FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

BACHELOR THESIS

Jan Papesch

RISC-V support in MSIM

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Vojtéch Horky, Ph.D.
Study programme: Computer Science

Study branch: Programming and software
development

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

Author’s signature

I want to thank my supervisor Mgr. Vojtéch Horky, Ph.D., for his insightful
comments and the guidance provided me with.

i

Title: RISC-V support in MSIM
Author: Jan Papesch
Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Vojtéch Horky, Ph.D., Department of Distributed and Depend-
able Systems

Abstract: In this thesis we have added support for RISC-V into the MSIM em-
ulator. MSIM supported only the MIPS R4000 as a CPU, and has been used
for teaching the Operating systems course. This project redesigns MSIM to sup-
port multiple CPU architectures and adds an implementation of a RISC-V CPU.
RISC-V as an architecture provides a basic instruction set as well as a wide va-
riety of optional extensions. One chapter of this thesis is dedicated to giving an
overview of the most important parts of the RISC-V architecture. The extensions
that were thought to be useful or necessary for the Operating systems course have
been implemented.

Keywords: RISC-V MSIM simulator instruction set

1ii

Contents

(Introductionl

1 MSIM]

(1.2 Using MSIM|. oo oo
(1.3 MSIM architecturel
(1.3.1 Shared memory space|.
[L3.2 Devices
1.3.3 R I

2 RISC-V

2.1 RISC-V goals
2.2 RISC-V terminologyl
2.3 Unprivileged ISA|
231 RV32Il
2,32 RVO4ll

2.4 Privileged ISAl.o
[2.4.1 Control and Status Registers (CSRs)|

[2.4.3 Supervisor-Level ISA|00
[2.4.4 Exceptions, interrupts and traps/.
[2.4.5 Hypervisor extension|,

Design Decisions|

[3.1 Decoupling MIPS from MSIM|

13.1.2 Physical Memory (Physmem)|
B13 Debug
[3.1.4 GDBsupport|
[3.2 RISC-V support|.
.21 Architecturel

Implementation|

4.1 Notable featuresl.

4.3 lesting|.

1 O O O ot gt Ot

© oo o

9
10
10
12
13
13
13
14
15

16
16
16
17
19
19
19
20
21

23
23

Conclusion

(Bibliography|

[A_Attachments|
[A.1 MSIM project|

30

32

34

Introduction

MIPS is a reduced instruction set architecture, which is being used as the reference
architecture in several courses at the Faculty of Mathematics and Physics of
Charles University. One of these courses is the NSWI004 Operating Systems
(OS) course. In the practical seminars of this course, students develop their own
small kernels for MIPS and use the MSIM simulator to run and test their code.[I]
MSIM is used, because it is a deterministic simulator, which eases debugging
and allows the submitted kernels to be tested and graded based on the results of
these tests. MSIM, first developed as part of Viliam Holub’s Master Thesis [2],
has been developed for this purpose and is being maintained on MFF.

In 2021 MIPS Technologies stopped designing the MIPS architecture. In-
stead, it has become a member of RISC-V International, the nonprofit group
that coordinates the development of the RISC-V architecture, and has switched
to developing the RISC-V architecture.[3] Meanwhile, RISC-V is actively being
developed and is even being used by major companies, as shown by the articles
on the RISC-V blog[l] We think that when even the developers of MIPS have
switched to RISC-V, current students should not be taught on MIPS, but on a
more current architecture. In particular, we would like the OS course to switch
to RISC-V. For this to happen, we would first need the tools used in this course
to support RISC-V.

One option would be to switch from MSIM to an existing RISC-V simulator.
According to the RISC-V Technical Wiki,[4] there are two most prominent RISC-
V simulators, QEMU and Spike. The simulator rv8 is also mentioned in the
specification of the RISC-V architecture,[5] which itself took inspiration from
TinyEMU.

QEMU is a complex system that supports emulating whole systems, emulating
user-level code on a different architecture, and virtualization.[6] This is a
very powerful tool that has many use cases, but it is far too complex for
the OS course.

Spike has, according to the wiki,[4] been the “proof-of-concept target for all
RISC-V extensions”, until it has been superseded by SAIL generated simu-
lation. Spike emulates only the CPU and memory, no other devices, so even
though it has rich debugging features, it would need to be highly modified
to be used in the OS course. The fact that it simulates multiple processors
in multiple threads also makes it non-deterministic. [7]

SAIL provides a formal specification of RISC-V and allows new extensions to
be added. SAIL can then generate a simple emulator from this specifica-
tion that can be linked with Spike in order to extend Spike by the defined
extensions. SAIL provides a way to formally define new extensions and
verify them using the formal definition and running custom tests on the
generated emulators. These emulators would not be good teaching tools in
our opinion. |8, 9]

Ihttps://riscv.org/news/risc-v-blog/

https://riscv.org/news/risc-v-blog/

rv8 is the closest fit from all the emulators listed here. It has support for more
devices than MSIM, it has many tools for debugging, but similar to Spike,
it simulates multiple processors in multiple threads, but when simulating
whole systems, it allows only 1 CPU and simulates it in the main thread.
rv8 also starts with the registers containing random values.[10] For these
reasons, rv8 is also not a good fit for the OS course.

TinyEMU is the simplest of the emulators listed, as it supports only one pro-
cessor, which it simulates deterministically. It also supports various devices
that could be used in the OS course. There are two problems with this
emulator, the code is written in a way that would be hard to extend, and
there is no debugging support, which would be hard to add because of the
first problem.[11]

MSIM has an extensible architecture that is made to support debugging, and
most importantly is fully deterministic, even with multiprocessor systems. Com-
pared to starting from scratch, MSIM provides a functional framework for device
management, memory management, and a user interface. We think that it would
be easier to extend MSIM than create a new emulator. Therefore, the main goal
of this project is to add support for RISC-V to MSIM. We will design the system
with regards to the needs of the OS course.

This thesis is divided into four chapters. The first two chapters focus on
the technology of MSIM and RISC-V. The third chapter focuses on the design
decisions made during the development process, while the fourth chapter describes
some notable implementation details and tests.

1. MSIM

As said in the reference manual,[12, Introduction]

MSIM is a light-weight computer simulator based on MIPS R4000.
It is used for education and research purposes, mainly to teach the
construction and implementation of operating systems.

The above clearly states the main purpose of MSIM and also shows us how
deeply coupled is the MIPS CPU architecture with this simulator. Our main goal
in this chapter will be to introduce MSIM from the point of view of a user, as
well as to describe its architecture and inner workings. Most of the information
in this chapter is taken from the reference manual [12] or is made by observation
from the source code and its documentation.

1.1 Goals

MSIM is being developed with specific goals.[12] We will keep these goals in mind
while refactoring and extending MSIM.

Determinism

MSIM aims to be a fully deterministic simulator. This allows the user to write
tests for their software using MSIM as a runtime environment.

Simple device management

MSIM takes care to design devices in a straightforward manner and does not
aim to make the devices realistic. This alleviates the problems of real hardware
and allows the users to focus on the basic principles of device operation. All de-
vices can be easily configured, mainly including the addresses of memory-mapped
registers.

Speed
MSIM is not designed for speed of execution.

1.2 Using MSIM

MSIM is designed with a command line interface for device management, but also
provides a script-like configuration file that can be used upon startup. The user
can either let the system run on its own or run it in an interactive mode. When
running in interactive mode, the user can make MSIM simulate only one step of
the system, which is useful for debugging. The interactive mode allows the user
to modify the environment of the system. More about the stepwise execution can
be found in Subsection [1.3.2

For a detailed overview of all the functionalities of MSIM, see the Reference
Manual.[12]

1.3 MSIM architecture

MSIM works with a simplified model of a computer based on the von Neumann
architecture.

1.3.1 Shared memory space

There are multiple devices interconnected through a shared memory space. The
CPU is considered to be one of the devices and accesses the other devices by
reading and writing to memory-mapped registers.

Sections of this memory space can be occupied by memory areas that function
as main memory. These areas can be loaded with data from a specified file.

The whole memory space is managed by the MIPS CPU. This is one of the
couplings, we will need to uncouple before we start implementing the support for

RISC-V.

1.3.2 Devices

The MSIM devices work on a step-by-step basis. Each step means one clock tick
for the CPU, but also for any other device. MSIM makes all devices take steps
one at a time in a round-robin fashion, making the whole system deterministic,
as is one of the goals of MSIM. Interactive commands are executed in-between
each iteration through all of the devices. This main simulation loop is visualized

in Figure [1.1]

o Should Yes of ed e
g Halt? “\)

No

i Yes
Machine o)
Interactive? ’{ User input /

Y

Interactive control

For each device ¢
_No Should Yes
Step device Halt?

Figure 1.1: Flowchart of the main simulation loop

1.3.3 MIPS CPU

The CPU communicates with the devices by reading and writing to their memory-
mapped registers. To simulate non-blocking 1O, the devices can also raise inter-
rupts.

The CPU simulates one instruction per step and in program order. The step
includes the entire fetch-decode-execute cycle for this single instruction. Inter-
rupt and exception handling is also included in this cycle. The whole process is
illustrated in Figure [1.2]

Handle Exception
No

Instruction execute

Sucessf>

Yes No

Instruction decode

Interrupt
pending?

Handle Exception Raise interrupt

A

Figure 1.2: Flowchart of simulating one step of the MIPS CPU

If this process were implemented as is, the instructions would need to be
decoded at every step. If we assume that the code we want to run does not
change, this would be very inefficient. Because of this, MSIM employs its only
performance optimization and caches pages of decoded instructions. More about
how this affected the decoupling MIPS from MSIM and how we implement a
similar mechanism for RISC-V can be found in Subsection B.1.2]

2. RISC-V

This chapter describes the basics and provides an overview of the most important
features of the RISC-V architecture. We do not focus on OS specific topics, but
rather describe the architecture in its whole. We will describe some details that
affected our implementation of RISC-V into MSIM in the later chapters.

2.1 RISC-V goals

RISC-V is an open standard instruction set architecture (ISA) [13] which was
originally designed for computer architecture research and education.[5, Intro-
duction] The RISC-V Instruction Set Manual Volume I: Unprivileged ISA [5]
describes the goals with which RISC-V is being designed. We would like to high-
light some of these goals, which are particularly aligned with the goals of MSIM,
stated in Section [L1l

One of these goals has already been stated; RISC-V, as well as MSIM, is
designed for education. RISC-V is also designed as a small base integer ISA,
with support for many optional extensions. This allows us to choose only the
functionality we need and nothing else. We will later describe which extensions
RISC-V supports in Section [2.3.3] and which we have chosen to implement for
MSIM in Section 3.2.2

RISC-V is being designed to be suitable for hardware implementation, but is
not being developed for a specific microarchitecture styldl] or technology| This
makes RISC-V very flexible and allows us to emulate it deterministically without
adjusting the ISA too much.

2.2 RISC-V terminology

For consistency, we will use the same terminology as in the RISC-V manuals. [5, [14]
This section serves as a glossary of the terms used in this text.

Execution Environment Interface The unprivileged manual [5] gives a pre-
cise definition of EEI (notes stripped).

A RISC-V execution environment interface (EEI) defines the initial
state of the program, the number and type of harts in the environment
including the privilege modes supported by the harts, the accessibility
and attributes of memory and I/O regions, the behavior of all legal
instructions executed on each hart, and the handling of any interrupts
or exceptions raised during execution including environment calls.

For us, the execution environment will be MSIM together with its configura-
tion.

'E.g. in-order, microcoded, out-of-order
2E.g. custom microcontroller, FPGA, software emulation

Hart Hart is an abstraction of a hardware thread. To software running inside an
execution environment, the harts function as hardware threads, but they do not
explicitly need to be hardware threads. One such case is MSIM, where multiple
harts will be simulated by one software thread, which will most likely run on a
single physical hardware thread. The execution environment must guarantee that
every hart will eventually progress in its execution]

Word Word is a unit of memory consisting of 32 bits. Doubleword consists of
two words, and hence is 64 bits long. Halfword is 16 bits long.

2.3 Unprivileged ISA

The Unprivileged ISA defines the unprivileged instructions which are the instruc-
tions usable in all privilege modes and all privilege architectures. As stated in
Section[2.1] the ISA is split into a base integer ISA and optional extensions. There
are multiple base ISAs, that differ mainly by the number of registers, the width
of the processor registers, denoted XLEN, and by the size of the address space.
The size of the address space matches XLEN in all of the defined cases. The
XLEN and the number of registers of the four defined base ISAs can be found in
Table 211

Base ISA XLEN #regs

RV321 32 32
RV32E 32 16
RV641 64 32

RV128I 128 32
Table 2.1: XLEN and number of registers of the RISC-V Base ISAs

RV32E is designed for small embedded microcontrollers and the only change
to RV32I is the reduced number of registers. RV128I has been defined as a way
to future-proof RISC-V if a need for 128 bit address spaces arises. We will pay
closer attention to RV32I and RV64I, as these are defined for general-purpose
use.

2.3.1 RV321

RV32I uses 32 general purpose registers that are 32 bits long, denoted x0-x31.
The register x0 is hardwired to the value of 0 and all writes to this register are
ignored. In addition to these registers, the ISA defines pc to hold the address of
the current instruction.

There is no dedicated stack pointer or return address register, but the stan-
dard software calling conventions use registers x2 and x1 for these purposes,
respectively. For a full description of the usage of all registers in the standard
calling conventions, see Table 25.1 in the Unprivileged Manual [5, Chapter 25].

3Retire an instruction or trap. This mechanism is suspended while the hart waits for some
event or is terminated, as stated in the manual.[5], Introduction]

Instructions

RV32I defines 40 instructions, which are split into these 5 categories

Integer Computational Register-Register or Register-Immediate operations.
Do not cause arithmetic exceptions. Do not allow memory operands.

Control Transfer Unconditional jumps and conditional branches. Do not have
a branch delay slot. Branch instruction compare two registers instead of
using condition codes/[]

Load and Store Memory accesses. Memory transfers are done only between
memory and registers. Defined for byte, halfword, and word width. Loads
of shorter widths than a word can be sign- or zero-extended to fill the whole
target register.

Memory Ordering FENCE instruction. Used to order memory and I/O ac-
cesses by other harts or devices.

Environment Call and Breakpoints SYSTEM instructions. ECALL is used
to make a service request to the execution environment. EBREAK is used
to return control to a debugging environment.

For a complete list of instructions and their encoding, see Table 24.2 in the
Unprivileged Manual.[5, Chapter 24]

2.3.2 RVe64l

RV641 is based on RV32I. It widens the registers to 64 bits and uses 64 bit address
space. Integer computational instructions now operate on 64 bits. Additional
variants of these instructions are added that operate on the lower 32 bits and are
indicated by ‘W’ suffix. 64-bit load and store instructions are added.

2.3.3 Notable extensions

In addition to the base ISAs, the Unprivileged Manual [5] defines several exten-
sions that provide additional functionality or allow a more efficient execution of
some operations. Some of the extensions are fully specified in the manual, while
others are still being designed, and only placeholders for them can be found. We
would like to briefly describe the fully specified extensions.

“C” Extension for Compressed Instructions

The “C” extension introduces short 16-bit encoding for the most common in-
structions. It can be added to any of the base ISAs, and the term RVC is used
to signify any base ISA with the “C” extension added.

According to manual:[5] Chapter 16] “Typically, 50%—-60% of the RISC-V
instructions in a program can be replaced with RVC instructions, resulting in a
25%-30% code-size reduction.”.

4Condition codes are used for example in x86 and ARM

10

“M” Extension for Integer Multiplication and Division

The “M” extension adds instructions for multiplying and dividing. Multiplication
of two XLEN bit registers produces a 2x XLEN-bit result. The higher XLEN bits
are accessed by a different instruction than the lower XLEN bits.

Division by zero does not raise an exception, but rather produces a defined
result that can be used for a branch if this should produce an error. The remainder
operation works in a similar manner.

“A” Extension for Atomic Instructions

The “A” extension specifies instructions that atomically read-modify-write mem-
ory and defines the RISC-V Weak Memory Ordering (RVWMO) memory model.
This allows multiple harts to run in a shared memory space and synchronize
between themselves.

This extension defines two types of instructions: the load-reserved/store-
conditional paiif’] and the fetch-and-op memory instructions.

Load-reserved (LR) loads a word or doubleword from memory and makes a
reservation on some set of addresses. Store conditional (SC) tries to write to
memory, but checks if the target is in the reserved set and if no writes to this set
have taken place between the last LR and this SC.

The fetch-and-op instructions atomically load a value from memory, perform
some operation on it, and then write the result back to memory.

Both types of atomic instructions support memory consistency orderings, in-
cluding unordered, acquire, release, and sequentially consistent semantics.

“Zicsr” Control and Status Register (CSR) Instructions

The privileged manual [I14, Section 2.1] defines a separate address space of 4096
Control and Status registers (CSRs) for each hart. These are mainly used by
privileged software, but there are several unprivileged uses for CSRs including
counters, timers, and floating-point status.

This extension defines six instructions used for operating on CSRs. These
instructions atomically read-modify-write a single CSR, whose number is encoded
into the instruction. They work either with an immediate value or a value stored
in a register and support 3 write operations: full write and setting or clearing
only specified bits.

Counters

RISC-V optionally provides a set of up to 32x64-bit performance counters and
timers, regardless of the base ISA.

Three of these have dedicated functions, while the others can be configured
to count platform-defined events. The three predefined counters are CYCLE,
TIME, and INSTRET, counting clock cycles, real-time, and instructions retired,
respectively.

5As opposed to Compare and Swap used by x86.

11

“F”, “D” and “Q” Extensions for Single, Double and Quad Precision
Floating-Point

These extensions describe support for 32, 64 and 128 bit floating point numbers
compliant with the IEEE 754-2008 standard.[I5] They depend on the “‘Zicsr”
extension. These extensions define 32 new floating-point registers and one CSR
fcsr, which contains the operating mode and the exception status.

“Zifencei” Instruction-Fetch Fence

This extension defines a single new instruction, the FENCE.I, which provides
synchronization between writes to memory and instruction fetches.

“Zam” Extension for Misaligned Atomics

The “Zam” extension standardizes the support for misaligned atomic memory
operations made by the instructions defined by the “A” extension.

“Ztso” Extension for Total Store Ordering

The “Ztso” extension defines the RISC-V Total Store Ordering (RVTSO) memory
model, which is a stronger variant of RVWMOE] This extension is made to support
easier porting of code written for the x86 or SPARC architectures, which use Total
Store Ordering (TSO) by default.

2.4 Privileged ISA

The privileged manual [I4] describes the RISC-V privileged architecture. The
architecture is best summarized in the manual itself.[14, Chapter 1]

[The RISC-V privileged architecture] covers all aspects of RISC-V sys-
tems beyond the unprivileged ISA, including privileged instructions
as well as additional functionality required for running operating sys-
tems and attaching external devices.

There are multiple privilege modes defined; only one of which, the machine
mode (M-mode), is mandatory. The other modes are user mode (U-mode) and
supervisor mode (S-mode).

M-mode has the highest privileges and code running in M-mode is considered
to be secure, and can be used to provide Execution Environment to the lower
privilege modes.

S-mode is intended for conventional operating system usage and adds virtual
memory support.

U-mode is used by generic applications and has the lowest privileges.

Each privilege mode has a core set of functionalities that can be modified or
expanded by additional extensions. For example, M-mode can support physical
memory protection, described in Section [2.4.2] and S-mode can be extended to
support virtualization by the Hypervisor Extensionm.

SRISC-V Weak Memory Ordering
"Described in Section

12

2.4.1 Control and Status Registers (CSRs)

In order to support privileged operation, the RISC-V ISA defines a 12-bit ad-
dress space of up to 4096 control and status registers. Each of these registers is
XLEN-bit wide and is typically associated with some privilege level. The CSR is
accessible to this and any higher privilege levels.

A complete listing of CSRs can be found in Tables 2.2-2.6 of the Privileged
Manual.[I4, Section 2.2]

The privileged architecture depends on the “Zicsr” extension described in
Section [2.3.3] which defines the instruction used for reading and writing to the
CSRs.

2.4.2 Machine-Level ISA

The machine-level ISA defines the operations supported by M-mode. It defines
them in terms of CSRs and privileged instructions.
These operations contain:

Machine Information Defines CSRs dedicated to providing information about
the processor itself (e.g., Vendor ID or Hart ID).

Trap Setup and Handling Describes how exceptions and interrupts are used
in RISC-V. Also defines privileged instructions used to yield control to a
less privileged mode. We have decided to dedicate Section to this
matter.

Configuration Describe some general configuration CSRs.

Counters and their configuration The counters described in Section [2.3.3]
are read-only views of the M-mode counters, which M-mode can write to.
M-mode can also disable the counters, making them unavailable to lower
privilege modes, and configure the general performance counters.

Physical memory protection

The machine-level ISA defines an optional extension that restricts access to some
parts of the memory space. In a computer system, some parts of the physical
memory space will be occupied by memory regions, others will be occupied by
memory-mapped registers of devices, and some space will be left vacant. Hence,
different memory areas will allow or disallow reading, writing, or execution. Some
parts of the memory space might not support atomic operations, while others will.
These properties are termed physical memory attributes (PMAs) by the Privileged
Manual.[14], Section 3.6] The manual then defines a way to describe how different
memory areas have different PMAs and how it affects memory accesses.

2.4.3 Swupervisor-Level ISA

The supervisor-level ISA defines a set of operations that support the implemen-
tation of modern operating systems. This ISA deliberately restricts some access
to physical memory or interrupts, in order to ease virtualization. Some of the op-
erations are restricted forms of operations performed by M-mode. In addition to

13

these, the Supervisor level ISA defines memory translation and protection mech-
anisms, together with a memory fence instruction that orders memory accesses
with changes to the translation data structures.

Virtual Memory

RISC-V defines several modes of virtual memory translation. Only one is sup-
ported on RV32, Sv32. Sv39, Sv48, and Sv57 are available for RV64. The numbers
in the names signify the effective length of the virtual address. All of these modes
work on 4 KiB pages and traverse a tree-like page table to find the physical ad-
dress. The difference between the modes is the depth of this tree and the size
of one entry. In addition to the 4 KiB pages, the translation mechanism allows
one to mark a higher-level page table entry as the leaf entry, which contains the
physical address, thus translating into larger pagesf] This model also allows U-
mode software to control memory access. It can restrict which pages can be used
for reading, writing, or executing and can set access to U-mode.

The “Svnapot”, “Svpbmt”, and “Svinval” further extend the functionality of
the memory translation and protection. “Svnapot” defines a denser represen-
tation of a translation in a TLB, “Svbmt” allows the translation mechanism to
override the PMA mechanism, and “Svinval” provides more fine-grained memory
fences to be used for memory translation.

2.4.4 Exceptions, interrupts and traps

One of the largest responsibilities of any privileged architecture is exception and
interrupt handling, which is defined in the machine-level and supervisor-level
chapters of the Privileged Manual,[14] but we have decided to separate it into its
own section.

RISC-V describes an exception as an “unusual condition at run time associ-
ated with an instruction”, interrupt as an “external asynchronous event that may
cause a transfer of control” and a trap as a “transfer of control to a trap handler
caused by an interrupt or an exception”[5, Section 1.6]

The full list of exceptions and interrupts can be found in Table 3.6 in the
Privileged Manual[T4].

The privileged manual describes three types of interrupt, each with two vari-
ants based on the privilege level for which the interrupt is intended. Each priv-
ilege can choose which interrupts it wants to enable, or it can decide to disable
interrupts altogether.

External External interrupts are meant to be used by external devices. The
Supervisor external interrupts can be raised by devices as well as M-mode soft-
ware. S-mode is presented that the interrupt is pending if either of these two
sources raised the interrupt (logical or basis).

84 MiB megapages for Sv32, 2 MiB megapages for Sv39, 2 MiB megapages or 1 GiB gigapages
for Sv48 and 2 MiB megapages, 1 GiB gigapages or 512 GiB terapages for Sv57

14

Timer Machine timer interrupt is raised by the real-time counter (mtime and
mtimecmp CSRs). Software timer interrupt is raised and reset by M-mode for
S-mode.

Software Software interrupts are meant to be used for interprocessor communi-
cation. Again, Supervisor software interrupt may be raised by M-mode software
and external means.

Traps

When a RISC-V processor traps, it transfers control to a trap handler. There are
two modes in which this transfer of control can happen. Let A be the address
in mtvec or stvec CSRs Direct mode allows only a single trap handler; it is
located at A. Vectored mode defines one handler for all exceptions, and then one
additional handler per interrupt. If the trap is caused by an exception, then the
handler will be again located at A. If the trap is caused by an exception, let B be
the number of the interrupt, then the trap handler will be located at A + 4 x B.
All traps are by default handled by M-mode, but can be delegated to lower
privilege levels. This is configured by the medeleg and mideleg CSRs for excep-
tions and interrupts, respectively. Traps never transition from a higher privilege
level to a lower privilege level. If this were to happen, the exceptions would be
handled by the current privilege level and the interrupts would be masked.

2.4.5 Hypervisor extension

The hypervisor extension extends the supervisor-level architecture to support
virtualization of operating systems. It changes supervisor mode to hypervisor-
extended supervisor mode (HS-mode), where a hypervisor runs. HS-mode defines
additional CSRs and instructions that facilitate a new stage of address translation
and support virtualization of a guest operating system that runs in virtual S-
mode (VS-mode). Software written for S-mode can be executed in HS-mode or
VS-mode without any modifications. Virtualized user-level applications run in
VU-mode.

This extension changes the virtual address translation process for the virtu-
alized modes. The translation first works as before, but we translate the result
again, using the page-table of the hypervisor.

15

3. Design Decisions

In this chapter, we will describe the design decisions that have been made during
the development process. Namely, it includes the architectural changes required
for MSIM to support multiple CPU architectures, the architecture of the RISC-V
implementation, and the decision process behind choosing the supported RISC-V
extensions.

MSIM is written in pure C. Because of this, we will make decisions and de-
sign new interfaces to work with the programming paradigms of C. We will take
advantage of the static typing of C and try to simplify dynamic memory man-
agement.

3.1 Decoupling MIPS from MSIM

Since MSIM has been developed with only one architecture in mind and because
the CPU is the central part of every computer system, MIPS is tightly coupled
with most modules of the system. Every time a component needs to communicate
with the CPU, it communicates with MIPS directly. If we want to support
multiple CPU architectures, first we need to decouple MIPS from the rest of the
system.

One of the ways this could be done is to redefine the interface in terms of
MSIM devices, adjusting the device abstraction to support the operations needed
for a CPU. This would extend the device interface by new functions that would
not be defined for most devices. The operations desired from a CPU can be found
in Section B.1.1l We can see that some of the functions could be useful for other
devices, like dumping registers, which could be broadened to printing status of
the device, but most of the functions are CPU specific. For example, setting the
program counter to some location does not make sense for any device that is not
a CPU.

We have decided to decouple MIPS by introducing a level of abstraction we
call the General CPU, which will function in the same way as implementing an
interface in classical Object-Oriented Programming. We think this is the best way
to model this behavior because we make the system depend on the abstraction
of a CPU and not on the implementation itself, which will allow us to support
multiple different implementations of a CPU.

3.1.1 General CPU

Before we start to describe the structure of the General CPU, we will have to
solve one question; that of identifying the CPUs themselves. As it stands, the
CPU identifies itself by the pointer to itself in the code. If we wanted to change
the identification to work with the General CPU structure, we would need the
CPU to be aware that it is contained within a General CPU. Instead, we decided
to identify the CPU by its ID (in MIPS terminology Processor 1D, in RISC-V
terminology Hart ID) and to support the lookup of the General CPU structure
based by this ID. This requires the address space of these IDs to be shared across

16

architectures, but this would be required despite this because of inter-processor
interrupts.

Interface

To implement the General CPU abstraction, we need to define its interface,
in other words, the functionality we need a CPU to support. We want this
interface to include only the functionality we require from a CPU, but which
is not already included in the device abstraction made by MSIM, as this would
introduce duplicity. We will also define the interface so that if the caller does
not need a specific CPU but only some CPU, the function can be called with a
NULLPTR argument and a deterministic fallback will be chosen. This fallback will
be CPU with ID 0. Through observation of the implementation of MIPS and
from where its functions are called, we have deduced that this abstraction should
support:

Raising and Clearing Interrupts The different devices raise interrupts to sig-
nal some event to the CPU, and clear them to signal that the event has

ended.

Store Conditional Check In order to support the LL(LR)/SC atomic instruc-
tions, the different CPUs must guarantee the failure of SC when any write
takes place to some set of addresses. Different architectures might imple-
ment this mechanism in different ways. For example, RISC-V allows the
reservation set of an LR instruction to be arbitrarily large but must contain
all the read data. To support this range of behaviors, we define the interface
to allow the CPU to be notified that a write to an address has taken place,
making the architecture itself decide whether this affects its reservations.

Converting Addresses from Virtual to Physical Convert a virtual address
to physical based on the current state of the CPU.

Adding and Removing Breakpoints We want to support debugging break-
points that trigger when the computation reaches a given address.

Register dump Dump the content of the general purpose registers to the stan-
dard output.

Setting the Program Counter Set the program counter, effectively jumping
to an arbitrary location.

We can split these into two categories. The first two types serve a purpose in
the system itself, while the rest are used to support debugging.

3.1.2 Physical Memory (Physmem)

In MSIM, the physical memory space is implemented in the same file as the MIPS
CPU, even though it is conceptually a separate module. We will separate it into
its own file and redefine its interface, to work with processor ID. We do not use the
General CPU structure because, in most cases, we do not need the information
which CPU accesses the memory, and because we try to hide the abstraction from

17

the CPUs. In some cases, physical memory needs to be accessed by the devices
(e.g., for devices supporting DMA, like ddisk). A special processor ID of —1 is
reserved for such occasions.

In addition to accessing main memory and memory mapped registers of de-
vices, the Physmem module also had two other responsibilities in MSIM: notifying
the CPUs of writes for LL/SC, and caching decoded instructions. The next two
sections will describe how we will change these.

LR/SC

We will keep this responsibility in Physmem, but we will adjust it to work with
the General CPU abstraction. We track the processor IDs of the CPUs that
have an active registration. The CPU should register itself for this tracking
when executing the LL(LR) instruction and unregister itself on successful SC.
When writes are made to main memory, all registered CPUs are notified of the
physical address and size of the write, and they themselves decide whether the
write invalidates the reservation. For MIPS, the invalidation is done if the write
would be to any byte of the cache line (64B), and since MIPS allows only aligned
memory operations, the address of the write has to reside inside the same cache
line as the reserved address.[16, Pages 26, 289]

Cached translation pages

The Physmem frames hold a reference to an array of decoded MIPS instructions
(function pointers, one per instruction in the frame, on the proper offsets) and
a valid flag signifying the correctness of the cache. If we wanted to support a
similar mechanism for both MIPS and RISC-V, we would need two such caches
per frame. If we restricted ourselves to the case that only one architecture can
have cached instructions in one frame, then we would need to store the data in
a weakly typed form (as a void*) and store the type information separately. We
believe that either of these approaches is problematic because they cannot be
easily modified to support an additional architecture. We think that the caching
of the decoded instructions is an implementation detail of the architecture itself
and should not be exposed to Physmem.

Physmem will still hold the valid flag used for these translations. This flag
will be set when any architecture caches the instructions and will be reset on
writes to these pages. This mechanism functions correctly only when there are
instructions from at most one architecture that implements caching present in
one frame, but this constraint is easily fulfilled by loading the code for different
architectures separately into different memory areas and taking care not to jump
into the code for another architecture, running only a single architecture, and not
writing to code pages (making them read-only by MSIM also works).

The worst case is that MIPS CPU M will execute code from some frame F,
then jump elsewhere. After that, some write to F' changes the MIPS instructions
stored there. Then a RISC-V CPU R jumps to F, caches the instructions, and sets
the valid flag, after which M jumps back to F, thinks that its cached translation
is still valid, and executes based on its cache.

18

This situation is very rare and can happen as a result of a bug in a program
or in an environment with dynamic code changes and heterogeneous processing.
Because of this, we highly recommend setting the code memory areas and read-
only, especially on systems with multiple architectures running at the same time.
Dynamic code generation is discouraged on systems with multiple architectures.

If we were to solve this problem, we would need to store whether a translation
is valid on a frame for an architecture. We could have valid flags on the frame
itself (per architecture), but as we said earlier, we think this mechanism should
be hidden from Physmem. One way of implementing it would be to have the
flags as bit fields in one single integer field, which would be reset to 0 on writes.
But then we would need to manage the uniqueness of these fields based on the
architecture. The other way around would be to store this information together
with the cached data, but then Physmem would need to notify the architectures
about all the writes, which again exposes this system to Physmem, which we do
not want.

All in all, we think that the solution with a global valid flag is the solution
that separates this mechanism from Physmem the best, while adding only small
constraints, which have no effect on regular use (1 architecture running at a time).

3.1.3 Debug

We have decided to support some of the debug functionality supported by MIPS.
We will support the printing of general-purpose registers and CSRs. We will
also support the tracing functionality by printing the current instruction and its
parameters. We have decided to support comments with additional information
about the traced instructions, like the absolute targets of relative jumps, different
representations of numbers or more arithmetical notation of the computation
done by the instruction. We have decided not to implement physical memory
breakpoints, but they could be easily added.

3.1.4 GDB support

The GDB functionality is experimental and is deeply coupled with the MIPS
implementation details. We have added some of the required functionality to the
General CPU abstraction, but we have not reimplemented the GDB code to work
with this abstraction. We think that proper GDB support would be beneficial for
MSIM, but we recommend reimplementing it from scratch using the abstractions
defined for this work.

3.2 RISC-V support

We have decided to choose the RV32I base ISA because it is the simplest base
ISA. RV64I and RV128I are unnecessary for the Operating Systems course since
it already uses only 32-bit MIPS operations and the additional instructions or
address translation schemes would only complicate the kernels of students. We
also do not restrict ourselves to the reduced number of 16 registers in RV32E,
because that would not benefit us in any way and would only hinder the possible
implementation of the “H” extension.

19

We have decided to follow the steps of MIPS and allow only memory accesses
aligned to their widths. We also simulate in program order, meaning that we do
not reorder the instructions or perform out-of-order execution. This is done to
fulfill the goal of MSIM to be deterministic and to make debugging easier.

3.2.1 Architecture

We have decided to split the RISC-V implementation into three modules. The
CSR module is responsible for the implementation of the CSRs and the operations
on them. The Instr module defines the instructions and their encoding. This
module is itself divided into several submodules, one per instruction type and one
extra for decoding instructions. Lastly,the CPU module defines the operations
of the whole CPU.

We have chosen to implement the support for RISC-V in a manner similar
to that of MIPS, meaning that we define one function per instruction. This
approach supports instructions to be decoded from the data ahead of time and
to be cached.

CPU Step

The simulation of one step of the CPU is similar to the way it is done for MIPS, as
described in Figure[1.2] but with some slight modifications. We have removed the
instruction fetch exception loop. In the original implementation, if the instruction
fetch of a trap handler caused an exception, the simulation would enter an infinite
loop, without giving the user any information or control. We have decided to
remove this loop. In this way, if the fetch of the trap handler itself caused an
exception, the repeated fetch caused by the exception would be attempted again
in the next step. Between these steps, the user can have interactive control of the
simulator and can get feedback on what is happening. The MIPS CPU has been
reimplemented in this way as well. The adjusted flowchart is shown in Figure

B.1

Instruction fetch

Instruction decode Instruction execute

Y

Interrupt

?
pending? Sucessful?

Handle Exception

A

Raise interrupt

Figure 3.1: Flowchart of simulating one step of the RISC-V CPU

20

3.2.2 Extensions

For RISC-V to be useful in the Operating Systems course, it has to come with
some extensions. First and foremost, the support for S-mode and U-mode is abso-
lutely necessary, which depend on the “Zicsr” extension. The support for counters
is also required because a timer interrupt is required for an implementation of a
preemptive scheduler. One problem arises, the RISC-V only has support for a
real-time based timer interrupts, which are inherently nondeterministic. Thus,
we have defined a new non-standard extension which adds the support for cycle-
based timer interrupt. This is closely described in Section [4.1.1]

In addition to the necessary extensions, we have also decided to support the
“A” and “M” extensions. As a result of the way we simulate the instructions in
order, we also support the “Ztso” extension as a side effect.

“A”

The atomic instructions defined in the “A” extension are not necessary for the
Operating Systems course. The kernels implemented in the practicals run on a
single thread (hart). Because of that, simply disabling interrupts is sufficient to
support the implementation of synchronization primitives]T]

Even if atomicity can be achieved by different means, some students might
want to try to implement the synchronization primitives in a more realistic way,
using atomic instructions. We think this should be encouraged, and MSIM should
support this functionality for RISC-V.

“M”

The support for separate multiplication, division, and remainder instructions
makes reading assembly code with these instructions more readable. We think
that because these operations can be used in kernel development, we would benefit
from the added readability.

Unsupported Extensions

“C” We do not need to restrict the space our code takes, as it will not be much
in the first place.

“F7”, “D” and “Q” We believe these extensions are not very useful for the
Operating Systems course. If MSIM were used in different circumstances, the
support for these could be justified.

“Zifencei” We have decided not to support this extension because we deem it
unnecessary because of the restrictions we have put on the instruction fetches.
These restrictions can be found in Section E.1.3l

“Zam” We have decided to support only aligned memory accesses, regardless
of whether they come from general memory operations or from atomics. Adding
support for misaligned atomics would thus go against this decision.

ILike mutexes and semaphores

21

“H” The hypervisor extension increases the complexity of S-mode, and virtu-
alization support is not required for the Operating Systems course.

22

4. Implementation

This chapter describes the development process behind the implementation of
RISC-V. We describe how we implemented some of the features, describe when
we deviated from the RISC-V specification, and lastly describe how we tested
and evaluated the implementation.

4.1 Notable features

In this section, we want to express our reasoning behind some notable implemen-
tation features and how they affect the system. We do not write about every
module, because implementation of some of them was straightforward; for exam-
ple, the implementation of most of the instructions is very simple.

4.1.1 CSRs

There are two questions that we have to solve while implementing the CSRs; how
do we represent them in memory and how do we implement the instructions for
their access.

There is a 12-bit address space dedicated to the CSRs, which are 32-bit wide
in RV32I. A trivial representation would be to allocate the full 16 KiB array that
would be needed for them. This approach has the advantage of direct indexing
into such representation by the CSR number. But the rather large disadvantage of
this representation is how much space is wasted. There are only 294 CSRs defined
by the privileged standard,[5, Tables 2.2-2.5] which would take only 1.176 KiB,
which is almost 16 times less space than the full representation. The representa-
tion we have chosen is a sparse representation in a structure. This representation
adds the difficulty of accessing the data based on the CSR number, which is
not an issue, as the way we access the CSRs allows us to make the translation
naturally.

Many of the CSRs define access rules to them, sometimes even on the level
of individual bits. For example, the mcause CSR can only hold values that are
a valid exception code, and a write that would change the CSR to an invalid
value must throw an exception, while mstatus has many individual bits, each
having their own semantics, and some unwritable bit-fields. Having one universal
function that would handle all of the different cases would result in a code that
could not be modified easily. We have decided to separate the functionality
between several functions. Special CSRs (such as mcause or mstatus) have their
own functions for reading, writing, setting, and clearing bits, while more general
CSRs (such as the 29 HPM counters) can share the same functions as long as their
access logic is the same. The four operations reflect the operations defined by
the instructions defined in the “Zicsr” extension, described in Section [2.3.3] The
only question left is how to dispatch these functions based on the CSR number,
which is implemented as a switch statement. As promised earlier, this approach
solves the problem of finding the right member of the structure based on the CSR
number; we access the CSRs from a function that works on a defined set of CSRs
(mostly only one) and can access them directly in the structure.

23

Custom CSRs

In order to support deterministic timer interrupt, we have decided to define a
nonstandard extension that contains one new CSR scyclecmp (0x5C0). This 32-
bit register can be accessed from S-mode and any more privileged modes. It can
be written with any value. The number for this CSR has been chosen from the
range dedicated to custom read-write Supervisor-Level CSRs. When the value of
the cycle CSR is greater than or equal to the value in scyclecmp we say that
the Supervisor Timer interrupt is requested.

In the privileged specification,[14, Pages 32-34] the supervisor timer interrupt
(STI) is considered pending when the STIP bit in mip CSR is set. We will now
redefine how the STI should be made pending. STI is considered pending when
the STIP bit is set or when STI is requested by scyclecmp. When mip is read
with a CSR instruction, the value of the STIP bit should also be the logical or of
these values, but writes to mip should only affect the stored value.

This behavior is based on the way the Supervisor External interrupt is made
pending, which can also be set by M-mode or raised by a platform-specific inter-
rupt controller.

Timer interrupts

As illustrated in Figure [3.1) the incrementing of counters is done as the last
operation in simulating one step. The simulation is structured in this way, because
some of the counters should not increase when a trap is taken. After the counters
are increased, the check whether an interrupt should be made pending (in case of
the machine timer interrupt) or requested (in case of STT) is made (we will refer to
this situation as requesting an interrupt for simplicity). The same checks happen
when the related CSRs or memory-mapped registers are changed by writes from
the CPU.

Due to this detail, we first check for pending interrupts and only after that
increase the counters and request interrupts. This results in the next instruction
executing without being interrupted, even if there is a pending interrupt. The
CPU traps right after executing this instruction. This situation is shown in Table

Z8i)

Instruction cycle scyclecmp comment

insl 0 1 STIP is set at the end of this step

ins2 1 1 ins2 still executes, STIP is set
Trap

tinsi 2 1 tins1 is the first instruction

of the trap handler

Table 4.1: Raising Timer Interrupt Example

This behavior is allowed by the specification of the way interrupt traps occur.
The privileged manual prescribes this behavior as follows:[14, Page 32]

[The conditions| for an interrupt trap to occur must be evaluated in a
bounded amount of time from when an interrupt becomes, or ceases to
be, pending in mip, and must also be evaluated immediately following

24

the execution of an xRET instruction or an explicit write to a CSR
on which these interrupt trap conditions expressly depend.

We evaluate this condition right after the execution of each instruction, which
satisfies this definition.

4.1.2 “A” Extension
LR/SC

Our implementation of defines the set of bytes that is reserved by the LR instruc-
tion to be the set consisting of the 4 bytes that were read exactly. We implemented
the SC check to test if the write we are notified about overlaps these four bytes.

We also have to address the restrictions on the eventual success of SC im-
posed by the specification of the “A” extension. |14} Section 8.3] The specification
defines a constrained LR/SC loop and makes guarantees on the behavior of the
SC instructions in such loops. This is done to prevent livelocking of LR/SC
sequences in real systems, where two different harts could ping-pong one cache
line between each other without ever succeeding on any SC. Our implementation
does not have this problem, and because we simulate the steps of different harts
sequentially, the first write on a particular address would either be a successful
SC, or invalidate any reservations on the relevant bytes.

4.1.3 Memory model

We simulate in program order, which means that we execute the instructions in
the order that they were fetched. Also, we simulate multiple harts step-by-step
in a round-robin fashion. This stricter ordering satisfies all the restrictions that
RVWMO and RVTSO put on memory orderings. We can even go as far as to
implement the FENCE instruction as an empty operation.

Caching the instructions and FENCEL.I

Regarding this caching mechanism, the RISC-V memory model allows us to re-
order implicit memory reads as back as the nearest memory fence of the proper
type. Instruction fetches are implicit reads, and the unprivileged manual [5]
Section 1.4] says:

Except when specified otherwise, implicit reads that do not raise an
exception and that have no side effects may occur arbitrarily early
and speculatively, even before the machine could possibly prove that
the read will be needed. For instance, a valid implementation could
attempt to read all of main memory at the earliest opportunity, cache
as many fetchable (executable) bytes as possible for later instruction
fetches, and avoid reading main memory for instruction fetches ever
again.

This means that we could decode all instructions once and then never worry
about cache invalidation. This would obviously not work with dynamically gen-
erated instructions. The “Zifencei” extension solves this problem by defining an

25

instruction fence that would invalidate our caches. We think that if MSIM be-
haved in this way, it would only confuse the users, who have probably not read
the RISC-V standard in its entirety and who would expect that a write to mem-
ory should be seen by the CPU on the next clock cycle (including instruction
fetches). That is why we have decided to make the fetch implicit reads behave as
if they were done at the same cycle as the instruction itself.

4.1.4 Custom instructions

MSIM defines several custom instructions for MIPS, most of which are designed
as debugging tools, while DHLT which halts the simulation is necessary to stop
the simulator from the code. We have also defined custom instructions for RISC-
V. We have chosen to make all the custom instructions use the SYSTEM opcode
and use the encoding dedicated for custom system instructions.

EHALT

EHALT stops the simulation. This instruction is unprivileged, even if we think
that this functionality should be restricted to M-mode in real systems. We have
decided to behave as such, to simplify its usage.

EDUMP

EDUMP prints the contents of the general purpose registers to standard output.
This functionality is useful for debugging and we will be using it in our automated
tests of MSIM described in Section [4.3

4.2 Deviation from specification

4.2.1 EBREAK

In the unprivileged manual,[5, Page 27] EBREAK is said to return control to
a debugging environment. This could be understood as turning on interactive
control in MSIM. But in the privileged manual,[I4, Page 46| it specifies that
EBREAK only throws the breakpoint exception. This desire is unpractical in
MSIM, so we have decided to deviate from the specification in this regard, and we
begin interactive control in executing EBREAK and do not throw any exception.

MSIM can be made to adhere to the specification by making EBREAK do the
defined behavior and defining a new custom instruction, which would enter the
interactive control. We have decided to go against this decision, because we want
to make placing a breakpoint into code easy for students from C, which can be
achieved by simply writing asm("ebreak"), and not asm(".word 0x8C400073").

4.3 Testing

This section describes how we have approached testing the RISC-V implementa-
tion. We have split testing into two categories: unit tests and system tests. Unit
tests check the behavior of MSIM functions, are written in C, and linked with

26

MSIM. System tests verify the behavior of MSIM itself. Each system test runs
the simulation of the provided code from start to finish. These tests are written
in RISC-V assembly.

We have tried to cover as much functionality as possible, while not duplicating
tests, choosing the type of test that fits the case the best in our opinion.

4.3.1 Unit tests

We have implemented 95 unit tests divided into 3 test suites.

Decoding of instructions Decoding of the instructions is in our context the
translation from the 4 B that have been fetched to the function that implements
this instruction. We set the data of the instruction up and then check if the
decoded function is the one we would expect.

Exceptions We call an instruction function and see if it returns the exception
that we would expect.

Immediate value decoding When an operand of an instruction is a constant
in some range, the value itself can be encoded in the instruction data. This value
is then called an immediate value. The unprivileged specification [5, Figure 2.4]
defines several formats of the immediate values. We test if our decoding is done
correctly.

PCUT

All unit tests are written in the Plain C Unit Test Framework (PCUT).[17] We
have decided on this framework, because it is a fairly simple library, without any
other dependencies.

4.3.2 System tests

Most functionality is tested by running the whole program and comparing the
output with a predefined expected result. In some tests, we use the printer device
to print characters to a file. In others, we dump the contents of the registers or
CSRs. In this way, we can easily test the behavior of traps or of the address
translation.

These tests are written as their assembly source code together with their
compiled form and disassembly. A simple build script is also provided, but is not
needed. The compiled code is present because we do not want to force everyone
who wants to run the tests to install a RISC-V assembler.

We have defined 21 system tests, most of which consist of multiple test cases.
There are nine tests that test unprivileged instructions, including the “M” and
“A” extensions. These tests are split logically, based on their category, and
further divided by their mode of operation (for example, we test conditional
branches separately from unconditional jumps). We have also defined one simple
test which loads data from memory, does simple arithmetic on it, and then stores

27

the result back to memory. Then we have defined 10 tests that cover exceptions
and interrupts. All these tests cause a trap and check if it was handled correctly.

The last test is the largest and covers virtual memory translation. In this test,
we first set up the page table, then do different memory accesses with virtual
address translation in effect. As some of the accesses cause exceptions, this test
also consists of a simple trap handler, which notifies us of the trap by writing
to the console, and then continues the execution right after the instruction that
caused the trap.

One problem arises with testing attempted execution from a non-executable
page. We want to jump from our test code to the non-executable page, which
needs to cause a trap. Our trap handler would, after it ends, resume the execution
on the next instruction after the one we jumped to, but we want to return the
execution to the test code. We achieve this by jumping to the last instruction of
the non-executable page. Then our trap handler resumes the execution on the
first instruction of the next page, which we make executable, and we make the
first instruction an unconditional jump to our test code.

The memory layout and pseudo-assembly code for this test is illustrated in
Figure [£.1] For brevity, the instructions in the figure are not RISC-V assembly
instructions. MEPC is the exception program counter CSR and holds the address
of the instruction that caused the exception. The JAL instruction jumps to the
specified offset and saves the address of the instruction after itself into the spec-
ified register (in our case, ra). JR ra jumps to the address in the ra register.
MRET jumps to the specified address and lowers the privilege level.

0x0000 0000 //Test code

0x8000 0124 JAL ra, 0xA000 OFFC

0x8000 0000

Test Code //Trap Handler (MEPC=0xA000 OFFC)
0xB000 0000 Print 'T’'

0xB000 0004 MRET MEPC + 4

//Executable Page

0xA000 0000 0xA000 1000 JR ra
Not Executable

0xA000 1000
Executable

0xB000 0000
Trap Handler

OXFFFF FFFF

Figure 4.1: Hlustration of the Virtual Memory Test

28

4.4 Evaluation

We have prepared a demonstration of MSIM in a more realistic situation than in
the tests. This demonstration is a simple program written in C, which is then
compiled into RISC-V machine code, which is executed by MSIM. We have pre-
pared the loader, which jumps into the C code together with the build scripts for
compilation. The source code is compiled by the riscv-gnu-toolchain[l] with flags
set to compile without the standard library and to strictly align data (-nostdlib,
-nostdinc, and -mstrict-align).

The code runs in M-mode for simplicity, but could be easily changed to run
in U-mode instead.

The program consists of formatting functions that are used to display the
result of the computing functions and the computing functions themselves. The
formatting functions use the dprinter device, which allows us to write one char-
acter at a time by writing to its memory-mapped register. We have implemented
printing of entire strings, integers, and matrices. These functions demonstrate
how to work with MSIM devices and show a more complicated control flow.

We have also implemented calculation of the Fibonacci numbers by a loop,
this function demonstrates that the basic arithmetic and control-flow work as
expected. We have also implemented a recursive calculation of the factorial and
Fibonacci numbers; these functions demonstrate that MSIM handles the standard
function calling convention (mostly system stack management) well even under
stress.

The last calculation is matrix multiplication, which requires more memory
accesses than the previous calculations, and cannot be optimized to have all
variables in registers. We have chosen to use 32x32 integer matrices (4 KiB
each). We also test whether we can manipulate global variables.

We have prepared a simple demonstration that runs the calculations and out-
puts their result. We have chosen to run these calculations for relatively small
inputs, to make the program terminate in reasonable time.

We have also prepared a more calculation intensive demonstration, which
puts more stress on MSIM. This test runs the recursive (and exponentially slow)
Fibonacci number calculation and many matrix multiplications. We have decided
to calculate the 39-th Fibonacci number and execute 3500 matrix multiplications,
as this resulted in run-time of around 22 minutes. We have not made any more
extensive measurements, because MSIM does not aim for performance. This
stress test is intended to give us a rough idea of the speed of the simulation and
to demonstrate that even longer programs can run on MSIM without problems.

Both of these demonstrations run without problem and output the expected
result.

'https://github.com/riscv-collab/riscv-gnu-toolchain

29

https://github.com/riscv-collab/riscv-gnu-toolchain

Conclusion

In this thesis, we have described how we changed MSIM to support RISC-V as well
as MIPS. We have also summarized our reasoning behind the decisions we have
made during the process of designing and implementing these changes. We have
verified the correctness of our implementation with several test suites and even
provided a way of compiling simple C programs into RISC-V machine code and
then simulating the program. The source code is attached to the electronic version
of this thesis; the latest version is also available online at https://github.com/
HanyzPAPU/msim.

We will elaborate on further expansions of the functionality of MSIM in the
rest of this chapter.

Further work

Advanced Operating System Features

The current state of MSIM is sufficient for the introductory Operating Systems
course, but might not be sufficient for more advanced lectures. To support op-
erating system topics not covered in the OS course, new devices and features
would need to be added. MSIM supports a disk device that could be used for
implementing a file system, but lacks a network card, or a GPU. An even more ad-
vanced topic would be virtualization, which could be supported by implementing
the RISC-V “H” extension.

GDB

As discussed in Section the current GDB implementation is an experimental
one, and we think reimplementing it using the General CPU abstraction would
benefit MSIM the best.

Better debugging support for RISC-V

As it stands, the MIPS CPU has more debugging functionality than RISC-V. We
would like to point out these missing features, as well as describe some new ideas
for debugging functionality.

More custom instructions

MIPS supports a wider range of custom instructions, for example, ones turning
on or off the tracing functionality, or dumping the CPO registers. These custom
instructions could be implemented for RISC-V in the same way as the EHALT
and EDUMP instructions.

Better selection of CSRs when dumping

We have implemented dumping of CSRs based on their number or name, as well
as dumping all CSRs. A wider variety of options could be added, for example,

30

https://github.com/HanyzPAPU/msim
https://github.com/HanyzPAPU/msim

dumping by the privilege level needed to access these CSRs or by the categories
that the CSRs are split into in the privileged manual.[I4, Tables 2.2-2.4]

Memory breakpoints

MSIM supports adding physical memory breakpoints, that cause the simulator
to enter interactive mode when execution in either of the MIPS CPUs fetches
from an address with a breakpoint. This mechanism can also be supported by
RISC-V.

Debug Specification

There exists a not yet ratified specification of debugging support for RISC-V
processors. [18] This specification provides a standardized set of debugging fea-
tures that can be utilized by an external tool, such as GDB. It would be beneficial
if MSIM could provide the specified debugging interface to such tools.

Floating point arithmetic

Support for the “F”, “D” or “Q” extensions could be added. MSIM would allow
more general-purpose applications to run this way.

Physical Memory Protection

RISC-V defines a way to restrict the operations supported on some memory areas.
The specification of these areas can even be made dynamic. For simplicity, our
implementation does not restrict the operations in any way. The support for
this could be useful for disallowing atomic access to memory-mapped registers of
devices and other similar situations.

RV641

The RISC-V implementation could be extended to support RV64Il base ISA; in
order to emulate more realistic systems.

Implementing other CPU architectures

We have added an abstraction layer to MSIM which allows us to emulate multiple
CPU architectures. Now we can easily add support for another architecture to
MSIM. We do not see the benefits of adding another architecture in this moment,
but there could be in the future.

31

Bibliography

[1]

[10]

[11]

[12]

Vlastimil Babka, Lubomir Bulej, Martin Décky, Viliam Holub, and Petr
Thma. Teaching operating systems: student assignments and the software
engineering perspective. pages 71-78, 05 2008.

Viliam Holub. Educational OS simulator, 2003.

Jim Turley. Wait, What? MIPS becomes RISC-V. Available at https:
//www.eejournal.com/article/wait-what-mips-becomes-risc-v/.

Christoph Miillner. Emulators and Simulators. https://wiki.riscv.org/
display/HOME/Emulators+and+Simulators. RISC-V Technical Wiki.

Andrew Waterman and Krste Asanovi¢, editors. The RISC-V Instruction Set
Manual Volume I: Unprivileged ISA, Document Version 20191213. RISC-V
Foundation, December 2019.

QEMU, a fast and portable dynamic translator. USENIX Association, 2005.

Andrew Waterman, Yunsup Lee, Scott Johnson, Tim Newsome, and
Chih-Min Chao. Spike RISC-V ISA Simulator. https://github.com/
riscv-software-src/riscv-isa-sim.

Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,
Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,
Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami,
and Peter Sewell. ISA Semantics for ARMv8-a, RISC-v, and CHERI-MIPS.
Proc. ACM Program. Lang., 3(POPL), jan 2019.

Prashanth Mundkur, Rishiyur S. Nikhil, Jon French, Brian Campbell,
Robert Norton-Wright, Alasdair Armstrong, Thomas Bauereiss, Shaked
Flur, Christopher Pulte, Peter Sewell, Alexander Richardson, Hesham
Almatary, Jessica Clarke, Nathaniel Wesley Filardo, Peter Rugg, and
Scott Johnson. RISCV Sail Model, 2022. https://github.com/riscv/
sail-riscv.

Michael Clark. rv8: RISC-V simulator for x86-64, 2018. https://github.
com/michaeljclark/rv8.

Fabrice Bellard. TinyEMU, 2019. https://bellard.org/tinyemu/.

V. Holub, M. Décky, T. Martinec, V. Horky, and P. Ttima. MSIM Version
1.4.0 Reference Manual, 2020. Available at https://github.com/d-iii-s/
msim/blob/master/doc/reference.html.

RISC-V International. About RISC-V. https://riscv.org/about/, 2021.

Andrew Waterman, Krste Asanovi¢, and John Hauser, editors. The RISC-
V' Instruction Set Manual, Volume II: Privileged Architecture, Document
Version 20211203. RISC-V International, December 2021.

32

https://www.eejournal.com/article/wait-what-mips-becomes-risc-v/
https://www.eejournal.com/article/wait-what-mips-becomes-risc-v/
https://wiki.riscv.org/display/HOME/Emulators+and+Simulators
https://wiki.riscv.org/display/HOME/Emulators+and+Simulators
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv/sail-riscv
https://github.com/riscv/sail-riscv
https://github.com/michaeljclark/rv8
https://github.com/michaeljclark/rv8
https://bellard.org/tinyemu/
https://github.com/d-iii-s/msim/blob/master/doc/reference.html
https://github.com/d-iii-s/msim/blob/master/doc/reference.html
https://riscv.org/about/

[15] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, 2008.

[16] Joe Heinrich. MIPS R4000 Microprocessor User’s Manual. MIPS Technolo-
gies, Inc., 1994.

[17] Vojtéch Horky. PCUT: Plain C Unit Testing mini-framework, November
2019. https://github.com/vhotspur/pcut.

[18] Paul Donauhe and Tim Newsome, editors. RISC-V External Debug Support
Version 1.0-STABLE. RISC-V Debug task group, 2022. Available at https:

//github.com/riscv/riscv-debug-spec.

33

https://github.com/vhotspur/pcut
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec

A. Attachments

A.1 MSIM project

The project is attached to the electronic version of this thesis, but the latest
version can also be found online at https://github.com/HanyzPAPU/msim.

The source code can be found in the src/ directory. The General CPU struc-
ture is defined in the header file src/device/cpu/general cpu.h and imple-
mented in src/device/cpu/general_cpu.c. The RISC-V implementation is
located in the directory src/device/cpu/riscv_rv32ima/.

All RISC-V tests can be found in the directory tests/rvtests/.

The demonstration of running code compiled from C can be found in the
tests/rvtests/execute_c/ directory.

The reference documentation of MSIM resides in the doc/reference.html,
while the development manual can be generated by doxygen from the directory
doc/.

34

https://github.com/HanyzPAPU/msim

	Introduction
	MSIM
	Goals
	Using MSIM
	MSIM architecture
	Shared memory space
	Devices
	MIPS CPU

	RISC-V
	RISC-V goals
	RISC-V terminology
	Unprivileged ISA
	RV32I
	RV64I
	Notable extensions

	Privileged ISA
	Control and Status Registers (CSRs)
	Machine-Level ISA
	Supervisor-Level ISA
	Exceptions, interrupts and traps
	Hypervisor extension

	Design Decisions
	Decoupling MIPS from MSIM
	General CPU
	Physical Memory (Physmem)
	Debug
	GDB support

	RISC-V support
	Architecture
	Extensions

	Implementation
	Notable features
	CSRs
	``A'' Extension
	Memory model
	Custom instructions

	Deviation from specification
	EBREAK

	Testing
	Unit tests
	System tests

	Evaluation

	Conclusion
	Bibliography
	Attachments
	MSIM project

