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Introduction
In 1994 Peter Shor introduced a quantum computer algorithm that solves factorization
and discrete logarithm problems in polynomial time. There is no known polynomial-time
algorithm for either of the problems for classic computers. Therefore, recent public-key
cryptography is based on hardness of factorization (RSA) or discrete logarithm (Diffie-
Hellman key exchange). Moreover, these cryptosystems are used in NIST (National
Institute of Standards and Technology) standards. Of course, the threat of quantum
computers is not immediate. For example, NIST suggests using RSA with 2048-bit
keys ([NIoST15]). However, nowadays quantum computers are nowhere near to fac-
toring 2048-bit numbers. Of course, we need to be aware of the threat of attackers
decrypting nowadays ciphertexts in the future. Thus, in 2017 NIST initiated a post-
quantum standardization process (a post-quantum cryptography is a cryptography that
resists quantum computing). As of today, one algorithm for public-key encryption and
key-establishment and three digital signature algorithms have been selected for standard-
ization. Furthermore, there are more four public-key encryption and key-establishment
algorithms submitted for fourth round of the process. It is possible that some of them will
be standardized. One of the fourth-round submissions is Classic McEliece cryptosystem
([ABC+]) based on the cryptosystem proposed by Robert J. McEliece in 1978 ([McE78]).

In this master thesis we discuss different versions of the original McEliece cryptosystem
from 1978 and several attacks against them. The cryptosystem is based on theory of error
correcting codes. It takes advantage of general decoding problem being NP-hard. The
cryptosystem uses a linear error correcting code for which an efficient decoding algorithm
is known. The legitimate user keeps a secret generator matrix of the code which gives
them the power to use the efficient decoding algorithm. On the other hand, an attacker
knows only the public key, i.e., scrambled generator matrix of a different code, which
leaves them with solving the general decoding problem.

In Chapter 1 we give necessary preliminaries regarding cryptography and error-
correcting codes. Then in Chapter 2 we define the original McEliece cryptosystem as well
as the somewhat dual Niederreiter cryptosystem that was proposed by Harrald Nieder-
reiter in [Nie86] in 1986.

Chapter 3 deals with algorithm for finding low weight codeword in linear binary error
correcting code. The algorithm was proposed by Jacques Stern in 1988 in [Ste88]. We also
show how to use the algorithm to construct an attack against McEliece and Niederreiter
cryptosystems. That was proposed in 2008 by Daniel J. Bernstein, Tanja Lange and
Christiane Peters. They also proposed a newer version of the algorithm and stated that
it could break McEliece cryptosystem with the original parameters from 1978 in one week.

The original McEliece proposal used Goppa codes, whereas the original Niederreiter
proposal used GRS codes. The latter was proved insecure in 1992. V. M. Sidelnikov
and S. O. Shestakov described a polynomial-time attack against it in [SS92]. On the
other hand, using Goppa codes has not been proved vulnerable. In Chapter 4 we prove
correctness of Sidelnikov-Shestakov’s attack as well as show how to use it against McEliece
cryptosystem using GRS codes. Furthermore, we give an example of the attack computed
by a SageMath program the code of which can be found in Appendix A.1.

All cryptosystems and attacks that have so far been mentioned use error-correcting
codes with Hamming metric. In Chapter 5 we focus on GPT cryptosystem using
Gabidulin codes. These codes use rank metric and were proposed by Ernst M. Gabidulin
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1985. Later in 1991 E. M. Gabidulin together with A. V. Paramonov and O. V. Tret-
jakov proposed GPT cryptosystem. The cryptosystem takes advantage of same principles
as the original McEliece one. There have been several attacks found against the cryp-
tosystem which resulted in newer version called GGPT proposed by Raphael Overbeck
in 2005. In this chapter we give the necessary background of Gabidulin codes and rank
metric. Then we define GGPT cryptosystem and its corresponding Niederreiter version.
We briefly describe Overbeck’s attack from [Ove05]. In the last section we introduce a
new attack against GGPT cryptosystem without distortion matrix X. We also pinpoint
similarities between GGPT without distortion matrix X and Niederreiter cryptosystem
using GRS codes.
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1. Preliminaries

1.1 Used Notation
If not stated otherwise, let throughout the thesis n, m, k ∈ N and p be a prime.

Notation used in the thesis:

• P denotes the set of prime numbers.

• Fp denotes the finite field with p elements.

• Fpm denotes the finite field with pm elements with characteristic p.

• Fn
p denotes the n-dimensional vector space over Fp.

• v denotes a row vector. That is the usual approach in the theory of error correcting
codes (ECC).

• vi denotes the i-th coordinate of a vector v.

• o denotes the row zero vector (its size will always be properly stated).

• 1 denotes the row vector (1, . . . , 1), its size will always be properly stated as well.

• Given a vector v ∈ Fn and a set of indices I = (i1, . . . , ik) ⊆ {1, n, . . . ,} then
v↾I = (vi1 , . . . , vik

).

• CG denotes the linear error correcting code generated by a matrix G.

• d(CG) denotes the minimum distance of the code CG.

• A−1 denotes the inverse matrix of a square nonsingular matrix A.

• A∗i denotes the j-th column of a matrix A. Similarly A∗{1,...,j} denotes the submatrix
formed by first j columns of a matrix A.

• In the same manner Ai∗ denotes the i-th row of a matrix A and A{1,...,i}∗ the sub-
matrix formed by first i rows of a matrix A.

• Similarly, combining the notation, we denote by A{{1,i,...,}}{{1,j,...,}} the submatrix of
A formed by its first i rows and j columns.

• The linear span of column vectors (v⊤
1 , . . . , v⊤

n ) over finite field F is denoted by
Span

(︂
v⊤

1 , . . . , v⊤
n

)︂
= {∑︁n

i=1 λivi | λi ∈ F}.

• Similarly, the column space of a matrix A is denoted by Span (A).
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1.2 Cryptosystems
In this thesis we examine multiple cryptosystems based on error correcting codes. We
first give the definition of a cryptosystem.

Definition 1. A cryptosystem C is defined as a quintuplet (P , C, K, e, d) where

PP is set of all possible plaintexts,
PC is set of all possible ciphertext,
K is set of all possible keys,
Enc : PP × K → PC is the encryption mapping

and Dec : PC × K → PP is the decryption mapping.

Furthermore, the following holds

∀x ∈ PP ∀k ∈ K ∃k̃ ∈ K : Deck̃((Enck(x)) = x.

We further distinguish public-key (asymmetric) cryptosystems and symmetric cryp-
tosystems. In this thesis we will focus on public-key cryptosystems (PKCs).

A public-key cryptosystem has public key Kpub and private key Kpriv. Public key is
distributed and can be easily computed from private key. On the other hand, private key
is kept secret and it is computationally impossible to obtain private key from public key.
Public key is used for encrypting and private key for decrypting.

If quantum computers were powerful enough they could factor large numbers, which
would threaten PKCs currently used (such as RSA). The numbers used in nowadays
RSA PKC are usually 4096 bit. Nowadays quantum computers can factor much smaller
numbers, thus the threat is not real yet. However, quantum computers might one day in
future decrypt messages send these days. Therefore, in order to be prepared NIST has in
2017 started standardization process for post-quantum cryptography (PQC) Standard.
Note that PQC is cryptography that resists quantum computers. One of the round
4 submissions is Classic McEliece (see [ABC+]), a PKC based on McEliece PKC. The
original McEliece’s proposal will be described in Chapter 2.

1.3 Basic Properties of Error Correcting Codes
As McEliece PKC is based on error correcting codes (ECC), we shall first give basic
properties of ECC. We will namely work with linear codes. In what follows we will by
code always mean linear error correcting code. Such codes form a vector space over the
corresponding finite field and have a generator and parity-check matrix. Furthermore,
every linear code is described by a triple (n, k, d) where n stands for the length of code-
words, k is the dimension of the code, d is the minimal distance of the code. If d is not
important in the moment, we shall omit it and write (n, k)-code instead.

Namely, let F be an arbitrary finite field. An (n, k, d)-code Cover F is a k-dimensional
subspace of Fn. Its generator matrix is any matrix G ∈ Fk×n such that

∀c ∈ C ∃m ∈ Fk : mG = c and
Rank (G) = k.
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On the other hand, its parity-check matrix is any matrix H ∈ Fn−k×n such that

∀c ∈ Fn : cH⊤ = o ⇐⇒ c ∈ C and
Rank (H) = n − k.

The minimal distance of the code is defined with respect to a given metric. In this
thesis we will use Hamming metric and Rank metric. The latter will be defined in
Section 5.1.1.

Definition 2. The Hamming distance of two vectors v, u ∈ Fn is defined as the number of
entries in which they differ. It will be denoted by dH(v, u,). Similarly, wH (v) := dH(v, o,)
denotes the Hamming weight of v.

Remark. It can be easily verified that Hamming distance is a metric.
The minimal distance of a code is bounded by Singleton bound.

Theorem 1. Let C be an (n, k, d)-code. Then d ≤ n − k + 1.

ECC are used as a reliable method to transfer data over channels with error. Every
code can correct number of errors. However, if the number of errors exceeds the limitation
of the code, the transmitted message cannot be corrected.

Theorem 2. [Mac77, p. 10] An (n, k, d)−code can correct up to ⌊d−1
2 ⌋ errors.

After receiving the encoded message, we wish do decode it to obtain the original one.
There is always the brute-force way but we wish to have an efficient algorithm.

Definition 3. Let us have an (n, k)-code C over an arbitrary finite field F with a generator
matrix G such that it can correct up to to t errors. We say that DC is an efficient decoding
algorithm of C if it runs in polynomial time and

∀m ∈ Fk
q ∀e ∈ Fn

q such that wH (e) ≤ t : DC(mG + e) = m.

Definition 4. Let c be a codeword in code with parity-check matrix H. Let e be an
error correctable in the code. Furthermore, assume that c̃ = c + e. Then

c̃H⊤ = c + eH⊤ = cH⊤ + eH⊤ = o + eH⊤

is called syndrome of c̃.

Definition 5. Let C be an (n, k, d)-code that can correct up to t errors. Let H be its
parity-check matrix. A syndrome decoding algorithm is an algorithm that upon input s
returns

• e such that s = eH⊤ and wH (e) ≤ t if such e exists,

• fail otherwise.

The algorithm will be denoted by SH . An efficient syndrome decoding algorithm is such
that runs in polynomial time.
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Remark. A syndrome decoding algorithm has its role in decoding of the received message.
Suppose that we have received c̃ = c + e, a corrupted codeword of some linear error-
correcting code with generator matrix G and parity-check matrix H. We first multiply
the word by the parity-check matrix

c̃H⊤ = cH⊤ + eH⊤ = eH⊤.

Suppose that upon calling the syndrome decoding algorithm, we obtain e (i.e. we do not
obtain fail). Now we can easily compute the original message as

(c̃ − e)G̃

where G̃ is a right inverse to G.

8



2. Original McEliece and
Niederreiter PKC
The McEliece Public-Key Cryptosystem was originally introduced by Robert J. McEliece
in [McE78]. It is a PKC based on coding theory originally using Goppa Codes. Over the
years there have been many proposal using same scheme but different codes. However,
Goppa codes still remain most secure variant.

In [Nie86] Harald G. Niederreiter proposed a PKC similar to the McEliece one. The
Niederreiter cryptosystem is somewhat dual to the McEliece PKC and will be described
later in the chapter. Both cryptosystems use codes with Hamming weight.

We will omit the definition and construction of Goppa codes and focus rather on the
general properties of the cryptosystem.

2.1 Description of McEliece PKC
We defined the cryptosystem independently of the used code.

Parameters

• Choose p ∈ P and m, n, t ∈ N such that t << n.

Key generation

1. Choose Gpriv ∈ Fk×n
pm to be a generator matrix of a linear (n, k)-code over Fpm

such that it can correct up to t errors and that there exists an efficient decoding
algorithm DGpriv

. Here k is chosen to be maximal given n, t.

2. Choose random nonsingular matrix S ∈ Fk×k
pm and a random permutation matrix

P ∈ Fn×n
pm .

3. Compute Gpub := SGprivP .

4. Let
Kpub = (Gpub, t)

be a public key and
Kpriv = (Gpriv, S, P )

be a private key.

Encryption The sending party generates a random vector e ∈ Fn
pm such that wH (e) = t

and then encrypts a plaintext m ∈ Fk
pm as

EncKpub
(m) = mGpub + e.
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Decryption After receiving the ciphertext c, the legitimate user decrypts it as

DecKpriv
(c) =

(︂
DGpriv

(︂
cP −1

)︂)︂
S−1.

Theorem 3. Using the notation as above, DecKpriv
(EncKpub

(m)) = m.

Proof. Let us denote EncKpub
(m) by c. We know that ∃e ∈ Fn

pm , wH (e) = t such that

c = mGpub + e

= mSGprivP + e.

Thus,

cP −1 = mSGpriv + eP −1.

Note that wH (e) = wH (eP −1), therefore DGpriv
(cP −1) = mS. Multiplying the right-

hand side by S−1 yields m.

2.2 Security of McEliece PKC
The McEliece scheme is based on the fact that General Decoding Problem is NP-complete
(proved in [BMvT78]).

Definition 6 (General Decoding Problem [BMvT78]). Let C be an (n, k)-binary linear
code. Let y be the received word, H be an (n − k) × n parity-check matrix and yH⊤ be
the syndrome of y. Find the minimum-weight z0 such that yH⊤ = z0H

⊤.

If the given linear code is not an arbitrary code, but has some useful structure, there
are known efficient decoding algorithms. An example of such codes are alternant codes
or GRS codes.

Theorem 4. [Gab01, SEction 2.2] There are known efficient decoding algorithms for
GRS codes.

Definition 7. [Gab01, p. 20] Let C be an (n, k)-GRS (Generalized Reed-Solomon) code
over Fpm . Consider the subcode Ca consisting of all codewords with all coordinates in
the base field Fp. The code Ca is an alternant code.

There are mainly two algorithms for efficient decoding: Peterson algorithm and
Berlekamp-Massey algorithm.

Example of alternant codes are Goppa codes ([Gab01, p. 19]). Interestingly, binary
Goppa codes give us better minimal distance then general Goppa codes (see [Gab01,
p. 23-24]). That is one of the reasons we choose (irreducible) binary Goppa codes to use
in the McEliece scheme. Even the Classic McEliece ([ABC+]), a candidate for NIST PQC
standardization, is based on binary Goppa codes.

After receiving the ciphertext c = mGpub +e, the legitimate user possessing the secret
matrix Gpriv can easily and efficiently compute the original plaintext m. On the other
hand, the adversary knowing only the matrix Gpub has very little information about the
used code and has to solve general decoding problem to recover the plaintext.
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2.3 Further Comments on McEliece PKC
In the McEliece PKC we multiply the private matrix Gpriv from left by a nonsingular
matrix S and from right by a permutation matrix P . We will now discuss the importance
and cryptographic impact of both multiplications. This section is inspired by [EOS06,
p. 15].

2.3.1 Matrix S
Let us first focus on the nonsingular matrix S. This multiplication obviously has no
impact on the generated code, because matrices Gpriv and SGpriv generate the same
error-correcting code.
Theorem 5. Let Gpriv ∈ Fk×n

pm and let S ∈ Fk×k
pm be a nonsingular matrix. Then matrices

Gpriv and SGpriv generate the same error correcting code.
Proof. Suppose c = xSGpriv is a codeword in CSGpriv

, where x ∈ Fk
pm . Then obviously

c = (xS)Gpriv is also a codeword in CGpriv
.

On the other hand, assume that c′ = yGpriv is a codeword in CGpriv
, where y ∈ Fk

pm .
Matrix S is nonsigular, therefore there exists z ∈ Fk

pm such that z = yS−1. Now we see
that c = ySGpriv is also a codeword in CSGpriv

.

We might therefore think that the multiplication by S is not necessary. But imagine
if the generator matrix G was in standard form.
Definition 8. [Rom96, p. 201] A k × n matrix G is in (left) standard form if it has the
form

G =
(︂
Ik G̃

)︂
where Ik is an identity matrix of size k and G̃ is a matrix of size k × (n − k)

If it was the case, the encrypted text would be
EncKpub

(m) = mGpub + e = (m1, m2, . . . , mk, g̃k+1, . . . , g̃n) + e.

Where m = (m1, . . . , mk) is the plaintext the user wishes to securely transfer and
g̃k+1, . . . , g̃n are arbitrary (for our purposes) values. Adding e changes only t << k
values. Note that t = ⌊d−1

2 ⌋ ≤ n−k
2 . If n < 3k then n−k

2 < k. Thus, if n < 3k, using
matrix in standard form reveals at least one position of the plaintext.

Of course, the matrix could be in somewhat ”nearly standard form” and might reveal
part of the plaintext too. To avoid such threats, we multiply the original generator matrix
by random nonsingular matrix. This way we do not change the code and its properties,
but mask unuseful properties of the matrix Gpriv.

McEliece ([McE78]) suggests the nonsingular matrix S to be dense. Intuitively mul-
tiplying by dense matrix hides more information then multiplying by sparse matrix.

2.3.2 Not Every Dense Matrix Is a Good Matrix
Let G be a generator matrix in standard form of an (n, k)-code. Let T be a nonsingular
dense matrix. Suppose that the legitimate user generates a private matrix Gpriv = TG.
Further assume that the user generates a nonsingular dense matrix S such that S = T −1.
The user then publishes what they think is a scrambled generator matrix Gpub = STG =
G. The encryption now reveals first k indices of the plaintext.
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2.3.3 Matrix P
The permutation matrix P is the one that is cryptographically more important. Although
mathematically, codes generated by Gpriv and GprivP are by definition equivalent (which
means they differ only in the order of the symbols - see [Mac77, p. 24]). The purpose of
this multiplication is to change the code so that the attacker cannot recover the plaintext.

2.3.4 Without Matrix P
Let us investigate what would happen if there were no matrix P . Or equivalently, imagine
what would happen if P = In.

Let Gpriv be a generator matrix of an (n, k)-binary Goppa code, Gpub = SGprivIn

be the scrambled generator matrix. Let m be the plaintext and c = mGpub + e be the
ciphertext.

The adversary can easily use one of the fast decoding algorithms because as we know,
the code generated by Gpriv is the same as the one generated by SGpriv. Thus, the
adversary has the generator matrix of the right code.

2.4 Description of Niederreiter PKC
In this section we will introduce the Niederreiter PKC. As mentioned before, it resembles
the McEliece one. However, instead of using generator matrix we use a parity-check
matrix to encrypt an error vector. Hence, ciphertexts are syndromes of an error correcting
code.

The original Niederreiter’s proposal ([Nie86]) used Generalized Reed Solomon (GRS)
codes instead of Goppa codes. Unfortunately, using GRS codes was proved to be insecure
in 1992. In [SS92] V. M. Sidelnikov and S. O. Shestakov described an algorithm that
breaks the cryptosystem in polynomial time. The attack is described in Chapter 4.1.
When used with Goppa codes, the Niederreiter scheme is believed to be secure. In fact,
in this case the security of McEliece and Niederreiter cryptosystems is equivalent ([EOS06,
p. 8]).

Parameters

• Choose p ∈ P and m, n, t ∈ N such that t << n.

Key generation

1. Choose Hpriv ∈ F(n−k)×n
pm to be a parity-check matrix of a linear (n, k)-code over Fpm

such that it can correct up to t errors and that there exists an efficient syndrome
decoding algorithm SHpriv

. Again, k is chosen to be maximal given n, t.

2. Choose random nonsingular matrix M ∈ F(n−k)×(n−k)
pm and a random permutation

matrix P ∈ Fn×n
pm .

3. Compute Hpub := MHprivP .

12



4. Let
Kpub = (Hpub, t)

and
Kpriv = (M, Hpriv, P )

be a public and a private key, respectively.

Encryption The sending party wishing to securely send a plaintext e ∈ Fn
pm of weight

t sends

EncKpub
(e) = eH⊤

pub.

Decryption Upon receiving the ciphertext c, the legitimate user decrypts it as

DecKpriv
(c) =

(︃
SHpriv

(︃
c ·
(︂
M⊤

)︂−1
)︃)︃

·
(︂
P ⊤

)︂−1
.

Theorem 6. The decryption always returns the original ciphertext, i.e.

DecKpriv
(EncKpub

(e)) = e.

Proof. Let us denote EncKpub
(e) by c. We know that

c = eH⊤
pub

and

Hpub = MHprivP.

Thus,

c
(︂
M⊤

)︂−1
= eH⊤

pub

(︂
M⊤

)︂−1

= eP ⊤H⊤
priv,

SHpriv
(eP ⊤H⊤

priv) = eP ⊤.

Multiplying eP ⊤ by
(︂
P ⊤

)︂−1
gives us the desired e.

Remark. We could wonder why the plaintext needs to have Hamming weight equal to t.
For the encryption and decryption to work it is sufficient to have wH (e) ≤ t. However, if
the weight was too small, there would be an easy brute-force attack. Imagine the extreme
case when wH (e) = 1. The attacker only needs to go through n possible plaintexts and
check if they equal the ciphertext. Thus, we want to use the maximal possible weight.
Of course, if wH (e) = n − 1, there would similarly be an easy attack. However, the
Hamming weight of e is bounded by t which is significantly smaller then n.

13



3. Stern’s Attack
In 1989 Jacques Stern proposed a probabilistic algorithm that finds a codeword of small
weight in a given linear binary code. We will briefly comment the algorithm that can
be found in [Ste88]. Afterwards, we show how to use the algorithm for breaking special
cases of McEliece and Niederreiter scheme. That part will be based on [BLP08].

3.1 Stern’s Algorithm
Let CG be a linear binary (n, k, d)-code with a parity-check matrix H ∈ F(n−k)×n

q . Let
ω ∈ N be the desired small weight. Then the algorithm takes (H, ω) as input and
outputs a codeword x ∈ CG such that wH (x) = ω. The algorithm takes two parameters
p and l.

Algorithm 1: Basic Stern’s Attack
Input: H ∈ F(n−k)×n

2 , ω ∈ N
Parameters: p ≤ ω

2 , l ≤ n − k
Output: x ∈ Fn

2 such that xH⊤ = o and wH (x) = ω
1 K := ∅, M := ∅, i := 1
2 Set H ′ := H, while |K| < n − k do
3 randomly choose mi ∈ {1, . . . , n} \ M ,
4 if ∃ki ∈ {1, . . . , n − k} \ K such that Hkimi

is a pivot then
5 M = M ∪ {mi},
6 K = K ∪ {ki},
7 find the row equivalent matrix of H ′ with the mi-th column of weight

equal to 1,
8 denote the row equivalent matrix by H ′,
9 i := i+1.

10 Set I := {1, . . . , n} \ M, X := ∅, Y := ∅.
11 for i ∈ I do
12 put the index i randomly (uniformly) and independently either into X or Y .
13 Choose randomly a set of row indices J ⊆ {1, . . . , n − k} such that |J | = l.
14 for all A ⊆ X and all B ⊆ Y such that |A| = |B| = p do
15 π(A) := H ′

JA · 1⊤,
16 π(B) := H ′

JB · 1⊤.

17 for all pairs A, B do
18 if π(A) = π(B) then
19 V := H ′

∗A∪B · 1⊤ ∈ Fn−k
2

20 if wH (V ) = ω − 2p then
21 define y ∈ Fn

2 such that ∀m ∈ {1, . . . , n} : ym = 1 ⇐⇒ m ∈ A ∪ B
22 define z ∈ Fn

2 such that ∀m ∈ {1, . . . , n} : zm = 1 ⇐⇒
(∃i ∈ {1, . . . , n} such that m = mi ∈ M and Vki

= 1)
23 return x = y + z ∈ Fn

2

24 return failure

14



In what follows we will use the notation used in Algorithm 1.

Observation. We assume rank(H) = n − k, thus the while loop terminates at last.
The algorithm always stops after finitely many steps. Furthermore, if H is a parity-
check matrix of an MDS code, then any n − k columns are linearly independent, thus the
Gauss-Jordan elimination always succeeds.

Lemma 7. If x ∈ CG then x(H ′)⊤ = o for every H ′ we obtain in the algorithm.

Proof. Any matrix H ′ was obtained from H by elementary row operations, thus there
exists a nonsingular matrix R ∈ F(n−k)×(n−k)

2 such that H ′ = RH. Thus, x(H ′)⊤ =
xH⊤R⊤ = o.

Lemma 8. [Ste88, proposition 1] If the algorithm returns x ∈ Fn
2 , then x ∈ CG and

wH (x) = ω.

Proof. We first prove that x returned by the algorithm is a codeword of CG. Let x = y+z
be as defined in Steps 21-22 of the algorithm. It is clear that

xH ′⊤ = yH ′⊤ + zH ′⊤.

From definition of y we obtain that
n∑︂

m=1
ym · (H ′)∗m = V.

Similarly, it is easily seen that
n∑︂

m=1
zm · (H ′)∗m = V.

Altogether xH ′⊤ = o. Lemma 7 then implies that x ∈ CG.
Obviously,

wH (x) = wH

(︂
y
)︂

+ wH (z) − |{m ∈ {1, . . . , n}| ym = 1 = zm}|.

From definition of y and z we see that

wH

(︂
y
)︂

= |A ∪ B| = 2p,

wH (z) = wH (V ) = ω − 2p.

Furthermore, assume that m ∈ {1, . . . , n} : ym = 1 = zm. Then again by definition we
have

ym = 1 ⇐⇒ m ∈ A ∪ B ⇒ m /∈ M,

zm = 1 ⇐⇒ ∃i ∈ {1, . . . , n} : m = mi and Vki
= 1 ⇒ m ∈ M.

Thus, |{m ∈ {1, . . . , n}| ym = 1 = zm}| = 0 and wH (x) = ω.

Theorem 9. [Ste88, proposition 2] Let x̃ ∈ CG and J, X, Y be the sets of indices chosen
in Steps 11-13 of Algorithm 1. If ∃Ã ⊆ X, |Ã| = p and ∃B̃ ⊆ Y, |B̃| = p such that

(P.1) wH (x̃) = ω,
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(P.2) ∀i ∈ X :
(︂
x̃i = 1 ⇐⇒ i ∈ Ã

)︂
,

(P.3) ∀i ∈ Y :
(︂
x̃i = 1 ⇐⇒ i ∈ B̃

)︂
,

(P.4) ∀mi ∈ NJ : x̃mi
= 0 where NJ := {mi | i ∈ {1, . . . , n − k}, ki ∈ J}

then Algorithm 1 succeeds.
Proof. Assume that we are in Step 17 of the algorithm and

A = Ã,

B = B̃.

We will show that then the algorithm return x̃. Note that the algorithm might return
different codeword if it finds it first. However, the important thing is that the algorithm
succeeds.

Let us first show the algorithm proceeds into Step 19. Or equivalently that π(Ã) =
π(B̃). We know that x̃H⊤ = x̃ (H ′)⊤ = o due to Lemma 7. Thus,∑︂

m∈Ã∪B̃

H ′
∗mx̃m +

∑︂
m∈(X∪Y )\(Ã∪B̃)

H ′
∗mx̃m +

∑︂
m/∈X∪Y

H ′
∗mx̃m = o

and we furthermore obtain
H ′

∗Ã∪B̃1⊤ =
∑︂

m∈Ã∪B̃

H ′
∗mx̃m

=
∑︂

m/∈X∪Y

H ′
∗mx̃m +

∑︂
m∈(X∪Y )\(Ã∪B̃)

H ′
∗mx̃m

=
∑︂

m/∈X∪Y

H ′
∗mx̃m + o

=
n−k∑︂
i=1

H ′
∗mi

x̃mi

The first equality holds due to (P.2) and (P.3) and the last equality is just reindexing of
the sum.

It is sufficient to show that
π(Ã) + π(B̃) = HJÃ · 1⊤ + HJB̃ · 1⊤

= HJÃ∪B̃ · 1⊤

=
n−k∑︂
i=1

H ′
Jmi

x̃mi

= o.

The last equality holds due to (P.4). Note that over F2 we have π(Ã) + π(B̃) = o ⇐⇒
π(Ã) = π(B̃).

Let us now compute the Hamming weight of V := H ′
∗Ã∪B̃

· 1⊤ to show that the
algorithm proceeds into Step 21. A trivial verification shows that

wH (V ) = wH

(︄
n−k∑︂
i=1

H ′
∗mi

x̃mi

)︄
= |{mi|i ∈ {1, . . . , n − k}, x̃mi

= 1}|
= wH (x̃) − |Ã| − |B̃|
= ω − 2p.
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Here we took advantage of the fact that the columns H ′
∗mi

have Hamming weight equal
to 1.

Finally, we get that y + z = x̃ and thus the algorithm returns x̃. We shall divide the
indices {1, . . . , n} into three disjoint sets

{1, . . . , n} = (Ã ∪ B̃) ∪
(︂
(X ∪ Y ) \ (Ã ∪ B̃)

)︂
∪ M

where M = {m1, . . . , mn−k} and examine the equality of the two vectors on each set
individually. By definition

x̃↾Ã∪B̃ = 1,

y
↾Ã∪B̃

= 1,

z↾Ã∪B̃ = o

and

x̃↾(X∪Y )\(Ã∪B̃) = o,

y
↾(X∪Y )\(Ã∪B̃) = o,

z↾(X∪Y )\(Ã∪B̃) = o.

Thus

x̃↾Ã∪B̃ = y
↾Ã∪B̃

+ z↾Ã∪B̃,

x̃↾(X∪Y )\(Ã∪B̃) = y
↾(X∪Y )\(Ã∪B̃) + z↾(X∪Y )\(Ã∪B̃)

and it suffices to show the same for indices from M . From definition of y we see

y
↾M

= o.

Let us divide M = NJ ∪ (M \ NJ). From (P.4) we know that

x̃↾NJ
= o.

Obviously, if mi ∈ NJ then ki ∈ J and Vki
= π(Ã) + π(B̃) = 0. Therefore,

z↾NJ
= o.

Finally, we need to examine z↾M\NJ
and x̃↾M\Nj

. By definition we know

wH (z) = wH (V ) = ω − 2p = wH

(︂
z↾M\NJ

)︂
.

The last equality comes from what we have so far examined. Similarly, by (P.1) and by
what we have so far obtained, we know that

wH

(︂
x̃↾M\Nj

)︂
= ω − |Ã ∪ B̃| = ω − 2p.

Moreover, note for m ∈ M \ NJ the following holds:

zm = 0 ⇒ Vki
= 0 ⇒ m /∈ Ã ∪ B̃ ⇒ x̃m = 0.

The last equality holds due to (P.2) and (P.3). Altogether,

x̃↾Nj
= y

↾Nj
+ z↾Nj

,

.x̃↾M\Nj
= y

↾M\Nj
+ z↾M\Nj

.
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Definition 9. Let x ∈ Fn
2 such that xH⊤ = o and wH (x) = ω. Then (X, Y, NJ) is said

to be a favourable triple with respect to x if

(S.1) wH

(︂
x↾X

)︂
= p,

(S.2) wH

(︂
x↾Y

)︂
= p,

(S.3) x↾NJ
= o where NJ := {mi | i ∈ {1, . . . , n − k}, ki ∈ J}.

We now wish to compute the probability of success of the algorithm. We could
compute the probability that the random choices in the algorithm choose desired triple
X, Y, NJ . However, we only estimate it by the probability that uniformly randomly chosen
triple (X, Y, N) is a favourable triple with respect to x.

Theorem 10. [Ste88, theorem 1] Let x such that xH⊤ = o and wH (x) = ω. Let X, Y, N
be an uniformly randomly chosen triple such that

• X, Y, N ⊆ {1, . . . , n},

• X, Y, N are disjoint,

• |X ∪ Y | = |X| + |Y | = k,

• |N | = l.

Then the probability that (X, Y, N) is favourable w.r.t x is equal to(︂
ω
2p

)︂(︂
n−ω
k−2p

)︂
(︂

n
k

)︂ ·

(︂
2p
p

)︂
22p

·

(︂
n−k−ω+2p

l

)︂
(︂

n−k
l

)︂ .

Proof. Note that (S.1) and (S.2) are mutually independent events from (S.3).
The first factor is the probability that X ∪ Y is chosen such that wH

(︂
x↾X∪Y

)︂
= 2p.

The total number of possibilities how to choose X ∪ Y is
(︂

n
k

)︂
, thus the denominator. The

Hamming weight of x is ω. Therefore, we need to choose exactly 2p indices out of ω and
exactly k − 2p indices out of n − ω.

Once we assume wH

(︂
x↾X∪Y

)︂
= 2p, the events (S.1) and (S.2) are equivalent. The

probability of such conditioned event is then the second factor from the theorem. We
want to choose X out of X ∪ Y such that wH

(︂
x↾X

)︂
= p.

Finally, the probability that the right N is chosen is the third factor. We need to
choose l indices out of n − k − (ω − 2p) indices on which x is zero.

Theorem 11. [Ste88, Chapter 4] The computational complexity of the basic attack is
approximately

1
2(n − k)3 + k(n − k)2 + 2lp

(︄
k
2
p

)︄
+ 2p(n − k)

(︂
k
2
p

)︂2

2l
.
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J. Stern showed that for binary code with parameters

n = 300,

k = 150,

ω = 20,

p = 3,

l = 16

the time complexity would be approximately 6 · 107 operations of processor.
R. J. McEliece in his [McE78] proposed to use binary Goppa codes with parameters

n = 1024,

k = 524,

t = 50.

In [BLP08] a new version of Stern’s attack is presented. It is stated in Chapter 6 of
[BLP08] that the new attack would break McEliece cryptosystem with parameters origi-
nally proposed by McEliece in one week.

3.2 Stern’s Attack on McEliece PKC
In this section we will show how to use Stern’s attack to break McEliece cryptosystem
over F2. Note that the success of the attack depends on success of Stern’s attack. Thus,
only cryptosystems based on codes with smaller parameters are vulnerable. The attack
is based on [BLP08, p. 35].

Assume that the legitimate user had generated matrices Gpriv, M, P and published
the McEliece public key (Gpub, t) where Gpub = SGprivP ∈ Fk×n

2 . Here Gpriv and Gpub are
generator matrices of (n, k, d)-code and t := ⌊d−1

2 ⌋.
Suppose the sending party wants to send a message m which they encrypt as

y = mGpub + e = c + e.

Here e is the error generated by sending party such that wH (e) = t.
Attacker then eavesdrops y and knows the public key (Gpub, t). The algorithm of the

attack is then as follows.
Algorithm 2: Stern-McEliece Attack

Input: Gpub, t, y
Output: c such that y = mGpub + e = c + e and wH (e) = t

1 Extend the generator matrix Gpub by vector y to obtain

Gy =
(︄

Gpub

y

)︄
∈ F(k+1)×n

2 .

2 Compute the parity-check matrix H ′ of CGy .
3 Run Stern’s algorithm to find a codeword x ∈ CGy such that wH (x) = t.
4 return y − x ∈ CGpub

.
We shall now discuss the correctness of the algorithm.
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Observation. The newly obtained generator matrix Gy generates code

CGy = CGpub
+ {o, y}.

Lemma 12. The codeword x found in the Algorithm 2 equals y − c.

Proof. We first show that y − c could be the desired x. We need to show that y − c ∈
CGy and that wH

(︂
y − c

)︂
= t. The first condition is obviously fulfilled. Furthermore,

wH

(︂
y − c

)︂
= wH (e) = t. Thus, the second conditions is fulfilled too.

Secondly, we prove that this solution is unique. For contradiction, suppose there exists
another solution than x = y − c. Obviously, x ∈ CGy \CGpub

because d(CGpub
) = 2t+1 > t.

Let

x = y − c ∈ CGpub
,

x′ = y − c′ ∈ CGpub

where c′ ∈ CGpub
such that wH (x′) = t and x ̸= x′. It is evident that

x − x′ = (y − c) − (y − c′) = c′ − c ∈ CGpub
.

However, using the triangle inequality we see

wH (c′ − c) = wH (c′ + c) ≤ wH (c′) + wH (c) = 2t < 2t + 1.

That implies wH (c′ − c) = 0 and we thus get c′ = c. The equality implies that x = x′

which contradicts our assumption.

Corollary 13. Given Gpub, t, y the Algorithm 2 returns c such that y = c + e and ∃m :
mGpub = c.

Observation. After performing the attack, attacker knows c, Gpub, t. They want to find
m such that mGpub = c. They only need to compute X ∈ Fn×k

2 such that GpubX = Ik,
which can be done in polynomial time using Gaussian elimination. Then they can easily
compute cX = mGpubX = m.

Note that solving a linear system of at most n equations and n indeterminates by
Gaussian elimination has complexity O(n3) (see [BT, p. 65]). Therefore, the computation
of X has complexity O(kn3).

3.3 Stern’s Attack on Niederreiter PKC
We can attack Niederreiter PKC similar way as McEliece PKC. Let (Hpub, t) be the public
key of a Niederreiter PKC. Thus, Hpub is a parity-check matrix of an (n, k, d)-binary code
CGpub

. Let t := ⌊d−1
2 ⌋ be the maximum number of errors the code can correct. Let

e ∈ Fn
2 , wH (e) = t be the Niederreiter plaintext and c = eH⊤

pub be the Niederreiter
ciphertext. The attacker knows Hpub, t and overhears c.

Observation. Let Hpub, Gpub, e, c be as stated above. Assume that y ∈ Fn
2 such that

c = yH⊤
pub. Then

(︂
y − e

)︂
Hpub

⊤ = o, thus

y − e ∈ CGpub
.
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Furthermore, we know that

∃!m ∈ Fk
2 : mGpub = y − e.

Therefore, y − mGpub = e.

Using the observation we can construct the following attack which is briefly described
at [BLP08, p. 35].

Algorithm 3: Stern-Niederreiter Attack
Input: Hpub, t, c
Output: e such that wH (e) = t and c = eHpub

⊤

1 Compute the generator matrix Gpub.
2 Find an y ∈ Fn

2 such that yH⊤
pub = c.

3 Run Stern-McEliece attack with input Gpub, t, y to obtain mGpub.
4 return y − mGpub.

We shall now discuss the correctness of the attack. Computation of Gpub is doable
by means of basic linear algebra in polynomial time. So is finding y as we only need to
solve a system of n − k linear equations with n variables. Stern-McEliece attack in Step
3 returns mGpub such that y = mGpub + e′ where wH (e′) = t. However, we showed in the
observation that then e′ = e. Therefore,

y − mGpub = e

and

eH⊤ =
(︂
y − mGpub

)︂
H⊤ = yH⊤ = c.
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4. Sidelnikov-Shestakov’s Attack
In this chapter we will first describe Sidelnikov-Shestakov’s attack on the original Nieder-
reiter PKC based on GRS codes. Then we will show how to use the attack to break
McEliece PKC based on GRS codes. Finally, we will give an example of the attack
against Niederreiter PKC.

For brevity of notation, we will throughout the chapter denote Hpriv by H and Hpub

by K. Moreover, let throughout the chapter q be a power of a prime number.

4.1 Sidelnikov-Shestakov’s Attack on the Original
Niederreiter PKC

In this section we will describe the found attack by V. M. Sidelnikov and S. O. Shestakov.
The section is based on [SS92], [EOS06] and partially on [Hru14].

It is crucial for the attack that the Niederreiter scheme is being used with the GRS
code. V. M. Sidelnikov and S. O. Shestakov in 1992 thought that Goppa codes could be
attacked by similar algorithm. However, it has been 30 years, and nobody has found a
way to apply this attack to Goppa codes. The reason might be that Goppa codes are
constructed over Fpm but interpreted over Fp for p ∈ P and m ∈ N.

4.1.1 Brief Overview of the Attack
Throughout the section we will focus on (n, k, d)-GRS codes. Parity-check matrices of
such codes are of size (s + 1) × n. Where s = n − k − 1.

The attack finds an alternative private key in O(s4 + sn) steps which makes it an
efficient attack. We will show that an alternative private key is sufficient to decrypt any
intercepted message.

Definition 10. Let Kpriv be the private key belonging to the legitimate user. We say
that K′

priv is an alternative private key if it produces the same public key as Kpriv. An
alternative private key might or might not be the same as the original one.

The parity check matrix of an (n, k, d)-GRS code over Fq depends on values α =
(α1, . . . , αn) ∈ Fq and z = (z1, . . . , zn) ∈

(︂
F∗

q

)︂n
(see Definition 15). Assume that the

legitimate user has generated private and public keys using α, z and matrices P, M . The
attacker finds alternatives β, y and a matrix M̃ . Note that the attacker does not have to
look for the matrix P . The reasons are discussed just before Lemma 15.

The structure of the attack is as follows.

1. The very first step of the attack is to extend Fq into F∞ = Fq ∪ {∞}. The con-
struction is based on projective line P1(Fq). See Section 4.1.2.

2. We state the notation of parity-check matrix and extend the definition over F∞.
We show that knowing the alternative private key is sufficient for breaking the
cryptosystem. See Section 4.1.3.

3. In Section 4.1.4 we show that we can find the private key up to birational transfor-
mation over F∞.
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4. In Section 4.1.5 we finally give an algorithm that finds values γ1, . . . , γn ∈ F∞. We
transform these values to β1, . . . , βn ∈ Fq in Section 4.1.6.

5. In Sections 4.1.7, 4.1.8 and 4.1.9 we will not need F∞ anymore. By means of
basic linear algebra we find values y1, . . . , ys+2, then the matrix M̃ and finally the
remaining values ys+3, . . . , yn.

4.1.2 Defining F∞

In this section we will define F∞ = Fq ∪ {∞}. The motivation (which we will explain)
for defining such set comes from the theory of projective space. More on the subject can
be found e.g. in [Mor91].

Projective line P1(Fq)

Definition 11. The projective line over Fq denoted by P1(Fq) consists of all equivalence
classes of pairs (ξx, ξy) ∈ F2

q with at least one of ξx, ξy nonzero. The equivalence relation
is given by

(ξx, ξy) ∼ (ζx, ζy) ⇐⇒ ∃λ ∈ F∗
q : (λξx, λξy) = (ζx, ζy).

The equivalence class of (ξx, ξy) is denoted by so called homogeneous coordinates (ξx : ξy).

Remark. Points of the form (ξx : 1) ∈ P1(Fq) are called affine points of the projective
line. On the other hand, the point (1 : 0) ∈ P1(Fq) is called the point at infinity.

Definition 12. Let f(x) = ∑︁degf
i=0 aix

i be a polynomial over Fq with degf ≤ s. The
corresponding homogenized polynomial will be denoted by

f̄(x, y) =
degf∑︂
i=0

aix
iydegf−i.

We shall define a corresponding homogenized polynomial of degree s as

f̃(x, y) = ys−degf f̄(x, y).

Observation. Let f(x) be as in the definition above. Let ξ = (ξx, 1) be a representant of
(ξx : 1) ∈ P1(Fq). Then

f̃(ξx, 1) = 1s−degf · f̄(ξx, 1) =
degf∑︂
i=0

ai · ξi
x · 1degf−i = f(ξx).

On the other hand, let ξ = (1, 0) be a representant of the point at infinity of P1(Fq).
Then

f̃(1, 0) = 0s−degf · f̄(1, 0) = 0s−degf ·
degf∑︂
i=0

ai · 1i · 0degf−i =
{︄

as if degf = s,
0 otherwise.
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Correspondence between P1(Fq) and F∞

Definition 13. Define F∞ = Fq ∪ {∞} such that

∀x ∈ F∗
q : x

0 = ∞,

∀x ∈ F∗
q : x

∞
= 0,

∀f(x) =
s∑︂

i=0
aix

i ∈ Fq[x] : f(∞) = as.

Remark. There is a bijection between projective line P1(Fq) and F∞ as follows:

π : P1(Fq) → F∞

∀ξx ∈ Fq : (ξx : 1) ↦→ ξx,

(1 : 0) ↦→ ∞.

Thus, the infinity corresponds to the projective point at infinity of the projective line
over Fq. We can also see, that the value of ∞ in f(x) is well defined as

f(∞) = f̃(1, 0).

Remark. From now on we will identify P1(Fq) with F∞ in means of the previous remark.

4.1.3 Parity-check Matrix and Notation
Definition 14. [Mac77, p. 333] Let α ∈ Fn

q have pairwise distinct entries and v ∈ Fn
q

have nonzero entries. Then

G1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 v2 . . . vn

v1α1 v2α2 . . . vnαn
... . . . ...

v1α
i
1 v2α

i
2 . . . vnαi

n
... . . . ...

v1α
k−1
1 v2α

k−1
2 . . . vnαk−1

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a generator matrix of an (n, k)-GRS code.

Lemma 14. [Mac77, p. 333] Let CG1 be as in the definition above. Then exists z ∈ Fn
q

with nonzero entries such that

G2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1 z2 . . . zn

z1α1 z2α2 . . . znαn
... . . . ...

z1α
i
1 z2α

i
2 . . . znαi

n
... . . . ...

z1α
n−k−1
1 z2α

n−k−1
2 . . . znαn−k−1

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a parity-check matrix of CG2.

Observation. Assume G2 is the matrix defined in the previous lemma. Then G2 is a
generator matrix of an (n, n − k)-GRS code.

24



Definition 15. Let α = (α1, . . . , αn) ∈ Fn
∞ and z = (z1, . . . , zn) ∈ Fn

q such that

∀i, j ∈ {1, . . . , n} : i ̸= j ⇒ αi ̸= αj,

∀i ∈ {1, . . . , n} : zi ̸= 0.

If j ∈ {1, . . . , n} such that αj ∈ Fq then the j=th column of a parity-check matrix of a
GRS code defined by α and z will be denoted by

H(α, z)∗j =

⎛⎜⎜⎜⎜⎝
zjα

0
j

zjα
1
j

...
zjα

s
j

⎞⎟⎟⎟⎟⎠ .

Consistently with Definition 13 if j ∈ {1, . . . , n} : αj = ∞, then

H(α, z)∗j =

⎛⎜⎜⎜⎜⎝
0
...
0
zj

⎞⎟⎟⎟⎟⎠ .

Remark. From now on when working with H(α, z) we will implicitly assume that α has
pairwise distinct values and z has nonzero values.
Remark. Suppose that the legitimate user had generated a parity-check matrix H(α̃; z̃) ∈
F(s+1)×n

q , a nonsingular matrix M ∈ F(s+1)×(s+1)
q and a permutation matrix P ∈ Fn×n

q and
published the product K = MH(α̃; z̃)P .

The aim of the attack is to find an alternative private key given the public key K.
Hence, the attacker wants to find an alternative decomposition

K = M̃H(β; y)P̃,

where M̃ ∈ F(s+1)×(s+1)
q is nonsingular, H(β; y) ∈ F(s+1)×n

q is a parity-check matrix of an
(n, k, d)-GRS code and P̃ ∈ Fn×n

q is a permutation matrix.
However, there is no need to find the matrix P̃ . The reason is that there exists a GRS

code equivalent to the original one (the one the legitimate user used) such that H(α̃i; z̃i)P
is its parity-check matrix. The equivalence is defined by the permutation given by the
matrix P . In particular, the attacker only needs to find M̃, β and y.
Lemma 15. Suppose K is the known public key, (M, H(α̃, z̃), P ) is the secret private
key. Assume the attacker has found an alternative decomposition of the secret key K =
M̃H(β, y). Then after intercepting a ciphertext c, the attacker can decipher it to obtain
the original plaintext.
Proof. The sending party wishes to send m and encrypts it as c := mK⊤. After eaves-
dropping on the conversation, the attacker knows c. They multiply it by

(︂
M̃⊤

)︂−1
to

obtain m
(︂
H(β, y)

)︂⊤
. Now they only need to proceed with the syndrome decoding algo-

rithm to obtain m.

Remark. It might seem that the attacker has a quicker way of obtaining the plaintext
than the legitimate party. However, the legitimate party may use the syndrome decoding
algorithm with matrix H(α̃, z̃)P instead of H(α̃, z̃).
Notation. From now on let K be the fixed public key, let (M, H(α̃, z̃), P ) be the original
private key and let H(α, z) = H(α̃, z̃)P
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4.1.4 Birational Transformations
Definition 16. Let a, b, c, d ∈ Fq such that ad − bc ̸= 0. Then

ϕ : P1(Fq) → P1(Fq)
(ξx : ξy) ↦→ (aξx + bξy : cξx + dξy)

is called a birational transformation.

Lemma 16. The birational transformation on F∞ is well defined and

∀ξ ∈ Fq : ϕ(ξ) = aξ + b

cξ + d
,

ϕ(∞) = a

c
.

Proof. The proof easily follows from the bijection π : P1(Fq) → F∞. First, assume that
cξx + d ̸= 0, then we obtain

∀ξx ∈ Fq : (ξx, 1) ϕ↦−→ (aξx + b, cξx + d) ∼
(︄

aξx + b

cξx + d
, 1
)︄

π↦−→ aξx + b

cξx + d
∈ Fq,

(1, 0) ϕ↦−→ (a, c) ∼
(︃

a

c
, 1
)︃

π↦−→ a

c
.

Second, assume that cξx + d = 0. That can happen only in two cases.

• Either d = ξx = 0, c ̸= 0, then we see that

(0, 1) ϕ↦−→ (b, 0) ∼ (1, 0) π↦−→ ∞.

• Or d ̸= 0, c ̸= 0, ξx = −d
c
. In this case we have(︄

−d

c
, 1
)︄

ϕ↦−→
(︄

−ad

c
+ b, 0

)︄
∼ (1, 0) π↦−→ ∞

Definition 17. Remember that K is the given fixed public key. If there exist nonsingular
matrix M̃ , β = (β1, . . . , βn) ∈ Fn

∞ and y = (y1, . . . , yn) ∈
(︂
F∗

q

)︂n
such that

K = M̃H(β, y)

then we say that (β, y, M̃) is a solution. The values (β1, . . . , βn) = β are called a part of
a solution.

Birational Transformations and Solutions

Recall that K ∈ F(s+1)×n
q is the shared public key and (M, H(α, z)) is the original private

key (the permutation matrix being hidden in the parity-check matrix) such that

K = MH(α, z).
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Attacker wishes to recover an alternative private key (M̃, H(β, y)). However, the attacker
first finds

γ = (1, 0, ∞, γ4, . . . , γn) ∈ Fn
∞

such that there exist M̂ ∈ F(s+1)×(s+1)
q , ŷ ∈

(︂
F∗

q

)︂n
fulfilling

K = M̂H(γ, ŷ).

After that the attacker birationally transforms γ ∈ Fn
∞ to β ∈ Fn

q and the rest of the
attack continues over Fq.

In this section we explain that we can without loss of generality search for a part of
a solution of the form γ = (γ1, . . . , γn) where

γ1 = 1,

γ2 = 0,

γ3 = ∞,

∀i ∈ {4, . . . , n} : γi ̸= ∞

We will do that by showing that ”being a solution” is invariant under birational trans-
formations.

Lemma 17. Given a birational transformation

ϕ : x ↦→ ax + b

cx + d
, (ad − bc) ̸= 0, c ̸= 0

on F∞ then there exist a1, a2 ∈ F∗
q and b1, b2 ∈ Fq such that ϕ = φa1,b1 ◦ φ ◦ φa2,b2. The

mappings are defined as follows

φa1,b1 : x ↦→ a1x + b1,

φa2,b2 : x ↦→ a2x + b2,

φ : x ↦→ 1
x

.

We omitted c = 0 in the lemma, because the case is far simpler.

Observation. Suppose c = 0 and ad − bc ̸= 0, we obtain a birational transformation of
the form

ϕ : x ↦→ ax + b

d
= a

d
x + b

d
.

It can easily be seen that ϕ = φa
d

, b
d
.

For brevity of notation, we introduce the following definition.

Definition 18. Let n ∈ N. Let us extend the definition of any mapping

ρ : F∞ → F∞

to

ρ : Fn
∞ → Fn

∞,

(ω1, . . . , ωn) ↦→ (ρ(ω1), . . . , ρ(ωn)).
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Sidelnikov and Shestakov show that ∀a1, a2 ∈ F∗
q ∀b1, b2 ∈ Fq transformations

φa1,b1 , φa2,b2 and φ preserve ”being a solution”. The precise meaning follows in the theo-
rems.

Theorem 18. Let a ∈ F∗
q, b ∈ Fq and

φa,b : Fq → Fq,

x ↦→ ax + b.

Let us define matrix Ta,b = (tij) ∈ F(s+1)×(s+1)
q . Where tij fulfil

(ax + b)i =
s∑︂

j=0
tijx

j.

Put
∀i ∈ {1, . . . , n} : d(αi) =

{︄
1 if αi ̸= ∞,
0 otherwise.

Then Ta,bH(α, (d(α1)z1, . . . , d(αn)zn)) = H(φ
a,b

(α), z).

Remark. From the binomial expansion we can easily see that the entries of the matrix
Ta,b look like

ti,j =
{︄ (︂

i
j

)︂
ajbi−j if j ≤ i,

0 if j > i.

In particular, Ta,b is lower triangular with nonzero elements in the diagonal. Therefore,
Ta,b is nonsingular.

Corollary 19. If (α, z, M) is a solution, then(︄
φ

a,b
(α),

(︄
z1

d(α1)
, . . . ,

zn

d(αn)

)︄
, MT −1

a,b

)︄

is also a solution.

Proof. From Theorem 18 we see that

H(α, z) = T −1
a,b H

(︂
φ

a,b
(α),

(︂
d(α1)−1z1, . . . , d(αn)−1zn

)︂)︂
.

Multiplying both sides by M yields

MH(α, z) = MT −1
a,b H

(︂
φ

a,b
(α), (d(α1)−1z1, . . . , d(αn)−1zn)

)︂
.

Which by assumption equals K. Obviously, MT −1
a,b is nonsingular as it is a product of

nonsingular matrices. We need to verify that ∀i ∈ {1, . . . , n} : zid(αi)−1 ̸= 0. We know
that

zi

d(αi)
= 0 ⇐⇒ (zi = 0 xor d(αi) = ∞).

However, by assumptions and definition of d(·) we know that

∀i ∈ {1, . . . , n} : zi ̸= 0,

∀i ∈ {1, . . . , n} : d(αi) ∈ {0, 1}.

Thus, we have obtained a new solution
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An analogous theorem holds for φ : x ↦→ 1
x
.

Theorem 20. Let us define

T =

⎛⎜⎜⎜⎜⎝
0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0

⎞⎟⎟⎟⎟⎠
and

∀i ∈ {1, . . . , n} : e(αi) :=
{︄

α−s
i if αi /∈ {0, ∞},

0 otherwise.
Then

TH(α, (z1e(α1), . . . , zne(αn))) = H(φ(α), z).

Corollary 21. If (α, z, M) is a solution, then(︄
φ(α),

(︄
z1

e(α1)
, . . . ,

zn

e(αn)

)︄
, MT

)︄

is a solution too.

Proof. As in the previous case we again see that

H(α, z) = T −1H(φ(α), (z1e(α1)−1, . . . , zne(αn)−1)).

Multiplying by M and taking advantage of the fact that T −1 = T gives us

MH(α, z) = MTH(φ(α), (z1e(α1)−1, . . . , zne(αn)−1)).

Which again by definition equals K. We see that MT is a nonsingular matrix. We know
that

∀i ∈ {1, . . . , n} : zi ̸= 0,

∀i ∈ {1, . . . , n} : e(αi) ̸= ∞.

Which implies that ∀i ∈ {1, . . . , n} : zi

e(αi) ̸= 0. Therefore, the previous gives a solution.

Theorem 22. Let ϕ : F∞ → F∞ be a birational transformation. If (α, z, M) is a
solution, then there exists M̃ ∈ F(s+1)×(s+1)

q and z̃ ∈ Fn
∞ such that(︂

(ϕ(α)), z̃, M̃
)︂

is also a solution.

Proof. Let a1, a2 ∈ F∗
q and b1, b2 ∈ Fq such that ϕ = φa1,b1 ◦ φ ◦ φa2,b2 . Existence of such

a1, a2, b1, b2 emerges from Lemma 17.
Corollary 19 gives us that(︂

φ
a2,b2

(α), (z1d(α1)−1, . . . , znd(αn)−1), MT −1
a2,b2

)︂
is a solution.

29



Now we can proceed using Corollary 21 to obtain that⎛⎝φ(φ
a2,b2

(α)),
(︄

z1

d(α1)e(φa2,b2(α1))
, . . . ,

zn

d(αn)e(φa2,b2(αn))

)︄⊤

, MT −1
a2,b2T

⎞⎠
is a solution.

Finally, we transform φ(φ
a2,b2

(α)) → φ
a1,b1

(φ(φ
a2,b2

(α))) = ϕ(α) and using Corollary
19 again we see that⎛⎝ϕ(α),

(︄
. . . ,

zi

d(αi)e(φa2,b2(αi))d(φ(φa2,b2(αi)))
, . . .

)︄
, MT −1

a2,b2TT −1
a1,b1

⎞⎠
is a solution too.

To complete the proof, it is sufficient to put

M̃ := MT −1
a2,b2TT −1

a1,b1 ,

∀i ∈ {1, . . . , n} : z̃i := z1

d(α1) · e(φa2,b2(α1)) · d(φ(φa2,b2(α1)))
.

Remark. As an attacker, we can search for an alternative private key up to birational
transformation on α.

4.1.5 Finding Pairwise Distinct Values γ1, . . . , γn ∈ F∞

In the beginning the legitimate party chose

M, α = (α1, . . . , αn), z = (z1, . . . , zn)

in order to generate a public key K. The attacker first recovers

γ = (γ1, . . . , γn) ∈ (F∗
∞)n .

In this section we show how to recover γ.

Theorem 23. For any distinct α1, α2, α3, . . . , αn ∈ Fq ⊆ F∞ there exists a birational
transformation

ϕ : F∞ → F∞,

x ↦→ ax + b

cx + d
, (ad − bc) ̸= 0,

satisfying

ϕ(α1) = γ1 = 1,

ϕ(α2) = γ2 = 0,

ϕ(α3) = γ3 = ∞,

∀j > 3 : ϕ(αj) = γj /∈ {1, 0, ∞}.
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Proof. The equalities give us four requirements to be fulfilled. They are

ϕ(α1) = 1 ⇒ aα1 + b = cα1 + d ̸= 0, (4.1)
ϕ(α2) = 0 ⇒ aα2 + b = 0 and cα2 + d ̸= 0, (4.2)

ϕ(α3) = ∞ ⇒ aα3 + b ̸= 0 and cα3 + d = 0, (4.3)
ad − bc ̸= 0. (4.4)

It can easily be proved that

ad − bc ̸= 0 ⇒ ∀i ∈ {1, 2, 3} : ((aαi + b ̸= 0) or (cαi + d ̸= 0)) .

Let us for contradiction assume that

ad − bc ̸= 0 and ∃i ∈ {1, 2, 3} : aαi + b = 0 = cαi + d.

Obviously, a = 0 ⇒ b = 0 and similarly c = 0 ⇒ d = 0. Both cases would be in
contradiction with ad − bc ̸= 0. Thus, we can assume that a, c ̸= 0. Therefore, we can
write

− b

a
= αi = −d

c
.

Which leads to cb = ad and subsequently to ad − bc = 0. We have a contradiction again.
Thus, we can equivalently rewrite the four requirements as follows:

aα1 + b − (cα1 + d) = 0, (4.5)
aα2 + b = 0, (4.6)
cα3 + d = 0, (4.7)
ad − bc ̸= 0. (4.8)

Let us first focus on equalities 4.5, 4.6 and 4.7. These equalities give us system of
linear equations with a, b, c, d as unknowns:

⎛⎜⎝α1 1 −α1 −1
α2 1 0 0
0 0 α3 1

⎞⎟⎠
⎛⎜⎜⎜⎝

a
b
c
d

⎞⎟⎟⎟⎠ =

⎛⎜⎝0
0
0

⎞⎟⎠ .

We can easily solve the matrix and write down the kernel of the matrix with t ∈ Fq as a
parameter. Let us denote the matrix by A, then

Ker(A) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩t

⎛⎜⎜⎜⎜⎝
1

−α2
α2−α1
α3−α1

α3
α1−α2
α3−α1

⎞⎟⎟⎟⎟⎠ ; t ∈ Fq

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Note that α1, α2, α3 are pairwise distinct, thus none of the denominators is zero. Also
note, that

∀(a, b, c, d)⊤ ∈ Ker(A) : (a, b, c, d)⊤ = o ⇐⇒ t = 0.
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We will now show that ∀(a, b, c, d)⊤ ∈ Ker(A) \ {o} we have ad − bc ̸= 0, i.e. for all
nontrivial solutions of the system, the nonequality 4.8 holds. Let

(a, b, c, d)⊤ = t
(︃

1, −α2,
α2 − α1

α3 − α1
, α3

α1 − α2

α3 − α1

)︃⊤
∈ Ker(A) \ {o}

be an arbitrary nontrivial solution. We have

ad − bc = t2
(︃

α3
α1 − α2

α3 − α1
− α2

α1 − α2

α3 − α1

)︃
= t2

(︃
α1 − α2

α3 − α1

)︃
(α3 − α2)

̸= 0
where the last inequality holds due to α1, α2, α3 being pairwise distinct and t being
nonzero.
Corollary 24. If (α, z, M) is a solution, then there exist a birational transformation ϕ,
a nonsingular matrix M and a vector w ∈ (F∗

∞)n such that(︂
(1, 0, ∞, ϕ(α4), . . . , ϕ(αn)), w, M̃

)︂
is a solution
Proof. The previous theorem gives us the existence of such a birational transformation
and from Theorem 22 we know that the birational transformation gives as a solution.

Remark. In other words, we can fix γ1, γ2, γ3 to specific values without loss of generality.
In what follows, we fix (γ1, γ2, γ3) := (1, 0, ∞). Furthermore, γ is a part of a solution such
that (γ1, γ2, γ3) := (1, 0, ∞). From now on let us assume that (γ, w, M̃) is a solution.
Lemma 25. If (γ, w, M̃) is a solution then there exist unique polynomials
f1, . . . , fs+1 of degree less than or equal to s such that the matrix K can be expressed as

K =

⎛⎜⎜⎜⎜⎝
w1f1(γ1) w2f1(γ2) . . . wnf1(γn)
w1f2(γ1) w2f2(γ2) . . . wnf2(γn)

. . .
w1fs+1(γ1) w2fs+1(γ2) . . . wnfs+1(γn)

⎞⎟⎟⎟⎟⎠ .

Proof. Set M̃ = (mij) ∈ F(s+1)×(s+1)
q . Let us define

∀i ∈ {1, . . . , s + 1} : fi(x) :=
s+1∑︂
k=1

mikxk−1.

We shall prove the lemma by examining the j-th column of the matrix K.
First, suppose that j ∈ {1, . . . , n} : γj ∈ Fq. Then

K∗j =
(︂
M̃H(γ, w)

)︂
∗j

= M̃ ·
(︂
H(γ, w)

)︂
∗j

= M̃ ·

⎛⎜⎜⎜⎜⎝
wjγ

0
j

wjγ
1
j

...
wjγ

s
j

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
wj ·∑︁s+1

k=1 m1kγk−1
j

wj ·∑︁s+1
k=1 m2kγk−1

j
...

wj ·∑︁s+1
k=1 ms+1,kγk−1

j

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
wj · f1(γj)
wj · f2(γj)

...
wj · fs+1(γj)

⎞⎟⎟⎟⎟⎠ .
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Second, suppose that l ∈ {1, . . . , n} : γl = ∞. Then the l-th column of K equals

K∗l = M̃ ·
(︂
H(γ, w)

)︂
∗l

= M̃ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
wl

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
wl · m1,s+1
wl · m2,s+1

...
wl · ms+1,s+1

⎞⎟⎟⎟⎟⎠ .

Remember that by Definition 13:

∀i ∈ {1, . . . , s + 1} : fi(∞) = mi,s+1.

Thus,

K∗l =

⎛⎜⎜⎜⎜⎝
wl · f1(∞)
wl · f2(∞)

...
wl · fs+1(∞)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
wl · f1(γl)
wl · f2(γl)

...
wl · fs+1(γl)

⎞⎟⎟⎟⎟⎠

Remark. Previous lemma holds for any solution.
We show how to compute the values of γ4, . . . , γn ∈ Fn. The proof is constructive and

thus in the end gives us Algorithm 4.

Theorem 26. Let γ = (1, 0, ∞, γ4, . . . , γn) be a part of a solution. Define set of indices

J1 = {1, s + 2, . . . , 2s},

J2 = {2, s + 2, . . . , 2s},

J3 = {1, 3, . . . , s + 1},

J4 = {2, 3, . . . , s + 1},

then

∀l ∈ {1, . . . , 4} : ∃cl ∈ Fs+1
q \ {o} such that clK∗Jl

= o.

Take an arbitrary index

r ∈ {1, . . . , n} \ (J1 ∪ J2 ∪ {3}),

and define

pl := clK,

∀j ∈ {1, . . . , n} \ (J1 ∪ J2 ∪ {3}) : bj :=
p1j

p2j

,

∀j ∈ {1, . . . , n} \ (J3 ∪ J4) : bj :=
p3j

p4j

· p4r

p3r

· br,

Then

∀j ∈ {4, . . . , n} : γj := b3

b3 − bj

.
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Proof. We first show that ∀l ∈ {1, . . . , 4} : cl ̸= o exists. It is sufficient to note that
|Jl| = s. Thus, clK∗Jl

= o is a system of s equations and s + 1 variables, which always
has a nontrivial solution.

Let f1, . . . , fs+1 be the unique polynomials from Lemma 25. Let us construct polyno-
mials

∀l ∈ {1, . . . , 4} : gl(x) :=
s+1∑︂
i=1

clifi(x) ∈ Fq[x].

All four polynomials are nonzero. For contradiction, assume that ∃l ∈ {1, . . . , 4} : gl(x) =
0 ∈ Fq. Then the polynomials f1, . . . , fs+1 ∈ Fq[x] would be linearly dependent. Hence,
the rows of K would be linearly dependent, which is a contradiction with Rank (K) =
n − k. Obviously, the degree of all polynomials is restricted by the degrees of f1, . . . , fn.
Thus, ∀l ∈ {1, . . . , 4} : deggl ≤ s.

From the definition of f1, . . . , fn it can be easily seen that:

∀l ∈ {1, . . . , 4}∀j ∈ {1, . . . , n} : wj · gl(γj) = clK∗j. (4.9)

As w1, . . . , wn are nonzero, we obtain

∀l ∈ {1, . . . , 4}∀j ∈ Jl : gl(γj) = 0.

Note that that gives us s roots for both polynomials.
Let us now focus only on g1 and g2. Obviously, there are no other roots due to the

degree restriction. We have obtained factorization of both polynomials:

∀l ∈ {1, 2} : gl(x) = al ·
∏︂
j∈Jl

(x − γj).

Note that there is only one value in which J1 and J2. differ. Thus, we obtain

g1(x)
g2(x) =

a1 ·∏︁j∈J1(x − γj)
a2 ·∏︁j∈J2(x − γj)

= a1

a2
· x − γ1

x − γ2

= a1

a2
· x − 1

x
.

Where a1, a2 ∈ Fq are the leading coefficients of g1, g2, respectively. From the Definition
13 and Equation 4.9 we know that

∀l ∈ {1, 2} : al = gl(∞) = gl(γ3) = 1
w3

clK∗3 = pl3.

That gives us new equation in which only γj is unknown:

∀j ∈ {1, . . . , n} \ (J1 ∪ J2 ∪ {3}) : g1(γj)
g2(γj)

= p13
p23

· γj − 1
γj

,

p1j

p2j

= p13
p23

· γj − 1
γj

,

γj =
p13
p23

p13
p23

− p1j

p2j

.
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Using the bj, we obtain

∀j ∈ {1, . . . , n} \ (J1 ∪ J2 ∪ {3}) : γj = b3

b3 − bj

We shall now focus on polynomials g3 and g4. This time 3 ∈ J3 ∩ J4, thus g3(γ3) =
g4(γ3) = 0. However, we assumed that γ3 = ∞. Thus, Definition 13 gives us that
the coefficients associated with xs are zero in both g3(x) and g4(x). Which means that
∀l ∈ {3, 4} : deg(gl) ≤ s − 1. Furthermore, both polynomials have s − 1 roots from Fq.
We have again obtained a factorization of both polynomials:

g3(x) = a3 ·
∏︂

j∈J3\{3}
(x − γj),

g4(x) = a4 ·
∏︂

j∈J4\{3}
(x − γj).

As in the previous proof, let us examine the fraction of these polynomials:

g3(x)
g4(x) = a3

a4
·
∏︁

j∈J3\{3}(x − γj)∏︁
j∈J4\{3}(x − γj)

= a3

a4
· x − γ1

x − γ2

= a3

a4
· x − 1

x
. (4.10)

This time we do not know the values of leading coefficients a3 and a4. Taking the
chosen r we obtain

g3(γr)
g4(γr)

= a3

a4
· γr − 1

γr

,

p3r

p4r

= a3

a4
· γr − 1

γr

,

a3

a4
= p3r

p4r

· γr

γr − 1 . (4.11)

By definition

γr = b3

b3 − br

,

b3 − br = b3

γr

,

br = b3 − b3

γr

= b3(γr − 1)
γr

.

That easily yields

br

b3
=

b3(γr−1)
γr

b3
= γr − 1

γr

. (4.12)
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Now combining 4.11, 4.12 and 4.10 we obtain

p3j

p4j

= a3

a4
· γj − 1

γj

= p3r

p4r

· γr

γr − 1 · γj − 1
γj

= p3r

p4r

· b3

br

· γj − 1
γj

,

p3j

p4j

· p4r

p3r

· br = γj − 1
γj

· b3,

bj = γj − 1
γj

· b3,

γj = b3

b3 − bj

.

Algorithm 4: Find γ4, . . . , γn

Input: K
Output: γ4, . . . , γn

1 J1 := {1, s + 2, . . . , 2s}
2 J2 := {2, s + 2, . . . , 2s}
3 J3 := {1, 3, . . . , s + 1}
4 J4 := {2, 3, . . . , s + 1}
5 for l ∈ {1, . . . , 4} do
6 Find cl ∈ Fs+1

q such that clK∗Jl
= o.

7 pl := clK ∈ Fn
q

8 b3 := p13
p23

9 for j ∈ {4, . . . , s + 1, 2s + 1, . . . , n} do
10 bj := p1j

p2j

11 γj := b3
b3−bj

12 choose r ∈ {4, . . . , n} \ (J1 ∪ J2 ∪ J3 ∪ {3})
13 for j ∈ {s + 2, . . . , 2s} do
14 bj := p4r

p3r
· p3j

p4j
· br

15 γj := b3
b3−bj

16 return (γ4, . . . , γn)

Theorem 27. If there exists a solution, then algorithm 4 always terminates and finds
γ4, . . . , γn such that

(1, 0, ∞, γ4, . . . , γn)
is a part of a solution.

Proof. According to Theorem 23 for any α1, . . . , αn ∈ Fn there exists a birational trans-
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formation ϕ such that

ϕ(α1) = 1,

ϕ(α2) = 0,

ϕ(α3) = ∞,

∀i ∈ {4, . . . , n} : ϕ(αi) /∈ {1, 0, ∞}.

Theorem 22 then gives us that if (α1, . . . , αn) is a part of a solution, then
(1, 0, ∞, ϕ(α4), . . . , ϕ(αn)) is a part of a solution too.

In the constructive proof of Theorem 26 we showed that if (1, 0, ∞, γ4, . . . , γn) is a
part of a solution, then Algorithm 4 finds γ4, . . . , γn.

Note that in Theorem 26 we showed that ∀l ∈ {1, . . . , 4} cl always exist. Thus, the
algorithm always terminates and returns γ4, . . . , γn.

Comments on Algorithm 4

Remark. Note that the value of γr must be found in the first part of the algorithm. That
means we need {4, . . . , n}\(J1 ∪J2 ∪J3 ∪{3}) = {2s+1, . . . , n} to be nonempty. In other
words, we need 2s + 1 ≤ n. The inequality can be modified as follows (using Theorem 2):

n ≥ 2s + 1
= 2(d − 2) + 1
= 2(2t + 1 − 2) + 1
= 4t − 1.

However, we are focusing on the codes with t << n, therefore we can implicitly assume
that 4t − 1 ≥ n. Note that codes with bigger t would have smaller k and thus might be
more vulnerable to brute-force attacks.

For example, the original proposal of parameters given by McEliece in [McE78] was

n = 1024,

k = 524,

t = 50.

And we see that in this case 4t − 1 = 200 − 1 ≤ 1024 = n. Thus, we can safely assume
that such r always exists.

We should examine if the algorithm is deterministic. In Step 6 we ask for any cl. We
show in the following lemma, that the result of the algorithm does not depend on the
chosen cl.

Lemma 28. The result of the algorithm does not depend on the chosen cl, l ∈ {1, . . . , 4}.

Proof. Let i ∈ {1, . . . , 4}. Recall that K∗Ji
= M̃

(︂
H(γ, w)

)︂
∗Ji

. By definition, ∀i ∈

{1, 2} :
(︂
H(γ, w)

)︂
{1,...,s}Ji

are transposed Vandermonde matrices. Thus, ∀i ∈ {1, 2} :

rank
(︂
H(γ, w)

)︂
∗Ji

= s.
For i ∈ {3, 4} the matrix

(︂
H(γ, w)

)︂
obtains the third column relevant to γ3 = ∞

(0, . . . , w3)⊤. Thus,
(︂
H(γ, w)

)︂
{1}∪{3,...,s+1}Ji

is a transposed Vandermonde matrix with
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one substituted column. The column is linearly independent from the others, thus again
∀i ∈ {3, 4} : rank

(︂
H(γ, w)

)︂
∗Ji

= s.
Altogether, suppose l ∈ {1, . . . , 4}, cl, c̃l ∈ Fs

q then clK∗Jl
= o = c̃lK∗Jl

⇒ ∃λ ∈ Fq :
cl = λc̃l.

Suppose we ran the algorithm twice. Let us denote the values from the first run as
in the description of the algorithm. And let us denote the values from the second run by
tilde. We will now show, that ∀j ∈ {4, . . . , n} : γj = γ̃j.

Let l ∈ {1, . . . , 4}. Assume that in the first run we chose in Step 5 cl. Then in the
second run we chose c̃l = λcl. Subsequently, we computed pl and p̃l = λpl. In Step 8 we
computed b3 and b̃3 = p̃13

p̃23
= λp13

λp23
= b3.

Now for all j ∈ {4, . . . , s + 1, 2s + 1, . . . , n} :

b̃j =
p̃1j

p̃2j

=
λp1j

λp2j

= bj.

And for all j ∈ {s + 2, . . . , 2s} :

b̃j = p̃4r

p̃3r

p̃3j

p̃4j

b̃r = λp4r

λp3r

λp3j

λp4j

br = bj.

We now easily see that ∀j ∈ {4, . . . , n} : γ̃j = γj.

4.1.6 Transforming γ ∈ Fn
∞ To Obtain β ∈ Fn

q

Although we have recovered γ1, . . . , γn, it is obvious that γ3 /∈ Fq. Fortunately, we can
map γ3 into Fq using a birational transformation.

Lemma 29. Let γ = (1, 0, ∞, γ4, . . . , γn) ∈ Fn
∞ be a part of a solution. Then there exists

a ∈ Fq such that a /∈ {γ1, . . . , γn}. Define

∀i ∈ {1, . . . , n} : βi := 1
a − γi

.

Then β = (β1, . . . , βn) is a part of a solution. Furthermore, β ∈ Fn
q .

Proof. In the extreme case n = q but γ3 = ∞ /∈ Fq, thus there is always at least one a
such that ∀j ∈ {1, . . . , n} : a ̸= γj.
The mapping γi ↦→ 1

a−γi
is a composition of mappings from Theorem 18 and Theorem 20.

Therefore, β surely is a part of a solution. Furthermore,

1
a − γ3

= 1
a − ∞

= 0,

γi ∈ Fq ⇒ 1
a − γi

∈ Fq.

Hence, ∀i ∈ {1, . . . , n} : βi ∈ Fq.
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4.1.7 Finding Nonzero Values y1, . . . , ys+2 ∈ F∗
q

From now on we will work with β = (β1, . . . , βn) ∈
(︂
F∗

q

)︂n
. We need to find y = (y1, . . . , yn)

and the nonsingular matrix M̃ such that (β, y, M̃) is a solution. We have already discussed
that such y and M̃ exist.

In this section we will show how to recover (y1, . . . , ys+2). Let us define the matrix

Y = diag(y1, . . . , yn)

and the set of indices
J5 := {1, 2, . . . , s + 2}.

Note that |J5| = s + 2.

Observation. From now on let us without loss of generality assume that y1 = 1. We can
do so because

K = M̃H(β, 1)Y

= y1M̃H(β, 1) 1
y1

Y

= M̂H(β, 1)Ỹ.

For

M̂ = y1M̃,

Ỹ = y1
−1 · Y.

Note that the matrix M̂ is nonsingular.

Observation. Let A ∈ F(s+1)×n
q such that K = AY . Then A = M̂H(β, 1).

Proof. Lemma 25 gives us the existence of matrix A. By definition,

K = M̂H(β, 1)Y.

Matrix Y is nonsingular, thus A = M̂H(β, 1).

Remark. Especially the following holds

AJ5∗ = M̂ · H(β, 1)J5∗. (4.13)

Definition 19. Let u = (u1, . . . , us+2) ∈ Fs+2
q such that K∗J5 · u⊤ = o⊤. Define U =

diag(u1, . . . , us+2).

Observation. Such u always exists as it is a solution to a system of s + 1 equations and
s + 2 variables. Furthermore, if there were i ∈ {1, . . . , s + 2} : ui = 0 then the remaining
s + 1 columns have to be linearly dependent. However, that would be in contradiction
with d = s + 2 (see [Mac77, p. 33]). Thus, all coordinates of u are nonzero and U is
nonsingular.
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We can easily see that

KJ5∗u
⊤ = (AY )J5∗ u⊤ = AJ5∗U

⎛⎜⎜⎜⎜⎝
y1
y2
...

ys+2

⎞⎟⎟⎟⎟⎠
and therefore

KJ5∗u
⊤ = o⊤ ⇐⇒ AJ5∗U

⎛⎜⎜⎜⎜⎝
y1
y2
...

ys+2

⎞⎟⎟⎟⎟⎠ = o⊤.

If we knew the entries of AJ5∗ we would now by linear algebra obtain the values of
y2, . . . , ys+2 (remember we chose y1 = 1). However, as an attacker we only know the
entries of KJ5∗ and are not able to ”separate” the entries of AJ5∗ from it. Luckily, we can
multiply the latter equation by M−1 and take the advantage of Equation 4.13. This way
we obtain

AJ5∗U

⎛⎜⎜⎜⎜⎝
y1
y2
...

ys+2

⎞⎟⎟⎟⎟⎠ = o⊤ ⇐⇒ H(β, 1)J5∗U

⎛⎜⎜⎜⎜⎝
y1
y2
...

ys+2

⎞⎟⎟⎟⎟⎠ = o⊤.

We only need to change the equation slightly as we already know the value of y1:

H(β, 1)J5∗U

⎛⎜⎜⎜⎜⎝
y1
y2
...

ys+2

⎞⎟⎟⎟⎟⎠ = o⊤

⇐⇒

H(β, 1)J6∗ · diag(u2, . . . , us+2)

⎛⎜⎜⎜⎜⎝
y2
y3
...

ys+2

⎞⎟⎟⎟⎟⎠ = −y1 ·

⎛⎜⎜⎜⎜⎝
u1β

0
1

u1β
1
1

...
u1β

s
1

⎞⎟⎟⎟⎟⎠ .

Where J6 = J5 \ {1} = {2, . . . , s + 2}.
Hence, to obtain y1, . . . , ys+2, we only need to set y1 = 1 and solve the system of linear

equations ⎛⎜⎜⎜⎜⎝
u2 · β0

2 u3 · β0
3 . . . us+2 · β0

s+2
u2 · β1

2 u3 · β1
3 . . . us+2 · β1

s+2
... . . . ...

u2 · βs
2 u3 · βs

3 . . . us+2 · βs
s+2

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎝
y2
y3
...

ys+2

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−u1β

0
1

−u1β
1
1

...
−u1β

s
1

⎞⎟⎟⎟⎟⎠ .

Lemma 30. The system above always has a solution.

40



Proof. The matrix H(β, 1)J6∗ · diag(u2, . . . , us+2) is nonsingular, because its determinant
is equal to

s+2∏︂
i=2

ui · det(H(β, 1)J6∗) ̸= 0

The inequality holds due to u having all coordinates nonzero and H(β, 1)J6∗ having no
s + 1 linearly dependent columns.

4.1.8 Finding Matrix M̂

After successfully recovering y1, . . . , ys+2 we find the matrix M̂ . Note that

kij =
s+1∑︂
k=1

yjmikβk−1
j ,

where mik are the entries of M̂ .
Let us fix i. Then we obtain a system of s + 1 linear equations and s + 1 unknowns:⎛⎜⎜⎜⎜⎝

β0
1 β2

1 . . . βs
1

β0
2 β2

2 . . . βs
2

. . .
β0

s+1 β2
s+1 . . . βs

s+1

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎝
mi1
mi2

...
mis+1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
y−1

1 ki1
y−1

2 ki2
...

y−1
s+1kis+1

⎞⎟⎟⎟⎟⎠ .

The matrix on the left-hand side is a Vandermonde matrix. We chose β1, . . . , βn to be
distinct. Hence, the matrix is nonsingular, and the system has a unique solution. Solving
the system for all i ∈ {1, . . . , s + 1} gives all entries of M̂ .

4.1.9 Finding Nonzero Values ys+3, . . . , yn ∈ Fq

The last step of the attack is to recover the rest of y. To obtain values ys+3, . . . , yn we
only need to multiply the equation

K = M̂H(β, y)

by M̂−1. That yields

M̂−1K = H(β, y).

Focusing on the first row of the equation we obtain

∀i ∈ {1, . . . , n} : yi =
s+1∑︂
j=1

m′
1jkji.

Here m′
1j are the entries of the first row of M̂−1. Computing the equation for i ≥ s + 3

will give us ys+3, . . . , yn. Note that we also need to compute the inverse of M̂ .

4.2 Sidelnikov-Shestakov’s Attack on McEliece PKC
Based on GRS Codes

In this section we will show how to break McEliece based on GRS codes using the attack
described in the previous chapter.
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4.2.1 Brief Overview of the Attack
Let Kpub = (Gpub, t) and Kpriv = (S, Gpriv, P ) be the public and private key of McEliece
PKC, respectively. Suppose the cryptosystem uses (n, k, d)-GRS codes over Fq. Thus,
there exist pairwise distinct α1, . . . , αn ∈ Fq and nonzero z1, . . . , zn ∈ Fq such that

Gpriv =

⎛⎜⎜⎜⎜⎝
α0

1z1 α0
2zn . . . α0

nzn

α1
1z1 α1

2zn . . . α1
nzn

...
αk−1

1 z1 αk−1
2 zn . . . αk−1

n zn

⎞⎟⎟⎟⎟⎠ ∈ Fn×k
q ,

Gpub = SGprivP

where

S ∈ Fn×n
q is a random nonsingular matrix,

P ∈ Fk×k
q is a random permutation matrix.

We will show how to find an alternative private key i.e., G̃priv, S̃ such that Gpub =
S̃G̃priv. We do not have to search for an alternative permutation matrix as a permutation
of GRS code is still a GRS code (see remark for the parity-check matrix on page 25).

Note that the sending party encrypts the message m ∈ Fk
q as c = mG+e ∈ Fn

q . Where
e ∈ Fn

q is an error vector of wH (e) = t. We will show that an alternative private key is
sufficient for decrypting any intercepted ciphertext.

Lemma 31. Let (Gpub, t) be the public key. Suppose the attacker has found an alternative
private key (S̃, G̃priv). Then after intercepting a ciphertext c = mGpub + e the attacker
can recover m.

Proof. We can rewrite the ciphertext as

c = m
(︂
S̃G̃priv

)︂
+ e.

Matrix G̃priv is a generator matrix of an GRS code, thus there exists an efficient decoding
algorithm DG̃priv

that on input c returns mS̃. Now from S̃ we can compute S̃−1 and
subsequently obtain m.

4.2.2 Attacking McEliece PKC
We shall now demonstrate how to find an alternative private key knowing only Gpub.

Observation. Let G be a generator matrix of an (n, k, d)-GRS code. By definition of
generator and parity-check matrices of a GRS code (see Lemma 14) there exists an (n, n−
k, k + 1)-GRS code such that G is its parity-check matrix.

We can therefore perform the attack as if we were attacking the Niederreiter version.
The attack will then proceed as follows.

• Let Gpub ∈ Fk×n
q be the known generator matrix.

• Set K := Gpub.
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• Perform the attack from the previous chapter to reveal (β, y, M̂) such that

K = M̂H(β, y).

The matrix H(β, y) is as well a generator matrix of an (n, k, d)-GRS code.

• Put S̃ := M̂ and G̃priv := H(β, y).

Lemma 32. Knowing S̃, G̃priv computed as above the attacker can recover m from c =
mGpub + e.

Proof. We know that Gpub = K = M̂H(β, y) = S̃G̃priv. Thus, the attacker can success-
fully decrypt c as shown in proof of Lemma 31.

4.3 Example of Sidelnikov-Shestakov’s Attack
In this section we demonstrate Sidelnikov-Shestakov’s attack on a simple example. We
chose the parameters so that the example is not trivial, but a reader can still easily follow.

The example was computed by SageMath program that we attach as Appendix A.1.

4.3.1 Initialization
Parameters Our cryptosystem will be over the finite field

F3[η] = F3[X]
(X2 + X + 2) with η2 + 2η + 2 = 0.

We will choose n = 8. We need to choose k < n to fulfil 2s + 1 = 2(n − k − 1) ≤ n
(see 16). We choose k = 4.

Altogether the parameters of the code are

q = 9,

n = 8,

k = 4,

d = 5,

s = 3.

Key generation The legitimate user chooses vectors

α = (η, η + 1, 2η + 1, 2, 2η, 2η + 2, η + 2, 1) ,

z = (2η, 2η + 2, η + 1, η + 1, 2η, η, 2, 2η + 2)

and generates the secret parity-check matrix

H(α, z) =

⎛⎜⎜⎜⎝
1 1 2η 2η + 2 2 η η + 2 2η + 2
η η + 1 1 η + 1 η η + 2 2η + 2 2η + 2

η + 1 2 2η + 1 2η + 2 2η + 2 2η 2η 2η + 2
2η + 1 2η + 2 2η + 2 η + 1 2η + 1 2η + 1 2 2η + 2

⎞⎟⎟⎟⎠ .
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The legitimate user then generates the permutation matrix

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ F8×8

9

which defines the permutation

( 1 5 6 2 8 3 7 )( 4 ).

The user also generates a nonsingular matrix

M =

⎛⎜⎜⎜⎝
η + 1 1 η + 2 2η + 1

2 2 η + 1 2η
1 η + 2 0 η + 1

2η 0 η + 1 η + 1

⎞⎟⎟⎟⎠ ∈ F4×4
9 .

The legitimate user now computes the public parity-check matrix

K = MHP

=

⎛⎜⎜⎜⎝
η + 1 2η η 2η + 2 2η + 1 2η 2η 1

2η η + 1 2η + 1 η 2η + 1 1 2η + 2 2η
2η η 2η + 1 1 2η + 2 η + 2 2η + 2 0
1 2η 0 2η + 1 2η + 1 η η + 2 2

⎞⎟⎟⎟⎠ .

The legitimate user computes ⌊d−1
2 ⌋ = 2 and publishes the public key

Kpub = (K, 2) .

4.3.2 Attack
As an attacker we only know the public key Kpub. We will now follow the algorithm
shown in Section 4.1.

Recovering γ4, . . . , γ8

Let us follow Algorithm 4. Put

(γ1, γ2, γ3) := (1, 0, ∞),
J1 := {1, 5, 6},

J2 := {2, 4, 5},

J3 := {1, 3, 4},

J4 := {2, 3, 4}.
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For l ∈ {1, . . . , 4} find cl ∈ F5
9 such that clK∗Jl

= o. Let l = 1, then

K∗J1 =

⎛⎜⎜⎜⎝
η + 1 2η + 1 2η
2η 2η + 1 1
2η 2η + 2 η + 2
1 2η + 1 η

⎞⎟⎟⎟⎠ .

Gaussian elimination of K⊤
∗J1 gives us the solution c1 = (0, 1, 2η + 2, 2η + 2). Analogously

we find

c2 = (1, 2η, 2η, η + 1),
c3 = (1, η, 1, η),
c4 = (1, 2η + 1, 2η, 2η + 1)

and compute

p1 = (0, η + 1, 1, η + 2, 0, 0, η + 1, 1),
p2 = (η + 1, 0, η + 2, 2η + 1, 0, 0, η + 2, 1),
p3 = (0, η, 0, 0, η + 1, 2η, 2η + 2, η),
p4 = (η + 1, 0, 0, 0, 2η, η + 2, 2, η + 1),

b3 = 1
η + 2 = η.

We can now easily find the values of bj, γj for j ∈ {4, . . . , s+1, 2s+1, . . . , n} = {4, 7, 8}:

b4 = η + 2
2η + 1 = 2 ⇒ γ4 = η

η − 2 = η + 2,

b7 = 2η + 1 ⇒ γ7 = 2η + 1,

b8 = 1 ⇒ γ8 = η + 1.

Analogously, we compute bj, γj for j ∈ {s + 2, . . . , 2s} = {5, 6}:

b5 = 2η + 2 ⇒ γ5 = 2η + 2,

b6 = η + 2 ⇒ γ6 = η.

We have obtained a part of a solution

γ = (1, 0, ∞, η + 2, 2η + 1, η + 1, 2η + 2, η) .

Transformation γ ∈ F8
∞ ↦→ β ∈ F8

9

We will follow Lemma 29. Let us choose a ∈ Fq such that

a /∈ {1, 0, ∞, η + 2, 2η + 1, η + 1, 2η + 2, η}.

We will, for instance, take a = 2. Now we can transform the obtained part of a solution
as follows

∀i ∈ {1, . . . , 8} : γi ↦→ βi = 1
2 − γi

.

We obtained a new part of a solution β = (1, 2, 0, 2η + 1, η + 2, η + 1, 2η + 2, 2η).
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Recover y1, . . . , y5

Assuming that
(︂
β, y, M̃

)︂
is a solution we can recover y1, . . . , y5 as described in Section

4.1.7. Without loss of generality, we choose y1 = 1.
We define J5 := {1, 2, 3, 4, 5} and find u such that K∗J5u⊤ = o⊤. Gaussian elimination

gives us the solution u = (1, 2η + 2, η + 1, 2, η). Then solving the system⎛⎜⎜⎜⎝
2η + 2 η + 1 2 η
η + 1 0 η + 2 1
2η + 2 0 η + 1 η + 2
η + 1 0 2η 2η + 2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

y2
y3
y4
y5

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1

2η + 1
0
η

⎞⎟⎟⎟⎠
gives us (y2, . . . , y5) = (η + 1, 2η + 1, η + 1, 2η).

Recover M̂

Knowing the values y1, . . . , y5 we can recover the matrix M̂ such that
(︂
γ, y, M̂

)︂
is a

solution. Solving the three systems of linear equations as mentioned in Section 4.1.8, we
obtain the entries of the matrix

M̂ =

⎛⎜⎜⎜⎝
2η + 2 2η η + 2 2η

1 2 η + 1 η + 2
1 2η 0 2
0 2η + 1 η + 1 2

⎞⎟⎟⎟⎠ .

Recover y6, y7, y8

As discussed in Section 4.1.9, we now set

y6 :=
4∑︂

j=1
m′

1jkj6,

y7 :=
4∑︂

j=1
m′

1jkj7,

y8 :=
4∑︂

j=1
m′

1jkj8.

To do so, we first need to compute the inverse of M̂ . This can be done in polynomial
time and gives us

(M̂)−1 =

⎛⎜⎜⎜⎝
0 η + 1 2η + 1 2η + 2
2 2η + 1 2η + 2 2
η η + 2 2η 2η + 1
2η 1 2η + 1 2η + 1

⎞⎟⎟⎟⎠ .

Thus,

y6 = 2,

y7 = 2,

y8 = η.
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Alternative private key

Altogether, we have found matrices

H(γ, y) =

⎛⎜⎜⎜⎝
1 η + 1 2η + 1 η + 1 2η 2 2 η
1 2η + 2 0 2η 2 2η + 2 η + 1 2η + 2
1 η + 1 0 1 2η + 1 1 1 2η + 1
1 2η + 2 0 2η + 1 η + 1 η + 1 2η + 2 1

⎞⎟⎟⎟⎠
and

M̂ =

⎛⎜⎜⎜⎝
2η + 2 2η η + 2 2η

1 2 η + 1 η + 2
1 2η 0 2
0 2η + 1 η + 1 2

⎞⎟⎟⎟⎠ .

We can easily verify that M̂H(γ, y) = K, thus we have successfully recovered an
alternative private key.

4.4 Modified Niederreiter PKC
Niederreiter PKC using GRS codes can be modified in order to resist the Sidelnikov
Shestakov attack. In this section we will describe the modification from [Gab01, p. 41].

In this section we will return to notation Hpriv and Hpub of the private and public
matrix, respectively.

4.4.1 Description of the PKC
Parameters

• Choose p ∈ P and m, n, t ∈ N such that t << n.

Key generation

1. Choose Hpriv ∈ F(n−k)×n
q to be a parity-check matrix of a linear (n, k)-code over Fq

such that it can correct up to t errors and that there exists an efficient syndrome
decoding algorithm SHpriv

. Here k is chosen to be maximal given n and t.

2. Choose a random nonsingular matrix S ∈ Fk×k
q , random b ∈ Fn

q and random e ∈ Fn
q

such that wH (e) = d − 1.

3. Set a := eH⊤
priv and X := a⊤b.

4. Compute Hmod
pub := S (Hpriv + X).

5. Let Kpub = (Hmod
pub , t) be a public key and Kpriv = (Hpriv, S, a) be a private key.

Encryption The sending party encrypts a plaintext m ∈ Fk
q such that wH (m) < t as

EncKpub
(m) = m

(︂
Hmod

pub

)︂⊤
.
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Decryption After receiving the ciphertext c, the legitimate user knowing Kpriv

decrypts it using the following algorithm.

Algorithm 5: Decryption of Modified Niederreiter PKC
Input: Kpub, Kpriv, c
Output: m such that EncKpub

(m) = c

1 Compute S−1 from S.
2 c̃ := c

(︂
S⊤
)︂−1

3 for λ̃ ∈ Fq do
4 if SHpriv

(c̃ − λ̃a) does not fail then
5 return m := SHpriv

(c̃ − λ̃a)

Theorem 33. Set λ := m · b⊤. SHpriv
(c̃ − λ̃a) returns fail if and only if λ ̸= λ̃.

Proof. First note that any d − 1 columns of Hpriv are linearly independent. Thus, a =
eH⊤

priv ̸= o. Second note that c̃ can be written as

c̃ = m
(︂
Hmod

pub

)︂⊤ (︂
S⊤
)︂−1

= m (Hpriv + X)⊤ S⊤
(︂
S⊤
)︂−1

= m (Hpriv + X)⊤

= mH⊤
priv + mX⊤

= mH⊤
priv + m · b⊤a

= mH⊤
priv + λa.

Suppose that λ ̸= λ̃. Then

c̃ − λ̃a = mH⊤
priv + λa − λ̃a

= mH⊤
priv +

(︂
λ − λ̃

)︂
a

= mH⊤
priv +

(︂
λ − λ̃

)︂
eH⊤

priv

=
(︂
m + (λ − λ̃)e

)︂
H⊤

priv.

Obviously,

wH

(︂
m + (λ − λ̃)e

)︂
≥ wH

(︂
(λ − λ̃)e

)︂
− wH (m)

≥ d − 1 − (t − 1)
≥ (2t + 1) − 1 − t + 1
= t + 1
> t.

Therefore, SHpriv
(c̃ − λ̃a) returns fail.

On the other hand, suppose that λ = λ̃. Then c̃ − λ̃a = mH⊤
priv. We can easily see

that SHpriv
(c̃ − λ̃a) = m.
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Corollary 34. The decryption algorithm is correct, i.e. using the notation as above,
DecKpriv

(︂
EncKpub

(m)
)︂

= m.

Remark. In [Gab01, p. 43] E. M. Gabidulin states that depending on the matrix X the
PKC could still be vulnerable to Sidelnikov-Shestakov’s attack.
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5. GPT PKC
Another cryptosystem based on coding theory is the GPT cryptosystem introduced in
1991 by E. M. Gabidulin, A. V. Paramonov and O. V. Tretjakov ([GPT91]). It is a
version of the McEliece PKC, but the authors modified the scheme to use codes with
rank metric instead of Hamming metric. Of course, similar modification can be used to
obtain a rank metric version of the Niederreiter PKC.

The used codes are so called Rank codes. Having been discovered by E. M. Gabidulin
in 1985, they are also called Gabidulin codes. There has been a great amount of research
regarding Gabidulin codes. An overview of the results can be found e.g., in [Gab21].

In this chapter we first give the necessary theory of rank metric and Gabidulin codes.
We also define both the McEliece and the Niederreiter version of GPT PKC. The McEliece
version will be introduced as GGPT PKC. Here GGPT stands for ”Generalized GPT”
which describes the original proposal as well as the column scrambler variant. The
column scrambler variant was proposed by R. Overbeck in [Ove06] in order to make the
PKC resistant to Gibson’s attack described in [Gib96]. The Niederreiter version will be
introduced as NGPT, which is an abbreviation that we introduce for the purposes of
this thesis only. Then we briefly describe Overbeck’s attack on GGPT PKC. Afterwards,
we introduce a polynomial-time attack that we have found against GGPT PKC without
distortion matrix X.

5.1 Gabidulin Codes
In this section we give the necessary background of rank metric and Gabidulin Codes.
Note that p ∈ P and m ∈ N.

5.1.1 Rank Metric
Rank metric is based on interpretation of Fpm as vector space over Fp.
Theorem 35. [LN97, p. 31] The finite field Fpm is an m-dimensional vector space over
its prime subfield Fp.
Definition 20. Let B = (b1, . . . , bm) ∈ Fm

pm be a basis of Fpm over Fp. Let x ∈ Fpm and
(λ1, . . . , λm) ∈ Fm

p such that

x =
m∑︂

i=1
λi · bi.

Then (λ1, . . . , λm) is said to be the coordinate vector of x with respect to B denoted by
[x]B.
Definition 21. Let x ∈ Fn

pm . We define

SpanFp
(x) := {

n∑︂
i=1

λixi | λi ∈ Fp}.

Definition 22. Let B be a basis of Fpm over Fp. We define the rank of x = (x1, . . . , xn) ∈
Fn

pm over Fp as

RankFp (x) := Rank
(︂(︂

[x1]⊤B| . . . |[xn]⊤B
)︂)︂

.
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Remark. By definition RankFp (x) = dim
(︂
SpanFp

(x)
)︂
. Therefore, the value of RankFp (x)

does not depend on the choice of the basis and is well defined.

Definition 23. We define the rank distance of x, y ∈ Fn
pm as

dR

(︂
x, y

)︂
= RankFp

(︂
x − y

)︂
.

Lemma 36. The mapping dR : Fn
pm ×Fn

pm → N0 is a metric and does not depend on the
choice of the basis.

Proof. The independency of the choice of the basis is a straightforward corollary of the
previous remark.

To prove that dR (·, ·) is a metric, we prove the four properties of a metric.

1. Obviously, rank is alwys nonnegative, thus

∀x, y ∈ Fn
pm : dR

(︂
x, y

)︂
≥ 0.

2. We can easily see that
∀x ∈ Fn

pm : dR (x, x) = 0.

Furthermore,
∀x, y ∈ Fn

pm : dR

(︂
x, y

)︂
= 0 ⇒ x = y.

3. To prove symmetry, we just need to realize that −1 ∈ Fp and therefore

∀x, y ∈ Fn
pm : RankFp

(︂
x − y

)︂
= RankFp

(︂
y − x

)︂
.

Hence, dR

(︂
x, y

)︂
= dR

(︂
y, x

)︂
.

4. Finally, we can see that

∀U, V ∈ Fm×n
p : Rank (U) + Rank (V ) ≥ Rank (U + V )

and therefore

∀u, v ∈ Fn
pm : dR (u, o) + dR (v, o) ≥ dR (u + v, o) .

Especially for u := x − y and v := y − z we have

dR

(︂
x − y, o

)︂
+ dR

(︂
y − z, o

)︂
= dR

(︂
x, y

)︂
+ dR

(︂
y, z

)︂
≥ dR (x, z) .

Definition 24. We define the rank weight of x ∈ Fn
pm as wR (x) := dR (x, o) .

Definition 25. [Mar21, Defińıcia 1] Subsequently, the column Fp-rank of an arbitrary
matrix A = (a1|a2)| . . . |an) ∈ Fk×n

pm is defined as

Rank|
Fp

(A) = dim
(︂
SpanFp

(︂
a1, . . . , an

)︂)︂
.

51



5.1.2 Fp-isomorphism and Notation
For brevity of notation let us define the following.

Definition 26. Let α ∈ Fpm and i ∈ N0. We define α[i] := αpi
.

Observation. Note that

Fpm → Fpm ,

a ↦→ a[i]

is an Fp-isomorphism on Fpm.

Definition 27. Let

φi : Fpm → Fpm ,

x ↦→ xa[i]

We shall define a[−i] as the preimage of a under φi.

Observation.

Fpm → Fpm ,

a ↦→ a[−i]

is the inverse map to

Fpm → Fpm ,

a ↦→ a[i]

Observation. Let i, j ∈ Z and a ∈ Fpm. Then
(︂
a[i]
)︂[j]

=
(︂
api
)︂pj

= api·pj = api+j = a[i+j].

Moreover, due to Lagrange’s group theorem we know that in Fpm:

a[m] = apm = a.

That implies that

a[i] = a[i mod m].

Definition 28. Let i ∈ N0 and M ∈ Fk×n
pm be an arbitrary matrix. We define

M [i] :=

⎛⎜⎜⎝
m

[i]
11 · · · m

[i]
n1

... . . . ...
m

[i]
k1 · · · m

[i]
kn

⎞⎟⎟⎠ .

Let similarly v ∈ Fk
pm be an arbitrary vector. We define

v[i] := (v[i]
1 , . . . , v

[i]
k ).
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5.1.3 Maximum Rank Distance Codes
If an (n, k, d)-Hamming distance code reaches the Singleton bound, we call it an MDS
(maximum distance separable) code. An analogous family of codes exists for rank metric
codes, they are called MRD (maximum rank distance) codes. It can be shown that
Gabidulin codes are MRD codes.

Lemma 37 ( Singleton-style Bound). [Gab01, Lemma 2] Let n ≤ m and C be an (n, k, d)-
rank metric code over Fpm. Then k ≤ n − d + 1.

Definition 29. [Gab01, Lemma 2] Rank metric codes that reach the Singleton-style
bound are called MRD (maximum rank distance) codes.

Definition 30. Let g = (g1, . . . , gn) ∈ Fn
pm . We define

⟨g⟩n,k
Fpm :=

⎛⎜⎜⎜⎜⎜⎝
g1 g2 . . . gn

g
[1]
1 g

[1]
2 . . . g[1]

n
... . . . ...
g

[k−1]
1 g

[k−1]
2 . . . g[k−1]

n

⎞⎟⎟⎟⎟⎟⎠ ∈ Fk×n
pm .

Definition 31. [Ove05, Definition 3] Let n ≤ m. Let g = (g1, . . . , gn) ∈ Fn
pm be a vector

with entries linearly independent over Fp. Then

⟨g⟩n,k
Fpm ∈ Fk×n

pm

is a generator matrix of a Gabidulin code over Fpm of length n and dimension k.

Theorem 38. [Gab21, Theorem 2.3] Any Gabidulin code over Fpm is an MRD code.

Corollary 39. An (n, k)-Gabidulin code corrects ⌊n−k
2 ⌋ errors.

Theorem 40. [Gab21, Theorem 2.3] Given a generator matrix G = ⟨g⟩n,k
Fpm of an (n, k)-

Gabidulin code, there exists a vector h = (h1, . . . , hn) ∈ Fn
pm such that

⟨h⟩n,n−k
Fpm ∈ F(n−k)×n

pm

is a parity-check matrix of the given code.

There exist efficient decoding and syndrome decoding algorithms for Gabidulin codes.
An overview can be found e.g. in [Gab21, Chapter 4].

5.2 McEliece Version of GPT
We shall now describe the McEliece version of GPT PKC. This section is mainly based
on Chapter 3 of [Ove05]. As mentioned before, the PKC will be denoted by GGPT which
stands for ”Generalized GPT”.

System parameters

• p ∈ P,

• k, n, m ∈ N such that k < n ≤ m,

• s, t ∈ N such that s ≤ t < n − k − 1.
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Key generation

1. The legitimate user chooses

• Gpriv := ⟨g⟩n,k
Fpm ∈ Fk×n

pm a generator matrix of an (n, k)-Gabidulin code,
• a random matrix X ∈ Fk×t

pm such that

Rank|
Fp

(X) = t,

Rank (X) = s,

• a random nonsingular S ∈ Fk×k
pm (the row scrambler),

• a random nonsingular T ∈ Fn×n
p (the column scrambler).

2. The legitimate user now computes

Gpub = S
(︂(︂

X|0k×(n−t)
)︂

+ Gpriv

)︂
T ∈ Fk×n

pm

3. The legitimate user chooses e such that 1 ≤ e ≤ n−k−t
2 .

4. The legitimate user publishes a public key

Kpub = (Gpub, e)

and keeps a private key

Kpriv = (Gpriv, S, T ).

Encryption The sending party wishes to send m ∈ Fk
pm . They generate uniformly

randomly an error vector z ∈ Fn
pm with wR (z) = e Then they encrypt the message using

the public key as
c = m · Gpub + z.

Decryption Upon receiving the above ciphertext c, the legitimate party decrypts it as
follows.

1. Compute ĉ := c · T −1.

2. Decode ĉ↾{t+1,...,n} to obtain mS.

3. Multiply the previous from right by S−1 (which the legitimate user can easily com-
pute from knowing S) and obtain m.

Theorem 41. The decryption works, i.e., after decrypting c the legitimate user obtains
the original plaintext m.

Proof. Let us use the same notation as in the description of decryption. The structure
of the ciphertext is

c = m · Gpub + z

= m
(︂
S
(︂(︂

X|0k×(n−t)
)︂

+ Gpriv

)︂
T
)︂

+ z

= m
(︂(︂

SX|0k×(n−t)
)︂

T + SGprivT
)︂

+ z

=
(︂
m · SX|0k×(n−t)

)︂
T + m · SGprivT + z.
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Multiplication by T −1 yields

ĉ = c · T −1

= m
(︂
SX|0k×(n−t)

)︂
+ mSGpriv + zT −1,

ĉ↾{1,...,t} = mSX + mS
(︂
(Gpriv)∗{1,...,t}

)︂
+ z

(︃(︂
T −1

)︂
∗{1,...,t}

)︃
∈ Ft

pm ,

ĉ↾{t+1,...,n} = mS
(︂
(Gpriv)∗{t+1,...,n}

)︂
+ z

(︃(︂
T −1

)︂
∗{t+1,...,n}

)︃
∈ Fn−t

pm .

We now wish to work with a code given by

Ĝ = (Gpriv)∗{t+1,...,n}

=

⎛⎜⎜⎜⎜⎜⎝
gt+1 g2 . . . gn

g
[1]
t+1 g

[1]
2 . . . g[1]

n
... . . . ...
g

[k−1]
t+1 g

[k−1]
2 . . . g[k−1]

n

⎞⎟⎟⎟⎟⎟⎠ ∈ Fk×n−t
pm .

Such code is an (n − t, k)-Gabidulin code, thus it can correct ⌊n−t−k
2 ⌋ errors. Note that

vector z was chosen to have wR (z) = e ≤ n−k−t
2 . Matrix T ∈ Fn×n

p was chosen to be
nonsingular, thus

wR (z) = wR

(︂
zT −1

)︂
= e.

Therefore, zT −1 is an error that can be corrected in the code defined by Ĝ.
The decoding algorithm returns DĜ(ĉ↾{t+1,...,n}) = mS. Obviously m can now be

retrieved.

In Section 5.5 we show that if the distortion matrix X was omitted, the cryptosystem
would be breakable in polynomial time. However, we first show in Section 5.4 that under
given assumptions, the PKC can be broken in polynomial time by Overbeck’s attack.

5.3 Niederreiter Version of GPT
Analogously we can construct a version of Niederreiter cryptosystem that uses Gabidulin
codes. We describe the version that can be found in Section 3.1 of [Ove05]. The cryp-
tosystem will be denoted by NGPT for purposes of this thesis.

System parameters

• p ∈ P,

• l, k, n, m ∈ N such that l < k < n ≤ m.

Key generation

1. The legitimate user chooses

• a parity-check matrix Hpriv := ⟨h⟩n,n−k
Fpm ∈ Fn−k×n

pm of an (n, k)-Gabidulin code,
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• a random matrix A ∈ Fl×n
pm of full rank,

• a random nonsingular matrix S ∈ F(n−k+l)×(n−k+l)
pm .

2. The legitimate user computes

Hpub = S

(︄
Hpriv

A

)︄
,

e =
⌊︄

n − k

2

⌋︄
.

3. The legitimate user publishes a public key

Kpub = (Hpub, e)

and keeps a private key

Kpriv = (Hpriv, S) .

Encryption The sending party wishes to send the plaintext m with RankFp (m) = e.
They encrypt it as c = m · Hpub

⊤.

Decryption Upon receiving the ciphertext c, the legitimate user computes

ĉ := c
(︂
S⊤
)︂−1

.

To decrypt the message, it is sufficient to run the syndrome decoding algorithm on input
ĉ↾{1,...,n−k}.

Theorem 42. The decryption of NGPT works, i.e. the legitimate user obtains the orig-
inal plaintext m.

Proof. The hidden structure of the ciphertext is

c = m ·
(︂
H⊤

priv|A⊤
)︂

S⊤.

Thus, ĉ = m ·
(︂
H⊤

priv|A⊤
)︂
. Obviously, ĉ↾{1,...,n−k} = mH⊤

priv is a syndrome in the code with
parity-check matrix Hpriv. Therefore, SHpriv

(ĉ↾{1,...,n−k}) returns m.

5.4 Overbeck’s attack on GGPT PKC
In this section we will briefly describe Overbeck’s attack on GGPT PKC. The chapter is
based on Overbeck’s [Ove06] as well as on M. Marko’s Bachelor Thesis [Mar21]. More
detailed descriptions of the attack can be found in these publications. Marko in his thesis
works with a version of GGPT cryptosystem which is under natural assumption more
general, we shall denote it by MGGPT.
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5.4.1 MGGPT PKC
System parameters

• p ∈ P,

• k, n, m ∈ N such that k < n ≤ m,

• s, t ∈ N such that s ≤ k and s ≤ t.

Key generation

1. The legitimate user chooses

• Gpriv := ⟨g⟩n,k
Fpm ∈ Fk×n

pm a generator matrix of an (n, k)-Gabidulin code,

• a random matrix X ∈ Fk×t
pm such that

Rank|
Fp

(X) = t,

Rank (X) = s,

• a random nonsingular S ∈ Fk×k
pm (the row scrambler),

• a random nonsingular T ∈ F(n+t)×(n+t)
p (the column scrambler).

2. The legitimate user now computes

Gpub = S (X|Gpriv) T ∈ Fk×(n+t)
pm .

3. The legitimate user chooses e such that 1 ≤ e ≤ n−k
2 .

4. The legitimate user publishes a public key

Kpub = (Gpub, e)

and keeps a private key

Kpriv = (Gpriv, S, T ).

Encryption The sending party wishes to send m ∈ Fk
pm . They generate uniformly

randomly an error vector z ∈ Fn
pm with wR (z) = e. Then they encrypt the message using

the public key as follows
c = m · Gpub + z.

Decryption Upon receiving the ciphertext c, the legitimate party decrypts it as follows.

1. Compute ĉ := c · T −1.

2. Decode ĉ{t+1,...,n+t} to obtain mS.

3. Multiply the previous from right by S−1 (which the legitimate user knows from
having S) and obtain m.
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Remark. The MGGPT PKC is more general version of GGPT PKC introduced in Sec-
tion 5.2. In GGPT the first t columns of(︂(︂

X|0k×(n−t)
)︂

+ Gpriv

)︂
equal

X + (Gpriv)∗{1,...,t}.

In MGGPT PKC the first t columns of (X|Gpriv) equal X. In other words, in GGPT
PKC we mask the structure of (Gpriv)∗{1,...,t} by adding X. However, in MGGPT PKC
we take only X (which is an unstructured random matrix).

Observation. Let

S ∈ Fk×k
pm ,

˜̃X ∈ Fk×t
pm ,

T ∈ Fn×n
p ,

Gpriv ∈ Fk×n
pm ,

˜̃Gpub = S
(︂(︂ ˜̃X|0k×(n−t)

)︂
+ Gpriv

)︂
T

to be matrices used in a GGPT PKC. If

Rank|
Fp

(︂ ˜̃X + G∗{1,...,t}
)︂

= t,

Rank
(︂ ˜̃X + G∗{1,...,t}

)︂
= s

then the GGPT PKC can be written as MGGPT PKC.
Consider MGGPT PKC with matrices

S ∈ Fk×k
pm ,

X = ˜̃X + (Gpriv)∗{1,...,t} ∈ Fk×t
pm ,

T ∈ Fn×n
p ,

Gpriv ∈ Fk×n
pm ,

Gpub = S (X|Gpriv) T.

We can easily see that

Gpub = S
(︂ ˜̃X + (Gpriv)∗{1,...,t}|Gpriv

)︂
T

= S
(︂(︂ ˜̃X|0k×(n−t)

)︂
+ Gpriv

)︂
T

= ˜̃Gpub.

Furthermore, Rank|
Fp

(X) = t and Rank (X) = s.

Remark. Note that the assumptions

Rank|
Fp

(︂ ˜̃X + G∗{1,...,t}
)︂

= t,

Rank
(︂ ˜̃X + G∗{1,...,t}

)︂
= s

are natural ones. If the ranks were smaller, the PKC would be weaker. In the extreme
case we could get zero columns in the public matrix ˜̃Gpub. The assumption ensures the
best behaviour.
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5.4.2 Preliminaries
Definition 32. Let I be a subset of N. Let us define mapping πI : I → N that maps
i ∈ I to its position in I when ordered by the standard less-than-or-equal relation.

Definition 33. Let M ∈ Fl×n
pm and f ∈ N. We define

Λf (M) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

M
M [1]

M [2]

...
M [f ]

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∈ F(f+1)l×n
pm .

Lemma 43. [Ove05, Lemma 1], [Mar21, Lemma 31] If G = ⟨g⟩n,k
Fpm (i.e. it is a generator

matrix of a Gabidulin code) and f ≤ n − k − 1 then the rows of Λf (G) generate an
(n, k + f)-Gabidulin code.

The attack takes advantage of the structure of Λf (G) for G a generator matrix of a
Gabidulin code. An attacker knows the pulic key

Kpub = (Gpub, e)

and similarly as in the case of Sidelnikov-Shestakov’s attack they wish to find an alter-
native private key

Kpriv
′ =

(︂
G̃priv, S̃, T̃

)︂
.

After obtaining the alternative private key, they can recover the secret plaintext from
any intercepted ciphertext.

Assume that the attacker has recovered an alternative private key

G̃priv ∈ Fk×n
pm ,

S̃ ∈ Fk×k
pm ,

T̃ ∈ Fk×k
p .

Upon intercepting the ciphertext c the attacker multiplies it to obtain

ĉ := c ·
(︂
T̃
)︂−1

.

They then treat ĉ as a word in the code CG̃priv
and decode it to obtain mS̃. Finally, they

multiply the vector by
(︂
S̃
)︂−1

to obtain m.

Observation. It is obvious that the attacker’s decryption works. The only nontrivial
part is that wR

(︂
z(T̃ )−1

)︂
= wR (z) which holds by definition due to the T ∈ Fn×n

p being
nonsingular.

5.4.3 Overbeck’s Attack
The algorithm we describe can be found in [Mar21, Chapter 3].
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Algorithm 6: Overbeck’s Attack
Input: generator matrix of a Gabidulin code Gpub ∈ Fn×k

pm

Output: a generator matrix G̃priv ∈ Fk×n
pm of an (n, k)-Gabidulin code,

matrix X̃ ∈ Fk×t
pm ,

nonsingular matrix T̃ ∈ Fn×n
p such that Gpub = (G̃priv|X̃) · T̃

1 Compute Ĝpub := Λn−k−1(Gpub).
2 Compute parity-check matrix u of the code generated by Ĝpub.
3 Choose I ⊆ {1, . . . , n + t} such that |I| = n and wR

(︂
u↾I

)︂
= n.

4 Set J := {1, . . . , n + t} \ I.
5 Compute matrix T̂ = (t̂ij)n+t

i,j=1 such that u↾J = u↾I T̂ .
6 Compute matrix T̃ −1 = (dij)n+t

i,j=1 where

dji =

⎧⎪⎨⎪⎩
1 if j ∈ J, i = πJ(j) or j ∈ I, i = πI(j) + t,
t̂(i−t)πJ (j) if j ∈ J, i > t,
0 otherwise.

7 Compute T̃.
8 Compute (︂

X̃|G̃priv

)︂
:= Gpub · T̃ −1.

9 Return (G̃priv, T̃ ).

Theorem 44. [Mar21, p. 21] Let g ∈ Fn
pm such that G = ⟨g⟩n,k

Fpm . Then there exist
matrices Y ∈ F(n−k−1)(k−1)×t

pm , Z ∈ F(n−1)×t
pm and nonsingular matrices S̃, R ∈ F(n−k)k×(n−k)k

pm

Ĝpub = Ŝ

(︄
Z Gn−1
Y 0(n−k−1)(k−1)×n

)︄
T,

where Gn−1 = ⟨g⟩n,n−1
Fpm .

Theorem 45. [Mar21, Lemma 32 and p. 22-23] Let us use the notation from the previous
lemma. If Rank (Y ) = t then ∃u ∈ Fn+t

pm , ∃I ⊆ {1, . . . , n + t}, |I| = n such that

• wR

(︂
u↾I

)︂
= n,

• wR (u) = n,

• u = (o | u↾I)(T̃ −1)⊤ is parity-check matrix of the code generated by Ĝpub.
Remark. The matrix (T̃ −1) was constructed in the algorithm in the way so that the
theorem would hold.

Theorems so far have showed that if Rank (Y ) = t, the algorithm proceeds to Step 8.
Obviously, in such case the algorithm terminates in Step 9. Moreover, we can easily see
that (︂

X̃|G̃priv

)︂
· T̃ =

(︂
Gpub · T̃ −1

)︂
· T̃ = Gpub.

Therefore, if the algorithm terminates, it returns an alternative private key.
It can be shown that if Rank (Y ) = t the algorithm terminates in polynomial time.

Theorem 46. [Ove05, Theorem 3], [Mar21, p. 24] If Rank (Y ) = t (using the same
notation as in Theorem 44) then the attack succeeds in O((n + t)3) operations over Fpm.
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5.5 GGPT PKC Without Distortion Matrix X
In this section we describe a deterministic algorithm for breaking GGPT PKC without
the distortion matrix X.

Let us use the notation from the previous chapter. Assume that we chose

X = 0k×n.

Then we obtain

Gpub = SGprivT,

Kpub = (Gpub, e) ,

Kpriv = (Gpriv, S, T ) .

The enciphered message now looks like

c = m · Gpub + z = m · SGprivT + z.

Definition 34. We shall for brevity denote such PKC by GGPTX PKC.
R. Overbeck states in [Ove05, p. 52] that such version of the cryptosystem would be

vulnerable to attack similar to the one by Sidelnikov and Shestakov ([SS92]) described in
Section 4.1 of this thesis.

We tried constructing such attack but could not proceed. The reason is described
in Section 5.5.2. Instead we constructed an attack slightly similar to Overbeck’s attack
from [Ove05] (described in Section 5.4 of this thesis), that can be found in Section 5.5.3.
The attack breaks the PKC by finding an alternative private key.

5.5.1 Properties of GGPTX PKC
We first discuss basic properties of GGPTX PKC. The properties are very similar to
those of Niederreiter PKC based on GRS codes discussed in Section 4.1.
Theorem 47. Let matrices Gpriv and T be as defined in GGPTX cryptosystem above,
i.e.,

Gpriv = ⟨g⟩n,k
Fpm ∈ Fk×n

pm ,

T ∈ Fn×n
p , such that Rank (T ) = n.

Then there exists a vector ĝ ∈ Fn
pm such that GprivT = ⟨ĝ⟩n,k

Fpm .
Proof. To prove the theorem, we just need to examine the entries of Gpriv · T . Let us
denote the entries of T by tij. We obtain

∀i ∈ {1, . . . , k}∀j ∈ {1, . . . , n} : (Gpriv · T )ij =
n∑︂

l=1
g

[i−1]
l · tlj

=
n∑︂

l=1
(gl · tlj)[i−1]

=
(︄

n∑︂
l=1

gl · tlj

)︄[i−1]

.

In the last two equalities we used the first observation from Section 5.1.2. Set ĝj :=∑︁n
l=1 gl · tlj : ∀j ∈ {1, . . . , n}. Then Gpriv · T = ⟨ĝ⟩n,k

Fpm .

61



Observation. Using the same notation as above, the matrices Gpriv and Gpriv ·T are both
generator matrices of an (n, k, d)-Gabidulin code. Hence, multiplication by T changes the
code but not the parameters.

Remark. Note that Niederreiter PKC based on GRS codes has similar property. In that
case matrices H and HP are both parity-check matrices of an (n, k)-GRS code (see
discussion on page 25).
Remark. From now on we will not consider matrix T as part of the private key of the
PKC. The reason is same as discussed in Section 4.1.3.

Theorem 48. Let Kpub = (Gpub, e) and Kpriv = (Gpriv, S, T ) be the keys of GGPTX PKC.
Suppose that c = mGpub + z ∈ Fn

pm is a ciphertext that the attacker has intercepted. Fur-
thermore, assume that the attacker knows an alternative private key K̃priv = (G̃priv, S̃, In)
such that Gpub = S̃G̃priv. The attacker can then decipher c to obtain m.

Proof. The ciphertext can be viewed as

c = mGpub + z

= m(S̃G̃priv) + z

= (mS̃)G̃priv + z.

Vector z is an error that can be corrected, thus DG̃priv
(c) returns mS̃. Matrix S̃ is

nonsingular, therefore the attacker can easily obtain m.

Remark. The aim of the attack we will construct is for the attacker to retrieve an alter-
native private key from the known public key.

5.5.2 Comments on Attack Based on Sidelnikov-Shestakov’s At-
tack

We tried to construct an attack similar to Sidelnikov-Shestakov’s one. However, we were
not able to proceed. Namely, we could not convert the mapping

φ : Fpm → Fpm ,

x ↦→ 1
x

to a linear mapping. Let us, ∀k ∈ N define the extended mapping as

φ : Fk
pm → Fk

pm ,

(x1, . . . , xk) ↦→ (φ(x1), . . . , φ(xk).

Suppose that g ∈ Fn
pm such that RankFp

(︂
g
)︂

= n. In order to use the principles of
Sidelnikov-Shestakov’s attack we wish to find a nonsingular matrix S ∈ Fk×k

pm such that

S⟨g⟩n,k
Fpm = ⟨φ(g)⟩n,k

Fpm .

Let us show an example when such matrix S does not exist.
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Example. Consider a finite field

F = F2[a] = F2[X]
X3 + X + 1 with a3 + a + 1 = 0.

Suppose that g = (1, a, a2) and consider a generator matrix of a (3, 2)-Gabidulin code

G = ⟨g⟩3,2
F =

(︄
1 a a2

1 a2 a2 + a

)︄
.

We wish to find a nonsingular matrix S ∈ F2×2 such that

SG =
(︄

s11 s12
s21 s22

)︄
·
(︄

1 a a2

1 a2 a2 + a

)︄
=
(︄

1 a2 + 1 a2 + a + 1
1 a2 + a + 1 a + 1

)︄
= ⟨φ(g)⟩3,2

F

Note that φ denotes an inversion on Fpm .
That gives us two systems of linear equations with s11, s12, s21, s22 as unknown vari-

ables: ⎛⎜⎝ 1 1
a a2

a2 a2 + a

⎞⎟⎠(︄s11
s12

)︄
=

⎛⎜⎝ 1
a2 + 1

a2 + a + 1

⎞⎟⎠ ,

⎛⎜⎝ 1 1
a a2

a2 a2 + a

⎞⎟⎠(︄s21
s22

)︄
=

⎛⎜⎝ 1
a2 + a + 1

a + 1

⎞⎟⎠ .

Matrices on the left-hand side can be reduced to row echelon form which gives us⎛⎜⎝1 0
0 1
0 0

⎞⎟⎠(︄s11
s12

)︄
=

⎛⎜⎝0
0
1

⎞⎟⎠ ,

⎛⎜⎝1 0
0 1
0 0

⎞⎟⎠(︄s21
s22

)︄
=

⎛⎜⎝0
0
1

⎞⎟⎠ .

Obviously, these systems of linear equations have no solution. Therefore, such
s11, s12, s21, s22 do not exist.

▲

Instead of constructing an attack that would be similar to Sidelnikov-Shestakov’s one,
we found an attack slightly similar to Overbeck’s attack.

5.5.3 Attack on GGPTX PKC
Preliminaries

Throughout this section, let us follow the usual notation. That is

Gpriv = ⟨g⟩n,k
Fpm is a private generator matrix of a Gabidulin code,

S ∈ Fk×k
pm is a private nonsingular matrix,

Gpub = SGpriv is a public generator matrix.
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Remark. As in Section 5.1.2 we will define M [i], v[i] for any matrix and vector over Fpm .

Notation. Let us denote by K a parity-check matrix of the code defined by Gpub.

Observation. As mentioned before,

Fpm → Fpm ,

a ↦→ a[i]

is an Fp-isomorphism on Fpm. Thus

∀i ∈ Z : K [i]G
[i]
pub

⊤
= 0n−k×k,

∀i ∈ Z : G
[i]
pub = S[i]G

[i]
priv.

Having defined the basics, the attack can be written as follows.

Algorithm 7: Attack on GGPTX
Input: generator matrix of a Gabidulin code Gpub ∈ Fn×k

pm

Output: nonsingular matrix Ŝ ∈ Fk×k
pm ,

generator matrix of a Gabidulin code G̃priv ∈ Fn×k
pm such that ŜG̃priv = Gpub

1 Find a parity-check matrix K of the code defined by the public matrix Gpub.
2 Compute matrix Λk−1(K).
3 Find g̃ such that Λk−1(K)g̃⊤ = o.
4 for i ∈ {0, . . . , k − 1} do
5 Find s̃k−i such that g̃[−i] = s̃k−iGpub.
6 Define

S̃ =

⎛⎜⎜⎝
s̃1
...

s̃k

⎞⎟⎟⎠ .

7 Compute Ŝ :=
(︂
S̃
)︂−1

, G̃priv := S̃Gpub.

8 return Ŝ, G̃priv

Correctness of the Attack

Notation. Let us for brevity of notation denote the subspaces of Fn
pm by

∀i ∈ {0, . . . , k − 1} : Ppubi := Span
(︃(︂

G
[i]
pub

)︂⊤
)︃

,

∀i ∈ {0, . . . , k − 1} : Pprivi := Span
(︃(︂

G
[i]
priv

)︂⊤
)︃

,

Ppub :=
k−1⋂︂
i=0

Span
(︃(︂

Ppubi

)︂⊤
)︃

,

Ppriv :=
k−1⋂︂
i=0

Span
(︃(︂

Pprivi

)︂⊤
)︃

.
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Lemma 49. Assume that M ∈ Fk×k
pm is an arbitrary matrix and i ∈ Z. Then M is

nonsingular if and only if, M [i] is nonsingular.

Proof. It is sufficient to examine the determinants of both matrices. By definition of a
determinant and the fact that exponentiation to [i] is a homomorphism on Fpm we obtain

det(M [i]) = (det(M))[i].

Therefore,
det(M) = 0 ⇐⇒ det(M [i]) = 0.

Corollary 50. Let M ∈ Fk×k
pm and i ∈ Z. Then Rank

(︂
M [i]

)︂
= Rank (M).

Proof. To prove the corollary it is sufficient to recall that the rank of an arbitrary matrix
is equal to the number of rows of its biggest nonsingular submatrix (see e.g. [Par20,
p. 88]).

Corollary 51. Let S be the nonsingular matrix from GGPTX PKC. Then S[i] is non-
singular ∀i ∈ Z.

Lemma 52. For all i ∈ {0, . . . , k − 1} we have Ppubi = Pprivi.

Proof. As shown before, we know that

∀i ∈ {0, . . . , k − 1} : G
[i]
pub = S[i]G

[i]
priv.

Furthermore, as S[i] is nonsingular (see the previous lemma), we have by definition:

Ppubi = Span
(︃(︂

G
[i]
pub

)︂⊤
)︃

= Span
(︃(︂

S[i]G
[i]
priv

)︂⊤
)︃

= Span
(︃(︂

G
[i]
priv

)︂⊤
)︃

= Pprivi.

Remark. A straightforward corollary is that Ppriv = Ppub.

Lemma 53. Suppose that K is a parity-check matrix of the code generated by public
generator matrix Gpub. Then ∀i ∈ N : K [i] is a parity-check matrix of the code generated
by G

[i]
pub.

Proof. First, suppose that c ∈ Fn
pm such that Kc⊤ = o⊤. Then because exponentiation

to [i] is an isomorphism on Fpm and Rank
(︂
K [i]

)︂
= Rank (K) = n − k, we know that

K [i]
(︂
c[i]
)︂⊤

= o⊤ ⇐⇒ c[i] is a codeword in the code generated by G
[i]
pub.
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Theorem 54. Assume that g̃ ∈ Fn
pm such that Λk−1(K)g̃⊤ = o. Then

∀i ∈ {0, · · · k − 1} ∃s̃k−i ∈ Fk
pm

such that
g̃ = s̃

[i]
k−iG

[i]
pub.

Proof. By definition of Λk−1(K) we know that

∀i ∈ {0, . . . , k − 1} : K [i]g̃⊤ = o⊤.

Therefore, Lemma 52 and Lemma 53 give us that

g̃ ∈ Ppub = Ppriv.

It implies that

∀i ∈ {0, . . . , k − 1} ∃mi ∈ Fk
pm : g̃ = miG

[i]
priv = mi

(︂
S−1

)︂[i]
G

[i]
pub.

Setting s̃k−i := m
[−i]
i S−1 completes the proof.

Lemma 55. Let us denote the first row of Gpriv by g. Let l ≤ k − 1. Then

l⋂︂
i=0

Pprivi = Span

⎛⎜⎜⎜⎝
⎛⎜⎜⎝

g
[l]
1 . . . g[l]

n
... . . . ...

g
[k−1]
1 . . . g[k−1]

n

⎞⎟⎟⎠
⊤⎞⎟⎟⎟⎠

and dim
(︂⋂︁l

i=0 Pprivi

)︂
= k − l.

Proof. We will prove the lemma by induction. First, let l = 0. Then by definition
0⋂︂

i=0
Span

(︃(︂
Pprivi

)︂⊤
)︃

= Ppriv0

= Span
(︃(︂

G
[0]
priv

)︂⊤
)︃

= Span
(︂
(Gpriv)⊤

)︂

= Span

⎛⎜⎜⎜⎝
⎛⎜⎜⎝

g
[0]
1 . . . g[0]

n
... . . . ...

g
[k−1]
1 . . . g[k−1]

n

⎞⎟⎟⎠
⊤⎞⎟⎟⎟⎠

and dim(Ppriv0) = Rank (Gpriv) = k. Thus, the statement is true.
Second, suppose the statement holds for l = j ≤ k − 1. Then we shall prove it for
l = j + 1:

j+1⋂︂
i=0

Pprivi =
(︄

j⋂︂
i=0

Pprivi

)︄
∩ Pprivj+1

= Span

⎛⎜⎜⎝
⎛⎜⎜⎝

g
[j]
1 . . . g

[j]
n

...
. . .

...
g

[k−1]
1 . . . g

[k−1]
n

⎞⎟⎟⎠
⊤⎞⎟⎟⎠ ∩ Span

⎛⎜⎜⎝
⎛⎜⎜⎝

g
[j+1]
1 . . . g

[j+1]
n

...
. . .

...
g

[k−1+j+1]
1 . . . g

[k−1+j+1]
n

⎞⎟⎟⎠
⊤⎞⎟⎟⎠ (5.1)

= Span

⎛⎜⎜⎝
⎛⎜⎜⎝

g
[j+1]
1 . . . g

[j+1]
n

...
. . .

...
g

[k−1]
1 . . . g

[k−1]
n

⎞⎟⎟⎠
⊤⎞⎟⎟⎠ .
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The dimension can be computed as (see e.g. [BT, p. 180])

dim
⎛⎝j+1⋂︂

i=0
Pprivi

⎞⎠ = dim
⎛⎝⎛⎝ j⋂︂

i=0
Pprivi

⎞⎠ ∩ Pprivj+1

⎞⎠
= dim

⎛⎝ j⋂︂
i=0

Pprivi

⎞⎠+ dim
(︂
Pprivj+1

)︂
− dim

⎛⎝⎛⎝ j⋂︂
i=0

Pprivi

⎞⎠+ Pprivj+1

⎞⎠ .

The induction hypothesis gives us

dim
⎛⎝ j⋂︂

i=0
Pprivi

⎞⎠ = k − j.

As discussed before, exponentiation to [i] is an Fp-isomorphism on Fpm , thus

dim
(︂
Pprivj+1

)︂
= dim

(︃
Span

(︃(︂
G

[j+1]
priv

)︂⊤
)︃)︃

= dim
(︂
Span

(︂
G⊤

priv

)︂)︂
= k.

Finally, from line 5.1 we can easily see that

dim
⎛⎝⎛⎝ j⋂︂

i=0
Pprivi

⎞⎠+ Pprivj+1

⎞⎠ = (k − 1 − j + 1) + (j + 1) = k + 1.

Altogether,

dim
⎛⎝j+1⋂︂

i=0
Pprivi

⎞⎠ = (k − j) + k − (k + 1) = k − j − 1.

Theorem 56. Any g̃ ∈ Fn
pm such that Λk−1(K)g̃⊤ = o⊤ is an Fpm-multiple of g[k−1]. Here

g is the first row of Gpriv.

Proof. We know that

{g̃ ∈ Fn
pm | Λk−1(K)g̃⊤ = o⊤} = Ppub

= Ppriv

=
k−1⋂︂
i=0

Span
(︃(︂

Pprivi

)︂⊤
)︃

= Span
(︃(︂

g
[k−1]
1 . . . g[k−1]

n

)︂⊤
)︃

.

The last equality holds due to Lemma 55.

Remark. Note that g[k−1] is by definition the last row of matrix Gpriv.

Corollary 57. Any nonzero g̃ ∈
(︂
Fn

pm

)︂∗
such that Λk−1(K)g̃⊤ = o⊤ has wR

(︂
g̃
)︂

= n.
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Proof. We suppose that wR

(︂
g
)︂

= n. That means

Rank
(︂
([g1]⊤B, . . . , [gn]⊤B)

)︂
= n

for B a basis of Fpm over Fp. Because exponentiation to [k − 1] is an isomorphism on Fpm

B′ := {b[k−1] | b ∈ B}

is a basis of Fpm over Fp too. If g1 = ∑︁m
i=1 λibi for λi ∈ Fp then

g
[k−1]
1 =

m∑︂
i=1

λ
[k−1]
i b

[k−1]
i

=
m∑︂

i=1
λib

[k−1]
i .

In other words, we have obtained the following matrix equality

([g1]⊤B, . . . , [gn]⊤B) = ([g[k−1]
1 ]⊤B′ , . . . , [g[k−1]

n ]⊤B′).

Therefore, wR

(︂
g[k−1]

)︂
= n. Since ∀a ∈ F∗

pm

Fn
pm → Fn

pm ,

u ↦→ a · u

forms an Fp-isomorphism, we can in the same manner conclude

∀a ∈ F∗
pm : wR

(︂
a · g[k−1]

)︂
= n.

Theorem 58. Let us define S̃ ∈ Fk×k
pm and G̃priv ∈ Fk×n

pm as in Algorithm 7, i.e.

G̃priv = S̃Gpub

=

⎛⎜⎜⎝
s̃1
...

s̃k

⎞⎟⎟⎠Gpub.

Then ∀i ∈ {1, . . . , k} the i-th row of matrix G̃priv equals

G̃privi∗ =
(︂
g̃[−k]

)︂[i]
= g̃[i−k].

Proof. From Theorem 54 we know that

∀j ∈ {0, . . . , k − 1} : g̃ = s̃
[j]
k−jG

[j]
pub.

Or equivalently

∀j ∈ {0, . . . , k − 1} : g̃[−j] = s̃k−jGpub.

Let i := k − j ∀j ∈ {0, . . . , k − 1} then i ∈ {1, . . . , k} and

g̃[i−k] = s̃iGpub.

Furthermore, by definition of matrix G̃priv we know that

∀i ∈ {1, . . . , k} : G̃privi∗ = s̃iGpub.
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Corollary 59. Matrix G̃priv is a generator matrix an (n, k)-Gabidulin code.

Proof. From Theorem 56 we know that wR

(︂
g̃
)︂

= n and from the previous theorem we
see that G̃priv = ⟨g̃⟩n,k

Fpm .

Lemma 60. Matrix S̃ is nonsingular.

Proof. Let us for contradiction assume that

∃a ∈ Fk
pm , a ̸= o such that aS = o.

That implies

o = aSGpub

= aG̃priv

=
(︄

k∑︂
i=1

aig̃
[i−1]
1 , . . . ,

k∑︂
i=1

aig̃
[i−1]
n

)︄
.

In other words, g̃1, . . . , g̃n are roots of polynomial f(x) = ∑︁k
i=1 aix

[i−1] ∈ Fpm [x]. Further-
more, let v ∈ Fn

p . Then

0 =
n∑︂

i=1
vif(g̃i)

=
n∑︂

i=1
f(vi · g̃i).

Thus any Fp-linear combination of g̃1, . . . , g̃n is a root of f(x). Note that

RankFp ((g̃1, . . . , g̃n)) = n,

thus f(x) is a polynomial of degree pk−1 with pn roots. Which is a contradiction.

Corollary 61. Matrices
(︂
S̃
)︂−1

and G̃priv form an alternative private key for the known
public key Gpub.

Proof. We know that matrix G̃priv is a generator matrix of an (n, k)-Gabidulin code.
Matrix S̃ is nonsingular, thus there exists matrix

(︂
S̃
)︂−1

. Furthermore, we know that

Gpub =
(︂
S̃
)︂−1

G̃priv.

5.5.4 Time Complexity
In order to show that the attack described in Algorithm 7 is efficient, we need to examine
its time-complexity. We shall compute the complexity as number of operations over Fpm .
In other words we view operations over Fpm as elementary.

Note that by definition of the PKC,

k < n ≤ m.

Theorem 62. [BT, p. 65] Let b ∈ N. The time complexity of solving a linear system of
at most b equations and b indeterminates by Gaussian elimination is O(b3).
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Step 2 Knowing K, to compute the matrix Λk−1(K) we first need to compute

k
[1]
ij ∀i ∈ [n − k] ∀j ∈ {1, . . . , n}.

Then we shall iterate and compute

k
[2]
ij := (k[1]

ij )[1],

k
[3]
ij := (k[2]

ij )[1],

...
k

[k−1]
ij := (k[k−2]

ij )[1].

Therefore, in total the complexity is

(n − k) · n · (k − 1) = O(n2k).

Step 3 Step 3 of the algorithm can be performed as simple Gaussian elimination of a
system of k(n − k) equations. Its complexity is therefore

O(k3(n − k)3) = O(k3n3).

Steps 4 and 5 In Steps 4 and 5 we need to compute g̃[−1], . . . , g̃[−k+1]. However, over
Fpm we know that

g̃[m] = g̃[0]

(see Observation on page 52). Therefore, we can instead compute g̃[m−1], . . . , g̃[−k+1+m].
Again, we can first compute g̃[m−k+1] and then proceed iteratively. That gives us k − 1
operations over Fpm .

We need to perform Gaussian elimination on the matrix Gpub just once, that has
complexity of

O(n3).
Finally, we need to perform the back substitution k times (in each iteration), that has
complexity of

k · O(n2) = O(kn2).

Step 7 Computing the inverse of S̃ in Step 6 can be viewed as performing Gaussian
elimination on k systems with k equation. Therefore, its time complexity is

k · O(k3) = O(k4).

Finally, computation of matrix G̃priv = S̃Gpub is actually n · k2 multiplications and
n · k · (k − 1) addings in Fpm . That gives us time complexity of

n · k2 + k · (k − 1) · n = O(nk2).

Altogether We see that the overall complexity is

O(k3n3) = O(n6)

which is polynomial in the length of the code.
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Conclusion
The aim of the thesis was to study different versions of McEliece cryptosystem and attacks
against them. It was intended to focus on cryptosystems using different metrics and to
potentially find a new attack.

We discussed both Hamming metric and rank metric variants of McEliece and Nieder-
reiter cryptosystems. In Section 2.3 we commented the purpose of matrices P and S in
McEliece cryptosystem.

In Chapter 3 we covered the special case of cryptosystems using binary codes that
can be attacked by Stern’s attack. We reformulated [Ste88, proposition 2] as Theorem 9
and gave a comprehensive proof. We gave algorithms for Stern-McEliece and Stern-
Niederreiter attacks and proved their correctness. Both attacks were originally described
in [BLP08, p. 35].

We explained in detail Sidelnikov-Shestakov’s attack on cryptosystems based on GRS
codes and proved the correctness of defining F∞ which the original work [SS92] does not
cover. For better understanding of the attack, we showed an example in Section 4.3.

In Chapter 5 we focused on GGPT - a cryptosystem using rank metric. We ex-
plained why an attack against GGPTX (GGPT cryptosystem without distortion matrix
X) conjectured by R. Overbeck based on the principles of Sidelnikov-Shestakov’s attack
cannot work. We found similarities between cryptosystems based on GRS codes and GG-
PTX cryptosystem and took inspiration from Overbeck’s attack on GGPT to construct
a polynomial-time attack on GGPTX.

Cryptosystems based on coding theory is a vast area with ongoing research. It would
be interesting to go on with examining the similarities between McEliece based on GRS
codes and GGPTX. We might as well examine their more secure variants - Modified
Niederreiter (briefly mentioned in Section 4.4) and GGPT cryptosystem.

71



Bibliography
[ABC+] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,

Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben
Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters,
Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tom-
linson, and Wen Wang. Classic McEliece. https://classic.mceliece.org/.

[BLP08] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and De-
fending the McEliece Cryptosystem. In Post-Quantum Cryptography, pages
31–46, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[BMvT78] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability
of certain coding problems (Corresp.). IEEE Transactions on Information
Theory, 24(3):384–386, 1978.
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A. Attachments

A.1 Sidelnikov-Shestakov’s Attack on Original
Niederreiter

[1]: class Niederreiter:
def __init__(self, F, k, M = None, P = None, pointsAlpha = None,

↪→pointsZ = None):
self.k = k
self.n = len(F)-1
self.s = self.n-1-k
self.F = F
self.Flist = [i for i in self.F]
self.Flist.remove(0)
self.M = M
self.P = P
self.pointsAlpha = pointsAlpha
self.pointsZ = pointsZ
if self.pointsZ == None:

self.pointsZ = []
for i in range(self.n):

self.pointsZ += random.sample(self.Flist, 1)
if self.pointsAlpha == None:

self.pointsAlpha = self.Flist
self.GRS = codes.GeneralizedReedSolomonCode(self.pointsAlpha, k,

↪→self.pointsZ)
self.H = self.GRS.parity_check_matrix()
if self.M == None:

self.M = random_matrix(self.F,self.s+1,self.s+1)
while self.M.is_singular():

self.M = random_matrix(self.F,self.s+1,self.s+1)
if self.P == None:

self.P = Permutations(self.n).random_element().to_matrix()
#
self.K = self.M*self.H*self.P

Parameters
[2]: import random

q = 9
F.<eta> = GF(q, name=’eta’, modulus=xˆ2 + 2*x +2 )
print("k has to be greater or equal to ", float((q-1)/2))

k has to be greater or equal to 4.0

[3]: k = int(input())
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4

[4]: n = q-1
s = n-k-1

[5]: print("n = ", n)
print("k = ", k)
print("s = ", s)

n = 8
k = 4
s = 3

Generate keys

[6]: M = matrix([[ eta + 1, 1, eta + 2, 2*eta + 1],
[2,2,eta + 1,2*eta],
[1,eta + 2,0,eta + 1],
[2*eta,0,eta + 1,eta + 1]])

l = F(1)
P = matrix([[0, 0, 0, 0, 0, 0, l, 0],

[0, 0, 0, 0, 0, l, 0, 0],
[0, 0, 0, 0, 0, 0, 0, l],
[0, 0, 0, l, 0, 0, 0, 0],
[l, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, l, 0, 0, 0],
[0, 0, l, 0, 0, 0, 0, 0],
[0, l, 0, 0, 0, 0, 0, 0]])

pointsAlpha = [eta, eta + 1, 2*eta + 1, 2, 2*eta, 2*eta + 2, eta + 2, 1]
pointsZ = [2*eta, 2*eta + 2, eta + 1, eta + 1, 2*eta, eta, 2, 2*eta + 2]

[7]: NiederreiterPKC = Niederreiter(F,k,M,P,pointsAlpha,pointsZ)
K = NiederreiterPKC.K
print("private matrix H ="),
print(NiederreiterPKC.H, "\n")
print("public matrix K ="),
print(K)

private matrix H =
[ 1 1 2*eta 2*eta + 2 2 eta eta + 2 2*eta + 2]
[ eta eta + 1 1 eta + 1 eta eta + 2 2*eta + 2 2*eta + 2]
[ eta + 1 2 2*eta + 1 2*eta + 2 2*eta + 2 2*eta 2*eta 2*eta + 2]
[2*eta + 1 2*eta + 2 2*eta + 2 eta + 1 2*eta + 1 2*eta + 1 2 2*eta + 2]

public matrix K =
[ eta + 1 2*eta eta 2*eta + 2 2*eta + 1 2*eta 2*eta 1]
[ 2*eta eta + 1 2*eta + 1 eta 2*eta + 1 1 2*eta + 2 2*eta]
[ 2*eta eta 2*eta + 1 1 2*eta + 2 eta + 2 2*eta + 2 0]
[ 1 2*eta 0 2*eta + 1 2*eta + 1 eta eta + 2 2]
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Attack
Recover gamma4, ..., gamma8

[8]: maxindex = min(2*s-1,n-1)

J1 = [0]+list(range(s+1,maxindex+1))
K1 = K.matrix_from_columns([i for i in J1])
c1 = K1.left_kernel().basis()[0]
pi1 = c1*K
print("c_1 = ", c1)
print("pi_1 = ", pi1)

J2 = [1]+list(range(s+1,maxindex+1))
K2 = K.matrix_from_columns([i for i in J2])
c2 = K2.left_kernel().basis()[0]
pi2 = c2*K
print("\nc_2 = ", c2)
print("pi_2 = ", pi2)

c 1 = (0, 1, 2*eta + 2, 2*eta + 2)
pi 1 = (0, eta + 1, 1, eta + 2, 0, 0, eta + 1, 1)

c 2 = (1, 2*eta, 2*eta, eta + 1)
pi 2 = (eta + 1, 0, eta + 2, 2*eta + 1, 0, 0, eta + 2, 1)

[9]: a1 = pi1[2]
a2 = pi2[2]
blist = [None]*n
blist[2] = a1/a2

gammalist = list([None]*n)

for j in range(3,(s)+1):
blist[j] = pi1[j]/pi2[j]
gammalist[j] = blist[2]/(blist[2]-blist[j])

for j in range(2*s,(n-1)+1):
blist[j] = pi1[j]/pi2[j]
gammalist[j] = blist[2]/(blist[2]-blist[j])

print("(gamma_1, ..., gamma_8) = ", gammalist)

(gamma 1, ..., gamma 8) = [None, None, None, eta + 2, None, None, 2*eta
↪→+ 1, eta + 1]
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[10]: J3 = [0]+list(range(2,(s)+1))
K3 = K.matrix_from_columns([i for i in J3])
c3 = K3.left_kernel().basis()[0]
pi3 = c3*K
print("c_3 = ", c3)
print("pi_3 = ", pi3)

J4 = [1]+list(range(2,(s)+1))
K4 = K.matrix_from_columns([i for i in J4])
c4 = K4.left_kernel().basis()[0]
pi4 = c4*K
print("\nc4 = ", c4)
print("pi_4 = ", pi4)

c 3 = (1, eta, 1, eta)
pi 3 = (0, eta, 0, 0, eta + 1, 2*eta, 2*eta + 2, eta)

c4 = (1, 2*eta + 1, 2*eta, 2*eta + 1)
pi 4 = (eta + 1, 0, 0, 0, 2*eta, eta + 2, 2, eta + 1)

[11]: r = random.randint(2*s,n-1)
for j in range(0,n):
if j not in set(J3+J4+[2]):

if gammalist[j] == None:
blist[j] = (pi4[r]*pi3[j]*blist[r])/(pi3[r]*pi4[j])
gammalist[j] = blist[2]/(blist[2]-blist[j])

print("(gamma_1, ..., gamma_8) = ", gammalist)

(gamma 1, ..., gamma 8) = [None, None, None, eta + 2, 2*eta + 2, eta,
↪→2*eta + 1, eta + 1]

Transformation F8
∞ → F8

9

[12]: gammalist[0] = 1
gammalist[1] = 0

for i in F:
if i not in gammalist:

a = i
break

betalist = gammalist[:]
for j in range(3,n):
gammanew = 1/(a-gammalist[j])
betalist[j] = gammanew
betalist[0] = 1/(a-1)
betalist[1] = 1/(a)
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betalist[2] = 0
print("(beta_1, ..., beta_8) = ", betalist)

(beta 1, ..., beta 8) = [1, 2, 0, 2*eta + 1, eta + 2, eta + 1, 2*eta +
↪→2, 2*eta]

Recover y1, . . . , y5

[13]: J5 = list(range(0,(s+1)+1))
K5 = K.matrix_from_columns([i for i in J5])
c5 = K5.right_kernel().basis()[0]

ylist = [None] * n
ylist[0] = 1

V = (matrix.vandermonde(betalist[:(s+1)+1]).transpose()).
↪→matrix_from_rows([i for i in range(0,s+1)])

B = V.matrix_from_columns([i for i in range(1,(s+1)+1)])
C = matrix.diagonal(c5[1:])
BC = B*C
solve = vector(-1 * c5[0] * V.matrix_from_columns([0]))
y2 = BC.solve_right(solve)

i = 1
for j in y2:
ylist[i] = j
i += 1
print("(y_1, ..., y_8) = ", ylist)

(y 1, ..., y 8) = [1, eta + 1, 2*eta + 1, eta + 1, 2*eta, None, None,
↪→None]

Recover M̂

[14]: V = matrix.vandermonde(betalist[:s+1])
Mhat = [[None]*(s+1)]*(s+1)

ytmp = vector(ylist[:s+1])
yinv = vector([yiˆ(-1) for yi in ytmp])

for i in range(s+1):
solve = yinv[:]
for j in range(s+1):

solve[j] *= K[i][j]
Mhat[i] = V.solve_right(solve)
Mhat = matrix(Mhat)
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print("\\hat{M} = ")
print(Mhat)

\hat{M} =
[2*eta + 2 2*eta eta + 2 2*eta]
[ 1 2 eta + 1 eta + 2]
[ 1 2*eta 0 2]
[ 0 2*eta + 1 eta + 1 2]

Recover y6, y7, y8

[15]: Mhatinv = Mhat.inverse()
for i in range(s+2,n):
tmpsum = 0
for j in range(s+1):

tmpsum += Mhatinv[0][j]*K[j][i]
ylist[i] = tmpsum
print("(y_1, ..., y_8) = ", ylist)

(y 1, ..., y 8) = [1, eta + 1, 2*eta + 1, eta + 1, 2*eta, 2, 2, eta]

Check if the attack was succesful.
[16]: Halt = matrix.vandermonde(betalist).transpose().

↪→matrix_from_rows(list(range(0,s+1))) * matrix.diagonal(ylist)
Malt = Mhat
Kalt = Malt*Halt
if Kalt == K:
print("Attack was succesful.")
else:
print("Attack failed.")
error = false
for i in range(s+1):

for j in range(n):
if not Kalt[i][j] == K[i][j]:

chyba = false
print(’Error on position’, i,j)
print(Kalt[i][j], K[i][j])

Attack was succesful.
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