[Cugsn-1h " = J Usupp&; " = J U supp & -
n=1 n=1j=1 n=1j =1

Hence, the induction step for limit ordinals is done and the lemma is proved. [

Proposition 3.21. Let (x,)nen be a bounded sequence in a Banach space X and
§ < ¢ <wi. Then ccal((wn)nen) < cCai((¥n)nen). In particular, for any bounded
subset A of X we have whsi(A) < wbsi(A) and bsi(A) < bsi(A).

Proof. Let ccai((zn)nen) < ¢ for some ¢ > 0. Then for every M € [N] there
is N € [M] such that cca (55 . (.Tk)keN> < ¢. We will show using the infinite
Ramsey theorem [I, Theorem 10.1.3.] that this implies that for every M € [N]
there is N € [M] such that for all L € [N] we have cca ({ﬁ : (:Ck)keN) < ¢. Fix
any M € [N] and define

A = {P € [M]: cca (55 : (xk)keN) < C}
Ay = [M]\ Ay
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The set A; is Ramsey. Indeed, for P € [M] we have that cca (55 . (xk)k€N> <c
if and only if

1
<c——

HmENEInGNVZZmVJZmH Zfl l’k keN—*Zfl ZEk keN "

1}
<c——
n

and for any ¢, j,n € N the set

xk keN — Zgz xk keN

A(i,j,n) = {PG ‘

is open by P.3. in [3, p. 171]. Hence,

A=U U N N AGTn)

meNneNi>m j>m

is Borel, and thus Ramsey. It follows from the infinite Ramsey theorem that
there is N € [M] such that either [N] C A; or [N] C A,. But we have already
seen that the latter case is impossible. Hence, [N] C A; which is precisely what
we wanted to show.

It follows from Lemmata and that there is L € [N] C [M] such
keN

that cca (C/;“ : (xk)keN) < cca (EE - (zy) < ¢. Therefore, we have found for

every M € [N] some L € [M] such that cca (g“,f : (l‘k>k€N> < ¢, which implies the
desired inequality ccag((zn)nen) < c. O

It follows from Proposition that the quantities bs; and wbs; are non-
increasing with respect to £. It is unclear if the same holds for the quantities bsg
and wbse. We do, however, have monotony if ¢ is a finite successor of .

Lemma 3.22. Let £ < wy and ( = £+ 1 for some | € N. Let (2,)nen be a
bounded sequence in a Banach space X and M € [N]. Then cca(CM - (zx)ren) <
cca(EM - (zp)ren). In particular, ccac((Tn)nen) < cCag((2n)nen), and for any
bounded subset A of X we have bs¢(A) < bs¢(A) and whs¢(A) < whs¢(A).

Proof. This follows easily by induction over [ € N and the fact that for any
M € [N] and | € NU {0} the M-summability method ([¢ + 1 + 1]}),,cy is a non-
increasing block convex combination of the M-summability method ([¢ +1]M),,cn.
Therefore, we just need to invoke Lemma [3.19} O]

We define another quantity for a bounded subset A of a Banach space X.

Definition. Let A be a bounded subset of a Banach space X. We define

00(A) = min bs; (A
o(4) = minbsi(4).

This quantity dy is a measure of weak non-compactness for separable sets. To
prove this we will first need the following lemma. Notice that the assumptions of
Lemma [3.23| cannot be met; it is only used to prove a contradiction in the proof
of Proposition |3.24]
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Lemma 3.23. Let A be a bounded separable relatively weakly compact subset of a
Banach space X which satisfies 6g(A) > 0. Then the canonical basis of ¢, embeds
into A.

Proof. We can suppose that A C Bx. Let ¢ > 0 be such that dy(A) > 4c. We
define a tree 7 on X as

n
Z ajx

Jj=1

T {(LEL,__’LIZ‘”)GA”Z

> ¢ lay] for all (a)7_, € ]R"} :

Jj=1

Note that this is a modification of the tree T (X, ¢), used by Bourgain [§] to define
the ¢;-index, that is made only of sequences in A instead of Bx. We will further
use the terminology from [8]. If we can show that 7 is ill-founded, any infinite
branch of 7 can serve as an isomorphic copy of the canonical basis of /; and we
are done. As T is obviously a closed tree, it is enough to show that the order of
T is equal to w; and invoke [8, Proposition 10].

Fix £ < w;. As bsi(A4) > 4c, we can use Proposition and Theorem (3.3
gﬁ-ﬁ-l

to find a sequence (z,)neny in A which generates an -spreading model with

constant c. This implies that
{(@n)ner s F €S} CT.

It follows from [2, Lemma 4.10.] that the order of Sgiy (as a tree on N) is equal
to w1, It is not hard to see that this implies that the order of T is at least wét?.
But £ < wy was arbitrary, and hence the order of T is wy. O]

Proposition 3.24. Let A be a bounded separable subset of a Banach space X.
Then §o(A) = 0 if and only if A is relatively weakly compact.

Proof. If A is not relatively weakly compact, then 0 < wcky (A) < bsg(A) for all
¢ < wy by the virtue of Theorem and therefore do(A) > 0.

On the other hand, let A be relatively weakly compact. Let us assume for
a contradiction that dg(A) > 0. It follows from Lemma that A contains a
sequence equivalent to the canonical basis of /; which contradicts the relative
weak compactness of A. Hence, dp(A) = 0 and we are done. O

Note that separability of A, was essential in the proof of the preceding the-
orem, as the result of Bourgain [§] (Lemma relies on an argument based
on trees which is valid only in separable spaces. We will illustrate the neces-
sity of separability for dy to be a measure of weak non-compactness in Example
below. However, the quantity dp can be modified to be a measure of weak
non-compactness.

Definition. Let A be a bounded subset of a Banach space X. We define
d(A) = sup{dp(B) : B C A separable}.

Proposition 3.25. Let A be a bounded subset of a Banach space X. Then
d(A) =0 if and only if A is relatively weakly compact.

Proof. 1t follows from the Eberlein—émulyan theorem that A is relatively weakly
compact if and only if each separable (or even countable) subset a A is relatively
weakly compact. Hence, the proposition follows from Proposition [3.24] ]
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3.6 Examples

In this section we investigate, whether the inequalities of Theorem and The-
orem [3.12| are optimal and whether they can be strict. We begin with Theorem
3.12, which stated that for any ¢ < w; and any bounded set A in some Banach
space X we have

max{wckx (A), whsg(A)} < bse(A) < bsi(A) < B(A).
We will look at the following examples of classical spaces:

o If A= Bco), then whse(A) = B(A) = 2 as the space C0, 1] contains the
Schreier space of order £, see Example below (in fact, it contains any
separable Banach space). Hence,

max{wckgo,1(A), whse(A)} = bsg(A) = bs{(A) = B(A).

o If A = By, then whbs¢(A) = 0 as there are no nontrivial weakly null se-
quences in ¢;. Further, wcky, (A) = 1, as ¢; is not reflexive, and bs¢(A) =
B(A) =2 (the fact that bs¢(A) = 2 is witnessed by the canonical basis and
bse(A) < B(A) < 2 by Theorem and the triangle inequality). Hence,

max{wcky, (A), whs¢(A)} < bs¢(A) = bsi(A4) = B(A).

o If A= B, then whs¢(A) = 0 as ¢, has the weak Banach-Saks property, and
thus also the weak ¢-Banach-Saks property, by [14]. Further, wck,,(A) = 1,
as ¢o is not reflexive, and $(A) = 2, as witnessed by the sequence x, =
e; + -+ e, — e,—1. The quantity bs¢(A) is harder to compute. It follows
from [7, Theorem 5.2.] that bsy(A) = bsy(A) < 1. Hence, by Proposition
we have bs¢(A) < bsi(A4) < bsj(A) < 1. On the other hand bsg(A) >
bse¢(A) > wek,,(A) = 1, and therefore

max{wck., (A), whs¢(A)} = bse(A) = bsi(A) < B(A).

So, the inequalities of Theorem [3.12] are optimal and, possibly except the
inequality bs¢(A) < bsi(A), can be strict. We proceed with Theorem , which
stated that for any ¢ < w; and any bounded subset A of some Banach space X
we have

2smey1(A) < whse(A) < whsg(A) < 2wusgy(A) < dsmeq(A).

Example 3.26. Let { < w; and X, denote the Schreier space of order £, that is
the completion of cgg under the norm

|zl = sup [z T Fl,, -
13

Where = | F denotes the sequence (y;);en where y; = x; for i € F and y; = 0
otherwise. It can be shown using classical methods that the canonical sequence
(€n)nen of coo is a normalized 1-unconditional basis of X¢. Further, the Bourgain’s
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(1-index of X, is countable (see [I8, Remmark 5.21.]), and hence X, does not
contain ¢, by the result of Bourgain [8]. Therefore, the basis (e, )nen is shrinking
(see e.g. [I, Theorem 3.3.1.]) and in particular weakly null.

Now let us consider A = {e, : n € N} as a bounded subset of X ;. We will
show that

() sme(4) =1,
(i) wuses(4) = 1,
(iil) whse(A) = wbsi(A) = 2.

For any F € S¢y1 and (a,)ner € RY we have

D anen| =Y lan]

neFr neF

by the very definition of the norm of X, ;. On the other hand, as A is a subset of
By, ,, we get that sme,1(A) < 1 by the triangle inequality. Hence, (i) is proved.

We again notice that A C Bx,.,,, and thus wusg41(A) < 1. On the other
hand, we will show that for any 0 < ¢ < 1 we have Sgi1 € F. = Feo((€n)nen).
Take any F' = (ny,...,n) € Sgy1 and define 2% = ¢} +--- + ¢} . Then for any
T = (Tn)nen € Xep1 we have

() = |3 o

jEF

<D lzl=llz T Fll, < .

jEF

Hence, z* € BX§+1- It follows, as z*(e,,) = 1 for j = 1,... k, that F' € F..
We have proved that (e, )nen is (€ + 1, ¢)-large for any 0 < ¢ < 1, and thus that
wusg1(A) > 1. Therefore, (ii) is proved.

(iii) now easily follows from Theorem [3.3]

Example 3.27. Let £ < w;. We will consider an equivalent norm on the Schreier
space X¢ of order £, namely
« |}

where ||-|| is the norm defined in Example and 2% = (2F),ey for = (2,,)nen.
Then ||z||, < ||z]| < 2]z|, for each x € X¢ and ||y||, = ||y|| for all y in the positive
cone of X¢ (that is y with non-negative coordinates). In particular, (e,)nen is a
weakly null normalized sequence in (Xg, |||,). Consider again A = {e, : n € N}

as a bounded subset of (X¢yq, ||-||,). We will show the following:

(i) smesa(A) = 1,

(ii) wuses1(A) =1,

Y

|||, = max {Hf

(iii) whse(A) = whsg(A) = 1.
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Fix any F € 8¢y and (a,)ner € RY. Then

> aten

ner

as F' € S¢;1. But then

> ane,

neF

> Z a:{ and

> ay,
neF
> ate,

ner
~ max { }
neF

zmax{z a:,za;} > lanl.

neF ner nEF

Z a,, en

ner

Z a,, en

neF

?

Hence, smei1(A) > £. To show the other inequality it is enough to show that
smy(A) < 3 and use the monotony provided by Lemma . Let us have an
arbitrary sequence (f,)nen in A. Note that the set ' = {2,3} belongs to the
Schreier family S;. We define (ap)rer € RY by setting ay = 1, a3 = —1. If

fa = f3, then

Z ar fr

keF

=fo=fsll.,=0  but > || =2

keF

*

and (f,)nen cannot generate an (}-spreading model. If f, # f3, then

> agfi

keF

=lf2=fsl.=1  but 3 || =2

keF

*

nd (f,)nen cannot generate an (}-spreading model with constant greater than

In any case, we have shown that smy (A) < 3 and (i) is proved.

Now we proceed with (ii). First we notice that A C Bx,,,, and thus we
have wusg;1(A) < 1. On the other hand, we will show that for 0 < ¢ < 1 we
have Sep1 € F. = Fo((en)nen). Take any F = (ng,...,n;) € Seqq and define
¥ =ey +---+ey . Then for any v = (7;)jen € Xey1 we have

Z{BJ <max{2x],2$ } gmax{Her

JEF

Hence, z* € Bxg+1- But 2*(e,,) =1 > cfor j =1,...,k, and thus F' € F.. We
have shown that (e,)nen is (£ + 1, ¢)-large for any 0 < ¢ < 1, which implies that
wusgy1(A) > 1. But then wusg;1(A4) = 1 and (ii) is proved.

Finally, we prove (iii). It follows from (i) and Theorem [3.3] that whse(A) > 1.
The inequality whs(A4) < 1 follows from the fact that for any sequence (7, )nen
in A, any N € [N] and any k£ <[ € N we have

Zg xn neN T Z£ xn neN

_max{ <—>Z§ (n)nen }Sl,

where the first equality holds as the summability methods (SJN )jen have non-
negative coefficients and the last inequality follows from the triangle inequality.

a
1
2"

o[} = 2]l

1* l
7 Z ng(xn)nGN

j=k+1

Y
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It follows from Example [3.26|and Example that the inequalities of Theo-
rem are optimal and the second and third inequalities may be strict. We note
that in both of these examples we have wbs¢(A) = whs{(A) = 2smg,(A4). We
do not know if these inequalities can be strict.

In [7] the authors asked, whether for a bounded set A in a Banach space X
it is necessarily true that

wbs(A) = 2sm(A) = 2wus(A).

(For the definition of these quantities see [7], note that whbs(A) = whbsy(A),
sm(A) = smy(A) and wus(A) = wus;(A) in our notation). Example an-
swers this question negatively.

In the next example we will demonstrate the need of separability in Proposi-
tion [3.24f Our non-separable space will be the fo-sum of the Schreier-Baernstein
spaces, which are, in a way, reflexive versions of the Schreier spaces defined in
Example [3.26]

Example 3.28. There is a non-separable reflexive Banach space X for which
do(Bx) = 2. That is, dg is not a measure of weak non-compactness on X.

Proof. For £ < w; let us consider the Schreier-Baernstein space X g, that is the
completion of cyg under the norm

D=

]l xz = sup (Z(Z |:vz-|)2) P <F<---<F, eS8

j=1 icF;

Then the canonical sequence (e,)nen Of coo is a shrinking boundedly-complete
basis of Xg, see [10, Lemma 3.2.]. In particular, (e,)nen is weakly null. It also
immediately follows from the definition of the norm ||-|| X2 that (e,)nen generates

an f§-spreading model with constant 1.
Let us now consider the f>-sum of the spaces X 52,

E<wy
Then X is a non-separable reflexive Banach space, as the spaces X 52 are reflexive
by the result of James, see e.g. [I, Theorem 3.2.13.]. Tt follows that Bx is weakly
compact. But sm¢(Bx) > 1 for all £ < wy, as Bx contains isometric copies of the
canonical bases of the spaces Xg. It follows from Theorem and Proposition
3.15| that bsi(Bx) > 2. The other inequality is trivial, hence, bs;(Bx) = 2 for all
¢ < wy, and thus 6y(Bx) = 2. O

3.7 Remarks and open problems

First, let us show that the quantities sm¢ and wuse do not depend on the choice
of successor ordinals made in the definition of the Schreier hierarchy.

Lemma 3.29. Let (S¢)ecw, and (Ge)e<w, be two Schreier hierarchies with poten-
tially different choices of sequences of successor ordinals defining the families S¢
and Ge for limit ordinals §. Let (x,)nen be a weakly null sequence in a Banach
space X and ¢ > 0.
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o If (xy)nen generates an K%—spreadmg model with respect to S¢ and with con-
stant ¢, then there is M € [N] such that (z,)nens generates an 5-spreading
model with respect to G¢ and with constant c.

o If (xn)nen in (&, c)-large with respect to S, then there is N € [N] such that
(n)nen s (€, ¢)-large with respect to Ge.

Proof. 1t follows from [3, Theorem 2.2.6.] that there is M = (my)ren € [N] such
that Qéw C &;. For the first part, we want to show that

Z ATy,

kel

> |ayl for all F € G¢ and (ag)rer € RY.
keF

Fix such F' and (ay)ker and define b; = ay, if j = my, for some k € F' and b; =0
otherwise. Then F' = {my : k € F} € G} C S¢ and

keF keF JeF’

Hence,

> g,

kel

> bjx;

JEF

>c > bl =c |kl

JEF! keF

The second part is easier — if there is N € [N] such that &Y C F.((@n)nen),
then S¢ € Fo((#n)nen). Hence, GM C S € Fo((zn)nen) and (zn)nen is (€, ¢)-
large with respect to Ge. O

It easily follows from the previous lemma that the quantities sm, and wusg do
not depend on the choice of successor ordinals made in definition of the Schreier
hierarchy. We do not know if the quantities wbs, and Wbsg depend on this choice,
however, by Theorem , they are equivalent to the quantity smg;;, which is
independent on this choice. Hence, the notions of weak {-Banach-Saks sets are
also not dependent on this choice.

As we already mentioned in Section [3.6] the inequalities of Theorem [3.12] are
optimal and, possibly except for the inequality bs¢(A) < bsi(A), can be strict.
We have also shown that the inequalities of Theorem [3.3] are optimal and the
inequalities concerning the quantity wusg,; can be strict. What remains open is
the following question:

Question 4. Let A be a bounded set in a Banach space X and & < wy. It is
necessarily true that whse(A) = whsg(A) = 2smg,1(A)?

It follows from Theorem that the quantities wbse and whbsi are equivalent.
The same approach, however, cannot be used for the quantities bsg and bs;.

Question 5. Are the quantities bs¢ and bs; equal? Or, at least, equivalent?

In [7, Section 5] the authors proved a dichotomy concerning the quantities
applied to a unit ball. More precisely, they showed, in our notation, that for
a Banach space X we have wbsy(Bx) € {0,2}. We did not manage to use this
approach to the quantities of higher orders, so the following question still remains
open:
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Question 6. Let X be a Banach space and & < wy. Is it necessarily true that
Wbe(Bx) S {0,2}?

It is known that a normalised basic sequence (z,)nen in a Banach space X
has a subsequence generating a spreading model, say X (see e.g. [I, Theorem
11.3.7.]). It is readily proved that if moreover (z,),en generates an ¢;-spreading
model, then X is isomorphic to ¢;. This in combination with a variation of the
James’ ¢ distorsion theorem [I, Theorem 10.3.1.] was used in [7] to prove the
dichotomy for £ = 0. It could help to solve Question [0] if we could say something
more about the relation of (z,),eny and X if we knew that (x,),en generates an
Eﬁ—spreading model for some 1 < & < wy.
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