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Introduction
The aim of this work is to introduce the topic of quantum entanglement mea-
sures in multiparticle systems. Instead of focusing on the historical background
we attempt at creating a code which will allow us to explore the entanglement
behaviour under different conditions.

We will necessarily go through the description of quantum statistical ensem-
bles as well as through the formalism needed to capture quantum phenomena.
We will focus on a two-level system consisting of spin 1/2 particles also known
as qubits. This kind of research is becoming more and more relevant due to its
importance in quantum computing.

As our “playground” we opt for the so-called Lipkin model. Mostly because
of its mathematical elegance and simplicity. The model elaborates only on a
spinspin interaction, so we will take a deeper dive into the spin coupling and the
properties of spin operators.

Another phenomenon relevant to our line of research is that of Quantum
Phase Transition. Unlike ’classical’ phase transitions, which occur due to changes
in thermal parameters, Quantum phase transitions are changes in the quantum
ground state energy behaviour, taking place at zero temperature. We will explore
in depth only two kinds of bipartite entanglements — Von Neumann Entropy and
Entanglement of Formation. Both characterise ensemble entanglement but differ
in the conditions under which those two measures can be utilised.

The goal of the present work is to graphically examine the entanglement be-
haviour as a function of external parameters. The system’s entanglement peak
should match the ground state Quantum Phase Transition visible in Hamilto-
nian’s spectra.

Let us also note, that we will solve all the problems at hand numerically since
at this level of complexity dealing with the analytical solution is out of our reach
(except for a few special cases). The code is added as an attachment to this work.
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1. System description

1.1 Lipkin-Meshkov-Glick Hamiltonian
Spin represents the internal angular momentum of particles. As all quantum
observables, the components of spin 1/2 particles (qubits) are represented by
matrices. These are 2x2 Hermitian matrices, denoted as σ̂k (Pauli matrices).
The spin operator of a single qubit is then a vector:

Ŝ = 1
2(σ̂x, σ̂y, σ̂z) (1.1)

We can consider spin to be a form of an angular momentum since its components
are satisfying commuting relations of angular momentum [10].

[Sî, Sĵ] = iϵijkSk̂ (1.2)

[Ŝ2
, Sẑ] = 0 (1.3)

In systems consisting of multiple particles, we can speak of their collective spin
(isospin). In such a case, we have a single spin operator Ĵ, which is obtained by
summing over all spin operators of a single particles Ŝn:

Ĵ =
∑︂

n

Ŝn (1.4)

Lipkin-Meshkov-Glick Hamiltonian or just Lipkin Hamiltonian describes multi-
particle systems via the total spin operator’s components Jn̂. Such systems are
called fully connected because we consider spin interaction between all qubits
mutually. These interaction is of an infinite range (in oppose to Ising model for
example [1]). Lipkin models are rather a class of Hamiltonians. Using up to
second power of Jn̂ operators, we can express Lipkin models as follows:

Ĥ = AJẑ +
∑︂
i,j

θij

2N (JîJĵ + JĵJî) (1.5)

In this form Ĥ conserves the total squared spin Ĵ
2. Big advantage of such models

is that using them we can reduce the number of degrees of freedom from N (each
qubit contributes by its spin) to 1 (collective spin). This singled degree of freedom
is thus encoded in the collective spin of the system. Lipkin Hamiltonian is also
fully symmetric, meaning the system is invariant under exchange of any pair of
qubits. Throughout this study we will work with a Hamiltonian in the following
form:

Ĥ = Jẑ − λ

N
[Jx̂ + χ(Jẑ + N

2 · I)]2 (1.6)

This will provide the desired behaviour of the Quantum Phase Transition, which
will be examined in depth in following chapters. Parameter λ represents the

3



interaction parameter. It is scaled by the particle number N, in order to prevent
the dominance of the interaction term in the total energy for higher number of
qubits.

Let us now focus on the behaviour of the Jn̂ operators. Consider having only
one qubit. States of the particle {|jm⟩} will make basis vectors of the Hilbert
space belonging to the system. Here the j represents eigenvalue of J 2̂ operator
whereas m is the eigenvalue of Jẑ :

J 2̂ = J2
x̂ + J2

ŷ + J2
ẑ

J 2̂ |jm⟩ = j(j + 1) |jm⟩
Jẑ |jm⟩ = m |jm⟩

(1.7)

We can think of j as the size of the spin and of m as the projection of the spin
onto the z-axis. It should be unsurprising then, that in our one spin-1/2 particle
system, the only possible value of j is j = 1/2. For m we obtain m ∈ {−1/2, 1/2}.
Thus we end up with two possible states, often called up and down.

Finally , we would like to find the matrix forms of the Jn̂ operators. Easiest
to create is the Jẑ matrix. Because we are in the {|jm⟩} basis. Jẑ is going to
be a diagonal matrix consisting of all possible m values. To find the rest let us
introduce the J±̂ operators:

J±̂ |jm⟩ = α±
m |jm± 1⟩

α±
m =

√︂
j(j + 1) −m(m± 1)

Jx̂ = J+̂ + J−̂

2

Jŷ = J+̂ − J−̂

2i

(1.8)

We see that J±̂ applied on |jm⟩ state is returning a new state |jm± 1⟩. This
is going to become important in later chapters where we will focus more on the
practical part of Hamiltonian creation in a multiparticle system.

1.2 Spin Coupling
Above we introduced the meaning and some properties of spin operators Ĵ Now,
in the case of two systems (A and B), the resulting system will have Hilbert space
as follows:

H = HA ⊗ HB (1.9)
There exist two ways describing the system - meaning we have to find the complete
set of commuting operators and the basis of H. The first way of doing this, is in
separable basis. The complete set of operators is then:
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{Ĵ
(A)2

, Jẑ

(A)
, Ĵ

(B)2
, Jẑ

(B)
} (1.10)

with the corresponding basis:

∆ ≡ {|jA,mA⟩ , |jB,mB⟩} (1.11)

Basis ∆ consist of state vectors of qubits - A and B. Values of jA,B are eigenvalues
of the spin operator Ĵ (A,B)2 and mA,B are eigenvalues of Jẑ

(A,B) operators. The
second option is coupled basis:

{Ĵ
(A)2

, Ĵ
(B)2

, Jẑ, Ĵ
2
} (1.12)

Γ ≡ {|j, jA,mA,m⟩} (1.13)
Now we have the last two operators in the set without an index. Those belong
to the whole coupled system, as well as j and m in the basis ket-vectors. The
obvious question would then be, what are all the possible values of j and m? A
definite requirement is for Γ and ∆ to have the same dimension. The general rule
for coupling is ([10]) is as follows:

|jA − jB| ≤ j ≤ |jA + jB|
m ∈ {j, j − 1, ...,−j}

(1.14)

Thus, we end up with two different basis of the same dimension describing the
same system. The last thing we need to do is find the unitary transformation
from Γ to ∆. Or, in the other words, we have to express each state vector from
coupled basis as a linear combination of vectors from separable basis. The task
can be performed by using Clebsch-Gordan coefficients, or just CG-coefficients
Cj,m

jA,mA,jB ,mB
:

|j, jA, jB,m⟩ =
jA∑︂

mA=−jA

jB∑︂
mB=−jB

Cj,m
jA,mA,jB ,mB

|jA,mA⟩ |jB,mB⟩ (1.15)

If the conditions (1.14) orm ̸= mA+mB are not being satisfied, then the belonging
CG-coefficient is equal to zero. Larger portion of the technicalities behind this
calculation is kept for further discussion in section 3.1, where we will obtain
CG-coefficient iteratively.

1.3 Quantum Phase Transition
Phase transitions, as conventionally understood, are changes in the physical prop-
erties of matter induced by changes in thermodynamic parameters. Quantum
Phase Transition also occurs due to changes in external parameters, but theoret-
ically at a temperature of absolute zero. Which means this parameters can not
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be thermal ones. In the system described by Hamiltonian (1.6) this non-thermal
parameter is captured by λ which represents the strength of spin-spin interaction.

Transition of phases in this context means the system’s transition between
quantum states (extensively covered in [14]). Generally, we say that each quantum
state corresponds with the energy of the system (more accurately: the eigenvector
of the Hamiltonian represents the given state and its eigenvalue represents the
energy). When the temperature is zero, the ensemble will be necessarily in the
state with the lowest energy, called the ground state. We define the Quantum
Phase Transition as a nonanalyticity in the ground states’s energy. This can occur
only in the thermodynamic limit, where the number of particles tends toward
infinity. Practically, we will instead observe QPT of the first order or second
order. The former means that the energy has a singularity in its first derivative,
whereas in the latter the singularity appears only in a second derivative of energy
(seen as a function of λ).

Quantum phase transitions are related to Hamiltonian’s parity. In the model,
defined by (1.6), we expect to see the second order QPT for χ = 0 [12]. In such a
case, the Hamiltonian conserves its parity as Π̂ = (−1)Jẑ . If we set the parameter
to be χ ̸= 0, we expect to observe first order QPT, due to the parity breaking.
The transition should occur for a critical value of the interaction parameter λc :

λc = 1
1 + χ2 (1.16)

The Quantum Phase Transition also corresponds with the maximal entan-
glement of the system. We are going to choose the ensemble parameters N, χ
and we will observe how the entanglement measure E change in relation to the
interaction parameter λ. The energy spectrum of the system will be plotted as
a function of λ. The phase transition and the maximum of the entanglement
should occur for the same value of λ. Although, as in [11], the correspondence
between the Quantum Phase Transition and entanglement is not one to one.

It is worth noting that energies of our Lipkin model Hamiltonian usually do
not cross (but for example energies with different parity can cross for χ = 0).
Graphically it will appear as if energies belonging to different states do in fact
cross, in reality, however, we will instead observe the so called avoided crossing.
At the point of crossing exist a tiny energy gap, which is too small for this work’s
numerical observational capacity. What looks like sharp crossing is then a first
order QPT, where the ground state energy instantaneously decreases in its value,
creating a singularity in its first derivative.
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2. Entanglement Measures
Here, we will focus only on the so- called bipartite entanglement. As the name
suggests, it describes a ’connection’ between two parts of the ensemble. There
exists a rather high number of possible measures of entanglement but we will
explore only two of them.

The first is the Von Neumann Entropy. Application wise we will have to work
in a space consisting of quite the small number of particles N. This is due to the
high numerical precision required of our technique throughout the computation.
Using Von Neumann Entropy we will be able to calculate entanglement between
two subsystems (denoted simply as A and B) consisting of N - M and M particles.
Let us also note that the system partition does not represent a real physical barrier
or separation, but rather our choice of mathematical description (as is usually the
practice in all of physics).

The second is Entanglement of Formation. We will be limited to the obser-
vation of a qubit pair’s entanglement in the larger system only. Main difference
is that our qubit pair will be in the so-called mixed state. Vaguely speaking, the
entanglement of the pair is going to be diluted in the otherwise bigger, tangled
ensemble. In comparison, VNE works with the pair of subsystems (A and B)
occupying the whole system, meaning, that the pair is in a pure state.

Let us step up form intuition to strict definitions. But first we have to intro-
duce the required mathematical apparatus.

2.1 Quantum Statistical Physics
The multiparticle system is well described as quantum statistical ensemble. The
statistical ensemble consists of copies of the system, each in a different state.
Because we are dealing with statistics and quantum objects, it should be no
surprise, that the keyword here is probability.

We have a set of states {|ψn⟩}. {pn} is then a set of probabilities belonging
to the set of states. The probability distribution in the entire Hilbert space is
captured by the density operator as follows:

ρ̂ =
∑︂

n

pn |ψn⟩ ⟨ψn| (2.1)

It is worth mentioning here that we are not generally assuming orthogonality of
the states. What is very important is the distinction between pure and mixed
states of the system. If we can express the density operator as:

ρ̂ = |ψ⟩ ⟨ψ| (2.2)

we can say that the system is in a pure state. On the other hand, if we have to
use (2.1) than we speak about a mixed state. There exist also another option,
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how to distinguish a mixed state from a pure one. Suppose that the matrix ρ̂ is
expressed in a basis, where it is diagonal. In such a case we can say, the system
is in a mixed state, if:

Tr ρ̂2 < 1 (2.3)
and that the system is in a pure state if:

Tr ρ̂2 = 1 (2.4)

Since we are interested in bipartite entanglement let us have a Hilbert space
consisting of two subsystems:

H = H1 ⊗ H2

H1 = span{|ψ1n⟩}
H2 = span{|ψ2k⟩}

(2.5)

Generally, then, we can then write any state of H as follows:

|Θ⟩ =
∑︂
ij

γij |ψ1i⟩ |ψ2i⟩ (2.6)

and the states of its subsystems as the linear combination of the belonging basis
vectors :

|η1⟩ =
∑︂

i

αi |ψ1i⟩

|η2⟩ =
∑︂

j

βj |ψ2j⟩
(2.7)

If we are able to find coefficients αi and βj which satisfies γij = αiβj, we say
that this state is separable. But for most of the states from H, it is going to be
impossible to satisfy the identity above, which means that γij ̸= αiβj. In this
case we call the state entangled - we really can not say that any of the systems is
in a pure state. As such entanglement represents a quantum correlation between
different parts of the ensemble.

Information about the subsystems is provided by the reduced density operator,
that can be calculated by tracing the density operator ρ̂ of the entire Hilbert space
H over all subsystem basis vectors:

ρ̂1,2 =
∑︂

k

⟨ψ2,1k| ρ̂ |ψ2,1k⟩ = Tr2,1(ρ̂) (2.8)

Here, the indices are marking the subsystem to which the given reduced density
operator belongs. The last identity will play a major role in later computations
of bipartite entanglement.
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2.2 Von Neumann Entropy
In information theory exists the concept of Shannon information entropy. Let us
have a list of n discrete mutually exclusive events {a, b, ..., z} with a list of their
probabilities {pa, pb, ..., pz}. Shannon entropy is then:

S = −
n∑︂
1
pi ln pi (2.9)

The meaning is thus quite intuitive if we think of S as of the measure of ’surprise’
- if there is only one outcome a with pa = 1, then S = 0 and we ’cannot be
surprised’. On the other hand, if there is n possible events with evenly distributed
probabilities pi = 1/n, then entropy is reaching its maximum at S = lnn and the
outcome reaches a maximum randomness. To be able to apply such concept to
our quantum ensemble, we will need to work a little bit with a density operator.

Suppose we have bipartite system, with Hilbert space H, in the state |Θ⟩ and
we know the basis of its subsystems as in (2.5), (2.6), (2.7). After obtaining
reduced density operators ρ1̂ and ρ2̂, we need to express them in the new basis.
In this new basis both operators will be diagonal, and they will share the same
eigenvalues. This is known as Schmidt decomposition. Let us then denote the
new basis as:

span{|χ1n⟩} = H1

span{|χ2k⟩} = H2
(2.10)

and {ρi} is set of shared eigenvalues of ρ̂1 , ρ̂2. Hence, we can write:

|Θ⟩ =
∑︂

i

√
ρn |χ1i⟩ |χ2i⟩ (2.11)

Finally we can define the Von Neumann Entropy:

E = S(ρ̂1,2) = −
∑︂

i

ρi ln ρi = − Tr
{︂
ρ̂1,2 ln ρ̂1,2

}︂
(2.12)

Because of the their shared spectrum {ρi} , we are free to choose between a
reduced density operator ρ̂1 or ρ̂2 for the calculation of E. Intuitively it makes
only sense, because E is telling us about the mutual correlation between parts of
the composite system.

2.3 Entanglement of Formation
The previous method shows us how to calculate entanglement measure for a
system in the pure state. In comparison, the Entanglement of Formation defines
entanglement between a pair of quibits in the generally mixed state. As noted
in [7], the Entanglement of Formation is the amount of pure state entanglement
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needed to create a single copy of the mixed state. Formally we can derive EoF’s
definition by expanding the idea behind Von Neumann Entropy.

Let us have a mixed state described by ρ̂ in the form of (2.1). Now ρ̂ is being
expressed as a sum of pure states |Φk⟩ , with density operators ρ̂k = |Φk⟩ ⟨Φk|.
Entanglement of Formation is then defined as the minimal average possible en-
tropy of the pure state decomposition:

E f (ρ̂) = min
∑︂

k

pkS(ρk̂) (2.13)

Since we did not need the states to be orthogonal in (2.1), we are now dealing
with infinity many possible pure state decompositions of ρ̂! Examples are to be
found in [2].

We will than chose approach using a quantity called concurrence as introduced
in [8]. But first lets define operation called spin flip:

ρ̂+ = (σŷ ⊗ σŷ)ρ̂∗(σŷ ⊗ σŷ) (2.14)

where σŷ are Pauli matrices and the symbol ∗ over the density operator denotes
complex conjugation. Concurrence is then:

C = max {0, λ1 − λ2 − λ3 − λ4} (2.15)

where {λi} stands for eigenvalues of ρρ+ operator in decreasing order. Once we
calculate C we can finally obtain Entanglement of Formation:

E f (ρ̂) = h

⎛⎝1 +
√︂

1 − C(ρ̂)2

2

⎞⎠ (2.16)

where h(x) = −x ln x − (1 − x) ln(1 − x). Observe this function has a domain
Dh = (0, 1), although it is easy to see that limx→0 h(x) = limx→1 h(x) = 0,
meaning that C = 0 is not an issue.

Because we choose Lipkin Hamitlonian with N particles, we will use rescaled
concurrence (as in [5]):

CR = (N − 1)C (2.17)
Note that this section is a mere introduction to the theoretical background of

entanglement measures. The goal of this study is to incorporate concepts above
into the Lipkin model. Thus we will have to figure out, how to work with reduced
density operator of a qubit pair in a mixed state.

So in the following chapters we are going to explore the used methodology as
well as the challenges that might be met when solving problem programmatically.
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3. Methodology

3.1 Von Neumann Entropy Methodology
Entanglement between up to three particles was the outcome of the work [2]. The
present thesis is trying take on and expand the concepts presented there. Our
goal is to explore the behaviour of Von Neumann Entropy in ensembles of up to
a few dozen qubit.

One of the most challenging tasks we can perform on a computer is matrix
diagonalization. The computational complexity is about O(k3) , that is to say the
time we need to finish the task grows as a cube of the size k, where k is the rank
of our matrix. We also need to take in account, that the dimension of Hilbert
space in N -qubit ensemble is growing exponentially as 2N . Meaning, that if we
would reach 30 particles, we would need to diagonalize a matrix with the size of
around 109 × 109.

It is known, that the ground state will be a linear combination of the |j,m⟩
states with a maximum of j ([5]). Since we are interested only in a bipartite
entanglement the subsystems A and B also need to be in the maximum jA and
jB states. This can help us significantly.

We can perform spin coupling iteratively - in a from of tree diagram [13]. The
leaves of such a diagram represent the individual qubits. The nodes closest to
the leaves would represent the qubit pairs. The further nodes would represent
the coupled pairs. The nodes closest to the root represent the subsystems A and
B and the root node stands for the entire system. The full Hilbert space H is
then spanned by {|j, jA, ..., jZ ,m⟩} (coupled basis) and its dimension is 2N . The
terms jX in the basis ket-vectors are j values of the node (subsystem) X.

Now we will focus only on the maximal j subspace HJ and in the same time,
we will completely dismiss, what are the values of jA, jB...jZ . Obeying the rule
(1.14) for possible values of m, we will end up with only N+1 states. Those
are known in the literature as Dicke states, and are denoted as |J,M⟩. We are
perhaps adding now into the confusion between j , J , Ĵ and Ĵ, but because
J = N/2 always, the states herein will receive the abbreviation |M⟩.

The dimension of full Hilbert space is dim(HJ) = 2J + 1, the dimension
of its subsystems is dim(HJB,A

) = 2JB,A + 1. It is important to stress out that
dim(HJ) ̸= dim(HJB,A

)+dim(HJB,A
) ! The inequality would turn into an equality

only if the full Hilbert space would be the direct tensor product of its subspaces.
Not considering jA, jB...jZ terms in {|j, jA, ..., jZ ,m⟩} leads to a loss of informa-
tion about states, which would be otherwise distinguishable (as an exercise, dear
reader can try to figure out all 32 states {|j, jA, jB,m⟩} in 2/2 partition).

After we generate the basis states of coupled basis {|M⟩}, it holds out that:

J−̂ |M⟩ = α−
m |M − 1⟩ (3.1)

Of course we still need to arrive at a matrix form of the Hamiltonian. So we have
to perform a ’vectorization’ of the very symbolic |M⟩ states. Because those are
creating an orthogonal basis of HJ , we can simply attribute each state to a basis
vector. So |M⟩ becomes for us (1, 0, 0...), |M − 1⟩ is (0, 1, 0...) and so on until
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we reach |M −N/2⟩ represented as (0, 0, ..., 1). If we take the resulting vector
from (3.1) for each of our Dicke states, we obtain the columns of J−̂ operator in
a matrix form! Then if we perform the Hermitian transposition of J−̂, we end up
with J+̂.

Those two matrices are sufficient enough to create a matrix form of Jx̂ and
Jŷ. Jẑ is simply a diagonal matrix created out of all M values. Meaning that we
can put all the pieces together and finally obtain Hamiltonian as defined by (1.6)
(nevertheless the interaction and the anisotropy parameters have to be chosen).

Now we are ready to find the ground state. Please note, once more, that the
states |M⟩ are not the eigenvectors of Ĥ! They are only the basis vectors of our
Hilbert space and the eigenvectors are going to be their linear combination.

As the prefix ’eigen’ suggests, we are going to diagonalize the matrix Ĥ, which
means we have to solve the eigenproblem and as a result obtain a set of eigenvalues
and eigenvectors. The former represents the system’s energy, the latter all the
possible states of the system.

By picking the one with the lowest energy we arrive at the desired ground
state denoted here as |gs⟩. The corresponding density operator will be:

ρ̂gs = |gs⟩ ⟨gs| (3.2)

Hence to be able to calculate ρ̂A,B, we need to be able to express ground state
in separated basis, as in (1.15). The Clebsh-Gordan coefficionts can be obtained
recursively as follows [10]:

Λ =

⌜⃓⃓⎷jA(jA + 1) −mA(mA − 1)
j(j + 1) −m(m− 1)

Ξ =

⌜⃓⃓⎷jB(jB + 1) −mB(mB − 1)
j(j + 1) −m(m− 1)

Cj,m
jA,mA,jB ,mB

= Λ · Cj,m−1
jA,mA−1,jB ,mB

+ Ξ · Cj,m−1
jA,mA,jB ,mB−1

Cj,j
jA,jA,jB ,jB

= 1

(3.3)

Then we can express ground state as:

|gs⟩ =
∑︂

k

µk |Mk⟩ =
∑︂

k

µk

(︄∑︂
nm

Cnm |Mn
A⟩ |Mm

B ⟩)
)︄

=
∑︂
ij

αij

⃓⃓⃓
M i

A

⟩︂ ⃓⃓⃓
M j

B

⟩︂
(3.4)

Here we used abbreviation Cnm = CJ,Mk
JA,Mn

A,JB ,Mm
B

. The reduced density operator

of subsystem A, for example, is then going to be:

ρ̂A =
∑︂

k

⟨︂
Mk

B

⃓⃓⃓
ρ̂gs

⃓⃓⃓
Mk

B

⟩︂
=
∑︂
ii′

⎛⎝∑︂
j

αijαi′j)
⎞⎠ ⃓⃓⃓M i

A

⟩︂ ⟨︂
M i′

A

⃓⃓⃓
(3.5)

Because ρ̂A is a real symmetric matrix, the Schmid decomposition is equivalent
to its diagonalization. By that we yield the eigenvalues {ρi}. Finally using (2.2)
we calculate the Von Neumann Entropy.
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Note that it really does not matter, if we decide to use matrix ρ̂A or ρ̂A.
Nonzero eigenvalues are going to be the same.

Algorithmically (code is in the attachments) we can describe the whole pro-
cedure as:

• choose N, γ, λ and a partition

• generate coupled basis of HJ

• generate separated basis HJA
and HJB

• ’vectorize’ the |j,m⟩ states

• find out all relevant CG coefficients

• create Hamiltoninan Ĥ as in (1.6) using J±̂ operators on the coupled states

• diagonalize Ĥ, choose the state with the lowest energy |gs⟩

• express |gs⟩ in the separated basis

• create the density operator ρ̂gs

• create the reduced density operator ρ̂A,B

• diagonalize ρ̂A,B and obtain the eigenvalues {ρi}

• calculate Von Neumann Entropy as in (2.2)

• repeat for a different initial parameter values

• plot S as a function of λ

3.2 Entanglement of Formation Methodology
Let us remind ourselves, that the Entanglement of Formation calculation as stated
in (2.13) - (2.3) works for a single pair of qubits. The input here is its density
operator ρ̂. The intricacy lies in finding the reduced density operator for an
arbitrarily selected qubit pair. [4] have presented a technique which we are going
to deploy in order to obtain the Entanglement of Formation for higher number
of particles. The rationale behind it is as follows.

We will work in the same Hilbert space, the one with a maximum j, as pre-
viously. Its generation and the finding of the lowest energy state works in much
the same way as above. The whole system is now in the pure state and the cor-
responding density operator will be again ρ̂gs = |gs⟩ ⟨gs| . The work[4] suggests
that we can find the reduced density operator ρ̂pair of the qubit pair followingly:
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ρ̂pair =

⎛⎜⎜⎜⎝
v+ x∗

+ x∗
+ u∗

x+ w y x∗
−

x+ y w x∗
−

u x− x− v−

⎞⎟⎟⎟⎠ (3.6)

where the meaning of the matrix elements is:

v± = N2 − 2N + 4⟨J2
ẑ ⟩ ± 4⟨Jẑ⟩(N − 1)

4N(N − 1) (3.7)

x± =
(N − 1)⟨J+̂⟩ ± 4⟨[J+̂, Jẑ]+⟩

2N(N − 1) (3.8)

w = y = N2 − 4⟨J2
ẑ ⟩

4N(N − 1) (3.9)

u = ⟨J+̂⟩
N(N − 1) (3.10)

where [Â, B̂]+ = ÂB̂ + B̂Â denotes anti-commutation relation. Now, using the
notation ⟨X̂⟩ stand for ’mean value of operator X̂ in the state |gs⟩’, or more
precisely:

⟨X̂⟩ = ⟨X̂⟩gs = ⟨gs| X̂ |gs⟩ (3.11)
(the subscript was relinquished for the sake of simplicity). After we constructed
ρ̂pair, we can easily figure out Entanglement of Formation using the equations
(2.14) to (2.3). The code through which the whole procedure was accomplished
is added separately in the attachment, but let us here summarise the algorithm
step by step. The cookbook recipe for quibit pair entanglement is:

• choose parameters λ, γ and N

• generate N+1 states {|M⟩}

• generate Hamiltonian and find its ground state |gs⟩

• create density operator ρ̂gs

• calculate all needed mean values of the operators ⟨X̂⟩

• using (3.6) and (3.7) obtain the reduced density operator ρ̂pait

• spin flip ρ̂pair matrix

• by getting its eigenvalues, determine concurrency

• with help of equations (2.3) and (2.3) we finally get Entanglement of For-
mation of a qubit pair in a N-particle system

• repeat for other values of λ

• plot Ef as a function of λ for constant value of γ and N

14



4. Results

4.1 Entanglement of Formation up to N = 20
We present here a graphical results of our work. Because we are also interested in
a behaviour of ground state energy, entanglement will always be plotted together
with the belonging spectrum.

We opt for four different χ values and for tree different amounts of qubits N.

Figure 4.1: EoF for 5-qubit system with χ = 0.

15



Figure 4.2: EoF for 10-qubit system with χ = 0.
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Figure 4.3: EoF for 20-qubit system with χ = 0.
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Figure 4.4: EoF for 5-qubit system with χ = 0.5.
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Figure 4.5: EoF for 10-qubit system with χ = 0.5.
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Figure 4.6: EoF for 20-qubit system with χ = 0.5.
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Figure 4.7: EoF for 5-qubit system with χ = 1.
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Figure 4.8: EoF for 10-qubit system with χ = 1.

22



Figure 4.9: EoF for 20-qubit system with χ = 1.
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Figure 4.10: EoF for 5-qubit system with χ = 5, detail on spectra.

24



4.1.1 Entanglement Of Formation - Heat Map

Figure 4.11: EoF for 5-qubit system.

As we can see, peak in EoF matches the value of λ for witch ground state energy
changes the most. We can conclude that for χ = 0 this transition is of a second
order. Clear example of QPT of the first order is visible on figure 4.1 for χ = 0.

Generally, we can say that the greater the parameter χ is, the closer to zero
the entanglement peak will occur. We can clearly observe this behaviour in
’heat map’ above where we see entanglement as a function of both the χ and λ
parameters.

4.2 Von Neumann Entropy for N = 12
Here we deploy the same visualization strategy as above. The only difference
being that now we are examining systems under different separations. Each plot
will then involve five different curves, each representing the entropy of a system
with a specific partition. Partitions are denoted as (x, y) and their values speak
of the qubit number in each subsystem.
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Figure 4.12: VNE for 12-qubit system with χ = 0 in different partitions.
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Figure 4.13: VNE for 12-qubit system with χ = 0.5 in different partitions.
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Figure 4.14: VNE for 12-qubit system with χ = 1 in different partitions.
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4.2.1 Von Neumann Entropy - Heat Map

Figure 4.15: VNE for symmetric partition of 6-qubit system.

For nonzero χ the behaviour is similar to the that of the EoF – the peak is
much closer to the origin with increasing value of χ. This parameter also seems
to impact the peak’s kurtosis. We can conclude, that the VNE is larger for
partitions which are more even. On all plots we see the same order of VNE
values - from (6, 6) to (10, 2). This should not come as a surprise. Recall that the
VNE is equivalent to Shannon entropy where the maximal value can be ln(n),
and where n is the number of all possible outcomes. Also, it does not matter
if we work with the eigenvalues of the reduced density operator of subsystem A
or B. Thanks to the SVD (which in our case is the same as diagonalization) the
spectra of both reduced operators are going to be the same.

For example, we can obtain 2 eigenvalues if we trace over the subsystem A
and 6 eigenvalues if we trace over the subsystem B. In the latter case, at least 4
values are going to be zero, so that the spectra are technically the same. This is
limiting the maximal value of VNE to ln(y) for uneven partitions (x, y), where
y < x. On the other hand, symmetric partitions (x, x) allow for the VNE to be
ln(x). This also makes sense at an intuitive level. The greater the number of
qubits in each subsystem – the higher the amount of opportunities for particle
exchanges without any change in the system behaviour, meaning greater entropy.
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5. Conclusion
We introduced a decsribtion of multiparticle spin systems using Lipkin Hamilto-
nian.We also explored spin coupling. We presented the theories behind measures
of entanglement — Von Neumann Entropy, and Entanglement of Formation.

We also touched upon the problematics of Qunatum Phase Transitions of the
first and second order. After the completion of a code, we plotted the entangle-
ment as a function of the λ parameter, later on also as a function of λ and χ and
compared those results with the energy spectra. Both kinds of QPT were clearly
visible in the Hamiltonian’s spectra.

We observed that both entanglement measures are peaking where the deriva-
tive of ground state energy reach its maximum. The result is the expected —
maximum entanglement matching the QPT locations. QPT of the second order
appeared on all figures involving χ = 0.

We can also perceive the differences in the behaviours of VNE and EoF seen
as a function of both λ and χ parameters. VNE appears to vanish much slower
(in relation to λ). For zero value of χ it even seem as if the entropy converges to
some nonzero value. Focusing on the VNE we can conclude that entanglement
is higher for more evenly partitioned system. This result is as expected, as we
discussed above. One anomaly we encounter is the shape of the VNE’s peaks,
which should be either smooth or should be sharp spike. Instead we see some form
of irregular edges. Those are probably present due to the numerical inaccuracy,
involved when we are performing matrix diagonalizations, close to critical value
of λ.

Briefly, let us note the work that has been done, but left unpublished here,
due to the scope of this work. First, we created a code which was able to do
separation of the system in full Hilbert space (not just in the subspace with
maximal j). This allowed us to distinguish between |jm⟩ states which would be
undistinguishable otherwise. It also allowed us to measure the entanglement for
excited states. The task involved spin coupling in a tree diagrams which is an
overarching task involving a fair amount of combinatorics, and touches on some
very interesting aspects of contemporary physics. For example spin networks
(utilised in loop quantum gravity) (see [13]).

Second, we tried to examine the behaviour of different forms of Lipkin Hamil-
tonian (as in [5]), which are showing different spectrum and QPT behaviour.
Unfortunately, there is no studies to compare the results with, so we opted for
the better established form of Hamiltonian.

Both alternative Lipkin models, as well as non-ground state QPT and entan-
glement can be an inspiration for later works.
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A. Attachments

A.1 Script for Enatanglement of Formation
1 import numpy as np
2 import matplotlib . pyplot as plt
3 import math
4 import qutip as q
5 from mpl_toolkits import mplot3d
6 import matplotlib .cm as cm
7
8 def subsystem (N):
9 j = N/2

10 m = j
11 baze = []
12 while m >= -j:
13 baze. append ([j,m])
14 m -=1
15 return baze
16
17 def alfa_m (j, m):
18 return math.sqrt(j*(j+1) - m*(m -1))
19
20 def Hmaker (N,g,l):
21 J_plus = q.jmat(N/2,’+’)
22 J_minus = q.jmat(N/2,’-’)
23 J_y = q.jmat(N/2,’y’)
24 J_x = q.jmat(N/2,’x’)
25 J_z = q.jmat(N/2,’z’)
26 id_op = q.qeye(N+1)
27 second_arg = (J_x + g*( J_z + (N/2)* id_op ))**2
28 H = J_z - (l/N)* second_arg
29 return {’Jx ’:J_x ,’Jz ’:J_z ,’Jy ’:J_y ,’H’:H,’Jm ’:J_minus ,’Jp ’: J_plus }
30
31
32 def vp(N,evJz2 ,evJz):
33 nom = N**2 - 2*N +4* evJz2 + 4* evJz *(N -1)
34 denom = 4*N*(N -1)
35 return nom/ denom
36
37 def vm(N,evJz2 ,evJz):
38 nom = N**2 - 2*N +4* evJz2 - 4* evJz *(N -1)
39 denom = 4*N*(N -1)
40 return nom/ denom
41
42 def w(N, evJz2 ):
43 nom = N**2 - 4* evJz2
44 denom = 4*N*(N -1)
45 return nom/ denom
46
47 def xp(N,evJp , evJpJzantik ):
48 nom = (N -1)*evJp + evJpJzantik
49 denom =2*N*(N -1)
50 return nom/ denom
51
52 def xm(N,evJp , evJpJzantik ):
53 nom = (N -1)*evJp - evJpJzantik
54 denom =2*N*(N -1)
55 return nom/ denom
56
57 def u(N, evJp2 ):
58 nom = evJp2
59 denom = N*(N -1)
60 return nom/ denom
61
62
63 def reduced_density_op (N,evJz ,evJz2 ,evJp ,evJp2 , evJpJzantik ):
64 vp0 = vp(N,evJz2 ,evJz)
65 vm0 = vm(N,evJz2 ,evJz)
66 w0 = w(N, evJz2 )
67 xp0 = xp(N,evJp , evJpJzantik )
68 xm0 = xm(N,evJp , evJpJzantik )
69 u0 = u(N, evJp2 )
70 rho = q.Qobj ([[ vp0 ,xp0 ,xp0 ,u0],
71 [xp0 ,w0 ,w0 ,xm0],
72 [xp0 ,w0 ,w0 ,xm0],
73 [u0 ,xm0 ,xm0 ,vm0 ]])
74 return rho
75
76 def spin_flip (rho):
77 sig_y_sig_y = q.Qobj ([[0 ,0 ,0 , -1] ,
78 [0 ,0 ,1 ,0] ,
79 [0 ,1 ,0 ,0] ,
80 [ -1 ,0 ,0 ,0]])
81
82 fliped = sig_y_sig_y *rho.conj ()* sig_y_sig_y
83 rr = rho* fliped
84 vals = rr. eigenenergies ()
85 return vals
86
87 def Concurrence (g,l,N):
88 mats = Hmaker (N,g,l)
89 H = mats[’H’]
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90 operators = {’Jx ’:mats[’Jx ’],’Jy ’:mats[’Jy ’],’Jz ’:mats[’Jz ’],’Jp ’:mats[’Jp ’],
91 ’Jz ˆ2 ’:mats[’Jz ’]**2 , ’Jp ˆ2 ’:mats[’Jp ’]**2 ,
92 ’JpJzantik ’:mats[’Jp ’]* mats[’Jz ’] +mats[’Jz ’]* mats[’Jp ’]}
93 v = H. eigenstates () [1][0]
94 energies = H. eigenenergies ()
95 ops_exp_val = {k:[] for k in operators }
96 for k in operators :
97 op = operators [k]
98 exp_val = q. expect (oper = op , state = v)
99 ops_exp_val [k] = exp_val

100 v = np. array (v)
101 evJz = ops_exp_val [’Jz ’]
102 evJz2 = ops_exp_val [’Jz ˆ2 ’]
103 evJp = ops_exp_val [’Jp ’]
104 evJp2 = ops_exp_val [’Jp ˆ2 ’]
105 evJpJzantik = ops_exp_val [’JpJzantik ’]
106 rho = reduced_density_op (N,evJz ,evJz2 ,evJp ,evJp2 , evJpJzantik )
107 cv = sorted ( spin_flip (rho))[:: -1]
108 cs = [ float (np.sqrt(c)) for c in cv]
109 cs = [np.sqrt(c) for c in cv]
110 cf = cs [0] - cs [1] - cs [2] -cs [3]
111 if cf <= 0:
112 C = 0
113 else:
114 C = cf
115 return [C,energies ,v]
116
117 def rescaled_C (g,l,N):
118 return (N -1)* Concurrence (g,l,N)
119
120 def EoF(C):
121 x = (1 + np.sqrt (1-C**2))/2
122 if (x == 0) or (x==1):
123 E = 0
124 else:
125 E = -x*math.log(x ,2) -(1-x)*math.log (1-x ,2)
126 return E
127
128 def revlist (lst):
129 new = []
130 for i in range (len(lst [0])):
131 row = [lst[j][i] for j in range (len(lst))]
132 new. append (row)
133 return new
134
135
136 #%%
137 # single 2D plot of Eof as function of chi and
138
139 Ns= [20] # qubit number
140 vse = [] # list containing numerical results
141 Gs = [5] # chi value
142 lams = np. linspace (0 ,0.1 ,1000) # lambda values
143 for N in Ns:
144
145 Cons = {g:0 for g in Gs}
146 Ens = {g:0 for g in Gs}
147 gstates = {g:0 for g in Gs}
148
149 for g in Gs:
150 cons_and_energies = [ Concurrence (g,l,N) for l in lams]
151 cons = [CE [0] for CE in cons_and_energies ]
152 ens = [CE [1] for CE in cons_and_energies ]
153 Cons[g] = cons
154 Ens[g] = ens
155
156 Ensor = {g:[ sorted (E) for E in Ens[g]] for g in Gs}
157 Ensr = {g: revlist ( Ensor [g]) for g in Gs}
158
159 Eofs = {g:0 for g in Gs}
160 for g in Gs:
161 con = Cons[g]
162 eof = [EoF(c) for c in con]
163 Eofs[g] = eof
164
165 Eofscaled = {g:0 for g in Gs}
166 for g in Gs:
167 con = Cons[g]
168 eof = [EoF(c*(N -1)) for c in con]
169 Eofscaled [g] = eof
170
171 for g in Gs:
172 ens = Ensr[g]
173 eofs = Eofscaled [g]
174 vse. append ({ ’ene ’:Ensr ,’eofs ’:Eofscaled ,’N’:N,’gstates ’: gstates })
175
176 for v in vse:
177 for g in Gs:
178 plt. style .use(’default ’)
179 ens = v[’ene ’][g]
180 eofs = v[’eofs ’][g]
181 N = v[’N’]
182 fig , ax = plt. subplots ( nrows = 2, figsize = (9 ,12))
183 plt. title (’$\chi$ = ’+str(g) +’ ’ + ’N = ’ + str(N))
184 for e in ens:
185 ax [0]. plot(lams ,e, color = ’black ’)
186 ax [0]. set( xlabel = r"$\ lambda$ ")
187 ax [0]. set( ylabel = ’Energy ’)
188
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189
190 ax [1]. plot(lams ,np. array (eofs),label = r"$\ gamma$ = "+str(g), color = ’green ’)
191 ax [1]. set( xlabel = r"$\ lambda$ ")
192 ax [1]. set( ylabel = ’scaled EoF ’)
193
194 #%%
195 N = 5
196 Gs = np. linspace (0 ,1 ,100)
197 lams = np. linspace (0 ,4 ,100)
198
199 Cons = {g:0 for g in Gs}
200
201 for g in Gs:
202 cons_and_energies = [ Concurrence (g,l,N) for l in lams]
203 cons = [CE [0] for CE in cons_and_energies ]
204 ens = [CE [1] for CE in cons_and_energies ]
205 Cons[g] = cons
206 print (g)
207
208 Eofs = {g:0 for g in Gs}
209 for g in Gs:
210 con = Cons[g]
211 eof = [EoF(c) for c in con]
212 Eofs[g] = eof
213
214 Eofscaled = {g:0 for g in Gs} # ready for 3D plot!
215 for g in Gs:
216 con = Cons[g]
217 eof = [EoF(c*(N -1)) for c in con]
218 Eofscaled [g] = eof
219
220
221 #%%
222 Y = Gs
223 X = lams
224 Y,X = np. meshgrid (Y,X)
225 Z = np. array ([[ float ( Eofscaled [g][i]) for i in range (len(lams))] for g in Gs ])
226 #%%
227 # heat map of EoF
228
229 plt. figure ( figsize =(8 ,6))
230 im = plt. imshow (Z. transpose () ,
231 origin =’lower ’,
232 cmap = cm.inferno ,
233 extent =[Y.min () , Y.max () , X.min () , X.max ()],
234 aspect = ’auto ’
235 )
236 CBI = plt. colorbar (im ,
237 orientation =’vertical ’,
238 shrink =1,
239 label = ’EoF ’
240 )
241 CS = plt. contour (Y,X,Z. transpose () ,
242 levels = 0,
243 origin =’lower ’,
244 linewidths =1,
245 )
246 plt. xlabel (r"$\chi$")
247 plt. ylabel (r"$\ lambda$ ")
248 #%%
249 # visualize 3D plot od EoF from many angles
250
251 fi = np. linspace ( -180 ,180 ,18)
252 for f in fi:
253 my_cmap = plt. get_cmap (’cool ’)
254 fig = plt. figure ()
255 ax = plt.axes( projection =’3d’)
256 #surf = ax. plot_surface (X, Y, Z, cmap = my_cmap , edgecolor =’none ’)
257 ax. contour3D (X, Y, Z, 20, cmap= my_cmap )
258 ax. view_init (20 , -f)
259 ax. set_xlabel (r"$\chi$", labelpad =20)
260 ax. set_ylabel (r"$\ lambda$ ", labelpad =20)
261 ax. set_zlabel (’EoF ’, labelpad =20)
262 ax.grid( False )
263
264 #%%
265
266 # single 3D wirefeame / surface plot
267
268 my_cmap = plt. get_cmap (’cool ’)
269 fig = plt. figure ()
270 ax = plt.axes( projection =’3d’)
271 #surf = ax. plot_surface (X, Y, Z, cmap = my_cmap , edgecolor =’none ’)
272 surf = ax. plot_wireframe (X, Y, Z, cmap = my_cmap , color = ’black ’)
273 ax. view_init (80 , 0) # elevation
274 ax. set_xlabel (r"$\chi$")
275 ax. set_ylabel (r"$\ lambda$ ")
276 ax.grid( False )
277
278 #%%

A.2 Script for Von Neumann Entropy
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1 import numpy as np
2 import matplotlib . pyplot as plt
3 from scipy . sparse import identity
4 from sympy import symbols , Matrix , Symbol
5 import qutip as q
6 import matplotlib .cm as cm
7
8
9 def alfa_p (j, m):

10 return (np.sqrt(j*(j+1) - m*(m+1)))
11
12 def alfa_m (j, m):
13 return (np.sqrt(j*(j+1) - m*(m -1)))
14
15 def vectors (n):
16 vektory = identity (n). toarray ()
17 return vektory
18
19
20 def subsystem (N):
21 j = N/2
22 m = j
23 baze = []
24 while m >= -j:
25 baze. append ([j,m])
26 m -=1
27 return baze
28
29 def matrix_from_vectors (v,h):
30 vertical = np. array (v)
31 horizontal = np. array (h)
32 mat = []
33 for i in range (len( vertical )):
34 mat. append ( vertical [i]* horizontal )
35 M = np. array (mat)
36 return M
37
38
39
40 def CG(j,m,jA ,mA ,jB ,mB):
41 return q. clebsch (jA , jB , j, mA , mB , m)
42
43 def coupled_to_separated (baze ,Abaze , Bbaze ):
44 dct = {str(b):[] for b in baze}
45 for state in baze:
46 for a_state in Abaze :
47 for b_state in Bbaze :
48 j = state [0]
49 m = state [ -1]
50 jA = a_state [0]
51 mA = a_state [ -1]
52 jB = b_state [0]
53 mB = b_state [ -1]
54 cg = CG(j,m,jA ,mA ,jB ,mB)
55 if cg != 0:
56 dct[str( state )]. append ([cg ,a_state , b_state ])
57 return dct
58
59
60 def Hamiltonian (N,g,l):
61 J_x = q.jmat(N/2,’x’)
62 J_z = q.jmat(N/2,’z’)
63 id_op = q.qeye(N+1)
64 second_arg = (J_x + g*( J_z + (N/2)* id_op ))**2
65 H = J_z - (l/N)* second_arg
66 return H
67
68 def min_energy_vector (H):
69 gs = H. groundstate () [1]
70 energies = H. eigenenergies ()
71 return {’groundstate ’:gs ,’energies ’: energies }
72
73 def rho(v):
74 return q. ket2dm (v)
75
76 def min_state_to_bazove (gs ,baze):
77 idx = []
78 for i in range (len(gs)):
79 if gs[i] != 0.0:
80 idx. append (i)
81 to_bazove = [( gs[i],baze[i]) for i in idx]
82 return to_bazove
83 #%%
84 def min_state_to_separovane (to_bazove , coupled_to_separated ):
85 to_separovane = []
86 for el in to_bazove :
87 c_state = el [1]
88 const = el [0]
89 s_state = coupled_to_separated [str( c_state )]
90 for element in s_state :
91 new_const = const * element [0]
92 to_separovane . append ([ new_const , element [1] , element [2]])
93 return to_separovane
94
95 def separovane_to_numericke ( to_separovane ,Abaze , Bbaze ):
96 Avecs = vectors (len( Abaze ))
97 Bvecs = vectors (len( Bbaze ))
98 Adict = {str ([ Abaze [i][0] , Abaze [i][ -1]]): Avecs [i] for i in range (len( Avecs ))}
99 Bdict = {str ([ Bbaze [i][0] , Bbaze [i][ -1]]): Bvecs [i] for i in range (len( Bvecs ))}
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100 vectorized = []
101 for el in to_separovane :
102 c = el [0]
103 v1 = str(el [1])
104 v2 = str(el [2])
105 vectorized . append ((c, Adict [v1], Bdict [v2 ]))
106 return vectorized
107
108 def numeric_to_reduced ( sep_to_num ,Abaze , Bbaze ):
109 alfa_matrix = [[0 for i in range (len( Abaze ))] for j in range (len( Bbaze ))]
110 Bs = vectors (len( Bbaze ))
111 As = vectors (len( Abaze ))
112 for el in sep_to_num :
113 j = np. where (el [1] == 1) [0][0]
114 i = np. where (el [2] == 1) [0][0]
115 alfa = el [0]
116 alfa_matrix [i][j] = alfa
117 reduced = []
118 for i in range (len(Bs)):
119 for i_prime in range (len(Bs)):
120 const = 0
121 for j in range (len(As)):
122 c = alfa_matrix [i][j]* alfa_matrix [ i_prime ][j]
123 const +=c
124 submatrix = const * matrix_from_vectors (Bs[i],Bs[ i_prime ])
125 reduced . append ( submatrix )
126 rho = reduced [0]
127 for i in range (1, len( reduced )):
128 rho = rho + reduced [i]
129 # print (’ Trace of reduced rho: ’, sum ([ rho[i][i] for i in range (len(rho))]))
130 return rho
131
132
133 def matrix_to_eigen (rho):
134 rho = Matrix (rho)
135 evec = rho. eigenvects ()
136 vects = [evec[i][ -1][0] for i in range (len(evec))] # ready for operations ...
137 vals = [evec[i][0] for i in range (len(evec))] # ready for operations ...
138 # print (len(vals))
139 # print (’sum rho_i : = ’,sum(vals))
140 # print (’sum squered rho_i : = ’,sum ([v*v for v in vals ]))
141 return {’vals ’:vals ,’vects ’: vects }
142
143
144 def eigen_to_VNE (vals):
145 res = []
146 vals = [ float (v) for v in vals]
147 for c in vals:
148 if c < 0:
149 print (vals)
150 break
151 if c != 0:
152 c = np.sqrt(c)
153 res. append (c*np.log(c))
154 return -sum(res)
155
156 def params_to_VNE (NA ,NB ,g,l):
157 print (’ -------------------------------------------’)
158 N = NA + NB
159 Abaze = subsystem (NA)
160 Bbaze = subsystem (NB)
161 ABbaze = subsystem (NA+NB)
162 coup_to_sep = coupled_to_separated (ABbaze ,Abaze , Bbaze )
163 H = Hamiltonian (N,g,l)
164 mev = min_energy_vector (H)
165 gs = np. array (mev[’groundstate ’])
166 print (gs)
167 energies = mev[’energies ’]
168 to_bazove = min_state_to_bazove (gs , ABbaze )
169 to_separovane = min_state_to_separovane (to_bazove , coup_to_sep )
170 sep_to_num = separovane_to_numericke ( to_separovane ,Abaze , Bbaze )
171 rho = numeric_to_reduced ( sep_to_num ,Abaze , Bbaze )
172 vals = matrix_to_eigen (rho)[’vals ’]
173 res = eigen_to_VNE (vals)
174 print (’ -------------------------------------------’)
175 return {’vne ’:res ,’energies ’: energies }
176
177 def vne(lambdas ,NA ,NB ,g):
178 VNEs= []
179 energie = []
180 for l in lambdas :
181 ptvne = params_to_VNE (NA ,NB ,g,l)
182 entropy = ptvne [’vne ’]
183 e = ptvne [’energies ’]
184 print (’lambda : ’,l, ’gamma :’,g)
185 VNEs. append ( entropy )
186 energie . append (e)
187 return {’VNEs ’:VNEs ,’energie ’: energie }
188
189 def plot_it (vnes ,ens ,title ,lams): # vne + spektrum
190 plt. style .use(’default ’)
191 fig , ax = plt. subplots ( nrows = 2, figsize = (9 ,12))
192 plt. title (’$\chi$ = ’+str(g) +’ ’)
193 ens = [ sorted (E) for E in ens]
194 ens = [[ ens[i][j] for i in range (len(ens))] for j in range (len(ens [0]))]
195 for e in ens:
196 ax [0]. plot(lams ,e, color = ’black ’)
197 ax [0]. set( xlabel = r"$\ lambda$ ")
198 ax [0]. set( ylabel = ’Energy ’)
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199 ax [1]. plot(lams ,np. array (vnes),label = r"$\ gamma$ = "+str(g), color = ’red ’)
200 ax [1]. set( xlabel = r"$\ lambda$ ")
201 ax [1]. set( ylabel = ’Entropy ’)
202
203 def plot_it_coups (coups ,ens ,title ,lams): # spectrum + vne
204 plt. style .use(’default ’)
205 fig , ax = plt. subplots ( nrows = 2, figsize = (9 ,12))
206 plt. title (’$\chi$ = ’+str(g) +’ ’ + ’N = ’ + str(N))
207 ens = [ sorted (E) for E in ens]
208 ens = [[ ens[i][j] for i in range (len(ens))] for j in range (len(ens [0]))]
209 for e in ens:
210 ax [0]. plot(lams ,e, color = ’black ’)
211 ax [0]. set( xlabel = r"$\ lambda$ ")
212 ax [0]. set( ylabel = ’Energy ’)
213 for c in coups :
214 vnes = coups [c][ ’ans ’]
215 ax [1]. plot(lams ,np. array (vnes),label = c)
216 plt. legend ()
217 ax [1]. set( xlabel = r"$\ lambda$ ")
218 ax [1]. set( ylabel = ’S’)
219
220 def plot_en (ens ,title ,lams): # spektrum only
221 plt. style .use(’default ’)
222 plt. figure ()
223 plt. title (’$\chi$ = ’+str(g) +’ ’)
224 ens = [ sorted (E) for E in ens]
225 ens = [[ ens[i][j] for i in range (len(ens))] for j in range (len(ens [0]))]
226 for e in ens:
227 plt.plot(lams ,e, color = ’black ’)
228 plt. xlabel (r"$\ lambda$ ")
229 plt. ylabel (’Energy ’)
230 #%%
231 g = 0
232
233 coups = {(10 ,2) :{ ’ans ’:0,’ens ’:0} ,
234 (9 ,3) :{ ’ans ’:0,’ens ’:0} ,
235 (8 ,4) :{ ’ans ’:0,’ens ’:0} ,
236 (7 ,5) :{ ’ans ’:0,’ens ’:0} ,
237 (6 ,6) :{ ’ans ’:0,’ens ’:0} ,}
238
239 N = 12
240 lams = np. linspace (0 ,7 ,100)
241 for c in coups :
242 ans = []
243 ens = []
244 for l in lams:
245 ptvne = params_to_VNE (c[0] ,c[1] ,g,l)
246 vnes = ptvne [’vne ’]
247 e = ptvne [’energies ’]
248 print (g,l)
249 ans. append (vnes)
250 ens. append (e)
251 coups [c][ ’ans ’] = ans
252 coups [c][ ’ens ’] = ens
253
254 plot_it_coups (coups , coups [(10 ,2) ][ ’ens ’],g,lams)
255 #%%
256
257 lams = np. linspace (0 ,4 ,100)
258 Gs = np. linspace (0 ,1 ,100)
259
260 Y = Gs
261 X = lams
262 X,Y = np. meshgrid (X,Y)
263
264 res = {g:[] for g in Gs}
265
266 for g in Gs:
267 for l in lams:
268 res[g]. append ( params_to_VNE (3,3,g,l)[’vne ’])
269
270 Z = np. array ([[ float (res[g][i]) for i in range (len(lams))] for g in Gs ])
271
272 #%%
273 plt. figure ( figsize =(8 ,6))
274 im = plt. imshow (Z. transpose () ,
275 origin =’lower ’,
276 cmap = cm.inferno ,
277 extent =[Y.min () , Y.max () , X.min () , X.max ()],
278 aspect = ’auto ’
279 )
280 CBI = plt. colorbar (im ,
281 orientation =’vertical ’,
282 shrink =1,
283 label = ’S’
284 )
285 CS = plt. contour (Y,X,Z. transpose () ,
286 levels = 0,
287 origin =’lower ’,
288 linewidths =1,
289 )
290 plt. xlabel (r"$\chi$")
291 plt. ylabel (r"$\ lambda$ ")
292
293 #%%
294 # 3D plot from different angles
295
296 fi = np. linspace ( -180 ,180 ,120)
297 for f in fi:
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298 my_cmap = plt. get_cmap (’cool ’)
299 fig = plt. figure ()
300 ax = plt.axes( projection =’3d’)
301 #surf = ax. plot_surface (X, Y, Z, cmap = my_cmap , edgecolor =’none ’)
302 #ax. plot_wireframe (X, Y, Z, color = ’red ’)
303 ax. contour3D (X, Y, Z, 20, cmap= my_cmap )
304 ax. view_init (30 , -f)
305 ax. set_xlabel (r"$\chi$", labelpad =20)
306 ax. set_ylabel (r"$\ lambda$ ", labelpad =20)
307 ax. set_zlabel (’S’, labelpad =20)
308 ax.grid( False )
309
310 #%%
311 my_cmap = plt. get_cmap (’cool ’)
312 fig = plt. figure ()
313 ax = plt.axes( projection =’3d’)
314 #surf = ax. plot_surface (X, Y, Z, cmap = my_cmap , edgecolor =’none ’)
315 ax. contour3D (X, Y, Z, 20, cmap= my_cmap )
316 ax. view_init (50 , 5)
317 ax. set_xlabel (r"$\chi$", labelpad =20)
318 ax. set_ylabel (r"$\ lambda$ ", labelpad =20)
319 ax. set_zlabel (’S’, labelpad =20)
320 ax.grid( False )
321 #%%
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