
MASTER THESIS

Bc. Ladislav Maleček
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The goal of this thesis is to explore the area of group recommender systems with
an emphasis on fairness. In the core part of our thesis, we have created a novel
aggregation method called Exactly Proportional Fuzzy D’Hondt’s Aggregation
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1. Introduction
The goal of this thesis is to explore the area of group recommender systems
with an emphasis on fairness. Discuss fairness in the context of machine learning
systems and, specifically, group recommender systems. Gather information about
available datasets that can be used to evaluate group recommender systems.
Design a method of artificial group creation for datasets that do not contain
group information. Create a group recommendation algorithm inspired by the
mandate allocation method D’Hondt. Finally, evaluate its performance compared
to other related methods on a broad spectrum of different datasets.

We have created a novel aggregation method that works on top of a single-user
recommender system called Exactly Proportional Fuzzy D’Hondt. We evaluated
it on five datasets, three different recommendation scenarios, and two different
types of artificially created groups. Further, we have created a set of tools that
help future research with the evaluation and validation of new ideas in this domain
on big datasets.

Most of us interact with many recommender systems daily, even if seemingly
indirectly. The proliferation of this technology is astounding. Almost every in-
teraction with today’s web is in some way personalized. From search results,
shopping, listening to music, reading news, browsing social media, and many
more. Recommender systems have become quite literally — unavoidable.

We can view recommender systems from the following elementary perspective:
they are algorithms that recommend items to users, where items and users can
be many different things. For example, items can be movies, news articles, more
complex objects, or even entire systems. Furthermore, users are real people or
other entities that exhibit some preference on which the algorithm can decide.

One of the variants of recommender systems is when the recommendation
results are shared among more users based on their shared (aggregated) prefer-
ences. This variant is a subset called group recommender systems. They are not
as widely used as the non-group variants because we mostly use the web, listen
to music and read the news as individuals, at least from the perspective of those
systems. However, for some domains, there are valid use cases. We often listen to
music and watch movies in groups. Select a restaurant and other public services
not just for us. In these situations, group recommenders come in handy.

With groups as the target of a recommendation comes new challenges, one
of them being how to measure satisfaction and ensure fairness among the group
members. We first need to have a reliable way how to evaluate the recommen-
dations. It becomes more complex than simply rating the results based on single
feedback. Now, we have multiple users with possibly very different personal ex-
periences, preferences, wants, and needs. We want to be fair towards all the
individuals in the group. However, the fairness property can be tricky to de-
scribe and evaluate due to the subjective nature of preference perception and
distribution among the group members.

Classical recommendation systems have been studied for quite a long time, but
the group variant and more soft-level (meaning evaluation with metrics other than
the classical accuracy and precision) thinking about them is pretty recent. With
the rise of social dilemmas around recommender systems, the fairness-ensuring
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topic is becoming more important than before. With that, there is a growing
popularity of recommender systems that are trained (and therefore evaluated)
with these novel requirements in mind.

1.1 Problem statement
The current research on the topic of group recommender systems is lacking. There
are no standardized data sets that would offer an evaluation of the research
without using various methods of data augmentation and artificial group creation.
The augmentation strategies differ widely among research efforts. The evaluation
process is often proprietary, slow, and designed only for small-scale datasets.
Further, the definition of fairness is not unified. It can mean many different
things and be evaluated with many different methods.

These problems mentioned above go hand in hand with the very subjective
nature of user preference.

1.2 Research objective
We want to study how fairness can be defined in the context of recommender
systems and how it can be measured and eventually used to improve recommen-
dations in the group setting. Furthermore, we will explore different variants of
fairness, such as long-term fairness and different distribution of fairness among
group members.

The primary goal of this thesis is to research and design a novel group recom-
mender system algorithm that would keep fairness as its primary optimization
objective. We will try to adapt fairness-preserving methods, such as voting sys-
tems from other fields, to group recommendation problems. And then evaluate
the new algorithm with already existing approaches in the domain of group rec-
ommender systems.

Additionally, we would like to research and contribute to data sets that could
be used for the group setting. Expanding single-user data sets with data aug-
mentation that would generate synthetic groups’ information.

1.3 Thesis structure
We introduce single and group recommender systems in Chapter Recommender
systems. Then we continue with a deep-dive into fairness in Chapter Fairness.
Next, we introduce a selection of related algorithms used in the group recom-
mender field in Chapter Related work. Following with an overview of single-
user and multi-user datasets that are suitable for use in the group recommender
domain and a method of creating synthetic group information from single-user
dataset information in Chapter Datasets. Finally, we introduce our algorithm in
Chapter Proposed group recommender system and define evaluation scenarios,
describe experiments and discuss the results in Chapter Experiments.
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2. Recommender systems
In this chapter, we briefly introduce what recommender systems are (hereinafter
referred to as RS), then continue with a description of the group variant of rec-
ommender systems and introduce common approaches and methods they employ.

2.1 Recommender systems
Broadly speaking, recommender systems are algorithms that suggest items to
users. From another perspective, they aim to predict how a user would rate (like)
an unseen item. They are used in various settings, for instance, e-commerce,
media consumption, social networks, expert systems, search engines, and many
others.

At their core, as stated in [1] they are essentially an information filtering
system that aims to select a subset of items by some filtration criteria. In this
case, the criteria are the user’s preference. RS become necessary when it comes
to suppressing the explosive growth of information on the web and function as a
defense system against overloading the user with the vast amount of data that is
present in almost every system today.

They can be viewed as decision support systems that guide users in finding and
identifying items based on their idea about the desired state. In this situation,
the desired state is to find an item that they would like [2].

RS can provide both by filtering based on user preference and providing al-
ternatives by utilizing similarity. In a way, finding a suitable item can be viewed
as a collaboration between the user and the recommender system, with varying
degrees of freedom, from passively accepting the RS recommendations to actively
interacting by giving feedback and stating preferences.

2.1.1 High-level examples
Recommender systems are used in multiple ways. We now present high-level
examples of where and how they are utilized the most.

• Personalized merchandising, where the system offers items that other
users bought together with the viewed item. Items that a user could like
based on the user’s previous orders or viewed items.

• Personalized content, for content consumption services such as video
and audio libraries. User is offered personalized content based on their
preference profile, such as movies or videos that are similar to other content
they consumed, globally popular for a regional subset of the user base, and
so on.

• Personalized news feed and social media feed, offering users exciting
content to keep them engaged with the service. In recent years there has
been a push toward more socially responsible RS design in this context due
to the overwhelming power of social media. It is important to deal with
problems such as polarization [3], fairness and disagreement.
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• Expert systems, helping doctors, operators, and other people to make
informed decisions based on data. They can help to deal with data overload
and filter relevant items and choices. As well as explore the item space when
searching for solutions with only weakly defined requirements.

• Search experience, that considers previous searches, preference profile,
location, and other attributes.

2.1.2 Main algorithmic approaches
We can generally divide them by their approach mentioned in [4] and [5] into:

• Collaborative filtering (CF)
Solely based on feedback from users (user-item interactions). Trying to
recommend unseen items liked by users with a similar taste based on other
items they have both rated. And thus exploiting data of users with similar
preferences.

• Content-based filtering (CB)
Uses item features or descriptions to recommend items similar to those
the user liked or interacted with. We are essentially building a model of
preference for users and exploiting domain knowledge about items that
match the users’ model.

• Constraint-based recommendation
It depends on hand-crafted deep knowledge about items. The user specifies
a set of criteria based on which the system filters out items that meet the
stated requirements. Additionally, the system can sort the items based
on their properties if the stated criteria come with perceived importance -
utility.

• Hybrid systems
Combining multiple RS, either of the same type (with different parameters)
or different types. This technique aims to increase recommendation efficacy.
Main types according to [2] are:

– Weighted where predictions of individual recommenders are summed
up.

– Mixed, where predictions of individual recommenders are combined
into one list.

– Cascade, where predictions of one recommender are fed as an input to
another.

The popularity of the first two approaches varies from domain to domain.
Some domains naturally contain item-specific data, which allows for the use of
content-based filtering, for example, product parameters in e-shops. However,
other domains do not. Then it is more beneficial to use collaborative filtering
techniques or a mix of the two.

There are benefits and drawbacks to both. CF can extract latent mean-
ing from the data that would remain inaccessible to CB that relies on items’
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features. However, at the same time, it can cause problems to rely only on
user-item interactions because we need a large amount of data to make a precise
recommendation. There will be nothing to recommend if we cannot find similar
enough other users that already rated some unseen items. This problem is called
a cold-start problem.

The third technique, Constraint-based filtering, requires a deep knowledge that
describes items on a higher level and is not very interesting due to the algorithmic
simplicity. We will thus not discuss it further.

One other approach we did not include in the list is Critique-based recom-
mendation. Its popularity is relatively low, but it is still worth mentioning. It
acts as a guide through the item space, where in cycles, we show the user items
that are distinct in some property (we could say they lie in different areas of
the item space), and the user either accepts or rejects them. Based on this feed-
back(critique) from the user, we narrow down the user’s preferences, offer different
(filtered/extended) set/sets of items, and try to guide the user to a satisfactory
result. The feedback can, in some cases be provided for not just the item but
even specifically for its properties or part of the items. An example could be:
’This carpet has a beautiful pattern, but the color is not that nice’.

Some of the classical and more advanced methods include:

• User-based and item-based nearest neighbor similarity [6][7][8]

• Matrix Factorisation techniques[9]

• Deep Collaborative filtering [10][11][12]

• Deep Content extraction[12]

2.2 Group recommender systems
So far, we have discussed only recommender systems, where an object of a recom-
mendation is a single user (from now on referred to as single-user RS or simply as
RS, depending on the context). However, what do we do when we have a group
of users we want to recommend to? For example, a group of friends selecting a
movie they want to watch or a group of colleagues listening to music together?

Group recommender systems (group RS or GRS) are an interesting subarea of
recommender systems, where the object of a recommendation is not just a single
user but multiple individuals forming a group. The results of a recommendation
for the group do need to reflect and balance individual preferences among all
members.

2.2.1 Characteristics of group RS
There are many specifics that contrast GRS with single-user RS. Usually, some
form of aggregation needs to be performed to transition from a single user pref-
erence that we gather to a recommendation for an entire group.

Situations differ for small and big groups, where the complexity of the users’
preferences increases with the increasing number of users. At the same time,
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every person is different, some may be more forgiving, and some may be less
willing to conform to a different set of tastes than their own.

Although there are not many reported deployments of such systems yet, we
see domains that would greatly benefit from using GRS.

Two domains, in particular, come to mind: movie recommendation and mu-
sic recommendation. In recent years with the rise of popularity of streaming
services such as Netflix and Spotify, there finally exists enough data and, more
importantly, a proliferation of these services that would allow the utilization of
GRS.

Group recommendation systems usually operate on top of single-user RS and
then perform some aggregation in order to provide the user group with rele-
vant recommendations. There are two main types of GRS. The first aggregates
user preferences that are fed to a single-user recommender system. The second
performs the aggregation on the output of a single-user RS and, in some way,
aggregates the recommended items of each group member into a single list. We
will talk in-depth about the possible methods and strategies in Chapter 4.

In our work, we focus on the second type that performs aggregation on top of
an output of a single-user RS.

2.2.2 Challenges
We now mention some of the most critical challenges in the group recommenda-
tion domain.

• How to merge individual preferences
The main problem when extending RS systems to support the group setting
is how to combine individual users’ preferences. It is possible not to support
groups at all and let users deal with the act of combining them via discus-
sion. However, the problem then collapses back to a single-user setting,
where the user represents the whole group. Therefore, we need to decide
how and when to merge them. The main two approaches are mentioned in
Subsection 2.2.4.

• Divergent group preferences
Some users are so-called Grey-sheep and Black-sheep. These users are hard
to recommend to because their preferences do not align with many or
any other users (respectively). This problem is especially hard to solve
in Collaborative filtering, which directly relies on finding similarities be-
tween users. Furthermore, the same problem arises in the group setting,
where it becomes much harder to find solutions that would be satisfactory
to all of its members. So in Group RS, the problem of outlying users can
be observed on two levels, in the usual situation, where the group aggre-
gated preferences are outlined, and on another level, where the inter-group
preferences of individual users do not match.

• Feedback gathering
In most applications, feedback is gathered explicitly as well as implicitly.
Explicitly by users rating recommended items and implicitly by the system
observing users’ behavior, such as which items they have visited or how
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long they have interacted with the item. Gathering direct feedback in the
group setting is still possible, even if it is more problematic due to the
possibility that not all members leave a rating. In some cases, gathering
indirect (implicit feedback) can become even impossible, depending on how
the system-user interactions are designed. In most cases, users will be
selecting an item on a single device under one person’s account. Therefore,
it is hard to distinguish between the preferences of that one individual and
the preferences of the group.

• Active/passive, primary/secondary group members
Another interesting issue arises when we consider that possibly not all mem-
bers are equally important in the recommendation, as mentioned in [13].
One example could be when parents select a movie to watch with their chil-
dren. The children should (arguably) be given priority over the selection.
A second example could be that we would want to prioritize the satisfaction
of individuals in the group who were less satisfied the last time an item was
consumed.

• How to explain provided recommendations
Explanation of single-user RS is already pretty challenging. With algo-
rithms such as collaborative filtering, it is hard to explain why we are rec-
ommending an item apart from the obvious explanation that similar users
liked this item. And with more advanced methods based on neural networks
or more latent modeling of similarity and preference in general, it gets even
more complex.
This situation gets even worse, and another level of complexity emerges
when we add the aggregation step to the recommendation process.

• Not all members present
What can be done if we have a GRS preference model/data for a specific
group and some of the members of that group are missing? We need to
be able to modulate what members will be part of the recommendation
process. This makes gathering and using feedback that would represent the
whole group difficult.
Another problem not entirely relevant to our work but still important is how
we even know which group members are present. Many solutions exist, but
they are not as seamless as the single-user variant, which is maybe one of
the reasons why we do not see any widespread utilization of GRS so far.

• Selecting from the provided list
Providing the group with recommendations is an algorithmic task, but we
need to take the presentation and how the users operate the service into
account too. If, for example, one specific group member is selecting an item
for the whole group, let’s say, a movie to watch, this member will most
probably have the easiest way to propagate their feedback to the selection.
Therefore we need to take the implicit feedback with a grain of salt and not
consider it as an implicit feedback from the whole group.
Further, graphical user interfaces and the setup of the whole service, how
users interact and select items, leave feedback, and other factors become
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important.

2.2.3 Classification
We now mention some basic classifications found in [14].

• Individual preferences are known vs. developed over time
Some GRS start with a good knowledge of the preference of each group
member, such as if we have a system on a popular music streaming service.
On the other hand, some systems, such as expert recommender systems, can
even start with no information about the group members. It then needs to
develop and model these preferences over time using a critique approach.

• Real time consumption vs. option presentation
There are two options for GRS recommendation depending on how the
items are consumed.
Firstly, we can provide a set of items that are further filtered by the group
members before they select an item that they like. In this case, when the
list is further narrowed down by the group members, we can recommend
more controversial item options.
Secondly, when the recommendations are immediately consumed, such as a
music playlist at a social event. We miss the selection process with which
the group members narrow down the items list. In this case, one good
option is to present the users with a list of already liked/seen items. This
playlist would be composed of items the users like on their own.

• Group preference weight is identical vs. alterable
There are situations in which the priority of group members differs when
it comes to satisfaction. We can have systems that allow setting different
weights for individual members.

• Type of recommendation output
We can have many types of outputs from the recommender system. Such
as a single item, a list of a predefined length, a set that does not have an
explicit order, and others. The output in the case of expert systems can be
a graph, a set of rules, or a feedback-gathering question.

• Single vs. k-item utility
Another difference is how are the resulting recommended items processed
by the users as presented in [15],[16]. Do they select a single item, as is the
case when recommending a list of movies? Do they consume the full list,
such as playlist generation in the music domain? We must gather feedback
and calculate the possible utility separately in these cases.

2.2.4 Common approaches
Now we introduce the two main algorithmic approaches of group recommender
systems, according to [17] these are:
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• Group aware RS approach
Builds a model for the group based on all its members’ preferences. Either
directly by creating a model of preference for the group or by aggregating
models of individual users together and then recommending items for the
group as a single entity.

• RS aggregation approach
Use single-user RS to recommend to each individual in the group and then
aggregate the results together to create the final recommendation for the
group.
We can further split the aggregation approaches by where the aggregation
takes place into the following two groups.

– Aggregation of individuals’ preferences before the recommendation and
then performing recommendation as if the preference belonged to a
single user.

– Aggregation on top of recommendation results for individual users.

We will further mention these two approaches in detail in Subsection 4.2.1.

In the RS aggregation approach, we further distinguish between two situa-
tions. A situation where we have predictions for all possible items and, therefore,
can aggregate directly on the ratings of all items. And a situation where we only
have a list of items (a subset of all items) for each user. These two can function
very differently, for example, taking in context only the position in the recom-
mended list or position and the rating. They are mentioned separately in [17].
From a different point of view, they only differ in the availability of provided
results from the underlying RS, so we group them under one main direction.

Further, both group-aware RS and aggregation approaches have advantages
and disadvantages. One of the advantages of the Aggregation approach is that
we can use the same RS as we would use for an individual recommendation.
Either as a black box, directly performing aggregation on the top items that the
black box provided, or in a more involved way by utilizing the predicted ratings.
However, the aggregation strategies do rely on single-user RS so there is not much
that can be done in order to extract some hidden latent preferences of the group,
which in the case of the first method, the group-aware approach, can potentially
be extracted.

We will discuss techniques from the latest literature in-depth in Chapter 4.
At the same time, we need to define what it even means to recommend some-

thing to a group. Do we measure it by fairness, overall user satisfaction, or by
the least satisfied member of the group? We will describe common approaches to
these problems in Chapter 3.
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3. Fairness
So far, we have discussed recommender systems in general and the methods that
are used in the field. However, now, let us step back and look at the problem from
a broader perspective of fairness as a social construct. Specifically, we will focus
on the importance of fairness in the context of algorithms. What role fairness
plays when using machine learning models with potentially sensitive data, and if
we can make group recommenders better when we understand and define fairness
and its underlying properties better.

We will start with a general introduction to the topic of fairness, define its
possible meanings and specify which one is important in our setting. This is
required due to the overload of the word itself and the rising importance of the
topic in today’s world. Furthermore, we will explain why fairness seems to be a
crucial parameter in the group recommender setting and will try to reason about
how to measure its effects.

sectionGeneral
The word fairness itself is hard and controversial to define. In Cambridge

Dictionary [18], it is defined as ”The quality of treating people equally or in a
way that is reasonable.” Its use has been rising steadily since the 1960s, as we can
see in Figure 3.1.
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Figure 3.1: The graph shows the phrase ”fairness” occurring in the corpus of
English books from 1800 to 2010. Source: Google Ngram Viewer, corpora 2012.
[19]

Humans are obsessed with fairness. From a young age, children will get sad
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when something is not fair, when their sibling gets a more significant piece of
the pie, more attention from their parent, or any other unequal situation. It can
induce strong emotions such as envy, sadness, or anger, and it emerges very early,
as early as 12 months of age or sooner, as researched in [20].

Furthermore, this behavior is not limited only to humans. We can observe
the same behavior in monkeys. In [21], the authors observed that if a monkey
is getting the worse reward for the same task as its peer, it refuses the reward
and demands the same payout even if they were satisfied with the lesser reward
for the same task before. In some sense, this is very strange; why should we care
about someone having more if we have enough?

We observe the same behavior in many other species of animals, but not
all. It seems that it requires a certain level of intelligence for the notion of
fairness to emerge. As discussed in [22], based on studies of other non-human
species, this evolutionary puzzle can be further dissected into responses to reward
distribution among the cooperating group members. Humans are willing to seek
an equalization of outcomes even if it means that they will lose some of their own
reward as studied in [23]. At the same time, we humans like ’free rides’ where we
get high rewards for a small amount of work but dislike when someone else gets
the same. This directly corresponds with fairness itself — It is not fair if someone
else gets something we do not. However, it all depends on our personality and
the type of relationship involved. Some people are, for example, willing to accept
that their partner makes more, but that is very subjective and sometimes can
even lead to larger envy.

In some cases, we observe a pattern of generosity, where children are willing
to make their own sacrifices in order to ensure fairness so that the other person
does not have less than them, as presented in [24]. The authors studied fairness
in multiple cultural settings and found that this behavior is learned and only
present in some cultures.

On the other hand, our society widely accepts the notion of ’winner takes
all’, which can be problematic in itself, for example, in sports and business. In
business, it directly shapes the distribution of wealth, which is considered one of
the main problems of today’s world. Nevertheless, discussing the social aspect of
fairness is beyond the scope of this thesis.

Regarding the true nature of fairness on the deepest level, it could even be
possible that the notion of fairness emerges together with cooperation, language,
and communication. It would mean that it is an inherent property of any in-
telligent agent created through an evolutionary process. Another point of view
could be that fairness acts as a mechanism that pushes towards equality among
the group members, leading to higher stability of the group, which would give an
evolutionary advantage.

However, more research has to be done, as our understanding of intelligence,
consciousness, and related hard-to-quantify phenomena are lacking.

Let us now get back to fairness in the context of computer systems.

3.1 Algorithmic fairness
We will focus on fairness regarding society or individuals interacting with a com-
puter system. We will not discuss further any meaning of fairness outside of the
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domain of computer science. This topic steers away from the primary goal of
defining fairness for the group RS sub-domain, but we think that it is a very
important topic in general, and therefore it deserves more spotlight and can be
an excellent middle step to understanding specifics of the group RS setting.

3.1.1 Sources of algorithmic unfairness
How can a computer with no underlying understanding of race or ethnicity dis-
criminate against a group of people? At first, this idea may seem strange, but we
have to remember that, as with any other computer program, machine learning al-
gorithms are designed by people. Data used to train those algorithms comes from
the real world, where bias and unfairness are unfortunately still present. Thus,
the trained models, even if not usually meant with an ill-fated purpose, will re-
flect that and, in most cases, include some form of bias or unfairness. Of course,
there exist uses of ML with bias that has been introduced on purpose. We can see
that for example in the Chinese credit score system which is biased towards an
individual based on their class, race, political views, and other factors. Which we,
in the modern democratic world, consider as protected(sensitive) characteristics,
that are not to be used to discriminate against an individual. However, this type
of bias in those circumstances is a knowingly designed and required feature of the
system; therefore, we will not discuss these systems any further.

More rigorously, we can say that output of any machine learning (ML) al-
gorithm is usually just a product of the underlying data. An accurate classifier
will reproduce patterns found in the training data by design. Usually, the bias
is either transferred directly from the data or by wrongly defining the learning
objective.

Let us now present a division by the main sources of unfairness as stated in
[25] with examples following in Subsection 3.1.2:

• Biases already included in the dataset
Such as dependence/correlation of data based on sensitive characteristics.
An accurate classifier by design reproduces bias found in the data.

• Biases caused by missing data
Missing or filtering out some of the training data can result in a dataset
that does not represent the target population.

• Biases stemming from algorithmic objectives
While training, we usually minimize some error, which can lead to a priori-
tization of the majority’s interests if left unchecked. It will always be easier
to optimize results for groups with small entropy, than for niche groups that
are more surprising and thus have a larger entropy.

• Biases caused by ”proxy” attributes
Some attributes that are not directly considered sensitive can still contain
information from sensitive attributes. In other words, they are not indepen-
dent. Therefore, the algorithm can use the ”proxy” attribute and indirectly
exploit the sensitive attribute.

It is important to define which sensitive characteristics need to be considered.
As stated in [26] those are gender, ethnicity, sexual orientation, disability, and
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others. Most research in the domain of bias and fairness is, based on our percep-
tion, studied from the perspective of discrimination and the impacts of algorithms
on society. We observe bias against specific groups of the population based on
their race, sex, nationality, education, beliefs, and many other attributes (pro-
tected as well as unprotected ones), which causes a measurable impact on our
everyday life. After all, we are more than ever involved and surrounded by tech-
nology. Therefore, it is essential to understand the effects biased algorithms can
have and to study techniques and strategies to mitigate their negative impact.

Further, we can also view fairness from the aspect of algorithmic decision-
making, where a decision process can introduce unfairness based on some non-
deterministic property or computation. Some sectors, such as justice and finance,
have to strive for equality of outcome due to the high cost of errors of unfair
decisions, either in the form of unjust punishments in the former case or financial
loss in the latter.

3.1.2 Examples of algorithmic bias
We will now present a few instances of computer systems that have been used in
settings where a bias towards a sensitive characteristic had a substantial impact.

• Amazon’s automatic recruiting system
As reported by [27], in 2018, it was found that the new system for hiring
people for Amazon was biased toward women. The IT field is mostly male-
dominated - women represent only around 23% as stated in [28]. Due
to this disproportion, the algorithm discovered in training data pattern
between the gender of the candidate and hiring results which led it to assume
that male candidates are preferred before female ones. The algorithm was
not told the gender of the candidate, but it inferred it from other data
such as university, hobbies, and others. This bias is a combination of ’bias
already included in the dataset’ and ’biases caused by proxy attributes’. The
company later disbanded the team and left the tool only as a helper tool
that works in conjunction with the recruiters instead of solely automatically.

• Apple’s credit card
Apple released its credit card in 2019. It works as follows: after the sign-up,
the user receives a certain credit limit from the service provider (Goldman
Sachs). Some people, as reported in [29], noticed that their wives were as-
signed smaller credit limits even though their credit score was higher and
they only had one shared bank account. In this case, an investigation by
the New York State Department of Financial Services came to a conclu-
sion based on an extensive analysis that no unlawful discrimination against
applicants has taken place.

• COMPAS - Correctional Offender Management Profiling for Alternative
Sanctions
COMPAS is an algorithm used in the US justice system to predict the
likelihood of a defendant becoming a recidivist. Analysis [30] found that
black defendants were often predicted as being at higher risk than they
actually were. On the contrary, white defendants were predicted to be
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less risky than in reality. In the case of re-offended, this predicted risk was
almost twice as high for blacks compared to whites. They conclude that the
tool is imprecise and does not reflect the actual likelihood it was designed
to predict.

In these cases, society, and mainly the law, has to act and protect those that
are treated unfairly. European law can act as an excellent example of what can
be done. The general data protection regulation (GDPR) and the protection of
individuals against algorithmic bias are great and functioning examples.

Details about laws that are in effect in the EU and definitions of sensitive
characteristics and areas of protection can be found in Handbook on European
non-discrimination law [26].

3.1.3 Measures of algorithmic fairness
We need to have a precise way of measuring bias towards sensitive characteristics
to design and evaluate algorithms that are taking or should take measures to
ensure fairness.

At first sight, our idea could be to remove features that we consider sensitive
entirely from the dataset, but that will, in most cases, not suffice due to other
features being slightly correlated with the sensitive feature. Correlation with,
for example, gender will probably be too small to be predicted with measurable
accuracy. However, this balance can tip over if we combine many of these slightly
correlated features. We, therefore, need to approach this problem more rigorously.

We now present a few statistical methods as mentioned in [31]:
• Independence We say that sensitive characteristic Char is independent of

a prediction Pred if:
P (Pred = p|Ch = a) = P (Pred = p|Char = b) ∀p ∈ Pred ∀a, b ∈ S

(3.1)
is the probability of the given prediction being the same for two people from
different groups with respect to the sensitive characteristic.

• Separation We say that random variables (Pred, Char, Y ) satisfy separa-
tion if the sensitive characteristics Ch are statistically independent of the
target value Y given the prediction Pred. This relation can be expressed
with:

P (Pred = p|Y = q, Char = a) = P (Pred = p|Y = a, Char = b)
∀p ∈ Pred q ∈ Y ∀a, b ∈ Char

(3.2)

Meaning that the dependence of a prediction result on the sensitive attribute
Char can be justified by the attribute Char being dependent on Y .

• Sufficiency We say the random variables (Pred, Char, Y ) satisfy suffi-
ciency if the sensitive characteristics A are statistically independent of the
target value Y given the prediction R. This can be expressed as:

P (Y = q|Pred = p, Char = a) = P (Y = q|Pred = p, Char = b)
∀q ∈ Y p ∈ Pred ∀a, b ∈ Char

(3.3)

We say that Pred satisfies sufficiency i the target variable Y and the sen-
sitive attribute Char are clear from the context.
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3.1.4 Outcome vs. opportunity
From separation and sufficiency, we see that there is only a difference in the
direction of the relationship between random variables Pred and Y . We will call
them ’equality of opportunity’ and ’equality of outcome’, respectively.

Let us now present an example of both. We have a model situation where we
strive for gender equality in the management of our company.

• Equality of outcome We would like the resulting distribution to be fair
such as there has to be 50% male and 50% female gender representation
among our management. If we have more than 50% men, we need to fire
them and hire only women. It may seem easy, and this is where most of
the efforts usually stop, but even just finding what the desired resulting
distribution needs to look like is a non-trivial task.

• Equality of opportunity In this case, we try to mitigate any bias that
could skew the decision of whom to hire towards any gender. Preferably,
we do not want to even propagate the fact about the protected attribute
(in this case, gender) to the people making the final decision.

Both of these cases/methods have their place but should be used cautiously.
They can cause a great deal of fairness equalization when used correctly but, at
the same time a great deal of harm when implemented incorrectly.

With the already discussed topics in mind, we can connect the fairness and
the group recommendation systems with the subsequent possible interpretation.
What applies to our group recommender domain is the notion of fairness in the
sense of a balance of preference between group members. Each member has their
preference, and we are trying to balance them in the best possible way so that
everyone likes the recommended object or list of objects equally.

Further, if we take group membership as a sensitive attribute of the group
and consider it a sensitive attribute, then we want independence in the context
of equality of outcome.

3.1.5 General methods of prevention
Thanks to machine learning models being entirely dependent on the data, as
discussed previously, we can divide the general techniques of bias suppression by
where the change to the machine learning process is made on the data path. We
divide the general techniques into three categories as follows:

• Pre-processing Adjust training data in a way that sensitive characteristics
are uncorrelated.
The main benefit of preprocessing data this way is that if we ensure indepen-
dence this way, then any subsequent deterministic method will transitively
also satisfy the independence of the sensitive attributes. Nevertheless, as
with any data transformation that changes data properties and distribu-
tions, we need to be careful not to hinder the efficacy of the final model.

• At training time Design algorithms that set constraints on the optimiza-
tion process itself.
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This change seems to be the hardest to technically and algorithmically
implement. We need access to the whole collection of raw data to ensure
that we are not biased. Furthermore, we limit ourselves to ML methods
that allow this constrain modulation. On the other hand, the main benefit
is that we perform the optimization with full information of the task and,
therefore, can potentially gain more utility.

• Post-processing Adjust parameters of the already learned classifier so as
to be uncorrelated with the sensitive attribute.
This is the least favorable from the theoretical point of view due to us
only being able to correct the bias in the way of ensuring equality of out-
come, which corresponds with the difference between the before-mentioned
properties of sufficiency and separation. At the same time, it makes the
evaluation of the model performance harder.

3.1.6 Other adverse effects
It takes a lot of time to make datasets and models unbiased, especially because
bias is included in most of the datasets that come from the real world. Let
us now discuss some other machine learning effects that play a big role when
combating algorithmic fairness. We now need to take into account the iterative
learning of the machine learning models, meaning that we, after putting them to
production, retrain the model on data that was affected or directly generated in
or by an environment that the models were part of.

Two of the most common problems are the so-called ’negative feedback loop’
and ’echo chambers’.

Negative feedback loop

A decision-making system that is learning from past data and is retrained in
the future on data that were affected by its decisions (after being utilized in the
environment from which we gather the dataset) will consume its own (previous
versions’) decisions as training data. This can lead to the amplification of biases
that were already present and to further skew the distribution of the underlying
data. This effect is called a ’negative feedback loop’.

To build robust and fair algorithmic systems, we must understand when and
why this effect emerges. When we look at it from a simpler perspective, where the
current system deployed in production is just a set of predictions, then training
the next model is just training the previous with additional data that the current
model made (the set of predictions from production). In this sense, the set of
features selected while the current model was trained will correlate with the new
data and therefore affect the selected and used features in the new training. This
can be very detrimental to the performance of the model. And it is not easily
fixable due to how data is gathered and how machine learning is iterated.

We will mention an example from [32]. Let us assume that we are building a
decision-making algorithm that decides where to put our call-center capacity in
order to generate the most profit. In other words, to which telephone numbers
from some candidate list to call. And let’s again assume that in the prior data,
the conversion rate of a person coming from page X is 5%, from page Y is 2%, and
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from page, Z is 1%. The algorithm will naturally be selecting to focus our capacity
to X, because it has the biggest conversion rate. Now fast forward some time when
we are retraining the model on new data. Due to us preferring page X, and not
calling people coming from Y and Z, our data distribution of conversion rate looks
like this: X: 8.5%, Y: 0.5%, and Z: 0%. We end up having less data about Y and
Z due to us not calling people coming from those pages. Now we will retrain the
model, and this bias towards X will reinforce. In this way, the performance of
the model is decreasing due to the fact that data no longer following the actual
underlying distribution. If we use concepts from Reinforcement learning - we are
exploiting but not exploring.

This negative feedback loop can be and is very detrimental to models’ perfor-
mance and, in a wider view, even dangerous to society. This directly leads us to
a second adverse effect of echo chambers.

Echo chambers

The feedback loop described in the previous section can be observed in effect not
only when retraining algorithms but in social groups as well. People naturally
seek out information that reinforces and supports their existing views, as stated
in [33]. Serving content to users that support their views will therefore lead to
higher satisfaction and interaction with the system.

The main problem becomes the training metrics that try to maximize numer-
ous aspects of the system’s performance, such as the amount of time users spend
interacting with the service and the return rate of the visitors. We use them as a
target for optimization, and that leads to the creation of systems that naturally
lock its users in so-called ’echo chambers’.

While being inside, your own views will be reinforced. This, together with
people increasingly consuming social media feed as their main source of news, is
probably one of the main forces behind the increasing polarization in society, as
discussed in [34] and [35].

3.2 Fairness in Group recommender systems
So far, we have discussed algorithmic fairness in the context of equality of op-
portunity, where the main goal is not to discriminate against an individual. The
same issues are present in the Group RS domain, but we will focus more on
equality of outcome. Our objective is to fairly distribute item recommendation
quality between group members so that everyone is as satisfied as possible and
the level of satisfaction among users is as close to uniform as possible.

Let us first introduce two concepts of item preference:

• Member-likeable
We say that a recommended item is member-likable if it is chosen with the
aim of satisfying a single-group member or a small subset of a group more
than with the aim of increasing the average.

• Group-likeable
We say that an item is group-likable if it is selected for recommendation
with the goal of uniformly satisfying all group members.
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This is one of the main optimization decisions we have to make. In some
cases, as we will discuss later, member-likeability will be a better choice. In other
cases, it will be the group-likeability. We can view it as an opposing force. We
can either push towards more or less uniformity.

3.2.1 Specific cases of fairness
Let us now mention some of the main ways and their differences as to how fairness
in this context can be understood.

• Fairness distribution in isolated recommendation
We recommend a list of items (possibly even a single item) and have to
balance the choice of the items so that all members will be satisfied. This
single list is an isolated recommendation. We can view fairness in this
setting as a direct optimization problem, where items are considered better
if they are liked on average (among the group members) more than items
liked by some part of the group and disliked by the other. As the group size
grows, this is harder and harder to satisfy because a larger group will most
probably have a broader preference which will be harder to meet due to the
differences in members’ tastes. We can view the preference of a group more
like a set intersection than a set union.

• Fairness in a list of items that are consumed sequentially This
setting differs from the previous one because we can recommend items that
are less universally likable but more specific and only liked by a part of
the group. Therefore intertwining the items so that each member will be
satisfied ”at some point”. The balance of group-likable or member-likable
items can be tuned according to our specific requirements.

• Long-term fairness
Further, we can distinguish another case where recommendations are pro-
vided in batches separated by some more significant amount of time (days
or longer). This case is somewhat similar to the last one but differs in the
fact that unfairness can be more costly to repair. If a person dislikes the
item recommended by a group RS, they will less likely to be part of the
recommendation in the future. So the balance mentioned in the previous
setting is an even more important and sensitive parameter to tune. And at
the same time, it is more important to gather and process feedback.

• Uneven importance of the group members In some cases, there will be
a situation where the expectation of fairness is distributed non-uniformly.
For example, when watching a movie with your kids, you probably care
about the satisfaction of your kids more than your own. But at the same
time, you want to take yourself into account too. In these cases, it is
essential to view required fairness as a fluid parameter that can be modified
and satisfied by uneven criteria towards group members.
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3.2.2 Evaluation
In order to assess the performance of group recommender systems, we need to
define some metrics as to how to measure the fairness and other utility function
we select as the observed parameter. Let’s assume that an output of a group
recommender system is a list of items recommended to the group of users. For
each item, we have information about the effect of that item on the user’s utility
function.

The utility function we want to calculate is the total relevance of the recom-
mended list to each user, and we consider it fair if it is balanced among users,
where no one is systematically biased against. We, therefore, need to provide a
single measure for each user and the recommended item list.

• Average relevance score (AR) We calculate a simple average of the ob-
served metric for each user separately, such as the expected relevance of the
item to the user. We can then evaluate for each group minimum, maximum,
average (and other) of this average aggregated relevance. We, therefore, end
up with a set of evaluations for each group, which we can further process.

• Normalized discounted cumulative gain (nDCG) We can assume that
the position of items in the recommended list is important. Especially with
fairness. As an example, if we generate a playlist for a group of two users
and then satisfy the first user for the first half, the other user will be quite
unhappy even if the second part of the playlist will be dedicated to them
entirely. This approach would not be ideal. It is, therefore, important to
incorporate the position of the items accordingly.
Discounted cumulative gain (DCG) is defined as:

DCGp =
p∑︂

i=1

reli
log2(i + 1) (3.4)

.
And further, nDCG is a normalized form where we order items in the list
p by their relevance so that they create the ideal list with the maximum
DCG score. We assign this score as IDCGp ( ideal-DCG).

nDCGp = DCFp

IDCGp

(3.5)

.

With these two measures of recommendation, we have a way how to aggregate
the relevance of items in the recommended list. We will mention further specifics
about evaluation in Chapter 7.

3.3 Other criteria
We have discussed fairness as one of the criteria for the evaluation and opti-
mization of RS and ML tasks, understandably so, as it is the main topic of this
thesis. But what for is an algorithm that is as fair as possible if its outputs are

21



disliked? We need to have an overview of other optimization criteria in order to
design algorithms that will be useful in real-world applications. Fairness, as well
as most other parameters we are usually trying to optimize is a part of a general
multi-criterion optimization which we call - the real world. Let us now introduce
some of the most popular criteria that we can aim to optimize.

Bias
As already mentioned before, bias is an important harmful property that we are
aiming to reduce. Examples of bias are all around us. Each person has at least
some prejudice and false ideas about topics in which they have no expertise. It
is, therefore, important that we actively try to broaden our minds and actively
suppress these biases. Just then, we can truly become equal as individuals.

From the algorithmic view, bias is mostly introduced from the underlying data
that we are using as a training set. Sometimes these biases are even knowingly
used to generate profit. For example, in marketing, where sex is a very good
indicator of preference. A good question arises - where lies the line between fair
usage and abuse? We do not know yet, but it seems that privacy and fairness
will be gaining importance, and therefore the question of how to get rid of bias
will become more significant.

Privacy
We have to extend our definition of privacy to ML systems as well. It tries to
model given underlying data and, therefore, can leak users’ information that is
present in the data if the model is ’copying’ the underlying dataset too well. Some
models are explicitly based on the similarity between users. A great example
can be user-based collaborative methods from recommenders systems that were
described in Subsection 2.1.2. In collaborative methods, we first find users that
are similar to our target user to whom we are generating a recommendation, and
then we recommend those items that similar users liked and our user have not yet
seen. It can inherently happen that this preference we are unknowingly exploiting
can be considered private. In this approach lies the great strength of user-based
collaborative methods, they can extract latent meaning from data that would
stay otherwise hidden. But on the other hand, it can lead to a breach of privacy.
Another great example can be text processing systems that are taught on a huge
corpus of diverse text ranging from books, private messages, code repositories,
and other sources. A good example is a coding assistant for generating suggestions
called GitHub Copilot. After the release of an initial version, it was discovered
that it leaks secret information from the code repositories that it was trained on,
as discussed in [36] and [37], more specifically - API access keys. The issue was
later mitigated by applying content filters that check for known secret data such
as the already mentioned API access keys, emails, passwords, and other personal
data.

Other issues apart from private data propagation out of training datasets to
predictions of the models can be the gathering and usage of massive training
datasets themselves. Fair use, which is vaguely mentioned by almost all ser-
vice providers that gather users’ data, should be revised and brought up to the
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standards of the 21st century.
Another dangerous privacy breach can be the identification of users from

published datasets. We need to protect the gathered data and anatomize them so
that the potentially private data cannot be traced back to the actual people. One
major privacy leak happened with the second Netflix challenge, as mentioned in
[38] using methods from [39]. With only a very small amount of a person’s movie
watch history, for example, extracted from a public source such as IMDb.com, we
can match the data from the Netflix challenge to this public source. The Netflix
challenge was later canceled.

Trust
Different machine learning applications usually require a very contrasting empha-
sis on optimizing trust. It directly corresponds with how high of an impact the
provided algorithmic decision can have. We will put a system that recommends
books to a way lower level of scrutiny than a system that recommends which
medication or treatment a person should get. This direct proportion between the
importance of machine learning output and a potential personal loss needs to be
taken into account while designing the system. Sometimes even a highly effective
and correct output of a machine learning application can be dismissed only due
to a lack of trust in the application. Then, the effectiveness of the system can
diminish even if the training and testing data tell otherwise. Trust can be greatly
increased when providing explanations accompanying the output of the system.

Explainability
Having a reasonable explanation as to why we are getting the result we are getting
can greatly improve the real-world effectiveness of the system. It can decrease
negative reactions to non-ideal predictions and make users more forgivable, as
stated in [40]. We provide two examples of how can such an explanation look
like, first from the Amazon book store in Figure 3.2 and second from Facebook’s
explanation of why a particular advertisement served in Figure 3.3.

Explanations can achieve not only increased trust in the system, as mentioned
before, but an increase in transparency, scrutability, persuasiveness, overall satis-
faction, and more. The main problem is, that explanations are generally hard to
provide, and they need to be taken into account while developing machine learn-
ing systems in all stages. Some algorithms are currently very hard or outright
impossible to explain. One of the proliferated examples is neural networks. Neu-
ral nets keep the context in neural connections, which are very hard to provide
an explanation for. We sometimes refer to this property of a system we do not
fully understand as a ’black-box’ system. We know how they work and how to
train them, but due to the inner complexity, we fail to explain the exact way how
the result was calculated. That leads to methods that approximate the black-box
behavior and try to provide explanations with some varying degree of inaccuracy,
such as [41].

Explainability can even be indispensable. Let us assume that an ML model
is used to recommend legal action against an individual in a judiciary setting.
We cannot soundly present it as evidence without being able to justify its actions
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and warrant its correctness.

Figure 3.2: Amazon’s web-page window that provides context why was a partic-
ular book recommended.

Legitimacy
Legitimacy can be viewed as another step after explainability. When we provide a
prediction together with sound reasoning that can be verified either by a human
analyst or by another trusted system, then we can use it in more serious and
sensitive deployments. One of them can be the legal domain. In it, computer
systems can be used to provide unbiased and fair decisions and analyses if set up
correctly. But as mentioned many times before, we need to be very careful with
the data we use for training. Care needs to be taken even if we do not use an
automated training solution. Most of the current systems used in the mentioned
legal domain and other systems where legitimacy is required are most probably
based on hand-crafted rules that can very well be subject to bias as well. One of
the examples is the system COMPAS presented in Subsection 3.1.2.

Consistency
For some systems, it is very important to stay consistent in outputs even with
slightly different inputs. Let us assume that we are developing an illness detection
algorithm that offers medical personnel some insights about their patients based
on provided symptoms. The predicted recommendation should not drastically
change if, for example, the temperature changes by 0.1°C. It is, therefore, closely
tied to the previous properties of legitimacy and explainability. Most high-critical
ML systems have to be designed with consistency in mind. Driverless cars that
abruptly change direction with only a one-pixel change in the input would not
induce the trust of their users.
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Figure 3.3: Facebook’s web-page window that provides information about what
data led to users seeing Facebook’s ads.

From a different perspective, we can view fairness as a sort of consistency
in the way that protected attributes of people do not affect the output. The
algorithm is consistent in respect of these protected attributes.

One other meaning of consistency in regards to ML systems can be stability
in the meaning of ML outputs being the same while navigating a system or an
app. We can attribute it to the application’s design more than the ML system
itself. If a user is browsing a web page, let us say an aggregator of products on
the web, they may rely on the back button while browsing the different outputs.
In this setting, inconsistency and changes to the recommendation items may be
harmful as they will affect the user experience while listing and using the provided
information.

Novelty
Novelty can have multiple meanings when we use it to describe RS. Firstly it can
be that the item itself is a new addition to the dataset and we do not have many
user-item interactions which we would use to asses and recommend the new item.

Secondly, we can say that the item is presented to the user for the first time.
Sometimes, depending on the presentation of the recommended items, we have
to show the recommended item repeatedly in order for it to be noticed. In that
way, novelty can be viewed as a non-binary attribute, where each time we present
the item to the user, it decreases the item’s novelty with respect to that one user.
But often, it is viewed as a binary attribute, shown or not-yet-shown.

Thirdly, by novelty, we can describe an unusual item presented to the user.
Such a situation can occur either due to the RS incorrectly assuming that the
user will like that item or, on purpose, introducing a new, not yet seen item so
that we introduce more exploration and present items that the user will view as
fresh.

And lastly, novelty is important as an exploration. RS should try to broaden
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and expand the model of users’ preferences, which needs to be done by gathering
feedback on items outside of the users’ current preference model. A balance
between exploration and exploitation is difficult to tune, but it can substantially
increase models’ performance if done correctly.

In general and contrary to the previously mentioned consistency parameter,
we usually strive for novelty and exploration. If a person is picking out a movie to
watch, then showing them the same selection over and over would most certainly
lead to their dissatisfaction due to the limited and repeated content that the
system is providing. As with all properties, novelty requirements heavily depend
on the domain the system is deployed in. This property is most sought for in
domains where exploration is important.

Contrary to the previously mentioned consistency parameter, we sometimes
strive for novelty and exploration. If a person is picking out a movie to watch,
then showing them the same selection over and over would most certainly lead
to their dissatisfaction due to the limited and repeated content that the system
is providing. This property is most sought after in domains where exploration is
important.

Coverage
In some ML and RS applications, there can emerge a situation where some items
are never recommended. If the reason is that the item quality is bad then it can
be the right system quality. In other situations, such as RS that recommends
based on item properties, an undesirable behavior can occur when an item is just
too different, and we do not have a reasonable ’link’ to other items that would
serve as a comparison for the recommendation. Then this item will be left out
and never recommended.

Another coverage problem is with popular items. Popularity is sometimes a
good indicator of quality, but not always. If an item is popular, then in a system
that exploits popularity, it will receive more and more attention. This, in turn,
further increases its popularity. In a way, we can have the same type of phe-
nomenon as the negative feedback loop mentioned in Subsection 3.1.6. It then
happens that item exposure distribution will be unnaturally skewed even more
towards the popular items. This can lead to a decrease in the system’s perfor-
mance due to some less popular items not being recommended, even if possibly
a better choice for a recommendation. In a way, popularity and unpopularity
correspond to a notion of novelty where instead of considering a single user, we
consider all users of the system together.

Efficacy, accuracy, and precision
We have so far mentioned multiple other criteria. But all of them are hard to
measure due to their somewhat subjective nature. Let us now present two of the
most widely used exact efficacy properties: accuracy and fairness.

Accuracy (sometimes trueness) is a measure of how far away the outputs of an
ML system are from the desired outputs. Precision is a measure of how unsure or
dispersed the outputs are, in other words, how away are from each other. They
are both measures of observation error, and the definitions differ based on the
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type of the outputs of the system. We can see an illustration for continuous value
prediction on Figure 3.4

Figure 3.4: Illustrative description of the relationship of accuracy and precision
from [42]

How to measure the distance of outputs to ground truth can differ based on
the shape/dimensionality of the output. Usually, we use a simple metric such as
Euclidean distance or simple Manhattan distance.

For categorical data, we have (binary retrieval task and multi-class classifica-
tion, respectively):

Accuracy = TP + TN
TP + FP + TN + FN = correct classifications

all classifications (3.6)

and precision for binary classification:

Precision = TP
TP + FP (3.7)

Precision for categorical data does not have a set meaning, we can either use
precision for each class separately or have one class that acts as an FP label.

Difficulties with using accuracy arise when labels are missing some or all items
in the dataset. Calculating the correct denominator in categorical cases or the
correct distance to the reference value can be difficult or/and impossible.

Performance and scalability
We can design any algorithm we want, but what for will it be if we cannot then
use it in the real world? Theoretical algorithms certainly have their place, but
we are aiming to solve real problems of addressing fairness. Therefore another
and last discussed property will be performed and, with it, the related property
of scalability.

The performance of a system can be described either in a form of total compu-
tational resources needed for processing, or the whole deployment or normalized
to a single user. Another possible performance property can be the length of time
needed for the processing of a single request called latency. These two properties
usually need to be balanced against each other. To a certain point, we can either
add more computational capacity to improve - decrease latency, or remove some
capacity with the possible increase in latency.

Scalability is a property of a system that it is able to handle a growing amount
of work. We have to keep this property in mind while designing ML and RS sys-
tems. If, for example, we are using a comparison with other users, such as in the
case of some RS algorithm, we will be growing the system requirements most prob-
ably linearly with the number of users. This can be fine in for example research
applications but becomes a real concern when applied to worldwide applications
used by millions of users. At these scales, we will be required to scale using not
only vertical scaling (that is using more powerful computational resources), but
mainly using horizontal scaling (by using many computers at once).
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4. Related work
In this chapter, we will go in-depth discussing common approaches that are being
used in the group recommendation task. Firstly, we specify the main approaches
and divide them into groups by how they approach the transition from single-user
preferences to group results. Then we mention the main simple techniques and
describe how they interact with the usual recommendation approaches. Lastly, we
dive into more advanced methods that perform the aggregation more elaborately.

4.1 Categories
We assume that we have individual user preferences (if group preferences are
available, then the task becomes a simple recommendation with the group acting
as a single user); therefore, it is necessary to make a distinction based on where
the algorithm goes from the preference of the group’s users to a result for the
whole group.

We can put each algorithm into one of the following three groups based on
the aggregation step:

• Aggregate models
The aggregation works on merging the preferences of each group member
into a single set of preferences that a recommender system can directly con-
sume, therefore creating a group preference model. Aggregating the single-
user preferences either directly by aggregating ratings of seen, or rated
items, or by aggregating the extracted models of user preference to cre-
ate a single model for the whole group, such as preference matrix in matrix
factorization approaches, text descriptions, or item-based recommendations
and so on, we will discuss these techniques later.
This aggregation step precedes the recommendation step. We can see a
visualization in Figure 4.1.

• Aggregate predictions
Aggregates predictions outputted from RS. Recommender recommends sep-
arately for each group member based solely on their single-user preferences.
Then the resulting recommended items are aggregated into a single list of
recommendations for the whole group. There are two main ways how the
final list can be created. Either directly take items recommended to each
user and append them together in some specified manner, or the second
way, calculate some utility function from all recommended items and se-
lect those most fitting to the group based on this utility function. We will
discuss both in more detail in Section 4.2.
The aggregation step follows after the actual recommendation step. We can
see a visualization of this approach in Figure 4.2.

• Aggregation is a uniform part of the recommender
In this case, the algorithm directly works with group users and does not
allow for a clear distinction of the aggregation step. It is deeply and in-
separably built into the algorithm itself. Sometimes the perception of the
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inseparability of these two steps can vary in the literature. For example,
aggregating the user profiles in matrix factorization makes the aggregation
inseparable because there is a specific preprocessing done before the aggre-
gation step. However, others will point out that the user latent matrix is
just a representation of a user preference, even if processed by the algo-
rithm itself. We will let the reader decide where they see the distinguishing
border. We will briefly discuss the available methods in 4.3

This presented grouping based on the aggregation step is different from the
related literature [17], and [2], where they also make a distinction into three
groups but based on the data that the aggregation processes and the position.
Instead, we have chosen a little different distinction based more on the interaction
of the aggregation with the recommender system, essentially putting two groups
from the literature mentioned above under a single group (aggregate models), but
with the mentioned possible subdivision.

Person1 Person2 Person3

Prefu1,1 Prefu1,2

Aggregation

Prefu2,1 Prefu2,2 Prefu3,1 Prefu3,2

ItemG,1 ItemG,3ItemG,2

ItemG,4 ItemG,6ItemG,5

PrefG,1 PrefG,3PrefG,2

Recommender

Individual

Group

Figure 4.1: High-level overview of group recommendation with aggregation of
individuals’ preferences, before recommendation.

4.2 Simple aggregation methods
We will now introduce the main aggregation functions (interchangeably as ’aggre-
gation strategies’, ’aggregation methods’) used, together with an overview of how
they interact with the single-user recommender systems introduced in Subsection
2.1.2.

4.2.1 Methods
Aggregation methods can be divided into three groups based on their high-level
approach: majority-based, consensus-based, and borderline-based strategies. The
majority-based generally uses the most popular item among the group members,
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Person1 Person2 Person3

Prefu1,1 Prefu1,2

Aggregation

ItemG,1 ItemG,3ItemG,2

ItemG,4 ItemG,6ItemG,5

Recommender

Individual

Group

Itemu1,1 Itemu1,2

Itemu1,4 Itemu1,5

Prefu2,1 Prefu2,2

Recommender

Itemu1,1 Itemu1,2

Itemu1,4 Itemu1,5

Prefu3,1 Prefu3,2

Recommender

Itemu1,1 Itemu1,2

Itemu1,4 Itemu1,5

Figure 4.2: High-level overview of group recommendation with aggregation on
top of recommendation results for individual users.

the consensus-based considers the preferences of all the group members, and the
borderline-based considers a subset of the items by some limiting criteria.

We now list the most common aggregation methods as mentioned in [2], [14]
and [43] specify to which of the group mentioned above they belong.

• Additive utilitarian (ADD, consensus)
Sum of scores for an item across the group

argmax
i∈I

∑︂
u∈G

score(u, i) (4.1)

• Approval Voting (APP, majority)
Number of users that like the item above a certain threshold

argmax
i∈I

⃓⃓⃓
{u ∈ G : score(u, i) ≥ treshold}

⃓⃓⃓
(4.2)

• Average (AVG, consensus)
Average of scores for an item across the group

argmax
i∈I

∑︁
u∈G score(u, i)

|G|
(4.3)

• Average without Misery (AVM, consensus)
Average of scores for an item across the group only if the item is above a
certain threshold for all group members

argmax
i∈I:∄u∈G|score(u,i)≤treshold

∑︁
u∈G score(u, i)

|G|
(4.4)
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• Borda count (BRC, majority)
Sum of scores derived from item rankings. The ranking score is defined
for each user by ordering the user’s items by score and awarding points
corresponding to the item’s location in this ordered list. The worst item
receives 1 point, and the best item |I| points.

argmax
i∈I

(︄∑︂
u∈G

RankingScore(u, i)
)︄

(4.5)

Where ranking score is defined as follows:

RankingScore(u, i) :=
⃓⃓⃓
{iother ∈ I : score(u, iother) ≤ score(u, i)}

⃓⃓⃓
• Copeland rule (COP, majority)

Difference between the number of wins and losses for pair-wise comparison
of all items

argmax
i∈I

(︂
W(t, I − t) − L(t, I − t)

)︂
(4.6)

• Fairness (FAI, consensus)
Users, in turn, one after another, select their top item.

argmax
i∈I

score(ucurrent, i) (4.7)

Where ucurrent is the user selected from G for each iteration according to
some (in most cases circular or ping pong) rule.

• Least misery (LMS, borderline)
Uses the lowest received rating among the group members as the item’s
aggregated rating.

argmax
i∈I

(︃
min
u∈G

(score(u, i))
)︃

(4.8)

• Most Pleasure (MPL, borderline)
It uses the highest received rating among the group members as the item
rating.

argmax
i∈I

(︃
max
u∈G

(score(u, i))
)︃

(4.9)

• Majority Voting (MAJ, majority)
Uses the rating given by the majority of the group’s members. (Can only
work on discrete ratings)

argmax
i∈I

(︃
mode

u∈G
(score(u, i))

)︃
(4.10)

• Most Respected Person (MRP, borderline)
Uses rating proposed by the most respected member of the group.

argmax
i∈I

score(umost respected, i) (4.11)
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• Multiplicative (MUL, consensus)
Multiplies all received ratings together.

argmax
i∈I

(︄∏︂
u∈G

score(u, i)
)︄

(4.12)

• Plurality Voting (PLU, majority)
Each user has a set number of votes that get distributed. The item with
the most received votes is selected.

argmax
i∈I

(︄∑︂
u∈G

VotesAwarded(u, i)
)︄

(4.13)

Where votes awarded is some function that decides for each user how the
available votes will be distributed among the items.

Some of the methods have an additional distinguishing factor: they are iter-
ative calculations instead of a single calculation that returns the final ordering.
Most notably Fairness, it calculates the next item purely from a currently selected
user, users changing in iterations one after another. Another one is Plurality Vot-
ing, this technique can also be iterative, but it is not mandatory. After the top
item is selected, we reset the calculation, therefore iteratively selecting top items.
All the other ones are single-iteration methods, where the final list requires only
one calculation.

Now we will show how these strategies work together with an RS to provide
a complete group recommender system, which will serve as an introduction to
the inner workings of such a system in order for us to continue towards more
advanced aggregation methods.

4.2.2 Usage with recommender systems
We now need to distinguish between model aggregation and prediction aggrega-
tion due to, in most cases, very different inputs and required outputs from the
aggregation.

Prediction aggregation

In most cases, we use them as prediction aggregation after the recommendation is
relatively straightforward. In all (to us known) cases, RS returns recommended
items together with some sort of rating of the recommendation. There are some
applications where this presumption does not hold, such as building a group
recommendation aggregation on top of a black box recommender that only returns
a list of items, for example, if extracting recommended items data from a web page
where we only retrieve the list itself and we do not have access to the underlying
recommender system. Nevertheless, in the following section, we will assume that
we have full access to the rating data of the outputted items. We further assume
that, if necessary, we can acquire ratings and an ordering for all possible items.

As shown in Figure 4.2, we first get a list of recommended items (together
with ratings) for each user. Then we can directly apply the methods mentioned
in Subsection 4.2.1.
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Model aggregation

Running aggregation on top of user preferences, instead of lists of recommended
items, is more challenging due to the many possible inputs the recommender can
take, such as explicit or implicit feedback. As discussed in Section 4.1, we have
two main options, aggregation of ratings and aggregation of mined preferences.

The first option is the aggregation of ratings, in other words creating a set
of ratings representing the whole group. This approach is preferred due to its
simplicity. We can use many of the previously mentioned simple methods, mainly
the consensus-based, which aggregate ratings directly (positive and negative).
Other mentioned methods can be used as well. However, some of them do not
make much sense to adapt, for example, the voting-based, with which we will
be very limited due to the usual sparsity of the feedback ratings that we have
available.

The second option, the aggregation of mined preferences, is more present
in content-based systems. We aggregate not the rating but some other data
that represent the users’ likes and dislikes. As an example, we will use the tf-
idf keyword extraction which is by far the most popular method used in the
text-based recommendation as mentioned in [44]. We can weight tf-idf concepts
extracted from the user feedback by the received rating and then aggregate these
concepts together for the whole group. As we can see, it is a more elaborate
approach that requires more modifications to the simple methods mentioned.

4.3 Advanced methods
As we can see, the simple methods mentioned before are pretty straightforward.
They have mostly straightforward and clear objectives and try to optimize in dif-
ferent ways, some quite vaguely specified goals. However, as discussed in Chapter
3, the objective is quite hard to define and measure. We will now introduce other
methods that either directly or indirectly try to optimize some better-specified
goal.

4.3.1 GFAR
So far, we have introduced methods that do not directly specify any form of
optimization in the direction of fairness. A new method introduced in[45] directly
optimizes the resulting list to balance the relevance of the recommended items
in a rank-sensitive way. Similarly to all before mentioned methods, it is an
aggregation approach that works on top of a single user RS.

Introduction

As mentioned, the authors focus on the fairness of topN G (fairness of the top
N recommended items for group G). Where they define fairness as a property
of the top-NG items, not just any single item but the whole list. As already
discussed in Section 2.1, the difference between optimization independently item
after item versus in some way for the whole list can yield significantly better
results when used in sequential consumption of items or balancing users with
different preferences.
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In the latter case of a member with differing preferences, we have more freedom
to compensate and give more priority for balancing fairness towards this one user
if we define fairness as a property of the whole list.

This kind of fairness is the main focus of the GFAR algorithm. In a way, it
exceeds this by trying to optimize each prefix of the recommendation list. We
will later define categories based on this fairness perception in Chapter 6. The
GFAR algorithm is to us, the only known algorithm that optimizes this kind of
prefix fairness we call rank-sensitive fairness.

In Subsection 4.2.1, we have already mentioned the FAI algorithm that tries to
balance the fairness of the whole list. It generates the aggregated results in steps,
each following step maximizing the utility of the following user in turn. This
approach solves the problem mentioned above very simply by not considering
the group preferences at all. It is just trying to please everyone in turns, not
considering if the rest of the group will like the item in that turn.

Approach

What if we have instead considered the previously recommended items when
selecting the next one in the list? The authors propose defining fairness together
with ordering within the group by saying that ”a topN is fair to a group if the
relevance of the items is balanced across the group members for each prefix of the
topN G. In other words, for each iteration, we try to select an item that improves
the balance as much as possible.

Let us first define Borda relevance following [15] as:

Borda-rel(u, i) =
⃓⃓⃓
{j : rank(j, topNu) < rank(i, topNu)} , ∀j ∈ topNu)

⃓⃓⃓
(4.14)

Where topN u is a list of top N items for user u, rank is the position of item i
in the user’s u candidate list (position is determined by ordering the items based
on the returned items score, from the best to the worst, where the best receives
a rank of 1). Borda relevance essentially gives zero points to the last item and
increases the points by one for each position up in the list, with the first/top
item getting (N − 1) points. We can calculate Borda-rel from rank simply by
Borda-rel(u, i) = N − rank(u, i). Note that if there are items that have the
same rank, then the maximum value has to be awarded to the group in order to
translate this way to Borda-rel.

Now we can set the probability of item i being relevant for user u as:

p(rel|u, i) = Borda-rel(u, i)∑︁
j∈topNu

Borda-rel(u, j) (4.15)

Let also p(¬rel|u, S) be the probability that item i is not relevant for any of
the items in set S. We derive the probability that at least one item from set S is
relevant to the user u as:

p(rel|u, S) = 1 − p(¬rel|u, S)
= 1 −

∏︂
i∈S

(1 − p(rel|u, i)) (4.16)
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Now we want to generalize for the whole group, so we define f(S) as the sum
of probabilities for each user that they find at least one relevant item in the set
S:

f(S) =
∑︂
u∈G

(1 − p(¬rel|u, S))

=
∑︂
u∈G

(︄
1 −

∏︂
i∈S

(1 − p(rel|u, i))
)︄ (4.17)

We have used Group G as a constant in Equation 4.17, and forward, the group
will stay the same during the calculation. f(S) shows how to balance the fairness
amongst the group members for a specified set of items. We now want to extend
it in order to make it rank-sensitive by defining a marginal gain in function f for
adding a new item i to the set S as follows:

f(i, S) = f(S ∪ i) − f(S)

=
∑︂
u∈G

⎡⎣p(rel|u, i)
∏︂
j∈S

(1 − p(rel|u, j))
⎤⎦ (4.18)

Where we have used Equations 4.16 and 4.17, finally, we can define an ordered
set that is considered fair if it balances each of its prefixes. In other words, the
first item of the set should be considered fair/balanced by all group members as
much as possible, then the first two items, and so on. We define fairness in an
ordered set OS as:

fair(OS) =
|OS|∑︂
k=1

f(OS)[k], {i ∈ OS : rank(i, OS) < k}) (4.19)

4.3.2 XPO
The last algorithm performed a greedy search based on the probability of at least
one item being relevant for each user in order to find balance among users in a
rank-sensitive way.

The following method introduced in [46] XPO and its variant NPO are ag-
gregation approaches that explore a simple but intuitive notion of fairness that
utilizes Pareto optimality of item’s raking in all admissible ways in which a group
may reach a decision.

Introduction

The authors specifically aim to minimize the feeling of dissatisfaction, which
somehow differs from the majority of previous works that aim to optimize the
group’s overall satisfaction or, more recently, from works that aim to optimize
fairness for each group member.

With a measure utility for each pair of users and item, we have a group utility
to be the average member utility according to [47] and fairness to be the minimum
member utility, which is equal to the Least misery approach.

With these definitions, the measure of utility itself becomes important as it
is the main factor that we are optimizing on. If we have a recommender system
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that recommends top-K items for each user, then for a set of recommended items
N, the utility of that user is the similarity between the top-K list and list N.

There are multiple similarity measures for comparing two lists, such as sym-
metrical measures, Spearman’s foot rule, rho, and Kendall’s tau. Furthermore,
unsymmetrical, better-known precision, recall, and normalized discounted cumu-
lative gain.

The authors’ approach is based on the notion of Pareto optimality. Pareto
optimal item for the group is an item that ranks the highest according to all group
members. The group unanimously agrees that no other item would be sharply
better than this one.

Therefore this Pareto optimality is inherently fair due to all members consid-
ering the item the best. However, most usually, items are always a different set
of trade-offs that need to be balanced.

Let us now be more specific and present the algorithms’ details.

Approach

The authors assume that the system is providing us with a top-N list of recom-
mendations for each member m of a group G. This set of items is considered
ground truth. Each item is considered a vector in m-dimensional space Rn, where
each dimension is a rank ru(i) of the item in the user’s top-N list of items. If an
item is not in that list, then rank of N+1 is awarded. For completeness, rank is
a position in the ordered list of top-N items of each user, therefore the best item
has a rank 1, second best has a rank of 2 and the last item has a rank N. We
assume this rank for each user independently only based on theirs top-N items.

For a group we get candidate items as

CG =
⋃︂

u∈G
topN (u). (4.20)

Further, we say that an item i dominates item i′ according to a group G if

∀u ∈ G : ru(i) ≤ ru(i′) ∧ ∃u′ ∈ G : ru′(i) < ru′(i′) (4.21)

It means that ranks for all users must be equal or better, but for at least one
user, the rank needs to be sharply better.

A good question might arise, why the equality even matters if items are ranked
based on their position in a sorted list? Two situations can arise. Either the utility
is exactly the same, and therefore the items will be in the same position, or the
items are not in the top-N for that user. In the latter case, we award the rank
of N+1 as already mentioned, and there can, and most probably will be, many
items sharing this lowest rank.

Further, when evaluating an aggregation strategy, we say that it is Pareto-
efficient if whenever an item i is ranked higher than another item i′ by each
group member, then also the strategy rates the item i higher than item i′. Pareto
optimal strategy respects the Pareto domination of items described before.

This property Pareto-efficiency is respected by all rating and rank aggregation
strategies. We can easily see that if a strategy recommends an item that is
Pareto dominated by another one (is better, by rank and or rating), then it has
recommended a subpar item and therefore is not optimal, based on the underlying
rating.
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We call a set of items that are not dominated by any other items Pareto
optimal (PO). One interesting side note that the authors do not address: does
always at least one Pareto optimal item exist? We see that PO property is
transitive, therefore if an item i dominates a set of some items I, then if there is
an item i′ that dominates i, then from the transitivity, it also dominates all items
from the set I. And so on, therefore there always exists an item or a set of items
that are Pareto optimal. In a different way, we can view this relationship as an
acyclic-directed graph.

Next, they define N-level Pareto optimal (N-lPO) set, which contains items
that are dominated by at most N − 1 other items. Note that N-lPO set contains
items from all smaller PO sets, such as 3-lPO ⊂ 2-lPO ⊂ 1-lPO.

We can calculate the N-lPO level for each item by comparing it with all
other items from the set and directly calculating the number of times other items
dominated the current one. This, unfortunately, leads to O(n2) time complexity,
where n is the size of the candidate set. It would be interesting to investigate the
possibility of using the transitivity property cleverly to get better time complexity,
at least in the average case, but that is outside of the scope of this work.

Ideally, we would want to take the N-lPO from all the items, but that would
require to first have a ranking of all items for each user, and then calculating the
Pareto optimally level between all pairs of items, which would be very compu-
tationally expensive. We, therefore, take an approximation of the N-lPO set of
items from the candidate set where for each user we request their top-N where N is
larger than the final required recommendation size or as large as computationally
feasible.

The next step is the interesting part of the authors’ new method, they consider
all linear aggregation strategies, where linear strategy assigns weight wu to each
user so that the total weight sums to 1, then item raking is multiplied user-wise
with this weight and summed up as

1 =
∑︂
u∈G

wu. (4.22)

Then items score under this linear strategy Lw is

SL(i) =
∑︂
u∈G

wuru(i). (4.23)

Each linear aggregation strategy can be uniquely represented by the weight
w.

The motivation behind considering all linear aggregation strategies is to get
the ratio for items that do not dominate each other. When two items lie on the
same Pareto level, it does not mean they achieve the same average score over all
l. strategies. We can use this ratio to further distinguish between the items and
therefore compare items even when they are on the same Pareto level. We can see
an illustration for 6 items and two users in Figure 4.3. Item i1 and i2 lie on the
Pareto front and therefore there is not clear which item is better. But for only
one linear strategy in this case, with weight w the items will have the same score.
For any other weight vector, there will be a clear winner. We, therefore, want
to compute this ratio. We can compute this two-dimensional case analytically
as 3/7 and 4/7 for weight w = (3/7, 4/7). We can see that only Pareto optimal
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items would have a non-zero probability, and for every non-Pareto optimal set of
items, there would be a clear winner.

Figure 4.3: Example of 6 items based on two group members u1 and u2 from [46].
Item i2 is Pareto optimal for user u1, and item i1 is Pareto optimal for u2.

In 2 dimensional case, computing the exact probability is possible, but in a
multidimensional case, the problem does not have a simple analytical solution.
Therefore considering all possible weights is unpractical in order to get an average
of items rating across all linear strategies, we opt for a Monte Carlo method of
computing this probability.

Therefore, we generate many random weights, each representing a different
linear aggregation strategy. For each Lw we compute how many times an item
i ended up being in the top-N where N , in this case, is the desired size of the
recommended list.

Items are then rated by how many times each N-PO item ranks within the top-
N. Best N items are returned as the output of the group recommender strategy.
We call this approach N-level Pareto optimal aggregation (NPO).

The size of N-level Pareto optimal items can be much larger than the required
size of output N, we therefore can perform a binary search to identify the smallest
x ∈ [1, N ] for which there are at least the desired amount of items N. We can
formulate this as

argminN
x=1|Px| ≥ N, (4.24)

where Px represents the set of x-level Pareto optimal items. We call this aggre-
gation strategy XPO.

Note, the only difference between NPO and XPO is the smaller candidate final
candidate selection step. The initial candidate list drawn from top-N candidates
for each user CG stays identical.

4.3.3 D’Hondt direct optimization (FuzzDA)
This method directly uses a definition of fairness that is widely around the world
as a mandate allocation strategy for elections and the division of a discrete number
of mandates/items.
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It focuses on D’Hondt’s algorithm (DA) which is commonly used in European
elections. DA is a greedy selection algorithm that minimizes the number of votes
that need to be left aside so that the remaining votes are represented exactly
proportionally as described in [48].

The procedure behind DA works as follows: in steps, it awards the party with
the largest quotient quot one seat, and after each step, the quotient is recalculated.
The quotient is calculated as follows:

quot(Vp, sp) = Vp

sp + 1 , (4.25)

where Vp is the total number of votes that party p received and sv is the number
of seats that have been allocated to party p so far (initially 0).

In order to compensate for this, FuzzDA presented in [49], can be used. For
each group member u and each candidate item i, we assign a relevance score of
that item for that user to ru,i ∈ [0, 1]. At each step, FuzzDA select a candidate
that maximizes ∑︁u∈G quot(Vu, su) ∗ ru,i. After each step, each group members’
accountable votes are decreased by the factor of ru,i. This represents a fuzzy
approach that fixes the DA problem of being unable to handle items that are
relevant to multiple parties by lowering their accountable votes (therefore the
power in the next step) by how much utility they have received with each new
item.
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5. Datasets
People are gregarious in nature, but the same, unfortunately, cannot be said about
machine learning datasets. The vast majority of them are not directly usable
in the group RS research due to only containing information about single-user
preferences. To design and evaluate group recommender systems, we preferably
need datasets that contain information about groups’ preferences.

In this chapter, we will describe which datasets are suitable for use in the
RS domain. We describe commonly used datasets in the non-group RS domain.
Then, we analyze their high-level properties and describe what transformations
are needed to make the dataset convenient to use.

Next, we will talk about the existing group RS datasets and introduce methods
that can be used to generate the group recommendation information synthetically
from non-group RS datasets. We will use these methods to generate standard-
ized synthetically enriched group RS datasets from non-group datasets that we
describe in the single-user datasets subchapter.

5.1 Single user datasets
Multiple well-known and thoroughly studied datasets exist in the recommender
system domain. Let us present the popular ones that seem to be utilized the
most.

When we talk about the specific format of the data, then we are referring to the
unified format which we have transformed the original data into using the dataset
transformation library. Further description of the data format transformations
follows in Subsection 5.1.6.

5.1.1 Movie Lens
One of the most well-known datasets in the RS domain, it contains 25 million
ratings in total across 62,000 movies and 162,000 users. The data were collected
between 1995 and 2019, and the current version of this size (25M) was released in
November of 2019. Data are organic and come from a web-based recommendation
system at movielens.org. The project was specifically created in order to gather
research data on personalized recommendations by researchers at the University
of Minnesota.

The dataset is in a suitable format that is easy to parse and use. A further
description follows in Subsection 5.1.6.

Number of items: 62,000
Number of users: 162,000
Number of user-item interactions: 25,000,095
User-item interactions format: Sparse matrix of ordinal ratings [1, 1.5, 2, ...
4.5, 5] - user rated a movie
List of data tables: Movies (detail in Table 5.1), Ratings (detail in Table 5.2),
Tags, Links, Genres, Genome Scores, Genome Tags
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item_id title
1 Toy Story (1995)
2 Jumanji (1995)
3 Grumpier Old Men (1995)
... ...
209169 A Girl Thing (2001)
209171 Women of Devil’s Island (1962)
[62423 rows x 2 columns]

Table 5.1: Short snippet of Movie Lens dataset’s movies.csv table.

user_id item_id rating timestamp
1 296 5.0 1147880044
1 306 3.5 1147868817
1 307 5.0 1147868828
... ... ... ...
162541 58559 4.0 1240953434
162541 63876 5.0 1240952515
[25000095 rows x 4 columns]

Table 5.2: Short snippet of Movie Lens dataset’s ratings.csv table.

5.1.2 KGRec
KGRec is a smaller and less known dataset. We have chosen this dataset because
it was utilized in the GFAR method introduced in [45] and described in Subsection
4.3.1. This dataset consists of two separate datasets of music and sound, KGRec-
music and KGRec-sound, respectively.

The first music dataset comes from songfacts.com (items and text descrip-
tions) and last.fm (ratings, items, tags). Each user-item interaction is a user
listening to a song.

The second sound dataset comes from freesound.org. Items are sounds with
descriptions using text and tags created by the person who uploaded the sound.
Each user-item interaction is a user downloading an item, in this case, a sound.

Further, we will consider only the music dataset and not utilize the sound
dataset. We have made this decision to simplify comparisons due to the origin
of the sound dataset itself. It comes from a web page where users can upload
and download random sounds of their choosing, such as the ’Mechanical clock
movement’ sound, ’Industrial elevator’ sound, and other. The need for these
sounds is most probably driven by people using them for their profession, such
as video production, and therefore does not reflect natural content consumption
preferences.

Both datasets were created for the needs of [50], where they were introduced,
and they are altered for the needs of research in Recommendation Knowledge
Graphs. Further, the original data that was used for the creation of these datasets
are described in [51].
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Number of items: 8,640; 21,5521

Number of users: 5,199; 20,000
Number of user-item interactions: 751,531; 2,117,698
User-item interactions format: one-valued implicit feedback - user listened
or downloaded a song/sound
List of data tables: Ratings(detail in Table 5.3), Tags, Descriptions

user_id item_id
7596 68
7596 130
7596 330
... ...
50572897 8618
50572897 8619
[751531 rows x 2 columns]

Table 5.3: Short snippet of KGRec dataset’s music ratings.csv table.

5.1.3 Netflix Prize
Data that were originally released in 2009 by the Netflix.com video streaming
company for the Netflix Prize, an open competition with the main prize of 1
million dollars. It contains data from more than 400 thousand randomly selected
users from the company’s database. Data contain information about users’ ratings
of movies. It was originally available on the contest web page but has been
removed.

The original data was split into multiple files in a file for ratings per movie
manner. Each rating is a quadruplet of the form ’<user, movie, date of the rating,
rating>’.

Number of items: 17,770
Number of users: 480,189
Number of user-item interactions: 100,480,507
User-item interactions format: sparse matrix of ordinal ratings [1, 2, 3, 4, 5]
List of data tables: Ratings (detail in Table 5.4), Movies (detail in Table 5.5)

user_id item_id rating date
6 30 3 2004-09-15
6 157 3 2004-09-15
6 173 4 2004-09-15
... ... ... ...
2649429 17627 3 2003-07-21
2649429 17692 2 2002-12-07
[100480507 rows x 4 columns]

Table 5.4: Short snippet of Netflix dataset’s ratings.csv table.

1All KGRec statistics are in order - music dataset; sound dataset
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item_id release_year title
1 2003.0 Dinosaur Planet
2 2004.0 Isle of Man TT 2004 Review
3 1997.0 Character
... ... ...
17769 2003.0 The Company
17770 2003.0 Alien Hunter
[17770 rows x 3 columns]

Table 5.5: Short snippet of Netflix dataset’s movies.csv table.

5.1.4 Spotify - Million Playlist Dataset
This dataset was released in January 2018 for The Spotify Milion Playlist Dataset
Challenge. It contains 1,000,000 playlists with information about tracks that are
part of each playlist. The primary purpose of this dataset was to study and
develop better algorithms for automatic playlist continuation where the system
could recommend songs that are similar to those already in the playlist. In
contrast to the Netflix challenge, no prize was to be awarded at the end of the
challenge.

Even though the context of this dataset is playlists and not users, we utilize a
different view of the dataset, where each playlist will represent a single user. This
way, we have another big and organic dataset at our disposal. It can therefore be
used not only for playlist continuation tasks but also for the classical RS domain
tasks. In a sense, a single playlist is a specific subset of the user’s preference
that has created the playlist. Therefore we expect to see a narrower preference
distribution for each of these ’playlist’ users.

For completeness, it is necessary to add that some playlists are ’collaborative’,
meaning that they were created by multiple users. Nevertheless, they account for
only 2.3% of all playlists, which in our opinion, does not substantially affect the
dataset. These collaborative datasets could be used as a group recommender
dataset on their own. Unfortunately, the information about which user added
which track to the collaborative playlist is not present.

playlist_id item_id
549000 0
549000 1
549000 2
... ...
302999 133087
302999 133088
[66346428 rows x 2 columns]

Table 5.6: Short snippet of Spotify Milion Playlist dataset’s ratings.csv table.

Number of items: 2,262,292
Number of users: 1,000,000
Number of user-item interactions: 66,346,428
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item_id item_name artist_name
0 Boots of Spanish Leather Bob Dylan
1 Mr. Tambourine Man Bob Dylan
2 Danny’s Song Loggins & Messina
... ... ...
2262290 Robin Hood Crazy Fool
2262291 Guilttrip Ace Reporter
[2262292 rows x 6 columns]

Table 5.7: Short snippet of Netflix dataset’s tracks.csv table. (Columns
item uri, artist uri, album uri, containing URI to Spotify object were omit-
ted for simplicity due to their substantial length.)

User-item interactions format: one-valued implicit feedback - user added a
song to a playlist
List of data tables: Tracks (detail in Table 5.7), Ratings (detail in Table 5.6)

5.1.5 Comparison of datasets
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Figure 5.1: Size comparison of the selected datasets. All x-axes are log scales due
to the big differences between the dataset.
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We have described each dataset separately. Let us now compare them together
to see how they differ. As shown in Figure 5.1, the Spotify and Netflix datasets are
the biggest. We see that the KGRec dataset is almost two orders of magnitude
smaller than the rest. As already mentioned, we have selected it due to its
common utilization in the related literature. Spotify dataset is different by having
two orders of magnitude more items, which can present a challenge on its own. For
example, if we use matrix factorization methods to compute the preference, then
the amount of memory will rise by two orders of magnitude as well. Additionally,
the sparsity of ratings is higher, which can negatively affect efficacy.

The Movie Lens dataset has a potential benefit as it has actual ratings for
each user-item interaction. All other presented datasets only contain user-item
interactions in the form of one-valued implicit feedback.

In Figure 5.2, we present the distribution of ratings among users. The left
y-axis, blue, presents the count of users with a particular number of ratings. We
have clipped the users with a high number of ratings so that we can better see
the interesting part of the data, which the long tails would otherwise squash. The
clip was made on the last 10% mass of all ratings.

We see that Movie Lens nicely follows a power-law distribution. In this
dataset, only users with more than 20 ratings are present, which is also visi-
ble in the figure and is most probably why we do not see the same initial rise in
ratings as for Netflix and Spotify datasets’.

The KGRec dataset is different. It is more jagged due to the smaller effect of
being smoothed out by the amount of data as with the other datasets. Interest-
ingly, the number of users does not follow an exponential distribution in contrast
to the other datasets. At first, we thought the reason was that the dataset was
gathered at a website where users listen and download songs. These songs are
always a part of an album; if a user is downloading one song from an album, they
will most likely also download the rest of the album. However, that would not
explain why this number of ratings per user starts at around 75.

The actual reason for this can be partially found in the original paper - [50].
As already described in Subsection 5.1.2, the dataset was altered to better fit the
required research objective of recommendation using knowledge graphs. As such,
songs with less than ten interactions have been removed, users with less than
50 item interactions have been removed, and only songs with over-average plays
were counted as user-item interactions. Nevertheless, this would not explain the
nonexponential nature of the distribution. We have downloaded and explored
the original dataset from [51], the original dataset is not only one-valued implicit
feedback, but it is the number of times a user has played the song. When we
visualize the original dataset using the ’sum of plays per user’ instead of the
’count of interactions per user’, we get a natural-looking exponential distribution.
Therefore, the most probable reason for the KGRec’s dataset distribution is that
users like to replay a smaller number of songs multiple times, creating more of a
normal-looking distribution.

Further, the Netflix dataset looks similar to Movie Lens, with two exceptions.
The first is that Movie Lens includes only users with at least 20 ratings. Therefore
the initial increase in the number of ratings is not visible. Secondly, both Netflix
and Spotify datasets have cumulative rating distribution shifted more to the right,
which means that there are more ratings among users that were more active on
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Figure 5.2: Distribution of ratings for groups of users by how many ratings they
have made. The blue line shows how many users have made that particular
amount of ratings, while the red line shows the total cumulative mass distribution
of ratings. We have clipped the number of ratings by total cumulative ratings of
90% due to very long-tailed data, where some small amount of users created a
very high amount of ratings.
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the service and interacted with many items.

5.1.6 Datasets gathering and processing
Processing the datasets mentioned above was more difficult than it should have
been. They are not easily accessible. Some are available only behind a login
wall and in different, incompatible, and non-standard formats. We have therefore
processed and unified these datasets using a tool that we have developed. At first,
we wanted to create shared storage where they would be available in the already
transformed form, but that is not feasible due to the datasets’ licenses. Let us
now describe the data transformations we have done for each dataset. We aim to
have the datasets in standard zipped CSV format that can be simply loaded by
most of the widespread data manipulation tools such as Pandas. Additionally, if
not misleading, we prefer the columns of the datasets to be named in a unified
fashion.

• Movie Lens dataset is available at the the authors web page
grouplens.org/datasets/movielens/25m/. This dataset is easily accessible
and ready-to-be-used (files in valid CSV format, zipped together in a single
archive). This was the nicest dataset to start working with. No trans-
formations were necessary apart from remapping user and item ids to be
sequential.

• KGRec dataset is available for download at the authors web page
upf.edu/web/mtg/kgrec. Unfortunately, downloading the dataset is not
straightforward because the download link is an unsecured HTTP on a se-
cured HTTPS site. This is a problem while using modern browsers, which
do not support mixed HTTP and HTTPS content. The dataset has ratings
in a standard CSV form with redundant information about the incidence,
which is always of value 1. Main data in sparse incidence matrix repre-
sentation are in the form of ’<userId, itemId>’. Additional data with tags
and descriptions of items are separated into individual files in the original
dataset. We have transformed them into two CSV tables of form ’<itemId,
tags>’ and ’<movieId, description>’ respectively. Further, remapping of
user and item ids to sequential values was performed.

• Netflix dataset is available on an independent web page
kaggle.com/datasets/netflix-inc/netflix-prize-data. The original web page
of the challenge is no longer available. The uploader additionally processed
the dataset by aggregating the small per-movie rating files into four bigger
files. This dataset was in a non-standard format where ratings were not in
CSV but in a custom format reflecting the original movie ratings per file
division. Each group of ratings for a movie starts with a line only containing
the id of the movie and a colon, then ratings for the movie follow each per
line in a format ’<user-id,rating,timestamp>’.

• Spotify dataset is available at AIcrowd.com, where the original Spotify
challenge was introduced. Unfortunately, the dataset is behind a login wall.
After registering and logging in, it can be downloaded from
aicrowd.com/challenges/spotify-million-playlist-dataset-challenge.
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The dataset is comprised of 1000 JSON files, each describing 1000 playlists.
The dataset contains a lot of information about each playlist such as the
name, when it was modified, how many followers it has, and so on. We
go through all data and simultaneously create a list of playlists to track
mapping and another list with any additional track information, such as
the Spotify URI links for the track, album, and artist. We have created a
separate numerical track id due to the native one of the track URI being
too long. Apart from the JSON files, the zip archive contains some python
code to provide easy parsing and simple statistics about the dataset.

We have created a Python CLI tool that can be used to download the available
datasets easily. This tool is available in our Git repository at
github.com/LadislavMalecek/MasterThesisAnalysis. Run ./gather_datasets/
download_and_transform.py to execute the script. All relevant information
about the supported parameters is available when run with the standard ’–help’
switch.

5.2 Group datasets
Let us now investigate datasets that contain information about groups of users.
We will look through some of the datasets mentioned in related literature.

5.2.1 Datasets overview
When reading through related literature on GRS, we have mostly encountered
synthetically created datasets either from the Movie Lens dataset or the Netflix
dataset. The main reason for not utilizing datasets with innate group information
is that not many of them exist. Let us go through some of the datasets mentioned
in the related literature and determine their suitability for group recommender
system research.

First, we would like to point out a critical flaw that most literature in our
domain has. Suppose the authors decide to use some small, unknown, and or pro-
prietary dataset, instead of using the traditional Movie Lens and Netflix datasets.
Then for the research reproducibility, it is necessary to provide a detailed descrip-
tion about where and how the dataset can be obtained and how the raw dataset
was created, filtered, and altered. Most authors do not mention these details
and only mention which dataset they were using and some high-level information
about the dataset, such as the number of users, items, and interactions. This
makes the papers’ experiments irreproducible and unverifiable. The same can
sometimes be said about papers that use single-user datasets with synthetically
generated group information. Sometimes, it is not entirely clear how the syn-
thetic groups have been generated and to what values the parameters have been
set.

In Table 5.8, we present a high-level overview of datasets that we found in the
related literature.
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#users #items #groups avg. g. size
CAMRa2011[52] 602 7,710 290 ?

Douban[53] 23,032 10,039 58,983 4.2
Gowalla[53] 25,405 38,306 44,565 2.8

Mafengwo[52] 5,275 1,513 995 ?
Meetup[54] 42,747 2,705 13,390 16.66

Plancast[55] 41,065 13,514 25,447 12.01
Yelp[53] 7,037 7,671 10,214 6.8

Weeplaces[53] 8,643 25,081 22,733 2.9

Table 5.8: Size overview of selected GRS datasets. Note: Some dataset sizes are
given after transforming the original datasets by removing users and items that
are not part of any group.

CAMRa2011

The CAMRa2011 dataset was released in 2011 for the 2011 ACM Recommender
Systems Conference. The dataset is unavailable at the original location, and we
could not retrieve it from the web. Numbers in Table 5.8 are taken from [52]. We
have found an altered version of the dataset at
github.com/LianHaiMiao/Attentive-Group-Recommendation, which is a GitHub
repository for the code and experiments from [52]. The dataset is quite small and
we are doubtful about its quality and source.

Douban

This dataset has similar problems to the CAMRa2011 dataset. We were unable to
retrieve it from the web. At the same time, in the already mentioned repository
for [52], we found an author’s comment about adding the dataset soon (in 2018),
which was never done.

Gowalla

Gowalla was a location-based social network. It was dissolved in 2012 when
Facebook acquired it. The dataset contains people logging in to locations that
they have visited. The dataset can be easily downloaded at yongliu.org/datasets/.
We have discovered this page and dataset in [53].

This dataset does not directly contain any group information. However, it
could be inferred by combining the check-in data in the format ’<userId, placeId,
datetime>’ and friendship data that link pairs of users ’<userid1, userid2>’. If
a person and some of their friends visit the same place around the same time,
we can state that they were probably all part of the same group. Moreover, if
they visit multiple places together, then the chance of a random occurrence drops
significantly.

We suspect that there will be a substantial location similarity bias due to the
data being location-based. If someone visits a specific place, they are very likely
to visit a popular place nearby regardless of its quality.

• Available group information: No explicit information, but group infor-
mation can be interpolated from information about friendships and user-
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item interaction timestamps

• User-item interactions: one-valued implicit feedback

• Group-item interactions: none

• Items type: points-of-interests

Mafengwo

Tiny and proprietary dataset mentioned in [52]. The dataset is unavailable for
download. We were unable to find another source from which we would be able
to download this dataset.

Meetup

This dataset is crawled data from website meetup.com from [54] used in [55].
Meetup is a popular web page for meeting other people with similar hobbies and
interests. This dataset contains only data from two regions, New York City and
the state of California. One substantial distinction from other datasets is that
the items represent non-repeating social events. This creates difficulties with
similarity calculation between users due to the low average number of user-item
interactions per item. Groups are defined explicitly with the grouping function,
and members can communicate within the group and attend events or plan events
together.

With some difficulties, we have downloaded the dataset from
personal.ntu.edu.sg/gaocong/datacode.htm.

• Available group information: group memberships, groups are on average
big

• User-item interactions: one-valued implicit feedback

• Group-item interactions: none

• Items type: social events

Plancast

Unfortunately, we were unable to obtain this dataset for further analysis. In [55],
where this dataset is mentioned, there is no download link, only a reference to
[56], where no additional information about the source is provided.

Yelp

This dataset contains reviews for businesses and places. In [53], they use a subset
of the whole dataset only for the city of Los Angeles. The whole dataset can
be downloaded at yelp.com/dataset and, in its unfiltered variant, is vastly bigger
than other mentioned datasets with over 6,9 million ratings.

• Available group information: no explicit information, but group in-
formation can be interpolated from friendships and user-item interaction’s
timestamps
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• User-item interactions: one-valued implicit feedback and text reviews

• Group-item interactions: none

• Items type: Points-of-interests

Weeplaces

Similarly to the Gowalla dataset, Weeplaces was a website that aimed to visual-
ize users’ location-based check-in activities. It has been integrated with multiple
location-based social networking services such as Foursquare and Facebook. It
contains information about check-ins and friendships, the same as the Gowalla
dataset. It can be downloaded from yongliu.org/datasets/. We have discovered
this page and dataset in [53]. Again, the same arguments for the group informa-
tion and location-based bias hold for this dataset, the same as for the Gowalla
dataset.

How groups are created is not described in the original paper. Other infor-
mation which is missing is a complete description of how was the raw dataset
transformed and filtered. A high-level description is present, but it is incomplete.

• Available group information: none explicit, can be interpolated from
friendship information and user-item interaction timestamps

• User-item interactions: one-valued implicit feedback

• Group-item interactions: none

• Items type: Places check-ins

Dataset selection

Let us now select a subset of the mentioned datasets for further analysis and for
inclusion in our download and transform tool.

We have rated all datasets on a scale of ’poor’, ’ok’, and ’good’ in Table 5.9
for the following important criteria:

• Ease of retrieval
We award a ’poor’ rating if the dataset cannot be downloaded at all. Award
an ’ok’ rating if we can download the dataset with some difficulties from
either the source in the mentioned paper or any related linked papers, as
well as if we can download the dataset from an unrelated source. We award a
’good’ rating if the dataset is easily downloadable using the original sources
or any source original to the dataset, such as the original research challenge
web page.

• Available group information
We award a ’poor’ rating if the group information is either not very fitting
to our use case, the dataset does not contain any, or the group information
is very scarce. We award ’ok’ and ’good’ in cases where the information is
present, and the quality is good or great, respectively. The ideal situation
is if the dataset contains full information about which members were part
of the group-item interaction and when the group-item interaction is rated
by each member.
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• Size
We award ’poor’ if the dataset size is borderline unusable (the definition
of what size is and is not usable can differ widely based on the utilized
methods). We award good if the amount of information is on the order of
information we can find in single-user datasets. We award ’ok’ to sizes in
between.

• Source legitimacy
We award ’poor’ if the dataset comes from either a not well-known service
or from a service that is already canceled. We award ’ok’ if the source is
less well-known but legitimate and easily traceable, and finally, we award
’good’ if the source is a well-known service used worldwide.

Additionally, some criteria that we could not assess (due to the dataset not
being available for download) were marked ’n/a’.

With all relevant information about each dataset found in the current sub-
chapter and in Table 5.9, we have concluded that, unfortunately, no dataset cur-
rently satisfies our criteria. Gowalla, Weeplaces, and Yelp datasets are borderline
usable due to retrieving the group information from friendships and timestamps
of reviews. Constructing the groups would require us to set a window parameter,
either floating or fixed, to group users together. Further, the Meetup dataset can
be used, but the average group size is unnaturally high, especially for researching
fairness which in the context of big groups becomes less relevant and harder to
satisfy.

ease of
retrieval

available
group

information
size source

legitimacy

CAMRa2011 poor n/a poor poor
Douban poor n/a ok poor
Gowalla good poor ok ok

Mafengwo poor n/a poor poor
Meetup ok poor ok good

Plancast poor n/a ok poor
Yelp good poor ok good

Weeplaces good poor ok ok

Table 5.9: Ratings of selected GRS datasets.

5.3 Creation of artificial groups
As we can see, datasets with group information are a scarce resource. Ideally,
we would like to have a dataset that contains the following data - user-item
interactions, information about groups that the users belong to, and group-item
interactions.

However, this information is hard to obtain in practice. Most of the datasets
that we have seen only contain information about friendships, not directly about
groups. Further, they do not contain group-item interactions, which we would
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like as the ground truth when training group recommender systems. Instead,
they only contain user-item interactions from which we can only estimate the
corresponding group-item interactions.

We cannot enrich the datasets with group-item interactions because that is
the task we aim to solve. We would, in a way, just cross evaluated a group
recommender system with another one that would act as the ground truth source.

Generating the user groups, on the other hand, is possible. Let us now explore
methods that allow us to do that.

5.3.1 Methods
Generally, we have three main methods how for creating synthetic groups:

• At random

• Based on user similarity, using user-item interactions.

• Based on user similarity, using user-attributes.

Creating groups at random is simple. For each group, we take the desired
amount of users from the user pool without replacement. And then for the next
group, either adding the users back to the pool or keeping them out and therefore
having each user be part of at most one group. We could argue that entirely
random groups do not exist in the real world, but some groups actually can be
pretty close to random, at least in a specific preference, such as music taste. For
example, when commuting on public transportation or dining in a restaurant, we
would observe a very wide spectrum of preferences among people.

The second and third cases are more interesting because there is only rarely a
situation where groups are created entirely randomly. Most of the time, users that
create groups in the real world do have some similarities, either in preference (the
second case) or in attributes, such as where they live, what is their age, gender,
education, and so on (the third case).

In reality, we most usually create groups with people in the same social setting,
such as age-related peers, friends from high school, university, work, and other
similar social settings and attributes. It would therefore make sense to utilize
this information for the creation of artificial groups. But unfortunately, this
information is not present in any of our datasets, and it would need to be quite
extensive in order to give us the desired outcome. This type of data is almost
unattainable, maybe except for the biggest tech companies such as Google and
Facebook.

Another argument against using user attributes is that when we utilize them
as a grouping parameter, the concern for privacy and protection of sensitive
attributes arises. These attributes should be protected as discussed in Section
3.1.

Using user-item interactions for measuring similarity is very convenient due to
this information being the most accessible. It is similar to user-based collaborative
filtering discussed in Subsection 2.1.2. The main differences are that we want to
directly control the amount of similarity for creating either similar groups or
groups with varying amounts of diversity and that we do not perform the second
step, where we recommend items based on the relevant users.
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In order to create user groups from user-item interactions, we need a similarity
metric that gives us a value representing how similar a pair of users is. There is
a multitude of similarity metrics that can be used. We have selected to use the
following:

• Pearson Correlation Coefficient (PCC) due to its stable performance
as mentioned in [57], and due to its wide use in the recommender system
domain. For two vectors X and Y it can be computed as follows:

P (X, Y ) = cov(X, Y )
σxσy

=

n∑︁
i=0

(xi − x)(yi − y)√︄
n∑︁

i=0
(xi − x)2

√︄
n∑︁

i=0
(yi − y)2

, (5.1)

where cov is covariance, and σ is standard deviation.

• Jaccard similarity due to its simplicity and suitability for data with only
one-valued implicit feedback:

J(X, Y ) = |X ∩ Y |
|X ∪ Y |

= |X ∩ Y |
|X| + |Y | − |X ∩ Y |

. (5.2)

Where X and Y are sets of items that the users interacted with, or in other
words, have a positive rating of 1.
For our case, we consider the intersection to be only when both samples
have a positive value of 1. Sometimes matching zeroes is considered as an
intersection as well.

• Cosine similarity due to its simplicity and property of not depending on
the vector’s magnitude, but only on their angle:

cos(X, Y ) = X · Y

||X|| · ||Y ||
=

n∑︁
i=0

xiyi√︄
n∑︁

i=0
x2

i

√︄
n∑︁

i=0
y2

i

, (5.3)

where X and Y are vectors of user preference. This insensitivity to scaling
comes in handy when working with different types of ratings among multiple
datasets.

We have compared the similarity metrics on a random sample of 1 million
user pairs on 5.3. Initially, we wanted to select Pearson Correlation Coefficient
based on the before-mentioned stability, but interestingly, PCC and the Cosine
similarity overlap substantially. This is due to the ratings being very sparse,
which causes the means in PCC calculations to be close to 0, which corresponds
to the Cosine similarity. Further, PCC and Cosine similarity, on average, have
more samples with higher similarity and fewer samples with lower similarity. We,
therefore, select Cosine similarity as our similarity metric due to its similarity to
PCC and better properties than Jaccard similarity.

Now, we have a method of determining the similarity between two users.
Further, we need to know how to modulate the amount of similarity in the group.
There are many interesting ways how to create synthetic groups. Let us now
present some of them.

Some of the possible types of group creation:
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Figure 5.3: Comparison of similarity metrics on Movie Lens dataset.

• Random: Randomly sample without replacement from the user pool.

• Similar: Select one user randomly as a pivot, then fill in the remaining
group spots with users that are as similar as possible. This basically is
the k-nearest neighbors algorithm. The problem with this approach is that
very rarely do we encounter situations like this in the real world. Another
problem is that selecting the most similar users is computationally expensive
as we need to compute the similarity between the pivot and every other user
in the dataset, which is not ideal for the size of our data.

• Somehow similar, with outliers: One other way how to relax the simi-
larity is to randomly select a pivot user and then select the nearest neighbors
only from a random subset of the whole user pool. This way, we still get
pretty similar users and do not need to perform so much computation.
Another idea would be to select the next candidate based on the similarity
to the last selected user instead of the pivot. In a way, we are creating a
chain of users based on the similarity of the individual links(users). This
way, we could create more variable preferences among the group members
with still overlapping user-item interactions.
Additionally, instead of selecting top-k similar users, we can make random
steps in the similarity ordering, such as if we have 1000 most similar users
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ordered by the similarity metric, we do not need to take the top-k best ones,
but for example, 100th most similar, 200th most similar and so on.
Further, instead of a top-k, we can select users based on a weighted prob-
ability generated from the similarity or the ordering of all the candidate
members.

• Similar to the whole group: Instead of selecting candidates similar to a
single primary user, we can select the following group members to incremen-
tally be similar to group members already assigned, either by aggregating
the ratings or by, for example, Borda count. This has the advantage of eas-
ier candidate selection due to a bigger possible preference overlap. However,
it has the disadvantage of needing to perform more similarity computations
after each member selection.

• Dissimilar: Apart from finding group members based on being as similar
as possible, we can also try to create as dissimilar groups as possible. Here
we can randomly select a first user and then select a following user, which
is as little similar as possible. Next, instead of selecting another user in the
same way, we can calculate the dissimilarity of all other uses with the joined
preference of the users already selected for the group and, again, select the
most dissimilar one.

5.3.2 Selected approach
Let us now specify, in detail, the methods that we use and how we set the required
parameters.

The simplest and most convenient option would be to calculate the similarity
matrix for all users and then select groups based on this single calculation. How-
ever, this matrix can become pretty huge with the growing number of users. Let
us assume our worst case of 1,000,000 users of the Spotify dataset. Then we will
have 1012/2 similarity calculations that need to be processed and stored. This
becomes difficult to manage as the amount of memory needed would be around
the order of terabytes and the time needed for processing on the order of hours
or days. We, therefore, opt for an iterative approach, where we randomly select
only a smaller subset of potential group members and select the actual group
members from this smaller group instead of the whole user pool. This can lead
to calculating the users’ similarity multiple times, but that situation is some-
what unlikely, and in total, we will save orders of magnitude worth of similarity
calculation (potentially depending on the number of groups we want to generate).

At random

A straightforward approach that generates groups with very distinct user prefer-
ences. We select the desired amount of users for one group from the user pool
and assign them together. Then repeat with the whole user pool (not removing
the selected members) again.
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Similar groups with top-k selection

We select one user as a pivot of the group at random. Next, we select some number
of users randomly from the dataset as candidates and calculate the similarity
between the pivot and each of the selected user candidates. Next, we select the
top-N most similar users to the pivot where N is the desired group size - 1 and
fill in the rest of the group with these top-N most similar.

This ensures that there will be pressure towards similarity using the top-K
mechanism as well as some variety due to the random selection of candidates.

Similar groups with probability respecting similarity (PRS)

We perform the same random selection as in the previous method for similar
groups but with a different procedure in the second step of selection from the
candidates. We want to select a candidate with a probability that corresponds
to their similarity with the pivot user and decreases quite heavily to ensure that
there is still enough push toward selecting similar users.
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Figure 5.4: Histogram of cosine similarity of 1 million random user pairs from
Movie Lens dataset.
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Due to the exponentially decreasing number of users with higher similarity
scores, as can be seen in Figure 5.3 and detail in Figure 5.4, we need to ensure
that potential group members with higher similarity still retain overall higher
probability of being selected. We can do that by presetting the desired probability
to each cosine similarity group and then dividing this probability by the average
number of user pairs in that similarity group.

Unfortunately, we do not have the precise average number of user pairs, which
would require us to compute the similarity between all possible pairs. We can get
a good estimation by sampling some user pairs and calculating the ratio between
the size of the group and the number of total samples. Sample of size 1 million
on all datasets can be seen in Figure 5.4.

In order to avoid deciding on the correct amount of bins to split the data into
and how to smooth and sample from the bins, we have selected to model the
expected cosine similarity probability density function minimizing the L2 norm.
That allows us then to calculate what is the expected amount of samples in a small
neighborhood. For Movie Lens, we have selected an exponential distribution with
parameter λ = 0.08918. This distribution models our underlying data quite well.
Comparison can be found in Table 5.10. A most important portion of samples
between 0.4 to 0.8, where most of the members with the highest chance of being
selected will fall, seems to be modeled quite precisely. Then we can express the
average expected amount of similarity pairs with similarity of x in some small
constant-sized neighborhood of size NS to be:

expectedSRI2(x, N, λ) = CDF (exp(λ), x + N) − CDF (exp(λ), x), (5.4)

where CDF stands for the cumulative distribution function of exponential distri-
bution with the λ parameter of 0.08918.

cosine sim. sampled data exp(λ = 0.08918)
[0.0, 0.1) 600,716 674,139
[0.1, 0.2) 275,099 219,675
[0.2, 0.3) 90,355 71,583
[0.3, 0.4) 24,265 23,326
[0.4, 0.5) 6,660 7,601
[0.5, 0.6) 2,181 2,476
[0.6, 0.7) 602 807
[0.7, 0.8) 110 263
[0.8, 0.9) 12 85
[0.9, 1.0] 0 27
d total 1,000,000 999,982

Table 5.10: Comparison of histograms of data sampled from the dataset and the
created data model.

However, we are not necessarily interested in the expected amount of samples
on an interval. The main requirement is to have a ratio of expected occurrence
between the sampled similarities. We are not interested in the actual value.
Therefore approach using a probability density function of the modeled distribu-
tion is better. We can calculate the ratio as follows:

2expected sample ratio on interval
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expectedSampleRatio(x, λ) = pdf(exp(λ), x) = λe−λx, (5.5)
where pdf represents the probability density function.

Next, we need to know how to scale the actual similarity. We would like
to have a non-linear difference between samples. If sample A has a similarity
higher than sample B by 0.1, then we would like to have sample A be selected
twice as likely. Further, we can generalize the difference as parameter D and the
multiplying factor as M .

We get:
scale(x, D, M) = M

1
D

x = M
x
D , (5.6)

where for doubling the probability, every 0.1 similarity difference will become:

scale(x, 2, 0.1) = 2 x
0.1 = 210x. (5.7)

weight(x, D, M, λ) = scale(x, D, M)
expectedSampleRatio(x, λ)

= M
x
D

λe−λx

(5.8)

Parameter D in scale calculation has a significant impact on scaling. Unfor-
tunately, it needs to be tuned to each dataset separately due to the different
rating distributions, as shown in Figure 5.4. Through experimentation, we have
observed that the value of 0.1 seems to give us good results on every dataset apart
for Spotify, where the width needs to be shortened substantially. We solve this
situation by setting the parameter to the width of the interquartile range of the
sampled ratings. In other words, we set it to the width of the middle 50% mass
for each dataset. We can see the resulting parameters for each dataset based on
1 million random user pairs in Table 5.11.

dataset interquartile
width (D)

MovieLens 0.104
KGRec 0.057
Netflix 0.114
Spotify 0.025

Table 5.11: Scaling width parameter based on the interquartile range of each
dataset.

This gives us a framework for assigning each candidate member a weight by
which we can perform a weighted random choice and therefore introduce more
variability into the group selection process. The entire equation for a sample’s
weight can be calculated with Equation 5.8. Further, we describe the whole group
generation process in Algorithm 1.

5.3.3 Evaluation of the generated groups
We have implemented and used the selected techniques to generate synthetic
groups. Let us now evaluate the performance of each method. Next, we discuss
the parameters of the generation process.
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Algorithm 1 Generate groups with probability respecting similarity
1: Select scaling parameter M and the desired amount of samples S and amount

of candidates C

2: for Desired number of samples S do
3: Select random pair for users u1 and u2 from the user-pool
4: Calculate similarity of u1 and u2 and store it
5: end for
6: Fit an exponential distribution to the stored values
7: Calculate the width between 25th and 75th quartile as parameter D
8: Get its parameter λ

9: for Number of desired groups do
10: Select 1 user uCaptain from the user-pool as main user
11: Select C random users as uCandidates from the user-pool
12: for Each user u from uCandidates do
13: Calculate similarity between uCaptain and u as sim
14: Calculate random candidate weight with (Eq. 5.8):
15: weight = scale(sim, D, M) / expectedSampleRatio(sim, λ)
16: end for
17: for Desired group size - 1 do
18: Perform weighted random selection on the candidates using the weights
19: Add the selected user to the group and remove it from the candidates
20: end for
21: end for

60



The random method is the simplest from the point of selecting parameters of
the group creation. It does not have any.

Next, the top-k method, it only has a single parameter of the number of
candidates from which we choose the actual group members. We have set the
default number of candidates to 1000 due to the computational complexity rising
linearly with the number of candidates.

Lastly, our PRS method. It has three parameters in total, where λ is the
parameter of the exponential distribution fitted to a sample of user similarities.
D is the distance, and M is the multiplier factor of the scale ratio. We have set
the distance to be 0.1, and we vary the multiplier factor from 0,5 to 4.

We aim to compare the mean inter-group similarity. First, we define a subset
of size n of set S as

R(S, n) := x ∈ P(S) : |x| = n, (5.9)
where P is a powerset, a set of all subsets.

Then we define the inter-group similarity, which represents the mean of simi-
larity between all tuples in the group as

intergroupSimilarity(G) = 1
|R(G, 2)|

∑︂
{a,b}∈R(G,2)

cos(a, b). (5.10)

With each group generation method, we have created 1000 groups of size
5. The resulting mean inter-group similarities can be seen in Figure 5.5. As
expected, the random and top-k have the least and most mean inter-group simi-
larity. With PRS, we have achieved the desired scaling of the mean inter-group
similarity between the random and top-k. Furthermore, we see that PRS gener-
ates groups that are comparably or more varied in the similarity as top-. Other
methods, which manage to create groups that utilize some similarity scaling, such
as in [45] that select candidates based on their similarity with the pivot will not
produce groups that vary in the inter-group similarity.

At first, PRS did not scale well on the Spotify dataset, with parameter D set
to 0.1. The dataset has its similarity concentrated closer to zero. This is because
most users (playlists) did not rate more than 30 items. The majority of ratings
are between 0 and 0.1; therefore, we need to set the scaling width to a lower
value to compensate for this. Based on this, we have introduced the technique of
setting the D parameter to the width of the interquartile range, which solves the
issue and decreases the number of parameters that need to be tuned to only one
- the scaling parameter M.

In conclusion, we are satisfied with the PRS technique. It provides us with a
method of reliable generation of groups of varying inter-group similarity, which are
more heterogenous and therefore closer to reality than selecting group members
solely based on the desired similarity.

61



0.0 0.2 0.4 0.6

Mean inter-group similarity

Random
PRS (M=.5)
PRS (M=1)
PRS (M=2)
PRS (M=4)
PRS (M=8)

Top-k

MovieLens

0.0 0.1 0.2 0.3

Mean inter-group similarity

Random
PRS (M=.5)
PRS (M=1)
PRS (M=2)
PRS (M=4)
PRS (M=8)

Top-k

KGRec

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Mean inter-group similarity

Random
PRS (M=.5)
PRS (M=1)
PRS (M=2)
PRS (M=4)
PRS (M=8)

Top-k

Netflix

0.00 0.05 0.10 0.15 0.20 0.25

Mean inter-group similarity

Random
PRS (M=.5)
PRS (M=1)
PRS (M=2)
PRS (M=4)
PRS (M=8)

Top-k

Spotify

Comparison of group creation methods

Figure 5.5: Comparison of Random, Top-k and multiple variants of PRS group
generation for group size of 5. The number of candidates for PRS and Top-k was
1000.
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6. Proposed group recommender
system
As we have discussed so far, group recommendation is not an easy task. There are
many social and mathematical optimization criteria that are hard to define and
even harder to measure. Let us now present our algorithm that aims to provide
group recommendations that optimize fairness and relevance. We published this
algorithm originally at UMAP’21 in [58].

6.1 Preliminary
In our context, we see fairness as a property that no user should be systematically
discriminated against when it comes to their satisfaction with the recommended
items. Optimizing this type of fairness is hard, especially when we have a user or
a subset of the group whose preferences differ from the rest.

Some algorithms, such as the Average (AVG) and Least Misery(LM), already
optimize for fairness (even if not primarily designed for that purpose). We can
say that AVG strategy is fair due to its property that it considers all members’
preferences as equally important. If the task is to recommend only a single item,
then there is not much improvement to be made apart from how we define what
we consider fair. However, that is different for tasks where we recommend a list
of items or we have multiple following recommendation sessions. Then we can
tweak our following recommendations to fix our previously introduced fairness
imbalance.

Let us now classify approaches by how they optimize fairness into the following
groups: item-wise, list-wise, and rank-sensitive fairness.

Firstly, item-wise approaches optimize single-item performance. They usually
apply some form of aggregation, such as average for the AVG or minimum for the
LM approach. Scores for each item are calculated independently, and so scores
for one item do not affect scores for any other.

Secondly, list-wise approaches take into consideration which items have been
recommended before. This allows us to balance fairness among group members
over multiple consecutively recommended items. All before mentioned methods
from Subsection 3.2.1 fall into this category. In other words, items are not recom-
mended independently, but the total fairness of items recommended in succession
is important. The simplest example of a list-wise fairness approach is FAI. We
select for each user, in turn, their most preferred item. This way, at some point,
each user will be satisfied, and FAI therefore indirectly balances the per-user
utility.

We can define a per-user utility function ru; u ∈ G, which measures the spec-
ified properties that we aim to optimize during the process of generating a list of
recommended items. We can then use this utility function to control the recom-
mendation of the following items to balance fairness among the group members.
Most commonly, the utility function is a mean of predicted relevance for each
user.

Moreover, lastly, rank-sensitive approaches optimize fairness for each prefix of
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the recommended list of items. This approach has theoretically ideal properties
in use cases where we do not know what portion of the recommended list will be
consumed or viewed by the users. We only know about a single related approach
from this category, GFAR [45]. As already described in Subsection 4.3.1, the
authors define fairness through the sum of probabilities that at least one item
from the list will be relevant to each user.

Our proposed algorithm falls into the group of rank-sensitive approaches. It
maximizes the per-user proportional fraction of total relevance. Compared to
GFAR, it does not define fairness based on the ranks of items. This gives it more
freedom in the item selection process due to rank sensitive approach discounting
the relevance of items with decreasing rank quite quickly, even if, in reality, items
on lower ranks can still present a great option.

As already mentioned in our paper about this algorithm [58], the main inspi-
ration for our work is election algorithms that are used for mandates allocation.
Mandate allocation is an important problem in distributing mandates based on
the votes received. The important part of the problem is what to do if the votes
are not divisible in the way that would allow to distribute them by a simple one
mandate per a set number of votes without any remaining votes left unassigned.

We focus on D’Hondt’s algorithm (DA). It, as already stated in Subsection
4.3.3, is commonly used in election systems around the world. It is a greedy
selection algorithm that minimizes the number of votes that need to be left aside
so that the remaining votes are represented exactly proportionally as described
in [48].

D’Hondt’s algorithm procedure works in discrete steps, where in each step,
it selects the party with the maximum quotient quot one seat. The quotient for
each party is calculated as the total number of votes the party has received Vp

divided by the number of seats sp + 1 that has already been awarded to that
party p. Initially, sp is set to zero.

quot(Vp, sp) = Vp

sp + 1 , (6.1)

Directly using the DA algorithm is not possible due to it being designed for
discrete mandate allocation problems. But this unfortunate property has been
addressed in [49]. We describe the method of D’Hondt’s direct optimization in
more detail in Subsection 4.3.3.

6.2 EP-FuzzDA
Let us now describe our algorithm of Exactly Proportional Fuzzy D’Hondt’s
Aggregation. It is a greedy algorithm that iteratively selects the best candidate
item maximizing the marginal gains on Exactly-Proportional relevance sum
(EP-rel-sum) criterion.

As mentioned before, candidate allocation algorithm such as D’Hondt does
not consider the varying relevance of candidate items nor the possible overlap of
user preferences. Both these situations are very common in the domain of group
recommender systems. We can probably find a set of items that closely balance
the relevance between all group members. Nevertheless, each of these items may
have a different candidate item that is a better fit for the group in the average
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rating but would lead to more imbalance. This could easily lead to recommending
mediocre items only for the sake of balancing fairness.

We, therefore, want to maximize the balance of items’ utility for each group
member but without hindering the possible additional utility provided to mem-
bers that overlap in preference with other members or are easier to satisfy. One
solution is to optimize for the total item relevance but cap the maximum possible
gain for each individual user so that it does not further add to the total item
score. We call this cap exactly proportional relevance allowance. It is calculated
as a proportional share of each user on the total sum of all so far selected items’
relevance.

Let us assume that we have already selected items L (this set can be empty),
with individual relevance of ri,u for all items i ∈ I and users u of a group G. We
will use the example in Table 6.1 for the following calculations.

EP-FuzzDA
Object u1 u2 u3 AVG LM step 1 step 2

c1 0.9 0.8 0.0 0.567 0.0 1.13 -
c2 0.6 0.5 0.0 0.367 0.0 0.73 0.17
c3 0.5 0.9 0.0 0.467 0.0 0.93 0.37
c4 0.0 0.1 0.9 0.333 0.0 0.43 1.00
c5 0.1 0.1 0.8 0.333 0.1 0.53 0.90
c6 0.2 0.0 0.7 0.300 0.2 0.50 0.70

Table 6.1: Example of relevance calculation for item-wise aggregations. Least-
misery, average, and two steps of our DA method. Step 2 is after selecting c1 in
step 1.

We then calculate the relevance allowance for a new candidate item as follows.
First, we sum up relevance for all users for all already selected items as

TOT (G, L) =
∑︂
i∈L

∑︂
u∈G

ri,u, (6.2)

Then we define TOTc for a candidate item c (different from all already se-
lected) as TOT (G, L∪ c). This represents the prospected total utility if we would
select the candidate c.

We then calculate the maximum allowed utility (relevance) with the appro-
priate weight of a user wu as:

allowed utilityu = TOTc ∗ wu. (6.3)

The weight of each group member can either be set to 1/|G| or arbitrarily
so that ∑︁u∈G wu = 1. This weight represents how important each user is in the
group and will scale the preferred utility ratio between group members if not set
uniformly.

In our example in Table 6.1, at step 1. we have TOTc1 = 0.9 + 0.8 + 0.0 = 1.7
which scaled by uniform weight of 1/3 to 1.7 ∗ (1/3) = 0.57 = allowed utilityu.
We then calculate the unfulfilled relevance as the total received utility (from
already selected items in L) subtracted from the maximum allowed utility. We
are selecting the first item. Therefore all users start with a received utility of
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0, which makes the unfulfilled relevance for candidate item c1 set to 0.57 for all
users.

total received utilityu =
∑︂
i∈L

ru,i, (6.4)

unfulfilled relu = max(0, allowed utilityu − total receivedutilityu). (6.5)

We can then finally calculate the utility of each item by

rel i =
∑︂
u∈G

min(relu,i, unfulfilled relu). (6.6)

We can now calculate the utility of item c1 as min(0.9, 0.57)+min(0.8, 0.57)+
min(0.9, 0.57) = 1.13. And similarly for all other candidate items. After the first
round, we select c1 and follow into a second one. Now it starts to get interesting
because we need to calculate the total received utility and use it to calculate the
unfulfilled relevance correctly.

For item c2 we have TOTc2 = 1.7 + 0.6 + 0.5 + 0.0 = 2.8 (1.7 is TOT ) and
user u1 we have unfulfilled relevance of 2.8/3 − 0.6 = 0.03, for user u2 we have
2.8/3−0.8 = 0.13 and for u3 we have 2.8/3−0.0 = 0.93. All numbers are capped to
the min 0. So in total the relevance of item c1 is min(0.6, 0.03)+min(0.5, 0.13)+
min(0.93, 0.0) = 0.16. We can see the output of relevance calculations for all
items in the example table under column step 2. In the second step, we would
therefore select item c4.

Let us now be more formal with the definition of EP-rel-sum. We have a list
of recommendations L and its total relevance TOT as defined previously. Next,
we have the ru total relevance of all items from L for user u as defined with
Equation 6.4. Further, we have the per-user proportional relevance allowance au

(allowed utilityu) as TOT ∗ wu. Weights ∑︁u∈G wu = 1. Then we finally define the
EP-rel-sum criterion as

EP-rel-sum(LG) =
∑︂

∀u∈G
min(ru, au). (6.7)

We can observe that for two lists L1
G and L2

G with the same total relevance, EP-
rel-sum will be higher for the list more proportional to the weights wu distribution.
Another way around, if we have two lists with the same relevance distribution,
the one with higher total relevance will receive a higher EP-rel-sum score.

And finally, to make EP-rel-sum ranking sensitive, as previously described,
we define marginal gains while extending the list of items as

gain(LG, cj) = EP-rel-sum(LG ∪ {cj}) − EP-rel-sum(LG). (6.8)
EP-FuzzDA, which we describe in Algorithm 6.2, iteratively selects the item

that provides the maximal marginal gain to the already selected set of items. It,
therefore, is a rank-sensitive approach for optimizing fairness.

Another nice property not present in other group recommendation algorithms
is that our algorithm naturally incorporates scaling of user preference importance
using the weights wu. We will use this later in our experiments for weighted groups
and long-term fairness evaluation.
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Algorithm 2 Exactly-Proportional Fuzzy D’Hondt’s Aggregation
1: Input: group members u ∈ G, candidate items i ∈ I, relevance scores ru,i ∈

R, #items to recommend k, user’s weights wu; ∑︁wu = 1
2: Output: ordered list of group recommendations LG of size k

3: LG = []
4: TOT = 0
5: ∀u : ru = 0
6: for 1 to k do
7: for i ∈ I \ LG do
8: TOTc = TOT +∑︁

∀u ru,i

9: ∀u : allowed utilityu = TOTi ∗ wu

10: ∀u : unfulfilled relevanceu = max(0, allowed utilityu − ru)
11: gaini = ∑︁

∀u min(ru,i, unfulfilled relevanceu)
12: end for
13: ibest = argmax∀i(gaini)
14: append cbest to LG

15: ∀u : ru = ru + ru,ibest

16: TOT = ∑︁
∀u ru

17: end for
18: return LG
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7. Experiments
Let us now talk about our experiments. First, we describe the evaluation process,
which we use, and the rationale behind it. Then, we present the data flow and
software we have written, and finally, we present the results.

The following experiments are an extension of our original research paper [58].
Differences and extensions that have been made will be discussed further. Most
notably, they are the addition of 3 new datasets, different matrix factorization
algorithms, and a different group generation method.

All code for Python scripts and Jupyter notebooks can be found at
github.com/LadislavMalecek/MasterThesisAnalysis. All file paths mentioned in
this chapter assume to have the base path at the root of this repository (when
cloned on the disk).

7.1 Evaluation
Our experiments are run in an offline setting. We therefore only have the users’
preferences, not the actual group ratings. Further, as discussed in Chapter 5, we
do not have a dataset that would contain group preferences, nor a dataset that
would contain any group information. Let us now discuss the separate parts of
the evaluation and the choices we have made in the experiments. Later we will
put everything together and go through each step of the experiment.

7.1.1 Coupled vs. decoupled
One of the problems with group recommendation systems is the evaluation. In
the case of a single-user RS, it is common to have the data split into training,
validation, and testing parts. This way, for example, if we train a matrix factor-
ization algorithm, we can check how it is performing at the end of our training
using the testing portion of the dataset which is separated from the data that has
been used for training. This can be used even if the user ratings are very sparse,
which in the majority of cases they are. But with multiple users, such is the
case for group RS, we would need to have the ratings overlapping for the group
members, meaning that they all have rated the same items. Even worse, with
each additional member, the overlap of ratings will become smaller and smaller.

We can distinguish between two main approaches for evaluating group recom-
mendation systems - coupled and decoupled.

The main difference, as we can see in Figure 7.1, is that in the coupled
(tightly coupled with the underlying RS) evaluation approach, we evaluate our
performance on a with-held set of testing data and in the decoupled evaluation,
we consider the underlying single user recommendation system the source of our
ground truth. The coupled approach, therefore, evaluates not only the group RS
aggregation method but the underlying single-user RS as well.

The coupled evaluation has the undesired property of favoring group RS that
tends to select the per-user best items as we have mentioned in [59].
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Figure 7.1: Example of two main evaluation approaches from [59].

7.1.2 Metrics
After running the group recommendation algorithm, we end up with a list of
recommendations for each group. We now need to evaluate the performance of
each algorithm. For each group size, group type, and algorithm, we want to get
a measure of how well they have performed.

Firstly, we need to get the ground truth from our underlying RS for each item
and each group member. Now for each group member and list of recommenda-
tions, we evaluate two metrics: normalized discounted cumulative gain (nDCG)
and average relevance score (AR). We have chosen nDCG due to its popular use
in our domain and a good representation of the probability of selection of an
item based on the item’s position in the list. AR metric has been chosen due
to its simplicity and an overall good measure of performance for short lists of
recommendations.

For each group and each user, we have AR and nDCG scores. Further,
we calculate the aggregated per-group statistics for both of these metrics. We
calculate mean, minimal user’s score (min), and the ratio between minimal and
maximal scores (M/M). All of these are valid fairness definitions on their own,
depending on the definition of fairness as discussed in Chapter 3. These metrics
are also used in related literature [45], [46]. Finally, we aggregate results for all
groups together by calculating the mean of the metrics.

7.1.3 Evaluation use-cases
In [45], the authors focus only on the scenario of uniform groups, where each
user is weighted uniformly. For our experiments, we are evaluating not only the
uniform scenario but weighted and long-term scenarios as well.

In the weighted scenario, we randomly assign a weight to each of the group
members (all summing up to a total of 1). This weight represents the non-
uniform importance of each group member. This scenario is a relevant strategy
for situations in structured groups where some members have a priority, such as
a family with children watching a movie or a birthday party. This is an extension
of the most respected person strategy described in [60], with less rigid rules of
only requiring weights to be in an interval of [0,1], with the total sum of weights
in the group equal to 1.
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In the long-term scenario, we assume that, in reality, the groups are more
permanent with multiple instances of recommendation that are time separated.
Such as a group of friends watching a movie every week or any other fixed group
that consumes content together repeatedly. In this scenario, we want to prevent
a systematic bias against one or multiple members and recommend items in the
subsequent sessions with respect to the satisfaction and fairness of the previous
sessions. We use the weights as in the previous weighted scenario and adjust them
accordingly to satisfy the under-represented uses. We define the weights as a non-
negative difference between the exactly proportional share of total relevance and
the sum of relevance scores that the user has gained so far.

To evaluate the long-term scenario, we recommend items five times in a row,
where after each row we calculate the appropriate weights and exclude the pre-
viously recommended items from further recommendation. After these five rec-
ommendation rows, we evaluate the mean utility for each user.

7.2 Evaluation setup
The experimental setup is an extended version from our [58]. In the paper, we
have used experiments from [45], that we have extended with our algorithms and
weighted and long-term recommendations.

Unfortunately, the original code from [45] we have worked with is quite propri-
etary and written in Java. For this work, we would have to extend it even further
(compared to our work in [58]) by adding the new group generation process that
we have designed in Section 5.3, new datasets, and a new matrix factorization.
For convenience and further future research reusability, we have therefore made
a decision to write all parts of the experiment in Python.

The main notable change from [45] is that we have modified the evaluation
procedure. We use the decoupled evaluation instead of the coupled one as it
gives an unfair advantage to algorithms that select the per-user best items and
does not evaluate the underlying single-user RS in a coupled way as mentioned
in Subsection 7.1.1.

Our experiments have 5 following steps.

7.2.1 Data retrieval and processing
Unfortunately, as discussed in detail in Chapter 5, we cannot host or append
the used datasets directly to our code repository due to licensing. We have to
therefore start with retrieving and processing the datasets.

Run ./gather_datasets/downlad_and_transform.py script directly if
you wish to retrieve the datasets manually. It supports Movie Lens, Netflix,
KGrec, and Spotify datasets and performs cleanup and transformation to make
further processing of the datasets as convenient as possible.

The cleaning process transforms the datasets to a unified format with a single
table of user ids, item ids, and ratings (if provided), normalizes and removes
empty gaps from user and item ids, and validates the downloaded data.

We have committed the weights that are outputted from the next step of
matrix factorization to the repository. Therefore it is possible to skip this step if
desired.
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7.2.2 Training matrix factorization algorithm
We use two matrix factorization (MF) methods to generate our ground truths
for the decoupled evaluation. First is our custom implementation of the highly
parallel alternating least squares method (ALS) that we use for datasets with
explicit ratings. The second is an implicit variation of the ALS method from a
Python library Implicit 1 that we use for datasets with implicit ratings.

As an output of this step, we get the two factors of MF, user and item factor
matrix. We avoid saving the full target matrix due to the substantial size of the
larger datasets, which would further increase our memory requirements. Instead,
we calculate the ratings on the fly in the next steps.

Run ./matrix_factorization/matrix_factorization.py if you wish to
calculate the matrix factorization manually.

In our experiments, we use the following parameters for matrix factorization:
number of iterations 15, random seed 42, regularization factor of 0.1, convergence
threshold of 0.0001, and number of factors 50 for KGRec, 200 for Movie Lens,
and 300 for Netflix and Spotify datasets. For KGRec and MovieLens datasets,
we have selected the parameters similarly as in [45]. For other datasets, Netflix
and Spotify, we have selected the parameters by hand based on a simple heuristic
- the bigger and more complex the dataset, the higher the number of factors.

Matrix factorization methods tend to degenerate when selecting the wrong
parameters for the size of the factors, but the results for different types of groups
(based on similarity PRS(M=1) and PRS(M=4)) do suggest that this is not the
case, due to better results for groups with higher similarity (groups of more similar
members are easier to satisfy). If the factors would degenerate and provide us
only with flat ratings, then there would not be a difference in results for the two
mentioned types of groups.

We have committed the generated weights for all datasets into the code repos-
itory. Therefore it is possible to skip this step if desired. They are stored in a
binary Numpy format with one exception for the Spotify dataset for which the
item factor has reached the limit of GitHub LFS maximum file size. Therefore,
we have zipped this dataset’s factorization data in a standard .zip format.

7.2.3 Creation of synthetic user groups
We have implemented 3 group creation strategies as already discussed in Section
5.3. These are Random, Top-K, and Probability respecting similarity (PRS)
algorithms. As shown in Figure 5.5, our method PRS nicely scales between the
two extremes of Random and Top-K selection. We further assume that these two
extremes do not often appear in real-world scenarios. Therefore, we have omitted
them from our evaluation to simplify our experiments and only use groups created
by the PRS algorithm.

Run ./create_groups/create_random_groups.py to create random groups
or run ./create_groups/create_topk_groups.py to create Top-K groups
or run ./create_groups/create_prs_groups.py if you wish to create PRS
groups.

1https://github.com/benfred/implicit
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We use PRS with two different settings of M, first at M = 1 and second at
M = 4. Based on our analysis in Subsection 5.3.3, we believe these two variants
nicely represent the usual group setting.

Further, for each setting, we generate 1000 groups in sizes 2, 3, 4, 6, and 8.
We use 1000 candidates for each group, and lastly, we use 10,000 samples to get
the dataset’s similarity distribution.

For weighted experiments, we additionally generate group weights as described
in Subsection 7.1.3.

Run ./create_groups/create_group_weights.py if you wish to generate
them manually.

7.2.4 Running GRS algorithms
After the previous steps, we finally have all the required data to run GRS al-
gorithm. We use the following algorithms from Chapter 4: AVG, LM, FAI,
XPO[46], NPO, GFAR[45] together with EP-FuzzDA and is direct opti-
mization variant DHondtDO.

We use a computation optimization for all algorithms, where for each group
member, we select their top 1000 candidate items (by rating), and then we com-
pute the algorithm’s item selection only on a joined set of these top items. Note
that it is 1000 for each group member, so the number of candidate items in the
set for the whole group will be bigger. For XPO and NPO, we use 30 candidate
items instead of 1000 due to the computational complexity of those algorithms
(this will be further discussed in Section 7.4).

Complete overview of all parameters for each algorithm:

• AVG, LM, FAI: candidate items = 1000

• XPO, NPO: candidate items = 30, monte Carlo trials = 100

• GFAR: candidate items = 1000, max relevant items = 100

• EP-FuzzDA, DHondtDO: candidate items = 1000,

For each group and each algorithm, we get the top 10 items.
Run ./experiments/run_algorithms.py,

./experiments/run_weighted_algorithms.py and

./experiments/run_longterm_algorithms.py to generate uniform, weighted
and long-term experiments, respectively.

7.2.5 Evaluation
The last step is an evaluation of the results. We have 4 datasets, 5 group sizes
of 2, 3, 4, 6, 8. 2 types of groups, and 8 GRS algorithms. and 6 metrics com-
bination as described in Subsection 7.1.2. We evaluate these results in the fol-
lowing Jupyter notebooks under the directory ./evaluation/ directory. For uni-
form run evaluation_uniform.ipynb, for weighted run evaluation_weighted.
ipynb and for long-term evaluation_longterm.ipynb. These notebooks are
meant to be run manually to get the results, but support an execution in the
style of the previous scripts by running jupyter run ./evaluation/evaluation_
uniform.ipunb.
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7.3 Results
Due to the high number of datasets, we will present the efficacy on the Movie Lens
(25M) dataset. Significant results of other datasets that differ from the Movie
Lens dataset will be also discussed. Results for other datasets can be found in
Appendix A.

7.3.1 Uniform scenario
In Table 7.1, we can see that EP-FuzzDA performs well across all experimental
metrics and group sizes. For AR metrics, the performance is mostly led by AVG
and LM algorithms, where AVG dominates in AR mean, which is explainable due
to its direct optimization of the highest average relevance. For AR min and M/M
the performance is led by LM algorithm, with our EP-FuzzDA following with only
a slight decrease in the performance and for smaller group sizes of 2 and 3 actually
outperforming the LM algorithm. The slight edge of LM in these two metrics can
be again explained by its direct optimization of the highest minimal relevance.
Overall, we can say that our algorithm performs the best when evaluating the
combination of mean, min, and M/M. It provides better mean average relevance
values than LM and better min, M/M performance with only a slight decrease in
mean AR compared to AVG.

For nDCG metrics, where the position of the items becomes important, it per-
forms worse than the related DHondtDirect optimization, which performs more
of a greedy recommendation strategy. Nevertheless, still, the performance is com-
parable to the best results.

For groups with more similarity (PRS, M=4) the results are comparable,
with a slight improvement in performance for bigger but more similar groups. It
is easier to recommend universally liked items when the preferences align more
between the group members. For those situations, our algorithm’s performance
increases for AR min metric.

We conclude that, for the uniform evaluation scenario and the Movie Lens
dataset, our EP-FuzzDA algorithm provides the highest fairness (in the context
of our metrics) while maintaining the high relevance of the recommendation as
measured by the mean AR and nDCG metrics.

Additionally, for the KGRec dataset (Table A.1), it provides recommenda-
tions with the best minimal and highest min/max score ratios for group sizes 4
and 6 and close to the best for the challenging group size 8. In more difficult
scenarios of big and less similar groups PRS(M = 1) group size s=8, the algo-
rithm performs well and is only dominated in those metrics by more specialized
but naive algorithms (AVG, LM).

For the smaller MovieLens1M dataset (Table A.2), and the Netflix dataset
(Table A.3), the results are analogical to the Movie Lens dataset.

And finally, for the Spotify dataset (Table A.4), the results are slightly im-
proved and are analogical to the KGRec dataset. This is interesting as it shows
that for implicit datasets, the algorithm’s performance seems to be better even
for different sizes of the dataset (KGRec being the smallest and Spotify being the
biggest).
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PRS(M=1), group size s=2 PRS(M=4), group size s=2
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 64.75 49.19 0.67 0.85 0.78 0.85 66.11 50.50 0.69 0.85 0.78 0.86
FAI 56.05 48.45 0.79 0.76 0.71 0.88 57.16 49.52 0.79 0.76 0.71 0.88
LM 58.55 55.68 0.91 0.81 0.72 0.81 60.02 57.21 0.92 0.82 0.73 0.82

XPO 55.85 48.01 0.78 0.75 0.69 0.85 57.05 48.98 0.78 0.75 0.69 0.86
NPO 54.52 46.12 0.77 0.73 0.67 0.84 55.67 47.36 0.77 0.73 0.67 0.84

GFAR 48.55 43.38 0.82 0.68 0.63 0.86 49.43 44.14 0.83 0.68 0.63 0.87
DHondtDO 64.06 52.47 0.74 0.86 0.83 0.94 65.43 54.08 0.75 0.86 0.83 0.94
EP-FuzzDA 59.61 57.00 0.92 0.83 0.76 0.83 61.10 58.56 0.93 0.83 0.76 0.84

PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 61.01 42.67 0.56 0.78 0.70 0.81 61.30 44.04 0.58 0.78 0.71 0.81
FAI 49.62 41.07 0.72 0.67 0.56 0.74 50.03 41.94 0.73 0.67 0.56 0.74
LM 53.67 49.61 0.86 0.74 0.61 0.72 54.67 50.80 0.87 0.74 0.63 0.73

XPO 49.88 40.81 0.71 0.67 0.56 0.73 50.35 41.73 0.72 0.67 0.57 0.74
NPO 47.95 38.68 0.69 0.64 0.53 0.70 48.49 39.33 0.70 0.65 0.53 0.71

GFAR 46.78 39.83 0.75 0.65 0.55 0.74 47.27 40.56 0.76 0.65 0.55 0.75
DHondtDO 60.16 46.00 0.64 0.79 0.75 0.90 60.47 47.25 0.66 0.79 0.74 0.90
EP-FuzzDA 56.63 50.21 0.82 0.77 0.67 0.78 57.29 51.76 0.85 0.77 0.67 0.79

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 57.48 39.52 0.51 0.75 0.66 0.78 58.04 40.81 0.54 0.74 0.65 0.78
FAI 45.73 36.95 0.67 0.62 0.49 0.65 46.21 37.44 0.68 0.62 0.48 0.65
LM 50.49 45.98 0.82 0.70 0.55 0.66 51.37 47.03 0.83 0.70 0.56 0.68

XPO 46.57 37.09 0.66 0.63 0.49 0.65 46.97 37.48 0.67 0.63 0.49 0.66
NPO 44.52 34.98 0.64 0.61 0.46 0.61 44.69 35.09 0.65 0.60 0.45 0.62

GFAR 46.06 37.69 0.69 0.64 0.50 0.65 46.34 38.11 0.70 0.63 0.49 0.65
DHondtDO 56.67 42.49 0.59 0.75 0.70 0.86 57.21 43.78 0.62 0.74 0.68 0.85
EP-FuzzDA 53.73 45.89 0.77 0.74 0.62 0.73 54.71 47.54 0.79 0.74 0.62 0.74

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 54.10 36.80 0.46 0.70 0.59 0.73 54.69 37.94 0.49 0.70 0.59 0.73
FAI 42.04 32.27 0.61 0.57 0.39 0.53 42.47 32.62 0.61 0.57 0.39 0.54
LM 47.47 42.51 0.78 0.66 0.48 0.59 48.16 43.32 0.79 0.65 0.49 0.61

XPO 43.63 32.52 0.58 0.59 0.40 0.53 44.25 32.95 0.58 0.59 0.40 0.53
NPO 41.00 30.58 0.58 0.56 0.37 0.51 41.40 30.57 0.58 0.56 0.37 0.51

GFAR 44.16 33.86 0.61 0.61 0.40 0.53 44.54 34.32 0.62 0.60 0.41 0.54
DHondtDO 53.27 39.20 0.54 0.71 0.61 0.77 53.87 40.09 0.57 0.70 0.61 0.77
EP-FuzzDA 51.03 42.20 0.70 0.70 0.54 0.65 51.84 43.32 0.72 0.70 0.55 0.67

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 51.76 35.51 0.45 0.68 0.54 0.68 52.13 36.38 0.48 0.68 0.55 0.68
FAI 39.89 29.15 0.56 0.55 0.32 0.45 40.11 29.52 0.57 0.55 0.34 0.46
LM 45.54 40.37 0.77 0.63 0.43 0.54 45.95 41.19 0.79 0.63 0.45 0.56

XPO 41.86 29.48 0.53 0.57 0.34 0.45 42.22 30.09 0.55 0.57 0.35 0.47
NPO 39.48 27.72 0.53 0.54 0.31 0.43 39.42 27.77 0.54 0.54 0.32 0.44

GFAR 42.17 31.37 0.58 0.58 0.35 0.46 42.50 31.69 0.59 0.58 0.37 0.49
DHondtDO 51.10 37.59 0.53 0.68 0.56 0.70 51.49 38.31 0.56 0.68 0.56 0.71
EP-FuzzDA 49.34 40.13 0.67 0.68 0.49 0.60 49.91 40.95 0.69 0.68 0.51 0.63

Table 7.1: Results of offline uniform evaluation on MovieLens25M dataset.
The best results are in bold, the second-best are underscored, and the third-best
results are in italic.
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7.3.2 Weighted scenario

PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 61.01 0.01 0.17 0.78 0.01 0.15 61.30 -0.02 0.17 0.78 -0.02 0.15
AVG 58.30 0.46 0.13 0.75 0.46 0.11 58.47 0.45 0.13 0.76 0.45 0.11

DHondtDO 57.84 0.46 0.13 0.76 0.46 0.11 58.29 0.45 0.13 0.76 0.45 0.11
EP-FuzzDA 54.74 0.73 0.10 0.74 0.73 0.10 55.30 0.73 0.10 0.74 0.73 0.10

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 57.48 0.00 0.13 0.75 0.00 0.11 58.04 -0.01 0.13 0.74 -0.01 0.12
AVG 55.13 0.43 0.11 0.72 0.43 0.08 55.39 0.46 0.10 0.71 0.46 0.08

DHondtDO 54.79 0.45 0.10 0.73 0.45 0.09 54.89 0.47 0.10 0.72 0.47 0.09
EP-FuzzDA 52.45 0.65 0.08 0.72 0.65 0.08 53.16 0.65 0.08 0.71 0.65 0.08

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 54.10 0.02 0.09 0.70 0.02 0.08 54.69 -0.02 0.09 0.70 -0.02 0.08
AVG 51.93 0.40 0.07 0.68 0.40 0.06 52.50 0.41 0.07 0.68 0.41 0.06

DHondtDO 51.52 0.42 0.07 0.68 0.42 0.06 52.16 0.43 0.07 0.68 0.43 0.06
EP-FuzzDA 49.89 0.58 0.06 0.68 0.58 0.06 50.53 0.58 0.06 0.67 0.58 0.06

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 51.76 0.01 0.07 0.68 0.01 0.06 52.13 0.02 0.07 0.68 0.02 0.06
AVG 49.83 0.40 0.06 0.65 0.40 0.05 50.28 0.41 0.06 0.66 0.41 0.05

DHondtDO 49.52 0.42 0.05 0.66 0.42 0.05 49.92 0.43 0.05 0.66 0.43 0.05
EP-FuzzDA 48.33 0.53 0.05 0.66 0.53 0.05 48.82 0.55 0.05 0.66 0.55 0.05

Table 7.2: Results of offline weighted evaluation on MovieLens25M dataset.
The best results are in bold. The second-best are underscored.

In Table 7.2, we see results for the weighted scenario. Our algorithm performs
substantially better than AVG and DHondtDO for correlation and mean absolute
error (MAE) metrics. These metrics tell us the correlation and MAE between
the AR and nDCG for the group and the actual weight that has been randomly
generated. We see that DHondtDO does a substantially worse job at weighing the
group member preferences for a slight increase in the mean relevance performance
compared to our algorithm. This is understandable. The act of weighing the
relevance among the group members has to have some impact to the average
performance. We have added the AVG-U algorithm, which is an AVG, but with
the weights set to uniform as in the previous uniform scenario. We have added the
AVG-U to serve as an upper bound for mean and a lower bound for correlation
and MAE metrics. It has the best mean relevance performance but without the
results correlating with the group weights.

Results for the KGRec dataset (Table A.5), the MovieLens1M dataset (Table
A.6), the Netflix dataset (Table A.7), and the Spotify dataset (Table A.8) are
analogical to results for the MovieLens25M dataset.
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7.3.3 Long-term scenario

PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 281.0 206.9 0.60 2.09 1.94 0.87 282.4 213.0 0.62 2.09 1.95 0.87
AVG 264.6 233.3 0.80 2.07 1.88 0.84 268.7 239.0 0.81 2.08 1.90 0.85

DHondtDO 283.3 246.7 0.79 2.18 1.95 0.83 287.8 253.5 0.80 2.19 1.98 0.84
EP-FuzzDA 259.9 241.2 0.89 2.05 1.71 0.73 263.4 247.7 0.90 2.05 1.73 0.74

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 266.7 194.0 0.55 2.01 1.83 0.84 268.7 200.2 0.58 1.98 1.81 0.84
AVG 252.8 217.2 0.76 2.00 1.74 0.79 256.7 223.6 0.78 1.98 1.74 0.80

DHondtDO 267.7 227.9 0.76 2.09 1.79 0.77 273.2 235.4 0.77 2.07 1.80 0.78
EP-FuzzDA 249.6 222.9 0.82 1.99 1.59 0.69 253.3 229.9 0.85 1.96 1.60 0.70

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 252.9 182.6 0.51 1.89 1.66 0.78 255.2 187.5 0.54 1.88 1.65 0.78
AVG 241.1 203.3 0.73 1.89 1.52 0.69 244.7 207.9 0.74 1.88 1.54 0.71

DHondtDO 253.7 211.7 0.72 1.97 1.55 0.68 258.2 217.2 0.74 1.96 1.57 0.69
EP-FuzzDA 239.0 206.2 0.76 1.88 1.40 0.62 242.3 211.7 0.78 1.87 1.43 0.64

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 243.5 176.9 0.50 1.83 1.53 0.72 244.7 181.1 0.53 1.84 1.54 0.73
AVG 234.5 195.2 0.71 1.84 1.40 0.64 236.7 199.2 0.73 1.84 1.44 0.66

DHondtDO 245.5 202.6 0.71 1.90 1.42 0.62 248.3 206.3 0.72 1.91 1.46 0.64
EP-FuzzDA 232.4 197.4 0.73 1.83 1.30 0.57 234.5 201.2 0.75 1.83 1.35 0.60

Table 7.3: Results of offline long-term evaluation on MovieLens25M dataset.
The best results are in bold, second-best are underscored.

Interestingly, the results for the long-term scenario are different from the
weighted scenario. We would expect that if an algorithm can better correlate the
provided relevance with the provided weights, then it will perform better across
the board in the long-term scenario. But, as we can see in Table 7.3, DHondtDO
dominates in mean and min AR metrics. EP-FuzzDA dominates in M/M AR
metric. It balances the preference better than other algorithms, as discussed
in the weighted scenario. This leads to better M/M AR performance because it
provides fairer recommendations but for the price of decreased mean performance.
We have checked the weights calculated after each round, and for EP-FuzzDA,
they stay the most uniform, which tells us that the algorithm is doing a good job
of maintaining fairness across the group members.

The results look analogical for the additional datasets, the KGRec dataset
(Table A.9), the MovieLens1M dataset (Table A.10), and the Spotify dataset
(Table A.12) except for the Netflix dataset (Table A.11), where for groups with
sizes over 6, the fairness performance of the M/M AR metric drops slightly.
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7.4 Discussion
The GFAR algorithm performs poorly in our tests compared to the original re-
search in [45]. This is probably caused by the different evaluation types as men-
tioned in Subsection 7.1.1, we use the decoupled evaluation, contrary to the orig-
inal paper where they used the coupled evaluation. As discussed in our research
in [59], it is possible that due to GFAR’s use of Borda count as the relevance
selection criteria, there could have been a popularity bias at play. The coupled
evaluation requires that we have data in the testing part of our dataset for our
recommended items. We are likelier to have a rating for popular items due to
the popularity bias. GFAR commonly selects items that are best or among the
best items for a user. Therefore the probability that we have data in the testing
data (for coupled) is higher. This can lead to an unfair advantage in the coupled
evaluation compared to other algorithms. On the other hand, in decoupled eval-
uation, we have estimated ratings for all pairs of users and items. Therefore, we
can equally evaluate the selected items for all algorithms without this popularity
bias affecting our results.

Another explanation for why GFAR is not performing well in our experiments
can be the parameter selection. The algorithm calculates the probability of user
satisfaction after each recommended item, which is then used to adjust the rele-
vance probability of the candidate items in the next step. But for a higher number
of maximal relevance items (how many items from the top-p of each candidate
will be awarded the Borda rating), these probabilities are small and therefore
push very little to balance the inter-group relevance inequalities from the previ-
ously recommended items. If one person in a big group differs in their preference
from the rest, then GFAR won’t push hard enough to satisfy this person at some
point, especially if other members are in preference consensus.

XPO and NPO algorithms are not performing well in our setup. Similar to
the already discussed GFAR algorithm. For all experiments, we use a randomly
selected subset of 1000 candidate items (for each user, then joining these candidate
lists together) from which we select the top 10. This is an optimization for
performance reasons. Unfortunately, XPO and NPO do not scale well in settings
where many candidate items are presented to the algorithm. This is due to
internally considering all tuples of the candidate items and comparing them using
random trials (details can be found in Subsection 4.3.2). We had to therefore limit
the candidate items to 30 (instead of 1000), and even that caused the XPO (and
NPO) to remain the computationally slowest algorithm. An increase from 30 to
only 100 candidate items resulted in 10 times worse computational performance,
and we have therefore limited XPO and NPO algorithms to only 30 candidate
items. Naturally, this leads to a lesser rating performance due to a lower selection
pool.

The performance of our algorithm in the long-term evaluation was a little
surprising. On the one hand, it can handle weighing well, as seen in the weighted
scenario, but on the other hand, the average rating performance does not translate
well to the long-term scenario. This is probably due to the algorithm pushing
too hard to achieve the highest amount of fairness, even for a decrease in AR
and nDCG mean and min performance. One possible way to suppress this could
be to decrease the effect of the weights. However, then, again, the definition of
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fairness must be considered. If we require the most balanced performance, then
our algorithm performs the best (with regard to the AR M/M metric).

Additionally, the performance of our algorithm in the long-term evaluation
could be explained by the way how the experiment was set up. We calculate the
weights for the next run from the previously recommended items. Based on the
ratio of average ratings between the group members, we set the weights for the
next iteration. But we also exclude the already recommended items from the next
run. These already recommended items are better than the rest of our candidates
(why they have been selected). Therefore we, in a way, overestimate the potential
future ratings that we can receive. Therefore it is possible that in the current
setup of this scenario, the algorithms that do not conform to the desired weights
that much will get an edge over our algorithm, which, as shown by the results of
the weighted scenario, does balance the preference based on weights the most.

We have observed slightly better performance in the uniform scenario for
the two implicit datasets (KGRec and Spotify) compared to the explicit datasets
(Movie Lens and Netflix). This could be due to overall better performance on this
type of data, or it could also be a difference in our underlying matrix factorization
algorithm.

Lastly, the performance seems to be quite analogical (with small deviations)
over the different datasets, which widely differ in size. The same cannot be said
about XPO and NPO algorithms, which in our current setting (as mentioned
above) perform considerably worse when we compare the performance on the
KGRec dataset (smallest) and the Spotify dataset (largest).

7.5 Reproducibility
Throughout our research, we encountered multiple situations when the experi-
ments from the literature were hard to replicate and reuse. We have therefore
taken increased care to provide an easy and convenient way to run all the exper-
iments found in this work.

Firstly, we have selected Python as our programming language due to being
the most popular and most used language in the data science domain. Secondly,
we have versioned all experiments in a single GitHub repository at
github.com/LadislavMalecek/MasterThesisAnalysis. And Lastly, we have cre-
ated a convenient reproducibility shell script run_experiments.sh which can be
found in the Git repository, mentioned at the beginning of this chapter.

Requirements:

• Python 3.9

• Poetry - Python package manager

• 60 GB of disk space - storing the datasets and intermediate results

• 16 GB of ram (less if only running the smaller datasets (KGrec, Movielens-
small)

• internet connection
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After installing Python and poetry, clone the repository and run the provided
shell script. Some of our more compute-heavy calculations, such as the matrix
factorization, can utilize multi-core processing. Therefore, using a multi-core
machine is advised (but not necessary).

Documentation of the repository structure can be found also in ./readme.md.
Each script is self-documenting, use the parameter --help to get more informa-
tion about all usable parameters and default values.

The git repository has the following structure (we show only the most impor-
tant files, which are mentioned in Section 7.2):

create groups

create prs groups.py

create random groups.py

create topk groups.py

datasets

evaluation

evaluation longterm.ipynb

evaluation uniform.ipynb

evaluation weighted.ipynb

experiments

run longterm algorithms.py

run uniform algorithms.py

run weighted algorithms.py

gather datasets

download and transform.py

matrix factorization

matrix factorization.py

run experiments.sh
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8. Conclusion
We have developed and implemented a novel group recommendation method,
EP-FuzzDA, based on the D’Hondt mandate allocation algorithm. It is an aggre-
gation method that works on top of single-user group recommendation systems.

To evaluate its performance, we have developed a fast and easy-to-use set
of software components in Python, which simplifies reproducibility and future
work with group recommendation systems. These tools provide a complete loop
for decoupled evaluation. The separate components are a dataset downloader
and processing tool, a synthetic group generation tool, a single-user recommen-
dation system for generating the ground truths for decoupled evaluation, and a
group recommendation tool into which a group aggregation recommender can be
plugged into.

We have explored 8 group recommendation datasets from the related literature
but determined that none are suitable enough to be used for our purposes of
evaluating GRS. We have further described and analyzed 4 datasets without any
group information but of suitable quality.

Further, we have designed a group generation method PRS (probability re-
specting similarity) that allows for a free scaling of the average similarity of the
created artificial groups with the average inter-group similarity having a natural
variance.

We have extensively evaluated our algorithm and seven other related algo-
rithms on five datasets of various sizes, two group types, and three evaluation
scenarios. It provides a good balance of fairness and item relevance, allows for di-
rect use with group member importance weights, and provides the most correlated
recommended item relevance with the desired weights. Additionally, we showed
that it could be applied to a long-term recommendation scenario to maintain fair-
ness across multiple recommendation sessions, but currently the other algorithms
are giving us a better performance for mean relevance scores.

Compared to other related work, the evaluation has been performed not only
on small datasets such as KGRec and MovieLens1M but also on huge and more
organic datasets such as Spotify and Netflix. All tools in the evaluation software
components have been optimized enough so that the evaluation of these huge
datasets is still computationally feasible (in a matter of hours).

8.1 Future work
We have focused on the fairness aspect of designing a group recommendation
system. The main problem we have encountered is the nonexistence of datasets
with organic group recommendation information. The step of synthetic group
creation can cause a bias towards some algorithms that will be hard to address
differently than having an organic group recommendation dataset. This can be
solved by an online evaluation using a user study focused on long-term fairness
preservation in realistic group settings.

Additional work needs to be put into evaluating the effect of different un-
derlying recommender systems on the decoupled evaluation we have used. We
have selected a popular matrix factorization algorithm with parameters set to
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similar values as in the related literature. However, we have not performed any
comparison of the GRS algorithms with different underlying single-user RS.

Further, more software development effort can be put into expanding and
improving the software evaluation tools that we have created. They are easily
usable but still quite tightly tailored to our needs. A more general framework
could be designed based on our current work.

Additionally, the evaluation of long-term and weighted evaluation scenarios
can be improved by designing a better set of metrics that more directly measure
fairness. This requires to better define what fairness is in these weighted and
long-term settings.

More work can be put into our algorithm to make it fairness configurable
so that the trade-off between performance and fairness can be adjusted as re-
quired. This would probably help in the long-term scenario when the groups are
balanced enough, and the algorithm could push more toward the average rating
performance.
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A. Additional Results
In this apendix, we present additional results for four datasets in all three
evaluation scenarios.
For the uniform evaluation scenario, we present the following results:

• KGRec dataset (Table A.1),

• MovieLens1M dataset (Table A.2),

• Netflix dataset (Table A.3),

• Spotify dataset (Table A.4).

For the weighted evaluation scenario, we present the following results:

• KGRec dataset (Table A.5),

• MovieLens1M dataset (Table A.6),

• Netflix dataset (Table A.7),

• Spotify dataset (Table A.8).

For the long-term evaluation scenario, we present the following results:

• KGRec dataset (Table A.9),

• MovieLens1M dataset (Table A.10),

• Netflix dataset (Table A.11),

• Spotify dataset (Table A.12).
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PRS(M=1), group size s=2 PRS(M=4), group size s=2
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 6.84 5.15 0.61 0.79 0.66 0.74 7.80 6.52 0.72 0.88 0.81 0.86
FAI 6.41 5.30 0.71 0.74 0.67 0.83 7.54 6.44 0.74 0.84 0.78 0.86
LM 6.19 5.54 0.81 0.74 0.67 0.80 7.48 6.83 0.83 0.86 0.80 0.87

XPO 6.13 5.05 0.71 0.69 0.61 0.79 7.08 5.99 0.73 0.77 0.70 0.84
NPO 5.64 4.52 0.67 0.63 0.54 0.75 6.66 5.56 0.72 0.72 0.65 0.82

GFAR 3.03 2.49 0.72 0.35 0.30 0.78 3.47 2.88 0.73 0.38 0.34 0.81
DHondtDO 6.68 5.71 0.74 0.78 0.74 0.88 7.73 6.82 0.78 0.88 0.84 0.92
EP-FuzzDA 6.44 6.15 0.91 0.78 0.71 0.84 7.51 7.13 0.90 0.87 0.81 0.87

PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 6.22 3.48 0.40 0.69 0.44 0.49 7.28 5.41 0.59 0.81 0.66 0.71
FAI 5.63 3.95 0.55 0.63 0.48 0.62 6.84 5.27 0.62 0.75 0.63 0.71
LM 5.00 4.00 0.65 0.59 0.48 0.67 6.69 5.71 0.73 0.76 0.66 0.77

XPO 5.38 3.78 0.54 0.59 0.45 0.64 6.39 4.90 0.62 0.69 0.57 0.72
NPO 4.66 3.14 0.51 0.51 0.37 0.58 5.63 4.20 0.59 0.60 0.48 0.67

GFAR 2.84 1.87 0.50 0.32 0.23 0.56 3.26 2.45 0.61 0.36 0.29 0.67
DHondtDO 5.93 4.12 0.53 0.68 0.52 0.65 7.18 5.76 0.66 0.81 0.70 0.77
EP-FuzzDA 5.72 4.95 0.77 0.67 0.58 0.77 7.00 6.19 0.80 0.80 0.71 0.81

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 5.78 2.47 0.28 0.64 0.30 0.34 7.03 4.44 0.47 0.77 0.54 0.58
FAI 5.03 3.01 0.44 0.56 0.36 0.49 6.55 4.55 0.53 0.71 0.53 0.61
LM 4.19 3.01 0.54 0.49 0.36 0.56 6.09 4.82 0.64 0.68 0.56 0.68

XPO 4.75 2.91 0.44 0.52 0.34 0.51 5.96 4.17 0.53 0.63 0.48 0.62
NPO 3.93 2.26 0.40 0.43 0.27 0.46 5.06 3.40 0.49 0.53 0.39 0.57

GFAR 2.67 1.41 0.37 0.30 0.17 0.42 3.29 2.23 0.51 0.35 0.25 0.58
DHondtDO 5.42 3.09 0.41 0.61 0.39 0.49 6.89 4.96 0.56 0.76 0.60 0.67
EP-FuzzDA 5.26 3.98 0.64 0.61 0.47 0.64 6.74 5.42 0.68 0.75 0.64 0.73

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 5.20 1.42 0.17 0.58 0.17 0.20 6.70 3.31 0.34 0.73 0.39 0.42
FAI 4.36 2.11 0.32 0.49 0.25 0.36 6.06 3.54 0.41 0.65 0.41 0.48
LM 3.35 1.98 0.40 0.39 0.24 0.43 5.38 3.73 0.51 0.60 0.43 0.55

XPO 4.00 1.94 0.32 0.44 0.23 0.37 5.35 3.26 0.43 0.56 0.37 0.50
NPO 3.14 1.39 0.27 0.34 0.16 0.31 4.31 2.42 0.37 0.45 0.27 0.44

GFAR 2.55 0.98 0.25 0.29 0.12 0.27 3.29 1.88 0.40 0.35 0.21 0.44
DHondtDO 4.72 1.76 0.23 0.53 0.23 0.29 6.49 3.80 0.42 0.71 0.46 0.51
EP-FuzzDA 4.68 2.69 0.44 0.54 0.33 0.47 6.40 4.22 0.51 0.71 0.50 0.57

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 4.92 0.87 0.10 0.54 0.11 0.12 6.40 2.62 0.27 0.69 0.30 0.33
FAI 4.09 1.56 0.24 0.45 0.18 0.26 5.75 2.97 0.35 0.61 0.34 0.40
LM 2.88 1.47 0.32 0.34 0.18 0.35 4.79 3.00 0.43 0.53 0.35 0.47

XPO 3.62 1.43 0.24 0.39 0.17 0.28 4.85 2.68 0.37 0.51 0.30 0.42
NPO 2.78 0.95 0.19 0.30 0.11 0.22 3.79 1.90 0.31 0.39 0.21 0.35

GFAR 2.52 0.72 0.17 0.28 0.09 0.19 3.25 1.59 0.32 0.35 0.18 0.36
DHondtDO 4.41 1.09 0.14 0.49 0.15 0.19 6.13 3.02 0.33 0.67 0.36 0.40
EP-FuzzDA 4.42 1.87 0.30 0.51 0.24 0.34 6.09 3.46 0.41 0.67 0.40 0.46

Table A.1: Results of offline uniform evaluation on KGRec dataset. The best
results are in bold, the second-best are underscored, and the third-best results
are in italic.
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PRS(M=1), group size s=2 PRS(M=4), group size s=2
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 54.40 47.21 0.78 0.89 0.85 0.91 54.90 48.60 0.81 0.89 0.85 0.92
FAI 50.37 46.36 0.86 0.83 0.79 0.91 50.96 47.33 0.87 0.83 0.79 0.92
LM 51.69 50.25 0.95 0.86 0.80 0.87 52.40 51.09 0.95 0.86 0.81 0.89

XPO 50.38 46.22 0.85 0.82 0.78 0.90 51.03 47.18 0.87 0.82 0.78 0.91
NPO 49.08 44.97 0.85 0.80 0.75 0.88 49.66 45.70 0.86 0.80 0.75 0.88

GFAR 46.21 43.07 0.88 0.77 0.74 0.91 46.71 43.87 0.89 0.77 0.74 0.92
DHondtDO 54.27 48.58 0.82 0.89 0.87 0.95 54.79 49.86 0.85 0.89 0.87 0.95
EP-FuzzDA 52.70 51.37 0.95 0.88 0.83 0.89 53.50 52.44 0.96 0.88 0.83 0.90

PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 52.06 43.67 0.72 0.84 0.79 0.89 52.08 44.81 0.75 0.85 0.80 0.89
FAI 46.83 41.90 0.81 0.76 0.68 0.82 47.05 42.46 0.82 0.77 0.69 0.83
LM 49.12 46.83 0.91 0.81 0.72 0.81 49.53 47.50 0.92 0.82 0.74 0.84

XPO 47.62 42.26 0.80 0.77 0.69 0.82 47.80 42.75 0.81 0.78 0.70 0.83
NPO 45.69 40.28 0.79 0.74 0.65 0.79 45.91 40.70 0.80 0.75 0.66 0.81

GFAR 45.74 41.17 0.82 0.74 0.67 0.82 45.98 41.60 0.83 0.75 0.68 0.84
DHondtDO 51.92 45.09 0.77 0.84 0.81 0.92 51.97 46.09 0.80 0.85 0.81 0.92
EP-FuzzDA 50.68 47.83 0.90 0.83 0.76 0.84 50.90 48.70 0.92 0.84 0.77 0.86

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 50.55 41.73 0.69 0.82 0.75 0.86 50.53 42.84 0.72 0.82 0.76 0.87
FAI 44.86 39.11 0.77 0.73 0.62 0.76 45.06 39.65 0.78 0.73 0.63 0.77
LM 47.75 44.72 0.88 0.78 0.68 0.78 47.96 45.31 0.89 0.79 0.70 0.80

XPO 46.11 39.88 0.76 0.74 0.64 0.76 46.26 40.32 0.77 0.75 0.65 0.78
NPO 43.82 37.64 0.75 0.71 0.60 0.74 44.11 38.00 0.76 0.72 0.61 0.75

GFAR 44.38 39.06 0.79 0.72 0.62 0.77 44.47 39.48 0.80 0.73 0.64 0.79
DHondtDO 50.44 43.08 0.74 0.82 0.76 0.88 50.44 44.02 0.77 0.82 0.77 0.89
EP-FuzzDA 49.40 45.48 0.86 0.81 0.72 0.81 49.52 46.33 0.88 0.81 0.73 0.82

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 48.65 39.90 0.68 0.79 0.70 0.81 49.03 41.11 0.70 0.79 0.70 0.81
FAI 42.74 36.15 0.73 0.69 0.55 0.69 43.15 36.61 0.74 0.69 0.56 0.70
LM 46.07 42.23 0.84 0.75 0.64 0.74 46.59 43.13 0.85 0.76 0.64 0.75

XPO 44.26 37.00 0.72 0.72 0.57 0.69 44.55 37.40 0.72 0.71 0.57 0.70
NPO 41.96 34.98 0.71 0.68 0.54 0.68 42.14 35.10 0.71 0.68 0.54 0.67

GFAR 43.58 37.22 0.75 0.71 0.58 0.70 43.83 37.76 0.76 0.71 0.58 0.71
DHondtDO 48.59 40.91 0.72 0.79 0.71 0.82 48.96 42.10 0.74 0.79 0.70 0.82
EP-FuzzDA 47.84 42.73 0.82 0.78 0.67 0.77 48.29 43.92 0.84 0.78 0.67 0.77

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 47.55 38.28 0.66 0.77 0.66 0.77 48.06 39.78 0.69 0.77 0.66 0.77
FAI 41.61 34.35 0.70 0.68 0.51 0.64 41.94 34.86 0.71 0.67 0.52 0.65
LM 45.09 40.51 0.81 0.74 0.60 0.71 45.70 41.57 0.82 0.74 0.61 0.73

XPO 42.87 35.03 0.69 0.70 0.53 0.64 43.22 35.26 0.69 0.69 0.53 0.65
NPO 41.02 33.28 0.68 0.67 0.50 0.62 41.22 33.69 0.69 0.66 0.50 0.64

GFAR 43.34 35.96 0.72 0.71 0.55 0.66 43.60 36.58 0.73 0.70 0.55 0.67
DHondtDO 47.50 39.21 0.70 0.77 0.67 0.77 47.99 40.65 0.72 0.77 0.67 0.78
EP-FuzzDA 46.87 40.67 0.78 0.77 0.64 0.73 47.44 42.14 0.80 0.76 0.64 0.74

Table A.2: Results of offline uniform evaluation on MovieLens1M dataset.
The best results are in bold, the second-best are underscored, and the third-best
results are in italic.
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PRS(M=1), group size s=2 PRS(M=4), group size s=2
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 84.16 58.26 0.59 0.82 0.73 0.80 84.29 59.08 0.60 0.82 0.73 0.81
FAI 69.96 58.13 0.74 0.71 0.65 0.84 70.28 58.60 0.74 0.71 0.65 0.84
LM 73.70 68.77 0.88 0.77 0.67 0.77 74.14 69.36 0.88 0.78 0.68 0.78

XPO 69.28 57.15 0.74 0.70 0.63 0.82 69.89 57.75 0.73 0.70 0.63 0.82
NPO 67.07 54.49 0.72 0.68 0.59 0.78 67.23 55.16 0.73 0.68 0.60 0.80

GFAR 57.45 49.38 0.78 0.62 0.56 0.84 57.85 50.16 0.78 0.62 0.57 0.84
DHondtDO 82.84 64.43 0.68 0.83 0.79 0.92 82.93 65.02 0.69 0.83 0.79 0.93
EP-FuzzDA 75.21 71.09 0.90 0.80 0.71 0.80 75.61 71.71 0.90 0.80 0.71 0.80

PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 77.52 46.78 0.45 0.74 0.63 0.73 77.42 48.42 0.47 0.73 0.63 0.75
FAI 59.33 46.29 0.65 0.61 0.49 0.68 59.24 47.09 0.67 0.60 0.48 0.67
LM 65.16 57.81 0.79 0.68 0.55 0.67 65.80 58.90 0.81 0.68 0.55 0.69

XPO 60.04 45.76 0.63 0.60 0.49 0.69 59.85 46.33 0.64 0.60 0.49 0.69
NPO 56.52 42.17 0.61 0.58 0.44 0.63 56.86 42.29 0.61 0.58 0.45 0.64

GFAR 53.94 42.97 0.67 0.58 0.46 0.69 54.43 43.81 0.69 0.58 0.47 0.70
DHondtDO 75.56 52.75 0.55 0.74 0.70 0.88 75.60 53.84 0.57 0.74 0.69 0.88
EP-FuzzDA 69.98 58.82 0.76 0.73 0.61 0.75 70.45 60.54 0.78 0.73 0.62 0.76

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 71.38 41.70 0.40 0.69 0.58 0.71 73.07 44.19 0.42 0.68 0.57 0.71
FAI 53.04 39.81 0.60 0.55 0.40 0.57 54.11 41.04 0.61 0.54 0.39 0.58
LM 59.48 51.32 0.75 0.63 0.48 0.61 61.49 53.56 0.76 0.63 0.49 0.64

XPO 54.12 39.80 0.58 0.56 0.40 0.58 55.44 40.99 0.59 0.55 0.40 0.58
NPO 50.67 35.99 0.55 0.53 0.36 0.53 51.75 36.81 0.55 0.52 0.36 0.54

GFAR 52.71 39.76 0.61 0.56 0.41 0.59 53.45 41.12 0.62 0.55 0.41 0.60
DHondtDO 69.44 46.17 0.49 0.70 0.63 0.84 71.29 48.99 0.52 0.69 0.63 0.83
EP-FuzzDA 65.40 51.26 0.67 0.69 0.56 0.72 67.24 54.59 0.71 0.68 0.56 0.72

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 66.12 37.91 0.35 0.63 0.50 0.65 66.42 39.19 0.37 0.63 0.50 0.66
FAI 47.56 33.01 0.51 0.50 0.29 0.44 47.67 33.11 0.52 0.49 0.29 0.44
LM 54.19 45.56 0.70 0.57 0.40 0.53 54.99 46.56 0.71 0.57 0.41 0.56

XPO 49.58 33.23 0.49 0.51 0.31 0.44 49.92 32.90 0.49 0.51 0.30 0.44
NPO 45.89 29.67 0.47 0.48 0.27 0.40 45.77 29.52 0.47 0.47 0.27 0.41

GFAR 49.81 33.83 0.50 0.52 0.31 0.45 49.76 34.11 0.52 0.52 0.31 0.46
DHondtDO 64.32 40.75 0.44 0.64 0.54 0.74 64.42 41.45 0.46 0.63 0.53 0.73
EP-FuzzDA 61.22 44.83 0.58 0.63 0.49 0.64 61.68 46.78 0.62 0.63 0.49 0.66

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 61.92 35.06 0.32 0.60 0.45 0.61 62.78 36.52 0.35 0.60 0.45 0.61
FAI 44.06 28.14 0.45 0.47 0.23 0.34 44.56 28.79 0.47 0.46 0.24 0.36
LM 50.22 41.72 0.68 0.54 0.35 0.47 51.27 43.11 0.69 0.53 0.36 0.50

XPO 46.46 28.31 0.42 0.49 0.24 0.34 47.02 28.17 0.42 0.48 0.25 0.36
NPO 42.32 25.09 0.41 0.45 0.21 0.31 42.93 25.16 0.41 0.44 0.21 0.32

GFAR 46.09 29.94 0.47 0.49 0.26 0.37 46.62 30.54 0.48 0.48 0.26 0.38
DHondtDO 59.84 35.57 0.39 0.60 0.47 0.64 60.52 36.01 0.41 0.59 0.46 0.64
EP-FuzzDA 57.66 40.88 0.54 0.60 0.44 0.58 58.82 42.91 0.57 0.60 0.44 0.61

Table A.3: Results of offline uniform evaluation on Netflix dataset. The best
results are in bold, the second-best are underscored, and the third-best results
are in italic.
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PRS(M=1), group size s=2 PRS(M=4), group size s=2
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 4.13 2.05 0.33 0.65 0.38 0.44 4.81 3.00 0.43 0.77 0.60 0.65
FAI 3.75 2.68 0.51 0.68 0.61 0.81 4.70 3.45 0.54 0.80 0.73 0.84
LM 2.41 2.00 0.64 0.44 0.33 0.56 3.89 3.20 0.66 0.68 0.57 0.69

XPO 3.46 2.37 0.49 0.57 0.49 0.75 4.20 2.99 0.52 0.65 0.58 0.79
NPO 3.00 1.98 0.47 0.50 0.40 0.67 3.70 2.59 0.51 0.58 0.50 0.74

GFAR 1.02 0.66 0.46 0.16 0.13 0.66 1.43 0.97 0.51 0.22 0.18 0.71
DHondtDO 3.59 2.24 0.38 0.59 0.44 0.57 4.52 3.23 0.49 0.74 0.66 0.76
EP-FuzzDA 3.29 2.90 0.70 0.66 0.57 0.75 4.17 3.64 0.71 0.77 0.68 0.79

PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 3.53 1.04 0.15 0.50 0.17 0.20 4.46 2.26 0.30 0.65 0.42 0.48
FAI 3.02 1.68 0.33 0.53 0.39 0.57 4.22 2.74 0.42 0.67 0.52 0.64
LM 1.53 1.03 0.38 0.27 0.17 0.38 3.11 2.26 0.48 0.51 0.38 0.53

XPO 2.81 1.44 0.30 0.45 0.32 0.56 3.73 2.24 0.38 0.55 0.42 0.63
NPO 2.20 1.05 0.27 0.35 0.22 0.45 3.00 1.70 0.34 0.44 0.31 0.53

GFAR 0.93 0.35 0.22 0.15 0.07 0.37 1.32 0.68 0.31 0.19 0.12 0.47
DHondtDO 2.83 1.11 0.17 0.45 0.20 0.28 4.02 2.38 0.33 0.61 0.44 0.53
EP-FuzzDA 2.70 1.93 0.50 0.52 0.41 0.65 3.88 2.93 0.55 0.66 0.54 0.69

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 3.14 0.54 0.07 0.43 0.08 0.10 4.02 1.66 0.21 0.57 0.30 0.34
FAI 2.57 1.05 0.22 0.43 0.26 0.42 3.72 2.03 0.31 0.58 0.39 0.50
LM 1.18 0.60 0.22 0.20 0.10 0.27 2.58 1.62 0.35 0.41 0.27 0.42

XPO 2.41 0.88 0.19 0.38 0.21 0.40 3.30 1.66 0.28 0.48 0.32 0.50
NPO 1.77 0.58 0.15 0.28 0.12 0.29 2.51 1.17 0.24 0.36 0.22 0.40

GFAR 0.89 0.22 0.11 0.13 0.04 0.21 1.29 0.54 0.21 0.19 0.10 0.33
DHondtDO 2.38 0.52 0.06 0.37 0.09 0.12 3.54 1.68 0.22 0.53 0.31 0.36
EP-FuzzDA 2.38 1.27 0.34 0.43 0.27 0.46 3.50 2.25 0.42 0.58 0.42 0.55

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 2.62 0.17 0.02 0.34 0.02 0.02 3.58 0.98 0.12 0.49 0.17 0.19
FAI 2.00 0.48 0.11 0.33 0.13 0.25 3.20 1.25 0.19 0.48 0.23 0.31
LM 0.84 0.25 0.10 0.14 0.05 0.17 1.99 0.97 0.20 0.30 0.16 0.29

XPO 1.89 0.36 0.08 0.29 0.10 0.19 2.81 1.03 0.17 0.39 0.19 0.30
NPO 1.26 0.21 0.06 0.20 0.04 0.11 1.92 0.62 0.14 0.27 0.11 0.23

GFAR 0.80 0.07 0.03 0.12 0.01 0.05 1.22 0.34 0.10 0.17 0.05 0.17
DHondtDO 1.85 0.05 -0.03 0.28 -0.02 -0.07 3.04 0.94 0.10 0.45 0.16 0.16
EP-FuzzDA 1.98 0.54 0.15 0.34 0.11 0.21 3.15 1.49 0.26 0.49 0.27 0.37

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG 2.21 0.02 0.00 0.29 -0.02 -0.02 3.30 0.69 0.08 0.44 0.10 0.11
FAI 1.63 0.27 0.07 0.27 0.09 0.17 2.83 0.90 0.14 0.41 0.16 0.23
LM 0.53 0.09 0.05 0.09 0.02 0.11 1.63 0.63 0.13 0.23 0.11 0.21

XPO 1.51 0.13 0.03 0.23 0.04 0.08 2.43 0.65 0.10 0.32 0.11 0.18
NPO 0.96 0.05 0.01 0.15 0.01 0.02 1.63 0.38 0.08 0.22 0.06 0.12

GFAR 0.68 0.00 -0.01 0.10 -0.00 -0.02 1.22 0.24 0.06 0.16 0.03 0.08
DHondtDO 1.48 -0.13 -0.06 0.23 -0.05 -0.13 2.71 0.53 0.04 0.38 0.08 0.06
EP-FuzzDA 1.64 0.23 0.07 0.28 0.04 0.09 2.88 1.04 0.17 0.43 0.18 0.25

Table A.4: Results of offline uniform evaluation on Spotify dataset. The best
results are in bold, the second-best are underscored, and the third-best results
are in italic.
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PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 6.22 0.01 0.19 0.69 0.01 0.18 7.28 0.01 0.17 0.81 0.01 0.16
AVG 5.91 0.45 0.15 0.66 0.45 0.13 7.05 0.35 0.14 0.79 0.35 0.12

DHondtDO 5.75 0.45 0.13 0.66 0.45 0.12 7.01 0.35 0.13 0.79 0.35 0.13
EP-FuzzDA 5.65 0.64 0.09 0.66 0.64 0.09 6.82 0.53 0.11 0.78 0.53 0.11

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 5.78 -0.01 0.15 0.64 -0.01 0.14 7.03 -0.00 0.13 0.77 -0.00 0.13
AVG 5.48 0.39 0.12 0.61 0.39 0.11 6.83 0.30 0.11 0.75 0.30 0.10

DHondtDO 5.24 0.40 0.11 0.59 0.40 0.10 6.74 0.30 0.11 0.74 0.30 0.10
EP-FuzzDA 5.23 0.53 0.08 0.60 0.53 0.08 6.64 0.42 0.09 0.74 0.42 0.09

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 5.20 -0.01 0.11 0.58 -0.01 0.11 6.70 -0.03 0.10 0.73 -0.03 0.09
AVG 4.94 0.32 0.09 0.55 0.32 0.09 6.52 0.21 0.08 0.71 0.21 0.08

DHondtDO 4.60 0.32 0.08 0.52 0.32 0.08 6.38 0.21 0.08 0.69 0.21 0.08
EP-FuzzDA 4.69 0.43 0.06 0.54 0.43 0.07 6.35 0.28 0.07 0.70 0.28 0.07

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 4.92 0.01 0.08 0.54 0.01 0.08 6.40 0.01 0.07 0.69 0.01 0.07
AVG 4.73 0.25 0.07 0.52 0.25 0.07 6.26 0.19 0.07 0.68 0.19 0.06

DHondtDO 4.32 0.25 0.07 0.48 0.25 0.06 6.06 0.20 0.06 0.66 0.20 0.06
EP-FuzzDA 4.49 0.32 0.05 0.51 0.32 0.06 6.10 0.25 0.06 0.67 0.25 0.06

Table A.5: Results of offline weighted evaluation on KGRec dataset. The best
results are in bold. The second-best are underscored.
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PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 52.06 -0.02 0.15 0.84 -0.02 0.14 52.08 -0.00 0.15 0.85 -0.00 0.14
AVG 50.62 0.47 0.12 0.82 0.47 0.11 50.73 0.52 0.12 0.83 0.52 0.11

DHondtDO 50.73 0.48 0.12 0.83 0.48 0.12 50.92 0.53 0.12 0.83 0.53 0.12
EP-FuzzDA 48.97 0.78 0.10 0.81 0.78 0.10 49.24 0.79 0.10 0.81 0.79 0.10

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 50.55 0.02 0.12 0.82 0.02 0.11 50.53 -0.01 0.12 0.82 -0.01 0.11
AVG 49.24 0.50 0.10 0.80 0.50 0.09 49.31 0.50 0.10 0.80 0.50 0.09

DHondtDO 49.42 0.51 0.10 0.80 0.51 0.09 49.43 0.51 0.10 0.81 0.51 0.09
EP-FuzzDA 48.01 0.69 0.08 0.78 0.69 0.09 48.09 0.70 0.08 0.79 0.70 0.09

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 48.65 -0.01 0.08 0.79 -0.01 0.08 49.03 0.02 0.08 0.79 0.02 0.08
AVG 47.57 0.46 0.07 0.77 0.46 0.07 47.92 0.50 0.07 0.77 0.50 0.07

DHondtDO 47.71 0.47 0.07 0.77 0.47 0.07 48.09 0.51 0.07 0.77 0.51 0.07
EP-FuzzDA 46.57 0.60 0.06 0.76 0.60 0.07 46.99 0.62 0.06 0.76 0.62 0.07

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 47.55 0.00 0.06 0.77 0.00 0.06 48.06 0.01 0.06 0.77 0.01 0.06
AVG 46.61 0.43 0.05 0.76 0.43 0.05 47.13 0.46 0.05 0.75 0.46 0.05

DHondtDO 46.72 0.44 0.05 0.76 0.44 0.05 47.23 0.47 0.05 0.75 0.47 0.05
EP-FuzzDA 45.79 0.54 0.05 0.75 0.54 0.05 46.31 0.57 0.05 0.74 0.57 0.05

Table A.6: Results of offline weighted evaluation on MovieLens1M dataset.
The best results are in bold. The second-best are underscored.
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PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 77.52 0.02 0.18 0.74 0.02 0.15 77.42 0.04 0.18 0.73 0.04 0.15
AVG 73.52 0.41 0.14 0.71 0.41 0.10 73.42 0.47 0.13 0.70 0.47 0.09

DHondtDO 72.34 0.41 0.13 0.71 0.41 0.10 72.75 0.48 0.12 0.71 0.48 0.10
EP-FuzzDA 68.32 0.67 0.09 0.70 0.67 0.09 68.47 0.71 0.08 0.69 0.71 0.09

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 71.38 0.01 0.14 0.69 0.01 0.12 73.07 0.00 0.14 0.68 0.00 0.12
AVG 67.50 0.42 0.11 0.66 0.42 0.08 68.69 0.46 0.11 0.65 0.46 0.08

DHondtDO 66.35 0.44 0.10 0.67 0.44 0.08 67.62 0.49 0.10 0.66 0.49 0.08
EP-FuzzDA 63.59 0.62 0.08 0.66 0.62 0.08 65.49 0.64 0.07 0.65 0.64 0.08

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 66.12 0.02 0.10 0.63 0.02 0.08 66.42 0.00 0.09 0.63 0.00 0.08
AVG 62.65 0.41 0.08 0.61 0.41 0.06 62.84 0.43 0.07 0.60 0.43 0.06

DHondtDO 61.41 0.44 0.07 0.61 0.44 0.06 61.43 0.46 0.07 0.61 0.46 0.06
EP-FuzzDA 59.92 0.55 0.06 0.61 0.55 0.06 60.24 0.57 0.05 0.61 0.57 0.06

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 61.92 0.02 0.07 0.60 0.02 0.06 62.78 0.01 0.07 0.60 0.01 0.06
AVG 58.78 0.41 0.06 0.58 0.41 0.05 59.40 0.44 0.06 0.57 0.44 0.04

DHondtDO 57.16 0.44 0.06 0.58 0.44 0.05 57.86 0.46 0.05 0.57 0.46 0.05
EP-FuzzDA 56.54 0.53 0.04 0.58 0.53 0.05 57.52 0.55 0.04 0.58 0.55 0.05

Table A.7: Results of offline weighted evaluation on Netflix dataset. The best
results are in bold. The second-best are underscored.
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PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 3.53 0.02 0.28 0.50 0.02 0.26 4.46 -0.00 0.24 0.65 -0.00 0.21
AVG 3.28 0.38 0.24 0.49 0.38 0.21 4.25 0.30 0.21 0.63 0.30 0.17

DHondtDO 2.73 0.38 0.24 0.44 0.38 0.26 3.91 0.30 0.20 0.60 0.30 0.23
EP-Fuzz-DA 2.69 0.57 0.12 0.50 0.57 0.09 3.81 0.46 0.13 0.64 0.46 0.11

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 3.14 0.00 0.23 0.43 0.00 0.22 4.02 -0.00 0.20 0.57 -0.00 0.17
AVG 2.89 0.37 0.21 0.40 0.37 0.19 3.81 0.31 0.17 0.55 0.31 0.14

DHondtDO 2.31 0.32 0.20 0.36 0.32 0.21 3.41 0.30 0.17 0.52 0.30 0.17
EP-Fuzz-DA 2.40 0.49 0.10 0.42 0.49 0.08 3.47 0.43 0.10 0.56 0.43 0.09

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 2.62 0.03 0.17 0.34 0.03 0.16 3.58 -0.00 0.14 0.49 -0.00 0.12
AVG 2.42 0.37 0.15 0.32 0.37 0.14 3.39 0.31 0.12 0.47 0.31 0.11

DHondtDO 1.82 0.30 0.15 0.28 0.30 0.15 2.99 0.26 0.12 0.43 0.26 0.12
EP-Fuzz-DA 2.01 0.44 0.08 0.33 0.44 0.07 3.13 0.36 0.08 0.48 0.36 0.07

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean corr MAE mean corr MAE mean corr MAE mean corr MAE
AVG-U 2.21 -0.02 0.13 0.29 -0.02 0.13 3.30 0.02 0.11 0.44 0.02 0.10
AVG 2.03 0.32 0.12 0.27 0.32 0.11 3.16 0.28 0.10 0.42 0.28 0.09

DHondtDO 1.44 0.23 0.11 0.22 0.23 0.11 2.65 0.23 0.09 0.37 0.23 0.09
EP-Fuzz-DA 1.67 0.38 0.06 0.27 0.38 0.06 2.89 0.33 0.06 0.42 0.33 0.06

Table A.8: Results of offline weighted evaluation on Spotify dataset. The best
results are in bold. The second-best are underscored.
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PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 22.00 13.45 0.44 1.48 1.07 0.58 25.69 18.96 0.58 1.73 1.47 0.74
AVG 20.60 17.36 0.73 1.46 1.30 0.80 24.84 21.27 0.75 1.72 1.56 0.83

DHondtDO 28.33 24.47 0.76 1.84 1.62 0.78 35.16 30.71 0.77 2.21 2.00 0.82
EP-FuzzDA 20.09 18.13 0.84 1.44 1.26 0.77 24.38 21.92 0.83 1.70 1.52 0.81

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 20.44 10.53 0.36 1.37 0.82 0.46 24.78 16.64 0.50 1.64 1.26 0.64
AVG 18.84 14.78 0.66 1.34 1.09 0.70 23.84 19.24 0.68 1.62 1.40 0.77

DHondtDO 25.40 20.34 0.67 1.64 1.34 0.68 33.47 27.42 0.69 2.07 1.77 0.75
EP-FuzzDA 18.56 15.30 0.73 1.31 1.09 0.71 23.53 19.64 0.72 1.60 1.39 0.76

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 18.52 7.01 0.24 1.25 0.54 0.30 23.76 13.63 0.40 1.56 1.00 0.51
AVG 16.76 11.52 0.53 1.19 0.85 0.57 22.68 16.51 0.58 1.52 1.18 0.65

DHondtDO 21.68 15.00 0.53 1.40 0.99 0.55 31.22 22.72 0.57 1.91 1.46 0.62
EP-FuzzDA 16.67 11.28 0.54 1.17 0.85 0.58 22.57 16.24 0.57 1.51 1.18 0.65

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 17.70 5.10 0.17 1.18 0.38 0.22 22.75 11.72 0.34 1.49 0.84 0.43
AVG 15.83 9.56 0.44 1.12 0.71 0.48 21.67 14.67 0.51 1.46 1.04 0.57

DHondtDO 19.82 11.75 0.42 1.28 0.80 0.46 29.32 19.45 0.49 1.80 1.24 0.54
EP-FuzzDA 15.88 8.72 0.40 1.10 0.69 0.47 21.65 14.06 0.48 1.45 1.03 0.56

Table A.9: Results of offline long-term evaluation on KGRec dataset. The best
results are in bold, second-best are underscored.
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PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 242.2 210.3 0.77 2.26 2.17 0.93 242.4 214.6 0.79 2.26 2.19 0.93
AVG 239.7 220.6 0.86 2.25 2.13 0.90 240.5 224.0 0.88 2.26 2.15 0.91

DHondtDO 256.2 233.5 0.84 2.37 2.24 0.90 257.3 237.8 0.86 2.38 2.26 0.91
EP-FuzzDA 235.5 227.2 0.93 2.23 1.99 0.82 236.9 230.1 0.95 2.24 2.03 0.84

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 237.1 202.2 0.74 2.19 2.07 0.90 236.8 206.6 0.77 2.21 2.09 0.90
AVG 234.9 212.1 0.83 2.19 2.02 0.86 235.1 215.3 0.85 2.21 2.04 0.87

DHondtDO 249.3 223.2 0.82 2.29 2.11 0.86 249.9 227.2 0.84 2.31 2.14 0.87
EP-FuzzDA 231.6 217.5 0.89 2.17 1.89 0.79 232.0 220.8 0.91 2.19 1.93 0.81

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 230.0 194.1 0.73 2.13 1.93 0.83 231.5 199.1 0.75 2.13 1.93 0.83
AVG 228.4 202.3 0.81 2.13 1.88 0.80 230.3 206.9 0.83 2.13 1.89 0.81

DHondtDO 240.8 211.7 0.79 2.22 1.96 0.80 243.1 217.3 0.81 2.22 1.96 0.81
EP-FuzzDA 225.9 205.7 0.85 2.12 1.79 0.75 227.9 210.6 0.87 2.11 1.80 0.76

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 225.9 186.7 0.70 2.09 1.83 0.78 227.9 193.1 0.73 2.08 1.83 0.79
AVG 224.6 194.5 0.78 2.09 1.79 0.76 226.8 200.3 0.80 2.08 1.80 0.77

DHondtDO 235.6 202.9 0.77 2.17 1.86 0.76 238.5 209.8 0.79 2.16 1.86 0.77
EP-FuzzDA 222.3 196.7 0.81 2.08 1.71 0.72 224.7 202.7 0.83 2.07 1.72 0.73

Table A.10: Results of offline long-term evaluation on MovieLens1M dataset.
The best results are in bold, second-best are underscored.
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PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 348.9 224.3 0.49 1.93 1.72 0.80 348.5 230.5 0.51 1.93 1.73 0.81
AVG 317.8 268.8 0.75 1.91 1.70 0.81 320.8 274.9 0.76 1.91 1.71 0.82

DHondtDO 345.6 291.2 0.75 2.04 1.77 0.78 349.5 298.2 0.76 2.03 1.78 0.80
EP-FuzzDA 313.5 278.4 0.83 1.89 1.53 0.69 315.2 285.8 0.85 1.89 1.54 0.70

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 323.9 203.8 0.44 1.82 1.60 0.78 330.4 213.3 0.46 1.80 1.59 0.78
AVG 296.9 241.4 0.70 1.81 1.54 0.76 305.7 254.3 0.72 1.79 1.54 0.77

DHondtDO 319.3 258.1 0.71 1.91 1.58 0.73 330.3 273.5 0.73 1.90 1.58 0.74
EP-FuzzDA 296.4 247.0 0.74 1.80 1.42 0.67 303.6 261.2 0.77 1.78 1.41 0.67

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 302.3 187.9 0.39 1.68 1.42 0.72 303.2 193.5 0.42 1.67 1.43 0.74
AVG 279.0 218.5 0.66 1.68 1.33 0.66 281.6 226.0 0.68 1.67 1.34 0.68

DHondtDO 296.8 230.9 0.66 1.76 1.33 0.63 300.1 239.8 0.69 1.75 1.35 0.65
EP-FuzzDA 279.8 220.1 0.65 1.68 1.24 0.60 281.4 228.2 0.69 1.67 1.25 0.62

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 285.0 175.9 0.37 1.61 1.31 0.68 288.3 182.7 0.40 1.59 1.31 0.69
AVG 265.1 202.0 0.63 1.60 1.20 0.60 270.5 211.3 0.65 1.59 1.22 0.63

DHondtDO 278.5 211.5 0.64 1.67 1.19 0.57 284.9 221.9 0.66 1.65 1.21 0.59
EP-FuzzDA 265.2 202.4 0.61 1.60 1.12 0.55 270.0 212.0 0.64 1.59 1.14 0.57

Table A.11: Results of offline long-term evaluation on Netflix dataset. The
best results are in bold, second-best are underscored.
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PRS(M=1), group size s=2 PRS(M=4), group size s=2
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 12.50 6.24 0.34 1.21 0.75 0.47 14.56 8.84 0.43 1.43 1.12 0.65
AVG 10.22 8.27 0.63 1.24 1.16 0.88 12.87 10.32 0.63 1.44 1.37 0.90

DHondtDO 15.56 13.73 0.72 1.63 1.40 0.74 20.71 17.73 0.70 2.00 1.81 0.81
EP-Fuzz-DA 9.49 8.58 0.77 1.21 0.97 0.68 12.23 10.59 0.73 1.41 1.21 0.75

PRS(M=1), group size s=3 PRS(M=4), group size s=3
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 10.96 3.55 0.17 0.97 0.40 0.26 13.69 6.50 0.28 1.22 0.81 0.49
AVG 8.74 5.57 0.42 0.99 0.79 0.68 11.95 8.15 0.48 1.23 1.05 0.75

DHondtDO 11.59 8.80 0.52 1.18 0.90 0.59 18.40 14.17 0.55 1.64 1.37 0.68
EP-Fuzz-DA 7.83 5.93 0.58 0.96 0.73 0.60 11.31 8.39 0.56 1.20 0.98 0.68

PRS(M=1), group size s=4 PRS(M=4), group size s=4
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 10.01 2.08 0.09 0.83 0.23 0.15 12.68 5.07 0.20 1.10 0.62 0.37
AVG 7.85 3.83 0.29 0.84 0.54 0.50 11.13 6.48 0.36 1.10 0.84 0.61

DHondtDO 9.29 5.76 0.36 0.92 0.61 0.45 16.05 10.96 0.43 1.40 1.06 0.55
EP-Fuzz-DA 7.04 4.07 0.39 0.81 0.56 0.52 10.58 6.64 0.43 1.08 0.82 0.60

PRS(M=1), group size s=6 PRS(M=4), group size s=6
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 8.61 0.77 0.03 0.69 0.08 0.05 11.41 3.30 0.12 0.95 0.39 0.24
AVG 6.67 1.92 0.15 0.68 0.29 0.29 9.99 4.65 0.26 0.95 0.60 0.46

DHondtDO 7.00 2.74 0.19 0.69 0.31 0.26 13.60 7.59 0.30 1.14 0.71 0.39
EP-Fuzz-DA 6.00 1.96 0.20 0.65 0.31 0.33 9.63 4.60 0.27 0.93 0.60 0.45

PRS(M=1), group size s=8 PRS(M=4), group size s=8
AR nDCG AR nDCG

mean min M/M mean min M/M mean min M/M mean min M/M
AVG-U 7.34 0.23 0.01 0.57 0.01 0.00 10.74 2.44 0.09 0.86 0.26 0.15
AVG 5.58 1.03 0.08 0.56 0.16 0.17 9.33 3.69 0.19 0.84 0.44 0.33

DHondtDO 5.43 1.38 0.11 0.54 0.14 0.13 11.94 5.53 0.21 0.97 0.50 0.28
EP-Fuzz-DA 4.95 1.01 0.11 0.53 0.17 0.21 8.97 3.50 0.19 0.82 0.44 0.34

Table A.12: Results of offline long-term evaluation on Spotify dataset. The
best results are in bold, second-best are underscored.
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