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Abstract: We define a new model for recognizing picture languages using picture-
to-string transformations — transcriptor-evaluator machine for picture languages
(TEMPL). The model consists of a transcriptor that rewrites an input picture
into a string and an evaluator that accepts or rejects the obtained string. We
use TEMPL as a representation of picture languages that can be learned from
positive and negative examples. The attached implementation of TEMPL and
several algorithms for learning regular languages were used for benchmarking the
accuracy of training TEMPLs on selected picture languages.
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Introduction

In comparison to well-known string (one-dimensional) languages, formal two-
dimensional languages are sparsely discussed in the literature. But understand-
ing two-dimensional languages might aid us greatly when dealing with problems
concerning images, such as pattern recognition or object detection, or any other
data with a regular two-dimensional structure that has some pattern regularity
Pradella and Crespi Reghizzi [2008§].

In some literature and also throughout this paper, the terms of two-dimension-
al and picture languages will be used interchangeably. To distinguish them from
pictures in the wider, common sense, formal picture languages have formally
exact mathematical descriptions and are not defined as sets of, for example,
images of cars, which cannot be defined exactly. Therefore, also the usage of
deep neural networks, which is typically very efficient with recognizing objects
in images Krizhevsky et al.| [2012], mostly fails to learn picture languages in
the formal sense. However, there exist powerful models of automata that work
on picture languages but lack the efficiency and determinism needed for more
practical applications.

Several works have already been published (Kubon and Mraz [2020] or |[Krtek
[2014]) that focus on finding methods to learn picture languages from positive and
negative examples. This process of learning a model (a grammar) for a target
language based on some information about the words of the language is called
grammatical inference De la Higuera|[2010]. There are multiple known algorithms
of grammatical inference for several classes of languages in the one-dimensional
space of the problem, but almost no knowledge in two (or more) dimensions.

For grammatical inference of picture languages, we need a suitable represen-
tation for pictures and picture languages. The manner in which pictures can be
formally represented differs in the literature. One option is generative, which
describes the way a picture can be generated from a string. An 8-letter alphabet
with moves representing all the 8 directions (north, south, east, west, northeast,
southeast, northwest, and southwest) was introduced by Freeman [Freeman| [1961]
and later simplified into a 4-letter (up, down, left, right) alphabet Maurer et al.
[1982], that can represent a way in which a picture is drawn. That one was ex-
tended by |Costagliola et al.| [2003] in order to generate colored pictures including
labels. In either of these representations, a picture language is a set of strings
describing all pictures in the language.

A second way to represent a picture is closer to the common form — it is
a rectangular array of symbols that could be interpreted as colors of pixels in
the image. In this representation, a picture language is the set of pictures ac-
cepted by an automaton working on two-dimensional inputs. An example of such
could be the non-deterministic online tessellation automaton (Giammarresi and
Restivo [1997], the even more powerful sgraffito automaton [Prusa et al. [2014] and
two-dimensional limited context restarting automaton Krtek| [2014]. As outlined
earlier, the problem of these automata is their high complexity as the problem of
deciding whether an input image is accepted by any of them is NP-complete.

In this thesis, we introduce a new representation for picture languages that
generalizes the method from the paper Kubon and Mraz [2020]. Then we use the



new representation for learning picture languages by using algorithms for learning
(string) regular languages.

The thesis is structured as follows: Chapter [1| introduces basic definitions for
formal languages and methods for recognizing one-dimensional and two-dimen-
sional languages. We introduce also several methods for learning regular lan-
guages from positive and negative samples. In Chapter [2| we present our new
transcription-evaluation framework that represents a picture language as a tran-
scriptor that rewrites an input picture into a string and the string is accepted
or rejected by a one-dimensional (string) automaton. Chapter [3| describes the
implementation of the framework and a generator of some benchmark languages.
Chapter [4| describes the experiments and the obtained results.



1. Theoretical background

In this chapter, we define the basics of formal languages and automata theory.
Then we discuss some of the approaches for representing and learning picture
languages.

In the first section, we define the fundamental concepts of formal languages,
both one-dimensional and two-dimensional ones. The second section is dedicated
to representing string languages using various automata, including ways to obtain
an automaton from samples of language. The last section then contains a survey
of similar representations for picture languages.

1.1 Formal languages

This section presents basic definitions of strings, pictures and languages and some
useful operations we can do with them with an example for the pictures.

Informally, a word in a formal sense is a sequence of symbols. A formal
language is then a set of words.

Let X be a finite alphabet. A word over ¥ is any finite sequence of symbols
from . The empty sequence of symbols is called the empty word and is denoted
as €. We denote the n-th letter in a word w as w,, starting the sequence at wy.

We will denote the set of all words over X as ¥*. A set of words of length k
is then denoted as ¥* and a set of words shorter than k is denoted as X<F. A
language is a subset of ¥X*. Let v and w be words. A concatenation of v and w is
an operation that produces a new word such that the sequence of letters of v is
directly followed by the sequence of letters of w. The concatenation of words v
and w we denote as vw.

We say a word y is a substring of word w if there exist words x and z such
that w = zyz. Word vy is a prefizx of w if x = . Word y is a suffiz of w if z = €.

A formal picture is a table of symbols. There is the same number of symbols
in each row and the same number of symbols in each column. Symbols in a formal
picture can be thought of as pixels. A picture language is a set of pictures.

A picture over ¥ is a two-dimensional matrix of symbols from Y. The picture
p with a non-negative number of rows m and a non-negative number of columns
n is of dimension (m,n). A picture with zero rows and zero columns is called the
empty picture and denoted A. Pictures with zero rows and non-zero columns or
vice-versa are undefined.

A subset is denoted as &, a proper subset is denoted as < and a finite subset
as Cfip.

In what follows, N° and N* denote the set of non-negative and positive inte-
gers, respectively. Z denotes the set of all integers. A set of all pictures over the
alphabet ¥ of dimension (m,n) is denoted as ¥™".

The set of all non-empty pictures  J,, ,on+ ™" is denoted as X7,

The set of all pictures (J,, o+ 27" U {A} is denoted as ¥**.

The set of all pictures with n > 0 columns U, e+ Z™™ is denoted as X"

The set of all pictures with m > 0 rows |, .+ X" is denoted as X™ 7.

In a picture p € ¥, we refer to a symbol at the position i,j as p; ;. The
top-left corner has the position 0,0, see Figure [1.1]



We introduce a special border symbol # ¢ ¥ for any Y. The boundary picture
of a picture p of dimension (m,n) is the picture p over (X U {#}) of dimension
(m+2,n+2). phas p as a sub-matrix in the rectangle defined by p, ; and p,,, 1,11
and the rest of the symbols are #. An example can be seen in Figure [1.1]

The boundary is useful for automata working on a picture to indicate they are
on the edge of the picture and should act accordingly. Without the boundary, we
would need to take great care in order to handle cases where such an automaton
would go out of the bounds of the picture.

B

# | # | #
Po,o | Po,1 | Po2 7t DPo,o | Po,1 | Po2
P1o | P11 | P12 # P1o | P11 | P12
#
#

P20 | P2,1 | P22 P20 | P2,1 | P22
# | # | #

Figure 1.1: Picture p of dimension (3,3) on the left and its boundary picture p
on the right.
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1.2 Automata for the recognition of string lan-
guages

This section is dedicated to the role of automata in recognizing string languages
and grammatical inference. Grammatical inference is a problem of how to find
(infer) a representation of a target language from some information about the lan-
guage, e.g., a set of sample words from the language. We look at some algorithms
that allow us to estimate an automaton that represents the target language well.

A significant portion of discussed methods for inferring the automata recog-
nizing picture languages (Section utilise approaches used for one-dimensional
regular languages. Therefore, we recall some core definitions of this domain. Fur-
ther related definitions can be found in Rozenberg and Salomaal [1997].

Finite automata or finite state machines are one of the simplest computational
models used to decide whether a word belongs to a given language. As the name
implies, they only have a finite number of possible internal states. Such an
automaton reads a word from left to right, letter by letter and uses its transition
function to determine the next internal state.

For deterministic automata, if an automaton is in an accepting state after
reading the whole input, the input word belongs to the language accepted by the
automaton, otherwise, the input word is rejected and belongs to the complement
of the accepted language. In general, an automaton needs not have a transition
defined for each pair of state and input, implying that if such a pair occurs,
the word is automatically rejected by the automaton. However, we will define
a deterministic finite automaton that has a complete transition function defined
for all pairs of symbols and states.

Definition 1. A deterministic finite automaton (DFA) is a 5-tuple A = (3, Q, 6,
Qo, Qa), where ¥ is an alphabet, Q) is a finite set of states, qo € Q is the initial
state, Q, S Q is a set of accepting states, and § : Q x X — @ is a transition
function.



An input to a DFA is a word w € 3¥*. A configuration of a DFA is a pair (g, )
of a state ¢ and a word s over >. The word s represents an unread suffix of the
input word.

A computation over an input word w is a sequence of configurations that starts
with the initial configuration (gy, w). Each subsequent configuration is obtained
by a step from the previous one.

A step in a computation of the automaton A is a pair of configurations
(¢i,as) — (gi+1,s) such that ¢;1 = (g, a);a € X,s € ¥*. We say that the
step is from the configuration (g;, as) to the configuration (g;11, s). Note that, for
any DFA, from each configuration with a non-empty suffix there exists exactly
one possible step.

An iteration of the transition function § from a state ¢ over a string w of
length n is denoted as §*(q,w) and equals to 0(...d(0(q, wp), wy) ..., wy—1) if w
has a length at least 1, otherwise it equals to q.

A DFA accepts a word w € ¥* if there exists a computation that starts in the
initial configuration (go, w) and ends with the last configuration of the form (g, s)
where ¢ € ), and s = ¢.

1.2.1 Regular inference

A grammatical inference is a process, where we obtain some type of formal lan-
guage representation from some information about the target language, like a set
of sample words. A regular inference is then a special type of grammatical infer-
ence, where the inferred language is a regular language, in our case represented
by a DFA. Therefore, regular inference is often called learning DFA or learning
regular languages. In the whole thesis, we apply regular inference only. We im-
pose this restriction in order to simplify the learning process and to reduce the
space of admissible solutions.

We may not always have the exact knowledge of the target language L < >*.
Therefore, we need to establish a way how to obtain a DFA from two finite sets
of sample words (L4, L_), where Ly Cp;y, X% is a set of words from the language
L and L_ g, X% is a subset of words from ¥*\L. L, is called a positive sample
of L and L_ is called a negative sample of L. Obviously, L, and L_ are disjoint.

We say that language L' < X* is consistent with the sample (L., L_) if
LiclandL_ nLl' =g

The idea is that we start with a trivial prefix automaton such as a prefix tree
acceptor (PTA, see below) and then progressively merge states of the automaton
which are somehow similar. For a given sample (L, L_), the corresponding
prefix tree acceptor accepts all words from L, and rejects all words from L _.
Hence, PTA is consistent with (L, L_). However, we suppose that the language
contains more words. By merging states of PTA we obtain an automaton that
is still consistent with (L, L_), but smaller. This not only helps to reduce the
complexity of the automaton but ideally should help to find similarities in the
sample words in order to discover a more general pattern among them.

The danger here is that the data provided may not hold the crucial information
needed to distinguish the language, so the merging algorithm may overgeneralise,
in extreme cases even turning the automaton into a constant function.



Derived automata

As previously stated, in many algorithms for learning regular languages the core
operation for training an automaton is state merging. If two states serve a very
similar role in an automaton, it can be useful to merge them into one in order to
help combine the information from each state to generalize the automaton.

We can imagine a scenario where we start with a large automaton with rela-
tively little interconnectivity in its transitions and iteratively merge similar states
to get a more consolidated version of the original automaton. This new version
should hopefully combine the information from previously unrelated states so
that it is able to process words that the original automaton would have rejected
on the basis of an undefined transition.

The merges can be formalized as a partition of the automaton. This means
defining sets of states which behave as one in a new more consolidated automa-
ton. Splitting or combining these sets gives us a larger or smaller automaton,
respectively. This creates a partial ordering where on one side there is a partition
where each state is in its own set and on the other is a partition where all states
are in a single set.

We will use formal definitions of the search space described in |Dupont et al.
[1994].

For learning DFA, we need to represent partial knowledge of a target automa-
ton, where we know that the target automaton has a state reachable from the
initial state, but we do not know whether the state is accepting or rejecting.

E.g., let L = {a,b}. The automaton should reach an accepting state after
reading ab. But we do not know whether the initial state or the state reached by
reading the word a is accepting or rejecting. Such partial knowledge of a DFA
can be represented by an incomplete automaton.

Definition 2. An incomplete automaton (IA) a 6-tuple A = (3, Q, 9, qo, Qu, Q»),
where Y is an alphabet, Q) is a finite set of states, qo € Q) is the initial state,
Q. < Q is a set of accepting states, Q. < @ is a set of rejecting states and
0:Q x X — Q is a partial transition function. If a state belongs to Q,, we say it
has a positive label. Conversely, if it belongs to QQ,, we say it has a negative label.

An incomplete automaton can be reduced to a DFA by disregarding @, and
defining all undefined transitions as a transition into a new special non-accepting
state. We call the resulting automaton the complete DFA of A.

For any set .S, a partition 7 is a set of pairwise disjoint non-empty subsets of
S whose union is S. We call each of these subsets a block. Let s be an element of
S, then we denote the block in 7 containing s as B(s, 7). We say that m; refines,
or is finer than, 7; if and only if every block of 7; is a union of one or several
blocks of ;.

Now we will introduce a quotient automaton, which is an incomplete automa-
ton obtained by merging some states of an incomplete automaton. The following
definition can be considered as a generalization of the quotient automaton used
in the reduction of DFAs (Rozenberg and Salomaal [1997]).

Definition 3. Let A = (3,Q, 0, qo, Qu, Q) be an IA and w be a partition on Q
such that for all B € 7, for all q,q' € B and each a € X it holds that B(¢',m) =
B(q,m) implies B(§(¢',a),m) = B(d(q,a),n) and no partition can contain states
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from both Q, and Q.. Then the quotient IA A/m = (3,Q’, B(qo,7),Q.,,d") is
derived from A with respect to the partition ™ of Q.
The quotient automaton is then determined as follows:

Q' =Q/m ={B(q,7)lqg e Q},
Q,={BeQ|BnQ.# I},
Q,={BeQ'|BnQ,# J},

8" is defined as follows: for all B, B' € Q' for all a € &2 we define '(B,a) =
B’ where B' = B(§(q,a), ) for some q € Q.

In the above definition, the transition function ¢’ is well defined, as if g1, ¢o
are states from the same block B of m, then §'(B(q1,7),a) = B(6(q1,a),7) =
B(6(qa,a),m) = §'(B(g2, ), a) for all a € 3.

We say that states from () that belong in the same block in 7 are merged.

It is easy to see, that the above construction of a quotient automaton preserves
consistency with a sample.

Proposition 1. If IA A is consistent with a sample (L, L_), then A/m is con-
sistent with (Ly, L_) as well.

Definition 4 (Dupont et al. [1994]). A positive sample L, is called structurally
complete with respect to an automaton A accepting L, if A = (,Q, q0,Qa,0)
accepts all elements of L, in such a way that:

1. every transition of A is used at least once, and

2. every element of Q, (the accepting state set of A) is used as an accepting
state for at least one word from L. .

Definition 5. A prefiz tree automaton (PTA) A = (X,Q,0,q0,Qa, Qr) for a
sample (L, L_),Ly,L_ Cppn ¥* is an incomplete automaton such that:

o @ is the set of all unique prefives from L, and L_ including the empty
string.

* qo=¢,
® Qa:L+7 QT:L—7

e § is defined in the following way: Yw € Q,Va € X, if wa € Q then 6(w,a) =

wa.

The complete DFA of PTA A accepts a word w if and only if it belongs to
L.

For processing words, the complete DFA is always used. The main use of the
PTA is to obtain an initial TA consistent with (L., L_) that accepts exactly the
words from L, and rejects all words from L_. PTA is then used for obtaining a
better TA consistent with (L., L_), which then results in a better reduced DFA.

An example of a prefix tree automaton of a target language can be seen in
Figure (1.2
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Figure 1.2: The prefix tree automaton for the sample ({b, ba, aaa,aab, bba}, {a,
bb}). Accepting states are represented by double circles, rejecting states are rep-
resented by single circles, and the remaining states are marked by dashed circles.
All transitions are drawn as orientated arrows marked by the read symbol.

Definition 6 (Dupont et al|[1994]). Universal automaton A, has a single state
and accepts all the strings defined over the alphabet 32, i.e. L(Ay) = X*, and it is
the smallest automaton with respect to which every sample of ¥* is structurally
complete.

Let P(A) denote the set of all partitions of the state set of an automaton
A. Let r(m;), or simply 7;, denote the number of blocks of the partition ;. Let
m = {Bi,..., B, } and m be two partitions from P(A). We say that my directly
derives from 7 if the partition 7y can be constructed from 7, as follows: my =
{B; U By} v (m\{Bj, Bi}), for some j, k between 1 and ry, j # k. Consequently,
o =711 — 1.

This derivation operation defines a partial order relation on P(A), which we
shall denote <. In particular, we have m; < my. Let « denote its transitive closure.
In other words, m; « 7; if and only if 7; is finer than ;. By extension, we say
that A/m; is finer than A/m; and that A/m; derives from A/m;. By construction
of a quotient automaton, we have the language inclusion property which may
be reformulated as follows: if m; « 7; then L(A/m;) < L(A/m;) and we write
A/ﬂ'i < A/Ti'j.

Proof. Let w be a word accepted by L(A/m;). It must hold that the computation
of A on w ends in a state q that belongs to an accepting block B € ;. If B is in
7, then w is accepted by L(A/m;). If B is not in m;, then it could only be merged
with other accepting blocks from m;, therefore q belongs in an accepting block of
m; and w € L(A/m;). O

The set of automata partially ordered by the relation « is similar to a lattice,
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that we shall denote Lat(A), of which A and A, (the universal automaton) are
the null and universal elements, respectively.

The depth of an automaton A/m in Lat(A) is given by N — r(w), where N
is the number of states of A. Consequently, the depth of the automaton A in
Lat(A) is equal to 0 while the depth of the universal automaton Ay is equal to
N.

This defines a search space that we can use for generalization.

Definition 7. Let A be a DFA. An antistring as < Lat(A) is a set of automata

such that any element of as is not related by < with any other element of as in
Lat(A).

Definition 8. An automaton is said to be at a maximal depth in a lattice of
automata, if there is no automaton A’ that may be derived from A such that

LAY AL = .

Definition 9. The border set BSPpra(Ly;L_) is defined as the antistring in
Lat(PTA(L,)), of which each element is at a maximal depth.

Consequently, the border set of a lattice is the set of automata that correspond
to the theoretical limit of the generalization we can reach while consistently re-
jecting the negative sample.

1.2.2 Algorithms for regular inference

This subsection is dedicated to algorithms for learning finite automata described
by [Tirnauca [2012]. The algorithms start with prefix automata in order to obtain
a good DFA.

For many of the algorithms, it is useful first to define the merging operation.
The aim of the merge is to eliminate a state from the automaton in a way that
preserves as much of the original structure as possible.

Let a state p be merged into state ¢q. This is possible only if one of the two
states is neither accepting nor rejecting or if both p, ¢ are accepting or both p, q are
rejecting. All transitions that would lead to p are changed so that they now result
in ¢q. Next, if the p has a label (positive or negative), we copy it onto ¢, which
always either has the same label or none at all. Finally, we handle the outgoing
transitions of p. Each outgoing transition must have a different symbol that
triggers it. If there is a corresponding transition triggered by reading the same
symbol in ¢, we recursively merge the states resulting from the transitions, and
the eliminated and the target states are assigned with respect to the originating
state of the transition.

Special considerations are unlabeled nodes and undefined transitions. The
issue is that the sub-tree rooted at p might contain information that is not present
in the sub-tree of q. This might either be transitions that are undefined or states
which do not classify an example from the sample. Discarding such information
can easily lead to a degraded automaton.

Definition 10. Given an incomplete automaton A = (X, Q, 9, qo, Qa, Qy), we say
that two states p and q are distinguishable in A if there exists a word u € ¥* such
that (6(p,u) € Qg and §(q,u) € Q) or (0(p,u) € Q, and d(q,u) € Q). Otherwise,
p and q are not distinguishable in A.

11



There are two modifications to the original algorithm. If p is not distinguish-
able from ¢, then:

« labels of labeled nodes in the sub-tree rooted at p must be copied over their
respective unlabeled nodes in the sub-tree rooted at ¢, and

o transitions in any of the nodes in the sub-tree rooted at p which do not
exist in their respective node in the sub-tree rooted at ¢ must be spliced in
the sub-tree rooted at p.

A pseudocode for merging states p and g of an incomplete automaton A can
be seen in Algorithm [1]

Algorithm 1 Merge
function MERGE(p, ¢, A = (%, Q, 9, qo, Qa, @+)) > A is an incomplete
automaton, p and ¢ are states from )
for all t € ), a € ¥ incoming transitions to p do
if 0(t,a) = p then
d(t,a) < q
end if
end for
if (peQ, & qe@,) or(pe @, & g€ @,) then
abort merging
end if
if pe @, then
insert ¢ into @,
else
if pe @, then
insert ¢ into @,
end if
end if
for all a € ¥ do
if d(p,a) # & then
if 6(¢q,a) # & then
A — merge(d(p,a),d(q,a),A)
else
6(q,a) < d(p, a)
end if
end if
end for
remove p from A
return A
end function

The result of the merge operation is either rejection of the merge (the states
p and ¢ are distinguishable and cannot be merged) or a new IA A’ with the
number of states lower than the number of states of A. The merge operation
has the following important property: if A is consistent with (L, L_), then A’
is consistent with (L, L_) as well.

12



The Trakhtenbrot and Barzdin algorithm

The Trakhtenbrot and Barzdin algorithm produces a DFA from a sample set
of words in time O(mn?) where m is the initial number of states of the PTA
consistent with (L, L_) and n is the final number of states of the resulting DFA.
The sample needs to be complete, which means it has to include all words up
to a certain length. This ensures the prefix tree does not contain any undefined
transitions, apart from the leaves, since if a word is in the sample, then all its
prefixes are in the sample too and we know their labels.

The algorithm merges eligible — not distinguishable — states in the breadth-
first order.

We define U as a set of unique nodes; nodes that are pairwise distinguish-
able. The Trakhtenbrot and Barzdin algorithm starts by adding the root of the
automaton A to the set of unique nodes. Then, it visits each proceeding node
p of the prefix tree automaton in breadth-first order and compares the sub-tree
rooted at p with the sub-tree rooted at each node from the unique nodes set.
If p is pairwise distinguishable from each node from U, the algorithm adds p to
U. Otherwise, if a state ¢ € U is found so that p and ¢ are not distinguishable
the algorithm updates the automaton A by merging state p into state g. The
algorithm halts when all states are inspected. The final content of U is the set of
states of the learned final automaton obtained as the complete automaton of A.

Traxbar

Traxbar is an extension of the Trakhtenbrot and Barzdin algorithm so that it can
be used with an incomplete set of sample words and still maintain consistency.
Some inner nodes of PTA can be without label, i.e. they correspond to a word
for which we do not know whether they belong to the target language or not.

The algorithm produces an automaton consistent with the training set. How-
ever, it may have some nodes unlabeled. In the experiments (Chapter , we
consider the unlabeled states as rejecting. This is done under the assumption
that any language in question is sparse and there is a much greater likelihood
that a randomly chosen input will not belong to the language.

It is worth noting that during its run, the algorithm slowly increases the den-
sity of transitions and labelled nodes in the automaton. This results in the merges
being increasingly rarer as the constraints for two states to be not distinguishable
get stricter with time. If the greedy algorithm makes poor decisions early on, it
is not possible to remedy them. Conversely, if the algorithm is able to guess good
initial merges, the resulting automaton can be highly accurate.

Traxbar has no way of knowing which merges can lead to a robust result. This
concern is addressed in the next algorithms.

For the complete pseudo-code of the Traxbar algorithm see Algorithm 2| In
the algorithm, the Boolean function distinguishable(p, ¢, A) returns true, if states
p and ¢ are distinguishable in the automaton A.

Evidence-driven state merging

Evidence-driven state merging (EDSM) is an attempt to better distinguish be-
tween possible merges. It computes a score for each pair of states in the current
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Algorithm 2 Traxbar algorithm
function TRAXBAR(L,,L_) > L., L_ is a pair of sets of positive and
negative samples of an unknown language over alphabet X..
A«— PTA(Ly, L)
U« {e} > ¢ is the initial state of A
while p visits each proceeding node of A in the breadth-first order do
dist < true
for all ¢ € U do
dist « distinguishable(p, ¢, A)
if not dist then
break
end if
end for
if dist then
append p to U
else
A «— merge (p,q, A)
end if
end while
return A
end function

set of states in order to determine the best candidates for each merge, rather than
simply merging the first admissible pair it finds.

The score is computed by crawling down the subtrees rooted at the two states
p and ¢ in consideration. If two nodes x and y are found, that have the same
path to their respective node p or ¢, then the algorithm looks at the labels of x
and y. If they match, the score is increased by 1. If they are different, then p
and ¢ are distinguishable and the score is set to —co.

The number of matching labels should be the evidence that the merge is a
correct one.

There are two potential problems with the EDSM algorithm. The first is
that computing the score for each pair during each iteration is computationally
expensive. The algorithm has a time complexity O(m?n) where m is the initial
number of states and n is the final number of states. We need O(m?) steps to
find the best score for each merge and we will do O(m) merges. And in an edge
case, the process can be executed for each of the n final states.

The second problem is using sparse data. When language is more complex,
it means that we need more words in the sample to capture this complexity. In
case we do not have an adequate number of samples, sub-trees of the prefix tree
automaton will rarely have a similar structure and capture the same suffix. And
when the suffixes rarely match, it is hard for the algorithm to find any evidence
of whether or not to merge two states. Thus the scores might be almost always
zero making the evidence component of the algorithm much less significant.

For the complete pseudo-code of the EDSM algorithm see Algorithm [3]
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Algorithm 3 EDSM algorithm
function EDSM(L,,L_) = L., L_ is a pair of sets of positive and negative

samples of an unknown language over alphabet X.
A«— PTA(Ly, L)

repeat
maxr «— —1
for all pairs (p,q) € (Q x Q) do > () is the set of states of A

compute score(p, q)
if score(p,q) > max then
max < score(p, q)

Pmaz = P
Qmaz = 4
end if
end for

if max > —1 then
A~ merge(pmamu Qmazx, A)
end if
until no merge is possible
return A
end function

Windowed EDSM

Due to the complexity of EDSM, it is unsuitable for use with larger datasets. One
possibility to tackle this problem is to introduce a window of states in which the
scores will be computed. The window is a subset of states that go from the root
in breadth-first order up to a limit, which is specified at the beginning and can
increase if there are no possible merges. The initial window size can be adjusted
so that it balances the computational time demand and the thoroughness of the
search for the best merge.

The introduction of the window restricts the search space and decreases the
time complexity of the algorithm so that it is closer to O(m?n) rather than
O(m?n), assuming the window size will not increase with the size of the input
for the same language. However, this approach still has the weakness to a prefix
tree automaton, in which sub-trees have vastly different structures.

For the complete pseudo-code of the Windowed EDSM algorithm see Algo-
rithm [l

Locally k-testable languages

This method assumes that a given language is k-testable, for some positive integer
k. The class of k-testable languages is a subclass of regular languages that is
learnable from positive samples (De la Higueral [2010]).

A k-testable language L is characterized by a set T of strings of length £,
a set of prefixes and a set of suffixes with length £ — 1, and a set of accepted
words shorter than k. This means that each word from L longer than k has only
substrings from 7" and a prefix and a suffix from the limited sets of possibili-
ties. Therefore any word can simply be checked using the sets if it fulfills these
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Algorithm 4 Windowed EDSM algorithm
function WEDSM(L,, L_,winsize) = L., L_ is a pair of sets of positive
and negative samples of an unknown language over alphabet .
winsize is the initial window size
A<— PTA(Ly, L)
W «— {e} > ¢ is the initial state of A
repeat
while size(W) < winsize and {W # Q} do
get the next node ¢ of A in the breadth-first order
add ¢ to W
end while
max «— —1
for all pairs (p,q) € (W x W) do
compute score(p, q)
if score(p,q) > max then
max < score(p, q)

Pmaz = P
Qmaxz = 4
end if
end for

if max > —1 then
A« merge<pmaxa dmazx> A)
else
WINSLze «— 2 * winsize
end if
until no merge is possible
return A
end function
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conditions.

Definition 11 (Kubon and Mraz| [2020]). A (string) language L < ¥* is called
k-testable if there exist four finite sets of words: I < XF 1 F < ¥k1 O < u=k,
and T < X% such that a word belongs to L if it is from C, or its prefir of length
k—1isin I, its suffix of length k—1 is in F, and all substrings of length k belong
toT.

Given a set of positive samples, we can extract the set of all present prefixes
and suffixes of length k—1 as I and F’ respectively, the set of substrings of length
k as T and a set of words shorter than k letters as C. We can then check any
new word using this knowledge base to decide if it belongs to the language in
question.

This method does not utilize the automata derivation method. However, the
various sets can easily be thought of as a nondeterministic finite automaton that
is equivalent to the following regular expression: C'U {IX* " X*F ~ (X% — 3% (XF —
T)%*)). Therefore it is equivalent to a DFA.

1.3 Automata recognizing picture languages

There are many known models of automata recognizing picture languages. Most
of them work directly on two-dimensional inputs. In this section, we introduce
several such models that were published in various papers.

Four-way finite automaton

One of the first models of automata for recognizing picture languages is the
deterministic four-way finite automaton (4DFA) (Blum and Hewitt| [1967]).

The main difference in operation between 4DFA and DFA is the set of possible
movements for the head. The head position determines which symbol will be read
next. The 4DFA does not read the input in a sequence but determines the head
movement with its transition function. Given the state and symbol, the transition
function returns a new state and a direction where the head will move. During
its computation on an input picture p, the head must not leave the boundary
picture p.

Definition 12 (Giammarresi and Restivo |[1997]). A deterministic four-way au-
tomaton (4DFA) is a 7-tuple A = (X,Q, 9, A, qo, Qa, qr), where X is an alphabet,
Q is a finite set of states, A = {r,1,u,d} is the set of directions, qy € Q is the
initial state, q, € Q) is the accepting state, q, € Q) is the rejecting state, and
0 (Q\{qa> qr}) X X — Q x A is the transition function.

An input to a 4DFA is a picture p € ¥**. The automaton works on the
boundary picture p of p. A configuration of a 4DFA is a pair of a state and the
position (x,y) on the boundary picture p.

A transition is a pair of configurations (g¢;, (x;,¥;)) = (i+1, (Tit1,¥ir1)) such
that (¢, Puy;) = (Gi+1,d) for some d € A, and the position (x;11,¥i41) is deter-
mined by d and equals to:

o (z;+ 1,y if d =d,
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* (x’b_lvyz) ifd:uv
e (z5,y;—1)ifd=1 and
. (xi,yi+1) if d=r.

In case the configuration position reaches the boundary, the next transition has
to happen in the opposite direction.

A computation of 4DFA on an input picture p is a sequence of configurations
such that the initial configuration is always (qo, (1,1)) on the boundary picture
p. Each subsequent configuration is obtained by a transition from the previous
one. The computation ends when the automaton reaches either the state ¢, or ¢,
because there are no possible steps from any of these states. If the final state is
qa, the automaton accepts p, otherwise, it rejects p.

Note that the 4DFA does not have to visit every position in the picture in
order to accept it.

There is a possibility that a computation may reach neither the accepting nor
the rejecting state. This happens if the computation reaches the same configura-
tion twice. The total number of different possible configurations can be obtained
by multiplying the number of possible states and positions of the head. So if
the computation for an automaton with s states on a boundary picture p of size
(m,n) takes longer than s-m - n steps, we terminate the computation and say
the automaton rejects the picture p.

Unfortunately, such a condition cannot be checked by the 4DFA itself. The
steps need to be counted externally.

Returning finite automaton and boustrophedon automaton

A returning finite automaton and boustrophedon automaton presented by Fernau
et al. [2018] work on a picture p’ which is a picture p with added special symbols
# on both sides of each row. The returning finite automaton reads each row left
to right and then top to bottom, while otherwise working similarly to a DFA. The
boustrophedon automaton then alternates between left-to-right and right-to-left
movements.

Definition 13 (|Fernau et al. [2018]). A deterministic returning finite automaton
(RFA) is a 6-tuple M, = (£,Q, 6, qo, Qf, #), where X is an alphabet, Q) is a finite
set of states, qo € Q) is the initial state, Qf < @) is a set of accepting states, and
§:Q x (XU {#}) — Q is a transition function and # is a special symbol not in
3.

The definition differs from the source since we find the original definition
needlessly complicated for our purpose, but our definition results in an equivalent
class of accepted picture languages. The original definition includes rewriting
symbols visited by the automaton with a special symbol o ¢ 3 U {#}. However,
the rewritten symbols serve just for determining the next visited position of the
picture. Our definition avoids rewriting.

A configuration of an RFA is a triple (q,(7,7),p"), where ¢ is the current
state, (i,7) is the current position in the picture p’. The initial configuration is

(90, (0,1),p").
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A computation is a sequence of configurations that starts with the initial con-
figuration and given a configuration (g, (7, j),p’) the next one is always (d(q, #),
(141, 0),p) if j + 2 is equal to the width of p/, or (d(q,a), (¢, + 1),p’), where
a is the symbol at (i, j) of p/, otherwise. Note that the RFA does not read the
right border.

M, accepts picture p, if any computation on p’ ends with configuration (g, (m—
1,n —2),p'), where g € Qf, m is the height of p’ and n is the width of p'.

Definition 14 ([Fernau et al.|[2018]). A deterministic boustrophedon automaton
(BFA) is a 6-tuple M, = (£, Q, 0, qo, Qf, #), where X is an alphabet, Q is a finite
set of states, qo € Q) is the initial state, Qf < Q) is a set of accepting states, and
§:Q x (XU {#}) — Q is a transition function and # is a special symbol not in
2.

A configuration of a BFA is a triple (q,(i,7),p’), where ¢ is the current
state, (i,7) is the current position in the picture p’. The initial configuration
is (QO7 <07 1),])/).

A computation is a sequence of configurations that starts with the initial
configuration. For a current configuration (q, (7, 7),p’):

o For an even i, the next is always (0(q, #), (i + 1,7),p') if j + 2 is equal to
the width of p/, or (6(q,a), (i,7 + 1),p'), where a is the symbol at (i, j) of
p’, otherwise.

o For an odd 4, the next configuration is (6(q,#), (¢ + 1,0),p') if j = 1, or
(0(q,a), (i,7 —1),p') otherwise.

Again, note that the BFA skips the terminating # on each line.

M, accepts picture p, if any computation on p’ ends with configuration (g, (m—
1,7),p'), where ¢ € Q, m is the height of p’ and j = 1 if m is even, or j + 1
equals the width of p’ for m odd.

Restarting tiling automaton

The restarting tiling automaton was introduced by Prusa and Mraz [2013]. It
combines two approaches. The first is rewriting tiles of the picture according
to non-deterministic rewriting rules. The second is restarting, which aims to
iteratively shorten an input until either there is a ”correct” short input, or the
algorithm gets stuck and rejects the input. This shortening is done by repeatedly
scanning the input and doing one rewrite before restarting. FEach rewrite must
somehow shrink the input (which we define later).

A restarting tiling automaton utilizes a scanning strategy to determine the
order in which all positions of an input picture are visited. A scanning strategy
must satisfy a requirement that each position on the picture must be visited
exactly once.

A scanning strategy for this automaton consists of a starting point, which
is one of the corners of the picture, and a function f(i,j, m,n), where (i, )
is a current position on the picture and (m,n) is the size of the picture, that
determines the next position to be visited.

19



Definition 15 (Prusa and Mréz [2013]). A two-dimensional restarting tiling
automaton (2RTA) is a 6-tuple M = (X,T",Op,0,v, u), where ¥ is a finite input
alphabet, T is a finite working alphabet (X < T), Op < (I' U S)*? is a set of
accepting tiles, v = (cs, f) is a scanning strategy, p : I' — N7 is a weight function
and 6 < {(U — V)|U,V € (I' u S)*?} is a set of rewriting rules such that in
every rule v — v only a single position of u is changed and moreover if a € I’
is rewritten into b € T, then u(b) < wu(a). A deterministic 2RTA (2DRTA) is
a 2RTA M = (X,1,0p,6,v,u) with the set of rewriting rules 0 satisfying the
additional condition that for every tile T € (I'u S)*? there exists at most one rule
in 0 with the left-hand side T.

Symbols from I'\X are called auxiliary symbols and must not be contained in
any input picture.

The automaton M works in phases and restarts after each phase. In each
phase, it starts at a staring position (ig,jo) on the boundary picture p. The
starting position is one of the corners determined by the scanning strategy v.
M scans this position using a 2-by-2 window and determines whether there is
a rewriting rule for the contents of the scanning window. If there is none, the
automaton moves to the next position specified by the scanning strategy. Once
a suitable rule is found, the whole window is rewritten according to one of the
rules applicable to the scanned tile, and the automaton restarts.

If the whole boundary picture has been scanned and no applicable rule exists
for any of the tiles, the final verification is done by checking whether each 2-by-2
tile of the picture belongs in O, i.e. if the boundary picture belongs in the local
language of Op. If so, M accepts the picture p, otherwise, it rejects it.

Two-dimensional online tesselation automaton

The two-dimensional online tesselation automaton can be thought of as filling out
a table with the size of the picture. It starts in the top-left corner of the picture
and works its way in diagonal lines to the bottom-right corner. The state of each
cell in the table is determined solely by the contents of the cells directly above
and to the left and the symbol at the corresponding place in the picture. The
input which would be out of bounds is replaced by a default state.

Definition 16 (Giammarresi and Restivo| [1997]). A deterministic two-dimen-
sional online tesselation automaton (2DOTA) is a 5-tuple A = (2,0Q,0,qo, F),
where 3 is an alphabet, Q) is a finite set of states, qo € Q) is the initial state,
F < Q is the set of accepting states, and 0 : (Q x Q x ¥ — Q) is the transition
function.

A computation of 2DOTA on a picture p € X" consists of assigning a state
from @ to each position (7,7) on p. The state is determined according to the
transition function from the states assigned to positions (i — 1,7) and (i,7 — 1),
and the symbol p; ;.

The computation starts by assigning the initial state gg to each position in
the first row and the first column in the boundary picture p. Then follow the
m+mn—1 steps. In the first step, the state §(qo, o, p(0,0)) is assigned to (0,0). In
the next step, the states are assigned to positions (0, 1) and (1,0) simultaneously.
In the k-th step, a state is assigned to each position (i, j) such that i +j + 1 = k.
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Figure 1.3: The first two steps of a 2DOTA automaton.

A 2DOTA accepts a picture if there is an accepting state assigned to position
(m—1,n—1) on p.

Example 1. Let A = ({1}7 {QO7 (J1}> qo, {Q1}; 6)7 where 5(Q07 QO) =qQ and 5((]17 q0) =
5(qo, 1) = 9(q1,q1) = qo, be a 2DOTA. Then the first two steps of the computation

for any picture can be seen in Figure[1.5
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2. Our model

This chapter is dedicated to methods that first transform pictures into strings,
and then use a string automaton to recognize them. The idea is to leverage our
understanding in tackling problems in the domain of one-dimensional languages
to help us in the more complex domain of picture languages.

In Section 2.1] we review the motivation for the framework. In Section 2.2 we
define the framework and in Section we show some properties of the frame-
work.

2.1 Preliminary developments

A string representation for pictures was already proposed in the past. Maurer
et al.| [1982] represented a picture as a sequence of movements that a pen would
make on a plane to draw the picture. The word would then use the alphabet
IT = {u, d,l,r}, representing the up, down, left, and right movements, respectively.
Such a picture will always be connected, so a possible extension to the alphabet
can be made so that it contains symbols for raising and lowering the pen.

Another approach was introduced by |[Kubon and Mraz| [2020]. This approach
is further developed in this thesis. Some results obtained in this thesis are in-
cluded in the paper [Kubon et al. [2023]. In the article, various methods of tran-
scribing the pictures into strings are used to then utilize an algorithm to construct
a DFA to classify the resulting strings.

Rather than a simple row-by-row or column-by-column transcription into a
string, the proposed transcription methods have used a peculiar order, which
concatenated together the contents of 3-by-3 windows of the picture separated
by a special symbol. This, the authors theorized, should have led to a better
generalization of other simpler approaches. Nevertheless, the authors suggest
more research should be done on more complex strategies for mapping.

2.2 Transcription-evaluation framework

This thesis aims to expand on the mapping from picture to string. This section
is therefore dedicated to presenting a model that can accommodate various ap-
proaches to first transcribing a picture into a string and then using an algorithm
that works with one-dimensional languages.

The most general model for the two-step approach that we use here is the
TEMPL.

Definition 17. Let ¥ and ' be alphabets and ¥ does not contain the symbol
#. Then transcriptor-evaluator machine for picture languages (TEMPL) is a
pair M = (T, E), where T is a map from (3 U {#})** to I'* and E is a string
automaton accepting a language L(FE) < T'*.

We say that M accepts a picture language L(M) = L(T,E) = {p € ¥** |
T(p) € L(E)}.

There are two components in TEMPL M = (T, F) that correspond to the
steps in the approach. The transcriptor 7' takes a picture and outputs a string,
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and the evaluator F decides if a string belongs to a string language. An arbitrary
string automaton, like a DFA, can serve as the evaluator. In the next section, we
will discuss transcriptors.

A similar picture-string transducer was studied by Otto and Mréz [2015]. The
paper studied mainly models that scan an input picture row-by-row in a left-to-
right manner using a head that scans a single symbol at a time. Here, we consider
more general rewriting of pictures into strings.

2.2.1 Transcriptor

In simple terms, the transducer is an arbitrary picture-to-string mapping. Further
developments that improve the performance may be discovered in the transcrip-
tion process (such as more complex scanning strategies suitable for a given task).

In this thesis, we will limit the transcription to a two-part scanner. First,
a scanning strategy is devised using a simple automaton, and then a constant
dictionary is used to map fixed-size factors of the picture into fragments of a
string in the determined order. We call these parts scanning strategy and sequence
dictionary. Thus scanner is a pair N = (S, D), where S is a scanning strategy
and D is a sequence dictionary.

Scanning strategy

A scanning strategy is a mechanism that provides a scanning sequence, i.e. the
order in which various pixels should be processed. The scanning sequence is a
sequence of positions, around which the scanning window is centered. For this
thesis, we limit the scope of possible scanning strategies to four-way scanner
automatons (4SA, see below).

4SA works similarly to a 4DFA, but in each step, it also decides whether to
add the current position to the output scanning sequence.

Formally, a scanning sequence for a picture p of dimension (m,n) is a finite
sequence, where each element is a pair of non-negative integers (i,7);0 < i <
m+1,0<7<n+1

Definition 18. A four-way scanner automaton (4SA) is a system M; = (Q, X,
A, qo,qn, ), where Q is a set of states, ¥ is an input alphabet, A = {{,r,u,d}, qo
is the starting state, qn is the halting state and § < Q x (X U {#}) — Q x A x
{position, e} is the transfer function.

Whenever the 45A M, is in the state ¢ and scans a symbol a € (X U {#})
and 6(q,a) = (¢, d, position) for some ¢ € Q,d € A, the automaton appends
its current position on the border picture p to its output. If d(¢q,a) = (¢, d,€),
nothing is added to the output.

In this thesis, we will place some additional constraints on the 4SA. First, we
require that the transfer function  does not depend on the contents of the input
picture. For all ¢ € @ and for all a,b € ¥ it holds that §(q,a) = §(q,b). The 4SA
can only differentiate if it reads a symbol from the picture or a border symbol.
This restriction is in place to preserve the function of the scanning strategy.
A more powerful automaton would be able to do some precomputing on the
picture, which is beyond the scope of this thesis. And second, the output scanning
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sequence must contain each position of the picture p exactly once. Hence, it can
contain also some positions on the border picture p.

Configuration and transition relations of the 4SA are similar to the ones of
4DFA. However, the 4SA in each transition determines whether to output the cur-
rent position on the boundary picture p. The output is part of the configuration
as well.

A computation in 4SA is a sequence of configurations where the initial config-
uration is always (qo, (1, 1)), the whole input, and an empty sequence representing
the output. Each subsequent configuration is obtained by a step from the previ-
ous one. The computation ends when the automaton reaches the state ¢,. The
output of the computation of 4SA M, on an input picture p, denoted as M;(p),
is a scanning sequence. We call the elements of M (p) anchors.

Evidently, the scanning sequence produced by M, on an input picture p de-
pends only on the dimensions of the picture p.

Sequence dictionary

A sequence dictionary is responsible for using the scanning sequence to transform
a picture into a string. It is a map that takes as an argument some part of the
picture and outputs a substring that is to be appended to the resulting string.
The part of the picture is specified by a window w, that is a sequence of positions
(r1,dq) ... (re,dg). If an anchor has a position (a,, ag4) in the picture, the symbols
from positions(a,+ry, ag+dy)...(a,+re, ag+dy) are concatenated and then mapped
to words over an output alphabet using a dictionary.

Since the dictionary is working with a finite alphabet ¥ U {#} and a finite
window, there exist only finitely many possible combinations of symbols in the
window, so the map itself can be a simple table.

Definition 19. A sequence dictionary is a tuple D = (3, w, t, k) where ¥ is the
input alphabet, T is the output alphabet, w = ((ri,dy) ... (r¢,dy)) for € = 0,r;,d; €
Z is a sequence of relative positions of length £ and t : (X U {#})¢ — T* is a map.
k is a constant.

The sequence dictionary takes as an input a picture p and a scanning sequence
S. For each element (i, j) of S, it takes the symbols of p specified in w relatively
to the anchor (i,7) (takes # if the position is outside p) and creates the word
Ditryjtdys- - s Ditrejid, from (X U {#})*. Then it maps this word using ¢ to a
string from I'* and appends the string to the output. The output transcription
of dictionary D for a picture p and scanning sequence S is a word over I' denoted
as D(p, S).

Perhaps the most apparent relative position sequence to try is one that encom-
passes a 3-by-3 window around the anchor. In theory, this arrangement should
retain the information about the neighboring symbols in all directions, while still
keeping the size of the output alphabet manageable. For instance, a sequence
dictionary can simply concatenate all symbols from the 3-by-3 window and out-
put them as a word of length 9. Alternatively, such contents of a 3-by-3 window
can be mapped to a single symbol from an alphabet of size (|| + 1)°.
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2.3 TEMPL properties

In this section, we show the TEMPL working on an example language (Section
2.3.1)) and we demonstrate some properties of the model (Section [2.3.2)).

2.3.1 Example

Example 2. Suppose a sequence dictionary D = ({a}, {0, 1}, (=1, —1), ( 1,0),
(0,—1),(0,0)),t,4), where for every word v € {a,#}* it holds t( ) =1ifv =
#HH#H#a and t(v) = 0 otherwise. The sequence of the dictionary corresponds to an
upper-left 2-by-2 square relative to the anchor.

Then suppose p is the picture of dimensions (2,2) containing the letter a. (See
Figure[2.11) Let ((1, 1), (2, 2)) be a prefiz of a scanning sequence. The sequence
dictionary maps the corresponding words ###a and aaaa into the output word
'10'.

e ## # # H# #
#3 ay a H# # oa ay #
# a a # # a3 ag #
# H# H# # # H#OH#F#

Figure 2.1: On the left the window w = ((—1,-1), (-1 0) (0,—-1),(0,0)) an-
chored at position (1,1) on the boundary picture for p = a*2. On the right, the
window is anchored at (2,2) on the same picture. The 1ndlces denote the order
in which the symbols will be concatenated for the sequence dictionary.

Example 3. Let L < {0,1}** be the chessboard language where each picture
is a rectangle with the chessboard pattern. FEach pair of neighboring positions
(horizontally and vertically) contains different symbols and the symbol in the top
left corner is 1. A wvisualization can be seen in Figure [2.9. Let us construct a
TEMPL accepting the picture language L.

We define a 4SA S, which will return a scanning sequence going left to right
on odd rows and right to left on even rows.

({CbDl’EJCT)DTJFT’H} {0 1} A FT7H 5)
F,.,0) =6(F., 1) = (C,,r,pos),

25



5(D,,0) = 8(D,, 1) = 6(D,, #) = (Fi.d,e),
5(D1,0) = 8(Dy, 1) = §(Dy, #) = (Frd, ).

Further we can define a simple sequence dictionary D = ({0, 1}, {a, b}, ((0,0)),¢,1)
where t(0) = a,t(1) = b. Let E = ({a,b},{0, I, reject}, 0,0,{0,1}) be a deter-
ministic finite automaton with the following transition function:

6(0,b) =

5(0,a) = reject,

0(1,a) =

d(I,b) = reject,

d(reject,a) = d(reject,b) = reject.

Using 4SA S, sequence dictionary D and E as an evaluator, we can build
TEMPL M = ((M, D), E).
Claim: The TEMPL M = ((Ms, D), E) accepts the picture language L.

Proof. First, we will prove that each picture from L is accepted by M = ((Ms, D),
E). For an input chessboard picture p from L, the 4SA M, always adds a po-
sition to a scanning sequence, unless it reads # or unless it has moved in the
exact opposite direction than in the previous step. Therefore, each element of the
scanning sequence will be a direct neighbor of the previous element. Due to the
definition of L and the fact that the map in D is a bijection, no two symbols can
repeat in a resulting string from D(p, M(p)) for any word from L. E rejects a
word if and only if it reads two identical symbols in a row. Thus D(p, Ms(p)) is
accepted by E and L < L(M).

Next, we will show that each picture accepted by M belongs to L. For a contra-
diction, let us assume a picture p is accepted by M and it contains two identical
symbols next to each other horizontally. Since S moves left to right or right to
left from border to border before doing only one step down, any two horizontal
neighbors would result in a substring aa or bb in D(p, Ms(p)). Because E is going
to read two identical symbols in a row, it rejects p, which is a contradiction with
pe L(M).

Let us now assume a picture p is accepted by M and it contains two identical
symbols next to each other vertically. Since we have already established that if
p € L(M), no two horizontal neighbors are identical, the same vertical neighbors
imply the two rows with identical vertical neighbors have to be identical as a whole.

Because S makes a step down on the picture only after coming back to the
position it has added to the scanning sequence last, the next added position will be
a direct vertical neighbor. And since the computation ends only when the lower
border is reached, there is at least one pair of vertical neighbors next to each
other in the resulting string D(p, M(p)) for each pair of neighboring rows. Thus
D(p, M(p)) is going to contain two identical symbols in a row, therefore it will
be rejected by E, which is again a contradiction with p € L(M).

Altogether, we have shown that in a picture p € L(M), no two neighboring
(horizontally or vertically) symbols are identical. The top left corner of p (poo)
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is mapped to b if and only if poo = 1. As E only accepts words with prefix b, in
the picture p there are no identical neighboring symbols and the top left corner of

p is 1. Hence p is a chessboard pattern and always belongs to L. [
1101 01
0[1]0 110
1 1 01
01 ... 110
1101 ... 01

Figure 2.2: A template for the chessboard language.

2.3.2 Computational power

Here we show that any returning finite automaton or boustrophedon automaton
can be simulated by a TEMPL.

Equivalent TEMPL

Let M, = (£,Q,0,,q0,Qf,#) be a RFA. We will construct a TEMPL T =
((Ms, D), E) such that it accepts the same picture language as RFA M,.

The scanner M, needs to transcribe each row from left to right, top to bottom.
Rows need to be separated by the # symbol because it signals the RFA that it
has reached the end of a row.

Let My = ({B,G,W,C,L,H},(¥ U {#}),A,W,H,§) be a 4SA, where § is
defined as follows:

%
m
=

D = ({(Z U {#}), (2 u{#}),(0,0),e,1) is a sequence dictionary, where e is the
identity map.
E = (3,Q,0,q,Qr) is a DFA with the same components as RFA M,.

Theorem 1. For each RFA M,, there exists a TEMPL T such that L(T) =
L(M,).
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Proof. Because D is a direct one-to-one mapping, E will process input in the
order specified by M. And since E uses the same parameters as M,, we only
need to prove that the scanning sequence provided by S on p is the same as the
scanning order of an RFA on p.

M starts in the position (1,1) of p, which is equal to the position (0,1) on the
picture p'. If the picture is not empty it scans the whole second (first non-border)
row excluding the borders. It then returns to the first column and moves down to
the state L.

In each row, if S is in state L at the left border, it returns one # symbol and
then each mon-border position on that row if there are any, otherwise it halts and
outputs nothing. And because the only vertical movement is from B, it always
arrives at a new row in L.

Because B can only be reached through a mowve to the left, it will always move
M; down in the leftmost column (at the left border of p). That is the only position
My can read # in B. Therefore M, will always arrive at a new row in the leftmost
column and will output the first position if the next symbol is not #.

Because W can only be reached through a move to the right, it will only transfer
to B in the rightmost column. Therefore My will read each line it arrives on
completely from left to right and has to report each position. And because M, can
only move one line at a time, it will read each line beside the first in order from
top to bottom.

The last line of p is not output, because a line is only output if it does not
begin with two #s.

Therefore the input of E is exactly p' row-by-row with exactly one # symbol
between each row, the same as the reading order of an RFA. And thus L(T) =
L(M,). ]

Corollary 1. For each BFA M,, there exists a TEMPL T such that L(T)
L(M,).

Proof (Theorem. According to|Fernau et al.| [2018], for every BFA there exists
an equivalent RFA. Therefore, we can infer from the Theorem[l], that there exists
an equivalent TEMPL. [
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3. Implementation

In this chapter, we describe the implementation of the TEMPL model presented
in the previous chapter. We need an implementation to experimentally investigate
the model. We require our implementation to be flexible and highly modular to
allow for easy swapping of various components to compare them and even add
new ones.

All experiments in this thesis have been done using this Python framework,
which can be found in the electronic attachment. The framework allows the user
to evaluate custom models for learning picture languages using picture-to-string
transformation. The framework consists of two parts, the TEMPL itself and a
picture language generator. The framework is built to resemble the theoretical
model as much as possible to allow for maximum modularity and also includes
algorithms for learning regular languages for evaluators. The picture language
generator can be used to generate positive and negative samples for selected
benchmark languages.

The first section of this chapter is dedicated to the TEMPL model and its
components. The second chapter discusses the language generator and the last
is an add-on for experiments.

3.1 TEMPL

This section is a top-down overview of the model (Section implementation
itself and its components: the transcriptor and the evaluator.

The basic functionality allows the user to make a custom combination of a
transcriptor and an evaluator. It can either be used for constructing acceptors
for picture languages or for inferring TEMPLs from sample pictures similarly
to machine learning libraries such as skicit-learn [sckit-learn website]. Using
fit_evaluate it can be utilized for benchmarking experiments.

The design is modular. It requires a transcriptor, an evaluator, and optionally
a training strategy with minimal restrictions. This design is chosen so that parts
of the framework can be easily replaced for testing more varied approaches.

The TEMPL class itself has methods fit and predict.

fit takes a training method and a language description in the form of a
yaml configuration file for the language generator. This configuration is used to
call the generator. Since transforming the picture into a string creates another
intermediate dataset file, which can be re-used if the transformation process is
computationally demanding, it makes sense for the TEMPL object to handle
work with its files directly. It also allows the TEMPL class to work with datasets
from other sources than the generator. The proper format is discussed in Section
0.2

After creating or reading the proper dataset, the method fits the evaluator
and returns the time it took for the evaluator to be trained.

A diagram of this process can be seen in Figure |3.1]

1. The generator generates sets of samples of a language together with their
labeling specifying whether a given picture belongs to the selected picture
language or not.
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Results file
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Figure 3.1: A diagram of the TEMPL pipeline for learning picture languages.
The generator stores its output in a text file, where TEMPL can read it. After
transcription, the obtained strings are once again stored in a text file. This allows
for skipping the generation and transcription upon repeated calls.

2. The file with pictures is processed by Transcriptor/Scanner that transforms
pictures into strings and stores them in "File with strings”.

3. The evaluator reads the string file and produces a representation of the
string language using the strings from the file as a sample.

predict takes a string and calls the predict method of the evaluator.

An example usage can be seen in Listing [3.1} Line 1 is creating an example
picture, line 2 is defining the location of the configuration file, line 3 defines a
window, and line 4 creates a Scanner object using an implemented strategy and
the transformer class. Line 5 creates the TEMPL class with the Scanner object
and the default Evaluator object, line 6 fits the model using the parameters
specified in the configuration file. In line 8 we use the model to decide if the
picture belongs in the language accepted by the TEMPL object.

The various components are described in more detail in the following parts.
The configuration can either be a .yaml file or a Python dictionary and contains
various parameters for the generator and the training process.

Listing 3.1: A basic usage of the TEMPL class. In this example, a Templ instance
is created, trained and used to classify a 2-by-2 picture.

picture = [[0,1],[1,0]]

language = "config.yaml"

window = [(-1,0),(0,0),(1,0)]

scanner = Scanner (Row_by_row(), Transformer (window))
model = Templ (scanner ,Evaluator ())

train time = model.fit(language)

#language 1s configuration filename or dictionary
prediction = model.predict(picture)

#picture i1s a two-dimensional Python list
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3.1.1 Trancsriptor

The transcriptor is an abstract class, which handles the conversion from picture
to string. This class allows an arbitrary picture-to-string mapping in case the
user would want a more complex transcription. However, in our proposed less
general model, the transcriptor can be implemented as a scanner (Section .

3.1.2 Scanner

The scanner is an implementation of the transcriptor. It handles the picture-to-
string transcription as described in the TEMPL model. It contains two modular
components — a strategy and a transformer — to allow easy modifications and
extensions.

Strategy

Strategy (Section is an interface that only requires implementing a method
for getting an anchor sequence for a given picture. There are no further limita-
tions, but all our strategies are equivalent to 4SAs (Sectio.

There are four implemented strategies:

1. row-by-row — each row is read left to right from top to bottom,

2. snake-by-row — each row is read, alternating between left to right and right
to left, from top to bottom,

3. column-by-column — each column is read top to bottom from left to right,

4. snake-by-column — each column is read, alternating between top to bottom
and bottom to top, from left to right.

None of these strategies returns positions on the border of the border pictures.

Transformer

The transformer is a wrapper class for the dictionary representing the map ¢ as
well as the size k of the output string of the sequence dictionary (Section in
the theoretical model. It handles the correct translation of the anchor sequence
through a Python dictionary. The user can either provide a dictionary, or the
class can use the Horner scheme to create a dictionary dynamically if arbitrary
symbols can be used.

The only required parameter for the transformer is the window, which is a list
of pairs of integers, specifying the relative positions of the pixels relative to the
anchor, that the dictionary reads.

3.1.3 Evaluator

Evaluator provides a class for a string classifier. It has a simple interface with two
methods. Its aim is again to imitate the interface of models in common libraries.
The Evaluator is automaton based, but the interface can be used for any string
classifier.
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fit takes two sets of strings as input (the sets of positive and negative exam-
ples) and in its default version builds a prefix tree classifier and then uses a given
training method to train it. The default training method is traxbar (Definition
1.2.2).

Prediction takes a string and uses the trained automaton to output a label.
An exception is thrown if no model has been trained.

The simplified code of the evaluator class and an example can be seen in
Listing 3.2l Line 2 is the definition of the prediction method, line 4 defines a
method to get the size of the evaluator DFA. Lines 8 to 14 define the fit function,
where line 12 first constructs the PTA (Definition[5) and uses the specified method
(or traxbar) to fit the complete DFA. Lines 17 to 19 are the definition of positive
and negative samples and lines 20, 21, and 22 are the definition, fitting of the
samples and predicting an example word using the model of the evaluator object,
respectively.

Listing 3.2: A simplified code of the Evaluator class and a simple usage example.

class Evaluator:
def predict(self,string):
return eval(self.automaton,string)

def get_model_size(self):
return self.automaton.number of nodes ()

def fit(self,data, training method = None):
if training method is None:
training_method = traxbar
self .automaton = \
construct_tree(datal["pos"], datal["neg"])
training method(self.automaton)

return
data = {"pOS"I {noon’ ”11"},

"neg": {"01", ”10"},

+
evaluator = Evaluator ()
evaluator.fit (data)
prediction = evaluator.predict("00")
Automaton

The automaton is represented by a directed graph using the networkx library.
This choice has been done due to the flexibility of nodes and edges in the imple-
mentation as well as various options to access them. Each node needs to be able
to hold a label, while edges have to represent a very complex transition function,
all while the graph has to be open to any potential manipulation by the training
algorithm.

During the construction of the prefix tree automaton, the name of each node
corresponds to the prefix it represents. Each node has a label attribute that
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indicates the presence and the value of the label. The transition function is then
realized through trans attribute, which is a set of letters on which this transition
should be followed. The python set has been chosen due to the need to quickly
merge them and check for the presence of the letters.

Training methods

The training methods currently implemented in the framework are traxbar, win-
dowed EDSM, and locally testable languages. The original EDSM is a special
case of the windowed EDSM, where the initial window size is equal to the size of
the automaton.

Traxbar and windowed EDSM are functions, that take one argument: the net-
worx prefix three. Windowed EDSM has a second optional argument specifying
the initial window size. They return the trained automaton.

The LTL is a child class of the evaluator. It can either be provided with
the four sets of strings (respective to I, F,C,T defined in Section during
construction or can build its representation from a provided dataset.

3.2 Generator

In order to simplify testing applications, the implementation includes a language
generator. The generator can provide datasets of various properties for some
pre-defined languages of binary pictures. It serves as an interface for inputting
custom datasets. It can either be run on its own or as a part of the whole
TEMPL pipeline. The output of the generator are already bordered pictures
from the desired language in order to remove this responsibility from the model
itself.

We differentiate between two types of languages: crisp and noisy. The genera-
tor behaves slightly differently depending on the type of language being generated.
A crisp language tends to be smaller and strictly defined, e.g., in a picture from
the chessboard language, no two neighboring pixels have the same symbol.

Noisy languages are derived from crisp ones. Each picture belonging to a
noisy language must not differ from a crisp example by more than a given noise
threshold. The threshold indicates a percentage of pixels that can be different
compared to the closest crisp sample.

The generator first establishes a sufficiently large set of possible examples to
be included in the final datasets. We will call the set of sample pictures a pool.
The pool includes examples for all height and width combinations within the
limits specified in a configuration file; each combination has a different number of
its representatives. This number is a function of an area of the picture of that size.
The function is defined as two times the area of the picture to ensure compatibility
with previous experiments. The function, however, can be redefined.

For crisp languages, only negative samples are randomly generated.

Each negative (and other positive for noisy languages) example is generated
by selecting an appropriate number of flips from a uniform distribution. Two
randomly selected pictures of the same size will most likely differ in about half
of the pixels. The uniform distribution ensures that there is a significant repre-
sentation of pictures that differ in almost no pixels or almost all of them. Then
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Figure 3.2: Sample pictures from languages L, ..., Lg showing crisp and noisy
versions.

a crisp positive example is taken and the pixels to be flipped are again selected
uniformly.

Negative examples are discarded if they accidentally become positive. For
crisp languages, this means simply comparing the picture to each positive example
of given dimensions. For noisy languages, the number of differing pixels is counted
for each of the crisp positive pictures of the same dimensions and then compared
to whether it exceeds the noise threshold.

From this pool, train and test sets are uniformly randomly chosen. If there
are too few positive examples, negative examples are used to preserve the total
number of examples. The complementary problem of too few negative examples
can easily be overcome by using the complement of the original language for the
generation. It is reasonable to assume that for each sufficiently large m,n the
target language is likely going to have much fewer possible pictures of dimension
(m,n) than its complement in the vast majority of cases, hence we prefer lower
code complexity.

The generator offers the following languages:

Ly is the set of all white rectangles containing a black diagonal till the border
of the picture. The diagonal can start in either of the top corners.

Ly is the set of all white pictures of dimensions at least (3,3) with a black
border of one-pixel width.

L is the set of all pictures with a positive number of black rows followed by a
positive number of white rows.

L4 is the set of all pictures with a regular chessboard pattern of black and
white pixels. The top-left corner of such a picture can contain either black
or white pixels, but the whole picture must have the chessboard pattern.

L is the set of all pictures where the top left quadrant (rounded up) is black,
while the rest are white.

Lg is the set of all pictures with alternating black and white rows. The first
row can be either black or white.

An example from each language is shown in Figure |3.2]

The architecture allows an easy addition of new languages due to unified
wrappers at each step of the generation.

Furthermore, the generator enables the application of some operations, rota-
tions, and flips, to the language if the operations are permitted for the language.
Languages resulting from the operations can be arbitrarily combined to allow for
great flexibility in the tasks. The permitted operations are set in a configuration
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CSV file (language.csv) and can be changed. For the languages currently sup-
ported by the generators, all operations are admissible. In the experiments, some
equivalent operations were disabled. Otherwise, the distributions of potential
examples would be skewed.

A sample of the language operations configuration follows. The first line is a
header, the second line starts with the name of the language followed by Boolean
values, where True means that the operation from that column can be applied to
the language in that line.

language,include_noise,rot90,rot180,rot270,mirror,updown, transpose
chessboard, True,False,False,False,True,False,True

In the case of adding a new language to the generator, permitted operations
can be configured by adding a corresponding line to the CSV configuration file.

3.2.1 Usage

As stated, the generator can either be used within the Templ pipeline, in which
case it is handled by the Templ class, or run on its own from the command line.
In the second case, it takes one parameter, which is a path to a yaml configuration
file. An example follows:

python generator_with noise.py --config configs\my_config.yaml

The yaml configuration file contains parameters of a given task, such as picture
size limits, noise threshold, and language operations to perform and include in the
sets. The format is a key value dictionary separated by a colon. A commented
example can be found in the electronic attachment.

The output of the generator consists of two text files containing a train set
and a test set. Each picture begins with a line indicating the membership in the
target language and an ID. Then follows the picture with symbols divided by
spaces and rows divided by line breaks. Example output follows. It shows the
picture with ID 1 that belongs to the target language and the picture with ID 2
that does not belong to the target language.

1 ID: 1

##HHHHEH
#10101¢#
#01010#
#10101#
##HH#HHH
0 ID: 2

#H#HHHHH
#11111¢#
#000O0O0H#
#01110¢#
#H#HH#HHH
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3.3 Running experiments

The basic experimental usage is facilitated by the fit_evaluate function. The
user must provide a Scanner and Evaluator implementation, a language con-
figuration, and optionally a learning algorithm to fit_evaluate. The function
creates a TEMPL from the components Transformer and Evaluator, fits it to a
training set, tests the trained model on a test set, and outputs various metrics
into a CSV file, all specified in the yaml configuration file. The metrics are F1
score on both train and test datasets, accuracies for both positive samples and
for negative samples on both train and test datasets, train and test time, and the
number of states in the final automaton provided the Evaluator uses one.
A simple example of how to call fit_evaluate can be seen in Listing [3.3]

Listing 3.3: main
def main():
window = [(-1,0),(0,0),(1,0))]
scanner = Scanner (Row_by_row(), Transformer(window))l
fit_evaluate(scanner ,Evaluator(),config file,bedsm)

The resulting CSV file can be further processed for evaluating the performance
of the given combination of components. We will present such an evaluation in
the next chapter.
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4. Experiment setup

Here we present the results of experiments where we compare different TEMPL
models with different sets of parameters on learning benchmark languages.

We prepared two sets of experiments. The first part is dedicated to comparing
performance using different string alphabets, the second aims to compare different
combinations of scanning strategies and algorithms.

4.1 Alphabet size

Some early experiments have shown that rather than simply rewriting the symbols
in the original picture into one dimension, we can achieve higher performance
by transcribing the picture into another, larger alphabet. This alphabet should
reflect the contents of the 3-by-3 windows and substantially reduce the depth of
the prefix tree for a DFA learning algorithm to process.

The first set of experiments is thus dedicated to comparing scanning the pic-
ture using the 3-by-3 window and scanning it symbol by symbol.

4.1.1 Datasets

For our experiments, we selected sample picture languages. The set of sample
picture languages comprised the six languages from the generator introduced in
the previous chapter. For each language, we generated a pool of positive and
negative samples.

The data for each experiment were randomly selected from the randomly
generated pool. The pool consists of pictures of various sizes; pictures of larger
sizes are more common in order to accommodate the larger space needed to
be sampled. Positive and negative examples are handled separately. Positive
examples with zero noise are always included in the pool.

The specific training and testing sets required for our experiments were gener-
ated using the generator described in Chapter |3l and are fully reproducible. Sam-
ple sets comprised 100, 200, 400, 800, 1600, and 3200 pictures for each sample
language, ranging from dimension 5 to dimension 10. Each of the sets contained
the same number of positive and negative examples if possible. Of course, for ex-
perimenting with k-locally testable (string) languages we have used only positive
examples in the training sets.

4.1.2 Learning Setup

In the first set of experiments, we stick to a single scanning strategy — Row-by-row
and a scanning window of size 3-by-3.

For learning k-locally testable language we use learning positive examples
inspired by |Akram et al.| [2010]. For learning from sets containing both positive
and negative examples we use the state merging algorithm traxbar.

Once the learning is finished, the resulting automata are tested on independent
test sets of pictures, which are rewritten into strings using the same transcriptor.
As our sample languages are rather sparse, we do not report accuracy as it usually
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Figure 4.1: Results of training finite automata using traxbar on sample sets
with 100 and 200 samples in train/test sets with the one-to-one encoding of the
contents of the scanning window. In the left plot, the markers are shifted along
the x axis to help readability.

considerably differs between positive and negative samples. Instead, we use F}-
score defined as
Precision - Recall TP TP

here Precision = ———— and Recall = ——
Precision + Recall’ Where Frecsion = np + FP and freca TP+ FN’

where TP, FP, and F'N stand for the number of true positive, false positive, and
false negative samples, respectively.

4.1.3 One-to-one encoding of window contents

At first, we considered the same encoding of the contents of a scanning window
into a string as in Kubon and Mraz| [2020]. All symbols within the window are
rewritten into a string row-by-row. That way on each step of the scanning the
contents of the scanning window produced a string of length 9. Repeatedly,
the window moved by one position to the right and the current contents of the
scanning window were rewritten into a string of length 9. In contrast to Kubon
and Mraz [2020], we did not separate the consecutive contents of the scanning
window by any separator. Further, we will call this encoding one-to-one.

Unsurprisingly, such encoding of the contents of the scanning window produces
long strings and training traxbar on a set of strings obtained from quite small
samples of pictures was prohibitively slow (see Figure with a terrible accuracy
(F1-score close to zero). From the plots, we can see that the combination of one-
to-one encoding and traxbar is unusable.

Conversely, combining one-to-one encoding and the learning of k-locally testa-
ble languages is feasible (see Figure. When using k-locally testable languages,
we must choose also a proper order k of the locally testable languages. In the
figure, there are plotted results of experiments with k& = 2,4,6,...,20 with the
language L, of diagonals. The best Fj-score was achieved for k£ = 18 and k£ = 20.
The results for the other sample languages were also promising and were obtained
in a very short training time, too.
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Figure 4.2: Results of training finite automata using k-locally testable languages
on sample sets with 100, 200, 400, 800, 1600, and 3200 samples in train/test sets
with the one-to-one encoding of the contents of the scanning window. Fj-score on
test sets on the left and time for training on train sets on the right. The markers
for different values of k are shifted a little to show overlapping marks.

4.1.4 Many-to-int encoding of window contents

In the rest of our experiments, we use an encoding that converts the contents
of the whole scanning window (9 symbols) into a single symbol from a bigger
alphabet. In our experiments, the number of possible contents of the scanning
window has an upper limit of 3% = 19683, as one field of the window can contain a
white pixel, black pixel, or the border marker #. Of course, not all combinations
of pixels and border markers are possible, but still, the alphabet is quite large.
Therefore, we encode one symbol of the alphabet simply as an integer. Further,
we will call this encoding many-to-int.

As the train and test sets are generated randomly, the resulting Fj-score and
training time are not constant. Therefore in the following, we will plot results
obtained by averaging F}-score and train time from 10 randomly generated train
and test sets for each size. For illustrating variance in the achieved results, we use
error bars of length equal to the sample standard deviation of the measurements.

Using many-to-int encoding, traxbar produced a reasonable F}-score for all
tested crisp languages and also for noisy languages. See the plots in Figure 4.3]
.4 We can observe that except for the noisy version of the language Ls, the
training time for traxbar is not higher than 300 seconds up to the sample size
of 3200. Fji-score is between 0.5 and 0.8 which is quite good for mostly sparse
languages in our samples.

Next, we experimented with learning k-locally testable languages when using
many-to-int encoding. The obtained results are surprising. At first, we examined
how the Fi-score is influenced by the value of k. In Figure [4.5| and Figure 4.6| we
can see that for the sample language L, and k = 2, the resulting average F-score
is the highest.

Similarly, for other sample languages, the value k£ = 2 together with many-
to-int encoding is the best combination. Interestingly, the value £ = 2 with
many-to-int encoding corresponds exactly to k = 18 with one-to-one encoding.

For the rest of our sample languages, we can see the performance of learning
crisp sample picture languages and noisy sample picture languages using 2-locally
testable languages in Figures [£.7]and [4.8 For all crisp sample languages, the Fj-
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Figure 4.3: Results of training finite automata for crisp sample languages using
traxbar with the many-to-int encoding of the contents of the scanning window.
Average Fj-score on test sets on the left and average time for training on train
sets on the right. The length of the error bars is the sample standard deviation.
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Figure 4.4: Results of training finite automata for noisy sample languages using
traxbar with the many-to-int encoding of the contents of the scanning window.
Average Fij-score on test sets on the left and average time for training on train
sets on the right. The length of the error bars is the sample standard deviation.

score is close to 1, except for the sample language L; (of diagonals) for which
it achieves 0.88 only. Probably it is caused by the very low number of positive
samples. For all noisy sample languages including the noisy version of L, the
Fi-score converges to a value around 0.95 for the growing size of the training
sample. The convergence is very stable which can be seen from very short error
bars.

Additionally, we can see a linear growth of the time required for training 2-
locally testable languages with respect to the growing size of the training sample.
Simultaneously, the training time is low. Lower than 0.03 seconds even for sample
sets of size 3200.

4.2 Algorithm comparison

The second part of the experiments is dedicated to exploratory analysis of the
algorithms. We use the same data as in the first set of experiments to compare
various combinations of scanning strategies and learning algorithms. This should
give us some insight into how the components influence the behavior of the model.
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Figure 4.5: Results of training finite automata using k-locally testable languages
for the crisp sample language L; with the many-to-int encoding of the contents
of the scanning window. Average Fj-score on test sets on the left and average
time for training on train sets on the right. The markers for different values of k
are shifted a little to show overlapping marks.
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Figure 4.6: Results of training finite automata using k-locally testable languages
for the noisy sample language L; with the many-to-int encoding of the contents
of the scanning window. Average Fj-score on test sets on the left and average
time for training on train sets on the right.

Since the many-to-int encoding has shown such a major improvement, all the
experiments will exclusively be using this encoding.

This second set of experiments utilized all operations facilitated by the gen-
erator, so the languages included all possible flips and rotations (thus, e.g., the
horizontal stripes language also included vertical stripes).

First, we compare different training methods to obtain the evaluator. Then
we compare different scanning strategies and asses their compatibility with the
languages.

4.2.1 Training methods

In this set of experiments, we look at three training algorithms — Traxbar, Win-
dowed EDSM and Locally testable language. We average over all languages and
look at the model performance curves for each of the scanning strategies. The
initial window size for Windowed EDSM is 200. The number was chosen by
estimating the number of states in the first two layers of the prefix tree.

In Figure we can see there is just a small difference in performance be-
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Figure 4.7: Results of training finite automata using 2-locally testable languages
with the many-to-int encoding of the contents of the scanning window. Average
F-score on test sets on the left and average time for training on train sets on the
right. The markers for different values of k are shifted a little to show overlapping
marks.
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Figure 4.8: Results of training finite automata using 2-locally testable languages
with the many-to-int encoding of the contents of the scanning window. Average
Fi-score on test sets on the left and average time for training on train sets on the
right.

tween Traxbar and Windowed EDSM. This can probably be explained by the fact
that with the large alphabet, the scores computed for EDSM are initially often
zero. EDSM, therefore, merged states mostly in the breadth-first order — same
as Traxbar — and only made some minor adjustments.

In the same Figure, we can also more clearly see that the performance suffers
noticeably more when fitting the automaton on a larger dataset of a crisp language
compared to a noisy one. This is likely due to the dataset being heavily skewed
towards the negative sample. The small amount of accepting states could mean
that the merging algorithm is more likely to make a bad merge early on because
most of the states can be merged. The final automaton is, therefore, larger (Figure
, less general, but with no additional knowledge about the target language.

Similarly, the comparison in Figure shows that even the time used for
training the automaton shows a difference that could just be attributed to hard-
ware factors. This indicates that the computing of the scores did not slow down
the EDSM algorithm significantly. It could be the case that sub-trees in the
automaton had very small intersections and thus both state merging algorithms
performed mostly the same operations.
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Figure 4.9: A comparison of F1 test performance between Traxbar and Windowed
EDSM using Row-by-row strategy across all languages. Performance on crisp
languages on the left and performance on noisy languages on the right.
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Figure 4.10: A comparison of time to train between Traxbar and Windowed
EDSM using Column-by-column strategy across all of the tested languages. Time
to train on crisp languages on the left and time to train on noisy languages on
the right.

In Figure 4.11}, we can see an interesting phenomenon. The figure shows the
mean number of states on a final automaton. While the number grows steadily
with the dataset size on the noisy languages, it initially drops on the crisp ones.
This phenomenon is present in all strategies, it is only most pronounced in the
Snake-by-row strategy.

We can also see that the Windowed EDSM algorithm was able to find au-
tomata with fewer states (hence more general) on noisy languages, which can be
beneficial in more complex applications.

Looking at the time complexity paints a similar picture. There is no significant
difference between the runtimes, thus we can assume the algorithms behaved the
same. We only include some examples of the plots, all plots are however included
in the attachment.
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Figure 4.11: A comparisons of the number of states in the final automaton of
Traxbar and Windowed EDSM across all sample languages. The number of states
for the Snake-by-row strategy on crisp languages on the left and the number of
states for the Row-by-row strategy on noisy languages on the right.
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Figure 4.12: Two examples of the number of states in the final automaton of
Traxbar and Windowed EDSM using Snake-by-row strategy across all languages.
The number of states on crisp languages on the left and the number of states on
noisy languages on the right.

4.3 Scanner behavior

This set of experiments is dedicated to surveying the various scanning strategies:
Row-by-row, Column-by-column, Snake-by-row, and Snake-by-column. The aim
is to infer some properties that could inform which of the strategies should be
used for a given language.

As you can see in Figure [£.13] the performance of the scanners can vary
greatly, but there is no clear best or worst approach.

We do a more in-depth analysis, where we look at each of the languages
separately. Some interesting plots can be seen in Figure 4.14, We can again
observe erratic behavior and see that there is no clear best strategy, not even a
clear pattern. Strategies working the best on one size can do badly on another.
Another interesting observation is that in the left plot Row-by-row and Snake-
by-column — strategies that have the least in common — have very similar results.

This leads us to conclude that the chosen scanning strategy can have a very
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Figure 4.13: Results of training finite automata using k-locally testable languages
with the many-to-int encoding of the contents of the scanning window. Average
F-score on test sets on crisp languages on the left and the average F-score on
test sets on noisy languages on the right.

significant impact on the performance of the model, but it can be hard to choose
the correct one for a given task. The differences could be explained by the datasets
being sampled in different ways, which might shift differences in the classes to be
more apparent when we are scanning horizontally to when we are scanning verti-
cally and vice versa. It, therefore, makes sense to put more focus on researching
scanning strategies in the future.
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Figure 4.14: Comparing scanning strategies of training finite automata using
Traxbar for the noisy sample language L; with the many-to-int encoding of the
contents of the scanning window and different scanning strategies. Average F}-
score on test set of crisp L; on the left and average Fj-score on test set of noisy
L3 on the right.

From Figures [£.15] and [£.16], we can see two examples of how the scanning
strategy does not have a significant impact on the performance of the k-locally
testable languages. This is likely due to the relative simplicity of the languages;
a different scanning strategy is not going to substantially change the substrings
appearing in the transcribed language.

Overall, from the plots, we can see that even though the k-locally testable
languages method works well on simple crisp languages, on smaller noisy datasets
(up to size 400) it is outperformed by the state merging algorithms. It is only once
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Figure 4.15: Results of training finite automata using k-locally testable languages
for the crisp sample languages for two scanning strategies. Average Fj-score on
test sets for Row-by-row on the left and Column-by-column the right.
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Figure 4.16: Results of training finite automata using k-locally testable languages
for the noisy sample languages for two scanning strategies. Average Fj-score on
test sets for Row-by-row strategy on the left and Column-by-column strategy the
right.

the datasets are large enough to make the state merging algorithms overfit, that
the k-locally testable languages get enough data to improve on the knowledge of
the automata.

4.4 Summary

The above experiments shwo that our model TEMPL is suitable for representing
picture languages and for learning picture languages.

Using locally testable languages as evaluators enables to learn our sample
languages with a good Fj score with any encoding. Of course the performance
on noisy languages was a little lower.

Encoding one-to-one is not suitable when combined with traxbar due to a
very slow training and poor performance. Using a many-to-int provides an order
of magnitude improvement.

A scanning strategy contributes significantly to the performance of the model.
We theorize the differences are connected to the sampling of the languages.
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Conclusion

The thesis deals with the problem of learning picture languages and the no-
tion that we can leverage the knowledge from learning string languages for it by
rewriting pictures into strings.

We have proposed the TEMPL model that formalizes the process of picture
language recognition using a picture-to-string transformation. TEMPL is com-
posed of two parts, one for rewriting the picture to a string and the other to
classify the string. The model is very general and allows for different levels of
complexity. We have demonstrated some desirable properties that a restricted
version of the TEMPL model has and that it can simulate other methods for
recognizing picture languages.

We implemented a framework that is the realization of the TEMPL model.
This framework offers the ability to learn picture languages from a set of positive
and negative examples of a target picture language. The system supports multiple
scanning strategies for variable window sizes and supports adding new strategies.
There are three different learning methods in the system with the option to add
more.

The system also offers a generator part, that can deterministically generate
samples of selected languages. This generator allows for the reproducibility of
the experiments via configuration files, that can unambiguously define the sets
that will be generated, which allows easy benchmarking.

We experimented using this system with six languages and various scanning
strategies and learning algorithms in order to determine the performance of the
model with different parameters.

Our findings have shown that the for the state merging algorithms, many-to-
int encoding clearly outperforms one-to-one. The second aspect of interest was the
behavior of the learning algorithms on our sample languages. The performance of
traxbar with many-to-int encoding on crisp languages varied significantly, but on
the languages with noise, it showed a decent performance with F}-scores mainly
in the 0.6 to 0.8 range.

As for the locally testable language with the best performing value of k£ =
2 and many-to-int encoding, the learning algorithm succeeded for all of them,
however, the diagonal language without noise turned out to be slightly more
difficult to learn than others.

Comparing the different scanning strategies has shown that the choice of scan-
ning strategy can have a significant impact on the model performance, but with-
out any clear indication of how this choice should be made. Using a different
state merging algorithm yields comparable results.

Some of the results were already published in [Kubon et al. [2023] and the
findings were well received. There will be an extended version of the paper
published in the future that will include more of the results from this thesis.

Further research can be focused on more advanced scanning strategies or
developing a method to robustly determine an optimal scanning strategy.
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List of Abbreviations

DFA — deterministic finite automaton

IA — incomplete automaton

PTA — prefix tree automaton

4DFA — four-way deterministic finite automaton

2RTA — two-dimensional restarting tiling automaton

2DOTA — deterministic two-dimensional online tesselation automaton
4SA — four-way scanner automaton

EDSM - evidence-driven state merging

TEMPL — Transriptor-Evaluator machine for picture languages
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A. Attachments

A.1 Electronic Attachment

- experiment contains the CSV files with raw experiment results and a
plots.ipynb Jupyter notebook with all relevant plots.

- implementation contains the source codes for the framework and the ex-
periments.

- info.txt contains library versions and some execution information.

- implementation/example generator/configs/my.yaml conatins a com-
mented example of a yaml configuration file.
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