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Introduction
Artificial Intelligence (AI) is a fast-growing field of computer science that focuses
on the creation of intelligent machines that can simulate human cognition. In
recent years, AI technology has been applied in a wide range of fields, includ-
ing healthcare, finance, and transportation, with the goal of improving efficiency,
accuracy, and decision-making. To gain insights into the capabilities and limita-
tions of AI algorithms and techniques, many researchers have turned to games
as a testing platform to evaluate and compare different methods as they provide
a convenient and controllable environment to achieve the aforementioned goals
[G.Yannakakis and Togelius, 2018].

In recent decades, computer games have also gained popularity, similar to the
growth of AI as a field of study. Due to its utility, the game industry has become
one of the many fields that have sought to use AI to their advantage. Being a
subject of extensive research, perfect information, a game in which all players have
complete knowledge of the game state, in two-player games has been a common
focus in game theory. Therefore, it allowed the development of algorithms for a
greater understanding of games. However, in a manner similar to the real world,
situations in which all relevant information is available are not always present.
Given the inherent characteristics of their environment, the design of algorithms
for imperfect information games, in which some information about the game
state is hidden from some or all of the players, is more challenging. Therefore,
this thesis seeks to contribute to this field by developing algorithms for the game
“Durak”.

Durak is a strategic card game that originated in Russia [McLeod, 2018]. It is
played with a deck of cards and typically involves two to six players. Unlike most
other games, the aim of Durak is not to find a winner, but to find a loser. Players
take turns attacking and defending in a series of rounds. During an attack, the
attacking player leads with one or more cards, and the defending player must
attempt to beat them by playing a higher-ranked card. If the defending player
is unable or unwilling to do so, they must pick up all the cards. The goal of the
game is to get rid of all of one’s cards, and the player left holding cards at the
end is declared the fool.

Given the intricate nature of the game, a key objective of this work is to
implement the game correctly with all relevant details. As the game will include
various AI agents, it is essential for the game model to provide a suitable interface
for the integration of AI agents.

Another goal of this thesis is to implement a range of AI players for the given
game model. This will allow us to examine potential challenges associated with
implementing AI for games of this type, as well as verify the suitability and
usability of the game’s API for this purpose.

After implementing the AI agents, the aim is to compare their performance in
mutual play, with the objective of identifying the most effective technique. The
AI players must not only win against all other agents but must also make moves
quickly, ideally at least several moves per second on average. This requirement
reflects the need for AI players to be both effective and efficient in their decision-
making. This comparison will provide valuable insights into the strengths and
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weaknesses of the various AI approaches and will help to guide future work in
this area.
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1. Game Description
The objective of this thesis is to develop a simulation of the Durak game, which
would serve as an experimental environment for artificial intelligence agents using
various techniques. By implementing the full range of gameplay mechanics, our
aim is to create a comprehensive simulation that could be used to evaluate the
performance of previously mentioned agents.

There are many variations of the Durak game that are played around the
world. However, this thesis focuses on the most well-known version of the game,
which is called Podkidnoy Durak (also known as “fool with throwing in”)[McLeod,
2022]. In this chapter, we will provide a thorough description of this particular
variation.

1.1 Terminology
This section defines fundamental terms used in the game.

• Trump card
It is a playing card that belongs to a deck and has a higher rank than any
other card from a different suit. This card is typically used strategically
during gameplay to defeat the other player’s cards and gain an advantage.

• Bout
It is a process of exchange of attacks and defenses between the players.
The bout continues until either the attack is successfully defended or the
defender is unable to play a suitable card, at which point the attacker wins
the bout and the defender is forced to take the played cards into their hand.

• Discard pile
During a bout, if an attack is successfully defended, all of the cards played
during this process are placed face down on a discard pile and are not used
again for the remainder of the game.

• Early game
refers to any point in the game when there are still cards remaining in the
deck

• End game
occurs when the deck is depleted

1.2 Players
While the game of Durak is typically played with a range of two to six players,
allowing for the possibility of team play, this work only focuses on the two-player
variant of the game. I made this decision in order to maintain a consistent and
focused scope for the analysis.
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1.3 Cards
The game is played with a 36-card deck, which is divided into four suits: hearts,
spades, clubs, and diamonds. The ranks of the cards within each suit are ranked
from high to low as follows: ace, king, queen, jack, 10, 9, 8, 7, 6.

1.4 Dealing the Cards
At the beginning of the game, cards are dealt to each player until each has a
hand of six cards. The final card of the deck is then placed face up, and its suit
is used to determine the trump suit for the game. The remaining undealt cards
are then placed in a stack face down on top of the trump card.

During the first hand of a session, the player who holds the lowest trump card
plays first. If no one holds the trump 6, the player with the trump 7 plays first;
if no one holds that card, the player with the trump 8 plays first, and so on. The
first play does not have to include the lowest trump card; the player who holds
the lowest trump card can begin with any card they choose. If neither player has
a trump card, the player who goes first is randomly determined.

1.5 Beating the Card
Before discussing the gameplay, it is necessary to establish what it means for
an attacking card to be successfully defended. A card that is not a trump can
be beaten by playing a higher card of the same suit, or by any trump card. A
trump card can only be beaten by playing a higher trump card. It is important to
note that a non-trump attack can always be beaten by a trump card, even if the
defender also holds cards in the suit of the attack card. There is no requirement
for the defender to “follow suit” in this case.

1.6 Gameplay
The game consists of a series of bouts. During each bout, the attacker begins
by placing a card from their hand, face up, on the table in front of the defender.
The defender may then attempt to defeat this card by playing a card of their
own, face up. Once the attacking card is defeated, the attacker has the option
to continue the attack or to end it. If the attack continues, the defender must
attempt to defend against this additional card. This process continues until the
attacking player is unable or unwilling to attack. Alternatively, if the defender
is unable or unwilling to beat the attacking card, they must pick up that card
along with other played cards on the table.

1.6.1 Conditions on the Attack
Every attacking card except for the first one must meet the following conditions
in order to be played by the attacker.
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• Each new attacking card played during a bout must have the same rank as
a card that has already been played during that bout, whether it was an
attacking card or a card played by the defender.

• The number of attacking cards played must not exceed the number of cards
in the defender’s hand.

The first attacking card can be any card from the attacker’s hand.

1.6.2 Successful Defense
The defender successfully beats off the entire attack if either of the following
conditions is met:

• the defender has successfully beaten all of the attack cards and the attacking
player is unable or unwilling to continue the attack.

• the defender has no cards left in hand while defending.

Upon successful defense of an attack, all cards played during the bout are
placed in the discard pile face down and are no longer eligible for use in the
remainder of the game. On top of that, the roles of the players change, i.e. the
defender becomes the attacker and the attacker becomes the defender for the next
bout.

Furthermore, if the defender decides to take the cards, the attacker may play
additional cards as long as doing so does not violate the conditions of the attack.
In this case, the defender is required to also accept these supplementary cards.

1.7 Drawing from the Deck
Once the bout is over, all players who have fewer than six cards in their hand
must, if possible, draw enough cards from the top of the deck to bring their hand
size back up to six. The attacker of the previous bout replenishes their hand first,
followed by the defender. If there are not enough cards remaining in the deck to
replenish all players’ hands, then the game continues with the remaining cards.

1.8 Endgame and Objective
Once the deck runs out of cards, there is no further replenishment and the goal
is to get rid of all the cards in one’s hand. The player who is left holding cards at
the end is the loser, also known as the fool (durak). As was mentioned before, this
game is characterized by the absence of a winner, with only a loser remaining at
the end. However, in a two-player Durak game, it could be said that the opponent
of the loser emerges as the winner.

However, it is not always the case. It is possible for the game to end as a
draw. In the event that both the attacking and defending player possess the
same number of cards and all of the attacking player’s cards are successfully
defended, the game ends in a draw.
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1.9 Illustrative Gameplay Scenario
For the purpose of demonstrating the mechanics of the game, we will consider a
scenario in which there are two players, A and B, and it is currently player A’s
turn. In this particular instance of the game, player A is holding the 6♡, 8♣, 8♢
and A♣, while player B has the 8♡, A♡, 6♠ and K♣ in their hand. It should also
be noted that ♠ are the trump suit for this round. Player A initiates the attack
with 6♡, which is the lowest value card in their hand. Player B has the option
to respond to player A’s attack by playing one of the 8♡, A♡, 6♠ from their
hand, as these cards conform to the rules outlined in section 1.5. Alternatively,
player B can take the card. If player B chooses to defend player A’s attack by
playing the 8♡, the turn returns to player A. According to the conditions of the
attack specified in section 1.6.1, player A has the option to either end the attack
or continue the offensive play by playing either the 8♣ or 8♢ from their hand.
In case player A decides to finish the attack, all the cards in the bout move to
the discard pile. On the other hand, if player A decides to continue the attack
by playing one of their remaining cards, such as the 8♢, the bout will continue
and the turn will pass to player B. Of the three remaining cards in player B’s
hand, the only one that can be used to defend against player A’s current attack
is the 6♠, a trump card. Assume that because of strategic reasons, player B
decides to take the cards. Then, the cards in the bout are transferred to player
B’s ownership, thereby allowing player A to retain the role of attacker in the
subsequent bout.
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2. Game Analysis
As described in chapter 1, Durak is a game that requires players to consider a
range of factors in order to play effectively. Given its intricate nature, this chapter
will analyze the game from a game-theoretic perspective in order to understand its
underlying structure and strategic considerations. This will involve categorizing
the game according to relevant criteria, examining the complexity of the game as
a whole, comparing the length of the game, introducing new concept and etc.

2.1 Classification
Durak can be classified as a discrete game. A discrete game is a type of game
in which players have a finite number of choices, or actions, that they can take
[Owen, 2008]. This applies in Durak. Players have a limited number of choices
that they can make at each turn. They can choose which card to play, and must
decide whether to attack or defend. These choices are limited by the cards that
the player has in their hand and the rules of the game.

Furthermore, it can be considered a sequential game from a game-theoretic
perspective. A sequential game is a type of game in which the order in which
players make their decisions matters [Owen, 2008]. In Durak, the order in which
players play their cards is important, as it determines who is able to attack and
who must defend. The sequence of actions is determined by the rules of the game
described in chapter 1, and players must consider the potential actions of their
opponents as they make their own decisions.

In addition, Durak can be classified as a game of imperfect information. In
a game of imperfect information, players do not have complete information about
the game state or the actions of their opponents [Owen, 2008]. They must make
decisions based on incomplete information and must try to infer the actions of
their opponents based on their observations and past experiences. As described
before, Durak is a game of imperfect information because players do not have
complete information about the cards in the hands of their opponents. They
must make decisions about which cards to play and when to use their trump
cards based on incomplete information, and must adapt their strategies as the
game progresses and new information becomes available.

Additionally, Durak is partially non-deterministic due to the element of
randomness involved in the dealing of cards. However, once the initial cards
have been dealt, no further randomness is introduced, and the game becomes
deterministic from that point on. In game theory, a non-deterministic game is
a type of game in which the outcomes are not determined solely by the actions of
the players and the rules of the game, but are also influenced by random events
or factors [Owen, 2008].

In summary, Durak can be classified as a discrete, sequential, imperfect in-
formation, and non-deterministic to some extent game from a game-theoretic
perspective, which contribute to its complexity and strategic depth.
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2.2 Branching Factor
The branching factor of a game refers to the number of possible moves that a
player can make at each turn. In “Podkidnoy Durak”, it can be challenging to
determine the branching factor as it varies depending on the specific game state.
At each turn, the number of possible moves a player can make is influenced by
the cards in their hand and the cards on the table, as well as the defending or
attacking rules. To be specific, the attacker can initiate an attack by playing any
card from their hand. Therefore, the maximum branching factor is the maximum
number of cards that a player can hold in their hand, which is 35 if one player holds
all but one of the cards. However, there are also situations in which a player may
only have one possible move, such as when they are unable to defend against an
attack and must pass and take the card. Therefore, the average branching factor
in this game is relatively low, as players often have only a few choices of cards to
play in a given situation. This is particularly true for the defender, who may only
have a few options for defending against an attack, and for subsequent attacks,
where the number of available options may also be limited.

To clarify the branching factor assumption, I have run an experiment to es-
timate the average branching factor in Durak by simulating 1000 random games
played between two greedy agents. The greedy agent is a rule-based agent that
follows a simple set of rules to play the game. This agent will be discussed in more
detail later. The results showed that the average branching factor, as computed
using the geometric mean, was 2.17, which suggests that the branching factor of
the game is low.

2.3 Duration
The objective of this section is to determine the typical duration of games of
Durak in terms of bouts and plies, where ply refers to a single move made by
a single player. To address this question, we will compare the average length of
games played between two random players and two greedy agents, in order to
examine the influence of player strategy on the duration of the game.

To compare the durations of player strategies in Durak, we conducted two ex-
periments. The first experiment involved 1000 games played between two greedy
agents, and the second experiment involved 1000 games played between two ran-
dom agents. The results of the first experiment showed that the average number
of bouts per game was 8.3, the average number of plies per bout was 5.3, and
the average number of plies per game was 44.0. The results of the second exper-
iment showed that the average number of bouts per game was 24.0, the average
number of plies per bout was 2.9, and the average number of plies per game was
68.0. These findings suggest that the behavior of the random agents led to longer
games, as evidenced by the higher number of bouts and lower number of plies per
bout in the second experiment.
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2.4 The Termination of Durak
It is essential to acknowledge that every game of Durak must eventually conclude,
as it is not possible for a game to continue indefinitely. For a game to persist,
players would need to repeatedly exchange the same set of cards. However, this
scenario cannot happen because cards cannot return to a previous owner until
certain cards from the bout are placed in the discard pile. The inclusion of
cards in the discard pile allows for the changing of turns, enabling the return
of previously exchanged cards to their original owner. As the exchange of cards
between players continues, additional cards from the deck and ultimately from
the players’ hands will be placed in the discard pile until only the cards being
exchanged remain.

2.5 Repetition of States in Durak
Another question of interest is whether it is possible for the same game state to
occur twice within a single game of Durak. If the same state were to repeat, it
would mean that the sequence of moves that led to that state could be repeated
indefinitely. However, we know that the game of Durak must eventually come to
an end because it is not possible for the game to continue indefinitely (Section
2.4). This means that there cannot be any sequence of moves that leads the game
back to the same state, as the game must eventually conclude. Therefore, it is
not possible for the same state to repeat.

2.6 Weakness Concept
This section introduces the concept of weakness and well-covered weakness
in Durak, which are concepts that arise from the analysis of the game and may
be relevant to various strategies or agents.

The concepts in question are introduced in Edouard Bonnet’s paper “The
Complexity of Playing Durak” [Bonnet, 2016]. It examines the difficulty of iden-
tifying winning strategies in the card game Durak. Bonnet’s work demonstrates
that, even in a perfect information setting with two players, finding optimal moves
is a challenging computational problem. Specifically, Bonnet establishes that de-
termining the presence of a winning strategy in a generalized Durak position is
PSPACE-complete. In my own research, I aim to construct a strong agent capable
of playing optimally in both perfect and imperfect information settings. Bonnet’s
contributions, including the concept of weakness and well-covered weakness, have
been invaluable in the development of my rule-based agents.

A weakness for a player, referred to as player P, is defined as a rank r that
meets the following criteria:

1. player P’s hand contains at least one card of rank r, and

2. for each suit s of rank r in player P’s hand, there exists a rank r’> r such
that the opponent holds a card of rank r ′ and suit s.

To clarify the concept of weakness, consider the following scenario: Player P
holds the cards 10♡, 10♠, and K♢, while player O holds Q♡, Q♠, and J♣. In
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this case, player P has a weakness at rank 10, as it satisfies the two conditions
outlined in the definition of weakness. Specifically, player P holds at least one card
of rank 10 (10♡ and 10♠), and for each suit of rank 10 in player P’s hand (10♡
and 10♠), the opponent holds a card of higher rank (Q♡ and Q♠, respectively).

A well-covered weakness for player P, on the other hand, refers to a weakness
card with rank r such that for every card in player P’s hand with suit s and rank
r, there is a higher card with suit s and rank r ’ in player O’s hand, and player
P does not possess any cards with rank r ’. Essentially, if player P attacks with a
well-covered weakness, player O can defend effectively, preventing player P from
playing any other attacking cards during the bout.

In the example above, the cards 10♡ and 10♠ are considered well-covered
weaknesses because attacking with these cards allows the opponent, player O, to
effectively defend with Q♡ and Q♠ and prevent player P from attacking again.

2.7 Open and Closed World
It is important to understand the concepts of open world and closed world
in the context of this thesis because they are frequently mentioned throughout
the work. In a closed world environment, such as the normal game of Durak,
players do not have complete information about the game state. Specifically, in
Durak, players are only able to see their own cards and the trump card that is face
up. When conducting experiments, the user can specify a closed world setting in
order to accurately test the agents in a realistic game environment. On the other
hand, an open world environment refers to a game in which all players have
complete knowledge of the game state. In this type of environment, all cards are
visible to the players and they have common knowledge of each other’s cards. The
purpose of restricting the game scenario to a perfect information two-player game
is to determine whether the best agent in a closed world environment performs
equally well in an open world environment.

2.8 Closed World Deduction
In the closed world environment, it is possible for a player to deduce the oppo-
nent’s remaining cards once the deck is depleted. This is because once the deck
is exhausted, the only cards that can be played are those that are held by the
players. If a player is able to keep track of the cards that have been played, they
can narrow down the possible cards that their opponent still holds and make edu-
cated guesses about their strategy based on this information. To give an example,
imagine that the deck has been exhausted, and there are only four cards left in
the game: A♡, 6♠, 7♢, and 8♣. Player A is able to deduce that their opponent,
player B, still holds A♡ because they have played the 6, 7, and 8 cards, but have
not yet played the A card. Based on this information, player A can infer that
player B is likely trying to hold onto the A card in order to use it as a trump card
later in the game. By paying a close attention, player A will know which cards
have already been played and which ones are still in play. Player A knows that
A♡ has not yet been played because they have not seen it played, and they also
know that the A♡ card has not been discarded because the deck has not yet been
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exhausted. Therefore, player A can deduce that the A♡ card is still in play ei-
ther in the deck or in the opponent’s hand. Once the deck is depleted, it becomes
obvious that it is being held by player B. The ability to deduce an opponent’s
remaining cards can significantly impact the course of the game, as it allows play-
ers to incorporate this information into their strategic decision-making. However,
it is important to note that Durak is a game of chance as well as strategy, and
even if a player is able to deduce their opponent’s remaining cards, they cannot
predict with certainty which cards the opponent will play in a given turn.

13



3. Game and AI Implementation
The primary objective of this study is to design and develop a framework for
the implementation and evaluation of artificial intelligence (AI) agents in Du-
rak. Since the framework in this game is tailored to support the application and
evaluation of AI algorithms within the game environment, the focus of this chap-
ter is to provide a high-level overview of the framework’s architecture, including
its capabilities for supporting the development and evaluation of AI agents for
Durak.

3.1 OS support
I tested the game framework for Durak on both the Windows 10 and Linux
operating systems to confirm compatibility and functionality. While this list
is not exhaustive, and the framework may potentially run on other operating
systems, these are the only ones that were formally tested.

3.2 A High-Level View of the Framework
The Durak AI framework includes a game model, AI agents, and a command-line
interface (CLI) that are implemented using the C# programming language and
targeted for the .NET 6 platform.

In order to run and test the program, the project has to be cloned from the
repository . The source code for the project is available on the project GitHub
page [Zarlykov, 2023]. From the CLI directory of the project, the user can use
the command line to enter the following command:
$ dotnet run

This will launch the command-line interface and provide guidance on how to
proceed with experimentation (for additional information, please refer to Section
3.2.3).

An analysis of the source code using Visual Studio’s Calculate Code Metrics
for Solution feature revealed that the solution consists of a total of 3034 lines of
source code. This includes 993 lines in the Agent project, 757 lines in the CLI
project, and 1284 lines in the game model.

3.2.1 Project Structure
The game Durak is organized within a solution file, with the file extension “.sln”,
which is a type of file used to manage projects in Visual Studio. This solution
includes three individual projects:

• Model - A C# library project that contains the game logic for Durak.

• Agent - A C# library that contains all of the implemented AI agents.
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• CLI - A C# Command-Line Interface (CLI) project that includes parame-
ters for modifying the game model and agents settings in order to perform
experiments.
The aforementioned components will be further discussed in the following
subsections.

3.2.2 Model
The game model, which represents the current state of the game, is implemented
using object-oriented programming principles. As was mentioned before, the
game logic for Durak is contained within the Model C# library, which serves as
a modular and reusable unit. It includes class objects, such as Player, Card, and
Deck, as well as all of the other main components that make up the game.

Figure 3.1: A simplified UML diagram showing the relationship between the
objects within the Model library.

Before delving into the description of the game state and components of Du-
rak, it is useful to first consider the relationship of all of the objects in the model
to that state. A class diagram illustrating the relationships between the objects
in the model can be found in Figure 3.1.

The Deck object includes the property rankStart, which is an integer value
that can be modified from the command-line to alter the starting rank of the
cards in the deck. By default, the rankStart is set to 6, but it can be changed
to any value between 6 and 14. For instance, if the rankStart is set to 13, the
deck will only consist of 8 cards: 4 Aces (rank value 14) and 4 Kings (rank value
13).

The representation of the game state Durak in the model is a key aspect of
the overall system. This representation holds all of the necessary information and
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logic required to play the game of Durak, shown in Figure 3.2, and therefore plays
a central role in the functioning of the model. As such, it is important to carefully
consider the design and implementation of the game state representation along
with its components.

// Bout object of the game
private Bout bout;

// Deck object of the game
private Deck deck;

// Trump card of the game that can be assigned or not
private Card? trumpCard ;

// Representation of the discard pile in the game
private List <Card > discardPile = new List <Card >();

// Players inside the game
private List <Player > players = new List <Player >();

Figure 3.2: A simplified diagram of the Durak class, which encompasses the
main properties of the game

The object in question serves as a comprehensive representation of all game
states and data throughout a single game of Durak. To facilitate communication
and coordination between the Durak model and the agents that interact with it,
the game state provides two primary functions: PossibleMoves, shown in Figure
3.3 and Move, shown in Figure 3.4. These functions serve as the primary means
of interaction between agents and the game state, and as such, play a crucial role
in the overall operation of the model.

if (turn == Turn. Attacking ){
if ( CanAttack () && OpponentCanFitMoreCards ()) {

return GenerateListOfAttackingCards ();
} else {

// passing the attack
return null;

}
}
else {

Card attackingCard = bout. GetAttackingCards () [ˆ1]
if ( CanDefend ( attackingCard )) {

return GenerateListofDefendingCards ( attackingCard );
} else {

// taking the cards
return null

}
}

Figure 3.3: A simplified overview of the PossibleMoves method inside the Durak
class

The PossibleMoves method determines the list of actions that are available
to the current player based on the current game state and the rules of the game.
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When it is the attacker’s turn, the method considers the rules for attacking (de-
tails in section 1.6.1) and generates a list of eligible cards that can be played or
allows the player to pass if no suitable cards are available. Similarly, when it is
the defender’s turn (details in section 1.5), the method takes into account the
card being attacked and generates a list of cards that can be played to defend or
offers the option to take the attack if no suitable defense is available. Because of
that the PossibleMove function returns List<Card?> type. If there are possible
moves that can be made in the current state, the function returns a list of the
available cards to play. If no moves can be made, the function returns a list
containing a single null element, which indicates that the current player must
pass or take the card or cards from the bout, depending on the current turn. It
should be noted that the example provided in Figure 3.3 is a simplified version
that omits certain implementation details, such as the process of adding elements
to the list.

if (! ValidAction (card , attacker , defender ))
return false;

if (turn == Turn. Attacking ){
if (card is not null) {

attacker . GetHand (). Remove (card);
bout. AddCard (card);

} else {
bout. RemoveCards ();
return true;

}
}
else {

if (card is not null){
defender . GetHand (). Remove (card);
bout. AddCard (card);

} else {
FillPlayerHand (bout. GetEverything (), defender )
return true;

}
}
turn = turn == Turn. Attacking ? Turn. Defending : Turn. Attacking ;
return true;

Figure 3.4: A simplified overview of the Move method inside the Durak class

The Move method modifies the current game state by executing the action
chosen by the current player. This move is selected by the agent, which per-
forms calculations based on the possible moves generated by the PossibleMoves
method. The specific nature of these calculations depends on the type of agent be-
ing used. For example, a rule-based agent may simply select the lowest value rank
card, while a more sophisticated agent, such Monte-Carlo Tree Search (MCTS),
may use more complex decision-making processes to determine the optimal move
to make. Regardless of the type of agent being used, the Move method ultimately
updates the game state to reflect the chosen action and advances the game to
the next turn. To implement the desired changes, the Move method accepts a pa-
rameter of type Card?. This parameter represents the move made by the agent,
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which can be a card play (type Card), or a pass or draw (type null), depending
on the role of the agent. Also, it is worth noting that the Move method returns a
boolean value. In order to prevent invalid moves, the method verifies the validity
of the intended action before making any changes. If the action is deemed valid,
the method returns true; otherwise, it returns false.

Additionally, it is important to note that, for efficiency and security purposes,
the agents are not provided with the entire Durak object. One reason is that the
Durak class contains a large amount of data and methods that are not relevant
to the agents’ decision-making process. By providing a smaller class such as
GameView that only includes the necessary information, such as methods outlined
in Figures 3.3 and 3.4, the agents can more efficiently access the information
they need and ignore the rest. Another reason is that the Durak class contains
sensitive or proprietary information that should not be shared with the agents.
By using a smaller class such as GameView to provide the necessary information,
it is possible to control what information is exposed to the agents and protect
any sensitive data.

Other than PossibleMoves and Move methods, the Copy method is an im-
portant feature of the GameView object worth mentioning. This method creates
a duplicate of the current game state, which is useful for game tree exploration
by agents such as Minimax and MCTS, due to their need to examine multiple
potential moves and outcomes. For further information on the use of the Copy
method in Minimax and MCTS, please refer to section 4.3 and 4.4 of the text.

3.2.3 CLI
The command-line interface (CLI) plays a crucial role in the architecture of the
application. Through the CLI, the user can interact with the application using a
text-based interface, providing parameters and receiving feedback or results. The
CLI enables a range of experimental and testing scenarios, including the ability
to conduct playouts between different agents within a customizable game envi-
ronment that can be modified by altering various parameters. In this section, we
will examine the various parameters that can be used to manipulate the behavior
of the agents and the game environment through the CLI.

Before discussing the organizational structure of the project, it is important
to introduce the parameters and their roles within the project (please refer to
Table 3.1).

The -open world parameter plays a key role in determining the level of in-
formation available to players in the game. If the -open world parameter is
present, the game environment is fully visible to all players, including the cards
in the deck and the cards in players’ hands. This results in a perfect informa-
tion environment, where all players have access to the same information. By
comparing agents in this type of environment, it is possible to identify the most
effective one. On the other hand, if the -open world parameter is not present,
the game environment is not fully visible to all players, resulting in an imperfect
information environment where players may not have complete knowledge of the
game state

The -tournament parameter allows for the specified agents to engage in a
series of games, the results of which are recorded in a CSV file. The game
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Parameter Description
-ai1 The agent for player 1. (String) (Default = random)
-ai2 The agent for player 2. (String) (Default = random)
-d1 Displays # of states & depth for minimax move (Default = False)
-d2 Displays all the moves that minimax considers (Default = False)
-include trumps Enable trump cards in the game (Default = True)
-log Enable logs for writing in the file (Default = False)
-open world Make all cards visible to both players (Default = False)
-seed A seed for random number generation (Int32)
-start rank The starting rank of cards in the deck (Int32)(Default = 6)
-total games The number of games to play (Int32)(Default = 1000)
-tournament Runs the tournament with the agents specified.
-verbose Enable verbose output (Default = False)

Table 3.1: Command-line parameters

settings for the tournament can be customized when the -tournament parameter
is included. These settings will be applied to all games played between the agents.
However, if the results of the games between two agents do not show a significant
difference according to Wilson’s score, the number of games will be increased by
500 and the tournament will be restarted for two equally strong agents in order to
ensure that the best player can be accurately determined. There is an upper limit
on the number of games that can be played in cases where the agents are evenly
matched and unable to produce a clear winner. In such situations, the agents will
be listed in a separate table within the CSV file. An example of how to initiate a
tournament between the Random, Greedy, and Smart agents is provided below:
$ dotnet run -tournament =" random / greedy /smart" -total_games =100

There are various ways to utilize the parameters in Table 3.1. An example of
using the default settings to run a game between RandomAI agent(random) and
GreedyAI agent(greedy) is provided below.
$ dotnet run -ai1= random -ai2= greedy

This command initiates the simulation of 1000 games between the RandomAI
and GreedyAI agents in a fully enclosed environment, where players can only see
their own cards and not those of other players, (with a starting rank of 6) and
provides the following output to the console:
==== RUNNING ====

Game 1: Agent 1 ( random ) won. Total bouts: 21
Game 2: Agent 2 ( greedy ) won. Total bouts: 19
Game 3: Agent 2 ( greedy ) won. Total bouts: 13
Game 4: Agent 2 ( greedy ) won. Total bouts: 18
Game 5: Agent 2 ( greedy ) won. Total bouts: 18
...

To more thoroughly analyze the results of any specific game, seed with the
game id and the -verbose parameters may be utilized. This provides detailed
information about the progression of the game by showing every possible move,
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the chosen move and other game related details. An example of the first game
in which a RandomAI agent defeats a GreedyAI agent using this parameter is
shown below:
$ dotnet run -ai1= random -ai2= greedy -verbose -seed =1

The command above generates verbose output, as shown below. It should be
noted that this is only a portion of the full output and the blue colored suits are
the indications of the trump suit.
==== START ====

Trump card: A♢
Deck ’s size: 36

Player 1 ( random ) cards: 9♠ A♠ 10♡ Q♡ 9♢ K♢
Player 2 ( greedy ) cards: 6♠ 8♠ Q♠ 7♡ A♡ 6♣

=== New Bout ===

TURN: Player 1 ( random ) ( Attacking )
Can attack
Possible cards: 9♠ A♠ 10♡ Q♡ 9♢ K♢
Attacks : 9♠

Bout 1:
Attacking cards: 9♠
Defending cards:

TURN: Player 2 ( greedy ) ( Defending )
Can defend
Possible cards: Q♠
Defends : Q♠

Bout 1:
Attacking cards: 9♠
Defending cards: Q♠
...

Reproducibility is a critical aspect of scientific experimentation. In this con-
text, reproducibility refers to the ability to obtain the same results by running
the program with the same command line parameters. To ensure reproducibility,
the program assigns a unique identifier to each game, which serves as a seed for
the random number generator that deals cards to players. This allows testing dif-
ferent agents in a controlled and consistent environment, facilitating comparison
of performance and error detection.

Upon completion of an experiment, the program presents statistical analysis
on all simulations conducted using the specified game and agent configuration.
This analysis includes various metrics, such as the average number of bouts played
per game, the average number of plies made per bout, the average time taken per
ply by each agent, the win rate, and the Wilson confidence interval between
the two agents.

I chose Wilson’s confidence interval in order to assess the statistical signifi-
cance of the observed difference in win rates between the two players. By using
this measure, we may determine whether the observed difference in win rates was
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$ dotnet run -ai1= greedy -ai2= random -open_world -total_games =1000
-start_rank =6 -include trumps

...

==== STATISTICS ====
Total games played : 1000

Average bouts played over the game: 17.1
Average plies per bout over the game: 3.1
Average plies played over the game: 52.0
Average time per move ( greedy agent): 0.0060 ms
Average time per move ( random agent): 0.0058 ms

Draw rate: 0.8%
Agent 1 ( greedy ) won 913 / 1000 games (91.3%)
Agent 2 ( random ) won 79 / 1000 games (7.9%)

With 98% confidence , Agent 1 ( greedy ) wins between 89.8% and 93.8%
With 98% confidence , Agent 2 ( random ) wins between 6.2% and 10.2%

Figure 3.5: A representation of command and statistics.

likely to be a true reflection of the relative abilities of the players, or whether it
may have occurred by chance [Moore et al., 2017]. Overall, the statistical data
generated from the simulations was useful for identifying potential errors and
for optimizing the strategies for the rule-based agents. As an example, Figure
3.5 presents the statistical result of a simulation comparing the performance of
greedy and random agents in a full open-world game.

Other than that, it is important to consider that when utilizing certain ad-
vanced agents, such as Monte-Carlo Tree Search (MCTS) and Minimax, it is nec-
essary to specify their respective parameters in order to effectively utilize their
capabilities. Those parameters will be discussed in Section 4.5.1.

3.2.4 Agent
The Agent library is a collection of artificial intelligence agents that are utilized
in the experiment. The agents included in this library are: Random, Greedy,
Smart, Minimax, and MCTS. The functionality and implementation of these
agents will be elaborated upon in the next chapter. This section describes the
overall structure and organization of the Agent library.

The abstract class Agent represents a common interface for all agents. The
program calls the Move method to ask an agent which move it will make in a
given game state. A visual representation of the abstract class Agent is provided
in Figure 3.6.

As an example, we can examine the behavior of a Random agent, which
selects a move from the list of possible moves at random, can be examined. This
process is demonstrated in Figure 4.1. The Move method of the Random agent
is responsible for implementing this behavior. The figure illustrates the process
of overriding the abstract Move method in order to modify the behavior of the
function based on the random nature. This process is followed for all agents that
must implement this method, resulting in diverse behaviors depending on the
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public abstract class Agent
{

public string ? name;
public string ? GetName () => name;
public abstract Card? Move( GameView gameView );

}

Figure 3.6: A representation of the abstract class ’Agent’

agent in question.
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4. Artificial Intelligence Agents
My implementation of Durak features five distinct agents: Random, Greedy,
Smart, Minimax, and Monte Carlo Tree Search. In this chapter, we will delve
into the characteristics and behaviors of each of these agents in order to gain a
better understanding of their nature.

4.1 Random Agent
The random agent simply selects an action at random, as its name suggests.
It serves as a foundational reference point for comparison with more advanced
algorithms.

function Move( gameView : GameView )
cards = gameView . Actions ( excludePassTake : true)

// cannot attack / defend
if cards.Count == 1 and cards [0] is null

return null

// include the case when the ai can decide to pass/take
// even if it can defend / attack (20% chance )
// allow only when the first attack was given
rn = random number between 0 and 100
if rn <= 20 and gameView .bout. GetAttackingCards ().Count > 0

return null

return a random card from cards

Figure 4.1: Pseudocode of Move method of the Random agent

Figure 4.1 presents the Move method for the Random agent. When there are
no available moves to be made (i.e., the gameView.Actions(...) method returns
an null at the first index of the list), the agent interprets this as a Pass if it is the
attacker, or as a Take if it is the defender. Given that there are multiple options
available, the random agent has a 20% probability of randomly deciding to either
Pass or Take the card, depending on its role. There may actually be no good
reason to have a fixed probability of passing on each move, but I implemented
this policy early on and did not want to disrupt experiments by changing it later.

4.2 Rule-Based Heuristic Agents
Rule-based heuristic agents are agents that use a set of predefined rules, heuristics
or strategies to make decisions [Millington and Funge, 2009]. These rules are
designed to capture the key characteristics of a problem or task, and they are
used by the agent to determine the best course of action to take in a given
situation.

The strategies employed by the agents in this section were developed through
the accumulation of experience gained over multiple games. These strategies are
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not guaranteed to produce victory in every game, but they increase the chances of
winning by making moves based on predefined rules. Before discussing rule-based
agents, it is necessary to understand the concept of the value of a card.

4.2.1 Value of the Card
In the card game of Durak, the value of each card is typically determined by its
rank. For example, a card with a rank of 6 would have a value of 6, while a
card with a rank of K (King) would have a value of 13, making it more valuable
than a card with a rank of 6. However, in the game that include trump cards,
the value of these cards is determined differently. Essentially, the value of trump
cards is higher than that of the ace, which is typically the highest-valued card in
the deck. For instance, if 6♠ is a trump card, its value would be 15, since the
value of the ace is typically 14. Similarly, if a player holds 7♠ as a trump card,
its value would be 16, which is higher than the value of 6♠. This system allows
trump cards to be ranked according to their value within the context of the game.

4.2.2 Greedy Agent
I have observed through years of playing this game that the best move in any
given game state is often to play the card with the lowest value. This approach
is advantageous because it allows the player to save strong cards for later in the
game, increasing the chances of winning. Conversely, using high value cards for
attack and defense in the early game and reserving weak cards for later can lead
to a loss. Additionally, playing the lowest value cards allows the player to draw
stronger cards from the deck, thereby building a stronger hand over the course
of the game. As such, the greedy agent employs a predetermined strategy in
which it selects the lowest ranked card for attack or defense based on the current
turn. Specifically, if the agent is attacking, it will choose the lowest valued card
to attack with. If the agent is defending, it will select the lowest valued card
that can defend against an incoming attack. To provide an example, consider the
scenario described in section 1.9, in which Player A attacks with 6♡ as a first
turn. Among all the possible options, which includes 8♡, A♡, 6♠, to select to
defend against the attacking card, Player B chooses 8♡ which is the lowest rank
value in their hand to defend against the attacking card. The 6♠ card was not
selected because it is a trump card and therefore has a higher value than non-
trump cards, thus, it has higher value than 8♡. This decision-making process
aligns with the strategy employed by a greedy agent, which aims to maximize
their own short-term gain at the expense of potentially more optimal long-term
outcomes [Russell and Norvig, 2022].

The pseudocode shown in Figure 4.2 outlines the steps taken by the greedy
agent to evaluate its options and make a decision. Specifically inside the Move
method, the agent utilizes the PossibleMoves method to obtain a list of all
possible actions it can take based on the current game state. HasNull(moves)
detects if no actions are available. If that’s the case, the agent will either pass
or take a card, depending on its role in the game. However, if there are available
actions, the agent will use the GetCard method to identify the card with the
lowest value among the possible moves and select it as its next action. To ensure
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function Move( gameView )
moves = PossibleMoves ( gameView )
if HasNull (moves) is true

return NULL
else

return GetCard (moves , gameView )

function GetCard ( possibleCards , gView)
noTrumpCards = SelectNonTrumpCards ( possibleCards )
if size of noTrumpCards is 0

if EarlyGame (gView) is true
if size of BoutACards (gView) > 0 and Turn(gView) == ATTACK

return NULL
else

return LowestRank ( possibleCards )
else

return LowestRank ( possibleCards )
else

return LowestRank ( noTrumpCards )

Figure 4.2: Pseudocode of the Move method

that the greedy agent is able to maximize its gain, we select the non-trump cards
from the list of available options when determining the agent’s next move. If the
agent has a choice between non-trump cards, it will naturally select the one with
the lowest rank value. However, if the agent only has trump cards to choose from,
we must consider the stage of the game: early or end game (the terminology is
described in Section 1.1). If the greedy agent is acting as an attacker and has the
option to pass the attack, it is generally better to do so during the early game, as
this allows the agent to preserve its trump cards for use in the end game, when
they are likely to be more valuable. On the other hand, if the greedy agent is
defending, it does not matter whether it uses trump cards or not at any stage of
the game, as giving up these cards is preferable to taking the entire bout.

4.2.3 Smart Agent
A smart agent using rule-based heuristics can exhibit improved performance com-
pared to a greedy agent. This is because the smart agent utilizes rules that take
into account the opponent’s hand, providing a strategic advantage. One specific
rule that may be implemented during the defensive stage is the selection of a
defending card with a rank that the opponent does not possess. If it is not possi-
ble to utilize the aforementioned defensive strategy due to the opponent holding
cards of the same rank as the available defending cards, the agent may choose to
defend with the card of the lowest rank. The implementation of the method is
represented in Figure 4.3. This rule aims to prevent further attacks in the same
bout by mitigating the opponent’s options. While this rule may not be the most
effective in every scenario, it has demonstrated successful outcomes in certain
situations.

Moreover, a smart agent may employ a strategy that leverages the concept
of weaknesses discussed in Section 2.6 in order to gain an advantage. If player
P only possesses a single weakness at rank r during their turn, then they have a
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Card? DefendingStrategy (List <Card > oHand , List <Card > cards)
for each card∈cards do

if (oHand) contains any cards with the same rank as (card) then
return (card)

return GetLowestRank (cards);

Figure 4.3: Pseudocode of the Move method of the Greedy agent, where oHand
is a list of cards in the opponent’s hand and cards is a list of possible cards to

defend with

winning strategy [Bonnet, 2016]. In the example presented in Section 2.6, player
P possesses a weakness of rank 10. According to the aforementioned statement,
this implies that player P has a winning strategy and can outmaneuver their
opponent. This is indeed the case. To initiate the attack, player P can utilize all
non-weakness rank cards, such as the K♢. The opponent must take the attacking
card, as they are unable to defend against it due to K being a non-weakness rank.
With the new bout, it is player P’s turn to initiate an attack. They choose to
attack with the 10♡, which has a weakness rank. In response, player O defends
with the Q♡. The turn then returns to player P, who attacks with their final
card, the 10♠, which also has a weakness rank. Although player O is able to
defend against this attack, they become the loser because they are the only player
remaining with cards.

One limitation of this strategy is that it is only applicable in open-world envi-
ronments, where the player is able to gather information about their opponent’s
hand in order to identify weakness in their hand. Nonetheless, the weakness strat-
egy can still be utilized in closed-world games, but only in the endgame when the
deck is exhausted. This is because when players have used up the entire deck, it
implies that certain cards played during the bout have been placed in the discard
pile. This allows the players to deduce the opponent’s cards and successfully use
the strategy for their advantage. A smart agent adheres to this principle, which,
while not being a common occurrence in the game, is highly effective and ensures
victory for the smart agent.

4.3 Minimax Agent
In this section, we will discuss an agent that uses the minimax algorithm to play
Durak. Specifically, we will examine the importance of the parameters in the
minimax algorithm and the heuristic functions included in the Durak Command
Line Interface (CLI) for evaluating the game state.

The minimax algorithm is a decision-making algorithm often used in two-
player turn-based perfect information games, such as chess, tic-tac-toe, and Go
[Russell and Norvig, 2022]. It is called minimax because it tries to minimize the
maximum loss that a player can incur. It operates by using the recursion to
explore a game tree, with each node representing a potential game state, and the
branches representing the possible moves that can be made from that state. The
minimax algorithm then traverses the game tree, evaluating the value of each
node recursively. When applied to the entire tree, the minimax values produced
by this algorithm accurately reflect the outcome of the game with perfect play by
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both players. The pseudocode of the minimax algorithm is illustrated in Figure
4.4. To explore the potential game states, the minimax algorithm creates the
copy, game.Copy(), of the state to ensure that the original game state cannot be
changed after making possible moves. It is important to note that the following
discussion of the algorithm assumes an open Durak environment, in which all
players have access to the visible cards. This allows the game state to be freely
cloned without letting the agent to see the hidden information. Section 4.5 will
address the algorithm’s handling of the closed world environment, in which there
is hidden information.

function minimax (game , depth , out bestMove )
if depth = MAX_DEPTH or game is in terminal state

return the heuristic value of state

bestVal = game.turn == 1 ? -infinity : + infinity

for each card of game. PossibleMoves ()
stateCopy = game.Copy ()
stateCopy .Move(card)
v = minimax (stateCopy , depth + 1, _)

if game.turn == 1 && v > bestVal or game.turn == 2 && v <
bestVal then
bestVal = v;
bestMove = card;

return bestVal

Figure 4.4: Pseudocode for the minimax algorithm

Due to the exponential increase in the size of the tree as the search depth
increases, it is often infeasible to search the entire tree. As a result, the minimax
algorithm must be terminated at some depth (MAX DEPTH), and the minimax
value for a given node is approximated using a heuristic evaluation function. The
heuristic function assigns a score to the current game state based on a set of
predefined criteria, which will be discussed further in this section. While the use
of a heuristic evaluation function introduces some error into the minimax values,
it allows the algorithm to produce reasonable results in a reasonable amount of
time.

4.3.1 Basic Heuristic
The basic heuristic function utilizes predetermined criteria to evaluate the game
state, using the contents of the players’ hands, the size of the players’ hands,
and the presence of any weaknesses. It should be noted that this is not the only
method of evaluating the state, and there are potentially numerous other criteria
that could be incorporated into the heuristic function. However, the criteria
mentioned are considered to be the primary ones used in the basic heuristic
function.

In order to evaluate the state of a card game based on the cards held by each
player, the heuristic function begins by computing the individual hand value of
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function ConvertHandToValue (hand: List of Card , gw: GameView )
TOTALCARDS = 9
value = 0

for each card in hand
if gw. includeTrumps is true and card.suit == gw. trumpCard .suit

value = value + card.rank + TOTALCARDS
else

value = value + card.rank

return value

function EvaluatePlayerHandToValue (gw: GameView )
return ConvertHandToValue (gw. players [0]. GetHand (), gw) -

ConvertHandToValue (gw. players [1]. GetHand (), gw)

Figure 4.5: Pseudocode of partial basic heuristic function evaluating the state
based on the players’ hand value

each player. Prior to beginning this calculation, the value of each card must be
determined. This can be done by assigning the value of a card as its rank. For
example, if player P holds the cards 6♡ and A♡, the value of their hand would
be 20 (6 + 14). Trump cards are powerful, so we assign them a higher value. To
achieve this, we calculate the value of a trump card by adding its rank to the
total number of ranks in the deck. For example, the value of a trump card with
rank 6 would be calculated as 6 + the total number of ranks in the deck (6, 7, ...,
K, A). After the individual hand value of each player has been calculated, a basic
heuristic function may be used to evaluate the game state. This can be done by
subtracting the hand value of player P from that of player O. The result of this
calculation can then be used to represent the game state. How this is achieved
can be viewed in Figure 4.5. It should be noted that this method of evaluating
the game state is only suitable for use when the players have an equal number of
cards. In past experiments, using this evaluation method with players who have
an equal number of cards has been found to produce more accurate and reliable
results.

Another criterion that may be used to evaluate the state of a card game is the
size of the players’ hands. The number of cards held by each player can provide
insight into the likely outcome of the game. This can be done by subtracting the
size of player P’s hand from that of player O’s hand. In the end game, the value
of the hand size is given additional weight by being multiplied by a factor, such as
15, which is arbitrarily selected. This is because the number of cards held at the
end of the game can be particularly important in determining the outcome. It is
important to note that the resulting value is inverted, by being multiplied by -1,
because a player with more cards is generally considered to be at a disadvantage.
The method being described is illustrated in a figure, labeled as Figure 4.6.

As a final criterion for evaluating the game state, it is possible to consider
the existence of weakness in the state. This concept was discussed in more detail
in section 4.2.3. Scenarios of this type are relatively rare, occurring only in the
endgame when the defending player, the opponent, does not possess any trump
cards. This is because the strategy involving weaknesses is only effective in a
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function EvaluateHandSize (gw: GameView )
pHandSize = gw. players [0]. GetNumberOfCards ()
oHandSize = gw. players [1]. GetNumberOfCards ()

if gw. isEarlyGame is true
pHandSize = pHandSize

else
pHandSize = pHandSize * 15

if gw. isEarlyGame is true
oHandSize = oHandSize

else
oHandSize = oHandSize * 15

return ( pHandSize - oHandSize ) * -1

Figure 4.6: Pseudocode of partial basic heuristic function evaluating the state
based on the players’ hand size value

perfect information game where trumps are not included. Figure 4.7 presents the
pseudocode for this strategy and demonstrates the precise manner in which cards
are selected in this specific environment. If the game state is in the environment
described above, we invoke the strategy. The pseudocode checks the number of
weakness cards in player P’s hand. If there is only one weakness card, it can be
inferred that player P has a winning strategy by playing a non-weakness card
first and then following it up with the weakness card (this strategy is discussed
in further detail in Section 4.2.3). In the event that there is more than one
weakness card, a different approach is employed in an effort to reduce the number
of weaknesses and return to the previously mentioned strategy. This method
involves the concept of badly-covered weaknesses (the opposite of well-covered
weaknesses, as discussed in Section 2.6). Essentially, if player P attacks with a
badly-covered weakness, the defense card played by player O will allow player P to
play an additional attacking card. This ensures that the number of weakness cards
held by player P decreases and the aforementioned strategy can be implemented
when there is only one weakness card remaining. If a player does happen to have
only one weakness in a particular game state, it can provide a strong advantage
and increase the likelihood of winning the game. As a result, a basic heuristic
function may assign a high value to this type of game state.

Figure 4.8 illustrates the basic evaluation function, which combines the values
obtained from the various criteria discussed earlier to assign a single value to the
game state. The function adds together the values calculated for each criterion,
resulting in a single value that represents the estimated value of the state. This
value is then returned to the minimax function, which can use it to evaluate the
state and guide decision-making.

4.3.2 Playout Heuristic
In the minimax algorithm, the playout heuristic is an alternative evaluation func-
tion that is used to determine the potential outcome of a given game state. It
is inspired by playouts as used in Monte Carlo tree search, which will be cov-
ered in a later section. Essentially, it involves creating a copy of the current
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function AttackingStrategy (gw: GameView , noTrumpCards : List of Card ,
possibleCards : List of Card)
oHand = gw. GetOpponentCards ()
pHand = gw. playerHand

weaknesses = GetWeaknesses ( possibleCards , oHand)

if size of weaknesses is 1
weakRank = weaknesses [0]

if (pHand) contains all cards with rank ( weakRank )
return first card in pHand

return lowest rank (card) in (pHand) where (card)’s rank is not
weakRank

if size of weaknesses is greater than 1
nonweakness = cards in pHand where each card ’s rank is not a

weakness

if size of weaknesses is less than or equal to size of
nonweakness ranks
weakRank = GetBadlyCoveredWeakness (gw , oHand , nonweakness ,

weaknesses )
if weakRank does not exist

return lowest rank in noTrumpCards
return first card in pHand such that its rank is weakRank

return lowest rank in noTrumpCards

Figure 4.7: Pseudocode of partial basic heuristic function evaluating the state
based on the weaknesses

state and simulating the play of the game between two greedy agents. While it
is not problematic to simulate the game using random playouts, it is better to
use greedy playouts due to their ability to more accurately mimic the optimal
strategy and provide more reliable estimates of the expected outcome of a given
state. The result of the simulation is used to assign a heuristic value to the game
state, which can be used to guide the search process in minimax. The use of
greedy agents in the playout heuristic leads to improved performance compared
to basic heuristics, due to their ability to make effective and efficient decisions.
An illustration of the playout heuristic function can be found in Figure 4.9. The
outcome of the simulation, Winner(), can be represented by a value of 1 if player
1 wins, -1 if player 2 wins, or 0 if it is a draw. By incorporating this value with
the current depth of the game state, it is possible to assign a heuristic value to the
game state. This heuristic value is calculated by subtracting the current depth
from 1000 and multiplying the result by the outcome of the game. This approach
effectively prioritizes a shorter win over a longer one, as the size of the depth is
taken into consideration.

4.3.3 Alpha-Beta Pruning
The minimax algorithm is capable of finding the optimal move in a two-player
game by searching the entire game tree and considering all possible moves by
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function EvaluateState (gw: GameView )
score = 0
// 1) get the value of the hand only if the hand sizes are the same
if gw. players [0]. GetNumberOfCards () == gw. players [1].

GetNumberOfCards ()
score = score + EvaluatePlayerHandToValue (gw)

// 2) size of the hand: smaller -> better
score = score + EvaluateHandSize (gw)
// 3) weaknesses
if gw. isEarlyGame is false

score = score + EvaluateWeaknesses (gw)
return score

Figure 4.8: Pseudocode of basic heuristic function

function Evaluate (gw: GameView , depth: int)
innerGameView = gw.Copy ()
agents = List of Agent containing GreedyAI (" greedy ") and GreedyAI ("

greedy ")

while innerGameView . status is GameStatus . GameInProcess
turn = innerGameView .Turn ()
card = agents [turn ]. Move( innerGameView )
innerGameView .Move(card)

result = innerGameView . Winner ()
score = 1000 - depth
return result * score

Figure 4.9: Pseudocode of playout heuristic function

both players. However, for some games, such as Durak, the game tree can be
extremely large, making it computationally infeasible to fully explore. In these
cases, the alpha beta pruning technique is used in conjunction with minimax to
optimize the search process. Alpha beta pruning involves eliminating branches
of the game tree that cannot affect the final decision, allowing the algorithm to
focus its search on more promising areas of the tree and significantly reducing the
overall computational burden [Russell and Norvig, 2022]. Through comparison
of the average time of the minimax algorithm with and without the implemen-
tation of alpha-beta pruning at various fixed depths in the perfect information
environment, it is evident that the incorporation of alpha-beta pruning leads to
a marked increase in efficiency (as depicted in Figure 3). At a depth of 6, the
minimax algorithm incorporating alpha-beta pruning required an average of 10.6
milliseconds to explore the game tree, while the minimax without this optimiza-
tion technique required an average of 258.2 milliseconds to do so. As anticipated,
the use of alpha-beta pruning results in significantly faster performance compared
to the minimax without this optimization technique.

The implementation of this technique, given in Figure 4.11, involves adding
two additional parameters, “alpha” and “beta”, to the minimax function. These
parameters are initialized to negative and positive infinity, respectively, indicating
that any minimax value is acceptable. The algorithm then compares the values
of alpha and beta to the current minimax value during the search, and if the
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Figure 4.10: Comparison of the average time taken to make a move by the
minimax algorithm with and without alpha-beta pruning at various depths in

the perfect information environment.

function minimax (gameView , alpha , beta , depth , bestMove )
...

bestVal = game.turn == 1 ? -infinity : + infinity

possibleMoves = getPossibleMoves ( gameView )
for each move in possibleMoves

gameViewCopy = copy( gameView )
gameViewCopy .Move(move)
v = minimax ( gameViewCopy , alpha , beta , depth + 1, null)

if game.turn == 1 && v > bestVal or game.turn == 2 && v <
bestVal then
bestVal = v
bestMove = move

if game.turn == 1 then
if v >= beta then

return v
alpha = Max(alpha , v)

else
if v <= alpha then

return v
beta = Min(beta , v)

...

Figure 4.11: Part of the pseudocode of alpha-beta pruning technique inside the
minimax Move method

value exceeds a certain threshold, the search is terminated as a game-winning
move has been identified. Overall, the incorporation of alpha-beta pruning into
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the minimax algorithm involves only a minor modification to the existing code,
making it a useful tool for optimizing the performance of minimax in certain
situations.

4.3.4 State Caching
Another method for optimizing the search of a game tree using the minimax
algorithm was to implement state caching. This technique involves serializing the
current game state with its current depth and storing its corresponding heuristic
value in a cache. During the search process, the minimax agent can then check
the cache before evaluating a given state. If the state has already been explored,
the agent can retrieve the stored heuristic value and avoid the need to recalculate
it, thereby reducing the overall computational complexity of the search. It was
observed during the development of the program that the same game state may
be encountered multiple times through different paths in the tree, making state
caching an effective optimization technique for the minimax algorithm.

Figure 4.12: Comparison of the average time taken to make a move by the
minimax algorithm with and without cahcing of the states.

The implementation of a caching system did not produce an improvement in
the average time per move of the minimax algorithm. In fact, the results of the
experiment demonstrated that in certain fixed depths, the use of caching resulted
in slightly worse performance compared to not using caching. This unexpected
outcome is illustrated in Figure 8 and warrants further investigation.

4.4 Monte Carlo Tree Search Agent
Monte Carlo Tree Search (MCTS) is a search algorithm that is commonly used in
games such as chess, Go, and other board games to find the best move to make.
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It is based on the idea of using random sampling to estimate the value of different
moves, rather than explicitly searching through the entire game tree. The basic
idea behind MCTS is to use simulated playouts of a game to estimate the value
of each possible move. The algorithm starts with a root node representing the
current position in the game, and then expands the tree by adding child nodes for
each possible move. The algorithm then performs a Monte Carlo simulation by
randomly selecting a child node and playing out a game from that position until
the game is won or lost. The outcome of the simulation is used to update the
value of the node and its parents in the tree [Browne et al., 2012]. In this context,
a node refers to a single position or state in the Durak game being played. Each
node in the MCTS tree represents a possible move that can be taken from the
current position, and contains information about the state of the game at that
position. The node contains the following information:

• the Durak state of the game at that position, s(v).

• the number of times the node has been visited, N(v).

• the total reward of all the playouts, Q(v).

• the action that leads to the node, a(v)

The MCTS algorithm consists of four main steps at every iteration:

1. Selection: The algorithm starts at the root of the game tree and selects
successive child nodes guided by selection policy leading the search towards
promising areas of the tree.

2. Expansion: Once a leaf node (a node without any children) is reached,
the algorithm creates one child node for that leaf node and performs a
simulation from that point.

3. Simulation: The simulation involves playing out a random or informed
sequence of moves from the current position to the end of the game.

4. Backpropagation: The results of the simulation are then propagated back
up the tree, updating the values of the nodes visited during the selection
and expansion steps.

The MCTS algorithm repeats these steps until a sufficient number of iterations
(in this program ‘limits’) have been performed, at which point it selects the move
with the highest estimated value as the best move to make. We may regroup the
four main steps in MCTS into two distinct policies:

1. Tree Policy: From the nodes contained within the search tree, either se-
lect a leaf node or create a new one by expanding the tree (selection and
expansion).

2. Default Policy: Evaluate a non-terminal state in the domain by simulating
its progression to a terminal state and generating an estimate of its value
(simulation).
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function MCTSSearch (s0)
create root node v0 from the tree with the state s0

while limit has not reached do
vl = TreePolicy (v0)
reward = DefaultPolicy (s(vl))
BackPropagation (vl , reward )

return a( BestChild (v0 , 0))

Figure 4.13: General pseudocode for MCTS

The backpropagation step does not involve the use of a policy itself, but rather
adjusts the internal parameters of node statistics that inform future tree policy.
These steps are summarized in the pseudocode in Figure 4.13.

v0 is the root node that corresponds to the state s0. TreePolicy returns
the node (if any) that was created in the expansion phase, or otherwise the last
node that was reached in the selection phase. DefaultPolicy method simulates
the game given the state of the node, sl, returned from TreePolicy’s node and
returns the outcome of the playout from that state, which is reward. Given
the reward from the simulated game, the BackPropagation method adjusts the
values, such as number of visits and total reward, from vl up until the root node
v0. Once the limit of computation is reached, the algorithm provides the result
of the overall search a(BestChild(v0)) where a is the function that returns the
action that provides the best move in the state s0 of the root v0.

The UCT (Upper Confidence Bounds applied to Trees) algorithm is a heuris-
tic method for finding the optimal move in a two-player game by considering
both the exploration of new nodes in the search tree and the exploitation of
known information about the value of certain nodes. It is a method that al-
lows the TreePolicy and BestChild methods to find the best node. During the
TreePolicy phase and BestChild method of the MCTS algorithm, the goal is
to find the child node with the highest value. To do this, the algorithm uses the
UCT formula to balance two competing factors: the value of the node (estimated
by X(v′)) and the node’s exploration potential (estimated by U(v, v′)). The value
of the node reflects how successful previous simulations from that position have
been, while the exploration potential reflects how much is still unknown about
the node and its children [Browne et al., 2012].

The UCT formula allows the algorithm to find the best trade-off between
these two factors by adding the value of the node and the exploration potential.
Specifically, the UCT value of a node is calculated as:

UCT (v) = X(v′) + cU(v, v′)
where X(v′) is the average reward (also known as the win rate) of the child’s

node v′, U(v, v′) is the exploration term, and c is a constant that controls the
relative importance of the two terms.

X(v′) = 1 − Q(v′)
N(v′)

U(v, v′) =

⌜⃓⃓⎷2lnN(v)
N(v′)
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Q(v), relative value to the player whose turn it is to move in the node’ state,
corresponds to the total reward of all playouts that passed through the node
v′. If player 1 wins a simulation, the reward associated with their corresponding
move in the node will be incremented by 1. In the event of a draw, a value of
0.5 is added to the reward of the corresponding node. N(v′) corresponds to the
number of times it has been visited. The value of X(v′) is between 0 and 1, with 0
representing a losing position and 1 representing a winning position. The value of
U(v) is also between 0 and 1, with higher values representing higher exploration
potential. Since in Durak the turns mostly alternate, we want to invert the value
of the node X(v′) in those cases. Because of that we want to invert the win rate,
which will still be between 0 and 1. In order to balance the value of Q(v) and
U(v), the UCT formula subtracts Q(v) and U(v) from 1, so that higher values of
Q(v) and U(v) correspond to lower values of UCT(v). As an example, consider
a scenario in a two-player game if a given move leads to an average reward of 0.3
for player 1, then the same move leads to an average reward of 0.7 for player 2.

It is important to note that the calculation mentioned above assumes that
moves strictly alternate between the two players, such that the first player makes
a move, followed by the second player, and then the first player again, and so on.
However, it is important to note that the alternating move structure mentioned
previously does not always hold true in the game of Durak. Specifically, in Durak,
the moves do not necessarily alternate between players. For example, if the first
player makes an attack as their first move and the second player decides to take
the cards, the first player may consecutively attack more until they no longer have
the necessary card or simply choose not to attack any further. In this scenario,
the move turn would not follow the alternating pattern described earlier. Because
of that in cases where the moves do not strictly alternate between players, the
win rate is not inverted as previously described. Instead, it is only inverted in
cases where the turns alternate between players.

Now that we have a general understanding of MCTS and the Upper Confi-
dence Bound applied to Trees (UCT) algorithms, it is time to explore the im-
plementation of the TreePolicy, DefaultPolicy, and BackPropagation in these al-
gorithms. The pseudocode of the MCTS algorithm is depicted in Figure 4.14
[Browne et al., 2012] cite.

In this section, we consider the open world scenario, in which there is no
hidden information. This means that states can be freely copied without the need
to employ any particular strategies. The ability to freely copy states is useful in
the DefaultPolicy stage of the MCTS algorithm, as it allows the algorithm to
simulate the game from a given state until the end without altering the current
state. The open world scenario, also known as the perfect information scenario,
allows the MCTS algorithm to explore all possible states without the need to
“cheat” by seeing the opponent’s hand, as all cards are visible to all players. The
details of how to apply the MCTS algorithm in the closed world scenario, in
which hidden information is present, are discussed in the following section.

The return value of the overall search in this case is a(BestChild(v0, 0))
which will give the action a that leads to the child with the highest reward, since
the exploration parameter c is set to 0 for this final call on the root node v0.
[Browne et al., 2012].

It should be noted that the simulation process in the DefaultPolicy function
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function MCTSSearch (s0)
create root node v0 from the tree with the state s0

while limit has not reached do
vl = TreePolicy (v0)
reward = DefaultPolicy (s(vl))
BackPropagation (vl , reward )

return a( BestChild (v0 , 0))

function TreePolicy (v)
while v is nonterminal do

if v is not fully expanded then
return Expand (v)

else
v = BestChild (v, c)

return v

function Expand (v)
get a ∈ first untried action from A(s(v))
add a new child v’ to v

with s(v’) = f(s(v), a)
and a(v’) = a

return v’

function BestChild (v, c)
return arg max

v′∈children of v
UCT V alue(v, v′, c)

function UCTValue (v,v’,c)
avgReturn = Q(v′)

N(v′)
if Turn(v) != Turn(v’) then

avgReturn = 1 - avgReturn

return avgReturn + c ∗
√︂

2∗lnN(v)
N(v′)

function DefaultPolicy (s)
while s is non - terminal do

choose a ∈ A(s) uniformly at random
s = f(s,a)

return reward for state s

function Backpropagation (v, reward )
while v is not null do

N(v) = N(v) + 1
if Turn(s(v)) == reward then

Q(v) = Q(v) + 1.0
v = parent of v

Figure 4.14: MCTS Pseudocode
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follows a random path through the search tree. While this approach allows for
a broad exploration of potential moves, it may result in slower convergence and
lower accuracy compared to using a more informed strategy for selecting simu-
lation moves. In the program, it is possible to choose the simulation type when
running experiments using MCTS. The options include using a random simulation
(simulation=random) or using a more informed strategy (simulation=greedy).
The informed strategy employs a greedy agent to make decisions, which tends to
guide the search more effectively towards areas of the tree that are more promis-
ing.

Upon receiving the reward result from the DefaultPolicy, the program passes
this information to the Backpropagation function in order to update the values
of the nodes in the path traversed during the simulation. These values include
the visit count and the reward count, also known as the win count. In zero
sum games, where one player’s win corresponds to the other player’s loss, the
Backpropagation method increments the score of the winning player. However,
in the card game Durak, there is the possibility of a draw between two play-
ers. To account for this possibility and ensure consistency in the scores, the
Backpropagation method has been modified to include the case of a draw in its
update process. Specifically, the algorithm now awards a score of 0.5 to nodes in
the case of a draw.

4.5 Closed World Sampling
It is well-known that algorithms such as Minimax and Monte Carlo Tree Search
(MCTS) can provide optimal play in games by thoroughly exploring the game
tree. One way this can be done is through the use of a cloning method, which
allows the agent to create a copy of the current game state and explore the
potential outcomes of different moves. However, in imperfect information games
such as Durak, this is not considered fair play because it allows the agent cheat.
While this is acceptable in games with perfect information, such as chess or
checkers, it is considered cheating in games with hidden information. For instance,
a minimax search may determine that if the agent plays a 7♢, the opponent will
defend with a 9♢, leading to the end of the bout because the agent has no cards of
rank 9. However, this information is not available to the agent in the actual game,
as the opponent’s hand is hidden. Allowing the agent to use this information in
its decision-making process would be considered cheating, as it is not fair to
allow the agent to see which moves would be advantageous in a scenario where it
has knowledge of the opponent’s hand.

One way to address the issue of hidden information in imperfect information
games is to use a sampling method that randomly generates a game state based
on the information that the player can currently observe. This allows the agent to
explore and evaluate potential moves without access to hidden information. The
agent can then repeat this process a number of times, using algorithms such as
Minimax or MCTS to determine the best course of action in each sampled game
state. By considering the outcomes of these randomized scenarios, the agent can
make a decision that is likely to be successful across a range of potential game
states. This approach is called “Perfect Information Monte Carlo” [Long et al.,
2010]. It may be worth noting that this technique is alsp referred to as “averaging
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over clairvoyance” in the textbook “Artificial Intelligence: A Modern Approach”
[Russell and Norvig, 2022].

To implement a closed world sampling method in the game of Durak, a method
ShuffleCopy was developed. In this game, the hidden information in the early
stages of play includes the cards in the deck and the opponent’s hand. To generate
a randomly shuffled game state, the ShuffleCopy method combines these two
sources of hidden information and shuffles them, before redistributing the same
number of cards to the player and the deck. This process is represented in Figure
4.15. This shuffled game state is then returned to the calling agent. Thanks
to that the shuffling process destroys the hidden information while allowing the
agent to determine the best move to make in the current game state.

function Durak ShuffleCopy ()
// perform copy
Durak copy = clone this object
...

Player opponent = copy. players [ GetNextTurn ()]
var opponentHiddenCards = elements in opponent ’s hand where GetSeen

() is false
int totalHiddenCards = opponentHiddenCards .Count ()

// add hidden cards from opponent ’s hand to the hidden deck cards
copy.deck. GetCards (). AddCards ( opponentHiddenCards )
// remove hidden cards from the hand
remove elements from opponent ’s hand where GetSeen () is false

// shuffle the unseen cards
copy.deck. Shuffle ()

// refill opponent ’s hand with shuffled cards
FillPlayerHand (copy.deck. DrawCards ( totalHiddenCards ));
...

return copy

Figure 4.15: An excerpt of code from the ShuffleCopy method

The number of samples to be generated by the agents is determined by the
user. A larger number of samples can lead to a more accurate result, but it also
increases the time required to find the best move. To determine the optimal move
after a certain number (n) of samples have been generated, the agents can keep
track of the best moves identified in each shuffled game state. As the agents,
such as Minimax and MCTS, evaluate each shuffled game state, they can store
the results in a cache that tracks the frequency of each move. Once all n samples
have been played, the agent can select the move that was identified as the best
option in the greatest number of these scenarios.
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4.5.1 Parameter Specification
Minimax

In order to conduct an experiment using the minimax agent, it is necessary to
specify certain parameters, which have been informed by our understanding of the
minimax agent. The minimax agent has a parameter depth, which determines
the depth to which the search tree will be explored in order to identify the optimal
move. The minimax agent also has a parameter eval, which specifies the heuristic
function used to evaluate the state when the maximum depth has been reached.
The eval parameter can take on either the value basic or playout. It is worth
noting that, in a closed world scenario, the samples parameter is optional and
has a default value of 20. The samples parameter specifies the number of random
samples that should be used by these agents in the closed world scenario, where
they are not permitted to create a perfect copy of the game state. (details in
Section 4.5). This illustration presents an example of a simulation between the
Minimax and greedy agents with arbitrary parameter values in the open and
closed world:

Open-world:
dotnet run -ai1= minimax :depth =4, eval=basic -ai2= greedy -open_world

Closed-world:
dotnet run -ai1= minimax :depth =6, eval=basic , samples =15 -ai2=smart

MCTS

Regarding MCTS,it is necessary to specify the value of the limit parameter,
which determines the computational budget allocated for the algorithm to build
the search tree. The search is halted and the best-performing root action is
returned once this budget is reached. The parameter c, which is called the ex-
ploration constant, also needs to be specified because it determines the balance
between exploitation and exploration in the UCB equation. This parameter is
set to a default value of

√
2 (≈ 1.41) and can be adjusted to fine-tune the per-

formance of the algorithm. The simulation parameter should also be specified,
indicating whether to use a smart simulation (greedy) or a random simulation
(random). Lastly, in a closed world setting, just like in Minimax, it is necessary
to specify the samples parameter. This example demonstrates simulations be-
tween the MCTS and greedy agents with various parameter values in the open
and closed world settings:

Open-world:
dotnet run -ai1=mcts:limit =100 , simulation = greedy -ai2= greedy

-open_world

Closed-world:
dotnet run -ai1=mcts:limit =100 , simulation =greedy , samples =10

-ai2= greedy
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5. Experiments
After providing an overview of the game of Durak and introducing the agents
under consideration, we will now proceed to conduct experiments to determine
which of these agents is strongest. We will conduct experiments in both open
and closed world environments. Through these experiments, we will gain a bet-
ter understanding of the adaptability and effectiveness of the agents in both
environments, and determine whether the agents that performed best in perfect
information scenarios are able to achieve similar success in an imperfect one.

To conduct our experiments, we will use the -tournament parameter available
in the command line interface (as described in Section 3.2.3). This option lets
us configure the participating AI agents and their respective parameters, as well
as the environment for the tournament. In order to compare the agents in both
open and closed world scenarios, we will present the results of these experiments
in separate sections. The tournament will consist of full games with trump cards,
and so the respective parameters -include trumps and -start rank=6 will be
set accordingly. In order to strike a balance between accuracy and efficiency, we
will set the -total games parameter to 500. This number of games may allows us
to identify the strongest and weakest agents with a sufficient level of confidence,
while not unduly prolonging the experiment. However, as previously mentioned
in Section 3.2.3, if the total number of games is not sufficient to confidently
determine the winner, the program will increment the total number of games by
500 until the maximum number of games, 10 000, is reached. This process ensures
that we are able to accurately identify the top performing AI agent while still
minimizing the overall length of the experiment.

5.1 Open world
With the game environment parameters set to be in the perfect information world,
we will proceed to configure the parameters for the various agents. Some agents,
such as Random, Greedy, and Smart, do not require any additional parameters
as their strategies are simple and do not involve game tree search. However,
Minimax and MCTS, as described in Sections 4.3 and 4.4 respectively, do require
the configuration of certain parameters in order to perform at their best. In order
to determine the optimal values for these parameters, we will run a set of games to
identify the values that best suit the tournament environment before comparing
with other agents. It is important to note that the selected parameters should
result in an average move time of around 100ms in order to identify the most
efficient configuration for the agent.

5.1.1 Configuring Minimax Parameters
In order to optimize the performance of the Minimax agent in an open world
environment, we must determine the optimal values for the depth and eval
parameters. We will use the playout heuristic for the eval parameter as it is
generally superior to the basic heuristic. To find the best value for the depth
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Figure 5.1: Comparison of number of wins of different fixed depths parameters
in Minimax agent along with average time taken per ply in the open world

parameter, I ran a 1000 game experiment that tries different values for it against
the Greedy agent.

Figure 5.1 illustrates the number of games won and the average time taken
per ply by the Minimax agent with different depth parameters. The plot shows
that the number of games won by the Minimax agent improves as the depth of
the game tree exploration increases. The same trend can be observed for the
average time taken to make a move. However, it is surprising to see that lower
depth values such as 2 and 3 have a higher number of games won than the highest
depth value of 6, which has the lowest number of wins. This observation warrants
further investigation. Besides this, a horizontal shaded line is included in the plot
to represent the optimal average time that the agent should take to make a move.
It can be observed that the grey shaded line intersects with the average time of the
Minimax agent at a depth of 9. This suggests that, in an open environment, this
value of the parameter is the most suitable and will be used in the tournament.

Figure 5.2 illustrates the comparison between two heuristic evaluation func-
tions, namely basic and playout, for the Minimax agent with a fixed depth of
9. The left subplot shows the number of games won for the two evaluation func-
tions, and the right subplot displays the average time (ms) taken to make a move.
It can be observed that the playout heuristic outperforms the basic heuristic in
terms of number of games won, achieving almost twice the number of wins of the
basic heuristic. However, the playout heuristic is slower than the basic heuristic,
as shown by the right subplot. Despite this, the playout heuristic still performs
around the optimal time range of 100ms, making it the preferred choice for the
tournament. As a result, the Minimax agent will use the depth 9 and playout
heuristic for the tournament.
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Figure 5.2: Comparison of number of wins and average time taken per ply of
basic and playout evaluation functions in Minimax agent in the open world

5.1.2 Configuring MCTS Parameters
In order to compare MCTS agents with other agents in the open world, it is
necessary to determine the optimal values for the parameters limit, c, and
simulation. To begin, the exploration constant was set to 1.41, which is typi-
cally an optimal value [Russell and Norvig, 2022], and the simulation was set
to greedy. With these parameters in place, an experiment was conducted using
1000 games to find the value of limit by trying various values of iterations to
identify the optimal value. The results of this experiment are depicted in Figure
5.3.

Similar to the Minimax agent, it can be seen that an increase in the number
of iterations generally results in a corresponding increase in the average time
taken per move, as well as an increase in the win rate. By examining the shaded
region in Figure 5.3, which represents the optimal time per move, it can be
determined that the optimal value for the iterations parameter is 800. This
value results in a relatively high win rate and the lowest average time taken per
move.

With the iterations parameter set to 800 and the simulation value re-
maining at greedy, a new experiment was conducted to determine the optimal
value for the c exploration parameter in MCTS. The results of this experiment
are shown in Figure 5.4. From the figure, it can be observed that the optimal
value for the c parameter is 1.00, as it yields the highest number of wins while
still operating within the optimal average time per move.

Like in the comparison of heuristic evaluation functions for the Minimax agent,
bar plots were used to visualize the number of games won and average times per
move for different simulation types in the MCTS algorithm. The left subplot in
Figure 5.5 compares the number of games won of the two simulations, and it can
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Figure 5.3: Comparison of win rates and average time taken per ply of different
fixed iterations in MCTS algorithm in the open world

Figure 5.4: Comparison of number of wins and average time taken per ply of
different fixed exploration parameters in MCTS algorithm in the open world

be seen that the greedy simulation performs significantly better than the random
playouts. Additionally, the greedy simulation is much faster than the random
playouts, as can be seen in the right subplot. This is due to the nature of random
simulation, as discussed in Section 4.4. Based on these results, we can conclude
that the optimal parameters for the simulation in MCTS are greedy.
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Figure 5.5: Comparison of number of games won and average time taken per
ply of random and greedy simulations in MCTS algorithm in the open world

5.1.3 Tournament
In order to begin the tournament, the following list of agents and their corre-
sponding parameters were used: Random, Greedy, Smart, Minimax (depth 9
and playout heuristic evaluation function), and MCTS (limit 800, exploration
parameter 1.00 and greedy simulation type).

Furthermore, the game environment was configured with the following set-
tings: open world, including trumps, 500 games and starting rank 6.

The tournament was initiated using the following command, with the afore-
mentioned configurations.
$ dotnet run -tournament =" random / greedy /smart/ minimax :depth =9, eval=

playout /mcts:limit =800 ,c=1.00 , simulation = greedy " -total_games =500 -
open_world

It is important to note that -include trumps and =start rank=6 game en-
vironment parameters are not explicitly listed in the above command as they are
already set to their default values in the game setup.

To improve the readability of the table of tournament results, we will use
shortened versions of the long agent names as aliases. The full names and their
corresponding aliases are listed below:

• minimax := minimax:depth=9:eval=playout

• mcts := mcts:limit=800:c=1.00:simulation=greedy

It should be noted that in this tournament, every pair of agents mentioned
in the command line played against each other to determine the winner. These
agents did not play against themselves, as this would provide almost the same
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random greedy smart minimax mcts
random 5.6%-11.3%

(500)
3.3%-8.0%
(500)

1.2%-4.6%
(500)

0.0%-1.1%
(500)

greedy 88.7%-94.4%
(500)

45.7%-49.9%
(3500)

33.5%-43.6%
(500)

1.1%-4.4%
(500)

smart 92.0%-96.7%
(500)

50.1%-54.3%
(3500)

34.7%-45.0%
(500)

2.8%-7.2%
(500)

minimax 95.4%-98.8%
(500)

56.4%-66.5%
(500)

55.0%-65.3%
(500)

16.4%-24.8%
(500)

mcts 98.9%-
100.0%
(500)

95.6%-98.9%
(500)

92.8%-97.2%
(500)

75.2%-83.6%
(500)

Table 5.1: Tournament between the agents in the open world

win rate and the tournament would continue to increase the number of games
played for them.

From the Table 5.1, the results of the tournament indicate that the MCTS
agent with the parameter configuration of simulation=greedy, limit=800 and
c=1.00 was the clear winner, with a consistently high win rate against all other
opponents. In particular, the MCTS agent outperformed the other agents, with
win rates of 98.9%-100.0% against Random, 95.6%-98.9% against Greedy, and
92.8%-97.2% against Smart. Due to the dominance of the MCTS algorithm, all
results were gathered after 500 games, with no need for additional increments.

The Minimax agent performed performed well against the Random, Greedy
and Smart agents, although its results were not as strong as those of the MCTS
agent. However, 500 games were sufficient to identify the clear winner in these
matchups.

In summary, the MCTS agent with the specified parameter configuration
emerged as the clear winner in terms of win rate, with a strong performance
against all other agents. The Minimax agent with the specified parameter con-
figuration came in second, with strong performances against the random, greedy,
and smart agents. The smart agent came in third, with a win rate that outper-
formed the greedy agent, although it took 3500 simulations to find a significant
winner between the two. The greedy agent came in fourth, while the random
agent had the lowest win rate among all agents. Overall, these results indicate
that the MCTS and Minimax agents with their respective parameter configura-
tions are the most effective at winning games, while also having good performance
in terms of average time per move.

5.2 Closed world
While the open world setting provides a useful reference point for evaluating
the performance of different agents, it is also important to consider how they
perform in a closed world environment. As previously mentioned, the normal
game of Durak is played in a closed world, with players only able to see their
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own cards and the trump card that is face up. In this section, we will examine
the performance of various agents in a closed world setting and compare it to
their performance in the open world. Similar to the open world setting, it is
necessary to configure the parameters for Minimax and MCTS agents in a closed
world environment in order to optimize their performance. This configuration
process includes setting the value of the additional samples parameter to find
the frequent move in the hidden state (details in Section 4.5. To determine the
optimal values for all relevant parameters, a series of games will be conducted
to identify the values that are most suitable for the tournament environment
just like before. It is important to ensure that the selected parameters result
in an average move time of around 100ms in order to identify the most efficient
configuration for the agent.

5.2.1 Configuring Minimax Parameters
In order to optimize the performance of the Minimax agent in an closed world
environment, we must determine the optimal values for the depth, eval and
samples parameters. We will use the playout heuristic for the eval parameter
as it is generally superior to the basic heuristic and set the value 10 to the
samples parameter, as this value allows for a faster search process while still
providing sufficient information to identify the most frequent move. To find the
best value for the depth parameter, I ran a 100 game experiment that tries
different values for it against the Greedy agent. The decrease in the number
of games can be attributed to the fact that searching for optimal moves using
strategies like Minimax and MCTS becomes slower in a closed world environment.
This is because these strategies require sampling the game state a specific number
of times, the value of samples, in order to determine the most frequent move,
which can be time-consuming.

Figure 5.6 illustrates the number of games won and the average time taken
per ply by the Minimax agent with different depth parameters in the closed
world. Unlike the open world, the plot shows that the number of games won by
the Minimax agent does not improve as the depth of the game tree exploration
increases. One potential reason for the lack of an increase in the win rate as
the depth increases is that the value of the samples is not large enough. This
may prevent the search process from considering all possible moves, leading to
the selection of suboptimal moves. The average time taken to make a move,
on the other hand, does follow the trend just like the open world: takes more
time to make a move as the depth increases. It is unexpected to see that the
number of games won fluctuates as the value of the depth parameter increases.
This phenomenon warrants further investigation to understand the underlying
cause. It can be observed that the highest number of games won is achieved
when the depth parameter is set to 3. In addition to providing the best results,
this setting also results in relatively fast move times. This suggests that, in the
closed environment, this value of the parameter is the most suitable and will be
used in the tournament.

As shown in Figure 5.7, the performance of two heuristic evaluation functions,
namely basic and playout, is compared for a Minimax agent with a fixed depth
of 3 and a fixed number of samples of 10 in a closed world environment. The
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Figure 5.6: Comparison of number of games won of different fixed depths
parameters in Minimax agent along with average time taken per ply in the

closed world

left subplot presents the number of games won for the two evaluation functions,
while the right subplot displays the average time taken to make a move. It
can be observed that, similar to the open world setting, the playout heuristic
outperforms the basic heuristic in terms of the number of games won, achieving
more than twice as many wins as the basic heuristic. However, the playout
heuristic is slower than the basic heuristic, as indicated by the right subplot.
Despite this, the playout heuristic still performs within the optimal time range
of 100ms, making it the preferred choice for the tournament. As a result, the
Minimax agent will use the depth 9 and playout heuristic for the tournament.

In contrast to the open world setting, it is necessary to identify an appropriate
value for the samples parameter in addition to the already-configured parameters
in a closed world environment. Figure 5.8 illustrates the experiment that was
conducted to determine the optimal value for the samples parameter for the
tournament. It indicates that the optimal value for the samples parameter is
30, as it results in the highest number of games won compared to the other
tested values. This information can be used to determine the final parameter
configuration for the Minimax agent. As a result, the Minimax agent will use the
depth 3, playout heuristic and the samples 30 for the tournament.

5.2.2 Configuring MCTS Parameters
To compare MCTS agents with other agents in an closed world environment
tournament, it is necessary to determine the optimal values for the limit, c,
simulation and samples parameters. As a starting point, the exploration con-
stant was set to 1.41, which is generally considered an optimal value based on
previous research [Russell and Norvig, 2022], the simulation parameter was set to
greedy and the samples parameter was set to 10. With these parameters in place,
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Figure 5.7: Comparison of number of wins and average time taken per ply of
basic and playout evaluation functions in Minimax agent in the closed world

an experiment involving 100 games was conducted to identify the optimal value
for the limit parameter by testing various values for the number of iterations.
The results of this experiment are shown in Figure 5.9.

Similar to the Minimax agent, it can be seen that an increase in the number
of iterations generally results in a corresponding increase in the average time
taken per move, as well as an increase in the win rate. However, it is not clear why
the number of games won using the value 10 for the iterations parameter is higher
than the result of value of 20. This observation warrants further investigation
in order to understand the underlying cause. By examining the shaded region
in Figure 5.9, which represents the optimal time per move, it can be determined
that the optimal value for the iterations parameter is 90 in the closed world.
This value results in a relatively high win rate and the lowest average time taken
per move.

With the iterations parameter set to 90, the simulation value remaining
at greedy and samples value remaining at 10, a new experiment was conducted
to determine the optimal value for the c, exploration parameter, in MCTS. The
results of this experiment are shown in Figure 5.10. From the figure, it can be
observed that the optimal value for the c parameter is 1.40, as it yields the highest
number of wins while still operating within the optimal average time per move.

Like in the comparison of heuristic evaluation functions for the Minimax agent,
bar plots were used to visualize the number of games won and average times per
move for different simulation types in the MCTS algorithm. The left subplot in
Figure 5.11 compares the number of games won of the two simulations, and it can
be seen that the greedy simulation performs significantly better than the random
playouts. Additionally, the greedy simulation is much faster than the random
playouts, as can be seen in the right subplot. This is due to the nature of random
simulation, as discussed in Section 4.4. Based on these results, we can conclude

49



Figure 5.8: Comparison of number of wins and average time taken per ply of
the samples value in Minimax agent in the closed world

that the optimal parameters for the simulation in MCTS are greedy.
The results of the experiment conducted to determine the optimal value of

the samples parameter for the MCTS agent in the closed-world tournament are
shown in Figure 5.12. In this experiment, the optimal value for the samples
parameter will be determined by treating the limit parameter as a total budget.
Given a total budget of 900, the number of iterations can be calculated by dividing
the budget by the value of the samples parameter. For example, if the samples
parameter is set to 10, there will be 900/10 = 90 iterations in each sample game.
Previous analysis has shown that the optimal value for the limit parameter is
90 when the samples parameter is set to 10. Therefore, a total budget of 900
will be used in this experiment to determine the optimal value for the samples
parameter.

It can be seen that the highest number of games won is achieved with a
samples value of 30, which corresponds to the limit value of 900 / 30 = 30.
Based on these results, the MCTS agent will be configured with a limit of 30, an
exploration constant of 1.40, a greedy simulation type, and a samples value of 30
for the closed-world tournament.

5.2.3 Tournament
In order to begin the tournament, the following list of agents and their correspond-
ing parameters were used: Random, Greedy, Smart, Minimax (depth 3, playout
heuristic evaluation function and samples 30), and MCTS (limit 30, exploration
parameter 1.40, greedy simulation type and samples value 30).

Furthermore, the game environment was configured with the following set-
tings: closed world, including trumps, 500 games and starting rank 6.

The tournament was initiated using the following command, with the afore-
mentioned configurations.
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Figure 5.9: Comparison of win rates and average time taken per ply of different
fixed iterations in MCTS algorithm in the closed world

random greedy smart minimax mcts
random 5.6%-11.3%

(500)
3.8%-8.7%
(500)

4.3%-9.5%
(500)

0.4%-2.7%
(500)

greedy 88.7%-94.4%
(500)

49.4%-51.9%
(10000)

45.7%-49.2%
(4500)

14.9%-23.2%
(500)

smart 91.3%-96.2%
(500)

48.1%-50.6%
(10000)

50.1%-57.5%
(1000)

22.2%-31.6%
(500)

minimax 90.5%-95.7%
(500)

50.8%-54.3%
(4500)

42.5%-49.9%
(1000)

12.9%-20.6%
(500)

mcts 97.3%-99.6%
(500)

76.8%-85.1%
(500)

68.4%-77.8%
(500)

78.4%-87.3%
(500)

Table 5.2: Tournament between the agents in the closed world

$ dotnet run -tournament =" random / greedy /smart/ minimax :depth =3, eval=
playout , samples =30/ mcts:limit =30,c=1.40 , simulation =greedy , samples =30"

-total_games =500

To improve the readability of the table of tournament results, we will use
shortened versions of the long agent names as aliases. The full names and their
corresponding aliases are listed below:

• minimax := minimax:depth=3:eval=playout,samples=30

• mcts := mcts:limit=30:c=1.40:simulation=greedy,samples=30

It should be noted that in this tournament, every pair of agents mentioned
in the command line played against each other to determine the winner. These
agents did not play against themselves, as this would provide almost the same
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Figure 5.10: Comparison of number of wins and average time taken per ply of
different fixed exploration parameters in MCTS algorithm in the closed world

Figure 5.11: Comparison of number of games won and average time taken per
ply of random and greedy simulations in MCTS algorithm in the closed world

win rate and the tournament would continue to increase the number of games
played for them.

In addition to the open world environment results, the MCTS agent with
the parameter configuration of simulation=greedy, limit=30, c=1.40, and
samples=30 also demonstrated dominance in the closed world environment. From
the Table 5.2, the results of the tournament indicate that the MCTS agent outper-
formed the other agents, with win rates of 97.3%-99.6% against Random, 76.8%-
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Figure 5.12: Comparison of number of wins and average time taken per ply of
the samples value in MCTS agent in the closed world

85.1% against Greedy, 68.4%-77.8% against Smart and 79.4%-87.1% against Min-
imax. Due to the dominance of the MCTS algorithm, all results were gathered
after 500 games, with no need for additional increments. These results indicate
that this MCTS agent is the clear winner in both perfect and imperfect infor-
mation settings in the game of Durak. Overall, the MCTS algorithm performs
exceptionally well in this game, consistently achieving high win rates against
other agents.

In the closed world scenario, the minimax agent performed less well compared
to its performance in the open world. This suggests that the agent’s performance
varies depending on the type of environment it is in. In the open world, the
minimax agent achieved a high win rate against all other agents except the MCTS
agent; MCTS won. However, in the closed world, the minimax agent also lost to
the Smart agent. This may be due to the fact that the limit on average time per
move does not allow the the current configuration of the minimax parameters to
explore the game tree reasonable to make a better move, leading to its decreased
performance against the Smart agent.

Table 5.2 shows that the performance of the Greedy and Smart agents is
comparable in the closed world environment. The number of games played to
determine a clear winner reached the upper bound of 10,000 games. In contrast
to the open world, the Smart agent appears to be weaker in the closed world.
This due to the fact that the Smart agent relies on knowledge of the opponent’s
hand to inform its strategies, which is not available in the closed world setting.
As a result, the Smart agent’s performance is affected in this environment.

In summary, the results of the closed world tournament show that the MCTS
agent with the specified parameter configuration had the highest win rate among
all agents, with strong performance against all other competitors. The Smart
agent was the second most successful, achieving good results against the Random
and Minimax agents. However, the Smart agent’s performance was comparable

53



to that of the Greedy agent. The Minimax agent with the specified parameter
configuration ranked third in terms of win rate, followed by the Greedy agent,
while the Random agent had the lowest win rate. Overall, these results suggest
that the MCTS agent and the Smart agent are the most effective at winning
closed-world games, and also have good performance in terms of average time
per move.

5.3 The Advantage of the First Moving Player
Initially, it is determined that the player with the lowest trump card will make
the first move. If neither player holds a trump card, the first player is randomly
chosen (details in Section 1.4). In order to determine if the first player has
an advantage, an experiment was conducted in which two random, two greedy,
two minimax, and two MCTS agents played against each other. Each of the
experiments had 100 games in the open world environment. The parameters
for Minimax, depth=4 and eval=playout, and MCTS, limit=50, c=1.41 and
simulation=greedy, were set arbitrarily (details regarding their parameters in
Section 4.5.1). The results are depicted in Figure 5.13.

Figure 5.13: First player making a move win percentage with Random, Greedy,
Minimax, and MCTS

The results of the experiment, depicted in Figure 5.13, indicate that making
the first move does not have a significant advantage for basic strategies such as
random and greedy. Specifically, the random agents won 48 out of 100 games
when making the first move, and the greedy agents won 44 out of 100 games
under the same circumstances. On the other hand, more complex strategies
such as minimax and MCTS appear to benefit from making the first move, with
the minimax agents winning 53 out of 100 games and the MCTS agents also
winning 53 out of 100 games. While the results suggest that the first player has
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a slight advantage when using more advanced strategies and does not have a
slight advantage when using the basic strategies, the difference in win rate is not
extreme, with the win rate for all strategies hovering around 50%. Therefore, it
can be concluded that making the first move does not have a significant impact
on the outcome of the game.
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Conclusion
In conclusion, this thesis provided a detailed description and analysis of the card
game Durak, as well as the development of a game and AI framework for im-
plementing and testing different agents. Through the implementation and ex-
perimentation of various agents, including Minimax, Rule-Based, and MCTS,
the MCTS agent consistently outperformed the other agents in both perfect and
imperfect information versions of Durak.

The results of this study demonstrate the effectiveness of the MCTS approach
for developing AI agents that can perform well in the Durak game. The various
parameters used in the MCTS agent, such as the iterations, exploration
constant and the simulation strategy, played a crucial role in determining its
performance. By carefully tuning these parameters, it was possible to achieve
strong results across a range of experimental conditions in both perfect and im-
perfect information scenarios.
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Future Work
Future work on this project could involve the implementation of additional agents
beyond Minimax and MCTS. Some possibilities could include evolutionary algo-
rithms, reinforcement learning, or other search-based approaches.

Another direction for future work could be to extend the game to other vari-
ations of Durak, such as Durak with fooling or Durak with transfers or even
Passports. These variations introduce additional rules and complexity to the
game, which could provide interesting challenges for the agents to tackle.

In the experiments, it would be interesting to run a tournament between the
agents with the trump cards removed. This would provide valuable insight into
the influence of the trump cards on the agents’ performance and whether the
same agent can perform well in this modified environment.

Another area for future work could be to improve the rule-based agents in
this framework. One possibility could be to expand the set of rules that the
agent uses besides the weaknesses to make decisions, potentially incorporating
more advanced strategies and tactics. Additionally, it might be useful to explore
ways of incorporating additional information, such as the cards that have already
been played, into the rule-based agent’s decision-making process to improve its
performance.

Also, improving the heuristic function of the Minimax agent could be a useful
direction for future work. The current implementation of the heuristic function
relies on a relatively small number of criteria to evaluate the state of the game,
such as the number of cards in the player’s hand, the value of the hand and the
existence of weaknesses.

Another direction for future work could be to improve the optimization tech-
nique of state caching in the current implementation of the Minimax agent. While
the current implementation does include this feature, the results of experiments
comparing the use of state caching versus not using it have shown relatively little
difference in performance.
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