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tience, encouragement, and support, allowing me to concentrate on real science.
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Abstract:

This thesis deals with two independent yet closely related topics. In the first
part, a measurement of branching fraction and time-dependent CP violation
in B0 → ηcK

0
S, ηc → K0

SK
±π∓ decays is performed. This decay allows ac-

cess to sin 2ϕ1, where ϕ1 is an angle of the unitary triangle of the Cabibbo-
Kobayashi-Maskawa quark mixing matrix. The measurement is based on the
entire dataset of the Belle experiment, which consists of 772× 106 B meson pairs
collected at the KEKB e+e− collider. The extracted mixing-induced and direct
CP -violation parameters read sin 2ϕ1 ≃ S = 0.59± 0.17 (stat)± 0.07 (syst) and
A = 0.16 ± 0.12 (stat) ± 0.06 (syst), respectively. The measured product of
branching fractions B(B0 → ηcK

0
S) × B(ηc → K0

SK
±π∓) is (9.8 ± 0.6 (stat) ±

0.4 (syst)± 2.3 (int))× 10−6, where the last uncertainty accounts for interference
with non-resonant background.

The second part deals with the alignment of the vertex detector and the central
drift chamber of the Belle II experiment at the SuperKEKB collider, which is
a next-generation Super-B-Factory. With the new pixel detector and the pre-
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Preface
Since the discovery of the Higgs boson in 2012 [1], the Standard Model (SM) of
particle physics can be considered completed1. All its fundamental particles have
been observed, and all predictions to date have been confirmed by experiments,
with only a handful of exceptions, where the statistical significance is still low
to claim a ground-breaking discovery, or there are ongoing discussions about
theoretical or experimental uncertainties. However, there is a general consensus
that the SM is an incomplete theory, and some new physics beyond the SM is
needed. Apart from the most apparent missing part—gravitation—the SM does
not account for approximately 95% of the matter-energy content of the universe,
composed of two elusive substances: dark energy and dark matter. Even ordinary
(baryonic) matter has its secrets. One of the biggest mysteries is the absence of
substantial amounts of its mirror counterpart—the antimatter—in the universe.
A necessary condition for such a matter-antimatter asymmetry is the violation
of charge-parity (CP ) invariance at the level of fundamental interactions. While
the SM does predict a small amount of CP violation, it is by many orders of
magnitude smaller than what is required to match astronomical observations. In
the SM, this asymmetry is tightly related to changes in the flavors of quarks,
fundamental constituents of matter.

The experimental flavor physics program to observe and determine the amount
of matter-antimatter asymmetry (initially, there were free parameters) predicted
by the SM using decays of heavy B mesons was started by the construction of two
B-Factory experiments in the 1990s. It concluded around 2010 when the Belle
experiment [2] at the KEKB (KEK, Tsukuba, Japan) accelerator finished its data-
taking. Together with the BaBar detector [3] at the PEP-II accelerator (SLAC,
Stanford, USA), these B-Factories collected large datasets, which are still studied
to obtain more results completing the extensive physics program, encompassing
hundreds of analyses. Part II of this thesis represents one particular piece in this
vast program.

The motivation for a new-generation B-Factory experiment, which could ac-
cumulate more than an order of magnitude larger dataset, has become even more
urgent after several years of LHC operation, without any signs of supersymmet-
ric particles to date [4]. It is very likely that the energy scale of New Physics
(NP) beyond the SM is out of reach of the current and possibly even planned
high-energy accelerators. Nonetheless, NP might reveal itself in other ways with-
out the need for direct production of new heavy particles. These new particles
and the corresponding fields would couple to the SM fields and enter as virtual
particle contributions in Feynman diagrams, possibly modifying experimentally
observable quantities. However, as mentioned, most measurements are still com-
patible with the SM predictions. Thus the NP contributions, if any, must be
small and require more precise measurements.

1Neutrino masses and mixing parameters are still to be measured more precisely. One can
consider these to be already new physics modifications.
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Part III of this thesis describes an essential contribution to this new level of
precision, from which many (mainly future) physics analyses will benefit. The
larger datasets will reduce statistical uncertainties to the level where systematic
errors could become a limiting factor. Therefore the more precise measurements
will require better detector performance, better reconstruction and analysis al-
gorithms and tools, and a more complex computing infrastructure to handle the
enormous amount of data. An essential task in the quest for the best perfor-
mance of the detector is its proper calibration. The model of the detector used
for physics reconstruction has a tremendous amount of parameters, which are
usually assumed to be known precisely in simulations. A very important subset
of these parameters are values that describe the exact positions and orientations
of the sensitive elements of the detector. The procedure to directly determine the
optimal (ideally true) values of these parameters from the recorded data is called
track-based alignment (or just alignment). The presented alignment method in
the second part is crucial for reaching the ultimate precision for measuring pa-
rameters of charged particles.

During his bachelor’s studies, the author joined the Belle II Collaboration,
developing simulations for beam tests of the vertex detector. The need for an
alignment method for such setups and work conducted during the author’s master
studies resulted in the first version of alignment for the complete vertex detector.
Since then, this work has been extended to match the needs of a world-leading
high-precision experiment. Belle II started taking the first physics data in 2019,
and after further extensions, the author became responsible for all aspects of align-
ment of both the vertex detector and the central drift chamber. A high-precision
alignment will be crucial for future time-dependent CP violation measurements.
However, the matureness of the developed method was already proven by several
validations and first measurements with the world’s leading precision, namely the
lifetimes of D0 and D+ mesons [5].

As the accumulation of a competitive dataset for time-dependent CP -violation
measurements at the Belle II experiment was not guaranteed in a timely man-
ner, the author was given the opportunity to study the existing unique data of
the former Belle experiment and perform a physically relevant and competitive
measurement in one of the decays, only measured by BaBar with the full in-
tegrated luminosity. The studied decay B0 → ηcK

0
S belongs to the family of

b → ccs-induced transitions, that allow to access sin 2ϕ1 in a time-dependent
analysis. The angle ϕ1 ≡ arg[−(VcdV ∗

cb)/(VtdV ∗
tb)] is directly related to the ele-

ments of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix. The underlying
physics is similar to the B0 → J/ψK0

S decay, often called the golden channel
for sin 2ϕ1 extraction. The analysis was started by Z. Drásal, who performed a
similar measurement using the ηc → pp decay. This work verified the proposed
method and tools, which were adjusted for the ηc → K0

SK
±π∓ decay channel.

This decay mode offers smaller statistical uncertainty for sin 2ϕ1 measurement but
is more challenging due to a more complex background composition. This study
was taken over by the author from Z. Drásal in the state of finished branching
fraction measurement on the control channel with all necessary data (including
simulations) already in a form suitable for fast analysis. While some of the pre-
vious work needed to be reproduced, the initial progress allowed the author to
concentrate on work more relevant to physics, having many previously developed
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tools at hand.
This thesis is divided into three parts. In part I, the Belle and Belle II experi-

ments will be described in detail and in the context of general physics motivations
together, as they share many features and concepts. A bit more emphasis is given
to the achieved Belle performance, relevant for the Belle physics analysis part,
while for the Belle II detector, more space is devoted to a description of sub-
detectors relevant for the alignment part.

Part II is devoted to the physics analysis of Belle data. The phenomenon of CP
violation and the particular physics measurement of sin 2ϕ1 via time-dependent
analysis will be discussed in detail in the theoretical introduction, followed by
an exhaustive examination of the analysis method, intermediate results, cross-
checks, validations, and finally, a CP violation measurement in B0 → ηc(ηc →
K0
SK

+π−)K0
S decays2.

For part III, devoted to Belle II detector alignment, we have decided to omit
the usual pedagogical exposition in search of the optimal alignment configuration
in the huge parameter space on simulations. This work was done in the past, and
it became practically irrelevant given the constraints and results from real data.
Instead, to keep a reasonable length of this thesis, the alignment will be described
as a final product. In reality, the method’s capabilities increased gradually from
a couple of parameters in the vertex detector beam tests to about sixty thousand
simultaneously determined values also describing every single wire of the drift
chamber. Only one chapter will summarize the older history of the alignment, also
mentioning past problems and their solutions. Most of the experimental content is
devoted to more recent results and the performance of alignment configurations,
which are being used for physics analyses and the first world-leading precision
measurements.

2We will generally adopt implicit charge conjugation in this thesis, but occasionally it will
be written explicitly, at least for charged particles.
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Part I

Experiments and Detectors
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CHAPTER 1

Introduction
While the Belle Experiment was explicitly designed to confirm the Kobayashi-
Maskawa (KM) picture of the SM (see Sec. 4.3) and measure its fundamental
parameters in B meson decays, its upgrade aims to probe physics beyond the
SM by pursuing precision measurements in a very similar experimental setup,
but with higher precision and using a much larger dataset. We thus attempt to
describe both experiments compactly, highlighting the improvements.

The idea of B-Factories (or, more poetically, Beauty Factories) requires an
electron-positron collider with asymmetric beam energies at a precisely defined
center of mass energy of 10.58 GeV. This energy corresponds into the rest mass
of the Υ(4S) resonance which decays to the desired pairs of B mesons. Due to a
low cross-section (around 1 nb), the collider must have a substantial luminosity.

Initially, two such machines were constructed: PEP-II at SLAC Laboratory
(Stanford, California, USA) and KEKB at the KEK Research Center in Tsukuba,
Japan. These two colliders and their detectors BaBar [3] and Belle [2] accu-
mulated two unique datasets, summing up to over 1.5 ab−1 (see Fig. 1.1 left),
recorded also at various nearby Υ(nS) resonances and off-resonance. Most of the
dataset is, however, collected at the Υ(4S) resonance, which for example, corre-
sponds at Belle to 772 million BB decays. The KEKB collider held the record for
the highest instantaneous luminosity of 2.11×1034 cm−2s−1 for almost a decade.

Figure 1.1: Integrated luminosity of the B-Factory experiments Belle (blue) and
BaBar (green) [6] (left) and projection of instantaneous (red) and integrated
(blue) luminosity for SuperKEKB and Belle II (right) [7].

The B-Factories have a rich legacy. They successfully observed CP violation
in B-meson decays and confirmed the KM picture of the SM by measuring pa-
rameters of the unitary triangle, see Sec. 4.3. However, the physics reach was
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much wider. These were ideal places to gain experimental insight into quarko-
nium spectroscopy by studying excited states of bottomonium and charmonium,
which led to discoveries of a number of un-conventional states of bound quarks.
A large physics program was also devoted to studies of charm mesons or τ lep-
ton. The two experimental collaborations also established several analysis tools
and techniques, which became standards in the field, from flavor tagging to blind
analysis [8].

The need for more precise measurements resulted in proposals to construct
a next-generation Super-B-Factory experiment. While the planned SuperB ex-
periment in Frascati (Italy) [9] was not realized, several key ideas were employed
in the construction of the high-luminosity KEKB upgrade. The aim is to collect
50 ab−1 by the year 2036. Such a large amount of data can only be collected in
time if the projected increase in instantaneous luminosity (see Fig. 1.1 right) is
achieved, targeting to surpass the KEKB world record by a factor of 30 [10].

The Belle II physics program is ambitious and diverse. The best reference is
the Belle II Physics Book [11]. Let us at least briefly sketch a part of the land-
scape of the possible physics topics. The well-defined initial state of the e+e−

collisions allows Belle II to handle inclusive modes and final states with neutral
particles (π0, K0

S, γ, . . . ) or with missing energy due to undetected neutrinos.
Especially its capabilities of neutral-particle reconstruction make Belle II comple-
mentary to the LHCb in many indirect searches for NP. In many other analyses,
the two experiments will be competitive, which is welcome, as their sources of
instrumental and other experimental uncertainties are very different.

The physics of the B decays naturally encompass the flag-ship measurements
at a B-Factory. With the 50 ab−1, the angles of the unitary triangle should be
known to ∼ 1◦ (∼ 0.4◦ for ϕ1). The measurements of the sides of the unitary
triangle will also improve. Of particular relevance are magnitudes |Vcb| and |Vub|,
which represent fundamental inputs for the future precision studies. Belle II
should help in resolving a long-standing discrepancy between inclusive and ex-
clusive measurements of |Vcb| and |Vub| in semileptonic B decays. Semileptonic
B decays are also a hot topic in lepton flavor universality tests, and the tensions in
ratios R(D(⋆)) in B → D(⋆)τντ and B → D(⋆)ℓνℓ decays, where ℓ = e, µ, should be
definitely confirmed or rejected already with several ab−1 of data. Good efficiency
for both muons and electrons will also be crucial for confirming similar tensions
in lepton-flavor universality in penguin-mediated decays like B+ → K+ℓ+ℓ− [12].
Another important topic is charm-less B decays B → Kπ, which can probe
possible NP contribution to loop amplitudes, and there is a long-standing dis-
crepancy known as the K−π puzzle in the direct CP asymmetry in B0 → K+π−

and B+ → K+π0. Belle II will be unique in its ability to access the mode
B0 → K0π0, needed to disentangle hadronic uncertainties. As one last example,
let us mention rare B decays, like B → K(⋆)νν. The general idea behind such
flavor-changing neutral processes is that their low branching fractions in the SM
could be significantly enhanced by NP contributions, providing complementary
tests of, e.g., the anomalies in b→ sℓ+ℓ− decays.

SuperKEKB is also a Charm-Factory and τ -Factory in a sense, as e+e− →
τ+τ− and e+e− → cc has a similar cross-section as Υ(4S) production at the
center-of-mass energy of SuperKEKB. The program of charm physics involves
precise measurements of D meson lifetime, D0 mixing, and CP -violation param-
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eters, or direct CP asymmetries. The τ physics program includes precise mea-
surements of τ mass and lifetime, which are fundamental inputs to tests of lepton
flavor universality. A wide range of topics are lepton-flavor-violating τ decays,
like τ → µγ, which are forbidden or highly suppressed in the SM, but NP could
enhance their branching fractions significantly.

A broad range of analyses is targetting the dark sector. The hermeticity of
Belle II and the clean collision environment allow triggering, for example, events
with a single hard photon from initial state radiation (ISR) followed by an NP
process producing undetectable particles like a dark photon.

Finally, let us mention charmonium and bottomonium spectroscopy and stud-
ies utilizing special SuperKEKB runs at nearby Υ resonances, which shall con-
tinue a very successful program started at Belle focused on investigating exotic
bound states of quarks [11].

The KEKB and SuperKEKB accelerators are discussed in the next Chapter 2.
The detectors installed at the interaction point, where the electron and positron
beamlines cross, are compared in Chapter 3.
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CHAPTER 2

KEKB and SuperKEKB Colliders
SuperKEKB is constructed in the same tunnel as KEKB. It is located around
10 m underground, with four straight and four curved sections with a total length
of about 3 km. The center of mass energy of

√
s = 10.58 GeV is achieved by

colliding 8 (7) GeV high energy (HER) electron and 3.5 (4) GeV low energy
(LER) positron beams at KEKB (SuperKEKB), which are supplied by a system
of a linear accelerator and a damping storage ring for positrons. The beams are
driven into the collision point at a large crossing angle of 22 mrad at KEKB [2],
further increased to 83 mrad at SuperKEKB [10].

Figure 2.1: Schematic drawing of the SuperKEKB with upgraded or replaced
parts highlighted in color [13].

The main achieved KEKB machine parameters are compared to SuperKEKB
design values in Table 2.1. In Fig. 2.1, a schematic view shows the SuperKEKB
accelerator and highlights systems that were replaced or upgraded from KEKB.
The two major factors leading to the increased luminosity are approximately
twice higher beam currents and, in particular, twenty times smaller vertical beta
function β⋆y at the interaction point (IP). This decrease is possible thanks to
adopting the so-called nano-beam scheme. The world’s most complex system of
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(LER/HER) KEKB SuperKEKB unit
Beam energy (E) 3.5/8.0 4.0/7.0 GeV
Vertical β function at IP (β⋆y) 5.9/5.9 0.27/0.30 mm
Half-crossing angle (ϕ) 11 41.5 mrad
Current (I) 1.6/1.2 2.8/2.0 A
Luminosity (L) 2.1× 1034 60× 1034 cm−2s−1

Table 2.1: Comparison of the main machine parameters of KEKB and
SuperKEKB [10]. Some values are updated to recent un-official estimates ac-
cording to discussion with experts.

superconducting magnets is designed to squeeze the beams just before the colli-
sion. The beam optics system (QCS) includes 55 superconducting coils (dipoles,
quadrupoles, sextupoles, and compensating solenoids). A large crossing angle is
needed to bring the focusing magnets closer to the IP. In addition, it helps to
reduce beam-beam interactions due to faster separation of the particle bunches,
allowing for higher beam currents.

The final luminosity of KEKB, surpassing its design requirements by a factor
of two, was achieved by installing crab cavities, which rotate the bunches before
the collision to increase the effective bunch overlap. The SuperKEKB collider
reclaimed the world luminosity record on 15 June 2020, after a brief period when
LHC became the most luminous machine in 2018, despite being a hadron collider.
The current SuperKEKB luminosity record is 4.71×1034 cm−2s−1 (22 June 2022),
still order of magnitude from the design value. Despite machine tuning being more
challenging than initially foreseen, the luminosity is being gradually improved.
The current integrated luminosity (see Fig. 2.2) is 427.79 fb−1.

The beam asymmetry, which was reduced to limit intra-bunch (Touschek)
scattering (limiting beam lifetimes), results in a lower boost of the B mesons. At
Belle, their boost factor βγ = 0.425 resulted in a mean separation between the
B meson decay vertices ⟨∆z⟩ ∼ 200 µm. This factor is reduced to
βγ = 0.28 at SuperKEKB. This change is compensated by a smaller beam pipe
radius and increased vertex resolution thanks to the installation of an additional
high-precision vertex sub-detector closer to the interaction point. This upgrade
is discussed among others in Chapter 3, devoted to the detectors.

2.1 Interaction Region and Beam Pipe
The nano-beam scheme results in a tiny vertical size (∼ 50 nm at design values)
of the interaction region at SuperKEKB, compared to KEKB (∼ 90 µm), which
is illustrated in Fig. 2.3. Also, the length of the beam overlap during collision is
reduced from ∼ 1.9 mm to ∼ 100 µm1.

The interaction region is surrounded by a specially designed section of the
beam pipe. As the momentum spectrum of particles from B decays is rather soft,
vertex resolution is limited by multiple scattering effects, which depend on the
material budget of the beam pipe and the distance of the first layer of the vertex

1Current values for the longitudinal interaction region size are ∼ 350 µm.
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Figure 2.2: Integrated luminosity profile recorded by the Belle II detector at the
SuperKEKB collider until 22 June 2022 [7].

Figure 2.3: Illustration of the interaction region formed by the colliding bunches
(without active crab cavities) at KEKB (left) and SuperKEKB (right).

detector from the IP. The beam pipe is thus made from two layers of Beryllium
with a cooling gap in between. For additional shielding from X-ray photons, it is
covered by thin 20 µm (10 µm) gold plating on the inside at Belle (Belle II).

At Belle, two beam pipe configurations were used for its two vertex detectors
named SVD1 and SVD2. The initial beam pipe with an outer radius of 24.25 mm
was replaced by a 16.25 mm beam pipe for SVD2. At Belle II, the beam pipe is
even smaller, with an outer radius of 10 mm.
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CHAPTER 3

Detectors Belle and Belle II
Four experimental halls are located in the straight sections of the main accelerator
tunnel, see Fig. 2.1. The experiment is installed at the single point where the
electron and positron beamlines cross, in the Tsukuba hall (4th underground
floor). The Belle [2] and Belle II [10] experiments share the same concept of a
multi-layered cylindrical multi-purpose particle detector with a 1.5 T solenoid
magnetic field surrounding the region of colliding beams.

The z-axis of the coordinate system, with the center at the nominal interaction
point, points along with the boost in the direction of the electron beam (HER).
The vector of magnetic induction from the solenoid points along +z. The
y-coordinate points upwards and x outside the collider ring, approximately in
the direction of Mount Tsukuba (877 m). The cylindrical system is defined by
longitudinal z-direction and radial direction R =

√
x2 + y2, azimuthal angle ϕ

(ϕ = 0 in +x direction) and polar angle θ (with θ = 0 in forward +z direction).
The design is forward-backward asymmetric with 92% solid angle coverage in the
range 17◦ < θ < 150◦. The two detectors are illustrated in Fig. 3.1.

Figure 3.1: The detectors Belle (left) [14] and Belle II (right) [13] with cut section
showing the individual sub-detectors.

The detectors are composed of a vertex detector, Central Drift Chamber
(CDC) as the primary tracking device, particle identification system based on
Cherenkov light emission (and time-of-flight estimation at Belle), Electromag-
netic Calorimeter (ECL), superconducting solenoid with 1.5 T field and KL and
Muon detector (KLM), housed in the magnetic flux return yoke.

While all sub-detectors have been upgraded in some way, several subsystems
were replaced completely in Belle II. This includes mainly the new vertex detector,
but also the CDC is entirely new, as well as the particle identification systems
and the end-cap ECL. This is also illustrated in Fig. 3.2, where the replaced parts
are highlighted. The individual sub-detectors and the upgrade are discussed in
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the following sections in detail, as well as the upgrade of the trigger and data
acquisition system.

Figure 3.2: Schematic cross-section of the Belle II (top) and Belle (bottom) de-
tectors. The replaced parts are highlighted in color [10].

3.1 The Vertex Detectors of Belle and Belle II
The vertex detector plays a crucial role in precision time-dependent CP -violation
or lifetime measurements. Its primary role is the reconstruction of the decay ver-
tices of B mesons. Thus it must be located as close as possible to the interaction
point, simultaneously being able to withstand the high radiation environment.
It must also be lightweight, with minimal radiation length to not disturb par-
ticle trajectories, while still generating sufficient signal for very high detection
efficiency.

The detection method is therefore based on silicon semiconductor technology.
The basic principle lies in a pn-junction, which is reverse-biased by a large enough
voltage1 to entirely deplete its bulk volume made from an n-type semiconductor.
This volume is then sensitive to the passage of ionizing particles. As they cross the
depleted volume, electron-hole pairs are created (one per each 3.6 eV of deposited
energy) and immediately separated by the bias voltage. This process results in a
current flowing over the junction. This current can be amplified, measured, and
converted into a digital signal. Decoding the position of detection sub-elements
like a strip or pixel allows to read out the position of the particle’s trajectory
intersection with the bulk. Usually, also the information about the respective

1Typical values are in tens of Volts, but depend, e.g., on sensor irradiation.
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deposited charge can be retrieved. Various algorithms then can be applied to
improve the estimate of the intersection using signals from neighboring channels.

At Belle, the Double-sided Silicon Strip Detector (DSSD) technology is em-
ployed. Originally three detection layers (SVD1) were used, but after problems
with radiation hardness, the majority of the Belle dataset is taken with an up-
graded SVD2 with four layers. Belle recorded 152 × 106BB pairs in the SVD1
configuration (SVD1 experiment) and the remaining 620× 106BB pairs with the
upgraded SVD2 vertex detector (SVD2 experiment). At Belle II, the Silicon Ver-
tex Detector (SVD) with four layers and DSSD technology is used as well, but
this time completely redesigned to accommodate the new inner-most detector:
the Pixel Detector (PXD).

3.1.1 SVD1 and SVD2 at Belle
The Belle SVD1 detector was replaced by the SVD2 in 2001. With about twice
more modules, the readout channels from several modules needed to be combined
to fit into the existing readout. This then required full tracking to be used for
position determination in SVD2. The first of the four SVD2 layers was also
placed closer to the IP with a radius of 20 mm instead of 30 mm in SVD1. The
parameters of the two configurations are compared in Table 3.1. In Fig. 3.3, the
SVD2 detector is visualized.

Figure 3.3: Front (left) and side (right) view illustration of the SVD2 detector.
The front view also includes several layers of the Belle CDC wires [15].

The upgrade also led to improved impact parameter resolutions. In Fig. 3.4,
these are shown as a function of pseudo-momentum disentangling angular depen-
dence of multiple scattering effects (see Sec. 17.1.3 for more details). Split cosmic
ray tracks were utilized for this estimate. The final resolution for SVD2 in the
R− ϕ and z-direction can be parametrized as [16] 2

σR−ϕ = 17.4⊕ 34.3/(pβ sin3/2(θ))µm
σz = 26.3⊕ 32.9/(pβ sin5/2(θ))µm,

(3.1)

where p is particle momentum in units of GeV/c and β its velocity in units of
c. The first term determines the actual detector resolution, while the second
term parametrizes the material budget and related multiple-scattering effects
depending on the (pseudo) momentum.

2⊕ denotes a quadratic sum, such that σ = a⊕ b means σ =
√
a2 + b2
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Belle
SVD1

Belle
SVD2

Belle II
SVD unit

Layers 3 4 4

Layer radius 30/45.5/60.5 20/43.5/
70/88.8

38/80/
115/140 mm

Ladders in layer 8/10/14 6/12/18/18 8/10/14/17
Sensors in ladder 2/3/4 2/3/5/6 2/3/4/5
Num. of modules 102 246 187

Sensor width 32 25.6 (33.28 for L4) 57.6 (38.4 for L3)
38.4–57.6 slanted mm

Sensor length 54.5 76.8 (74.75 for L4) 122.8 mm
Sensor thickness 300 300 320 (300 slanted) µm

Pitch in R− ϕ 25 50 (65 for L4) 75 (50 for L3)
50–75 slanted µm

Pitch in z 84 75 (73 for L4) 240 (160 for L3) µm

Table 3.1: Comparison of parameters among the Belle SVD1 and SVD2 and the
Belle II SVD detectors [2, 10].

3.1.2 Belle II SVD
The Belle II SVD detector is illustrated in Fig. 3.5. The most obvious change
is the addition of non-rectangular slanted sensors in the forward region for the
outer three layers. These improve the vertex resolution by limiting the effective
amount of material crossed by particles from the IP. The inner and outer radius
of 38 mm and 140 mm, is determined by the outer PXD and inner CDC radius,
respectively. At Belle II, the SVD has an additional function of extrapolating
tracks into the PXD, allowing the tracking to operate even in conditions of high
luminosity background. SVD is also crucial for reconstructing long-lived particles,
likeK0

S, which decay outside of the PXD. The fine time resolution of SVD (∼ 3 ns)
can also be used to suppress off-time background hits.

The sensors with a thickness of 300 – 320 µm have a large area, close to
current industrial production limits, and are organized in four layers and 49
ladders, slightly overlapping in R − ϕ. The pitch is 50 – 75 µm in R − ϕ and
160 – 240 µm in z. The main parameters are summarized and also compared to
Belle SVD in Table 3.1. Specific parameters are used for the inner SVD layer (L3)
and the slanted forward sensors. The slanted sensors have a trapezoidal shape
and variable pitch size in R− ϕ.

3.1.3 Belle II Pixel Detector and its Upgrade
With its first layer just 14 mm from the interaction point, the pixel detector has
to face several challenges in the high background environment caused mainly by
QED processes at very high luminosities. For precise B vertex reconstruction,
a very low material budget is a must, together with a sufficient radiation toler-
ance. All these requirements are fulfilled by the DEPFET (DEPleted Field Effect
Transistor) technology chosen for the Belle II pixel detector. DEPFET was in-
vented by Josef Kemmer and Gerhard Lutz in 1987 [18], and its development and
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Figure 3.4: Impact parameter resolution determined by cosmic ray tracks for
Belle SVD1 and SVD2 vertex detector configuration in R− ϕ (left) and z (right)
[16].

fabrication are maintained by the Semiconductor Laboratory of the Max Planck
Institute for Physics.

DEPFET pixels, illustrated in Fig. 3.6, integrate signal detection and ampli-
fication directly onto the sensitive depleted n bulk in the lithographic process. A
Field Effect Transistor (FET) is fabricated just over a small Internal Gate (IG)
region. The IG is about 1 µm under the FET of each pixel. It is created using
enhanced n-type doping surrounded by a p-type doped region. When electron-
hole pairs are created in the depleted volume by a traversing particle, holes drift
to the bottom p+ contact, while electrons are forced to accumulate in the inter-
nal gate region, which forms a potential minimum thanks to the complex doping
profile. Electrons are kept in the IG until a pulse voltage is applied at n+ clear
regions just next to the FET. This overcomes the potential barrier and sucks the
electrons out of the IG, making the pixel ready for subsequent detection.

The readout of the signal from each pixel is initiated by applying a voltage
across the transistor. The current over the transistor is proportional to the charge
stored in the IG. This readout is non-destructive and can be repeated as the charge
is kept in the IG until the clear signal. Thanks to a low capacitance of the IG, low
noise operation can be achieved at room temperatures with significant internal
amplification, leading to currents of approximately 500 pA per each collected
electron in the IG.

The high signal-to-noise ratio (over 30) permits the fabrication of very thin
devices with a high detection efficiency. The Belle II PXD uses sensors with active
areas thinned to 75 µm, embedded in a non-thinned 525 µm silicon support frame
from the same wafer. This frame hosts switcher chips along the sensor length,
steering the readout of pixel signal in a rolling shutter approach. Another set
of chips is housed on the balcony of the sensor, outside of detector acceptance,
which provides signal digitization and initial processing. The readout of the entire
matrix, having up to 1600 rows, can be finished within 20 µs.

The originally proposed Belle II PXD is visualized in Fig. 3.6. It was designed
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Figure 3.5: 3D visualization of the Belle II SVD detector, showing a side view
of its four layers and the support structures. The forward sensors (at +z) are
located on the right [17].

Figure 3.6: Schematic cross-section of the DEPFET pixel (left) and visualization
of the complete Belle II PXD (right) [10, 19].

with two layers at a radius of 14 mm and 22 mm with 40 sensors in total. The
sensors in the forward direction are segmented, with a smaller pitch size of 55 µm
in the z-direction closer to the IP. The pitch size inR−ϕ is 50 µm. The parameters
of the sensors are summarized in Table 3.2. Due to problems in ladder assembly
resulting in a limited number of sensors available at the construction time, only
the first layer of the PXD was completed. Only four sensors are installed from the
second layer at ladder positions to cover a lower quality sensor in the first layer.
This sensor finally turned out to be defective and is disabled. Thus the vertex
performance of the current PXD is expected to be slightly worse than in design
simulations. This important characteristic of the current PXD will be evaluated
and compared to Monte Carlo (MC) simulation expectations in the alignment
part of this thesis, see Sec. 17.1.3. At this point, let us show the expected design
performance of the complete vertex detector in Fig. 3.7. The critical point is a
significant improvement to the achieved Belle resolution by about a factor of two.
An impatient reader can find the corresponding comparison for real Belle II data
after all our alignment efforts at the very end of this thesis in Fig. 20.1.

The incomplete PXD will be entirely replaced by its original design configu-
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Figure 3.7: Impact parameter resolution in R − ϕ (left) and z (right) compared
for Belle cosmic data and design Belle II simulation with particle gun generating
single muons from the IP. In each bin, the resolution is estimated as a σ of a
Gaussian fit to central 90% of the distribution of difference of track parameters
of the split cosmic trajectory (Belle) or difference of reconstructed track parameter
from the generated one (Belle II) [11].

layer radius
(mm) ladders sensors/

ladder
total

sensors
pitch

R− ϕ (µm)
pitch
z (µm)

width
(mm)

length
(mm)

1 14 8 2 16 (15) 50 55, 60 12.5 44.80
2 22 12 (2) 2 24 (4) 50 70, 85 12.5 61.44

Table 3.2: Main parameters of the PXD and its sensors. The numbers in paren-
thesis refer to the initial Belle II PXD configuration with only a partially equipped
second layer and a disabled sensor in the first layer. Numbers separated by comma
refer to the backward and forward parts of the segmented forward modules, re-
spectively [10].

ration during an extended shutdown, currently scheduled for 2022 or 2023. The
shutdown period will include minor upgrades to other detector or accelerator
parts. Besides slightly improved vertex resolution, the complete second layer will
be needed to keep high tracking efficiency in the increasing background conditions
at high luminosities.

3.2 Central Drift Chamber
The CDC is the primary tracking device of the Belle II detector. Besides track
recognition, it is necessary to measure particle momenta in the 1.5 T magnetic
field. CDC provides signals for the trigger and is used for particle identification
via dE/dx measurements.

The CDC is a wire chamber filled with a gas mixture of helium (50%) and
ethane (50%). Charged particles ionize the gas, and a large potential difference
between field and sense wires leads to a fast separation of electrons and ions.
Electrons drift to the sense wires (made from gold-plated tungsten) with a very
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Figure 3.8: Schematic drawing (left) of the currently installed PXD detector and
photography (right) of the actual device before integration into the SVD in 2018
[20].

small diameter of 30 µm, leading to very strong electric fields. Electrons are
accelerated with these fields and ionize additional gas molecules, resulting in a
charge avalanche. This process results in an electronic pulse registered by the
readout electronics, with amplitude proportional to the charge deposited in each
cell. Fig. 3.9 (right) illustrates such cells for the Belle II CDC. Each cell is
formed from a sense wire surrounded by eight field wires, generating the desired
electric potential profile. The cells are organized into layers and super-layers with
alternating axial and stereo wires. Axial wires point along the z-coordinate, while
the stereo wires are slightly rotated by a stereo angle of several tens of mrad to
allow for a crude determination of the z-position (about 1–2 mm) of the track
and thus its polar angle to infer the longitudinal momentum component.

Figure 3.9: Comparison of super-layer, layer, and wire layout in the Belle and
Belle II CDC (left) [21] and detail of the configuration of the small inner cell and
normal cell with sense wire (orange) and field wires in the Belle II CDC (right).

The wire configuration is compared for the Belle and Belle II CDC in Fig. 3.9
(left) and the main parameters of the two drift chambers are summarized in
Table 3.3. The Belle II CDC is equipped with a larger small-cell chamber to
ensure good tracking in the much larger background. The spatial R−ϕ resolution
is approximately 130 µm and 100 µm in the best region for the Belle and Belle II
CDC, respectively. The relative transverse momentum resolution of the Belle
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Figure 3.10: Energy losses dE/dx as a function particle momentum as measured
in the Belle CDC [14]; p is in units of GeV/c.

Belle
CDC

Belle II
CDC unit

Radius of inner cylinder 77 160 mm
Radius of outer cylinder 880 1130 mm
Radius of innermost sense wire 88 168 mm
Radius of outermost sense wire 863 1111.4 mm
Number of layers 50 56
Number of sense wires 8400 14336
Diameter of sense wires 30 30 µm

Table 3.3: Main parameters of the Belle and Belle II CDC [10].

CDC with the SVD was measured to be

σ(pt)
pt

= 0.127% pt ⊕ 0.321%β (3.2)

where β is particle velocity in units of c and pt is in units of GeV/c. The Technical
design report [10] assumes

σ(pt)
pt

= 0.1% pt ⊕ 0.3%β (3.3)

can be achieved in combination with the vertex detector for the Belle II CDC.
We will return to evaluating this important performance characteristic in the
alignment part, see Sec. 17.5.

The total collected charge of the CDC hits associated with a track, and its
estimated momentum can be used for particle identification via ionization losses.
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Different particle species have distinct momentum dependence on their energy
losses. Despite a sizeable stochastic spread of the energy losses, in some momen-
tum regions, the distinctions can be unambiguous, as illustrated for Belle CDC
dE/dx measurements in Fig. 3.10.

3.3 Particle Identification System
The primary purpose of the subsystem for particle identification is to separate
kaons from pions, but when its information is combined with CDC dE/dx, it
contributes to a general particle identification scheme, assigning likelihoods to
different particle hypotheses. Particle identification sub-detectors have been com-
pletely replaced and redesigned for the Belle II detector, partially to host the new
CDC with a larger radius but mainly to withstand higher occupancy and improve
radiation tolerance and physics performance.

At Belle, the Aerogel Cherenkov Counter (ACC) and Time of Flight counter
(TOF), labeled in Fig. 3.2, form the particle identification system. The ACC uses
Cherenkov light emitted by charged particles traveling faster than the speed of
light in a medium, which depends on its refractive index. The ACC works as a
threshold Cherenkov counter providing K/π separation in the momentum range
from 1.2 to 3.5 GeV/c.

In the Belle TOF, the flight time to reach the detector for particles coming
from the IP is measured by modules with plastic scintillators attached to photo-
multipliers, providing a time resolution of 100 ps, also used as a fast timing signal
for the trigger. With known flight time, momentum, and flight length (∼ 1.2 m),
the mass of the particle can be estimated, which is illustrated in Fig. 3.11. TOF
provides K/π separation for momenta < 1.2 GeV/c.

The achieved combined (with CDC) kaon identification efficiency is about
85% while keeping lower than 10% pion misidentification rate at Belle [15], as
also shown in Fig. 3.11.

At Belle II, particle identification in the forward end-cap region is achieved
by proximity-focusing Aerogel Ring-Imaging Cherenkov detector (ARICH). The
Belle TOF is replaced by the Time-Of-Propagation counter (TOP) in the barrel
part. The TOP uses large quartz bars, where internally reflected Cherenkov
photons are registered by a photomultiplier screen at the bar’s end, as shown in
Fig. 3.12. At Belle II, the expected (average) combined Belle II kaon efficiency
is over 90% with less than 10% pion fake rate reaching to lower momenta than
Belle, see Fig. 3.12 (right).

3.4 Electromagnetic Calorimeter
The primary purpose of the Electromagnetic Calorimeter (ECL) is to identify and
reconstruct photons (especially those from π0 decays) and electrons and their en-
ergy thanks to the generation and registration of electron showers in scintillator
crystals. The crystals have a large electromagnetic radiation length (∼ 16X0 for
both Belle and Belle II) and serve both as an active medium for shower develop-
ment and generation of scintillation light. As heavier particles (than electrons)
have smaller specific ionization losses (and do not undergo bremsstrahlung) at
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Figure 3.11: Left: Mass distribution reconstructed by the Belle TOF for parti-
cles with momentum less than 1.2 GeV/c for MC (yellow histogram) and data
(black points). Right: Efficiency and fake rate for kaons at the Belle experiment
separately for the ACC, TOF, and CDC and combined performance (denoted
as ATC) [15]. The drop at ∼ 1.1 GeV/c for the CDC can be understood from
Fig. 3.10, where dE/dx measurements loose any separation power to distinguish
pions and kaons around this momenta.

Figure 3.12: Left: Illustration of TOP quartz bar and the mechanism of
Cherenkov light propagation to the photo-detectors [10]. Right: Simulated kaon
efficiency and fake rate (for pions) for the combined Belle II particle identification
[11].

31



given momenta, using momentum information from the CDC, the ECL can dis-
tinguish electrons from other particles by measuring E/p. The barrel part of the
ECL is the same for Belle and Belle II; only the read-out is upgraded. CsI(Tl)
crystals used for the whole Belle ECL are replaced by pure CsI crystals at Belle II
in the forward end-cap part.

Figure 3.13: The reconstructed invariant mass of photon pairs for Belle data,
showing clear peaks of decays of π0 (left) and η (right) [2].

Figure 3.14: The reconstructed invariant mass of photon pairs for Belle II data,
showing clear peaks of decays of π0 (left) and η (right) [22].

The key calorimeter performance characteristic is energy resolution. This is
demonstrated specifically in reconstruction of neutral particles like π0 or η for
Belle in Fig. 3.13 and for Belle II in Fig. 3.14. At Belle, the measured energy
resolution of the ECL was

σE
E

=
(︃

1.34 + 0.066
E

+ 0.81
E1/4

)︃
%, (3.4)

while for the Belle II ECL, the expected resolution reads [10]
σE
E

=
(︃

1.2 + 0.2
E

+ 1.6
E1/4

)︃
%, (3.5)

where E is units of GeV.
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Figure 3.15: Cross-section of the active layer of the RPC (a), a top view of the
RPC with internal spacers for segmentation (b), and one block of two adjacent
modules with the iron layer making one octant of the barrel KLM (c) [10].

3.5 KL and Muon Detector

For both Belle and Belle II, the outermost sub-detector, located outside of the
superconducting solenoid, is designed to detect muons3 and long-lived hadrons,
namely K0

L mesons. The KL and Muon (KLM) detector is a sampling calorimeter
divided into a barrel (BKLM) and end-cap (EKLM) part, with alternating 15 (14
in each end-cap) layers of sensitive elements and 4.7 cm thick iron plates, which
also serve as a return yoke for the magnetic field flux. While muons will lose
energy primarily due to ionization, K0

L can shower hadronically in the KLM
material with a hadronic interaction length of 3.9 λ0 (or ECL with 0.8 λ0) while
leaving no trace in CDC, allowing their identification for isolated KLM clusters.

At Belle, the whole KLM was instrumented with glass-electrode Resistive
Plate Chambers (RPC). Ionized gas from hadron showers or muons in the gas
gap leads to a discharge between the electrode plates at high voltage, registered
as a signal in a segmented RPC module. One such RPC module with its layered
structure is shown in Fig. 3.15.

For Belle II, the end-cap KLM and the first two BKLM layers are equipped
with fast plastic scintillator strips instead of RPCs to keep good efficiency also in
higher backgrounds, primarily caused by neutrons (e.g., from showers initiated
by radiative Bhabha scattering)[11].

3.6 Trigger System and Data Acquisition

At a B-Factory, only a fraction of events registered by the detector is of interest.
The trigger system must provide a very fast decision after the beam crossing
to select events relevant to physics or detector calibration. The decision logic is
divided into multiple layers with increasing complexity and latency. These events
are then processed in the Data Acquisition System (DAQ), which reads out the

3with pt > 600 MeV/c to reach it in the magnetic field
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sub-detector information based on the decision logic output, builds the event,
and sends it to an online computing farm for event monitoring and storage.

At Belle, the trigger starts with a hardware Level 1 (L1) trigger, which com-
bines information from the sub-detectors looking for distinct signatures, like mul-
tiple charged tracks, typical for hadronic events. Its information is further passed
to the Level 3 (L3) software trigger. A Level 4 trigger is applied offline to further
reduce the number of events for long-term storage. The final decision on whether
to keep or discard the event is performed by the Global Decision Logic (GDL).
The efficiency of the Belle trigger for hadronic events was higher than 99 %. The
trigger rate (for all triggered events) at regular operation was about 200 Hz, but
over 500 Hz was stably achieved.

Figure 3.16: Schematics of the Belle II data acquisition system [23].

At Belle II, the trigger system is designed to withstand a trigger rate as
high as 30 kHz. In addition, special selections open possibilities e.g. for dark
sector (axion) searches via dedicated single (three) photon trigger [11]. The
Belle II trigger is composed of a hardware L1 trigger, followed by the first event
builder and software High-Level Trigger (HLT), reducing the event rate to about
10 kHz. In addition, HLT must identify the Regions Of Interest (ROI) in the PXD
to allow for significant data reduction. After the HLT decision and inclusion
of the PXD hits into the final event is performed at the second event builder,
events are written to a disc array. A fraction of events is reconstructed by an
express reconstruction chain to provide fast monitoring of online data quality. A
(simplified) scheme of the Belle II DAQ is shown in Fig. 3.16.
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CHAPTER 4

Theoretical Introduction
What is the difference between left and right? Such an innocent question (sur-
prisingly?) boils down to asking: “Why do we exist at all?” As will be briefly
shown in the following sections, the symmetry between left and right is directly
related to the symmetry between matter and antimatter. Antimatter, being first
predicted theoretically by Dirac in 1928 [24], should be an exact equivalent of the
standard matter. However, once these two interact, they annihilate typically into
photons. According to our current knowledge, just after the Big Bang, matter
and antimatter should have been balanced. However, with an exact symmetry
between the two, their mutual interaction should lead to a universe very different
from this one and almost certainly without us. Most of the antimatter seems
to have disappeared. Literally, as far as we can see 1, only matter is present
in macroscopic amounts. This suggests that there must be some underlying
mechanism that violates matter-antimatter symmetry, known as CP violation,
or charge-parity violation. Even a small CP violation could generate the present
matter-antimatter unbalance, but all the known sources of CP asymmetry in the
SM are too tiny. This motivates the search for yet undiscovered CP -violating
phenomena sourced by physics beyond the SM.

In sections 4.1 and 4.2, we will look into the left-right and matter-antimatter
symmetry, a related phenomenon of time reversal, and briefly summarize two
major experiments which established the violation of these fundamental symme-
tries of nature. The present general formulation is given in Sec. 4.3 and after
developing the theory of neutral B meson mixing and related CP -violation phe-
nomena in Sec. 4.4, the SM prediction for our decay of interest is discussed in
Sec. 4.5. The basics of experimental measurement principles can be found in
Sec. 4.6. Finally, after some additional discussion of our particular decay cate-
gory B → ηc(K0

SK
+π−)K in Sec. 4.7, the previous experimental measurements

are discussed in Sec. 4.8, also in the context of new physics motivations for mea-
surement of sin 2ϕ1 in B0 → ηcK

0
S. As a last part of the theoretical introduction,

the measurement methodology is briefly discussed in Sec. 4.9.
The body of the analysis part is separated into four main chapters. In Chap-

ter 5, the signal event selection, detection efficiency, and continuum background
suppression are described, and the other sources of backgrounds are briefly dis-
cussed. As we build up the data model in Chapter 6, the signal and background
components are discussed in more detail before proceeding to a branching fraction
measurement. A significant part of this chapter will evaluate the main system-
atic error stemming from signal and (non-resonant) background interference. In

1with our best instruments looking for possible sources of annihilation signals or antiparticles
in cosmic radiation.

37



Chapter 7, we extend the data model to the time difference and flavor dimensions.
After CP -violation measurement for the control channel and a number of analysis
validations and cross-checks, we proceed to the final CP -violation measurement
in Chapter 8 and conclude the analysis in Chapter 9.

4.1 Discrete Symmetries of Nature

Symmetries play a very important role in physics. Continuous symmetries imply
conserved quantities according to the Noether theorem. This leads to the law
of energy, momentum, and angular momentum conservation due to the general
invariance of physical laws with respect to time, translation, and rotation, respec-
tively. Abstract continuous symmetries are the basis for the formulation of the
SM as a non-abelian gauge theory with local U(1) × SU(2) × SU(3) symmetry.
The three basic discrete symmetries can be divided into two already recognized
in classical physics and one of purely quantum nature:

• Time reversal T , or time conjugation changes time t → −t. It is well
known that most laws of physics are generally invariant under time reversal,
which leads to the famous problem of the arrow of time. Time usually enters
in the form of derivative d

dt
, and thus T leads to the reversal of motion. For

position x, momentum p and angular momentum L = x× p, we have

x
T−→ x p

T−→ −p L
T−→ −L. (4.1)

• Parity transformation P switches sign of the coordinates in position
vectors x = (x, y, z) → −x = (−x,−y,−z), which changes right-handed
coordinate system into a left-handed one. This corresponds to a mirror
reflection with additional rotations (and possibly a translation depending
on the reflection plane). As symmetry for translations and rotations is con-
served, the question of mirror symmetry can be reduced to parity invariance.
One has

x
P−→ −x p

P−→ −p L
P−→ L (4.2)

and can see that L is an example of an axial vector, which is invariant
under parity. A product of axial and ordinary (polar) vector yields a
pseudoscalar—a number defined in such a way that it changes sign un-
der parity, as for example, the helicity h = s ·p/|s ·p|, which is a projection
of particle spin s (which behaves as angular momentum L, i.e. s P−→ s)
onto its momentum.
Parity is also an intrinsic property of most particles meaning these are
eigenstates of the parity operator: P̂ |ψ⟩ = Pψ|ψ⟩ = ±|ψ⟩. Dirac equa-
tion predicts that fermions and anti-fermions have opposite parity and by
convention Pf = +1 for fermions (e−, p+, n0 or quarks). Bound states of
a fermion and anti-fermion have parity (−1)L+1, where L is their orbital
momentum state. So, for example, the two bound states of a charm quark
and anti-quark highly relevant for this thesis, ηc, and J/ψ, have L = 0 and
thus odd parity (P = −1).
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• Charge conjugation C does not have any classical nor non-relativistic
quantum-mechanical analog. It is related to the fact that all particles have
their corresponding antiparticles, which are related by a transformation
changing the sign of all U(1) charges, represented by additive quantum
numbers: electric charge, lepton number, flavor, the third component of
isospin and so on [25].
Thus for a particle, the charge conjugation yields its antiparticle:

C|ψ⟩ = |ψ⟩. (4.3)

Eigenstates of C with a well-defined intrinsic C-parity can only be (some)
neutral particles (e.g. C(γ) = −1, C(π0) = +1). Bound states of a fermion
and anti-fermion have C = (−1)L+S, where L is their orbital momentum
state and S is the total spin. For example the pseudoscalar meson ηc with
S = 0 (the quarks have antiparallel spins in antisymmetric combination)
has C(ηc) = +1, while the vector meson J/ψ (with symmetric spin part of
the wave function and S = 1) has C(J/ψ) = −1.

Each of these symmetries can be violated (not conserved in particle decays)
separately, as well as combinations of them. However, based on very general
requirements for a reasonable quantum field theory, in particular Lorentz invari-
ance, the combined symmetry CPT should not be broken, as stated by the CPT
theorem [25]. It follows that if, for example, the combined symmetry CP is bro-
ken, then T must be violated in order to preserve the CPT symmetry. Both C and
P are conserved in the electromagnetic and strong interactions, and these sym-
metries were originally thought to be fundamental symmetries of nature. This
assumption had to be abandoned in the light of the experimental results discussed
in the following section.

4.2 Experimental Path to Violation
of P , C and CP

The first experimental hints of parity violation came from the τ − θ puzzle, in
which particles nowadays known as charged kaons decayed into final states with
two or three pions, which have different parity (P (π) = −1). The puzzle was
resolved by proposing that the weak interaction, necessarily involved in decays of
strange particles, does not conserve parity [26]. The proposed direct experimental
test, which would not involve decays of strange particles (poorly understood at
that time), was conducted by C. S. Wu in 1957 [27]. Until this experiment, the
distinction between left and right was a mere human2 convention. The weak de-
cays of strongly polarized 60Co nuclei clearly showed that β electrons are emitted
in a direction opposite to the spin of the nucleus, in proportion to the polarization
level3. The established parity (and charge) violation in the weak interactions came

2While the left-right symmetry is broken (almost) consistently in several natural phenomena,
these are (most likely) not universal for life beyond Earth (if there is any).

3One could relate left and right (for example) to the direction of current in winding of the
polarization magnet coil.
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out to be, in fact, maximal. This manifests itself phenomenologically in the fact
that only left-handed neutrinos and right-handed anti-neutrinos exist in nature4.
Similarly, only left-handed particles (and right-handed antiparticles) participate
in the charged-current weak interactions mediated by intermediate W± bosons.

While weak interactions violate P and C symmetry, the combined CP sym-
metry was originally believed to be conserved. Thus, the correct mirror image
of physical laws needs to switch left with right and particles with antiparticles5.
However, according to our current knowledge, no significant amounts of antimat-
ter are present in the observable universe, so this symmetry must be violated, too.
It was first pointed out by Sakharov in 1967 [28], that CP violation at the funda-
mental level is one of the necessary conditions to generate the observed abundance
of matter over antimatter. At that time, CP violation had been, however, already
established experimentally, to the surprise of most theorists [29].

Violation of CP was first discovered in 1964 in studies of neutral kaon decays.
Neutral kaons, produced at that time in strong interactions, are not their own
antiparticles, as not all of their additive quantum numbers are zero, namely the
strangeness defined by (three times) the charge of the constituent strange quark
(K0 = ds, K0 = ds). This leads to a remarkable phenomenon of neutral meson
mixing (which does not require CP violation), where a particle can turn into its
antiparticles and vice versa. We will discuss this topic in detail in the context of
B mesons later; see Sec. 4.4. CP was assumed to be fully conserved in weak inter-
actions, which are the only decay mode that allows kaons to change strangeness
to permit their decay. We have6

CP |K0⟩ = |K0⟩ (4.4)

and see that |K0⟩ is not a CP eigenstate. From an analogous relation for K0, one
can, however, easily construct CP eigenstates as

|K1⟩ = 1√
2

(|K0⟩+ |K0⟩)

|K2⟩ = 1√
2

(|K0⟩ − |K0⟩).
(4.5)

Thus CP |K1⟩ = +|K1⟩ and CP |K2⟩ = −|K2⟩ and only |K1⟩ should be able to
decay into two pions (CP |ππ⟩ = +|ππ⟩). The two states also differ radically in
their respective lifetimes as K2 must decay into three pions (CP |πππ⟩ = −|πππ⟩),
leaving only a very limited phase space in this very fortunate case of neutral kaons.
These are nearly the true mass eigenstates, known as K0

S (K short) and KL (K
long) for kaons. For B mesons, this situation will be quite different due to their
high mass and many possible decay modes.

4In the limit of zero neutrino mass.
5Thus an experimenter in a distant world from antimatter (using anti-60Co and emitted

positrons) would arrive at the opposite definition of left and right according to our instructions
to replicate Wu’s experiment.

6Up to a phase. Kaons as well as pions have an odd parity and the C parity phase can be
chosen such that C|K0⟩ = −|K0⟩. Opposite conventions result in switching the labels for the
states with very close masses or lifetimes and redefinition of their differences, which are the
actual observable quantities [29].
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In 1964, while trying to set an upper limit, the process K0
L → π+π− was

actually discovered with a small branching fraction (∼ 2 × 10−3). This small
CP violation requires that the actual K0

S and K0
L mesons (which are true mass

eigenstates with definite masses and lifetimes) are, in fact, mixtures of two CP
eigenstates, parametrized by a small complex mixing parameter ϵ as7:

|K0
S⟩ = 1√︂

1 + |ϵ|2
(|K1⟩ − ϵ|K2⟩)

|K0
L⟩ = 1√︂

1 + |ϵ|2
(|K2⟩+ ϵ|K1⟩)

(4.6)

Thus, for example, the real K0
S is mostly the CP -even state K1, but with a small

admixture of the CP -odd state K2.
At this point, the theorist took the lead and tried to incorporate CP violation

into the evolving Standard Model. In the following years, the strangeness of kaons
was embodied in the framework of flavor physics, adding tastes of charm and
beauty quarks to the big picture and completing the three generations of leptons
and quarks with quite a late top quark observation in 1995 [30]. Interestingly,
the third generation of quarks was postulated theoretically shortly after observing
CP violation in neutral kaons. We will discuss this briefly in the next section,
where the theory will be explained already in the context of the contemporary
Standard Model of particle physics.

4.3 CP Violation in the Standard Model

The Standard Model incorporates three generations of fermions (leptons and
quarks), the force-carrying vector bosons (photon, intermediate W± and Z0

bosons, and gluons), and the scalar Higgs boson into the framework of quan-
tum field theory. The particle content of the SM is shown in Fig. 4.1. The
bottom quark is also known as the beauty8 quark. We prefer to use this name or
just b quark. The flavor quantum number distinguishes the six different quarks
with an up-type and down-type quark in each generation. While the flavor is
conserved in the electromagnetic and strong interactions, weak interactions allow
quarks to transform into each other.

These transitions are governed by the charged-current part of the interaction
Lagrangian between (left-handed) down and up-type quarks fields [32]:

L(quark)
CC = g

2
√

2
(︂
u c t

)︂
γµ(1− γ5)

⎛⎜⎝Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞⎟⎠
⏞ ⏟⏟ ⏞

V CKM

⎛⎜⎝ds
b

⎞⎟⎠W+
µ + h.c., (4.7)

7We will later utilize a different form of this expression using two complex parameters pK

and qK related to ϵ, where |K0
S⟩ = pK |K0⟩+ qK |K

0⟩ and |K0
L⟩ = pK |K0⟩ − qK |K

0⟩
8According to author’s knowledge, the Belle experiment name refers to the beauty (flavor)

via the fictional character Belle in Beauty and the Beast. In one of the commissioning phases, the
BEAST (Belle Exorcism for A STable experiment) detector was installed to measure accelerator
backgrounds.
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Figure 4.1: Fundamental particles of the Standard Model [31].

where g is the weak coupling constant, γµ are Dirac gamma matrices, W+
µ is

the charged intermediate vector boson field, and V CKM is a unitary matrix with
coefficients setting the mixing probability between each two up and down quark
types. The CKM matrix emerges as a consequence of the diagonalization of inde-
pendent mass matrices for the primordial up- and down-type quark fields, which
appear after the Higgs field acquires a vacuum expectation value. Because the
charged-current weak interaction mixes left-handed up- and down-type quarks,
a non-trivial matrix (V CKM) appears after transformation into physical quark
fields.

In 1972, at the time when only three quarks were known, it was pointed out by
Kobayashi, and Maskawa [33] that three generations of quarks could allow for CP
violation in a 3×3 mixing matrix, which incorporates the original Cabibbo mixing
angle θc ∼ 13◦ from the three-quark times. With nine free parameters of a unitary
matrix, of which five can be removed by a suitable choice of phases of the quark
fields, four parameters of the CKM matrix need to be determined. However, only
three angles are needed to define a real-valued unitary (orthogonal) matrix, so
the CKM matrix must be complex. The additional single complex phase of the
CKM matrix gives rise to all CP -violation phenomena in the quark sector.

Instead of the standard parametrization of the CKM matrix using three mix-
ing angles and one CP -violating phase, a parametrization by Wolfenstein, which
expands V CKM in terms of λ = sin θc ∼ 0.22 [34] is more suitable for our needs.
Using its three parameters A ∼ 0.79, ρ ∼ 0.141, η ∼ 0.357, the CKM matrix
reads

V CKM =

⎛⎜⎝ 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

⎞⎟⎠+O(λ4). (4.8)
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The Wolfenstein parametrization is unitary to all orders in λ, and one can see
that it reveals a very distinctive hierarchy of the elements. The major diagonal
terms of order one characterize the most probable transitions between quarks of
the same generation. The transitions between the first and second generation are
of order λ and for the second and third generation of λ2. This is also illustrated
diagrammatically in Fig. 4.2 (a). The CP -violating phase at this order of λ is
only contained in transitions between the first and third generation with elements
Vtd and Vub, proportional to λ3.

Figure 4.2: Left: Diagrammatic illustration of quark transition probabilities (a)
and the unitary triangle (b) with angles and lengths of sites denoted using the
standard normalized representation in the complex plane [35]. Right: The current
experimental constraints on sides and angles of the unitary triangle [34].

The unitarity of the CKM matrix leads to several relations among its elements.
Of particular relevance are those constraining the scalar products of any two rows
and columns as [29]:

∑︂
i

VjiV
⋆
ki = 0 =

∑︂
i

VijV
⋆
ik, j ̸= k. (4.9)

Six such relations emerge in the form of a sum of three complex numbers equal
to zero. Each can be visualized as a triangle in the complex plane, all of an equal
area related to an invariant expression9 for the total amount of CP violation from
the CKM matrix. Only one of these triangles, the one related to B meson decays,
has sides of comparable size (∼ λ3) and thus promises generally large observable
CP -violation effects. This triangle is usually called The Unitary Triangle (UT)
and is defined by the second relation in Eq. 4.9 with j = d, k = b (product of the
first and third CKM column) as

VudV
⋆
ub + VcdV

⋆
cb + VtdV

⋆
tb = 0. (4.10)

9Before the normalization below, area( any triangle ) = J/2, where J = |ℑ(VijVklV
⋆

ilV
⋆

kj)| ∼
3× 10−5 [34] is the Jarlskog invariant [29].
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It is common to normalize this expression by division by an almost10 real number
VcdV

⋆
cb, such that one side has unit length, and the triangle can be visualized as

in Fig. 4.2. The angles of the unitary triangle are defined as

β = ϕ1 = arg
(︃
− VcdV

⋆
cb

VtdV ⋆
tb

)︃
α = ϕ2 = arg

(︃
− VtdV

⋆
tb

VudV ⋆
ub

)︃
γ = ϕ3 = arg

(︃
− VudV

⋆
ub

VcdV ⋆
cb

)︃
,

(4.11)

where the notation β, α, γ is common at BaBar, while Belle is using ϕ1, ϕ2, ϕ3.
It is evident that the CKM matrix elements appear in plenty of phenomena

related to quark decays. The four parameters of the CKM matrix lead to a
large number of predictions, which can be, in principle, probed by experiments.
The theoreticians’ challenge is finding measurements with small theoretical uncer-
tainties, mainly stemming from non-perturbative QCD effects and hadronization.
The idea is to over-constrain the UT from many measurements. Experiments can
independently probe the sides and the angles, checking for their consistency. Any
inconsistency could mean deviations from unitarity and constitute strong indica-
tions for NP effects. The contemporary experimental status of the UT is shown
in Fig. 4.2, where at the current precision, all measurements indeed agree, and
the triangle closes at the apex. However, not all measurements are shown in this
figure, and small discrepancies already exist, which means that some deviation
from SM predictions could be confirmed with more precise measurements. As it
is not a priory known where to look for new physics, it is desirable to study the
phenomena in many possible ways. The decays of B mesons produced at the B-
Factory are an excellent playground for such studies. In the following sections, we
will explicitly look at the measurement of the ϕ1 = β angle, which is the flagship
of the B-Factory physics program. This particular class of measurements drives
many B-Factory design decisions.

4.4 Time-Dependent CP Violation in B Decays
We have already briefly mentioned that some neutral particles can mix between
matter and anti-matter in the case of neutral kaons. In this section, this effect will
be discussed deeper in the context of heavy mesons, which contain a beauty quark
or anti-quark and a first-generation quark (d or d for neutral B). This mixing
will be exploited to access CP -violating effects, which can lead to time-dependent
decay rates different for B0 and B0, demonstrating the (tiny) difference between
matter and anti-matter in the SM.

4.4.1 Mixing of Neutral B Mesons
The theory of neutral particle mixing starts with quite a general formulation us-
ing non-relativistic quantum mechanical treatment of the system represented by

10Up toO(λ4) according to the Wolfenstein parameterization. The slight complexity of VcdV
⋆

cb

means that the triangle is also rotated a bit.
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two-dimensional Hilbert vector space. For the neutral B mesons, the two possi-
ble states of definite flavor are |B0⟩ and |B0⟩. These are, however, not the mass
eigenstates, for which the time evolution is rather simple. Under assumptions of
CPT symmetry, the time evolution and decay of the neutral B meson wave func-
tion |ψ⟩ = ψ1(t)|B0⟩+ψ2(t)|B

0⟩ is governed by the time-dependent Schroedinger

equation11 iℏ ∂
∂t

(︄
ψ1(t)
ψ2(t)

)︄
= Heff

(︄
ψ1(t)
ψ2(t)

)︄
with an effective Hamiltonian [29]:

Heff = M − i

2Γ =
(︄
M M12
M⋆

12 M

)︄
− i

2

(︄
Γ Γ12
Γ⋆12 Γ

)︄
(4.12)

which is not hermitian (because of the i before Γ)—the probability is not con-
served as the B meson eventually decays. The mass eigenstates of a definite
lifetime can be obtained by diagonalization of Heff . The eigenvalues are:

µ1,2 = M − i

2Γ±
√︄(︃

M12 −
i

2Γ12

)︃(︃
M⋆

12 −
i

2Γ⋆12

)︃
. (4.13)

The corresponding eigenvectors (in general non-orthogonal as Heff is not hermi-
tian) can be written as

|B1⟩ = p|B0⟩+ q|B0⟩

|B2⟩ = p|B0⟩ − q|B0⟩,
(4.14)

where |p|2 + |q|2 = 1 and
q

p
=

⌜⃓⃓⎷M⋆
12 − i

2Γ⋆12

M12 − i
2Γ12

. (4.15)

For the eigenvectors, the standard exponential time evolution results from the
solution of the time-dependent Schroedinger equation, where the decay is achieved
by the complex part of the eigenvalues:

|B1,2(t)⟩ = e−iµ1,2t|B1,2⟩ (4.16)

with |B1,2⟩ being the initial state. The masses of the eigenstates can be obtained
as m1,2 = ℜ(µ1,2) and the lifetimes as Γ1,2 = −2ℑ(µ1,2). We can now invert the
relation 4.14 to get

|B0⟩ = 1
2p(|B1⟩+ |B2⟩)

|B0⟩ = 1
2q (|B1⟩ − |B2⟩)

(4.17)

at time t = 0. The time evolution for the flavor eigenstates is finally obtained by
letting the mass eigenstates to evolve in time |B1,2⟩ → |B1,2(t)⟩, which gives

|B0(t)⟩ = g+(t)|B0⟩+ q

p
g−(t)|B0⟩

|B0(t)⟩ = g+(t)|B0⟩+ p

q
g−(t)|B0⟩,

(4.18)

where
g±(t) = 1

2
(︂
e−i(m1− i

2 Γ1)t ± e−i(m2− i
2 Γ2)t

)︂
. (4.19)

11ℏ = 1 in natural units mostly used in this thesis.
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The time evolution can be further simplified for the case ofB mesons by neglecting
the lifetime difference12 and setting Γ1 = Γ2 = Γ = ℏ/τB0 , where τB0 ∼ 1.519 ps
[36]. Using average mass m = (m1 + m2)/2 and the mass difference13 ∆m =
m2 −m1 ∼ 0.507 ps−1, g±(t) becomes

g+(t) = e− Γ
2 t cos

(︄
∆m

2 t

)︄

g−(t) = ie− Γ
2 t sin

(︄
∆m

2 t

)︄ (4.20)

where a factor of e−imt, irrelevant for further discussion, is omitted from the
expressions on the r.h.s. The final form of the oscillations finally emerges by
evaluating |g±(t)|2 to obtain the probability of observing a decay of the same or
opposite flavor at time t > 0 by starting from a pure flavor state at t = 0. For
an initial state of B0

|⟨B0|B0(t)⟩|2 = 1
2e

−Γt(1 + cos(∆mt))

|⟨B0|B0(t)⟩|2 =
⃓⃓⃓⃓
⃓qp
⃓⃓⃓⃓
⃓
2 1

2e
−Γt(1− cos(∆mt))

(4.21)

while for an initial B0, we get

|⟨B0|B0(t)⟩|2 = 1
2e

−Γt(1 + cos(∆mt))

|⟨B0|B0(t)⟩|2 =
⃓⃓⃓⃓
⃓pq
⃓⃓⃓⃓
⃓
2 1

2e
−Γt(1− cos(∆mt)).

(4.22)

The oscillation probability is shown in Fig. 4.3. Thus the oscillations only
demonstrate the mass difference. CP violation in mixing, which manifests as
P (B0 → B

0) ̸= P (B0 → B0) (see below), only occurs for |q/p| ̸= 1. But for
B mesons, this number is very close to unity [35], despite having quite a large
phase. To reveal this phase, we need to multiply the states from the left by a
state to which both flavors can decay to employ the interference effect.

4.4.2 Types of CP Violation
In the time evolution of neutral B mesons, three basic types of CP violation can
be defined when B0 and B0 decay to the same final state |f⟩. Let us assume f is
a CP eigenstate14, that is f = f and CP |f⟩ = ±|f⟩. Denoting the amplitudes of
pure flavor state transition to f as:

⟨f |B0⟩ = A

⟨f |B0⟩ = A,
(4.23)

12This is the main difference from the oscillations of neutral kaons where the lifetimes of the
two states are radically different.

13For B mesons, B1 is identified with the lower mass state BL and B2 with the higher mass
state BH . The mass difference is also often denoted by ∆md to emphasize that we mean Bd

mesons—with b and d quarks.
14For f ̸= f , there are four possibly distinct amplitudes Af , Af , Af , Af which will make the

expression more complicated. It is however not relevant for further discussion
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Figure 4.3: Probability to find the same flavor (blue) or opposite, oscillated flavor
(red) neutral B meson at time t when starting from a pure flavor state (B0 or
B

0) at t = 0. The black dashed curve shows the total exponential decay rate.

the time-dependent amplitudes for the decay of B meson and its antiparticle to
f are obtained from Eq. 4.18 as

⟨f |B0(t)⟩ = A (g+(t) + λg−(t))

⟨f |B0(t)⟩ = A (g+(t) + 1
λ
g−(t)),

(4.24)

where we have used the standard definition for the complex parameter λ15, usually
denoted as λCP

λ = λCP = q

p

A

A
. (4.25)

Three different types of CP violation can now be discussed based on the magni-
tude and phase of λ, respective q/p or A/A (where multiple types can be present
simultaneously):

• Direct CP violation in decay occurs in case of |A/A| ≠ 1. This is the
only type of CP violation, which can be also observed in charged B meson
decays, which cannot mix. It can result from an interference of multiple
diagrams with different weak and strong phases.

• Indirect CP violation in mixing follows from |q/p| ̸= 1. This type of
CP violation was initially observed in the neutral kaon mixing. It results
in different probabilities for K0 → K

0 and K
0 → K0. In the kaon system,

this effect is observable thanks to the large lifetime difference of the mass
eigenstates K0

S and K0
L. For B mesons, this type of CPV is irrelevant.

• CP violation in interference of mixing and decay happens for ℑ(λ) ̸=
0. This is the time-dependent CP violation from the title of this thesis. It
is caused by interference of direct decay amplitude B0 → f and amplitude
where the B meson first changes its flavor before it decays (B0 → B

0 → f).
15This is not the Wolfenstein parameter λ = sin θc. Which one is meant should be obvious

from the context.
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The principle of observability of ℑ(λ) in the interference of mixing and decay
is worth noting. Let us assume for a moment that we can write λ = eiϕ and that
|A| = |A|, which will be justified later for the case of B mesons. At the time
t = 0, g−(0) = 0, and the squares of the two amplitudes would be equal. At time
t = π/∆m, g+(π/∆m) = 0 and g−(π/∆m) = ie−Γt/2. Thus the amplitudes now
differ by a factor of e2iϕ. By squaring the two amplitudes, there is no difference
again and thus no CP violation. We can see this factor is a complex number
whose argument is related to the weak phase, which has an opposite sign for B0

and B
0. However, we need two phases, of which one switches its sign and one

does not. The second invariant phase factor, whose role is played by the strong
phase for the direct CP violation, is provided by the wave function phase from
the unitary time evolution. This is also illustrated in Fig. 4.4, where the squares
of the two interfering diagrams are illustrated for B0 and B

0. The maximal CP
violation occurs16 at time t = π/∆m/2 ∼ 3 ps. At this moment, under our
simplified assumptions, one can write

⟨︃
f
⃓⃓⃓⃓
B0

(︃
t = π

2∆m

)︃⟩︃
= e− πΓ

4∆m

√
2

2 (1 + ie+iϕ)⟨︃
f
⃓⃓⃓⃓
B

0
(︃
t = π

2∆m

)︃⟩︃
= e− πΓ

4∆m

√
2

2 (1 + ie−iϕ).
(4.26)

For these two complex numbers, their absolute values are now, however, not
identical, and the complex phase in λ fully reveals in their difference, which is
proportional to sinϕ.
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Figure 4.4: Illustration of Feynman diagrams for a direct B meson decay to
(cc)KS interfering with neutral meson oscillation (red box) followed by the decay
for an initial pure B0 state (top) and CP conjugated B

0 state (bottom). Due to
the additional phases from unitary time evolution, the squares of the two absolute
values are generally not equal, and the difference depends on t.

The time-dependent decay rate of an initially pure B0 state is obtained by

16Further periods are much less interesting as the B mesons quickly decay
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squaring the corresponding time-dependent amplitudes in Eq. 4.24 as

Γ(B0 → f) ≡ Γ(B0 → f ; t) = |⟨f |B0(t)⟩|2 = |A|2[g+(t) + λg−(t)][g⋆+(t) + λ⋆g⋆−(t)].
(4.27)

After some calculations 17 , one gets

Γ(B0 → f) =

|A|2 e
−Γt

2 (1 + |λ|2)
[︃
1− |λ|

2 − 1
1 + |λ|2 cos(∆mt)− 2ℑ(λ)

1 + |λ|2 sin(∆mt)
]︃
.

(4.28)
The equivalent expression for |⟨f |B0(t)⟩|2 can be obtained by the replacement18

λ→ 1
λ
:

Γ(B0 → f) =

|A|2 1
|λ|2

e−Γt

2 (1 + |λ|2)
[︃
1 + |λ|

2 − 1
1 + |λ|2 cos(∆mt) + 2ℑ(λ)

1 + |λ|2 sin(∆mt)
]︃
.

(4.29)

4.4.3 Time-Dependent CP Asymmetry for B Mesons
The expressions for decay rates can be further simplified, as the q/p factor, which
comes from B0−B0 oscillations and the box diagram, further discussed in Sec. 4.5,
is close to unity in magnitude. Thus for B mesons, we can substitute

|λ|2 = |A|
2

|A|2
(4.30)

in Eq. 4.28 and 4.29, resulting in a striking similarity between the two equalities.
By taking their difference and dividing it by the average as

a(t) = Γ(B0 → f)− Γ(B0 → f)
Γ(B0 → f) + Γ(B0 → f)

, (4.31)

the time-dependent asymmetry a(t) reveals in an experimentally and theoretically
more suitable form, where many unknowns and uncertainties cancel. One gets

a(t) = |λ|
2 − 1

|λ|2 + 1 cos(∆mt) + 2ℑ(λ)
|λ|2 + 1 sin(∆mt). (4.32)

The CP violation is thus fully described by two parameters defined as

ACP = |λ|
2 − 1

|λ|2 + 1

SCP = 2ℑ(λ)
|λ|2 + 1 ,

(4.33)

where ACP measures the direct CP asymmetry in the decay and SCP measures
the time-dependent asymmetry in the interference of mixing and decay.

17Note that λ⋆ − λ = −2iℑ(λ)
18Using ℑ( 1

λ ) = −ℑ(λ)
|λ|2
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4.5 Time-Dependent CP Violation
in b → ccs Decays

In this section, the CP -violation parameters ACP and SCP will be related to
fundamental SM parameters, namely one of the unitary angles. The case of
b→ ccs transitions, originally recognized as golden modes to access the angle ϕ1,
will be used. The most famous process B0 → J/ψK0

S is an example of decay into
a pure CP eigenstate common to B0 and B0. This discussion is, however, general
for all cc mesons, in particular ηc.

Two amplitudes represented by lowest-order Feynman diagrams, leading to
the necessary interference, are illustrated in Fig. 4.5. The process B0 → ccK0

S on
the left interferes with B0 → B

0 → ccK0
S (on the right), with additional B0 → B

0

oscillation, which proceeds via a box diagram, whose example is shown in 4.5 (a).
The additional box diagram (c) represents the K0 ↔ K0 oscillation, but only
schematically—to illustrate how a superposition of flavor eigenstates emerges to
reach a mass (and to good accuracy also a CP ) eigenstate K0

S. Needless to say,
the K0 ↔ K0 oscillation is both a complication and a blessing [29]. Without
them, we will not have a final CP eigenstate. Fortunately, corrections arising
from CP -violation effects in kaons are small, and in the typical experimental
setup, where K0

S are registered through π+π− decays by a vertex detector up to
a distance of several flight lengths of K0

S, the occasional K0
L → π+π− decays can

be ignored [37].
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Figure 4.5: Examples of interfering diagrams for B0 → (cc)K0
S decays. The

tree-level decay (b) might be preceded by a B0 → B
0 oscillation (a). The green

box diagram (c) represents neutral kaon mixing, necessary to reach the final CP
eigenstate.

The parameter encoding the CP -violation effects is defined as (see Eq. 4.25)

λccK0
S

= q

p

AccK0
S

AccK0
S

= q

p

⟨ccK0
S|B

0⟩
⟨ccK0

S|B0⟩
, (4.34)

where q/p comes from B0−B0 oscillations. The term AccK0
S

has two contributions.
The first is shown (on the left) in Fig. 4.5 (b) and is proportional to the product of
CKM elements V ⋆

cbVcs. The emerging strange meson is, however, not yet common
to B0 and B0. In the diagram, we have an s-quark going from the weak vertex Vcs
(b) and thus K0 meson, which results from the B0 decay. That is B0 → (cc)K0

and B0 → (cc)K0. To get a K0
S meson, we have to multiply this by the transition

50



amplitude ⟨K0
S|K0⟩. A similar treatment for a diagram starting with B

0, also
shown in Fig. 4.4 (bottom), leads to

λccK0
S

= ηCP
q

p

V ⋆
csVcb⟨K0

S|K
0⟩

V ⋆
cbVcs⟨K0

S|K0⟩
, (4.35)

where the sign factor of ηCP encodes the CP eigenvalue of the final state, i.e.

ηCP (J/ψK0
S) = ηCP (ηcK0

S) = −1.

Note that CP (ηc) = −1, while CP (J/ψ) = +1 but for J/ψ the B (scalar) decays
to a vector (J/ψ) and scalar (K0

S)19 and thus, these must be in a state with orbital
momentum L = 1 (giving one minus factor to the parity of the final state).

The treatment of the oscillation part is quite similar for B and K mesons.
Like for B (Eq. 4.14), we can rewrite part of Eq. 4.6 as

|K0
S⟩ = pK |K0⟩+ qK |K

0⟩. (4.36)

Instead of ‘bra’ vector, one needs the corresponding ‘ket’ vector, which is equiv-
alent to ⟨K0

S| under the assumption of CP conservation in the neutral kaon os-
cillations20. Then one can write ⟨K0

S|K0⟩ = p⋆K and ⟨K0
S|K

0⟩ = q⋆K [38]. The
coefficients pK and qK have the same meaning as p and q but are evaluated in
the neutral kaon system. Assuming |M12| ≫ |Γ12|, one can write Eq. 4.15 as[8]

q

p
=
√︄
M⋆

12
M12

. (4.37)

This means that q/p is given by the elements of the mass matrix in Eq. 4.12,
which connect different flavor eigenstates. These correspond to the amplitudes of
B0 → B

0 obtained from the box diagram. For B’s, the t-quark dominates in the
oscillations; other contributions can be neglected. Collecting the CKM elements
for B0 → B

0 then gives M12 ∝ (VtdV ⋆
tb)2. Therefore for the B mesons

q

p
= VtdV

⋆
tb

VtbV
⋆
td

. (4.38)

In fact, this term brings already the full phase difference (other smaller phases
will cancel) and in the SM, q

p
≃ e−2iϕ1 [29]. For the neutral kaons, the charm

contribution is the most relevant for oscillations (as Vts is of order λ2 while Vtb is
close to unity for B mesons). This can be written in analogy to the beauty sector
to a good approximation [25] as

qK
pK

= VcdV
⋆
cs

VcsV
⋆
cd

. (4.39)

Combining the results together, we get

λccK0
S

= ηCP
VtdV

⋆
tb

VtbV
⋆
td

V ⋆
csVcb
V ⋆
cbVcs

V ⋆
cdVcs
V ⋆
csVcd

= ηCP
V ⋆
tbVtd
V ⋆
cbVcd

VcbV
⋆
cd

VtbV
⋆
td

. (4.40)

19To a very good accuracy CP (K0
S) = +1, which neglects CP violation in the neutral kaon

system.
20Otherwise one should use the reciprocal basis [38], which will lead to the same final result

for λccK0
S

in case |qK/pK | ≃ 1, which is true to order of 10−3.
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This complex number is in the form of z/z⋆, so |λccK0
S
|2 = 1, and thus the direct

CP asymmetry parameter (defined in Eq. 4.33) AccK0
S

= 0 in the SM to a good
approximation. This allows us to write λccK0

S
as a complex unit and obtain its

imaginary part as ℑ(λccK0
S
) = sin(arg(λccK0

S
)). We get21

ℑ(λccK0
S
) = SccK0

S
= −ηCP sin(2ϕ1), (4.41)

where ϕ1 is angle of the unitary triangle defined in Eq. 4.11 and illustrated in
Fig. 4.2.

In summary, the SM predicts for the CP -violation parameters measured in
B0 → ηcK

0
S

ACP = 0
SCP = sin 2ϕ1

(4.42)

within sub-percent theoretical uncertainty. Moreover, these parameters should
be (up to the sign different for CP -odd and CP -even final states) identical for
all b→ ccs transitions, irrespective of the involved charmonium resonance. Note
that there is a two-fold ambiguity ϕ1 → π/2−ϕ1, which can be resolved by other
measurements [14].

4.5.1 Trees and Penguins
In the previous discussion, it was assumed that the decay corresponding to part
(b) in Fig. 4.5 could be described by a single amplitude which represents the tree
level b→ ccs decay. At the one-loop level, so-called penguin diagrams have to be
considered. An example of a gluonic penguin diagram for our process is shown
next to the tree-level one in Fig. 4.6, specifically for the case of ηc charmonium22.

Figure 4.6: Feynmann diagrams for b → ccs decay [40]. Left: Dominant color-
suppressed tree diagram. Right: Strong penguin diagram with the exchange of
gluons. For an electroweak penguin diagram, the gluons are replaced by (single)
γ or Z, but these contributions can be neglected.

Similar diagrams where the gluons are replaced by a (single) Z0 boson or γ
(electroweak penguins) can be neglected [41]. The three possible virtual quarks
t, c, u in the loop result in three contributions to the penguin amplitude. The
total amplitude can be written as [25]

AccK0 = VcbV
⋆
cs(T + Pc − Pt) + VubV

⋆
us(Pu − Pt) (4.43)

21Using arg(x/x⋆) = 2 arg(x), arg(x⋆) = − arg(x) and arg(−x) = arg(x) +π in the definition
of ϕ1/β.

22For J/ψ, three gluon exchange is necessary due to charge-conjugation invariance [39]

52



where T is the amplitude of the tree diagram and Pt, Pc, and Pu represent the
amplitudes of the penguin diagrams, where the CKM elements are factored out.
From the Wolfenstein parameterization in Eq. 4.8, one can see there is a large
phase in Vub, coming from the u quark loop and Pu, which is different from the
phase from the box diagram. At the same time, the combination of CKM elements
VubV

⋆
us ∝ λ4, while VcbV ⋆

cs ∝ λ2, so Pu is CKM-suppressed. The Pu contribution
introduces a theoretical uncertainty in the correspondence of SccK0

S
and sin 2ϕ1.

The size of this effect depends on the relative size of Pu. It is estimated that[29]

⃓⃓⃓⃓
λ2Pu
T

⃓⃓⃓⃓
< 1 % (4.44)

which results in sub-percent theoretical uncertainty of sin 2ϕ1 determination,
called penguin pollution.

These considerations are usually made with the assumption of no additional
interference23. However, by selecting particular final states, the number of in-
terfering diagrams can be larger when the final state resulting from cc together
with the K0

S from B meson can be, for example, reached by a (non-flavor-specific)
direct B decay into final state particles. This will be the case of our analyzed
ηc → K0

SK
+π− decay, where an important background source stems from b→ s

transitions, which must proceed via a loop, where the u quark contribution has a
different weak phase than the tree-level decay. Or the final state may be reached
via a b→ u tree directly. Evaluation of such diagrams is very difficult due to non-
perturbative QCD calculations. This can lead to more significant uncertainties
in sin 2ϕ1, which can be considered theoretical. The measurement of the CP -
violation parameters ACP and SCP is still fully valid, albeit these values might
then be understood as effective, where background interference effects are not
decoupled.

4.6 Measurement of sin 2ϕ1 at B-Factories

The actual observation of the time-dependent CP violation is facing a number
of experimental challenges, which have been successfully resolved. First, a clean
and copious sample of neutral B mesons is needed. This is achieved by colliding
electrons and positrons at a specific center-of-mass energy. The cross-section for
production of hadrons in e+e− collisions around 10 GeV is shown in Fig. 4.7 (left),
where several Υ resonances are denoted. These resonances are bound states of b
and b quark, also called bottomonium. The spectrum of bottomonium is shown
in Fig. 4.7 (right). The mass of Υ(4S) resonance is just above the threshold for
BB production, and this resonance almost exclusively (in > 96 % of cases [36])
decays into B+B− or B0B

0. The kinetic energy of the B mesons is minimal in
the CM frame compared to their mass as the energy release of Υ(4S) decay is
only about 20 MeV.

23Tag-side interference is often considered [8] and will also be included as a systematic error
in our analysis.
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Figure 4.7: Cross section of electron-positron annihilation to hadrons with peaks
corresponding to bottomonium resonances (left) [42], and the spectrum of bot-
tomonium (right), with states sorted by mass and their quantum numbers [8].

4.6.1 Coherent B Mesons and the EPR Paradox
The Υ(4S) decay to B mesons proceeds via strong interaction, and thus it con-
serves both C and P separately. From the quantum numbers of spin-one particle
Υ(4S), JPC(Υ(4S)) = 1−−, it follows that in the decay Υ(4S)→ B0B

0, the two
B mesons with spin zero (JP (B) = 0−) must be in a p-wave state with orbital an-
gular momentum quantum number L = 1. Upon exchange of the two B mesons,
this yields a factor of (−1)L=1 = −1, i.e., the angular part of the wave function
is antisymmetric. Einstein-Bose statistics dictates that the total wave function
describing a state of identical bosons must be symmetric. Thus the two (oscillat-
ing) bosons cannot be identical at any time while they transform into each other.
This is an example of an entangled state which can be compactly written as

|Ψ⟩ = 1√
2
(︂
|B0⟩|B0⟩ − |B0⟩|B0⟩

)︂
, (4.45)

which is correctly C and P 24 odd (and thus CP even) like the initial state of
Υ(4S).

Next, one should measure the decay rates as a function of time since Υ(4S)
decay in the rest frames of the respective B mesons, separately for each flavor.
This brings two complications due to a short B lifetime (about 1.5 ps) and the
fact that we are interested primarily in decays into a CP eigenstate, common to
B0 and B0. Thus by the very definition, we cannot tell the flavor of the B meson,
which decays into our signal. At this point, the advantage of the initial entangled
state will come to the rescue. By inserting the time evolution for the ket vectors
from Eq. 4.18 and using Eq. 4.20, the wave function of the system of the two

24Note that the two bosons fly to opposite directions, so spatial inversion generates exactly
the same (or mathematically equivalent) linear combination, but with a minus sign.
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mesons, first25 at time t1 and second at time t2, can be written as

|Ψ(t1, t2)⟩ = 1√
2
e− Γ

2 (t1+t2)
[︃

cos
(︃∆m∆t

2

)︃(︂
|B0⟩|B0⟩ − |B0⟩|B0⟩

)︂
+i sin

(︃∆m∆t
2

)︃(︂p
q
|B0⟩|B0⟩ − q

p
|B0⟩|B0⟩

)︂]︃
,

(4.46)

where ∆t = t2 − t1. Until one of the mesons decays, ∆t = 0 and exactly one B0

and one B0 is present in the system. Despite both oscillating, this oscillation is
exactly synchronous. Let’s assume, for example, that the first B decays at time
t1 = ttag into a final state ftag, which reveals26 its flavor as B0 with amplitude
Atag ≡ ⟨ftag|B0⟩ = ⟨f tag|B

0⟩. At this moment, the wave function of the system
collapses, and the flavor of the other particle must be B0 at the same instant,
irrespective of their distance. This is the essence of the Einstein-Podolsky-Rosen
(EPR) paradox [43] and the key principle allowing experimental observation of
flavor through the second meson at the very moment when the time evolution
from a pure B0 state starts. If this second meson then decays at time t2 = tCP
into a CP eigenstate fCP , its wave function27 just before this moment is

|B0(tCP)⟩ = Atag√
2
e− Γ

2 (ttag+tCP )
[︃

cos
(︃∆m∆t

2

)︃
|B0⟩+ i

p

q
sin

(︃∆m∆t
2

)︃
|B0⟩

]︃
(4.47)

and the amplitude of the process is ⟨fCP |B
0(tCP )⟩. This, together with the second

case, where the flavor of the tag-side meson is B0, has the same form as Eq.4.18
with a replacement t→ ∆t = tCP − ttag. Indeed, the resulting asymmetry can be
again written as

a(∆t) =
Γ(fCP , ftag)− Γ(fCP , f tag)
Γ(fCP , ftag) + Γ(fCP , f tag)

= ACP cos(∆m∆t) + SCP sin(∆m∆t),

(4.48)
where Γ(fCP , ftag) = |⟨fCP |⟨ftag|Ψ(tCP , ttag)⟩|2; equivalently for Γ(fCP , f tag).

Technically, to extract maximum information and include reconstruction ef-
fects properly, the probability distributions for finding a given tag-side B meson
flavor with time difference ∆t are used instead of the asymmetry Eq. 4.48, which
is then only constructed ad hoc. Using Γ = 1/τB, where τB is the B0 (or poten-
tially B+) lifetime, this distribution, properly normalized over ∆t ∈ (−∞,+∞)
and the two flavors, can be written as

Pphys(∆t, q) = e−|∆t|/τB

4τB

{︃
1 + q × [ACP cos(∆m∆t) + SCP sin(∆m∆t)]

}︃
, (4.49)

25For example, the meson, which is going to the upper hemisphere.
26This outcome is random. The flavor is not predetermined.
27The total wave function after the tag side decay, which performs a quantum mechanical

measurement by projecting out one of the eigenstates using |ftag⟩⟨ftag| (or |f tag⟩⟨f tag|), is
proportional to

[︂
cos
(︂

∆m∆t
2

)︂
|ftag⟩|B

0⟩ + ip
q sin

(︂
∆m∆t

2

)︂
|ftag⟩|B0⟩|

]︂
. This expression is now

separable, and one can talk about two individual particles and wave functions in their respective
Hilbert spaces. The state |ftag⟩ is, however, now composed of different particles (so it does not
belong to the original product of Hilbert spaces to describe the two-particle system) and also
evolves in time. Just after the decay, at ∆t = 0, the state is proportional to a pure |ftag⟩|B

0⟩
and the second meson is in state B0 and starts mixing.
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where q is given by the true tag-side flavor, q = +1(−1) for Btag = B0(Btag = B
0),

and ∆t = tCP − ttag can be both positive and negative.

4.6.2 Measuring Time with Vertex Detectors
One needs to measure the difference between the decay times of the B mesons,
which seems very difficult, as they are produced nearly at rest after the Υ(4S)
decay. However, if the original Υ(4S) moves very fast, the daughter B’s can travel
a measurable distance. This is the reasoning behind the asymmetric accelerator.
With the center of mass of the collision moving in the laboratory frame, the
produced Υ(4S) meson is boosted along the electron beam direction with βγ =
0.425 at Belle (0.28 at Belle II). Thanks to relativistic time dilation, the B mesons
live a bit longer in the laboratory frame, further slightly increasing the distance
traveled before their decay. Ignoring their small kinetic energy in the CM frame,
the distance ∆z between the two B decay vertices along the boost is related to
the proper time difference ∆t in the center of mass system of the particles as

∆t ∼=
∆z
βγc

. (4.50)

The boost leads to an average distance between B0 and B
0 decay vertices of

about 200 µm at Belle (130 µm at Belle II) along the z-direction, which can be
resolved with high-precision semiconductor vertexing technology. An illustration
of a typical decay chain with a golden channel B0 → J/ψK0

S is shown in Fig. 4.8.
Many factors enter the experimental resolution of ∆t, mostly through ∆z,

which must be determined from a vertex fit to the B decay products. These
effects can be studied on simulations as a function of δt = ∆t − ∆ttrue and the
estimated uncertainty σ∆t. Note that ∆ttrue is the ∆t from previous sections,
while in this paragraph, ∆t is the reconstructed proper-time difference. The
uncertainty σ∆t follows from error propagation in tracking and vertexing and is
determined for each particular event. There are more such variables affecting
the resolution, for example, the flight direction of the B meson in the CM frame
θCM
B , which is neglected in the kinematic approximation 4.50. If the resolution

functionR(δt;σ∆t, . . . ) [8] is determined, the probability density can be evaluated
by convolution as

Prec(∆t, q;σ∆t, . . . ) = Pphys(∆t, q)⊗R(∆t;σ∆t, . . . )

=
∫︂ +∞

−∞
Pphys(∆ttrue, q)R(∆t−∆ttrue;σ∆t, . . . ) d∆ttrue,

(4.51)
which is also a function of the event-dependent variables used to parameterize
the resolution function. In other words, this is a conditional probability, and the
total probability density function (PDF) can only be constructed once PDFs for
the event-dependent variables (like σ∆t) are specified. This also means it is not
trivial to plot such a distribution—one needs to assume some distributions for
the (conditional) event-dependent variables. Thus in all plots where fit results
(utilizing ∆t resolution functions) and data are compared in the next chapters,
the event variables come from the data and are plugged into the probability
density functions, evaluated at each event. The total distribution is thus a sum
of many such functions (as many as there are events in the dataset).
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Figure 4.8: Illustration of the time difference and flavor measurement at Belle
showing the decay chain for the golden channel, where neutral meson BCP decays
into J/ψ → µ+µ− and K0

S → π+π−. The second meson emerging from Υ(4S),
denoted as Btag is used to tag the flavor of the second B, in this case through
the high momentum lepton ℓ−. The decay time difference of the two B mesons
is inferred from the longitudinal distance ∆z of their decay vertices [14].

4.6.3 Flavor Tagging
In Fig. 4.8, on the upper side (the tag side), the meson Btag decays in a typical
flavor-specific way into a single high-energy lepton. These decays predominantly
proceed via a semileptonic b → cℓ−νl transition, where the lepton ℓ carries the
sign of the charge of the original b quark and thus Btag = (bd) = B

0 in the figure.
This allows us to identify the flavor with large confidence, but generally not
unambiguously, as, in addition, there are other tagging modes, which can have a
much lower probability of correct flavor assignment. For example, the lepton may
be a secondary lepton originating from a cascade decay b → W−c(c → sℓ+ν).
In this case, the charge of the lepton is opposite to the b quark charge, but its
momentum spectrum is also much softer [8]. The procedure of flavor assignment
based on the decay characteristic is called flavor tagging. Flavor tagging generally
follows after signal reconstruction. The fully reconstructed signal-side particles
are excluded, and the rest of the event is analyzed by the tagging algorithm.

At Belle, the output of the flavor tagging procedure is the estimated fla-
vor charge q = ±1, q(B0) = +1, q(B0) = −1 of the tag-side B-meson and the
expected flavor dilution factor r, representing the likelihood of correct flavor de-
termination [8]. This factor ranges from zero (no flavor information) to one
(unambiguous flavor assignment). The signed probability

q r = N(B0)−N(B0)
N(B0) +N(B0)

(4.52)

is obtained from a lookup table determined from MC simulation and calibrated by
self-tagging decays on data. The average mistag probability w = (wB0 +w

B
0)/2 is

related to the dilution factor (1−2w), which reduces the observed CP and mixing
asymmetries from physical ones. As mistag probability can differ between flavors,
∆w = wB0 − w

B
0 is further being determined. The difference between tagging

efficiencies for B0 and B
0 is neglected at Belle. These tagging performance pa-

rameters are determined separately for seven tagging-quality categories (ranges of
r). The categories and the corresponding average mistag averages and differences
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for Belle data can be found in Table 5.1. With imperfect flavor determination
and resolution effects, the probability density 4.49 changes to

P(∆t, q) = e−|∆t|/τB

4τB

{︃
1− q∆w

+q(1− 2w)[SCP sin(∆m∆t) +ACP cos(∆m∆t)]
}︃
⊗R(∆t),

(4.53)
where q is the reconstructed (measured) Btag flavor, and ∆t is the reconstructed
proper-time difference. In practice, the resolution function R (and thus P) de-
pends on a number of conditional event-dependent variables, like the ∆z resolu-
tion from tracking. The reconstructed distribution is compared to the true phys-
ical probability density in Fig. 4.9. It should be noted that the raw asymmetry is
further diluted by backgrounds. A proper model for the signal and background
components, the resolution function(s), and the flavor tagging imperfections per-
mit unfolding of the underlying physics parameters using a maximum likelihood
fit.

Figure 4.9: Physical distribution (left) of the time-dependent decay rate as a
function of the proper time difference for B0-tagged (solid line) and B

0-tagged
events (dashed line) and the observed distribution (right) after considering im-
perfect tagging and resolution effects. The CP -violation parameters are set to
SCP = 0.7 and ACP = 0 and assuming ηCP = +1 (CP -even final state) [8].

4.7 Pseudoscalar Charmonium ηc(1S)
in B → ηcK with ηc → KKπ

Bound states of a charm quark and anti-quark belong to a class of neutral mesons
called charmonium, with its most famous member being J/ψ, discovered in
1974 [44]. The J/ψ meson, as well as many other states, shown in Fig. 4.10
together with their quantum numbers, are allowed to decay into two leptons;
with a very distinctive experimental signature. The pseudoscalar ηc meson is,
in fact, the lowest-lying ground s-state charmonium, but with JPC = 0−+, it
cannot decay into two leptons due to angular momentum and C conservation.
This makes ηc experimentally much more difficult to observe. The current world
average for ηc mass is (2983.9± 0.5) MeV/c2 [36]. The width Γηc = (32.0± 0.8)
MeV is significantly larger than for J/ψ, ΓJ/ψ = (92.9±2.8) keV. The measured ηc
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parameters differ significantly among different experiments and production and
decay modes [8]. The smallest errors are coming from two-photon production of
ηc, but even here, the results can be affected by interference with a non-resonant
direct production of the KKπ final state, through which ηc is usually observed.

s
d

d
u

u
s

c

c

K 0 → KS

π +

K -

ηc

Figure 4.10: Example of Feynman diagram for a typical ηc decay, in this case
to K0

SK
−π+ (left) and the spectrum of charmonium (right) sorted according to

mass and quantum numbers of the states [45].

The ηc charmonium primarily decays hadronically via annihilation into two
gluons, suppressed by the Zweig (OZI) rule, as illustrated in Fig. 4.10. One of
the dominant ηc decays is ηc → KKπ. This notation includes several individual
decay modes related by isospin symmetry. As isospin quantum numbers of ηc
are I = 0, I3 = 0, these must be conserved in a strong decay and in the final
state. The three possible isospin projections for π with I3 = −1, 0,+1 correspond
to π−, π0 and π+, respectively. The K states with I3 = −1

2 ,+
1
2 are K0, K+,

and K−, K
0 for K, respectively. The coefficients of combinations matching total

I = I3 = 0 and zero total charge are given by the Clebsh-Gordan coefficients as
[46]

|KKπ⟩ = + 1√
3
|K0

K+π−⟩+ 1√
3
|K0K−π+⟩

− 1√
12
|K+K−π0⟩ − 1√

12
|K−K+π0⟩

− 1√
12
|K0K

0
π0⟩ − 1√

12
|K0

K0π0⟩

(4.54)

and thus, for decays without experimentally challenging π0 in the final state, we
have

|⟨K0K−π+|KKπ⟩|2 = |⟨K0
K+π−|KKπ⟩|2 = 1

3
(4.55)

This, however, still includes both half K0
S and half K0

L, which are observed instead
of K0 and K

0, where again K0
L is not so easy to detect and reconstruct. This

leaves the most accessible mode for ηc reconstruction, for which the branching
ratio will be related to B(ηc → KKπ) as

B(ηc → K0
SK

±π∓) ≡ B(ηc → K0
SK

+π−) + B(ηc → K0
SK

−π+) = 1
3B(ηc → KKπ)

(4.56)
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The notation means that both charge-conjugated variants are considered, and
this will be implied and not written explicitly anymore. We will only keep using
K0
SK

−π+ but mean both (K0
SK

±π∓), as usual28. The current world average
is [36]

B(ηc → KKπ) = (7.3± 0.5)%. (4.57)
Note that we can just multiply the branching fraction by 1

2 to get values for K0
S

(K0
L) with good accuracy if we effectively integrate over all possible K0

S decay
times29. Then only K0

L survives after several cτK0
S

and thus one detects half of
the original K0 (or K0 from B

0) via the decay K0
S → π+π−, neglecting the very

small pollution from the CP violating decays K0
L → π+π−.

The decaysB → ccK are tree-dominated (see Sec. 4.10), and color-suppressed,
resulting in relatively small branching fractions. The current world averages for
the two lowest charmonia are [36]

B(B0 → ηcK
0) = (7.9± 1.2)× 10−4

B(B0 → J/ψK0) = (8.73± 0.32)× 10−4

B(B+ → ηcK
+) = (10.9± 0.9)× 10−4

B(B+ → J/ψK+) = (10.10± 0.29)× 10−4.

(4.58)

To get B(B0 → ηcK
0
S) and B(B0 → J/ψK0

S), one should again multiply the
branching fractions by 1

2 . The charged decay B+ → ηcK
+ was also used [47] to

extract ηc mass and width in presence of coherent interfering non-resonant back-
ground from B+ → (K0

SK
+π−)K+ decays mediated by the penguin diagrams [8]

(see also Sec. 4.10). While the effects of penguin pollution are estimated to be
negligible or at least acceptable at the current precision [41] for CP -violation
measurements, the effects on width can be significant [29]. Interference effects
lead to modification of the resonance line shape and measured width, which can
bias the apparent signal yield.

4.8 Previous Measurements
and Physics Motivations

The mixing-induced (S) and direct (A) CP violation was studied in a number
of charmonia states, see Fig. 4.11 and Fig. 4.12. The current world average for
sin 2ϕ1 is [34]

sin 2ϕ1 = 0.699± 0.017 (4.59)
In the ηcK0

S decay mode, the latest BaBar result [48]

SηcK0
S

= + 0.925± 0.160± 0.057syst

AηcK0
S

= − 0.080± 0.124± 0.029syst,
(4.60)

obtained with 465×106 BB pairs represents the current most precise measurement
for ηc charmonium. Note that BaBar is using an opposite definition for the sign

28From time to time and in some figures, we repeat explicit form.
29This is done by default in the reconstruction having a vertex detector with a sufficient

radius.
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of the direct CP -violation parameter and denotes it as C = −A. At Belle, only a
result with 151× 106 BB pairs is available:

SηcK0
S

= 1.126+0.27
−0.39 ± 0.06syst. (4.61)

This analysis is a direct continuation of the effort started by Z. Drásal, who
used the full Belle dataset to measure SηcK0

S
, AηcK0

S
in the relatively clean decay

channel ηc → pp̄ with the result:

SηcK0
S

= 0.68+0.38
−0.46 ± 0.13syst

AηcK0
S

= 0.00+0.23
−0.31 ± 0.08syst

(4.62)

published in his doctoral thesis [40].

Figure 4.11: Current experimental status of S = sin 2ϕ1 measurement in b→ ccs
for modes with different charmonia [49].

Figure 4.12: Current experimental status of C = −A measurement in b→ ccs for
modes with different charmonia [49].

In contrast to the vector charmonium J/ψ, ηc is a pseudoscalar. Potential NP
scenarios might show up as a difference between observed CP violation among
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different (vector and pseudoscalar or axial vector) charmonia if parity and CP
are violated by NP contributions [50]. The spectrum of charmonia is shown
(along with some un-conventional states) in Fig. 4.10. One can see that only
pseudoscalar states are ηc and ηc(2S) (denoted as η′

c). The available statistics for
ηc(2S) are very limited. Therefore the ηc charmonium is the only mode that is
reasonably accessible experimentally with the current dataset to test the univer-
sality of sin 2ϕ1 among vector and pseudoscalar charmonium.

The NP contribution at scale O(10%) leading to a difference between sin 2ϕ1
from B0 → ηcK

0
S and vector charmonia proposed in Ref. [50] are not excluded

by the current BaBar measurement itself and are smaller than the current uncer-
tainty. Therefore an independent measurement of CP violation in B0 → ηcK

0
S,

with uncorrelated instrumental errors, is highly desirable. Even with a com-
parable statistical precision, the constraint on the potential deviation from SM
prediction can be tightened. Needless to say the consideration in Ref. [50] were
motivated by observed possible deviations of sin 2ϕ1 for B0 → ϕK0

S from charmo-
nium measurements. Since that time (2003), these measurements are now con-
sistent with the SM predictions (current world average for sin 2ϕ1 in B0 → ϕK0

S

is 0.74+0.11
−0.13 [49]), and only much smaller deviations are allowed instead of ini-

tially assumed NP corrections of order one. In the considered physics model, a
new type of Z boson denoted as Z ′ with effective sZ ′b couplings would enter via
penguin b → s contributions. SM-like couplings qZ ′q are assumed, with vector
and axial currents, which have different coupling constants. This difference then
could allow observing NP contributions most comfortably in the cc system, as it
has the biggest spread of couplings among axial and vector currents [50]. Nowa-
days, Z ′-like particle is of interest due to its leptonic interaction, being one of the
possible explanations for the non-universality of leptons observed in b → sℓ+ℓ−

transitions at LHCb [12]. This shows that the selected topic is still of interest and
related to an active area of research, despite constraints leading to the original
motivations have been significantly tightened in the last two decades.

4.9 Methodology

This analysis is based on a very similar methodology and tools as in Ref. [40],
but using ηc → K0

SK
±π∓ decay channel with a larger branching fraction. In

fact, Z. Drásal finished the analysis of ηc → K0
SK

+π− (charge conjugation is
implied) up to all selection optimizations and continuum and peaking background
suppression. This work builds on many tools developed by Z. Drásal for his
analysis, which he kindly provided, along with skimmed and reconstructed Belle
Monte Carlo (MC) simulation and real data and all preliminary results. The
decay channel ηc → K0

SK
+π− promises smaller statistical uncertainty than ηc →

pp̄, but the analysis is more challenging due to a higher level and more complicated
composition of the backgrounds. From preliminary toy MC studies, the final
uncertainty of CP -violation parameters was expected to be very close to the
BaBar result, both for statistical and systematic uncertainty.

In most Belle analyses, only CP -violation parameters are floating in a fit
to the ∆t distribution with an event-by-event probability obtained from a one
or more-dimensional fit, typically in beam-constrained mass (Mbc) and energy
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difference (∆E) distributions (see Eq. 5.9 for definitions). This fit is performed
to extract fractions of signal and background(s), which are then fixed in the fit
for CP -violation parameters. The CP fit is then usually performed in a much
tighter signal window (in Mbc and ∆E), where the respective fractions of signal
and background need to be (once) calculated by integrating the model (without
∆t dimension) probability density functions.

This analysis aims to perform the fit simultaneously in the dimensions that
allow us to extract signal and background fractions and in the time and flavor
dimensions ∆t × q. The primary motivation is to handle appropriately the sys-
tematic uncertainties that naturally occur in the traditional approach, where, in
the end, one has to vary all fixed parameters used in the CP fit. The number
of such parameters is reduced in our approach as they are floated in the final
fit. Thus the uncertainty of such parameters is automatically propagated to the
statistical errors of the CP -violation parameters. This seems especially impor-
tant in the case of the peaking background contribution, which is often fixed
from MC studies. In our case, a significant part of the background comes from
b → u, d, s transitions, where MC cannot be used for reliable estimates of the
total composition.

In general, the generic MC data samples are an approximation. The branching
fractions set in large configuration files (decay files) used for particle decays in
generators are often outdated or only leading order theoretical predictions; some
decay channels may be missing, and so forth. The generic BB MC sample is
much better understood (validated) as it is a necessary ingredient to perform
signal simulations, where one of the B mesons decays generically. The generic
B → u, d, s MC sample is also called rare-B sample as these processes generally
have even lower branching fractions than b → c. We only draw rough estimates
and qualitative conclusions from the generic MC samples and compare these to
results from data, where possible. The aim is to estimate the fraction of the total
peaking background from a direct fit to the data, albeit with sizeable statistical
error and potentially significant fit bias. Keeping the fraction floating in the
final fit allows directly taking such effects into account in the (statistical) error
estimation for the parameters of interest.

In addition, and in contrast to the BaBar and previous Belle analysis, Mbc is
not used as a fit variable but for the best B-candidate selection. This complicates
the analysis due to a higher level of signal cross-feed, which needs to be modeled
and estimated from MC. The other potential variable for the best candidate
selection is the invariant mass of the K0

SK
±π∓ three-body final state or quality

of the ηc vertex fit, which may be, however, correlated with the determined B
vertex used for ∆t measurement and can cause potential bias. Therefore the same
strategy as for ηc → pp̄ [40] is employed, with Mbc used to choose the best B
candidate in each event, and the reconstructed invariant mass of the ηc candidate
and energy difference ∆E as fit variables. We call this a 2D model (and fit) and
build upon it the full complete simultaneous model in ∆E×M(K0

SK
+π−)×∆t×

q × l, where q is the Btag flavor (±1) and l ∈ {0 . . . 6} is an index labeling bins
in the dilution factor r (likelihood of correct flavor assignment), which we call a
4D model (fit). Only three dimensions are continuous. The discrete dimensions
q× l can be counted as zero, one or two more dimensions formally. However, the
model for the q dimension is trivial.
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We follow the standards for blind analysis at Belle. In this approach, every
detail of the analysis and data model must be defined before the final fit for CP -
violation parameters. Thus after event selection and background suppression,
the simpler 2D model is studied first. Due to the two different vertex detector
configurations at Belle, SVD1 (152×106BB pairs) and SVD2 (620×106BB pairs),
all analysis steps and parameters are extracted for both experiments separately.
We also employ a control, charged mode B± → ηc(K0

SK
±π∓)K±. All analysis

steps are first probed on the control mode before looking at the signal data.
Only once the 2D model is verified by measuring the branching fractions for the
control and signal mode, we move to time-dependent studies and simultaneous
fits to SVD1 and SVD2 datasets. The time-dependent CP -violation measurement
is first exercised on the control mode, with null results expected. Only once the
data model is completely defined and validated can the analysis be un-blinded,
and the final measurement of CP violation in the signal mode can be performed.

Before un-blinding the analysis, an internal Belle note needed to be prepared
and reviewed by a dedicated review committee. This part of the thesis is mostly
based on this internal note but leaves out some details of individual intermediate
fits. This is to save space and limit the amount of almost identical plots, which
stem from the fact that each result needs to be extracted for the control and
signal mode, as well as for the SVD1 and SVD2 experiments.
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CHAPTER 5

Event Reconstruction
and Background Suppression
This chapter will summarize the steps to obtain the final set of candidates for
maximum likelihood fits. In real experimental data, Υ(4S) meson decays are only
a minority of registered events. Besides trigger selections, further requirements
are posed by specialized physics skims. In particular, the HadronB(J) skim is
applied for all data in this thesis, which retains ∼ 99% of BB events and reduces
non-hadronic backgrounds to a negligible level [51]. For Monte Carlo (MC) simu-
lations, event reconstruction, and analysis, the Belle Analysis Software framework
(basf) based on GEANT3 [52] simulation toolkit was used. It should be noted
that all this work was already done by Z. Drásal and provided as skimmed and
reconstructed data. Thus this chapter is mostly included for consistency and de-
scribes the previous work, which was reviewed and in some cases repeated, but in
the end, almost all the selections in this chapter have been already defined and
optimized before the analysis was taken over by the author.

First, the signal reconstruction from final state particles is discussed, followed
by the definition of fit variables, signal and sideband regions, the best B-candidate
selection, flavor tagging, vertex, and proper-time difference reconstruction. The
following sections summarize the continuum suppression method, vetos for peak-
ing backgrounds, and the mix of remaining backgrounds, in particular b → c-
induced transitions. The final signal efficiency (and expected number of signal
events) and all selection criteria are summarized at the end of this chapter in
Tables 5.5 and 5.4.

5.1 Event Selection
All final state particles in this analysis are charged tracks. The decay chain

B0 →ηcK0
S

ηc → K0
SK

+π− (5.1)

illustrated in Fig. 5.1 is reconstructed gradually from the final state particles.
Note that charge conjugation is always implied and usually not written explicitly.
As a natural control sample, we employ the charged B decay

B+ → ηcK
+, (5.2)

where no CP -violation effects are expected (charged B meson cannot mix, and no
direct CP violation is expected). The control (charged) mode is used for overall
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Figure 5.1: Illustration of a signal event with decay of primary Υ(4S) emerging
from the e+e− collision into a signal Bsig followed by B0

sig → ηcK
0
S, ηc → K0

SK
−π+,

and tag Btag meson. Paths of neutral particles are dashed, and there is no path
for the very short-lived Υ(4S) and ηc resonances.

validation of the analysis with real data before un-blinding and for extraction of
data/MC calibration factors for the measured signal (neutral) mode.

We reconstruct K0
S using the

K0
S → π+π− (5.3)

decay mode (branching ratio ∼ 70%). The K0
S candidates are reconstructed by

V0finder which combines oppositely charged tracks with invariant mass within
±30 MeV/c2 of mK0

S
without any additional selection [53]. To greatly reduce

the background, a so-called goodKs cut is applied, and we keep candidates with
invariant mass in the range

482 MeV/c2 < M(π+π−) < 514 MeV/c2, (5.4)

which corresponds to approximately four times ±σ of the K0
S mass distribution

(σ = 3.74± 0.05 MeV/c2). This range is based on the results of an independent
study of K0

S → π+π− reconstruction [53]. In this study, the K0
S mass peak was

fitted using a double Gaussian (with the same mean and widths σ1, σ2) and first-
order Chebyshev polynomial to account for background. The resulting sigma
used in this study is defined as σ =

√︂
(A1σ2

1 + A2σ2
2)/(A1 + A2), where Ai are

amplitudes of the respective Gaussians.
For the tracks of charged pions and kaons, the impact parameters relative to

the calibrated IP position in the transverse (dr) and longitudinal (dz) direction
are required to satisfy

|dr| < 0.5 cm, and
|dz| < 3 cm.

(5.5)

At least one of the tracks must have at least two SVD hits in the z direction
and at least one SVD hit in the R− ϕ direction (to properly reconstruct the Bsig
vertex). To distinguish pions from kaons, a combined information from particle
identification system (from ACC and TOF) and dE/dx (from CDC) is used to
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form ‘binary’ likelihood ratios Li/j = Li/(Li + Lj), where Lk is likelihood that a
particle is of type k. We require:

LK/π ≥ 0.6 for kaons,
LK/π < 0.9 for pions

(5.6)

and probability of electron hypothesis (from ECL)

p(e) < 0.95 (5.7)

for both kaons and pions.
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Figure 5.2: Distribution of the reconstructed ηc invariant mass obtained from ten
streams (one stream corresponds to the recorded data luminosity) of generic BB
MC for control mode (left) and signal mode (right). Only correctly reconstructed
signal is shown (red) together with background (blue) stemming from J/ψ decays
from B+ → K+J/ψ (left - charged mode) and B0 → K0

SJ/ψ (right - neutral
mode). The involved decays are J/ψ → K0

SK
+π−, J/ψ → K∗+K− or J/ψ →

K∗0K0
S. Decays with mis-reconstructed J/ψ (where kaon from J/ψ is switched

with a kaon from B meson) are not included (these contribute to the ∆E peaking
background, flat in M(K0

SK
+π−)). The histograms are scaled to the nominal

integrated luminosity, and both experiments (SVD1 and SVD2) are combined.
Vertical lines separate the left and right sideband regions (SB), the signal region
(SIG), and the excluded region (EX) for the J/ψ decays.

The ηc resonance is reconstructed by combining K0
S, K+ and π− candidates,

which fall into an invariant mass window given as

2.84 GeV/c2 < M(K0
SK

+π−) < 3.05 GeV/c2. (5.8)

The right cut is chosen to avoid interference with J/ψ and its prominent peak
in the reconstructed invariant mass spectrum, which is also avoided by the right
sideband region as depicted in Fig. 5.2. The boundaries for the signal window
in M(K0

SK
±π∓) have been studied on ten streams (one stream corresponds to

the recorded data luminosity) of generic BB (with signal strength not adjusted
to the current world average). As can be seen in Fig. 5.2, the signal distribution
is very wide, but its width is still being underestimated in our MC samples,
which are generated with a smaller width for the ηc resonance; see also Table 6.1.
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Considering the larger value from PDG, a four sigma window around the central
value of ηc mass would correspond to a left cut of about 2.85 GeV/c2. We made it
looser by 10 MeV/c2 in an attempt to improve fit stability and background shape
determination (in the presence of signal) in the M ≡ M(K0

SK
+π−) variable. It

would be helpful to have some (even limited) range where no signal is expected.
However, for this analysis, such efforts are complicated by the non-negligible
amount of mis-reconstructed signal events, not shown in the figure but discussed
in detail in Sec. 6.1.4.

What concerns the right-side cut value, it was chosen with a safety margin,
which results in an expected contribution of only several J/ψ background events
(less than 2%) in the signal region. The reason for such a conservative cut is a
complete absence of any modeling of the interference of J/ψ and ηc, which can
modify the line shape. This is expected to be a concern, so we prefer a small loss
of signal events in favor of avoiding the need to take the interference with J/ψ
into account.

At this point, the candidate Bsig is created by combining the ηc and K0
S (K±

for control mode) candidates’ reconstructed four-momenta. The reconstructed
Bsig meson can be described by two almost orthogonal kinematic observables
used at Belle: beam-constrained mass Mbc and energy difference ∆E. These are
defined as:

Mbc =
√︂

(ECM
beam)2 − (pCM

B )2

∆E = ECM
B − ECM

beam,
(5.9)

where ECM
beam is the beam energy in the CM frame (ECM

beam = (ECM
e+ +ECM

e− )/2) and
ECM
B (pCM

B ) is the reconstructed energy (momentum) of Bsig in the CM frame.
While ∆E peaks at zero for correctly reconstructed B mesons, Mbc peaks at the
B meson mass. We define the signal region by

5.271 GeV/c2 < Mbc < 5.290 GeV/c2. (5.10)

We use Mbc for best candidate selection among all reconstructed Bsig. The av-
erage multiplicity1 is 1.049 (1.089) for B± (B0), see Fig. 5.3. Thus the best candi-
date has the minimum difference |M−mB|, where mB = (5279.25±0.26) MeV/c2

[34] 2 (the exact value used in the analysis is 5279.15 MeV/c2).
With Mbc used for the best candidate selection, we are left with two sensible

observables to characterize the kinematics of our signal events, which we use as
(2D) fit variables:

• energy difference ∆E, for which we set a fit window

−0.1 GeV < ∆E < +0.1 GeV, (5.11)

• reconstructed invariant mass of the ηc candidate, further denoted asM(K0
SK

+π−)
or M , in the full signal window defined above:

2.84 GeV/c2 < M ≡M(K0
SK

+π−) < 3.05 GeV/c2 (5.12)
1We have later also checked the multiplicity for real data, giving 1.041 (1.079) for the charged

(neutral) mode in good agreement with the simulation.
2The small difference of 0.3 MeV of neutral and charged B meson mass is far smaller than

detector resolution, so the exact value is irrelevant and within uncertainties of the PDG inputs.
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Figure 5.3: B candidate multiplicity determined from signal MC for charged (left)
and neutral (right) mode. MC data from both experiments (SVD1 and SVD2)
are combined in these plots.

In addition, we define two sideband regions, later denoted as Mbc sideband and
M(K0

SK
+π−) sideband, set as follows:

Mbc sideband : 5.200 GeV/c2 < Mbc < 5.265 GeV/c2

M(K0
SK

+π−) sideband : M ∈ (2.63; 2.84) GeV/c2 ∪ (3.13; 3.34) GeV/c2 (5.13)

At this point, we have a single signal B candidate (Bsig) fully reconstructed.
The rest of the event is used to determine the flavor of the second B (Btag) and
its vertex from the remaining tracks. At Belle, this is handled by the flavor
tagging procedure [54]. The output of the flavor tagging is the flavor of the
tag-side B meson and a dilution factor r ∈ [0, 1], which quantifies the likelihood
of a correctly determined flavor, see also Sec. 4.6.3. The tagging is calibrated
in seven separate r-bins, defined in Table 5.1, for which the difference between
wrong tag probabilities ∆w and mistag probability w are separately determined
for MC and data (using self-tagging B decays). All these values are taken from
a dedicated Belle study [54] and are also nicely summarized in Ref. [40]. For the
best sensitivity to CP -violation parameters, PDFs and yields are parametrized
for each r-bin separately (with common CP parameters), and the fit is performed
simultaneously in all r-bins.

Because for the measured (neutral) mode, the K0
S (with non-negligible flight

length) cannot be used for vertex reconstruction, we do not use its counterpart
K± for the control mode as well. Therefore in both cases, the vertex of the
final reconstructed Bsig is entirely defined by the reconstructed vertex position
of ηc (which is again determined only by charged tracks from kaon and pion)
with additional information about calibrated IP position included via an IP-tube
constraint (in the x− y plane) in the vertex fit. The IP constraint is smeared in
the x − y plane by 21 µm to account for the small transverse B movement. To
ensure a good proper time reconstruction, we require for the obtained goodness-
of-fit h [55], and estimated reconstruction error in the z-coordinate for both, Bsig

and Btag

h ≡ (χ2
w/o IP)/NDF < 50

σz < 200 µm
(5.14)
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r-bin index l Range of rl SVD1 wl SVD1 ∆wl SVD2 wl SVD2 ∆wl
0 0.000 – 0.100 0.5000 +0.0000 0.5000 +0.0000
1 0.100 – 0.250 0.4189 +0.0570 0.4188 −0.0088
2 0.250 – 0.500 0.3299 +0.0126 0.3193 +0.0104
3 0.500 – 0.625 0.2339 −0.0148 0.2229 −0.0109
4 0.625 – 0.750 0.1706 −0.0006 0.1632 −0.0186
5 0.750 – 0.875 0.0998 +0.0089 0.1041 +0.0017
6 0.875 – 1.000 0.0229 +0.0047 0.0251 −0.0036

Table 5.1: Definition of r-bins and data-driven values for average wrong-tag frac-
tions wl and wrong tag fraction differences ∆wl per every r-bin index l. More
details, including uncertainties of wl and ∆wl, as well values used for MC, can
be found in Ref. [40].

for multi-track vertices, and

σz < 500 µm (5.15)

for single-track vertices. Here χ2
w/o IP (NDF) is the χ2 (number of degrees of

freedom) for a vertex fit without the IP constraint.
The difference in the decay times of Bsig and Btag can be inferred from their

distance in z due to the boosted center-of-mass system and very small kinetic
energy of the daughter B mesons in Υ(4S) rest frame. Within a good approxi-
mation, the proper time difference can be obtained after a boost to the CM frame
as

∆t ≈ zsig − ztag

cβγ
, (5.16)

where βγ is approximately 0.425 at KEKB. We require all events to satisfy

|∆t| < 70 ps (5.17)

to remove very far outliers due to mis-reconstruction.

5.2 Continuum Background Suppression
The dominant background in the analysis originates from continuum processes
e+e− → qq, where quarks other than b are involved (q = u, d, s, c). While in
the case of e+e− → Υ(4S) → BB, the B mesons are nearly at rest in the CM
frame, the lighter quarks tend to have significant momentum. This is reflected
in the topology of the events. While B decays tend to be spherically symmetric,
the continuum events have a jet-like structure. To characterize this qualitative
statement quantitatively, we construct several event-shape variables from the
event information related to Fox Wolfram moments [56]. The l-th Fox-Wolfram
moment is defined as

Hl =
∑︂
i,j

|pi||pj|
E2 Pl(cos θij), (5.18)
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where Pl is the l-th Legendre polynomial, E is the total visible energy in the
event, θij is the opening angle between particle i and j and pi is momentum of
particle i. The sum runs over all particle indices3 i, j from charged tracks in the
event. All quantities shall be expressed in the CM frame. We utilize the following
ten discriminating variables:

• The thrust angle cos θthr, defined as a scalar product of the thrust vector
formed from the momenta of particles of the signal B meson and the rest
of the event.

• Reduced Fox-Wolfram moment R2, defined as

R2 = H2/H0 (5.19)

is a classical discriminating variable which could be sufficient to separate B
decays from qq background in simple analyses. The distributions of R2 for
signal and background events are shown in Fig. 5.4.

• Eight modified Fox-Wolfram moments, Hso
l and Hoo

l , l = 0, 1, 2, 3, where
the first letter in the superscript s (o) means that indices i run over particles
assigned to signal (other) B meson. Equivalently for the second superscript
and index j.

The modified moments of type Hss
l are not used because some significant

and generally larger correlations have been found with observables used as fit
variables or for the best candidate selection. This can be seen in Fig. 5.5, where
correlation coefficients are computed for the event-shape variables and the fit
variables, as well as the best-candidate selection variable Mbc. We have also
checked correlations to the ∆t variable and found no correlations larger than
1.3%. The unused, modified Fox-Wolfram moments Hss

l are shown in the last four
rows. Any significant correlations with fit variables might generate additional
systematics when continuum suppression cut (see below) is varied. One can
see that the selected ten variables have correlations smaller than 2%. The only
significant correlation is about 10% for Hso

0 and Mbc, which is, however, not
problematic, as Mbc is not used as a fit variable.

For each event, all the above ten topology variables’ values, denoted as xi,
i = 1..10 are combined in the Fisher linear discriminant function, defined as

F =
10∑︂
i=1

wixi, (5.20)

where wi are weights that provide optimal separation between continuum back-
ground (combination of generic Belle u, d, s and charm continuum MC was used)
and signal MC. The distribution of the optimized value of F is fitted with a sum
of two bifurcated Gaussians for the signal or a single bifurcated Gaussian for the
background:

Psig(F) = fG(F ;µsig, σsigL , σsigR ) + (1− f)G(F ;µsig, σsigL kL, σ
sig
R kR)

Pbkg(F) = G(F ;µbkg, σbkgL , σbkgR ).
(5.21)
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Figure 5.4: Distribution of the reduced Fox-Wolfram moment R2 for the charged
(left) and neutral mode (right) MC signal (red) and MC u, d, s, c background
(blue). SVD1 (SVD2) experiment is shown using a dashed (solid) line.

The fitted PDFs of F and distributions for MC u, d, s, c background and signal
MC samples are illustrated in Fig. 5.6.

In addition, the angle of B momentum in the CM frame with respect to the z-
axis, cos θB , flat for continuum background and following (1− cos2 θB) for Υ(4S)
decays, is fitted with PDFs

Psig(cos θB) = N (1− csig cos2 θB)
Pbkg(cos θB) = N (1 + cbkg cos θB).

(5.22)

The distributions and fitted PDFs of cos θB for MC signal and background are
shown in Fig. 5.7. We have also checked the correlations of cos θB to the fit
variables. The only significant correlation is about 7% to ∆t. With our loose cut
on the continuum suppression (see below), this correlation cannot cause problems.

The Fisher weights wi are determined, and parameters of the PDFs in signal
(background) likelihoods Lsig (Lbkg) are defined and fitted separately for the
SVD1 and SVD2 experiment and charged and neutral mode using the MC signal
and continuum samples.

The PDFs describing distributions of F and cos θB for signal and background
are then combined into the signal and background likelihoods Lsig = Psig(F)Psig(cos θB)
and Lbkg = Pbkg(F)Pbkg(cos θB), respectively. In the event selection, these are
evaluated for each candidate event, and a likelihood ratio is formed as

LR = Lsig

Lbkg + Lsig
. (5.23)

Its distribution for MC signal and continuum events is shown in Fig. 5.8. The
likelihood ratio conveniently aggregates the likeliness of a signal-like event from
the event-shape and topology information in a single variable, on which we can
impose a cut. This cut can be optimized in several possible ways, but most of the
analysis is done using the lowest reasonable value LR > 0.2 = CScut, which brings
a very high signal efficiency, while the background is still suppressed significantly.
For the charged mode, it selects 96.2 (96.2) % of the signal and rejects 75.2 (69.6)

3both combinations, (i,j) and (j,i), including i = j, are taken.
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Figure 5.5: Correlations (Pearson correlation coefficient in percent) of event shape
variables considered for combination in the Fisher discriminant and the fit vari-
ables ∆E, M(K0

SK
+π−) and the Mbc variable used for the best-candidate selec-

tion. Only variables in the first ten rows are used in the end.

% of continuum background events for SVD1 (SVD2). For the neutral mode it
retains 96.3 (96.0) % of signal and rejects 74.9 (70.0) % of continuum background
events for SVD1 (SVD2).

Let us briefly explain why such a low cut value is reasonable. If the branching
fractions are of interest, one can maximize the statistical significance of the signal
over the background using Figure of Merit (FOM), defined as

FOM = Nsig√︂
Nsig +Nbkg

. (5.24)

Its dependence on the likelihood ratio cut is shown in Fig. 5.9. The optimal
value can be seen to be around 0.9, meaning a very tight cut (only about 50%
of the signal remains). The signal and background efficiencies corresponding to
different cut values can be read from Fig. 5.10, where also a difference in signal and
background efficiencies is shown (black). This is another possible optimization
target, giving an optimum cut value of about 0.5.

However, the target of this analysis is the measurement of CP -violating pa-
rameters, and the result will be statistically limited. All signal events do not
contribute with the same ‘weight’ to the likelihood. The most important events
are those with a high probability of correct flavor determination and with large
measured lifetimes. As these quantities are generally not correlated with the
signal-side kinematics, a more strict continuum suppression cut uniformly re-
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Figure 5.6: Distribution of the Fisher discriminant F for MC signal (red) and
continuum MC (u, d, s, c) background (blue) for the charged control mode (left)
and the signal mode (right) using the SVD2 experiment simulation.
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Figure 5.7: Distribution of cos θB for MC signal (red) and continuum MC
(u, d, s, c) background (blue) for the charged control mode (left) and the signal
mode (right) using the SVD2 experiment simulation.

moves signal events, even those important ones4. Therefore the lowest statistical
uncertainty for CP -violation parameters is achieved by maximizing the signal ef-
ficiency [40]. The additional continuum background with short lifetimes does not
pose a significant problem for the maximum likelihood fit if additional informa-
tion allows for the separation of signal and background events. For our case, this
is achieved by the two fit dimensions in ∆E and M . In principle, one could also
model the likelihood ratio distributions for signal and background(s’) events and
include this information as an additional fit variable. It would, however, make
the fit significantly more complicated and slower.

To demonstrate the previous statements, we show here two results from a
study using full combined (SVD1 + SVD2) fit in the charged mode. We perform
the fit, including the estimation of CP -violating parameters ACP and SCP using
different values for the CScut. The results can be seen in Fig. 5.11.

4One could consider an r-bin-dependent CScut, which would, however, require some addi-
tional systematic studies. During the CS studies for the control mode, we indeed observed
that r-bin parametrization of model components is changing. A tighter CScut would result
in a limited amount of background available to extract resolution function parameters. Using
a different cut value for sideband parameter extraction than for signal to avoid this would
present yet another systematic uncertainty, as continuum background suppression variables’
correlations with the fit variables are more significant than for signal.
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Figure 5.8: Distribution of the likelihood ratio LR for charged (left) and neutral
mode (right) MC signal (red) and continuum MC (u, d, s, c) background (blue).
SVD1 experiment is shown using a dashed line, SVD2 using a solid line.
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Figure 5.9: Figure of merit (FOM) as function of CScut on the LR for the charged
(left) and neutral mode (right). SVD1 experiment is shown using a dashed line,
SVD2 using a solid line.

The estimated values do not show any significant dependence on the cut value.
On the other hand, the estimated statistical error (red) on both parameters of
interest has a minimum at the cut value of ∼ 0.2. This does not agree with any
of the previous optimal values, and it is the reason for the low cut value used for
this analysis. If an unexpected reason (like systematic errors on CPV parameters
generated by the larger background) is found in the analysis, one can consider
increasing CScut to about 0.4 without raising the statistical error visibly.

5.3 Peaking Background Vetoes

In this analysis, several backgrounds stemming from generic B decays to charm
mesons can be efficiently suppressed by imposing vetoes. These backgrounds have
been studied on generic BB MC simulation. We form particular combinations
of reconstructed final state particles and the respective invariant mass of such
combinations. Candidates with combinations corresponding to (production and)
decay of D meson in the decay chain are removed. One can see these peaking
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Figure 5.10: Signal (red) and continuum background (blue) efficiency as a func-
tion of CScut on the LR cut for the charged (left) and neutral mode (right). SVD1
experiment is shown using a dashed line, SVD2 using a solid line. The difference
between signal and background efficiencies is shown in black.
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Figure 5.11: Estimated value (black) and statistical error (also shown in red
on second axis) for CP -violating parameters ACP (left) and SCP (right) in the
charged (control) mode from a full combined (SVD1 + SVD2) 4D fit using real
Belle data as a function of the likelihood ratio cut.

structures combined in the Dalitz-like plots in Fig. 5.12, where the central position
of the peaks at the corresponding decaying particle is denoted. The width of the
peaks is estimated using a simple Gaussian fit, which yields a sigma of 6 to
8 MeV/c2 (depending on the type of D meson), dominated by detector resolution
(about 5 MeV/c2). To exclude these candidates, we reject combinations that fall
into a window defined by the central value and width of 15 MeV/c2, corresponding
to about three times the detector resolution. For the neutral mode, we exclude
candidates where

• 1.8546 GeV/c2 < M(K0
Sπ

±) < 1.8846 GeV/c2, which removes background
from D± → K0

Sπ
± decays, and

• 1.9535 GeV/c2 < M(K0
SK

±) < 1.9835 GeV/c2, for D±
s → K0

SK
± decays.

For the charged mode, we veto candidates with

• 1.8499 GeV/c2 < M(K±π∓) < 1.8799 GeV/c2, to suppress D0 → K±π∓,
and

76



0 0.5 1 1.5 2 2.5 3

]
2

) [GeV/c±K
S

M(K

0

0.5

1

1.5

2

2.5

3

(1.8649)
0

D

(1.9685)±

sD

]
2

) 
[G

e
V

/c

±

π
±

M
(K

0 0.5 1 1.5 2 2.5 3

]
2

) [GeV/c±K
S

M(K

0

0.5

1

1.5

2

2.5

3

(1.8696)±D

(1.9685)±

sD

]
2

) 
[G

e
V

/c
± π

S
M

(K

Figure 5.12: Dalitz-like plots (the invariant masses are not squared) for the
charged mode (left) and neutral mode (right) with SVD1 and SVD2 experiment
combined using generic BB MC. The central values of positions of the peaking
structures used for vetoes and the corresponding decaying D meson are denoted
by arrows. All remaining analysis cuts and continuum suppression is applied for
these figures.

• 1.9535 GeV/c2 < M(K0
SK

±) < 1.9835 GeV/c2, for D±
s → K0

SK
±.

Whenever we write K± or K0
S above, we check for kaon candidates reconstructed

as coming from ηc as well as from the B meson.
These vetoes remove more than 90% of the above peaking backgrounds in ∆E.

After the vetoes are applied, the expected signal yield is reduced by 7.4% (6.8%)
for neutral (charged) mode. These vetoes reduce the total peaking component
in ∆E (dominated now by b → u, d, s transitions), which is further considered
irreducible, to about one-half.

5.4 Remaining Backgrounds
After continuous background suppression and veto cuts, we can estimate the
expected background levels by combining the MC data samples. For qq continuum
background, we studied separately generated six streams of charm and uds MC.
The signal is taken directly from ten streams of generic BB MC, which is further
separated into peaking and non-peaking component in ∆E.

The modes contributing to the peaking component were studied on generic
BB MC, and their expected yields are listed in Table 5.2 for the charged and in
Table 5.3 for the neutral mode, respectively. These backgrounds are composed
of b → c transitions and other charmonia, and thus, some CP -asymmetry can
be generated by such backgrounds and systematically bias our measurement.
Fortunately, this component is not the dominant contribution to ∆E-peaking
backgrounds. The major contribution was investigated on rare-B decays with
b → u, d, s. In real data, a direct four-body decay to our final state particles
falls under this category. We studied this component on 50 streams of Belle
rare-B MC. The individual contributions from MC simulation are combined into
histograms in ∆E and M(K0

SK
+π−), which are our 2D fit variables. The peaking

components in Fig. 5.13 (charged mode) and Fig. 5.14 (neutral mode) are shown in
green colors. For the neutral mode, the level of peaking background is higher than
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Figure 5.13: Expected signal and background composition from a mix of MC
samples (generic, rare-B, and continuum) showing the charged mode for the
SVD1 (top) and SVD2 (bottom) experiment.

in the charged mode. All the remaining background from generic BB sample non-
peaking in ∆E is shown in blue and often considered together with the continuum
component in the analysis.

From these rough MC estimates, the fraction of the total peaking background
to signal is about 40% for the neutral mode and 21% the the charged mode. The
fraction of b → c background to signal is about 7% for the neutral and 4% for
the charged mode. This background is potentially significantly CP -violating in
the neutral mode. Its potential effect on the CP -violation measurement will be
evaluated in a dedicated systematic study.

While we do not use any of the fractions of background and signal obtained
from MC simulations as input for our analysis (except to estimate systematic
errors on CPV parameters due to the minor b → c contribution), we carefully
check for data/MC correspondence. As will be shown later, the level of peaking
background determined by a direct estimation from the data yields results which
are to the first order5 reproduced by the simulations, taking into account that the
branching fractions used for generic and rare-B MC generation can be easily off
by 50% and interference effects with non-resonant6 background are not simulated

5We will see later that the effective fractions estimated in real data are generally smaller.
6By non-resonant background, we mean decays to the same final state particles, but without

intermediate formation of the ηc resonance. While many decays have the same final state, their
interference with the signal is usually entirely negligible because their phase space is generally
different and, in most cases, involves other resonances with mass sufficiently distant from mηc

.
Thus such events only fall into the signal window due to mis-reconstruction—by switching
kaons from B and from a secondary decay, which just by (a small) chance satisfies all selection
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Figure 5.14: Expected signal and background composition from a mix of MC
samples (generic, rare-B, and continuum) showing the neutral mode for the SVD1
(top) and SVD2 (bottom) experiment.

at all. This can be for example seen in Tables 5.2 and 5.3, where the correction
factors fcorr are shown, which update the branching fractions in the decay files
used for generic BB MC generation to those in more up-to-date PDG from year
2012 [57].

5.5 Summary and Final Detection Efficiency
After all selection criteria summarized in Table 5.4 are applied, the signal effi-
ciency in the signal fit window is computed from the number of reconstructed
events Nrec and the total number of generated signal MC events Ngen. As dis-
cussed later, the signal events can be further divided into correctly and incorrectly
reconstructed events, where kaons from ηc decay are mismatched with those di-
rectly from the B meson. Nrec is defined as a sum of those events, which allows us
to estimate a proper normalization of the true branching fraction from the total
number of observed signal events. The signal efficiency is defined as

ϵ = Nrec

Ngen
, (5.25)

where Ngen = 499, 995 for SVD1 experiment and Ngen = 499, 992 for SVD2
experiment. The difference from exactly half a million events is caused by a rare

criteria. However, a direct four-body decay without peaking structures can have a significant
overlap with the ηc decay phase space (one usually assumes a flat non-resonant contribution
over M(K0

SK
+π−)).
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Decay channel N(SVD1) N(SVD2) fcorr Ncorr(SVD1) Ncorr(SVD2)
B+ → D̄

0
K0
Sπ

+ 1.1 4.0 1.00 1.1 4.0
B+ → D̄

0
K∗+ 1.1 4.0 1.02 1.1 4.1

B+ → D̄
0
K+ 0.3 2.8 0.41 0.1 1.1

B+ → D̄
0
π+ 0.0 0.6 1.84 0.0 1.1

B+ → J/ψK+ 2.6 12.5 1.10 2.9 13.8
B+ → J/ψK∗+ 0.2 0.4 1.26 0.3 0.5
B+ → ηc(2S)K+ 3.3 16.3 0.68 2.2 11.0
B+ → ψ(2S)K+ 0.4 2.1 0.94 0.4 2.0
B+ → ψ(2S)K∗+ 0.0 0.1 0.46 0.0 0.1
B+ → χc0K

+ 0.9 4.0 0.45 0.4 1.8
B+ → χc0K

∗+ 2.2 14.8 0.59 1.3 8.7
B+ → χc1K

+ 2.6 15.9 0.51 1.3 8.1
B+ → χc1K

∗+ 0.0 0.0 0.0 0.0 0.0
B+ → χc2K

∗+ 0.5 2.1 1.15 0.6 2.4

Table 5.2: Charged mode: Decay modes contributing to generic BB MC peaking
in ∆E and their expected yields N in SVD1 and SVD2 experiments. A correction
factor fcorr to adjust branching fractions used for decay files to a more up-to-date
PDG values [57] is used to obtain corrected expected yields Ncorr.

Decay channel N(SVD1) N(SVD2) fcorr Ncorr(SVD1) Ncorr(SVD2)
B0 → D−K0

Sπ
+ 0.4 4.6 1.00 0.4 4.6

B0 → D−K∗(892)+ 0.5 2.5 0.96 0.5 2.4
B0 → D−K+ 0.4 4.1 1.01 0.4 4.1
B0 → D−π+ 0.3 0.5 1.00 0.3 0.5
B0 → J/ψK0

S 1.3 8.4 1.10 1.3 8.7
B0 → ηc(2S)K0

S 2.7 15.2 0.27 0.7 4.1
B0 → ψ(2S)K0

S 0.0 0.4 1.00 0.0 0.4
B0 → χc0K

0
S 1.1 5.4 0.28 0.3 1.5

B0 → χc0K
∗(892)0 0.5 2.2 0.78 0.4 1.7

B0 → χc1K
0
S 0.7 5.7 0.72 0.5 4.1

B0 → χc1K
∗(892)0 0.3 2.4 0.54 0.2 1.3

B0 → χc2K
0
S 0.1 0.5 0.20 0.0 0.1

B0 → χc2K
∗(892)0 0.4 1.6 0.48 0.2 0.8

Table 5.3: Neutral mode: Decay modes contributing to generic BB MC peaking
in ∆E and their expected yields N in SVD1 and SVD2 experiments. A cor-
rection factor fcorr to adjust branching fractions used for decay files to a more
up-to-date PDG values [57] is used to obtain corrected expected yields Ncorr. All
contributions in this table are further considered to be (maximally) CP violating
in a dedicated systematic study.
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Kaon and pion selection
Impact parameters |dr| < 0.5 cm & |dz| < 3 cm
Kaon PID LK/π ≥ 0.6
Pion PID LK/π < 0.9
Electron veto: p(e) < 0.95
K0
S selection

K0
S mass window 482 MeV/c2 < M(π+π−) < 514 MeV/c2

goodKs cut
Best candidate selection
Mbc-based: min |Mbc − 5.27915 GeV/c2|
Continuum suppression cut

CScut > 0.2
Vetoes
Neutral mode: 1.8546 GeV/c2 < M(K0

Sπ
±) < 1.8846 GeV/c2

1.9535 GeV/c2 < M(K0
SK

±) < 1.9835 GeV/c2

Charged mode: 1.8499 GeV/c2 < M(K±π∓) < 1.8799 GeV/c2

1.9535 GeV/c2 < M(K0
SK

±) < 1.9835 GeV/c2

Vertexing & flavour tagging
No. of SVD hits (≥ 1 track): ≥ 1 in R− ϕ plane & ≥ 2 in z-direction
Multi-track vertices: h < 50

σz < 200 µm
Single-track vertices: σz < 500 µm
Signal region
∆E fit range: −0.1 GeV < ∆E < +0.1 GeV
M(K0

SK
+π−) fit range: 2.84 GeV/c2 < M < 3.05 GeV/c2

∆t fit range: |∆t| < 70 ps

Mbc signal region: 5.271 GeV/c2 < Mbc < 5.290 GeV/c2

Sideband regions
Mbc sideband region: 5.200 GeV/c2 < Mbc < 5.265 GeV/c2

M(K0
SK

+π−) sideband region: M ∈ (2.63, 2.84) GeV/c2 ∪ (3.15, 3.34) GeV/c2

Table 5.4: Summary of all selection criteria, background suppression cuts, and
definitions of the signal and sideband regions.
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ϵ [%] Est. Nsig

Charged – SVD1 9.60 ± 0.04 341 ± 64
Charged – SVD2 12.93 ± 0.05 1872 ± 350
Neutral – SVD1 5.69 ± 0.03 84 ± 19
Neutral – SVD2 8.66 ± 0.04 522 ± 116

Table 5.5: Signal MC efficiency and estimated signal yield in the signal region.
Errors and values for branching fractions are from PDG [34]. Poisson errors
are assumed for official Belle NBB values for simplicity, as the uncertainties are
dominated by the PDG inputs.

case where the simulation fails. The determined signal detection efficiencies are
summarized in Table 5.5.

82



CHAPTER 6

Branching Fractions
and Background Interference
In this chapter, the 2D data model in the two variables ∆E ×M(K0

SK
+π−) is

built and used to extract signal yields and branching fractions. The last section
discusses and estimates the major source of systematic error (interference with
non-resonant background).

6.1 2D Data Model
The 2D data model in ∆E ×M(K0

SK
+π−) allows for some additional indepen-

dent checks. Namely, a consistency check of signal and background yields and
other parameters between the 2D and the full 4D model is an additional con-
firmation of the correctness of the 4D model. Also, shape parameters for the
peaking background will be estimated only using the 2D fit. In this way, possible
systematics due to mis-modeling of peaking background in the ∆t component
will not enter into the determination of these parameters, which will be further
fixed in the 4D fit. Finally, a step-by-step approach through the 2D model seems
more intuitive and corresponds to the actual analysis flow. To save some space,
most fit projections in this chapter are only illustrated for the signal mode and
the SVD2 experiment. The differences between SVD1 and SVD2 and control and
signal mode are generally negligible, hidden in the statistical noise. Moreover, all
relevant projections are shown again when we discuss the final 4D model. Note
that except for physics parameters from the PDG, the datasets for the SVD1 and
the SVD2 experiments have different parameters, which need to be determined
separately in all the individual steps. Only in the final 4D fit the CP -violation
parameters will be common to both datasets and fitted simultaneously.

6.1.1 Method of (Unbinned) Maximum Likelihood
Given a Probability Density Function (PDF) P(x;α) for an observable x with
a parameter α and a set of N events when we observed x = xi for event i, the
log-likelihood function can be constructed as

lnL(α) =
N∑︂
i=1

ln P(xi;α). (6.1)

The goal is to find the best estimates of some parameters of the model (α in this
most simple case), which encode the precise form of P(x), given the observed
data, by maximization of the log-likelihood.
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MC value Data value
(generator) (PDG [34])

mηc [GeV/c2] 2.9798 2.9839±0.0005
Γηc [GeV] 0.0265 0.0320±0.0007

Table 6.1: Parameters for ηc from PDG used for MC generation and fits and for
real data.

In addition to the function shape, one could be interested in the best estima-
tion of the total number of observed events [58], i.e., the PDF normalization is
now a free parameter. If the number of events follows a Poisson distribution, the
extended log-likelihood takes the form

lnL(α, n) = −n+
N∑︂
i=1

ln nP(xi;α), (6.2)

where the additional free parameter n multiplies each ‘event probability’ P(xi;α)
and constant factors irrelevant for optimization are omitted.

Just the possibility of evaluating the log-likelihood (−2lnL in practice) at a
given set of model parameters is enough to find the solution by standard mini-
mization techniques and tools. Such tools evaluate the log-likelihood many times
to compute derivatives of this usually multi-dimensional function and search for
(ideally the global) minimum. For this purpose, the MINUIT2 package is used.

6.1.2 2D Signal Model and Signal MC
A large simulated data sample of 0.5 million MC signal events (see Sec. 5.5 for
details) for each experiment is used to determine most parameters of the signal
shape for events that pass the event reconstruction. The MC is generated with
somewhat outdated values for mass and width of the ηc resonance. Thus for
signal MC fits, the values are fixed to generated ones, while for real data fits, the
most up-to-date PDG values are used. The values are summarized in Table 6.1.

In addition, data/MC correction factors discussed later are introduced for
generic changes of means and widths of the signal shape. This accounts for
additional real detector bias and resolution effects not included in the simulation.
Thus these correction factors are only determined from the fit to the control
sample and later fixed for the neutral mode.

The signal MC shows a significant correlation of the ∆E and M(K0
SK

+π−)
variables. A 2D histogram of the signal MC data sample for SVD2 is shown in
Fig. 6.1. From these histograms, the extracted correlation factor ρ is 26 % for
charged and 25 % for neutral mode in the SVD1 configuration. For SVD2 con-
figuration, ρ is 24 % for charged and neutral mode. This correlation is naturally
expected, as the B-meson momenta (and thus ∆E) is determined using the ηc
meson. We attempt to describe this correlation in the signal PDF—the incorpo-
ration of the correlation in the correctly reconstructed signal model is discussed
in the next Sec. 6.1.3.

Even in the case when the ηc is mis-reconstructed, ∆E might still be deter-
mined correctly if all final state particles are correctly assigned to the respective
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Figure 6.1: 2D signal MC data for SVD2 charged (left) and neutral (right) mode.

B-mesons (on the signal and tag side). The probability of this happening is stud-
ied using the MC truth information. Using simulation flags, one can separate
the events where both ηc and B-meson are reconstructed correctly. This also
includes cases with missed final state radiation photons, misidentified particles
(like switched pion and kaon), incorrect assignment of particles after material
interaction, and also misidentification of the charge for the case of charged B
meson. If under this criteria, only the B-meson is correctly reconstructed, the
events are separated, and this component is later called mis-reconstructed signal
component. This component and its model are described in detail in Sec. 6.1.4.

6.1.3 Correctly Reconstructed Signal
The PDF for the signal is mainly inspired by the previous work on the ηc → pp̄
decay channel [40], where a single correlation coefficient is introduced to model the
correlation of the ∆E ×M variables for the fully correctly reconstructed signal.
Here, this approach seems not sufficient as the correlation factors observed in
the MC sample are not well reproduced. Instead, an empirical modification was
added, and a second correlation coefficient was introduced. Several statistical
checks were performed to select the best way to model the correlation. The
final approach was selected mainly for better reproduction of the MC correlation
factors and due to a better 2D χ2 and width of the pull distributions.

In the M variable, the ηc resonance mass spectrum is parametrized as a sum
of main and wide components, both in the form of a Voigt function (Breit-Wigner
convolved with a Gaussian accounting for detector resolution and bias effects):

P̃sig(M) = + (1− f)BW(M ;mηc ,Γηc)⊗G(M ;µVoigt, σVoigt
main )

+ fBW(M ;mηc ,Γηc)⊗G(M ;µVoigt, σVoigt
main σ

Voigt
tail ),

(6.3)

where G(x;µ, σ) is a Gaussian with mean µ and width σ, f is the fraction of the
wide component, and µVoigt represents the shift with respect to the central value of
the Breit-Wigner, same for the main and wide component. For MC, this shift was
found to be compatible with zero, with the only exception being SVD1 charged
mode, where the fitter, described later, found a value of (0.23±0.10)MeV/c2.
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This tiny correction can be neglected. No data/MC correction factor is intro-
duced here, as well as for the detector smearing σVoigt

main for the main component.
The width of the wide component is parameterized with respect to the main
component by an additional multiplication factor σVoigt

tail .
To model the correlation, the PDF in ∆E is a conditional probability P̃sig(∆E|M),

where some of the parameters are themselves functions of M(K0
SK

+π−). The
PDF is expressed as a sum of three Gaussians:

P̃sig(∆E|M) = + (1− f1 − f2) · G(∆E; µ̃main = µmain + µCF
main + kcorr

1 µ(M),
σ̃main = σmainσ

CF
main)

+ f1 · G(∆E; µ̃main + µ1
tail + kcorr

2 µ(M), σ̃mainσ
1
tail)

+ f2 · G(∆E; µ̃main + µ2
tail, σ̃mainσ

2
tail),

(6.4)
where f1, f2 stand for fractions of the wider components, whose means are ex-
pressed as shifts µ1

tail and µ2
tail with respect to the total mean of the main Gaussian

µ̃main, which includes a general shift µmain and data/MC correction factor µCF
main,

set to zero for MC. Similarly the widths are parametrized by multiplication fac-
tors σ1

tail and σ2
tail, with respect to the total σ̃main. The data/MC correction factor

σCF
main to σmain is again set to one for MC. The correlation is introduced by in-

serting a linear dependence of the common mean, and the mean of the second
Gaussian (as an additional correction) on the M variable:

µ(M) = M − (mηc + µVoigt), (6.5)

where the slope is controlled by the parameters kcorr
1 and kcorr

2 . The obtained
correctly reconstructed signal model parameters are extracted using the following
2D PDF:

P̃sig(∆E,M) = P̃sig(∆E|M)P̃sig(M). (6.6)

The fit is repeated for the full signal model discussed below. Fit projections of
the 2D model and MC data for the correctly reconstructed signal are illustrated
in Fig. 6.2. The systematic pattern in the ∆E projection indicates that the
description of the correlation is not perfect. This will be even more evident
in Fig. 6.5 showing two-dimensional pulls. Nevertheless, the statistics of real
data is almost two orders of magnitude smaller, so the at most ±4σ pulls in
the projection are not relevant for our purposes. Moreover, this deficiency of
the model can be evaluated on ensemble tests (with signal events sampled from
GEANT3 MC simulation) as a possible fit bias and taken into account. In fact,
these signal model deficiencies are fully negligible with respect to other sources,
like the signal line shape in M(K0

SK
+π−) modified by interference with the non-

resonant background.
The fit window was also extended to the full region, including M(K0

SK
+π−)

sidebands to check if the shape parameters changed. The only parameter which
changes significantly is the main correlation parameter kcorr

1 , which gets much
smaller in the wider fit window. This is understood to be caused by the empirical
description of the signal correlated shape. No further refinements were done to
improve this situation as the signal model is good enough at the statistical level
for the studied channel. One, however, must be careful when extrapolating signal
parameters outside of the signal fit window, as the parameters describing the
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Figure 6.2: Projections of the correctly reconstructed signal component 2D data
model and MC signal data for the neutral (signal) mode and SVD2 experiment.

correlation might not lead to optimal modeling of the signal shape outside of the
signal window. This is later discussed in Sec. 6.1.9.

6.1.4 Mis-reconstructed Signal
The nature of the decay allows swapping of the kaons from B and ηc decay in
the reconstruction. If this happens, the signal does not peak in M(K0

SK
+π−)

anymore, as the ηc is mis-reconstructed. But for the B meson, the sum of the
four-momenta of all the final particles on the signal side will still be correct and
result in a peaking component in ∆E, which, however, does not anymore exhibit
any correlation with M(K0

SK
+π−), in contrast to the correctly reconstructed

signal component. This component of the signal and parameters specific to it are
further denoted by a subscript mis.

In the M(K0
SK

+π−) variable, a single-parameter PDF has been found suffi-
cient to describe the mis-reconstructed signal component:

Pmis(M) = N (1 + c1
misC1(M)), (6.7)

where C1 is a first-order Chebyshev polynomial (linear function) and N is a
proper normalization factor. In the ∆E variable, the PDF is almost the same as
for the correctly reconstructed signal. The parameters are shared, too, but the
correlation is not introduced:

Pmis(∆E) = + (1− f1 − f2)G(∆E; µ̃main = µmain + µCF
main, σ̃main = σmainσ

CF
main)

+ f1G(∆E; µ̃main + µ1
tail, σ̃mainσ

1
tail)

+ f2G(∆E; µ̃main + µ2
tail, σ̃mainσ

2
tail).

(6.8)
Therefore only one parameter (c1

mis) was determined from the fit to the following
2D PDF:

Pmis(∆E,M) = Pmis(∆E)Pmis(M). (6.9)

Other model parameters are identical to the correctly reconstructed signal deter-
mined in the previous section. The fit and MC data projections are illustrated in
Figure 6.3.
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Figure 6.3: Projections of the mis-reconstructed signal component 2D data model
and MC signal for the neutral (signal) mode and SVD2 experiment.

6.1.5 Total 2D Signal Model
The total PDF to extract the signal parameter reads

Psig(∆E,M) = (1− fmis)P̃sig(∆E|M)P̃sig(M) + fmisPmis(∆E)Pmis(M), (6.10)

where fmis is the fraction of the mis-reconstructed signal. This fraction is higher
for the neutral mode due to a larger number of final tracks to be reconstructed
(with four charged pion tracks instead of two charged kaon tracks) and thus a
larger probability of an incorrect assignment of the daughter to mother particles.
This is not a free fit parameter but is determined directly from the MC truth
information. The linear slope for the mis-reconstructed signal is fixed to a value
determined by the fit to the mis-reconstructed signal in Sec. 6.1.4. This parameter
cannot be extracted from the full fit (as well as fmis) because fmis is very small
(1–3 %), and the linear shape compensates with the wider Voigt component.

The signal parameters determined from a fit to the total signal are statistically
consistent with the results for the correctly reconstructed signal. The largest
deviations are in the parameter kcorr

1 , for the reason of sub-optimal correlation
modeling, with the only significant difference for SVD2 in the neutral mode (still
within 2σ). All final parameters of the total signal model can be found in the
summary Tables A.2 and A.3 of the 2D model.

The fit projections are illustrated in Figure 6.4. In addition, 2D histograms
comparing the signal MC and the data model are shown in Figure 6.5. The
correlation factors are computed for both signal MC and the fit model and are
well reproduced by the full signal model.

6.1.6 Continuum Background
The continuum (without any peaking structures in ∆E×M) component is mostly
composed of e+e− → qq processes, where q = u, d, s, c (left-over after continuum
suppression), which can be studied using Belle Mbc sideband data. In addition,
generic BB MC can be used to study contributions from e+e− → bb̄, where due
to mis-reconstruction, usually particles from signal and tag-side B meson are
mixed up. To do so, the peaking component (composed of higher cc resonances)
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Figure 6.4: Projections of the total signal 2D data model and MC signal data for
the neutral (signal) mode and SVD2 experiment.

has to be separated first by removing channels based on MC truth information
one by one. The resulting, peaking-free continuum part is fitted, too, but mostly
for qualitative evaluation. As will be explained later, the parameters of the
continuum background will need to be released again after the fit to the Mbc
sideband data. Thus the parameters obtained in this section are only relevant for
later cross-checks and as starting values for later fits.

The PDF used for the continuum background is simply a Chebyshev polyno-
mial in each variable:

Pcb(∆E) = N (1 + c∆E
1 C1(∆E)),

Pbkg(M) = N (1 + cM1 C1(M)),
(6.11)

where the subscript bkg refers to a fundamental assumption of the full data model,
which is supported by all available MC studies: the shape of the sum of all
backgrounds in M can be described by Pbkg(M) with some cM1 , even that coming
from (∆E) peaking background. There is no reason to assume that the slopes of
individual components are the same (which is not even supported by the extracted
fit parameters from samples shown below). Although the slopes of individual
continuum (or ∆E-peaking) background components in M are unknown and are
not modeled (only their fractions can be extracted), their arbitrary composition
can again only have a linear shape, which must be released when the fractions can
change (e.g., when opening/changing the fit region to sidebands and vice-versa).
As a further dependency of the slope on the ∆E variable can invalidate such an
assumption, the (linear) shape in ∆E must also be a floating variable in all fits.

The total 2D PDF for the continuum and non-peaking BB background1 is

Pcb(∆E,M) = Pcb(∆E)Pbkg(M). (6.12)

The fit projections and the Belle Mbc sideband data are illustrated in Fig. 6.6.
The projections for the non-peaking part of the generic BB MC are illustrated
in Fig. 6.7. Note that all extracted parameters describing the linear background
shape will be re-estimated in the total 2D data fit.

1We often refer to this component as continuum only, with meaning of the continuous shape
of the background in the ∆E ×M variables, without any peaking structures.
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Figure 6.5: Comparison of MC signal data (first row) and fitted signal model
(second row). All (logarithmic) scales are set the same (maximum at 200). For
more qualitative comparison, the pull plots are shown (third row). Here, a differ-
ent definition for a pull is used, pulli = (Ndata

i −Nfit
i )/

√︂
Nfit
i , to fill all bins and

avoid division by zero. The pull distributions of bins where Ndata
i > 2 are shown

in 1D histograms (fourth row) with bin count, mean, and standard deviation in
the inset. From left to right, distributions for charged (SVD1, SVD2) and neutral
(SVD1, SVD2) modes are shown.
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The data has been found to be consistent with the simple linear shape in all
cases, except for the SVD2 control mode. Here, with the most events, a second-
order Chebyshev polynomial would be slightly preferred statistically. However, it
has been decided to keep the model identical to the one used for signal extraction.
The effect on the control mode is entirely negligible when compared to other
systematic uncertainties2.
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Figure 6.6: Projections of the continuum background 2D data model and Belle
Mbc sideband data for the neutral (signal) mode and SVD2 experiment.
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Figure 6.7: Projections of the continuum background 2D data model and generic
BB MC (non-peaking in ∆E) for the neutral (signal) mode and SVD2 experi-
ment.

6.1.7 Peaking Background
The background component peaking in ∆E is studied on two MC samples: generic
BB decays (b → c) with ten times larger dataset than experiment luminosity,
and rare-B (b → uds) generated with 50 times larger dataset than real Belle
data. The rare-B data sample is used only for some qualitative studies. Also, the
branching fractions of the individual B decays might not be up-to-date, and some

2Which we (mostly) do not even evaluate for the control mode as the fit is much slower to
perform a full-scale systematic study as done for our signal (with less floating parameters and
about a third of the data in the likelihood function).
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specific decay channels could be missing or not be modeled correctly in these data
samples. Uncertainties in the correctness of the composition of these MC data
samples can be overcome if the parameters of the (total) peaking background can
be estimated from a fit to the data. According to qualitative studies below, a
single Gaussian is sufficient to describe the shape of the peaking background in
both MC data samples:

Ppb(∆E) = G(∆E;µ∆E
pb , σ

∆E
pb ), (6.13)

while the shape in M(K0
SK

+π−) is found to be consistent with a linear or even
a constant function. Therefore the total PDF used to extract the peaking back-
ground shape reads

Pbkg(∆E,M) = (1− fpb)Pcb(∆E)Pbkg(M) + fpbPpb(∆E)Pbkg(M), (6.14)

where fpb is the fraction of the peaking background to the total background. The
rest is to accommodate for the possible remaining small non-peaking component.
In fact, for further progress, only the parameters µ∆E

pb and σ∆E
pb are of interest as

possible starting values for the data fit or for comparison of the simulated MC
background parameters to real data.

The means of the Gaussian shapes are ±3 MeV around zero. The widths are
roughly 10 MeV. The obtained parameters are statistically consistent among the
generic BB and rare-B samples. The obtained values are summarized later in
Sec. 6.1.9 and Table 6.3, where we compare them to the data-driven estimates.
The fit projections for generic BB MC are illustrated in Fig. 6.8. For the rare-B
MC, the projections are illustrated in Fig. 6.9. The discrepancy in the pulls is
acceptable, as here, 50 times more events than expected in reality are simulated
and a simple shape parametrization is preferred.
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Figure 6.8: Projections of the peaking background 2D data model and generic
BB MC (peaking in ∆E) for the neutral (signal) mode and SVD2 experiment.

6.1.8 Total 2D PDF and Fit Strategy
The full 2D PDF is a sum of the previously described individual signal (correctly
and mis-reconstructed) and background components (peaking and continuum):

P(∆E,M) = (1− fbkg)Psig(∆E,M) + fbkgPbkg(∆E,M), (6.15)
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Figure 6.9: Projections of the peaking background 2D data model and rare-B MC
for the neutral (signal) mode and SVD2 experiment. The non-peaking component
in ∆E is not separated.

where Psig is defined in Eq. 6.10, Pbkg in Eq. 6.14, and fbkg is the total background
fraction.

The fit must first be performed in the charged mode to extract data/MC
correction factors for the signal shape. This prevents us from performing a fit
to the peaking background shape in a simultaneous fit. Instead, the full 2D fit
will be first performed with fixed signal shape (with correction factors set to MC
default values) and expected yield (from PDG) in the M(K0

SK
+π−) sideband,

where the amount of peaking background is large enough to extract mean and
width of its Gaussian PDF.

The full 2D fit is performed using the following extended log-likelihood:

lnL = −(Nsig +Nbkg) +
∑︂

ln(Nsig +Nbkg)P(∆E,M), (6.16)

where the background fraction from Eq. 6.15 is now determined from the addi-
tional parameters Nsig for the signal and Nbkg for the background yield as

fbkg = Nbkg

Nsig +Nbkg
(6.17)

and the peaking background yield is now parametrized using a fraction of peaking
background to signal f pb

sig
, such that the fraction of peaking background to total

background from Eq. 6.14 becomes

fpb = f pb
sig

Nsig

Nbkg
. (6.18)

6.1.9 Extraction of Peaking Background Shape
The mean and width of the Gaussian shape of the peaking background component
are estimated by changing the fit window to the M(K0

SK
+π−) sideband. This

enlarges the peaking background yield and significantly suppresses the signal.
However, the ηc resonance is quite wide, and a non-negligible amount of signal
leaks to the sideband. Thus, the signal is first re-fitted in the sideband.
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ϵSB [%] Est. Nsig(SB)
Charged – SVD1 0.76 ± 0.01 27 ± 5
Charged – SVD2 1.06 ± 0.01 154 ± 30
Neutral – SVD1 0.83 ± 0.01 12 ± 3
Neutral – SVD2 1.25 ± 0.02 76 ± 17

Table 6.2: Signal MC efficiency and estimated signal yield in the M(K0
SK

+π−)
sideband. Errors and values for branching fractions are from PDG. Poisson un-
certainties are assumed for official Belle NBB values.

Charged mode Neutral mode
SVD 1 SVD 2 SVD 1 SVD 2

Peaking background Gaussian mean µ∆E
PB [MeV]

generic BB 1.02 ± 0.88 1.30 ± 0.45 2.74 ± 1.33 1.89 ± 0.48
rareB 1.11 ± 0.25 0.56 ± 0.11 1.26 ± 0.31 1.00 ± 0.12
M SB -2.87 ± 2.11 -0.05 ± 2.04 1.05 ± 3.85 -1.78 ± 1.47

Peaking background Gaussian width σ∆E
PB [MeV]

generic BB 9.86 ± 0.73 11.32 ± 0.42 10.22 ± 1.20 10.03 ± 0.42
rareB 10.43 ± 0.23 10.40 ± 0.10 10.92 ± 0.27 10.40 ± 0.11
M SB 9.99 ± 3.13 11.56 ± 2.57 17.95 ± 3.84 11.35 ± 1.47

Table 6.3: Summary of the extracted peaking background parameters from the
generic BB MC, rare-B MC, and real data using M(K0

SK
+π−) sideband fit.

To extrapolate the signal outside of the signal window, one has to be care-
ful about fractions of components in the model and coefficients of Chebyshev
polynomials. These parameters specifically change when the normalization range
of the PDFs is changed. However, a direct extrapolation of the signal shape to
M(K0

SK
+π−) sideband does not yield a good quality fit. This is understood to

result from the previously discussed sub-optimal modeling of the signal’s corre-
lated nature. Also, the mis-reconstructed signal component is now dominant,
especially in the right M(K0

SK
+π−) sideband. Therefore the fraction of mis-

reconstructed signal is computed again from MC truth, and the full signal fit
is repeated with only the Chebyshev coefficient c1

mis and the main correlation
parameter kcorr

1 floating. Releasing kcorr
1 was found to be sufficient for a good fit.

The signal yield in the M(K0
SK

+π−) sideband can be estimated from the
signal efficiency in the sideband ϵSB, the number of BB meson pairs NBB and the
branching fractions for B0 → ηcK

0
S (respective B+ → ηcK

+) and ηc → K0
SK

±π∓

as

Nsig(SB) = ϵSB ×NBB × B(B0 → ηcK
0
S or B+ → ηcK

+)× B(ηc → K0
SK

±π∓).

For this estimation, the Belle efficiency corrections at the 1–2% level are not
considered, as the final error, mainly coming from uncertainties of the PDG
branching ratios, is around 20%. The values for the sideband signal efficiency
and the final estimated signal yields in the sideband are listed in Table 6.2.

The fitted peaking background parameters with Nsig fixed to the estimated
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values are compared to the previously obtained MC estimates in Table 6.3. The
means of the Gaussians are mostly consistent with zero. The widths are mostly
similar to those predicted by the generic and rare-B MC samples, about 10 MeV.
Only the value of (18 ± 4)MeV for the SVD1 experiment and the neutral mode
is an exception, but likely only a statistical fluctuation. Due to the consistency
of all the remaining data/MC results, we have decided to use the MC estimate
for the width in the SVD1 neutral mode. The data-driven value is included in
systematic variations of the final data model parameters.
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Figure 6.10: Projections of the 2D data model and the Belle data in the
M(K0

SK
+π−) sideband for the charged (control) mode and SVD1 (top) and SVD2

(bottom) experiment.

The fit projections with separated individual components are shown in Figures
6.10 and 6.11. Note that the edges of the bins do not match the sideband window,
resulting in the drawing artifacts. A very important note is in order here: the
depiction of the peaking background shape in the M(K0

SK
+π−) variable is only

illustrative. The actual slope could be different; only the total relative fraction
to the continuum component is extracted. This will be true from now on in this
thesis.

From the extracted fraction of the peaking background to signal f pb
sig

in the
M(K0

SK
+π−) sideband (f pb

sig
(SB)), its linear shape in M , and almost symmetric

choice of the sideband regions, one can naively estimate the peaking background
fraction to signal in the central (signal) region (f pb

sig
(C)) as:

f pb
sig

(C) ≃ f pb
sig

(SB)ϵ
SB

2ϵ .
(6.19)
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Figure 6.11: Projections of the 2D data model and the Belle data in the
M(K0

SK
+π−) sideband for the neutral (signal) mode and SVD1 (top) and SVD2

(bottom) experiment.

This estimate yields:

(21.2± 5.5)% for SVD1, charged,
(12.5± 2.5)% for SVD2, charged,

(51.9± 12.3)% for SVD1, neutral, and
(31.5± 4.6)% for SVD2, neutral.

(6.20)

Note, however, that the signal yield is fixed from the PDG and not a free param-
eter for this estimate. These numbers are only used as initial values for the fit in
the signal region.

6.2 Measurement of Branching Fractions
In this section, the final 2D data model is used to extract the branching fractions
from the signal yields—first for the charged control mode, which is used to deter-
mine also data/MC correction factors, and then for the neutral signal mode. This
is merely for validation of the analysis before extensions to a more complicated fit
which includes time difference and flavor dimensions. As the interference effects
are only considered as a systematic uncertainty, we do not update the former
Belle measurement for the control mode branching fraction [47]. Moreover, the
final measurement of the branching fraction for the neutral mode is evaluated in
the final fit, although this approach slightly increases systematic uncertainty. In
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addition, the cross-checks of the correspondence of the 2D and the final 4D model
predictions are important for the validation of the full fit.

6.2.1 Control Sample Measurement
The extended maximum likelihood fit results for the charged mode, including the
correction factors for ∆E shape and other model parameters, are summarized in
Table A.2. The observed number of events is 360±31 and 1978±75 for the SVD1
and SVD2 experiments, respectively. The fit projections are shown in Fig. 6.12.

The extracted f pb
sig

can be compared to the estimate 6.20. Within statistical
errors (as large as 50%), the values are compatible, but for SVD2, the fitter seems
to predict a lower value than expected (7.4±3.6)% vs. (12.5±2.5)%. A suspected
bias toward a lower fraction of the peaking background when its yield is small
was confirmed by preliminary toy MC studies. Including the fraction as a floating
parameter in the final fit is preferred. In this way, the uncertainty is automatically
propagated to the statistical uncertainty in the signal yield, including correlations.
Moreover, the peaking background fraction and the background slope in the M
variable are rather nuisance parameters whose real purpose is to partially absorb
interference effects in the real data. With a non-resonant interfering background,
separation to individual components requires an amplitude model for a proper
description as a PDF3.
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Figure 6.12: Projections of the final 2D data model and Belle data for the control
mode and SVD1 (top) and SVD2 (bottom) experiment.

3With interference, individual components can have effectively negative weights due to de-
structive interference. PDFs and probabilities cannot be negative.
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The extracted signal yield is compatible with the expectations from PDG; see
Table 5.5. From the fitted signal yield, signal efficiency, and number of B-mesons
for the given experiment (SVD1 or SVD2), the product of branching ratios can
be extracted as

B = Nsig

ϵNBB

, (6.21)

which yields

B = (2.47± 0.23)× 10−5 for SVD1,
B = (2.47± 0.10)× 10−5 for SVD2, and
B = (2.47± 0.09)× 10−5 as weighted average for the charged mode.

(6.22)

We will compare these results to the expectations in Sec. 6.2.3.

6.2.2 Neutral Mode Measurement
The fit results and other model parameters for the measurement of the signal yield
in the neutral mode are shown in Table A.3. The observed number of events is
64 ± 15 and 548 ± 39 for the SVD1 and SVD2 experiments, respectively. The
fit projections are shown in Fig. 6.13. The two data/MC calibration factors are
fixed from the charged mode. As for the charged mode, the extracted peaking
background fraction is compatible with the sideband extrapolation 6.20. The
extracted signal yields are compatible with PDG expectations in Table 5.5 as
well. Using Eq. 6.21, the product of branching ratios can be extracted:

B = (0.75± 0.18)× 10−5 for SVD1,
B = (1.02± 0.08)× 10−5 for SVD2, and
B = (0.98± 0.07)× 10−5 as weighted average for the neutral mode.

(6.23)

6.2.3 Summary
Concerning statistical errors only, the measured products of branching fractions
for charged and neutral mode

B(B+ → ηcK
+)× B(ηc → K0

SK
±π∓) = (2.47± 0.09)× 10−5,

B(B0 → ηcKS)× B(ηc → K0
SK

±π∓) = (0.98± 0.07)× 10−5 (6.24)

are compatible with values from PDG4:

B(B+ → ηcK
+)× B(ηc → KK̄π)× 1/3 = (2.34± 0.43)× 10−5,

or explicitly B(B+ → ηcK
+, ηc → K0

SK
±π∓) = (2.7± 0.6)× 10−5,

B(B0 → ηcK
0)× B(ηc → KK̄π)× 1/2× 1/3 = (0.97± 0.21)× 10−5.

(6.25)

4The explicit value obtained in Ref. [47] takes interference with non-resonant background
into account in both the central value and the uncertainty, dominated systematically by the
interference effect. As the neutral mode was not studied, we have partially reproduced this
study in the next section to estimate at least the systematic uncertainty.
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Figure 6.13: Projections of the final 2D data model and Belle data for the signal
mode and SVD1 (top) and SVD2 (bottom) experiment.

The largest systematic error of the branching fraction measurement stems
from the interference of the signal decay with a non-resonant (direct four-body)
decay to the same final state. This effect was evaluated for the charged mode
in Refs. [59, 47]. Taking the interference into account leads to a significant
modification of the signal yield and additional large systematic error stemming
from the model uncertainty. The next section is devoted to the estimation of
this uncertainty also for the neutral (signal) mode. As it is very large, we do not
estimate other systematic uncertainties here, but only in the final 4D fit and only
for the signal mode.

6.3 Signal and Background Interference

So far, we have silently assumed that the signal and peaking background com-
ponents can be described as independent PDFs. This would be, for example,
the case of backgrounds with final state particle content different from the sig-
nal or when intermediate resonances which are far5 apart in invariant mass are
involved. In the case of B → ηc(K0

SK
+π−)K decays, multiple processes with

the same final state constitute a significant contribution. Quantum-mechanical
amplitudes of decays with the same final state can interfere with the signal am-
plitude and modify the signal line shape in the ηc invariant mass spectrum and

5Such that their mass peaks do not overlap. This is thus an issue for wide resonances, like
the ηc meson.
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apparent branching fraction. In addition, signal and background interference
can lead to parasitic CP asymmetries, which can pollute our measurement of
sin(2ϕ1) via SCP (ACP) by introduction of additional strong and weak phases to
the B → (K0

SK
+π−)K and B → (K0

SK
+π−)K amplitudes6.

Our full 4D fit model is already too slow and complicated to include more
effects arising from the possible signal and background interference. Also, a full
amplitude analysis with multiple components of various weak and strong phases
is completely out of the scope of this thesis and beyond the statistical power of
the used dataset. Instead, we devote this chapter to a set of independent studies
with a simple χ2-based fit, which will allow us to get more insight into the possible
scale of the interference effects and put some constraints on their impact. The sole
purpose of this chapter is thus only an estimation of the systematic uncertainty on
the branching fraction measurement and derivation of a modified line shape which
can be used to probe related fit biases of the CPV parameters using ensemble
studies.

The effect of non-resonant background interference on the CPV parameters
might lead to CP asymmetries, which are not constant as a function of the ηc
resonance mass. Wide resonances are yet another interesting source of a strong7

phase difference. We will see in this section explicitly that the phase of the
Breit-Wigner amplitude changes rapidly around the mass peak, see 6.17 (right).
If the non-resonant background strong phase is different (usually assumed to be
constant in the simplest case), its relative weak phase can be revealed. As the non-
resonant contribution should be mostly induced by b → s penguin decays, there
is small pollution with such a weak phase difference. Any such effect should likely
be small, but a direct confirmation from real data is, of course, always preferable.
We will try to check for such a possibility in the final cross-checks assuming the
simplest possible model proposed after a discussion with the review committee of
the analysis.
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Figure 6.14: Histograms of the reconstructed ηc invariant mass for the real Belle
data of the charged (left) and the neutral mode (right) from the signal (black) and
sideband (red) regions in ∆E. The scaled distribution of the mis-reconstructed
MC signal is shown in blue.

6In practice one of course measures (time-dependent) decay rates, not the (complex) ampli-
tudes.

7In our context, strong phases are any phases that are CP invariant. In the time-dependent
CP violation, this (time-dependent) phase comes from the unitary time evolution.
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6.3.1 Background-subtracted Distributions
For all plots in this chapter, real data from the SVD1 and SVD2 experiments
are merged to increase statistics. The continuum background is subtracted using
a simple histogram method. The ∆E window is separated to signal (|∆E| <
0.05 GeV) and sideband regions (0.05 GeV < |∆E| < 0.1 GeV). The distribution
of the reconstructed ηc invariant mass from the sideband region is then subtracted
from the signal region distribution. In addition, we subtract a scaled histogram
of the mis-reconstructed signal as obtained from the signal MC. The effect of
neglecting the mis-reconstructed signal is small and most relevant for the neutral
mode (where it is more abundant). The distributions before these subtractions
are shown together in Fig. 6.14.

The distributions after background subtractions are shown in Fig. 6.15, where
the arrows denote the boundaries of the additional separation into the ηc invariant
mass signal and sideband regions. The presence of (∆E) peaking background,
flat in reconstructed invariant ηc candidate mass, is clearly visible and about 2–3
times larger for the neutral mode than the charged mode, in agreement with the
more advanced extraction using the 2D likelihood fit.
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Figure 6.15: Background-subtracted distributions of the reconstructed ηc invari-
ant mass with red arrows denoting boundaries of the ηc mass signal region for
the charged (left) and neutral mode (right). The number of entries for some bins
is negative as a result of the background subtraction.

The same approach is used to obtain background-subtracted Dalitz plots in the
ηc mass signal region and distribution of cos(θ), where θ is the angle between the
momentum of K0

S from ηc and K0
S (K± for charged mode) from the B meson in the

rest frame of the ηc candidate. These distributions are shown in Fig. 6.16. Several
structures can be observed in the Dalitz plots, which are consistent with other
measurements [60, 46] and suggests intermediate resonant structures in the ηc
decay, with most prominent bands around 2 (GeV2/c4) with possible contributions
from K∗

0(1430), K∗
0(1950) or K∗

2(1430); the diagonal bands indicate the presence
of a0 and a2 resonances [60].

6.3.2 Signal Line Shape with and without Interference
Let us consider a simplified signal model (compared to our full likelihood fit),
where the broad ηc resonance with nominal mass mηc and width Γ is parametrized
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Figure 6.16: Background-subtracted distribution of the helicity cosinus between
kaon from B and K0

S from ηc (top) and Dalitz plots (bottom). Figures for the
charged (left) and neutral mode (right) are shown for SVD1 and SVD2 experi-
ments combined.

by squared Breit-Wigner amplitude convolved with detector resolution, repre-
sented by a single Gaussian with width σ. Let us further assume the nominal
case, where a constant peaking background does not interfere with the signal.
The distribution of the reconstructed invariant mass M ≡ M(K0

SK
+π−) can be

written as

F (M) = N
(︃ ⃓⃓⃓⃓
⃓ 1
M2 −m2

ηc
+ imηcΓ

⃓⃓⃓⃓
⃓
2

+ α2
)︃
⊗G(M ; 0, σ), (6.26)

where we omitted normalization constants, N is signal yield, and α2 parametrizes
the size of the peaking background contribution. For the resolution σ, we use the
value determined in our full likelihood MC signal fit, 9 MeV/c2. Now assume
instead all the peaking background in ∆E is, in fact, a constant (in M) non-
resonant contribution to the same final state and interferes with our signal. For
the constant term, a complex phase ϕ arises, and the contribution is added co-
herently to the signal as

F (M) = N

⃓⃓⃓⃓
⃓ 1
M2 −m2

ηc
+ imηcΓ

+ αeiϕ
⃓⃓⃓⃓
⃓
2

⊗G(M ; 0, σ). (6.27)

The square of the absolute value yields four terms:

1
(M2 −m2

ηc
)2 +m2

ηc
Γ2 +

2α cos(ϕ)(M2 −m2
ηc

)
(M2 −m2

ηc
)2 +m2

ηc
Γ2 + −2α sin(ϕ)mηcΓ

(M2 −m2
ηc

)2 +m2
ηc

Γ2 + α2.

(6.28)
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The first one corresponds to the standard Breit-Wigner distribution. The second
term is proportional to the real part of the Breit-Wigner amplitude, and the third
one to its imaginary part. The distinct individual contributions (after convolution
with detector resolution) are shown in Fig. 6.17. Depending on the size and
phase of the interfering background, the measured signal yield can be significantly
different. A fit to the data with assumption of no and full signal interference is
compared in Fig. 6.18 and 6.19 for the charged and neutral modes, respectively.
An asymmetric signal shape yields a better fit in both cases, and the difference
in the measured signal yields suggests significant interference effects.

For the charged mode, the interference effect is less apparent in the signal
shape asymmetry. When the interference is taken into account, the signal yield
is reduced by 11% for the charged mode. For the neutral mode, the signal yield
is reduced by 9% in the case of full interference. Note also the corresponding
increase in the estimated statistical error of the signal yield (shown in the legend)
in the case of interference. Furthermore, the parameters N , α, and ϕ are strongly
correlated (from 58% to 85%).

The qualitative results for the charged mode correspond to previous results of
a similar simplified study [59]. However, if we use the above-determined changes
to the signal yield estimates as a systematic uncertainty, we get less than half
of the number obtained in the full interference study [47] for the charged mode.
Thus we use a more advanced interference model to estimate the systematics of
the branching fraction in the next section. The results of this simple study will
be used to estimate systematic uncertainty on the CPV parameters in ensemble
studies with a modified signal line shape.
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Figure 6.17: The square of Breit-Wigner amplitude (left), the real part (middle),
and the imaginary part (right) convolved with detector resolution.

6.3.3 Angular Analysis of Four-Body Decay
To study the non-resonant background contributions with decay to the same final
state, but without formation of the ηc resonance, we need to resort to an analy-
sis of the full four-body decays B± → K±(K0

SK
±π∓) and B0 → K0

S(K0
SK

±π∓).
Narrow resonances have been removed by peaking background vetoes; see Sec. 5.3.
Contributions from b → c decays (in particular with other charmonia) are small
and can be neglected here. Events with wrongly identified final state parti-
cles constitute only a small (about 5% on rare-B MC) fraction of the peaking
background. What remains are mostly true decays into the same final state as
our signal. These can be further separated into direct four-body decays and
quasi-three-body, and quasi-two-body decays with the formation of intermediate
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Figure 6.18: The fit result with the assumption of no interference (left) and with
a simple interference model (right) for the charged control mode.
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Figure 6.19: The fit result with the assumption of no interference (left) and with
a simple interference model (right) for the neutral mode.

hadronic resonances. For example, the neutral rare-B MC sample contains about
1/4 of B0 → K0

SK
0
SK

∗0(892) decays which pass the event selection.
A general decay configuration of a (pseudo-) scalar particle (B meson) to four

scalars is described by 3 × 4 momentum components of the final state particles.
Three degrees of freedom correspond to the arbitrary orientation of the decaying
B meson frame. With the additional four components of the four-momentum
conservation law, this leaves five degrees of freedom to fully describe the final
state configuration and thus the amplitude of the process. We select conveniently
the same as in Ref. [47]:

• the invariant mass of the K0
SK

±π∓ combination with K0
S from the ηc can-

didate (usually denoted as M or M(K0
SK

+π−) in this work), shown in
Fig. 6.15,

• cos θ, where θ is the angle between the momentum of K0
S from ηc and K0

S

(K± for charged mode) from the B meson in the rest frame of the ηc, see
Fig. 6.16,

• two Dalitz variables q2
1 = M(K±π∓) and q2

2 = M(K0
Sπ

∓). Their distribu-
tions in the signal regions are shown in Fig. 6.16,

• angle ϕ between the planes defined by cross products of the vector of kaon
(from the B meson) and pion, respectively charged kaon (from ηc) in the
rest frame of the ηc candidate.
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We set up a simple χ2 fit of a 2D histogram in s = M(K0
SK

+π−) and cos θ. Such
a fit permits the separation of different (S, P , D) wave amplitude contributions
because the pseudo-scalar ηc decay should exhibit a flat distribution in cos θ.
Separation of other than S wave might help to constrain the interference effect
and estimate possible systematic error on the signal yield when the interference
is neglected in our full likelihood fit.

Similar to the previous section, the observed distribution can be obtained as
a square of the sum of signal and S, P , and D background amplitudes, constant
in the full mass window. For a full detailed formalism, we refer to Ref. [47]. The
used fit function reads

F (s, x) =(1 + ϵ1x+ ϵ2x
2 + ϵ3x

3)×
[S2(x)(Iηη(s) + α2 + 2

√
NαIηη(s)) + P 2(x)β2 +D2(x)γ2

+ 2S(x)P (x)β(
√
NIηP (s) + αΠSP )

+ 2S(x)D(x)γ(
√
NIηD(s) + αΠSD)

+ 2S(x)P (x)βγΠPD],

(6.29)

where x = cos θ, s = M(K0
SKπ), S(x) = 1√

2 , P (x) =
√︂

3
2x, D(x) = 3

2

√︂
5
2(x2 − 1

3).
Parameters ϵ1, ϵ2, ϵ3 parametrize the detection efficiency as a function of x. The
yields of the individual, S, P , and D background amplitudes are characterized
by α, β, and γ, respectively. The parameters ΠSP , ΠSD and ΠPD represent the
overlap integrals of the complex background amplitudes over the Dalitz variables
and ϕ:

Πij =
∫︂ ∫︂ ∫︂

ℜ(Ai(q2
1, q

2
2)A∗

j(q2
1, q

2
2))q2

1q
2
2dϕ, (6.30)

where i, j = S, P,D and i ̸= j. Similarly, the overlap integrals of ηc and back-
ground amplitudes are written as

ξi(cos θi + i sin θi) =
∫︂ ∫︂ ∫︂

Aη(q2
1, q

2
2)A∗

i (q2
1, q

2
2)q2

1q
2
2dϕ (6.31)

with six fit parameters ξS = ξ, θS = θ, ξP , θP , ξD, θD, where 0 ≤ ξi ≤ 1 and
0 ≤ θi < 2π, as the amplitudes are normalized over the Dalitz variables and ϕ.
With this parametrization, the s-dependent terms can be written as

Iηi(s) = ξi

[︃
cos θiℜ

(︄
1

s2 −m2
ηc

+ imηcΓ

)︄
⊗G(s; 0, σ)

+ sin θiℑ
(︄

1
s2 −m2

ηc
+ imηcΓ

)︄
⊗G(s; 0, σ)

]︃
,

(6.32)

where the real and imaginary part of the Breit-Wigner amplitude convolved with
the resolution function Gaussian, shown in Fig. 6.17, are precomputed to make
the fit faster. For the resolution σ, we use the value determined in our full
likelihood MC signal fit, 9 MeV/c2.

The efficiency correction factors are determined from a fit to our full MC signal
samples, with removed mis-reconstructed signal contributions. No resonant sub-
structures are simulated in our MC, so the signal distribution over cos θ should
be flat. The deviation from flatness is attributed to the detection efficiency and
parametrized by a third-order polynomial, fixed for later data studies. In contrast

105



to Ref. [47], we consider ηc mass and width as fixed externals parameters. This
leaves 12 parameters to be determined by the 2D fit.

We believe (based on actual experience) that all these parameters cannot be
reliably determined with the available statistics. In addition, amplitude fits suffer
from issues with multiple minima (due to ambiguities from phases), and this is
also our case. Therefore, we sample the starting values for the fit parameters
uniformly in their range (reasonable values are used for α, β, and γ, which are
not limited by physics bounds) and perform the fit. In many cases, the fit fails
to estimate the statistical errors properly and can result in suboptimal final χ2.
We generate 1000 random sets of starting values for the parameters and select
the solution with the lowest χ2. However, the minimum forms a plateau for most
parameters with almost identical χ2 and different values of the fit parameters.

In Fig. 6.20 and Fig. 6.21 the best-fit projections are shown along with his-
tograms of all reached fitted values of the parameters. Most of these fits are very
close to the minimum. Based on our limited confidence in the fit, we prefer to
estimate the uncertainties of the parameters by the standard deviation of these
histograms, including all outliers. While this approach might seem too conser-
vative, its impact on the estimated signal yield is of a similar scale as estimated
in Ref. [47] for the charged mode in more advanced analysis. For the neutral
mode, this effect is naturally larger due to the higher background level. These
estimates yield a systematic error for the signal yield of 16% and 23% for the
charged and neutral modes, respectively. These values are simply obtained as
(Std Dev)/Mean from the histograms for parameter N in Figs. 6.20 and 6.21 and
used to calculate the branching fraction uncertainty in the final result.
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Figure 6.20: Fit projections (bottom) with data overlaid of the best fit for the
charged mode. The upper grid of plots shows histograms of achieved optimal
values for all floating parameters when the fit is initialized with random values
sampled uniformly 1000 times.
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Figure 6.21: Fit projections (bottom) with data overlaid of the best fit for neutral
mode. The upper grid of plots shows histograms of achieved optimal values for
all floating parameters when the fit is initialized with random values sampled
uniformly 1000 times.
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CHAPTER 7

Time-Dependent Measurements
and Consistency Checks

7.1 4D Data Model
In this section, we extend the data model to the full fit in ∆E ×M ×∆t× q× l,
where ∆t is the reconstructed proper time difference between Btag and Bsig, q
is the determined flavor q of Btag and l is the index of the r-bin category. We
call this a 4D model to distinguish it from a potential flavor-blind variant (not
implemented in this work explicitly) which could be used to extract the B meson
lifetime.

The discrete variable q is determined by the flavor tagging algorithm along
with the probability of a correctly determined flavor characterized by categorizing
each event into one of seven r-bins indexed by l. See also Sec. 4.6.3 and 5.1.

7.1.1 Flavour Tagging Quality Parametrization
The fractions of signal or background events in each of the seven r-bins are
denoted as f l, l ∈ {0, 1, 2, 3, 4, 5, 6}. For better stability of the extended maximum
likelihood fit, the seven fractions f l are transformed into a set of six actual fit
parameters f̃k, k = 0...5 as follows:

f 0 = (1− f̃ 5)(1− f̃ 4)(1− f̃ 3)(1− f̃ 2)(1− f̃ 1)(1− f̃ 0)
f 1 = (1− f̃ 5)(1− f̃ 4)(1− f̃ 3)(1− f̃ 2)(1− f̃ 1)f̃ 0

f 2 = (1− f̃ 5)(1− f̃ 4)(1− f̃ 3)(1− f̃ 2)f̃ 1

f 3 = (1− f̃ 5)(1− f̃ 4)(1− f̃ 3)f̃ 2

f 4 = (1− f̃ 5)(1− f̃ 4)f̃ 3

f 5 = (1− f̃ 5)f̃ 4

f 6 = f̃
5
.

(7.1)

This satisfies by construction the required normalization constraint

6∑︂
l=0

f l = 1. (7.2)

The parameters f̃k are limited to the interval [0, 1] in the fitter. For the signal
(and peaking background), we introduce data/MC correction factors as additional
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parameters. These parameters are set to one for MC, determined from the fit to
the control mode, and fixed for the final fit in the neutral mode. Thus for the
signal, the transformation in Eq. 7.1 is obtained by the replacement

f̃
k → ηCF

k f̃
k (7.3)

where ηCF
k is a data/MC correction factor to the parameter f̃k and is set to vary

in a range of [0, 2] in the final fit to the control mode.
From a study with MC and real Mbc sideband data, it was concluded that two

qualitatively different distributions of r-bin fractions could be observed. Samples
that do not peak in ∆E exhibit a different r-bin distribution from the peaking
backgrounds and signal. Therefore two sets of parameters are introduced, f lsig
(and corresponding f̃ksig and ηCF

k , same for signal and peaking background), and
f lbkg (with corresponding fit parameters f̃kbkg) for continuum backgrounds; l ∈
{0, 1, 2, 3, 4, 5, 6}, k ∈ {0, 1, 2, 3, 4, 5}. The shape of continuum backgrounds in
∆t does not depend on the r-bin, but we need to parametrize the distribution to
be able to extract the data/MC correction factors for the signal from the final fit
to the control sample.

7.1.2 Proper-Time Resolution Function for B Mesons
A crucial part of extracting CP -violation parameters from the observables is the
decoupling of detector resolution effects, inclusive nature of the tag-side vertex
reconstruction, and kinematic approximation, as briefly mentioned in Sec. 4.6.2.
This is achieved by convolution of the physics distribution in Eq. 4.49 with the
proper-time resolution function for B mesons RBB(∆t).

The RBB(∆t) resolution function and its parameters are provided by the
tatami software package [61], which allows for fast analytical convolutions with
the physics distribution. The functional form of RBB(∆t) is studied on MC
simulations and parameters are extracted from high-statistics data samples and
prepared by the ICPV (Indirect CP violation) working group [62]. We are using
the latest available parameter set, denoted as 2010mdlh, same as for the final Belle
sin 2ϕ1 analysis [55]. A different set of parameters is used for MC simulation and
real data, as, for example, the vertex resolution is worse for data than for MC. The
parameters are also different for the SVD1 and SVD2 experiment configurations
(and some parameters are different for charged and neutral B mesons).

We do not determine any of the parameters, as those are mode-independent.
The next section will verify that this common resolution function describes our
MC signal sample well. Moreover, we could just copy-paste the codes used for
ηc → pp̄ analysis [40], already verified by the previous work. For brevity, we
are not going to explain all details and list all the parameters. Such a detailed
summary can be found in Ref. [40]. The tatami package also provides estimated
uncertainties for the parameters, which can be used for convenient systematic
studies.

Let us briefly explain what the RBB(∆t) function actually looks like. The
total resolution function is obtained (for a fixed set of its conditional variables)
as a convolution of four components:

RBB = Rdetrec ⊗Rdettag ⊗Rnp ⊗Rk. (7.4)
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The components follow from the three main effects affecting the proper-time
reconstruction:

• Detector resolution for the B vertex determination for the fully recon-
structed signal side Rdetrec(δz) and the tag side1 Rdettag(δz), where δz is
the difference between the true and reconstructed signal or tag-side vertex
z-position. This is a Gaussian for multi-track events and a sum of two
Gaussians for single-track events. The width is given by event-by-event
uncertainty on σrec,tag

z estimated from the vertex fit, scaled by parameters
determined from fits to data. For multi-track vertices, an additional lin-
ear dependence of the width scaling is introduced, which depends on the
reduced vertex fit quality h (for a vertex fit without the IP constraint),
taking into account correlations observed on MC samples.

• Non-primary tracks (mostly from the charm and K0
S decays) affecting the

tag-side vertex determination are taken into account in Rnp. Rnp(δztag) is a
sum of a delta function for prompt decays and an asymmetric double-sided
exponential distribution with an event-by-event lifetime. This lifetime is a
linear function of σrec,tag

z and the vertex quality h. Further differentiation
of parameters is made among events with single and multi-track vertices as
well as for events where a high momentum primary lepton is used at the
tag side.

• Kinematic approximation due to neglected CM frame movement of the B
mesons, which is reflected in Rk(∆t − ∆ttrue). This is again in the form
of exponential-like distributions, which are further functions of cos θCM

B and
the B meson (charged or neutral) mass.

A detailed explanation of the individual components and how their parameters
are obtained from MC and data can be found in Ref. [62].

Finally, let us note that some small fraction of outliers with a large ∆t is
not well described by a convolution with the resolution function and is instead
parametrized by a Gaussian distribution with width σol (∼ 40ps) and a fraction
fol (∼ 3% for multi-track and < 10−3 for single-track vertices). These outliers
are added to the total PDFs in ∆t for each component (signal and backgrounds)
without convolution with the physics distribution.

7.1.3 Signal PDF

The two-dimensional2 signal PDF in ∆t× q follows from a convolution of the ∆t
resolution function for B mesonsRBB and the true physics distribution, which has
to be modified to take into account the effect of imperfect flavor determination.
We model the distribution for each r-bin l separately (and fit simultaneously) to

1Those have the same definition, but different parameters
2The distribution is normalized over both variables ∆t and discrete q
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Charged mode Neutral mode
SVD 1 SVD 2 SVD 1 SVD 2

SCP

Fit result 0.007 ± 0.016 0.009 ± 0.013 0.709 ± 0.020 0.703 ± 0.015
Generated 0.0 0.6889

ACP

Fit result -0.009 ± 0.011 0.001 ± 0.009 -0.006 ± 0.014 0.022 ± 0.011
Generated 0.0 0.0

Table 7.1: 4D Fit results for CPV parameters using signal-only MC data. Gen-
erated and fitted values are shown.

reach the best sensitivity. For a given r-bin l, we define

Psig(∆t, q|l) = (1− fol)
e−|∆t|/τB

4τB

{︃
(1− q∆wl) +

q(1− 2wl)× [SCP sin(∆md∆t) +ACP cos(∆md∆t)]
}︃
⊗

RBB(∆t) + fol
1
2G(∆t; 0, σol),

(7.5)

where wl is mistag probability and ∆wl is the difference between wrong tag prob-
abilities in r-bin l, see also Table 5.1. In addition, a fraction of outliers fol, not
included in the resolution function, is added. The full 4D signal PDF reads

Psig(∆E,M,∆t, q, l) = Psig(∆E|M)Psig(M)Psig(∆t, q|l)Psig(l)

and its parameters are extracted using the MC signal samples.
The signal r-bin distributions Psig(l) = f l(f̃ksig, ηCF

k ) with k = 0..5 (see Eq. 7.1
and Eq. 7.3) for the signal (and peaking background, see below) component are
further modified by data/MC correction factors ηCF

k (fixed to one for the MC fits)
extracted from the control mode. The fit is also repeated for most signal shape
parameters determined in the 2D fit to confirm the consistency of the results.
The fitted parameters can be found in the summary Tables A.4 and A.5. The
projections of data and PDFs for the SVD2 experiment are shown in Fig. 7.1.
For the SVD1 experiment, the projections are shown in Fig. B.1.

This high-statistics signal-only fit also allows us to validate that correct CPV
parameters can be extracted. In Table 7.1, the fitted CPV parameter values
are compared to the values used for MC production. All results are statistically
consistent (within 2σ) with the generated values. In a similar way, we checked
fits to the B meson (charged and neutral) lifetimes with fixed CPV parameters
and observed no significant deviations from the true (generated) lifetimes.

7.1.4 Peaking Background PDF
The PDF for the peaking background in ∆t × q × l is exactly the same as for
the signal, but for the nominal fit result, the parameters SCP and ACP are set to
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Figure 7.1: Projections of the SVD2 experiment MC signal and fitted signal PDF
for the neutral (left) and control mode (right).
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zeros (no CP -violation), i.e.:

Ppb(∆t, q|l) = (1− fol)
e−|∆t|/τB

4τB

[︃
1− q∆wl

]︃
⊗RBB(∆t) + fol

1
2G(∆t; 0, σol).

(7.6)
In some specific studies, we will determine effective Sf , Af for the peaking back-
ground. To accommodate for this case in the model, we use the full PDF and
only set the CPV parameters to zero for the nominal fit. The full 4D PDF for
the peaking background

Ppb(∆E,M,∆t, q, l) = Ppb(∆E)Pbkg(M)P lpb(∆t, q, l)Psig(l).

is using identical r-bin distribution as the signal component (including data/MC
corrections from the control mode).

We have performed lifetime fits for the simulated MC signal, (peaking) generic
BB and rare-B samples. The extracted lifetimes and r-bin distributions are
consistent in all cases. This also means that the remaining small contamination
from long-lived D mesons (see Table 5.3 and 5.2) can be neglected.

7.1.5 Continuum Background PDF
For the purpose of the 4D fit, the total continuum (i.e. non-peaking) back-
ground in ∆E×M has to be further separated into a part stemming from non-B
decays produced via e+e− → qq, q = u, d, s, c denoted as Pqq(∆t, q) and mis-
reconstructed decays from bb̄, denoted as PBB(∆t, q). Note that the shapes of
these PDFs do not depend on q, and thus it is only present as a normalization fac-
tor 1/2 = Pbkg(q). These decays occur typically when particles are mismatched
between the tag and signal side of the reconstructed event. As a result, the effec-
tive lifetime for such decays is smaller than for the fully correctly reconstructed
B decays. We model this contribution using the standard resolution function for
B mesons RBB (as in the case of signal) but with a modified, effective lifetime
τeff :

PBB(∆t, q) = (1− fol)
e−|∆t|/τeff

4τeff
⊗RBB(∆t) + fol

1
2G(∆t; 0, σol), (7.7)

taking again into account the effect of outliers as for the signal.
We extract the only free parameter, τeff , from a simultaneous fit to the SVD1

and SVD2 generic MC BB samples (with signal and peaking contributions re-
moved). From the fit, we extracted the values

Charged: τeff = 1.152± 0.017 ps
Neutral: τeff = 1.111± 0.033 ps.

(7.8)

The fit projections are shown in Fig. 7.2, where we combined for the first time the
SVD1 and SVD2 experiments into a single figure. We will continue to use this
compact representation for all fits simultaneous in SVD1 and SVD2 experiments.

The model of the dominant part of the continuum background Pqq(∆t, q) is
composed of a distribution that describes a prompt component for events with
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Figure 7.2: Projections of the combined SVD1 and SVD2 experiment generic BB
MC (with peaking background contributions removed) and fitted PDFs for the
neutral (left) and control mode (right).
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a track coming directly from the interaction point (modeled as a delta func-
tion) with a fraction fδ, and a contribution of non-prompt decays (due to charm
mesons) with non-negligible effective lifetime τbkg. These distributions are con-
volved with a background resolution function, and a fraction for outliers is added:

Pqq(∆t, q) = 1
2(1− fol)

{︃
fδδ(∆t− µδ) + (1− fδ)

e−|∆t|/τbkg

2τbkg

}︃
⊗Rqq(∆t)

+1
2folG(∆t; 0, σol),

(7.9)

where Rqq is the background resolution function. In contrast to RBB, the back-
ground resolution function is specific to this analysis and has to be determined
from a fit to a relatively high-statistics Mbc sideband data sample. The resolution
function has different parameters for events with single and multi-track vertices
used for the B vertex reconstruction. In both cases, the resolution function is
parametrized as a sum of two Gaussians:

Rqq(∆t) = (1− f tail
bkg)G(∆t;µbkg, s

main
bkg σvtx) + f tail

bkgG(∆t;µbkg, s
tail
bkgs

main
bkg σvtx),

(7.10)
where f tail

bkg is the fraction of the wide tail component and smain
bkg and stail

bkg are scale
factors which multiply the event-dependent ∆t resolution error

σvtx = 1
(βγ)Υ(4S)c

√︂
(σsig

z )2 + (σtag
z )2, (7.11)

where σsig
z and σtag

z are the vertex position uncertainties (in z) of the reconstructed
signal and tag B meson vertex, respectively. The parameters f tail

bkg, µbkg, smain
bkg and

smain
bkg are determined separately for events with only single charged track (with

enough SVD hits) used for vertex reconstruction on either tag or signal side
(single-track vertices) and the rest (multi-track vertices).

The Mbc sideband data sample has been found sufficient to determine all
parameters of the continuum background. We extract the Pqq(∆t, q) shape pa-
rameters in the 4D fit together with the distribution of r-bin fractions for the
continuum background. As the same r-bin distribution is also used for PBB, we
have checked that generic BB MC reproduces the data distribution well. The
fitted parameters of Pqq, fixed for the final fits, can be found in the summary
Tables A.4 and A.5. The fit projections for the SVD2 experiment are shown in
Fig. 7.3. For the SVD1 experiment, the projections are shown in Fig. B.2.

While the ∆t shape parameters of Pqq are determined fully from the Mbc
sideband (almost free of B decays) and PBB from generic BB MC (with signal
and peaking background removed), the fraction (1−f∆t

qq ) of PBB still needs to be
estimated in the signal region, where both components are present in a significant
amount. The initial strategy was to estimate the fraction in the final fit. However,
some concerns arise when estimating fractions only from the ∆t component while
using event-dependent resolution. Therefore for the measured neutral mode, we
will estimate this fraction only from a fit to the M(K0

SK
+π−) sideband data

(with subtracted leaking signal) in Sec. 7.2.1. The control mode measurement is
performed using the former approach and we cross-check that both results are
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consistent. The full continuum background PDF is a sum of the two components

Pcb(∆E,M,∆t,q, l) =

Pcb(∆E)Pbkg(M)
(︃
f∆t
qq Pqq(∆t, q) + (1− f∆t

qq )PBB(∆t, q)
)︃
Pbkg(l),

(7.12)
which share their shape in ∆E ×M × q × l and only differ in the ∆t dimension.
The background model is completely flavor-symmetric, i.e., the shape does not
depend on q. The r-bin distribution Pbkg(l) is distinct from signal and depends
only on the parameters f̃kbkg, k = 0..5. Thus no correction factors are introduced,
and the shape is extracted directly from the fit to Mbc sideband data for the
neutral mode and from the final fit in the control mode.

7.1.6 Full Log-Likelihood Function
The CP -violation parameters are extracted along with the signal and background
yields and additional nuisance parameters (the exact configuration of fixed and
floating parameters differs for the control charged and the neutral mode) using
the following extended log-likelihood

lnL = −(Nsig +Nbkg) +
∑︂
i

ln
(︃
NsigPsig(∆Ei,M i,∆ti, qi, li)

+ f pb
sig
NsigPpb(∆Ei,M i,∆ti, qi, li)

+ (Nbkg − f pb
sig
Nsig)Pcb(∆Ei,M i,∆ti, qi, li)

)︃
(7.13)

either for each data set separately or, as in the final fit, simultaneously for the
SVD1 and SVD2 experiments with the only common parameters SCP , ACP , and
all input physics parameters from the PDG (τB±/τB0 is released only for validation
tests):

lnL = lnL(SCP ,ACP , ...; (∆Ei,M i,∆ti, qi, li) ∈ SVD1)
+ lnL(SCP ,ACP , ...; (∆Ei,M i,∆ti, qi, li) ∈ SVD2).

(7.14)

Every event is classified by the flavor tagger into one of seven r-bins l (which in-
fluence signal ∆t shape through wl and ∆wl). The fact that the r-bin distribution
is uneven and different for signal and (continuum and non-peaking) background
is reflected in the r-bin fraction parameters and the corresponding PDFs3. These
represent the probabilities of observing a particular r-bin in a signal/background
event and play a similar role as Punzi constraint terms on the likelihood [63].

The PDF is, in contrast to the 2D case, a function of several (conditional)
event-dependent variables besides the explicitly stated five (∆E,M,∆t, q, l). The
shape ∆t resolution functions depend on event-dependent candidate properties.
For RBB, the actual parametrization depends on event categorization based on
the following flags:

• whether only a single charged track or multiple tracks were used for Btag
or Bsig vertex reconstruction (single or multi-track flag),

3Which can be represented as histograms with seven bins.
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Figure 7.3: Projections of the SVD2 experiment Mbc sideband data and fitted
continuum PDF for the signal (left) and control mode (right).
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• whether a lepton was used for the Btag vertex reconstruction (lepton flag),

and on multiple properties which are the output of the reconstruction procedure,
namely:

• The vertex reconstruction error in z for signal and tag B meson, σtag
z and

σsig
z

• Reconstructed vertex number goodness-of-fit h for signal and tag side.

• Kinematic properties of the B meson cos θCM
B , pCM

B , and ECM
B needed for

parametrization of the kinematic approximation part of the resolution func-
tion. All these inputs are also event-dependent, depending on the properties
of the reconstructed Bsig candidate and the calibrated beam energy.

For Rqq only σtag
z and σsig

z and single/multi-track flag are needed.
The distributions of these variables are not part of the data model. This has

some potential drawbacks related to a so-called Punzi effect [63] if the distri-
butions of these variables differ for signal and background events, see also Sec
7.3.5.

7.2 Control Mode Measurement
The control sample is used not only to check the consistency of the fit on a very
similar decay but also to determine data/MC correction factors to the signal
r-bin fractions and to the mean and width of the ∆E signal shape, later fixed
in the final fit to neutral mode. Many parameters of the full 4D fit have to be
estimated from MC studies or fits to special data samples. The parameters fixed
in the final control mode fit are:

• Signal shape parameters in ∆E×M determined from a fit to the MC signal
sample. The mass and width of ηc are fixed to the most up-to-date PDG
values, as well as parameters for B meson mixing and B lifetimes (only
released for validity check).

• Effective lifetime τeff for the non-peaking BB background (included in our
continuum component) is extracted from the fit of the generic BB MC
sample (non-peaking, with removed signal).

• Peaking background mean and width extracted from the M(K0
SK

+π−) side-
band.

• Continuum background ∆t shape parameters determined from theMbc side-
band.

The parameters determined in the final control mode fit, different for the SVD1
and SVD2 experiments are:

• Signal and background yields, and the fraction of peaking background.

• Data/MC correction factors for signal r-bin fractions and ∆E shape.
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• Continuum background ∆E ×M shape parameters.

• Fraction f∆t
qq .

Finally, the only floating parameters common to SVD1 and SVD2 are the physics
parameters SCP and ACP . The results of separate fits have also been compared to
the simultaneous fit results. All determined parameters are entirely consistent for
both fit configurations. In addition, the signal and background yields and peaking
background fractions are fully4 consistent with the result of the 2D fit. This is an
important cross-check validating the model in the ∆t and flavor dimensions. For
the control sample, the fit results are shown together with other model parameters
in the summary Table A.4. The observed number of events is 358±30 and 1990±
70 for the SVD1 and SVD2 experiments, respectively. The physics parameters of
interest

SCP = −0.03± 0.08
ACP = −0.05± 0.06
B = (2.49± 0.09)× 10−5

(7.15)

are consistent with the SM predictions and the PDG-based estimate for B (B =
(2.34 ± 0.43) × 10−5, respective B = (2.7 ± 0.6) × 10−5, see Sec. 6.2.3) within
statistical errors.

The fit and data projections are shown in Fig. 7.4, where SVD1 and SVD2
experiment data and models are combined. The distribution of r-bins is shown
in Fig. 7.5. We project only a limited, signal-enhanced region, defined by the
following selections

− 40 MeV < ∆E < 40 MeV
2935 MeV/c2 < M(K0

SK
+π−) < 3035 MeV/c2

|∆t| < 7ps.
(7.16)

For projections in the full signal region, see Fig. C.1. After projecting the signal-
enhanced region, the estimated background PDF is subtracted from the data
histograms for each flavor (charge) of the tagged Btag. The upper plot in Fig. 7.6
compares these background-subtracted distributions to the signal PDF projec-
tion. The bottom plot shows the raw asymmetry directly, without any back-
ground subtractions, formed as (N+ − N−)/(N+ + N−), where the N+,− is the
number of observed events in each flavor category, with Poisson errors. The same
asymmetry operation is applied to the histograms accumulated from the total
model PDFs.

7.2.1 Extracting f∆t
qq from M(K0

SK
+π−) Sideband

In the nominal control sample measurement, we have determined the fraction
of the (mis-reconstructed, non-peaking) BB background to the total continuum
background, defined as 1 − f∆t

qq . This fraction is determined separately for the
SVD1 and SVD2 experiment in the final fit (see Table A.4) and using only the

4Signal and background yields are almost identical. Some variations can be observed in
the estimated peaking background fractions (to signal), but only in the SVD1 experiment with
much less data. Nevertheless ,the values agree well within 1σ.
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Figure 7.4: Control mode projections in ∆E (a), M(K0
SK

+π−) (b) and proper
time difference ∆t for B+ (c) and B−-tagged (d) events (q is the flavor of Btag)
in the signal-enhanced region (the distributions in ∆t are for events in the dotted
window in ∆E andM). Curves show the fit model and its components, and points
represent the data. SVD1 and SVD2 experiment data and model are combined.
Continuum background component includes non-peaking BB background.
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Figure 7.5: Control mode projections of r-bin distributions in the signal-enhanced
region. Lines show the fit model and its components, and points represent the
data. SVD1 and SVD2 experiment data and model are combined. Continuum
background component includes non-peaking BB background. Note that the
pulls are small because the r-bin fraction parameters (and data/MC correction
factors) are floating.
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Figure 7.6: Control mode projections of background-subtracted distributions of
the estimated number of signal B+ and B−-tagged events (q is the flavor of Btag)
(top) and raw asymmetry (N+ −N−)/(N+ +N−) of the number of total events
(bottom). The distribution is integrated over all r-bins. Only the signal-enhanced
region is projected. Curves show the fit model; points represent the data. SVD1
and SVD2 experiment data and model are combined.
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information in the ∆t dimension. The extraction of this parameter is possible due
to the effective lifetime τeff of the BB component (about 1.11 ps), which is larger
than the lifetime of the remaining continuum background from u, d, s, c decays
(determined from Mbc sideband with lifetime dominated by charm contributions).
However, the resolution functions in the ∆t dimension depend on event-dependent
variables, which are not included in the data model. This could cause biases due
to the Punzi effect [63]. Therefore for the final neutral mode measurement, we
will fix this fraction.

To determine this fraction in the neutral mode prior to un-blinding, we can
extract f∆t

qq using the M(K0
SK

+π−) sideband, this time in the full 4D fit. We need
to fix signal CPV parameters to some values to do so. We check the determined
fraction with several assumed (extremal, zero, or expected) values for the signal
CPV. The floating parameters are the fraction of peaking background to signal,
background yield, continuum shape parameters, and f∆t

qq . All other parameters
are set to their final values prepared for the unblinded fit, including data/MC
correction factors determined from the nominal fit to the control sample. When
varying the assumed signal CP violation, we observe only small, sub-percent
variations of the estimates for f∆t

qq . Thus we will use the values determined when
SCP = 0 and ACP = 0, which read:

f∆t
qq (SVD1 neutral) = 0.834± 0.114
f∆t
qq (SVD2 neutral) = 0.803± 0.030

(7.17)

To confirm the method of f∆t
qq extraction is reasonable, we use the control mode

results and fix all parameters except for a fraction of peaking background to signal,
background yield, continuum shape parameters, and f∆t

qq . We then perform the
full 4D fit (with nominal CPV parameters at zero) in the M(K0

SK
+π−) sideband

and obtain
f∆t
qq (SVD1 charged) = 0.843± 0.039
f∆t
qq (SVD2 charged) = 0.820± 0.012

(7.18)

which are statistically consistent with the results in the signal window in Ta-
ble A.4.

7.3 Validity Studies and Consistency Checks
After confirmation from the control channel, we continued with cross-checks of the
analysis and data model before moving to the signal channel. Next to ensemble
tests and specialized fits, dedicated studies are performed to evaluate specific
sources of systematic uncertainties.

7.3.1 Control Mode Lifetime Fit
The lifetime fit can serve as a validation of the resolution function. We perform
the final fit in the charged mode with SCP , ACP fixed to zero, and τB± (common
to SVD1 and SVD2 experiment) floating. The resulting

τB± = (1.696± 0.045) ps (7.19)
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is consistent with the world average (1.641±0.008) ps within statistical error (1.2σ
away). Performing the same fit separately for the SVD1 and SVD2 experiments
yields

SVD1 : τB± = (1.737± 0.115) ps
SVD2 : τB± = (1.688± 0.049) ps.

(7.20)

7.3.2 Systematic Study of CScut for Control Mode
For the control mode, we vary the continuum suppression cut on the likelihood
ratio. The estimations for the CP -violating parameters as a function of this cut
were already shown in Fig. 5.11. In fact, only after this study the CScut was finally
fixed. The estimated values for the CPV parameters are stable within a wide
range of CScut. At tight cut values, larger oscillations are caused by significant
variations of the statistics. The statistical errors, shown in red, exhibit a shallow
minimum around the loosest reasonable value of the cut of ∼0.2. This shows that
maximizing signal efficiency is the primary goal of reducing statistical error on
the parameters of interest in our fit model. Moreover, the background parameter
extraction uses the same cut (not to generate additional systematics). The loose
cut value results in a higher precision of the background parameters. Finally, the
loose cut means that signal yield is almost unaffected by small changes in the
cut value, whereas a tight cut may generate additional systematic effects (due to
rapidly changing signal yield for a slightly varied cut).

7.3.3 CP Violation in M(K0
SK

+π−) Sideband
As discussed in section 5.4, a fraction of the total peaking background, stemming
from b→ c decays, is expected to be CP -violating and thus can bias our measure-
ment. From the MC studies, the estimated fraction of b→ c backgrounds to the
total peaking background (b→ c+b→ u, d, s) is about 14% for the neutral mode.
To account for uncertainties in MC background composition, we should increase
this fraction by a 50% safety factor to 21%. Even with such a safety factor, it is
desirable to validate our assumptions on this limited amount of CP -violation ob-
served in the peaking background on real data, considering possible effects from
both b → c and b → u, d, s, without assumptions that b → u, d, s background is
fully CP -conserving. To do so, we have slightly modified the fit model and made
the CPV parameters Sf and Af of a fraction fCP of the peaking background
floating. We then performed the full fit in the M(K0

SK
+π−) sideband. For the

fit to be stable, one must fix the CPV parameters of the signal, which is leaking
to the sideband. We fix ACP to zero and perform the fit in steps of fixed values
for assumed SCP for the signal and the CP -violating peaking background fraction
fCP .

The result of this study can be seen in Fig. 7.7. In the bottom two and
a half rows corresponding to fCP ≤ 0.2, the fitter is no anymore stable, but
we can do some estimates based on its consistent behavior in the remaining
region. The second row shows how the estimated Sf of the peaking background
is compensating the assumed signal SCP as expected. Assuming all the peaking
background is CP -violating with some effective Sf and Af , the CP -violation
is consistent with zero. With a lower fCP , the estimated deviation from CP -
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Figure 7.7: Study of CP violation in the M(K0
SK

+π−) sideband for the neutral
mode. The effective CP -violation parameters Af (top row) and Sf (bottom row)
are determined by the full 4D fit in the M(K0

SK
+π−) sideband as a function of

assumed signal SCP and fraction of the CP -violating peaking background to the
total peaking background. The determined values are shown in the left column,
with their statistical error estimates in the right column.

conserving values gets larger, but it nowhere reaches the extremal values and
does not get statistically significant.

Therefore, also the data suggest that even if significant CP -violation contri-
butions are present in the peaking background, these should be sufficiently small.
Fixing Sf and Af to -1 and +1 for about 21% of the peaking background, as
suggested by the MC study, then would approximately correspond (at most) to
the fitter estimates extrapolated to the region of fCP = 0.2.

If the SM expectation (SCP = 0.7) is assumed for the signal, we can give a more
concrete estimate. The largest predicted CP -violation occurs for fCP = 0.4. For
lower values of fCP , the fit is no anymore able to reliably predict CPV parameters
of the peaking background. For this value, one can extract the effective CP -
violation of the fraction fCP of the peaking background as

Sf,fCP =0.4 = −0.80± 0.66
Af,fCP =0.4 = +0.28± 0.46

(7.21)

If we assume all peaking background is CP -violating, the effective values are

Sf,fCP =1 = −0.32± 0.28
Af,fCP =1 = +0.11± 0.19

(7.22)
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We can see that a negative value, slightly larger than the estimated statistical
error, is extracted for Sf in both cases. The estimated Af is consistent with zero,
and the statistical error is almost twice larger than the estimated parameter value.
We take the estimated value or the error, whatever is larger in absolute value,
to be conservative. We will then use these estimates to sample the CP -violating
peaking background for a toy MC study to estimate the expected systematic
effect on the measured CPV parameters of the signal.

7.3.4 Ensemble Tests with Toy MC
An important family of validations of the fitter is based on the generation of
testing datasets and performing the final fit to check its statistical properties (fit
biases, error estimation, and stability of the fit). These datasets can be generated
directly using the data model and PDFs for backgrounds and the signal or sam-
pled from the results of the full GSIM simulation. An important remark is that
our data model does not contain all information to generate the data samples. It
is missing the prescription on how to sample event-dependent variables needed to
parametrize the ∆t resolution functions for signal and background. These vari-
ables need to be sampled from distributions observed in simulation or real data.
The statistics generated for each pseudo-experiment follow a Poisson distribution
with a mean equal to the expected signal and background yields from the 2D
data fit. Also all other fixed parameters are set to their expected values.

PDF-based Ensemble Tests

The PDF-based ensemble tests serve as a consistency check of the fit procedure,
and thus no significant systematics is expected if the fitter works correctly. One
of the main goals is to confirm that the fit can correctly predict CP -violation
parameters in the presence of other floating nuisance parameters, from signal and
background yields to continuum background shape. In particular, the fraction of
the peaking background to signal is expected to cause statistical issues, especially
for the SVD1 experiment, where the peaking background yield is very small
(about 20 events).

We have generated 1000 pseudo-experiments from the full 4D data model. The
distributions of the fitted parameter values, their pulls, and estimated statistical
errors are shown in Fig. 7.8. The pulls are defined as the difference between the
true value used for generation and the determined parameter value divided by
the estimated error. As can be seen from the pull distributions, no statistically
significant biases are observed, and the widths are consistent with unity. Also, the
estimated errors agree very well with the variance of the determined parameter
values. The only exception is the fraction of peaking background to signal with
about -0.14 σ bias. For the SVD1 experiment, this parameter is consistent with
being both zero and one, given its large error. The fitter is hitting the preset
parameter limits in some cases, and the distributions are non-Gaussian. These
effects arise due to the small peaking background yield in the SVD1 experiment.
But as can be seen, they do not cause any issues in the determination of the
parameters of interest (CP -violation parameters and signal yields) and thus are
acceptable. In addition, with these parameters floating, the correlations to the
parameters of interest are kept in the solution and should properly inflate their
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Figure 7.8: Ensemble test with PDF-based toys. The distributions of the es-
timated parameter values, their pulls, and estimated errors are shown for all
floating parameters. First row: SCP and ACP . The following rows show param-
eters different for SVD1 (left three columns) and SVD2 experiment (right three
columns)—signal yields, background yields, the fraction of peaking background
to signal, and linear slopes of the continuum background in ∆E and M . Each
distribution is fitted with a single Gaussian in the displayed range, and its mean
and sigma are reported. For estimated parameter values, the true generated value
is shown.

statistical errors. We will consider biases from this study as fit bias. Where the
bias is smaller than its statistical error, this error will be taken as fit bias instead.
The corresponding values are 0.008 and 0.004 fo SCP and ACP , respectively. As
the biases in the GSIM-based toys (see below) are larger and should already
contain these simple fit biases, only the larger estimates will be used for the final
result to avoid double-counting of the systematic uncertainties.

Moreover, as the control mode is used to extract the data/MC calibration
factors for the signal mode, we have also checked the fitter behavior in PDF-
based ensemble tests. However, as there is about three times more data and
many more floating parameters, the control mode fit is much slower, and thus
we generated only 100 pseudo-experiments. We have observed no statistically
significant biases or non-unit pulls for any of the floating parameters.
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Fit Linearity

Fit linearity shows whether the model can reliably estimate the parameters of
interest in their full possible range. PDF-based toy MC is used for this study
as the generation of new signal MC data samples with different CPV parameters
would be too time-consuming. The method used to evaluate the nominal fit bias
in the previous section is used to estimate the bias for each set of 1000 pseudo-
experiments. From the mean value of the Gaussian fit, the true (generated)
values are subtracted. As an error, the estimated fit error of the mean (from 1000
pseudo-experiments) is used. This procedure is repeated for a range of different
generated values for SCP and ACP . Significant deviations from a straight line
with an intercept at zero indicate deviations from fit linearity.

Fig. 7.9 shows the fit linearity for varied SCP . A slight trend can be observed
in the left plot (but not statistically significant), while the right plot for ACP
(generated in all cases using zero value) shows no visible slope or deviation from
an intercept at zero. The small fit bias observed in the nominal fit bias study
is clearly present in the figures for SCP , but no additional systematics is derived
from this study as the nominal fit bias (0.008) already includes this effect.
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Figure 7.9: Linearity test for CPV parameters when SCP is varied.

Fig. 7.10 shows the fit linearity for varied ACP . The generated SCP was set
to 0.687. No statistically significant deviations from fit linearity are observed,
and the slight fit biases are consistent with the nominal (PDF-based) fit bias
study (0.004). In conclusion, the observed fit linearity is good, and possible
corresponding systematic errors are already taken into account by the nominal
fit bias study.
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Figure 7.10: Linearity test for CPV parameters when ACP is varied.
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GSIM-based Ensemble Tests

The GSIM-based ensemble tests serve as a realistic test of the fitter. While the
backgrounds are sampled from their PDFs as in the previous PDF-based test, the
signal events are sampled directly from the large simulated signal MC sample5.
The event-based variables for the peaking background are sampled from the MC
signal (as the signal itself), which is the most realistic option.

Therefore GSIM-based tests check for systematic effects stemming from the
approximation of the true (at least in MC) signal shape in ∆E, M and the true ∆t
resolution function. In ∆E ×M , we have, for example, only an empirical model
for the signal correlation, which is not perfect and could result in overestimation
or underestimation of the true signal yield. The ∆t resolution function, being a
mix of empirical and analytical components and corrections, is based on a number
of approximations. The impact of these approximations can be studied by fitting
large-statistics MC samples (see Sec. 7.1.3 for signal-only fits) or with GSIM-
based ensemble tests, which also validate the effects of the backgrounds on the
full fit.

We have again generated 1000 pseudo-experiments and performed the same
study as for PDF-based ensemble tests. The results are shown in Fig. 7.11. As
expected, the observed biases are larger and statistically significant for CPV pa-
rameters and signal yields with. We attribute these biases to approximations
in the signal and resolution function model (and partially to event-dependent
variables, discussed in more detail in Sec. 7.3.5). The most significant bias is
observed for SCP , about +0.25 σ. Also, for ACP a smaller +0.14 σ bias is ob-
served. For further discussion, the absolute values of the biases, +0.0341 for SCP
and +0.016 for ACP are more relevant as the predicted errors from the GSIM
simulation are smaller than expected for real data due to the resolution function
being too optimistic in MC.

These CPV parameter biases might be consistent with those observed in the
fit to the large signal simulated signal sample, see Table 7.1. The statistical errors
are still large for a conclusive result, but a general trend for a slight bias towards
positive values of the CPV parameters seems to be observed consistently. These
biases will be taken as systematic errors (we do not make any corrections), but
we will first try to decouple the Punzi effect in the next section.

7.3.5 Systematics due to Punzi Effect
We believe the Punzi effect [63] is one of the main arguments against the simul-
taneous determination of signal and background yields together with the CP -
violation parameters in the presence of event-dependent resolution function(s).
If the distribution of event-dependent variables entering the likelihood is signif-
icantly different for signal and background, biases might be introduced. This
would be truly dangerous if only the ∆t dimension would be used to extract both
yields and CP -violation parameters. However, in our case, the yields are con-
strained by the additional dimensions. This should, to some degree, reduce the
possible bias due to the Punzi effect. For this hypothesis, the comparison of the

5While the same event is allowed to be taken multiple times, this is very unlikely due to the
high statistics of the signal MC sample.
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Figure 7.11: Ensemble test with GSIM-based toys. The distributions of the es-
timated parameter values, their pulls, and estimated errors are shown for all
floating parameters. First row: SCP and ACP . The following rows show param-
eters different for SVD1 (left three columns) and SVD2 experiment (right three
columns)—signal yields, background yields, the fraction of peaking background
to signal, and linear slopes of the continuum background in ∆E and M . Each
distribution is fitted with a single Gaussian in the displayed range, and its mean
and sigma are reported. For estimated parameter values, the true generated value
is shown.

control mode fit in 2D versus 4D served as a cross-check. The differences in the
yields and peaking background fractions when the time dimension is included are
much smaller than their statistical errors.

The proper way to treat the Punzi effect is to separately model the event-
dependent variables’ distributions for the signal and background components.
The likelihood function is then extended, treating original signal and background
PDFs as conditional PDFs depending on the event variables, multiplied by the
proper PDFs of these variables. However, there is a considerable number of
such variables for the Belle resolution function. Even if included in the model,
there will be uncertainties in the true distribution of the event variables in the
data. Therefore we would anyway need to evaluate systematics stemming from
uncertainties in the proper model of the Punzi constraint terms. In addition, our
full fit is already quite time-consuming, and the addition of so many additional
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PDFs to be evaluated for each event would make it too slow.
Fortunately, ensemble tests allow quantifying the effect of neglecting the Punzi

terms in the likelihood. These terms will factorize from the likelihood if their
PDFs are the same for all signal and background components. We can generate
an artificial toy dataset, where we sample all event variables from the same source.
The technically easiest option, which also seems the most realistic, is to use GSIM-
based toy MC, where event variables for all backgrounds are sampled from the
MC signal. We can then compare the bias in the CP -violation parameters to the
nominal case to estimate the systematic error due to the Punzi effect.
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Figure 7.12: Ensemble test with artificial GSIM-based toys with all event-based
variables sampled from signal MC to evaluate the Punzi effect. The distributions
of the estimated parameter values, their pulls, and estimated errors are shown
for all floating parameters. First row: SCP and ACP . The following rows show
parameters different for SVD1 (left three columns) and SVD2 experiment (right
three columns)—signal yields, background yields, the fraction of peaking back-
ground to signal, and linear slopes of the continuum background in ∆E and M .
Each distribution is fitted with a single Gaussian in the displayed range, and its
mean and sigma are reported. For estimated parameter values, the true generated
value is shown.

The results of the ensemble test with this artificial dataset are shown in
Fig. 7.12. As can be seen, the SCP bias of +0.020±0.005 is significantly smaller
than +0.034±0.005 in our nominal fit case. The bias on ACP gets slightly larger
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by +0.004±0.004, but not significantly. This, together with a set of smaller
tests, suggests that the observed biases are to a large degree related to the event-
dependent resolution function and neglected distributions of the event-dependent
variables in our data model (with significant backgrounds). The candidates for
the most problematic ones are likely σz or cos θB. We initially suspected these
biases could be reduced by limiting the amount of the (dominant) continuum
background. This was not confirmed on toy simulations—the bias is almost un-
changed when the toy MC for the neutral mode is repeated with updated signal
and background yields corresponding to CScut equal to 0.5 or 0.8 (determined
from a special 2D fit of the neutral mode). In addition, at tighter cut values,
the estimated statistical error grows considerably (to more than 0.2 for SCP for
CScut = 0.8) due to the reduced signal efficiency. Therefore we will consider the
difference (in quadrature) of the bias from the nominal GSIM result and this
special dataset as another source of systematic error due to the Punzi effect. The
quadratic sum of the bias due to the Punzi effect and the ‘pure’ fit bias equals
the maximal observed bias in our studies (in the nominal GSIM-toys).

7.3.6 Systematics due to CP -Violating
Peaking Background

In Sections 5.4 and 7.3.3, we have estimated the possible amount of CP -violating
contributions to the peaking background. This estimate can be done in different
ways, yielding slightly different results. Our small study on data suggests set-
ting at most 30% of the peaking background as potentially CP -violating (with
extremal values) or to use the CP -violation parameters (or their errors) and the
fraction extracted from the scan of the M(K0

SK
+π−) sideband.

Similar to study performed in Section 7.3.3, we modify the PDF for the peak-
ing background such that a fraction fCP of it is CP -violating with parameters
Sf , Af . We test the extremal values {−1,+1}. We also test two values for fCP :
21% (MC estimate with safety limit) and 30% (maximum reasonable value, which
seems rejected by data). In addition, the two sets of values extracted from the
sideband data in Eqs. 7.21 and 7.22 are included in our study. We then generate
1000 pseudo-experiments using GSIM-based toys and fit them with the nominal
fit model, which assumes fCP = 0 (all peaking background CP -conserving).

The results are shown in Fig. 7.13. The impact of CP -violation in the peak-
ing background is more threatening for SCP , where the maximal bias of 0.046
is reached for the extremal MC estimates. The largest deviation of 0.050 is ob-
served for the configuration fCP = 0.4,Af = 0.28,Sf = −0.8, extracted from
the sideband data. For ACP , the largest observed difference to the nominal fit
model (GSIM) bias is 0.019 (from MC estimates). We will use the largest of the
observed biases as the corresponding systematics. These values are the expected
dominant systematic errors of our measurement for SCP .

7.3.7 Validation with Randomized Flavor

Before performing the final CP fit in the neutral mode, an additional cross-check
can be done by randomization of the determined neutral Btag meson flavor. This
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Figure 7.13: Systematics due to CP -violating background. The nominal result
of the GSIM-based toys is shown in black. Various values for a fraction of the
CP -violating background fCP and its effective CP -violation parameters Sf and
Af are used to generate special toy datasets, fitted with the nominal fit model.

allows us to extract B0 lifetime τB0 with fixed ACP = 0, SCP = 0. We get

τB0 = (1.577± 0.079) ps, (7.23)

which is in agreement with the world average. In addition, with a fixed
τB0 = 1.519 ps, we get the values

SCP = −0.277± 0.171
ACP = −0.050± 0.117,

(7.24)

which are statistically consistent with zero, as expected for the fit with random-
ized flavor information.

We have also checked the yields and other parameters are entirely consistent
(within ≪ 1σ) with the predictions of the 2D fit. The only slight exception
is the peaking background yield for the SVD1 experiment, which is, however,
still compatible within 1σ. These results (except for CPV parameters) differ
only negligibly from the final estimates after un-blinding, discussed in the next
chapter.
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CHAPTER 8

CP -Violation Measurement
In this chapter, we present the measurement of the CP -violation parameters in
B0 → ηcK

0
S decays followed by ηc → K0

SK
+π− using the full Belle dataset of

772× 106 of BB pairs and the roughly 600 expected signal events.
We have followed the standard Belle procedures for blind analysis. All cross-

checks, validations, consistency checks, and control mode fits have been performed
before the CP fit in the signal mode. The last small modification to the analysis
was done after validation with randomized flavor information, where we replaced
the width of the peaking background Gaussian in ∆E by its MC estimate. In
addition, all the systematic uncertainties have also been evaluated before the final
fit, using partial blinding of the final values. In this approach, we added unknown
offsets in the range of the expected statistical error to ACP and SCP to be able to
compute differences due to various systematic sources without knowing the exact
result. This strategy was chosen to avoid any surprises. No modifications have
been done after un-blinding1.

After all the above checks passed, the review committee agreed to un-blind
the analysis. Based on ensemble and random flavor studies for the signal mode,
the expected statistical significance should be comparable to BaBar, although
very slightly larger for SCP . We will return to the reasoning behind the larger
uncertainty in Chapter 9.

In this chapter, we will discuss the result, the sources of systematic uncertain-
ties, and summarize the outcome in terms of its statistical significance.

8.1 Fit Results

In contrast to the control mode, the limited statistics for our signal mode force
us to fix additional parameters, in particular

• the fraction f∆t
qq , extracted from theM(K0

SK
+π−) sideband data, see Sec. 7.2.1,

• the background r-bin fractions f̃ ibkg, i = 0 . . . 5, extracted from the Mbc
sideband data, see Sec. 7.1.5, and

1There is only one small exception: we have found an error in the peaking background width
used for the control mode in the SVD1 experiment and a small bug in the parametrization of the
mis-reconstructed signal in the 4D model. As the control mode is used to set calibration factors
for the neutral mode, all relevant fits have been repeated. The SVD1 experiment contains a
minor part of the entire dataset, and the effect of correcting the error resulted in a change in
the SVD1 signal yield by just one single event. Effects on CPV parameters of interest were
only on the fourth significant digit.
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• the calibration factors for ηc signal shape in ∆E as well as signal r-bin
calibration factors η̃CF

i , i = 0 . . . 5, extracted from the final fit to the control
mode, see Sec. 7.2.

This leaves twelve floating parameters for the final fit: five (times two) specific to
each experiment (SVD1 and SVD2) configuration (Nsig, Nbkg, f pb

sig
and background

slopes c∆E
1 and cM1 ) and two common physics parameters SCP and ACP . The

estimated values of the floating fit parameters in the final fit are shown in the
summary Table A.5. The observed number of events is 68 ± 14 and 548 ± 37
for the SVD1 and SVD2 experiments, respectively. We also evaluate asymmetric
MINOS errors for the CPV parameters, which yields SCP = 0.588+0.163

−0.168 and ACP =
0.161+0.116

−0.117. The standard practice at Belle is to report asymmetric errors if they
differ by more than 10%. If this is not the case, only the larger uncertainty is
reported as symmetric. Following this practice, the result with statistical errors
only is

SCP = 0.588± 0.168
ACP = 0.161± 0.117.

(8.1)

We also determine the branching fraction as

B =
N1

sig/ϵ1 +N2
sig/ϵ2

NBB

, (8.2)

where the MC signal efficiencies ϵi are corrected by factors accounting for data/MC
difference in theK0

S reconstruction and detection efficiency, pion ID efficiency, and
kaon ID efficiency (see Sec. 8.3). The result is

B = (9.79± 0.64)× 10−6 (8.3)

concerning statistical uncertainties only.
We prefer to determine the branching fraction in this final simultaneous fit,

albeit this means additional systematic sources will appear. In fact, the simul-
taneous fit predicts slightly smaller statistical errors as additional information
is provided by the time and flavor dimensions. Moreover, the estimated signal
yields from the 2D and the 4D fit are almost identical. However, from the study
of interference with the non-resonant peaking background, we already know that
the total uncertainty will be entirely dominated by the interference (23% for sig-
nal yield in neutral mode as estimated in Sec. 6.3.3), which we will quote in our
final result separately.

The fit and data projections are shown in Fig. 8.1, where SVD1 and SVD2
experiment data and models are combined. The distributions of r-bins are shown
in Fig. 8.2. We project only a limited, signal-enhanced region, defined already in
Eq. 7.16. For projections in the full signal region, see Fig. C.2.

After this projection, the estimated background PDF is subtracted from the
data histograms for each flavor (q) of the tagged Btag. The upper plot in Fig. 8.3
compares these background-subtracted distributions to the signal PDF projec-
tion. The bottom plot shows the raw asymmetry directly, without any back-
ground subtractions, formed as (N+ − N−)/(N+ + N−), where the N+,− is the
number of observed events in each flavor category, with Poisson errors. The same
asymmetry operation is applied to the histograms accumulated from the total
model PDFs.
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Figure 8.1: Projections in ∆E (a), M(K0
SK

+π−) (b) and proper time difference
∆t for B0 (c) and B

0-tagged (d) events in the signal-enhanced region (the dis-
tributions in ∆t are for events in the dotted window in ∆E and M). Curves
show the fit model and its components, and points represent the data. SVD1
and SVD2 experiment data and model are combined. Continuum background
component includes non-peaking BB background.
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Figure 8.2: Projections of r-bin distributions in the signal-enhanced region. Lines
show the fit model and its components, and points represent the data. SVD1
and SVD2 experiment data and model are combined. Continuum background
component includes non-peaking BB background.

8.2 Consistency Checks
The review committee of the analysis proposed two additional specific validations.
First, we check that background suppression performance, optimized on contin-
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Figure 8.3: Projections of background-subtracted distributions of the estimated
number of signal B0 and B

0-tagged events (top) and raw asymmetry (N+ −
N−)/(N+ + N−) of the number of total events (bottom). The distribution is
integrated over all r-bins. Only the signal-enhanced region is projected. Curves
show the fit model; points represent the data. SVD1 and SVD2 experiment data
and model are combined.

uum qq MC, is compatible with the data. For this test, 60 fb−1 of off-resonance
data are used and reconstructed with CScut = 0 and CScut = 0.2. From the
number of passing events without and with the cut, the obtained background
rejection is (70 ± 8)% and (63 ± 4)% for SVD1 and SVD2, respectively. These
values seem slightly lower but statistically compatible with the MC background
rejection rate of 74.9% and 70.0% for SVD1 and SVD2, respectively.

Second, we test for CPV effects stemming from interference with the non-
resonant background. Around the ηc resonance peak, the imaginary part (phase)
of the wave function changes as a function of the ηc resonant mass. This phase
difference can act similarly to the strong phase and reveal mass-dependent CP -
asymmetry. Based on the recommendation from the review committee, this effect
is studied by redefinition of the CPV parameters as follows:

• We modify SCP → 0.59 − ∆S for M < mηc and SCP → 0.59 + ∆S for
M > mηc and obtain ∆S = −0.14 ± 0.16 (and A = 0.17 ± 0.12). The
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hard-coded value (0.59) is the nominal fit result.

• We modify SCP → 0.7−∆S for M < mηc and SCP → 0.7+∆S for M > mηc

and obtain ∆S = −0.13± 0.15 (and A = 0.16± 0.12). Here world average
(0.699) is used for the central (average) value.

• We modify ACP → −∆A for M < mηc and ACP → +∆A for M > mηc and
obtain ∆A = 0.04± 0.12 (and S = 0.60± 0.17). Here SM expectation (0.)
is used for the central (average) value.

• We modify ACP → 0.16 − ∆A for M < mηc and ACP → 0.16 + ∆A for
M > mηc and obtain ∆A = 0.03 ± 0.12 (and S = 0.59 ± 0.17). The
hard-coded value (0.16) is the nominal fit result.

Thus no statistically significant effect is observed in any of the cases.
Moreover, we again verified the B0 lifetime estimation (with CPV parameters

left floating) and obtained τB0 = (1.576 ± 0.079) ps, consistent with the world
average.

8.3 Systematic Uncertainties
This section gives an overview of all systematic uncertainties and some additional
systematic cross-checks. While statistical errors dominate our measurements, the
systematic uncertainties need to be evaluated carefully, primarily as we use quite
a different fitting strategy than previous studies. We use the simultaneous de-
termination of yields and CPV parameters in a multi-dimensional fit also to
determine the branching fraction. This will generate some additional systematic
errors with respect to a pure 2D fit. However, the full 4D fit retrieves a slightly
smaller statistical error for the yields, and thus we prefer it. In contrast to previ-
ous analyses, there are no systematic errors associated to signal and background
yields, as these are floating parameters, and the errors are properly (including
correlations) included in the estimated statistical uncertainty.

In general, we follow the standard or recommended Belle procedures to eval-
uate most of the systematic errors. The input parameters of the analysis are
varied by ±1σ for values determined from data or external sources (like PDG or
other studies) or ±2σ for values coming from MC (like signal model parameters
in ∆E×M). The maximal deviation from the nominal fit value is conservatively
taken as a systematic error from each input parameter. Errors from all input
parameters are summed in quadrature. For each category of the systematic er-
rors, we evaluate asymmetric deviations and first sum in quadrature each side
in the category. The maximal deviation to either side is used as the systematic
uncertainty for each category. The errors in each category are discussed below.

Whenever a cut is changed, leading to different events entering the likelihood,
the MC signal efficiencies are estimated again for such a configuration to estimate
the branching fraction. In such cases, where signal and background yields change
(sometimes significantly), one should not mistake statistical fluctuations with
actual systematic effects. Nevertheless, effects from several such cut variations
are used as this is a standard for Belle TDCPV analyses. In cases where the
derived systematics is small, we usually take it ‘as is.’ If it is significant or even
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becomes almost a major systematics, we do more studies. One should differentiate
between systematic errors (where an effect is expected) and checks (where no
effect is expected a priori). Changed analysis cuts usually fall into the category
of checks as this often suffers from statistical fluctuations. If these are smaller
than the statistical error, the check should pass without any assigned systematic
error. This will be the case for cuts on Mbc and the continuum suppression
variable.

The summary of the systematic uncertainties by category and their total sum
in quadrature is shown in Table 8.1. Below, we discuss them one by one separately
in detail.

Source δS [10−2] δA [10−2] δB [10−6] (%)
SVD misalignment 0.24 0.41 –
∆z bias 0.39 0.50 –
Tag-side interference 0.70 3.30 –
Peaking bkg. CPV 5.00 1.90 –
ηc line shape 2.30 0.80 –
Pure fit bias 2.00 1.60 0.066 (0.67 %)
Punzi effect 2.70 1.20 0.080 (0.82 %)
Physics parameters 0.16 0.51 0.094 (0.97 %)
Track helix errors 0.12 0.35 0.006 (0.06 %)
|∆t| range 0.04 0.12 0.041 (0.42 %)
Vertex quality 1.66 1.05 0.099 (1.01 %)
J/ψ excl. range 0.44 0.53 0.044 (0.45 %)
K0
S efficiency – – 0.062 (0.64 %)

K± efficiency – – 0.188 (1.92 %)
π± efficiency – – 0.099 (1.01 %)
Tracking efficiency – – 0.069 (0.70 %)
TagV selections 0.32 0.13 –
Number of BB – – 0.134 (1.37 %)
MC efficiency – – 0.049 (0.50 %)
Tagging wl 0.08 0.21 0.001 (0.01 %)
Tagging ∆wl 0.27 0.06 0.001 (0.01 %)
RBB 1.50 3.38 0.046 (0.47 %)
IP constraint 0.68 0.87 0.018 (0.19 %)
Fit model parameters 0.43 1.64 0.242 (2.47 %)
Total systematics 6.95 6.02 0.410 (4.19 %)
Statistical unc. 16.53 11.65 0.64 (6.6 %)

Table 8.1: Summary of the systematic uncertainties for the CPV parameters and
branching fraction, their total sum in quadrature, and the estimated statistical
error for reference and comparison.
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Tag-Side Interference

The tag-side final state may be reachable by multiple diagrams, which can inter-
fere. This is especially the case for kaon tags, where the dominant decay mode
for B0 (via b → cud, like B0 → D+π−), which is CKM-favored, can be be also
reached by a CKM-suppressed b→ ucd decay of B0 [64]. The relative strength of
the two amplitudes is approximately r′ = |(V ⋆

ubVcd)/(VcbV ⋆
ud)| ∼ 0.02. We follow

the standard Belle II procedure to evaluate the corresponding systematic errors
[65], using inputs from an independent semileptonic B0 → D⋆−ℓ+ν control sam-
ple analysis. The latest update of this analysis yielded [66] 2r′ sin(2ϕ1 +ϕ3 +δ′) =
+0.0096 ± 0.0073, and 2r′ sin(2ϕ1 + ϕ3 − δ′) = −0.0067 ± 0.0073, which can be
used to modify the signal PDF, such that interference effect is included.

We generate 1000 pseudo-experiments using PDF-based toy MC using a signal
PDF with interference included and fit it with the nominal model. The bias with
respect to the nominal result for CPV parameters is used as a measure of the
systematic error. We generated several different combinations of the PDFs with
interference, varying the input parameters by ±1σ. The average of the absolute
value of the biases is taken as the corresponding systematic error for ACP as
the bias is strictly positive (and has physical reasoning). For SCP , we use the
maximal bias as usual. The errors are 0.007 for SCP , and 0.033 for ACP .

The systematic error for ACP is somewhat larger than, for example, estimated
by BaBar (0.014) [48]. On the other hand, this error is rather in agreement with
the most recent Belle estimation from the full dataset for J/ψKS [55] (+0.038—
the maximal observed systematics for any of our toy MC tests was +0.037, lowest
+0.028). Despite the tag-side interference is now the dominant systematics for
ACP , it is still acceptable for the estimated statistical uncertainty of ∼ 0.12.

Line Shape of the ηc Resonance

The interference of the signal and (non-resonant) background is neglected in the
nominal fit. We use the results of the simplified interference study and generate
PDF-based toy MC using signal shape in M(KSK

+π−) as shown in Fig. 6.19
(right), but first, subtract the minimum of the PDF (and re-normalize it to the
final signal region). As a result of the asymmetry in the generated signal dis-
tribution, the fit compensates for this by adjusting signal and background yields
and slopes, leading to significant biases, e.g., in signal yields (around 10%) when
the generated pseudo-experiments are fitted with the nominal model. Another
test is performed for the toy sample where no peaking background is simulated.
The maximal observed bias is used. For the CPV parameters, the corresponding
systematic errors (taken as differences of the biases to nominal toy MC result)
are (−)0.0229 and 0.001 for SCP and ACP , respectively. The effect on SCP is
significant, as the fit trades some signal events for background events, which have
a different generated CP asymmetry in SCP .

Note that the corresponding systematic error for the branching fraction will
be taken from the full interference study and presented separately in the final
result, as it is almost three times larger than the estimated statistical error.
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Wrong Tag Fractions and Wrong Tag Fraction Differences

Wrong tag fractions and the wrong tag fractions differences, controlling the flavor
dilution of the physics distribution, are taken (with their uncertainties) from
dedicated Belle analyses [55], and can also be found in Ref. [40].

Fit Bias and Punzi Effect

Fit biases are evaluated using ensemble PDF- or GSIM-based tests of the final
fitter. More significant biases are observed in the GSIM-based toy studies. We
have studied the impact of the Punzi effect by sampling all event-dependent
variables from the MC signal (also for all backgrounds). The maximal observed
fit bias in these studies (coming in almost all cases from the GSIM-based toys) is
then separated into the Punzi effect and a ‘pure’ fit bias (observed on the toys free
of the Punzi effect), such that in quadrature, these sum to the maximal observed
bias.

For ACP , the bias was very slightly larger (by 0.004±0.004) without the Punzi
effect. Thus we simply assign the smaller of the two errors (to be summed in
quadrature) to the Punzi effect and the larger one to the ‘pure fit bias.’ Interpre-
tation of such a separation of these systematic effects becomes a bit questionable
in this case.

Number of B Meson Pairs

The number of (charged and neutral) B-meson pairs NBB only contributes to the
branching fraction measurement and is determined together with its uncertainty
by dedicated Belle studies [67], where the total number (SVD1 + SVD2) is NBB =
(771.581± 10.566)× 106.

MC Signal Efficiency

The signal efficiency needed for branching fraction calculation is determined from
a large MC signal sample. The statical errors of the determined efficiencies are
used to evaluate the corresponding systematics.

Physics Parameters

Physics parameters taken from PDG are mηc , Γηc , τB0 and ∆md. These are varied
by their respective uncertainties.

Peaking Background CP Violation

CP -violation in the peaking background was estimated both from MC and from
a scan of a fit to the M(K0

SK
+π−) sideband data. Multiple values are used to

generate toy MC with CP -violating peaking background contribution and fitted
with the nominal fit model. The largest observed deviation from the nominal toy
results is used for the systematic estimate. For ACP , the largest bias comes from
the MC estimates. For SCP , the maximal bias comes from the values obtained
from the M(K0

SK
+π−) sideband data fit.
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Track Helix Errors

The track helix parameter errors estimated by the tracking are part of the event-
dependent variables entering the resolution function. As these errors are not esti-
mated perfectly (helix parameter measurements have non-unit pulls), additional
smearing is applied to account for these differences. An older recommendation to
switch these corrections off has been found to be too conservative, and instead, a
newer method is used. This method exploits the observed correlation of the life-
time and mass difference fit results. The systematic errors are then evaluated by
using different values for the lifetime and mass difference obtained in a dedicated
study: τB0 = (1.5299 ± 0.0029) ps and ∆md = (0.5088 ± 0.0019) ps−1 [66]. We
also vary these inputs by their estimated errors and take the maximal observed
bias as the corresponding systematics.

Time Difference Cut

The cut |∆t| < 70 ps is varied by ±30 ps as recommended by the Belle TDCPV
group.

Vertex Quality Cuts

Requirements on the vertex quality, namely the reduced χ2 over the number of
degrees of freedom hrec,tag < 50 is varied by ±25. The cuts on the vertex z error
σrec,tag
z < 200(500) µm for single (multi) track vertices are removed to estimate

the systematics. We have also tried to vary the cuts by ±100 µm. While the
upward variations yield a small bias, the downward variation removes a significant
amount of signal events for the multi-track vertices. This produces a much larger
deviation but still less than half of the statistical error. By changing the cut
only by 50 µm (or less to not affect the signal yield), the bias is much smaller,
confirming it is only a statistical fluctuation. While in the ηc → pp analysis [40],
the variations of the cuts are used, we only use the option to remove the cuts on
σrec,tag
z entirely. This is also a recommended procedure.

J/ψ Cut

The right limit on the M(K0
SK

+π−) fit region to avoid the J/ψ peak was not
considered as systematics for CPV parameters in the ηc → pp analysis, only for
the branching fraction. By changing the right fit window by approximately the
detector resolution ±5 MeV/c2, the signal and background yields change only
slightly. As we do not have any better idea on how to estimate the possible effect
from interference with J/ψ from the data (and in MC, this is not simulated,
we only set the fit window to limit the number of J/ψ events to only several
ones based on generic BB MC studies), we include this systematic error for all
parameters of interest.

Mbc and Continuum Suppression Cuts

The branching fraction, as well as the CPV parameters, should not a priory
depend on the Mbc and continuum suppression cuts; only the background varies
significantly (and signal slightly) when these cuts are changed. Thus we consider
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those to be only systematic checks and the observed biases, significantly smaller
than the estimated statistical errors (but otherwise somewhat large in the total
systematics budget), are indications of passing these checks. Left Mbc signal
window range was varied by approximately the corresponding detector resolution
±2.5 MeV/c2. To check the biases are only statistical, we also tested smaller and
larger variations and observed only oscillations around the central value and not
an obvious trend.

Similarly, we vary the continuum suppression cut from 0.2 by ±0.05. We also
tested a much wider range, up to 0.6. The CPV parameters and branching frac-
tions seem to only oscillate well below statistical errors, despite large variations in
yields. We also checked the estimated statical errors. From the nominal value of
0.165 for SCP , we in fact observed minimal value of 0.162 at CScut = 0.5. This is
in contrast to the charged mode, which we used to optimize the cut value to min-
imize the statistical error of SCP . In fact, we see a plateau from 0.2 to 0.5 of the
cut value for the signal mode. However, this study was not done in its entirety.
For large changes of the cut, the analysis should be, in fact, completely repeated,
with less background (and also less signal). This will limit statistical precision
on background parameters, namely in the ∆t dimension. Also, the small change
in the statistical error of 0.003 might be only a fluctuation and is not guaranteed
after a fully repeated analysis. In conclusion, we do not find any good reason to
change the background level and do not assign any additional systematics. We
instead verified the robustness of the analysis and the predicted statistical errors
and central value against the (continuum) background level.

K0
S, Kaon ID and Pion ID Efficiency

Efficiency correction factors account for differences between K0
S identification and

reconstruction efficiency, kaon ID efficiency, and pion ID efficiency in data and
MC. These factors are evaluated using look-up tables, to which we fed transverse
momenta and cos θ of the K0

S, K+ or π+ candidates. Both the kaon and pion
ID efficiency calculation also requires the corresponding likelihood ratio cut used
in the analysis. The correction factors, summarized in Table 8.2, are used to
modify signal efficiency and thus branching fractions. Their uncertainties are
used to estimate the corresponding systematic errors related to these efficiency
corrections. The binned kaon and pion ID correction data are taken from Ref.
[68] where the latest (2006 for SVD1 and 2010 for SVD2) corrections are used.

Category SVD1 correction SVD2 correction
K0
S efficiency 0.985± 0.004± 0.006 0.985± 0.004± 0.006

K± ID efficiency 1.0062± 0.0089 1.0304± 0.0214
π± ID efficiency 0.9829± 0.0055 0.9814± 0.0106

Table 8.2: Correction factors due to data/MC efficiency differences for K0
S, K±

and π±.
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Tracking Efficiency

A systematic error of 0.35 % per charged track (kaon and pion from ηc) is assigned
to account for the difference between MC and data tracking efficiency [69]. No
correction to the branching fraction is made.

IP Constraint

The IP tube constraint is used to improve the fitting of the B meson vertex
by including the estimated interaction point position and size by the method
of Lagrange multipliers added to the vertex fit. To account for the finite B
meson flight length, the position in R − ϕ is additionally smeared in each event
by a Gaussian distribution with zero mean and sigma of 21 µm. The standard
procedure to estimate the related systematic errors is to vary this smearing by
-10 µm and +20 µm.

As this requires repeating the reconstruction using the original Belle Analysis
Software Framework (basf) with the changed smearing settings, we evaluate these
systematics in a simplified but conservative way, which only uses the information
stored in our n-tuples.

We modify ∆z (used to determine ∆t) for each event as follows:

∆z → ∆z′ = ∆z + 2 pt
pz
×G(µ, σ),

where pt and pz are the reconstructed transverse and longitudinal Bsig momenta,
respectively. The factor of 2 accounts for symmetrization with Btag, which is
smeared independently. Thus, in reality, the effect on the signal and tagging side
should counter-act each other on average, while we conservatively take twice the
effect. The correction is larger for larger transverse momenta of the signal B
meson. The random smearing with mean µ and variance σ, which are supposed
to act similarly as variations of the IP constraint smearing, is used to estimate
the effect conservatively. In reality, the z vertex is not modified directly by the
constraint, which is not exact but has an assigned uncertainty of the IP profile
in R− ϕ. Thus also, this part of the modification is conservative.

We have tried multiple combinations of (µ, σ), namely (0, 20 µm), (0, 40 µm),
(0, 60 µm), (-10 µm, 41 µm), (-21 µm, 41 µm), (21 µm, 41 µm). We use the max-
imal deviation as the systematic error. The impact is relatively small, although
individual ∆z are modified by even tens of µm on average for some configurations.
The reason is the nature of the asymmetry measurement, as the correction does
not differentiate between the flavors.

TagV Selections (Tokyo Cut)

The selections for the B-tagging TagV algorithm [54, 62], which mainly deals with
the pollution from long-lived particles or tracks with poor resolution, possibly
biasing the tag vertex position, are also called a Tokyo cut. The algorithm requires
the transverse impact parameter to be within 500 µm of the signal B vertex
and the estimated uncertainty of the track longitudinal impact parameter within
σz < 500 µm. The default procedure is to vary these criteria by ±10 %. As
this requires repeating the basf reconstruction, we use values obtained for the
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full Belle sin 2ϕ1 measurement, as these are expected to be mode-independent
(because they are related to the tag side).

Resolution Function for B Mesons

The B meson resolution function RBB has many parameters determined in other
studies, together with their estimated errors. The Belle package tatami [61] is
used for resolution function computation and parametrization. We are using the
latest set of parameters, all determined by independent high-statistics studies.
We have observed some significant systematic for ACP from the detector reso-
lution part, which is far larger than in other studies. It is very likely that the
simultaneous fit is more sensitive to variations in the resolution function. Any-
way, these errors are still acceptable when compared to statistical errors. The
problematic resolution function parameter is s1

rec (see [40]), which scales the linear
dependence of resolution Gaussian width on the vertex quality h.

Model Parameters

All the remaining fit model parameters are varied by ±1σ for values obtained
from fits to data and by ±2σ for values determined from fits to MC samples.
The largest contribution to all parameters of interest arises due to the width
of the peaking background Gaussians. In particular, when replacing the MC
estimate for SVD1 with the data-driven estimate. Another notable systematics
are parameters of signal shape in M , namely the fraction and width of the tail
component, affecting mostly ACP and B.

SVD Misalignment and ∆z Bias

The impact of SVD misalignment was evaluated for the full Belle sin 2ϕ1 mea-
surement [66, 55] by simulating geometries with different random local misalign-
ments. In addition, as alignment validations revealed some biases, various global
(SVD versus CDC) misalignment scenarios are produced to find a configuration
resembling the observed biases. This configuration is then used to estimate the
corresponding alignment systematics using simulation. As these studies are very
computationally expensive and the corresponding systematic errors are strongly
believed to be mode-independent, we use values from these estimations.

8.4 Summary
In summary, we obtain for B0 → ηcK

0
S, ηc → K0

SK
+π− using the full Belle

dataset of 772× 106 of BB events:

SCP = 0.59± 0.17± 0.07
ACP = 0.16± 0.12± 0.06
B = (9.79± 0.64± 0.41± 2.25int)× 10−6,

(8.4)

where the first uncertainty is statistical, the second systematic, and the last error
on B accounts for the interference with the non-resonant peaking background
(23%). For comparison, the SM and previous measurements predict SCP = 0.70±
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0.02, ACP = 0.00±0.02 [49] and B = (9.7±2.1)×10−6. The PDG uncertainty on
the branching fraction does not include the interference effects, as it is obtained
as a product of two branching fractions, see Sec. 6.2.3.

The statistical correlation coefficients for the floating fit parameters are sum-
marized in Table 8.3. Notable is the correlation of SCP to the peaking background
fraction for the SVD2 experiment (15%), which justifies our approach of the si-
multaneous fit of signal and background yields. Furthermore, B has roughly 10%
correlation to SCP as can be estimated from the correlation to the signal yield in
the SVD2 experiment (which dominates the branching fraction estimation).

Finally, to obtain the statistical significance of our result, we scan the likeli-
hood for fixed values of SCP = S ′ in the range [0, 1]. At each point, the likelihood
is minimized again, keeping S ′ fixed and floating the rest of the parameters of the
final fit. The statistical significance then can be evaluated as

√︂
−2 ln(LS′/Lmax),

where LS′ is the maximum likelihood for the given fixed value of S ′ and Lmax
is the absolute likelihood maximum for the nominal estimated parameters. The
null hypothesis of no CPV in B0 → ηcK

0
S (for S ′ = 0) is rejected at 3.4σ (99.93%)

level, as can be seen in Fig. 8.4
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Figure 8.4: Scan of the likelihood function, maximized over all parameters except
SCP in steps of fixed SCP . Horizontal lines denote a change of the likelihood from
the minimum corresponding to one, two, and three sigmas (68.27%, 95.45% and
99.73% confidence levels), as well as the observed statistical significance of our
SCP measurement. Only statistical uncertainties are considered.
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Table 8.3: Statistical correlation coefficients among floating fit model parameters
(in %). Parameters c∆E(1,2)

1 and cM(1,2)
1 control the background slopes in ∆E and

M(K0
SK

+π−) for the SVD1 and SVD2 datasets, respectively.

f
(1)
pb
sig

-0.8

c
M(1)
1 0.9 22.8
N

(1)
sig 0.3 -66.8 -24.7

N
(1)
bkg -0.2 47.6 17.6 -45.6

c
∆E(2)
1 0.0 0.0 0.0 0.0 0.0
f

(2)
pb
sig

0.0 -0.8 -0.3 0.7 -0.5 1.5

c
M(2)
1 0.0 -0.3 -0.1 0.2 -0.2 1.2 23.2
N

(2)
sig 0.0 0.6 0.2 -0.5 0.4 -1.2 -69.7 -23.2

N
(2)
bkg 0.0 -0.5 -0.1 0.4 -0.3 0.9 51.4 17.1 -44.6
SCP -0.1 -4.7 -1.5 3.7 -2.7 0.2 15.2 5.4 -11.7 8.7
ACP 0.0 -1.5 -0.6 1.5 -1.0 0.0 4.0 1.3 -3.5 2.6 -7.4

c
∆E(1)
1 f

(1)
pb
sig

c
M(1)
1 N

(1)
sig N

(1)
bkg c

∆E(2)
1 f

(2)
pb
sig

c
M(2)
1 N

(2)
sig N

(2)
bkg SCP
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CHAPTER 9

Conclusion
In this part of the thesis, we have studied CP violation in the tree-dominated
color-suppressed B0 → ηcK

0
S decay. This decay is CP -odd and the SM predicts

its direct (ACP) and mixing-induced (SCP) CP asymmetry are the same as for
the most precisely measured golden channel B0 → J/ψK0

S. This mode allows
measuring the sinus of the unitary angle ϕ1, for which it holds sin 2ϕ1 = SCP
within a small theoretical uncertainty in the SM. The measurement is using the
full Belle dataset of 772× 106 of BB events.

The BaBar Collaboration firmly established mixing-induced CP violation in
this channel, in particular using the subsequent three-body decay ηc → K0

SK
+π−

and 465×106 BB pairs [48]. Later studies of such decays [47] revealed significant
interference effects, which were neglected in the previous measurements (for both
CPV parameters and branching fraction). Our analysis exploits a more complex
fitting approach, where the CPV parameters are estimated simultaneously with
signal and background yields, offering better control over the related systematic
effects. In addition, we performed a dedicated study to estimate the interference
effect on the branching fraction measurement, which was done for the first time
in the neutral mode. Such a study was already performed at Belle for our control
mode, and we closely followed their interference model. The results of the dedi-
cated interference studies were further used to estimate systematic effects due to
the modified resonant ηc line shape resulting from the interference. Moreover, we
check for possible dependence of the CPV parameters on the ηc mass, at least to
the first order. As we observe no statistically significant effect, we further support
the validity of the measurement of CPV parameters in B0 → ηc(K0

SK
+π−)K0

S

decays, despite the significant presence of the non-resonant background, which is
poorly understood both theoretically and experimentally. The statistical power
of the available data is not enough to perform a full-scale angular analysis—such
an endeavor can only be pursued in the future at Belle II. Needless to say, with
(potentially) fifty times more data, the interference effects will have to be in-
cluded in the data model, and possibly a much more advanced analysis will need
to be performed.

One additional source of systematic uncertainties is the Punzi effect, not usu-
ally considered in such analyses, despite the Belle resolution function RBB de-
pending on a number of conditional event-dependent variables. In our case, this
effect becomes significant due to the simultaneous fit of yields and CPV param-
eters and high background level. Its correct treatment would require substantial
additions to the data model, which would make it too slow. Given our current
statistical precision, it is fully acceptable to consider these effects only as system-
atic uncertainties and not attempt to correct them. Especially as the dominant
systematics for SCP stems the possible CPV contributions to the peaking back-
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ground. In this work, this effect is estimated directly from the sideband data for
the first time. Previously, only MC estimates were available.

The last main difference from the previous analyses is the usage of beam-
constrained mass Mbc for the best B candidate selection. Already for the ηc → pp̄
channel, it was recognized [40] that utilization of variables related to quality
(goodness-of-fit) of the ηc decay vertex in the best candidate selection could in-
troduce unwanted systematic biases.

The model is cross-validated on the charged control channel B+ → ηcK
+,

ηc → K0
SK

+π−, where no CP -violation is expected. We obtained

SCP = −0.03± 0.08
ACP = −0.05± 0.06
B = (2.49± 0.09± 0.40int)× 10−5,

(9.1)

where the uncertainties are statistical only. For the branching fraction, not cor-
rected for data/MC efficiency differences (1 − 2%), we also quote the estimated
uncertainty due to the interference with the non-resonant background. These
results are fully consistent with expectations and previous measurements.

After all cross-checks, validations, and evaluation of systematic uncertainties,
the final CP violation and branching fraction measurement were performed. We
obtained

SCP = 0.59± 0.17± 0.07
ACP = 0.16± 0.12± 0.06
B = (9.8± 0.6± 0.4± 2.3int)× 10−6

(9.2)

for B0 → ηcK
0
S, ηc → K0

SK
+π−. The uncertainties are statistical, systematic,

and (for B) to account for the interference with the non-resonant background,
respectively.

The precision for SCP is very slightly worse than for BaBar. There are two
main reasons why the precision is not better despite the larger available data
set. First, the error estimates have some uncertainty themselves. For example,
in the ensemble studies, these are ∼ 10% of the estimated error for SCP . Also,
BaBar was ‘lucky’ to observe a large significance1 for SCP . Second, our analysis
attempts to take the interference with the non-resonant background into account
for the first time. For this, our multi-dimensional fit allows for some shape com-
pensations and, in particular, has floating parameters for signal and background
yields. Thus, our statistical errors include the uncertainty and correlations stem-
ming from the peaking background. We can see about 15% correlation of SCP to
the peaking background fraction in the SVD2 experiment (see Table 8.3), which
inflates the error slightly. Although our method yields slightly larger statistical
uncertainties, we believe these are estimated more carefully than in the tradi-
tional approach, where signal and background yields are fixed from a previous fit,
and the correlations are ignored. In addition, the evaluation of systematic errors
directly propagates possibly correlated effects from, e.g., changes in the signal
shape distribution to the CPV parameters.

Fig. 9.1 shows a two-dimensional likelihood scan for the CPV parameters,
considering statistical errors only. Note the slight 7% correlation of SCP and ACP .

1Over 5σ, but with an upward deviation from the SM.
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Figure 9.1: Overview of CPV parameter measurements in B0 → ηc(K0
SK

+π−)K0
S.

The confidence regions corresponding to one, two, and three sigmas for two de-
grees of freedom (39.3%, 86.5%, 98.9%) are shown for our result, considering
only the statistical uncertainty. The measurement with its total uncertainty is
also compared to the BaBar measurement [48], and the world average for all char-
monia [49]. In addition, a simple combination of our and BaBar measurement
is shown with 1σ contour, ignoring any correlations. The circle with unit radius
shows boundaries of the physically allowed region, where S2 +A2 ≤ 1.

The points with error bars show measurements with their total uncertainty—for
our result, the BaBar result, and the world average for all charmonia. Finally, a
simple (ignoring any correlations) combination of our and BaBar results is shown,
which yields

SCP(Belle + BaBar) = 0.76± 0.12
ACP(Belle + BaBar) = 0.04± 0.09.

(9.3)

The average is now fully consistent with the SM prediction and the world average
for all charmonia within ∼ 0.5σ. It is natural to combine the Belle and BaBar
results with very similar uncertainties and almost uncorrelated systematics. The
only significant source of correlated systematic error is the tag-side interference
effect on ACP (around ∼ 0.03) and the CP violation in the peaking background
(around 0.05) for SCP . Note that the BaBar measurement was slightly deviating
from the expectation for SCP , while our shows a slight departure for ACP . The
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combination then suggests that these are only statistical fluctuations, and there
are no signs of NP contributions to the CP -violation parameters in B0 → ηcK

0
S

at the current level of precision.
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Part III

Belle II Detector Alignment
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CHAPTER 10

Introduction to Alignment
For most simulations, the positions of the detector elements are assumed to be
known and exactly as designed. In reality, the detector is constructed with a lim-
ited mechanical precision at level O(0.1 mm) and the sensitive elements can also
move in time. With detection precision at level O(0.01 mm) for silicon sensors,
this would significantly degrade the physics performance of the vertex detector.
While survey measurements prior to and after the construction and installation
of the sub-detectors are often1 of high importance to reach a reasonable starting
geometry, the ultimate precision can usually only be achieved by utilizing a large
amount of various in-situ measurements of charged tracks’ trajectories recorded
during the detector operation.

The procedure for determination of the geometrical configuration of the detec-
tor elements from tracks is called track-based alignment or just alignment.
Sometimes, by alignment, one means the result of such a method, the alignment
constants. The alignment constants are a subset of a much larger set of cali-
bration constants that correspond to the various parameters needed for generic
reconstruction of objects and calculation of aggregated information for high-level
physics analyses. In this sense, alignment is part of the detector calibration.

Good alignment performance, namely for the vertex detector, is a key in-
gredient, for example, for time-dependent CP -violation measurements, like the
analysis presented in Part II of this thesis. The physics motivations are briefly
discussed in Sec. 10.1, followed by requirements on the method in Sec.10.2. Many
calibrations are based on the same philosophy as alignment: as the underlying
physics of propagation of charged particles in a magnetic field and detector ma-
terial is well understood, we can construct a model for the particle trajectory and
fit this model to the observed data. An imperfect detector description will result
in a sub-optimal fit unless the calibration constants themselves can be set float-
ing. Obviously, adding the degrees of freedom from, e.g., detector positions to a
track fit would result in an underdetermined problem. Therefore in alignment,
data from many tracks must be combined, making the problem overdetermined,
such that many (usually thousands or more) measurements contribute to the de-
termination of each single alignment parameter. The general formulation of the
alignment problem is discussed in Sec. 10.3, after which the main challenges of
this complex task are summarized in Sec. 10.4.

The rest of this part of the thesis is organized as follows. In Chapter 11,
we describe the alignment method utilized at the Belle II detector. Specifics of

1At Belle II, such a complete survey was never available for the full vertex detector. Our
alignment procedure derived the positions starting from the design geometry. Only for the drift
chamber, survey measurements are utilized for starting geometry, end-plate deformation, and
wire tensions [21].
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the necessary mathematical formulation of the problem for over sixty thousand
alignment constants of the Belle II vertex detector and central drift chamber are
given in Chapter 12. The method is implemented in the official Belle II software
and automated in the regular production of calibration constants, as presented in
Chapter 13. The historical overview in Chapter 14 summarizes some of the most
important results, problems, and solutions from the past, up to early physics
data. We divide the detailed evaluation of the alignment method into two parts.
In the first part, we discuss the alignment of all parameters, except CDC wires.
This baseline alignment of about three thousand parameters allows for some
extended studies of its systematic properties, presented in Chapter 15. Although
the baseline alignment performed well, the experience and needs that resulted
from real detector operation led to a significant update of the method to include
more data samples and up to sixty thousand alignment parameters, including
CDC wires. The path toward this extension is presented in Chapter 16. Finally,
the performance of the baseline alignment and its new version, utilized for data
reprocessing in 2021, is evaluated in Chapter 17. In Chapter 18, we discuss a
number of possible extensions of the method left for further research. Chapter 19
is devoted to a critical discussion of the results, concluded in Chapter 20.

10.1 Physics Motivation
With the large dataset that Belle II aims for, many measurements, previously
statistically limited at Belle, can become dominated by systematic uncertain-
ties. Alignment constitutes a major systematic contribution to precision lifetime
measurements. Belle II will play an important role in such studies thanks to its
high-precision vertex detector, offering about twice better vertex resolution than
in the previous generation of B-Factories, together with the clean environment
and well-defined initial state of the electron-positron collisions. Such precision
measurements are vital to pursuing the search for physics beyond the SM.

For example, the τ lifetime is an input to lepton flavor universality tests, a
very active area of experimental research, especially due to several indications for
deviations from SM predictions [12]. Precise measurements of lifetimes of charm
mesons and baryons can serve as tests of QCD predictions. The flagship of the B-
Factory measurements is time-dependent CP violation (TDCPV), which requires
high vertex resolution to measure the distance between B meson decay vertices.
TDCPV is another prime example that motivates advanced alignment procedures.
At the end of the Belle II experiment, the unitary angles are expected to be
measured at a precision of 1◦ or better (0.4◦ for ϕ1) [11], and any inconsistencies
would point to physics beyond the SM. With such statistical precision, control
over systematic uncertainties is crucial.

This means that a number of effects that were safe to neglect in the previous
generation of experiments can now lead to significant performance degradation.
For example, a more detailed description of silicon sensor deformations or higher
frequency of realignment was expected to be necessary to fully exploit the physics
potential of the new vertex detector. Apart from statistical precision of the
alignment, which only contributes to a worse resolution on average, systematic
misalignment can directly bias physics measurements and thus must be well under
control. Furthermore, the vertex detector also needs to be aligned with respect to
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the drift chamber, whose alignment itself contributes significantly to the physics
performance. While these tasks were performed separately at Belle and BaBar,
this raises possible concerns about the systematic effects stemming from such a
decoupled procedure, where correlations among the different detectors can only
be resolved by an iterative approach.

10.2 Alignment Requirements
The generic requirement is that the resolution observed for data is at most by
20% worse than for Monte Carlo (MC) simulations. Such a discrepancy is viewed
as acceptable but might still need ad hoc scaling corrections at the analysis level.
This includes all effects, including too optimistic simulation. Thus the alignment
method should lead to a much smaller degradation than 20% in simulation studies
to leave room for a wide range of additional effects, underestimations, or mis-
modeling at both data and MC levels. In fact, our minimum target for resolution
worsening due to alignment in simulations is only negligible degradation, less
than 5%.

The physics requirements for the Belle II detector are, in principle, similar
to its predecessor Belle SVD2 [16] or its competitor BaBar SVT [70]. Due to
the reduced boost factor at Belle II, the design requirements estimated that ap-
proximately twice better vertex resolution in the boost direction than achieved
for data at Belle is needed to not degrade the TDCPV measurement precision.
In both previous B-Factory experiments, the alignment precision for the silicon
sensors was required to be better than 10 µm on average. At Belle II, we de-
rived the corresponding number in older preliminary studies concerning random
misalignment [71, 72]. The general conclusion is that alignment precision better
than 5 µm is needed for negligible (less than 5%) degradation. Under 3 µm, the
effects are almost impossible to observe even in large-statistics samples and when
reconstructed observables and MC truth information is compared on simulations.

A non-random, systematic misalignment could introduce unwanted physics
biases and thus needs special care and studies to ensure it can be controlled
with a sufficient level of precision. For example, changes in the total radial or
longitudinal (z) scale of the detector could introduce bias into the measured
absolute lifetimes of unstable particles. The total length of the VXD detector
(about 50 cm) must be known significantly better than 50 µm for the outer
SVD layer sensors in order to achieve absolute scale precision better than 10−4.
Note that for much shorter PXD layers, this value gets correspondingly smaller.
Similarly, the outer SVD radius (14 cm) must be determined to better precision
than 14 µm.

10.3 General Formulation
The purpose of the alignment procedure is to determine the (vector of) alignment
parameters a, respective their (small) corrections ∆a. In the track-based align-
ment, the track model predictions pj(a, qj) for each track j depend on a, as well
as on the set of track parameters qj. Along the track, multiple measurements can
be compared to the predicted values. The difference between the i-th measured
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measurement prediction
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sensor
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Figure 10.1: Definition of track-to-hit residual as a difference between the mea-
surement and the prediction from the track fit (a). If one sensor’s position differs
from the assumed one (dashed), the reconstructed measurement will be shifted
(red), pulling the track fit towards it (b). This will result in (c) residual distri-
butions (red), which are biased and wider than ideal (green).

value mij on track j and the prediction (corresponding to i-th measurement) in
the local frame of the measurement

rij(a, qj) = mij − pij(a, qj) (10.1)

is called residual. Residuals should be normally distributed with zero mean and
width given by the measurement uncertainty. If the assumed positions of the
sensitive elements are incorrect, the residuals will appear biased (shifted) and
wider as the track fit quality worsens. This is illustrated in Fig. 10.1. Optimal
values for the alignment parameters can be obtained by minimizing the residuals
from many tracks using the method of least squares. Each residual should be
normalized (weighted) by the corresponding measurement uncertainty σij. Such
a quantity is usually called pull (rij/σij). In general, these uncertainties may
be correlated2 among different measurements of the same track. The objective
function to be minimized is the sum of the squares of the weighted residuals,
which can be written as

χ2(a, q) = r⊺(a, q)V −1r(a, q), (10.2)

where q = (q1 q2 . . .)⊺ is the vector of all parameters of all tracks, r is the vector
of all residuals and V is the covariance matrix of the measurements. We can
denote x = (a q)⊺ and for a small change of the parameters, x = x0 + ∆x, the
residuals are linearized as

r(x) = r0 + J∆x (10.3)

where r0 are the residuals for initial estimates of the alignment and track pa-
rameters and J = ∂r

∂x
is the Jacobian matrix. From equations 10.2 and 10.3, the

system of normal equations for minimum of the linearized χ2 is

J⊺V −1J⏞ ⏟⏟ ⏞
C

∆x = −J⊺V −1r0⏞ ⏟⏟ ⏞
b

. (10.4)

2Multiple scattering effects correlate adjacent sensors in a track and multi-dimensional mea-
surements can be correlated internally.
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The matrix C−1 is the covariance matrix of the parameters x, which is symmetric
and positive-definite. The solution is then obtained formally by inversion as

∆x = −C−1b. (10.5)

The practical issues with such an expression become evident when we consider
the dimension of the n× n matrix C. Its size is given as

n = dim(a) +
∑︂
j

dim(qj). (10.6)

While the alignment parameters are counted in thousands, the number of individ-
ual tracks used for alignment can easily reach millions. The number of their local
track parameters will be typically even larger than 107 in the problems discussed
in this thesis. As the computational complexity of matrix inversion is O(n3) and
memory requirements scale as O(n2), a direct solution is not practically feasible.

Different methods have been developed to deal with the computational com-
plexity of the alignment problem. Two main approaches are used in HEP exper-
iments:

• Local alignment, used, e.g., at BaBar [70], or Belle [16], where the χ2 is min-
imized for each alignable element (like a silicon sensor) individually while
keeping the track parameters fixed. Only inversion of small (usually 6× 6)
matrices is needed. This procedure needs to be iterated many times while
the track parameters are updated after each iteration, which determines
incremental corrections to the alignment parameters. In this approach, the
correlations among different modules are neglected.

• Global alignment, used, e.g., at H1 [73], or CMS [74], which minimizes χ2

with respect to all alignment and track parameters simultaneously. The spe-
cial structure of the alignment problem is exploited, leading to significantly
reduced computational complexity. The solution can be obtained without
any further approximations. This method was chosen for the Belle II de-
tector and is discussed in detail in the following sections.

One last approach to mention is alignment based on the Kalman Filter [75],
where alignment parameters are updated incrementally with the addition of each
new track. This is one of the alternative alignment methods developed for the
CMS but never used in production [76] due to the computational requirements of
the extensive bookkeeping necessary for the preservation of correlations among
the alignment parameters.

10.4 Alignment Challenge
The major challenge of alignment based on track-to-hit residuals are linear com-
binations of alignment (and track) parameters, to which the χ2 expression in Eq.
10.2 is weakly or not sensitive at all, known as weak modes. Certain move-
ments or deformations of the detector can be absorbed in the track parameters
and thus potentially bias physics measurements. Such deformations represent
correlated movements of the detector elements, which transform particle trajec-
tories into other valid trajectories with different parameters. Such distortions
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might be present in the real detector, and the alignment procedure might not be
able to correct them. Alternatively, the alignment procedure might unintention-
ally introduce such deformations, resulting in minimized residuals and working
tracking but biased physics measurements.

In fact, the final alignment solution errors are typically entirely dominated by
the (combination of) weak modes, understood as systematic errors of the proce-
dure, as the statistical errors can usually be improved far beyond the systematic
ones by simply using more data at the input. These systematic errors need to be
studied, and their possible physics impact evaluated.

Weak modes result from a general lack of an absolute reference. There are
no reference tracks with known parameters. However, for example, in the decay
of an unstable particle, its decay products have exactly opposite momenta in
the CM frame and originate from the same vertex point. Although we do not
know the true vertex point, both parts of the detector, which registered the
tracks, should provide compatible estimates. In such a way, different parts of
the detector can be correlated by the tracks, which will result in a reduction
of plausible track parameter biases. Similarly, cosmic-ray muons crossing the
detector correlate very different combinations of modules/sensors than tracks
originating from the collisions. Thus such additional data samples with various
topologies or constraints can prevent a range of deformations, which are a weak
mode for collision-only tracks. This is illustrated for two typical weak modes in
Fig. 10.2.

The usage of several complementary datasets is the most basic ingredient for
reducing weak modes and a good alignment, but it may not be sufficient. The
alignment method should further support the inclusion of additional constraints
or external measurements for the alignment parameters, take care of measure-
ment outliers, and in particular, be able to provide the solution in a reasonable
time. To utilize all available information, including all correlations, the global
alignment approach is the most promising. One slight drawback is the lack of
possibility to monitor the progress and spot problems easily on the fly. The global
alignment is a black box approach, which (almost) always provides a solution in a
single step. Such a solution is only as good as the underlying problem statement.
The worst possible problem is shortcomings in detector modeling, for example,
in the material budget or magnetic field. It is desirable for alignment to use
the same detector material or magnetic field model as the official reconstruction
for physics analyses. In such a way, no additional systematic effects need to be
considered, and any future improvements in the detector model or reconstruc-
tion will automatically propagate to a more reliable alignment. The challenge
is to combine all this information in a generic way to allow for alignment of the
complete tracking system, with over 60× 103 parameters.

Last but not least, many of the challenges are purely practical, resulting from
constraints in real experiment operation. A typical problem is the lack of particu-
lar data samples. For example, very useful data without a magnetic field are only
very limited. As time-dependent alignment might be needed, this could prevent
frequent realignment ad hoc. This is also related to a problem specific to the
experiment location—in Japan, one can occasionally expect earthquakes, which
could alter the alignment at any time in unexpected ways.

This brings us to the single most challenging property of a real detector’s align-
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Figure 10.2: Illustration of tracks coming from the IP (red point) and a cosmic
ray track in y − z projection (top) and R − ϕ projection (bottom). For a ‘tele-
scope’ (∆z ∝ R) deformation (top right), tracks from the IP only change their
direction without affecting residuals, while the cosmic track fit becomes bad due
to the apparent kink in the measurements. For a ‘curl’ (∆ϕ ∝ R) deformation
(bottom right), the curvature of tracks from the IP changes in the opposite way
for positively and negatively charged tracks. For the illustrated cosmic trajectory,
such a ‘curl‘ deformation would result in incompatible curvature estimates for the
upper and lower arm and sub-optimal residuals.
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ment. The detector is not entirely stable in time for many reasons, from changes
in temperature or magnet conditions to vibrations or even the earthquakes men-
tioned above. Thus calculating a single set of alignment constants for a couple of
weeks or even days of experiment operation could significantly degrade physics
performance. While alignment itself is the best tool to extract information about
the detector positions, the time resolution is practically limited, e.g., by the rate
of cosmic ray tracks available for alignment. While other monitoring methods
are, in principle, possible (like continuous laser survey measurements), no such
technique is utilized at Belle II, which would directly and independently monitor
the sensitive detection elements, at least at a couple of reference points. Thus we
have to extract the information about the time-dependence of the alignment con-
stants from validation studies using reconstructed tracks to define proper intervals
where alignment of all or some subset of degrees of freedom can be considered
stable. The optimal solution to this problem is not explored in this thesis. The
time dependence must be understood step by step, and this work will pave the
way for such studies. However, we are still trying to correlate some of the changes
to the detector and machine conditions, and this may take some time.

The truth is that understanding the origin of the time-dependence can be ex-
tremely difficult. While alignment can give some clues, only long-time experience
and attempts to correlate alignment changes to detector operation conditions can
reveal the source of some of the significant movements, typically happening at the
level of larger structures rather than individual sensors. Thus individual sensors
were not initially expected to need a frequent realignment. However, towards the
end of this thesis, we will see that to fulfill the physics potential of the PXD, even
such an endeavor needs to be undertaken.
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CHAPTER 11

Alignment Method
The Millepede alignment method for the vertex detector was already proposed
in the Belle II Technical Design Report [10]. The method is described in detail
in Sec. 11.1. A key ingredient to formulate the alignment problem is a suitable
global track model. This track model or track parametrization needs to properly
take into account all the knowledge about particle propagation in the detector.
For this purpose, we integrated the General Broken Lines (GBL) track model and
refit into a generic track fitting toolkit GENFIT2. This effort was a subject of
the previous work of the author [77], where a full description with more details
about the implementation can be found.

The track model relates a set of track parameters to the predictions at the
measurements. The track parameters are usually initially defined at some ref-
erence point and need to be extrapolated to other points along the trajectory.
The necessary machinery to perform such extrapolations of the track state, han-
dled by the GENFIT2 toolkit, is briefly explained in Sec. 11.2. Sec. 11.3 to 11.5
describe the GBL track model and the generic way to parametrize the detector
material and multiple scattering effects, as well timing-related corrections. In
Sec. 11.6 we describe an extension of the track model formulation from single
trajectories to combined objects, representing decays of unstable particles. Fi-
nally, in Sec. 11.7, the data samples used for alignment MC studies as well as for
real data are summarized.

11.1 Millepede II

The global alignment approach is implemented in the Millepede method, first
introduced by V. Blobel for the H1 experiment [73, 78], which exploits the spe-
cial structure of the matrix equation 10.4. The dimension of the matrix can be
reduced to the number of alignment parameters using block matrix algebra. It
allows solving the problem in a single step, without external1 iterations, and any
approximations beyond the initial linearization.

Since then, Millepede has been used in a number of HEP experiments. The
development of its current version, Millepede II [79, 80], adjusted to the needs of
large LHC experiments, namely the CMS (Compact Muon Solenoid) [81], started
in 2005, and the tool has been maintained since then by the Statistics Tools group
of the Analysis Center of the Helmholtz Alliance. Millepede II is independent of
any experiment and publicly available at the DESY GitLab server [82].

1There can be internal iterations in the algorithm, but external iterations with a complete
recalculation of the inputs are not needed in many cases.
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For the Millepede formalism, uncorrelated measurements are assumed, and
the χ2 from Eq. 10.2, linearized around the initial parameter estimates, can be
written as

χ2(∆a,∆q1 . . . ) =
tracks∑︂
j

meas∑︂
i

1
σ2
ij

(︃
rij(a0, q0j) + ∂rij

∂a
∆a+ ∂rij

∂qj
∆qj

)︃2
, (11.1)

where σij is the measurement uncertainty, and a0 and q0j are the initial estimates
of alignment and track parameters, respectively. Two categories of parameters
are recognized:

• Local parameters qj of the individual tracks, which influence only a limited
subset of measurements.

• Global parameters a, corresponding to the alignment parameters, which
influence many measurements (residuals) and are correlated by the tracks
crossing various parts of the detector.

For the alignment, the interest is only in the global parameters. The local
parameters are usually anyway recomputed after the alignment and additional
calibrations for official data reconstruction. To formulate the alignment problem,
one needs, in addition to the initial measurement residuals rij and errors σij,
the derivatives of the residuals with respect to the local parameters ∂rij

∂qj
(local

derivatives) and the global alignment parameters ∂rij

∂a
(global derivatives).

The normal equations 10.4 can be written in a block matrix form as⎛⎜⎜⎜⎜⎜⎝

∑︁
j C1j . . . Gj . . .
... . . . 0 0
G⊺
j 0 Γj 0

... 0 0 . . .

⎞⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎝

∆a
...

∆qj
...

⎞⎟⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎝

∑︁
j g1j
...
βj
...

⎞⎟⎟⎟⎟⎟⎠ . (11.2)

For each GBL trajectory (simple or combined), there is a block with a matrix
connecting only local parameters

(Γj)kl =
meas∑︂
i

1
σ2
ij

(︃
∂rij
∂qj,k

)︃(︃
∂rij
∂qj,l

)︃
. (11.3)

On the two transposed borders, matrices

(Gj)kl =
meas∑︂
i

1
σ2
ij

(︃
∂rij
∂ak

)︃(︃
∂rij
∂qj,l

)︃
(11.4)

relate global and local parameters. Finally, in the upper left corner sits a sum of
matrices

(C1j)kl =
meas∑︂
i

1
σ2
ij

(︃
∂rij
∂ak

)︃(︃
∂rij
∂al

)︃
(11.5)

over all tracks j, each with a size corresponding to the number of global (align-
ment) parameters. The big matrix multiplies the vector of unknown corrections
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to the alignment and track parameters. On the r.h.s is a vector from the gradient
of the objective function with block entries

(g1j)k =
meas∑︂
i

rij
σ2
ij

(︃
∂rij
∂ak

)︃
, (βj)k =

meas∑︂
i

rij
σ2
ij

(︃
∂rij
∂qj,k

)︃
(11.6)

formed from (normalized) residuals times the corresponding global or local deriva-
tives. The matrix 11.2 is huge (easily over 108×108, corresponding to one million
tracks with 100 degrees of freedom); in particular, the block diagonal part occu-
pied by the Γj matrices. These are inverses of the covariance matrices for local
parameters of each trajectory, see Sec. 11.3 and Eq. 11.20 (with A = Γ).

11.1.1 Reduction of Matrix Size
The idea of matrix reduction and removal of unwanted local parameters can be
illustrated using a simple example. A (block) matrix equation(︄

A B
C D

)︄
·
(︄
x
y

)︄
=
(︄
a
b

)︄
(11.7)

may be written as two equations for unknown (vectors) x and y. If we are
interested only in x, we can simply express y from the second equation as

y = D−1(b−Cx) (11.8)

under the condition that D is invertible. Substitution back into the first equation
yields a problem reduced to the determination of x:

(A−BD−1C)x = a−BD−1b. (11.9)

The solution is then obtained by inverting the matrix on the l.h.s., called Schur
complement.

Repeated application of the matrix reduction with the Schur complement will
remove the bordered and diagonal part and update the vector on the r.h.s. of
Eq. 11.2, yielding a matrix and a vector

C =
∑︂
j

C1j −
∑︂
j

GjΓ−1
j G

⊺
j , g =

∑︂
j

g1j −
∑︂
j

GjΓ−1
j βj (11.10)

and normal equations in the form

C∆a = −g. (11.11)

The matrix C is called global matrix, and we will only consider this reduced
form for further discussion. The corrections to the alignment parameters ∆a can
be obtained formally by inversion as

∆a = −C−1g. (11.12)

For linear problems, this yields an exact solution in a single step, with all correla-
tions preserved in the solution, reached without any approximations. The whole
solution may need to be iterated to go beyond linear problems, with a repeated
evaluation of the local and global derivatives from the track model, which are
fixed inputs in the formalism. Such iterations are typically only really needed
for initial alignment. Typical alignment corrections in practice are small enough
that a single iteration can be sufficient.
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11.1.2 Linear Equation Solvers
Millepede II offers several solution methods for the linear Eq. 11.11. We will
explicitly discuss those directly used in this work:

• Inversion is only suitable for problems with up to a couple of thousand
global parameters as its solution time scales as O(n3). While this means a
couple of minutes (including other computations) for, e.g., 3× 103 parame-
ters, with ∼ 60× 103 parameters, over half a day of computation using ten
threads was needed in our tests.

• Diagonalization is about ten times slower than inversion but allows ac-
cess to the eigenvalues of the matrix C and extraction of eigenvectors cor-
responding to the smallest eigenvalues in the spectrum. These eigenvectors
represent linear combinations of parameters to which the χ2 is only weakly
or not sensitive at all. This result can be used to study the weak modes of
the solution.

• Cholesky decomposition, which is faster and numerically more stable
than inversion [80]. It has even a faster variant of LAPACK factorization
utilizing highly optimized external LAPACK libraries [83], e.g., with Intel
MKL implementation [84]. This last method can be an order of magnitude
faster than the default Cholesky. These methods do not compute parameter
errors by default, in contrast to the inversion and diagonalization.

• MINRES-QLP, or generalized minimization of residuals, is an approx-
imate fast iterative solution method minimizing |C∆a − g|, suitable for
very large problems with hundreds of thousands of alignment parameters,
heavily utilized at the CMS experiment [74, 85]. This method works well
for sparse matrices, which result from a limited number of connected global
and local parameters. Some or all correlations may be lost in this method.

11.1.3 Treatment of Outliers
The method of least squares assumes that the measurement errors are Gaussian-
distributed. Non-Gaussian tails of multiple-scattering or bad measurements with
large normalized residuals (pulls) can significantly influence the χ2 and thus dis-
tort the solution. Several methods can be used in Millepede II to suppress these
outliers, and we regularly use a combination of all of them in the configuration
described below.

As initially, it is not known if the large residuals are caused by misalignment
or outliers; only measurements with extremely large pulls are rejected before the
global solution. Additional internal iterations are necessary to reject bad data.
The full solution is not performed again in these iterations (by default), only
incrementally updated.

Entire tracks can be rejected if they have too large χ2 divided by the number
of degrees of freedom (NDF). Successively more strict cuts on χ2/NDF are used,
with the final iteration removing all tracks with χ2/NDF corresponding to more
than three standard deviations.
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In addition, individual measurements can be down-weighted with the method
of M-estimators, which requires repeated local track fits. We are using two it-
erations that employ the Huber function, where the influence of large pulls is
constant on the χ2. Additional iterations, not used regularly at Belle II, utilize
the Cauchy function, where the weight even decreases for large pulls. Tracks with
a large fraction (> 10 % in this work) of down-weighted measurements are also
removed.

11.1.4 Removal of Degrees of Freedom and Constraints
It is generally necessary to remove some degrees of freedom from the solution of
the alignment problem, which is otherwise underdetermined. The trivial unde-
fined degrees of freedom in residual minimization correspond to three global shifts
and three rotations of the complete detector. If no restrictions are posed, e.g.,
using information from other sub-detectors, one could, for example, fix alignment
parameters of some detection element, like a sensor. This sensor will then become
an alignment reference. Millepede II allows for the fixing of arbitrary parameters
and defining initial values and uncertainties for them.

But in general, it is more practical to fix some linear combinations of the
parameters, for example, the average of shifts and rotations of all sensors. This
can be represented as six linear equations—each defining one linear equality con-
straint. The set of all constraints poses an additional condition

A∆a = m, (11.13)

where {A}ij is the j-th coefficient of the i-th constraint. Each constraint is
formulated in the form ∑︂

cj∆aj = mi (11.14)

where mi is usually set to zero and cj are the constraints’ coefficients.
Millepede II allows for two possible ways of including linear constraints into

the solution. The classical method of Lagrange multipliers, where the global
matrix is enlarged, is accompanied by an elimination method, where instead, the
dimension of C is reduced before the solution. The elimination method is used
by default.

11.2 Track Fitting with GENFIT2
Track reconstruction and parameter estimation (fitting) in modern HEP detectors
is a complex task. Measurements of various types need to be combined in the
fits and compared to predictions obtained by extrapolations in detector material
and magnetic field. The GENFIT toolkit was developed as a generic framework
for track fitting in HEP experiments [86]. It was adopted for the Belle II track
fitting, and after a major upgrade, it is now known as GENFIT2 [87].

GENFIT2 has a modular design. Its functionality can be roughly divided into
three main categories:

• Generic representation of reconstructed hits dealing with their different di-
mensionality and expressing non-planar measurements in a suitable way.
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• Track representation and tools for particle extrapolation in a magnetic field
and detector material using the Runge-Kutta method.

• Track fitting algorithms, which combine the above information to estimate
the track parameters. At Belle II, a Deterministic Annealing Filter (DAF)
based on Kalman Filter is the default track fitting method [88].

The complete separation of the track fitting algorithms from details of the
underlying measurements is achieved by the method of virtual planes. After each
extrapolation, the track state is expressed in some virtual plane. For planar
detectors, this plane coincides with the sensor plane, while for wire hits in the
CDC, the plane is constructed as depicted in Fig. 11.1. Without any measurement
that would define a sensible preferred plane’s orientation, a co-moving frame of
the track (with a normal in the track direction) is constructed.

Figure 11.1: Construction of virtual planes and definition of the track-to-hit
residual for planar hits (left) and wire hits in the drift chamber (right).

Each virtual plane defines the local frame in which the state of the track is
represented by a five-dimensional vector q = (q/p,u′ = ( du

dw
, dv
dw

),u = (u, v))⊺,
where q/p is the signed track curvature, u′ is a vector of the track slopes and u is
a vector of positions (offsets). The dimensionality of the measurement is encoded
in a (projection) H-matrix, which reduces the local track state (the prediction)
to the local measurement dimension, such that the local measurement m has a
residual defined as

r = m−Hq. (11.15)

11.2.1 Helix Parameter Definitions
The track fit’s final output is the estimate of the tracks’ parameters, typically
extrapolated to the point of closest approach (POCA) to a given reference (pivot).
The tracks are extrapolated to the POCA, starting typically from a local track
state at the first measurement after the fit, propagating the particle backward.
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Figure 11.2: Definition of the Belle II helix parameters at the POCA in a
schematic projection of a helix trajectory in the x − y (left), y − z (middle),
and s− z space (right). [88]

The trajectory of a charged particle propagating in a magnetic field can be
locally described by a helix with five free parameters. At Belle II, the pivot point
by default corresponds to the origin of the coordinate system. The definition of
the five helix parameters is sketched in Fig. 11.2. In the x − y plane, where the
POCA is defined, the parameters are

• signed distance of the POCA to the origin d0,

• the angle ϕ0, between the transverse momentum at the POCA and the
x-axis,

• signed curvature ω (sign depending on charge), given as |ω| = 1/R, where
R is the radius of the helix.

For positively charged particles, the sign of d0 is positive (negative) if the pivot
point lies outside (inside) the circle given by the helix projection in the x − y
plane. For negatively charged tracks, this definition is reversed [8]. In the y − z
and s− z space, where s is the path length along the trajectory, the parameters
are

• distance of the POCA from the origin in the z-direction, z0 and

• the tangent of the dip angle tanλ.

In addition, variables dr and dz, also used at Belle, represent the transverse and
longitudinal POCA with respect to (using as a pivot) the calibrated IP position.

11.3 General Broken Lines Track Model
The just discussed helix with five free parameters is only an approximate global
description of the particle trajectories. In reality, the real magnetic field is not ho-
mogeneous; the particle undergoes energy loss and, in particular, travels through
detector material resulting in multiple Coulomb scattering and deviations from
a simple helical trajectory. General Broken Lines (GBL) [89, 90] is a track
model and re-fit which explicitly incorporates multiple scattering effects in the
parametrization. Its publicly available implementation [91] is maintained together
with Millepede II.
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Figure 11.3: Reference trajectory propagating in the detector material and mea-
surement residuals along arc-length s (top) and the GBL trajectory with offsets
ui at each point with a thin scatterer (solid vertical lines) and predictions at the
measurement points uint,i, interpolated from offsets at scatterers (bottom). The
fitted broken trajectory, reducing the residuals, is shown as a red line.

Initial trajectory

The GBL trajectory is composed of individual points. At each point, one defines
a local coordinate system (u, v, w). The track is locally described using q =
(q/p,u′,u) as the track model is linearized around an initial (reference) trajectory,
which corresponds to the particle path in the inhomogeneous magnetic field plus
the average energy (and thus momentum) loss effects. This trajectory is seeded
by the result of a previous fit performed by the standard reconstruction (see
Sec. 13.2), and the extrapolation is performed using GENFIT2, which provides
the point-to-point Jacobians

J i→i+1 = ∂(q/p,u′,u)i+1

∂(q/p,u′,u)i
(11.16)

and the list of steps in the detector material. The effects of multiple scattering are
added to the initial trajectory as depicted in Fig. 11.3. One introduces additional
points where the initial path is allowed to be broken. These points represent
idealized scatterers with zero thickness.

Kinks

Small changes in the track parameters are propagated from point to point using
elements of the propagation Jacobians. With three adjacent points having offsets
ui−1, ui, ui+1, two slopes can be determined at the central point: u′

i,− (left
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slope) and u′
i,+ (right slope). Their difference

ki = u′
i,+ − u′

i,− (11.17)

is called a kink. Its expected value is zero2, and its variance is related to the
distribution of radiation length along the path of the particle. An idealized thin
scatterer will be a source of variance of track slopes θ2

0 in each (orthogonal)
direction. This variance is diagonal in the co-moving frame. In general, the
coordinate frame at the point is not the co-moving frame3. In such a case, the
covariance for the kinks becomes

V k = θ2
0

(1− c2
1 − c2

2)2

(︄
1− c2

2 c1c2
c1c2 1− c2

1

)︄
, (11.18)

where ci = etrack · eui
are projections of the unit track direction into the unit

vectors of the local axes u and v.

Measurements

To obtain the broken trajectory predictions uint at the points with measurement,
the offsets at the scatterers are interpolated4 as sketched in Fig 11.3. The expected
values for these offsets are the measurements mi with a diagonal5 measurement
covariance V m,i. These measurements correspond to the residuals with respect
to the initial trajectory in the GBL formalism.

Least Squares Formulation

The parameters that fully describe the broken trajectory are a common correction
to the track curvature and all offsets at the scatterers (and offsets at the first and
the last measurements, if those have no scatterer):

x = (∆q/p,u1, ...,unscat).

The parameters are obtained by means of the least-squares method, where the
residuals from measurements and from kinks are minimized together using the
following χ2 expression:

χ2(x) =
nmeas∑︂
i=1

(Hm,ix−mi)⊺V −1
m,i(Hm,ix−mi) +

nscat−1∑︂
i=2

(Hk,ix)⊺V −1
k,i (Hk,ix),

(11.19)
2In the case that the initial trajectory is based on the General Broken Lines model itself,

non-zero kinks may be inherited from the previous iteration. In this case, the expectation is
non-zero (the previously determined kink). This option is implemented in the software but is
not used for alignment by default because no improvement was observed with this more detailed
and computationally expensive approach.

3We construct a co-moving frame in the case of points with only a scatterer. For points with
measurement, the natural coordinate system of the measurement is constructed.

4Later we will see that at Belle II, the first of the two scatterers in between every two
measurements coincides with the measurement, so the interpolation is trivial.

5A non-diagonal covariance matrices (for measurement or a scatterer) must be internally
diagonalized by GBL with the necessary modification of the measurements/kinks and precisions)
[90].
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where the (sparse) projection matrices Hm,i = ∂uint,i

∂x
and Hk,i = ∂ki

∂x
from the

large vector of track parameters x to the measurements and kinks are constructed
from the propagation Jacobians, see Ref. [92]. The solution is formulated as a
linear equation system

Ax = b (11.20)

with
A =

nmeas∑︂
i=1

H⊺
m,iV

−1
m,iHm,i +

nscat−1∑︂
i=2

H⊺
k,iV

−1
k,iHk,i

b =
nmeas∑︂
i=1

H⊺
m,iV

−1
m,imi.

(11.21)

A is a bordered band matrix, as every offset depends only on the adjacent points
(the band part with a size of five), and one common curvature correction param-
eter (bordered part with a border size of one) is included6 The special structure
of this matrix allows for avoiding matrix inversion in the solution of x [90].

In fact, the step of parameter estimation is not necessary for the alignment
formulation, as Millepede II performs the solution internally. The ingredients for
the local fit in Millepede II are the projection matrices H , covariance matrices V
and the vector of measurements (residuals) m, possibly after diagonalization is
performed in case of non-diagonal covariance matrices. GBL has a direct interface
to store this information in binary files used by Millepede II.

Composed Trajectories

So far, only trajectories of single particles have been discussed. GBL also supports
the concept of composed trajectories which can represent decays of unstable parti-
cles. The vector of fit parameters is expanded to contain information on multiple
trajectories as

x = (ω,x1,x2, ...,xn), (11.22)

where ω denotes a set of common parameters, which extend the border size of
A by dim(ω). The band part of A is now composed of n blocks, each for one
trajectory. The individual trajectories are correlated via the elements of the
common bordered part. A transformation from the set of common parameters
ω of the combined trajectory to the local parameters at the first point of every
single trajectory

Hω,i =
∂(q/p, u′, v′, u, v)⊺1,i

∂ω
(11.23)

must be defined. A small change in the common parameters then propagates
to the individual trajectories and the overall vector of track parameters of the
combined object as

∆x =
∑︂
i

∂x

∂q1,i
Hω,i∆ω. (11.24)

One can constrain such a change by an optional external measurement (residual)
mω of the external parameters with covariance V ω, which leads to an additional
contribution to the χ2 of the form (∂ω

∂x
x−mω)⊺V −1

ω (∂ω
∂x
x−mω). Such an external

6We are also using a second common parameter for drift chamber tracks: correction to track
time. In such a case, the border has a size of two.
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measurement can be a prediction from another detector, known invariant mass of
the decaying particle, or average interaction point position estimated previously
from many tracks.

11.4 Material Parametrization
Up to this point, we have not discussed where to put the additional scattering
points in the trajectory, and what value of θ2

0 in Eq. 11.18 should be used to
scale the covariance of the kinks. Let us, for simplicity, consider a situation
without a magnetic field and only in two dimensions, as illustrated in Fig. 11.4.
We can parametrize the track state by a two-dimensional vector (θ, y) of slope
and offset at any arc-length s. Assuming an idealized scatterer of zero thickness
with scattering variance θ2

i positioned at arc length si, a small deflection ∆θ will
propagate to a small change in the offset ∆y at arc-length s as ∆y ≈ (s− si)∆θ.
The covariance matrix propagated to s > si will thus have the form

V i(s) =
(︄

(∆θ)2 ∆θ∆y
∆θ∆y (∆y)2

)︄
= θ2

i

(︄
1 s− si

s− si (s− si)2

)︄
. (11.25)

A realistic material can be understood as a sum of (infinitely) many scatterers,
each at a particular arc-length si and with a scattering covariance (as seen at
arc-length s) given by Eq. 11.25. The total effect is contained in the sum of the
individual contributions and can be written as

V (s) = θ2
(︄

1 s− s
s− s (s− s)2 + ∆s2

)︄
, (11.26)

where we have denoted

θ2 =
∑︂

θ2
i , s = 1

θ2

∑︂
θ2
i si, ∆s2 = 1

θ2

∑︂
θ2
i (si − s)2. (11.27)

These three quantities can be understood as an overall normalization factor of the
scattering variance and mean and variance of the density of the material in units
of radiation length. By reproducing these three basic properties of the material
distribution, equivalent multiple scattering effects can be achieved.

Figure 11.4: Schematic depiction of multiple scattering deflection ∆θ from an
idealized thin scatterer (a) and from a realistic material distribution (b), also
leading to offset ∆y at some larger arc-length s. The total effect at s can also be
achieved by placing two thin scatterers (with appropriate scattering variances) at
specific points s1, s2 (c).
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In between each two (virtual) measurement planes, the steps retrieved during
the extrapolation of the initial trajectory in the detector material with local
radiation length X0 are used to compute the corresponding integrals:

X =
∫︂ 1
X0(s)

ds, s = 1
X

∫︂ s

X0(s)
ds, ∆s2 = 1

X

∫︂ (s− s)2

X0(s)
ds (11.28)

with total uncertainty of the track angle due to multiple scattering evaluated
using the Highland formula as [93, 57]

θ0 = 13.6MeV
βcp

z
√︂
X/X0[1 + 0.038 ln(X/X0)]. (11.29)

The triplet (θ2
0, s,∆s2), representing the material distribution (a thick scatterer)

is translated into a doublet of thin scatterers with positions and variances (s1 =
0, θ2

1) and (s2, θ
2
2). The position of the first scatterer is conveniently chosen to be

exactly at the point of the measurement. From the first scatterer (measurement),
the extrapolation is performed by arc-length s2, and a virtual plane in the co-
moving frame is constructed for the second scatterer, which is placed between
every two measurements. One can check that for distribution of the form

1
X0(s)

= δ(s)θ2
1 + δ(s− s2)θ2

2,

where δ(x) is the Dirac delta function, the normalization X = θ2
0, mean s, and

variance ∆s2 in expressions 11.28 are obtained for the following choice of param-
eters of the two thin scatterers:

s2 = ∆s2 + s2

s
, θ2

1 = θ2
0∆s2

∆s2 + s2 , θ2
2 = θ2

0s
2

∆s2 + s2 . (11.30)

The values of θ2
1 and θ2

2 are used to scale the covariance of the kinks in Eq. 11.18
at the measurement plane and at arc-length distance s2. This process is repeated
for each segment of the trajectory in between two measurements.

11.5 Parametrization of Track Time Offset
Next to the traditional five, GBL allows the inclusion of additional local track
parameters. We are using this method to allow for optimization of the track time
offset. The event time is determined by combining information from several sub-
detectors in a dedicated module, using information from all tracks in the event.
The time for track propagation in the detector is taken into account in the CDC
hit reconstruction. The track arrives (if it goes from IP) later into the outer
layers, and this delay is corrected in drift time estimation and subsequent drift
length and residual determination. If the track time relative to the event time
changes by ∆t0, the prediction in the only sensitive local u-coordinate of every
CDC hit i on the track changes by

∆ui = −sividrift∆t0 (11.31)

where vidrift is the estimate of the drift velocity from the x − t relation used to
reconstruct hit i, and si is a sign factor determining whether the track passes on
the left or right side of the wire, which produced this hit.
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Therefore an additional local derivative ∂ui

∂∆t0 = −sividrift is provided to the
GBL track model construction for each point with a CDC measurement, which
allows us to correct for this single parameter per each track (or decay) during the
alignment solution.

This correction is only included for drift times in the range (20, 200) ns and
for drift velocity smaller than 10−2 cm/ns. These cuts were determined in studies
of wire time calibration, and their primary purpose is to protect against poorly
described data entering the alignment procedure. However, a small dedicated
test did not reveal any impact on alignment parameters discussed in this thesis
when these cuts are removed, as bad data are generally rejected in Millepede II
automatically.

11.6 Parametrization of Decays

Tracks originating from decays of unstable (or virtual) particles provide additional
knowledge about correlations of the emerging particles’ properties. Namely, we
know they must come from exactly the same point in space—the decay vertex.
If this decay vertex corresponds to the luminous region, its position (with its
uncertainty) can be introduced as a constraint. The coordinates of the IP can
even be added to the alignment parameters.

Furthermore, invariant mass formed from the momenta and energies of the
particles should match the mass of the primary particle (or invariant mass of
beams

√
s for di-muons). In the case of two-body decays, the originating tracks

must be back-to-back in the rest frame of the mother particle. This information
then could be exploited in alignment. However, the invariant mass is known
only when no significant initial-state (ISR) of final-state radiation (FSR) occurs.
If this is not the case, some four-momentum can be lost due to undetected (or
ignored) photons. Thus using the known invariant mass (or even primary four-
momentum) as a constraint might require dedicated studies to ensure no biases
are introduced. Another complication is the necessary CM frame transformation,
which itself utilizes quantities (like calibrated beam boost vector) that are only
known to limited precision and can be time-dependent.

To introduce kinematic constraints and possibly external measurements like
known invariant mass, we implemented the support for two-body decays of type
V 0 → f+f−, where the mother V 0 particle has mass M and the daughter particles
have mass m. As this feature is not used anywhere in this thesis nor data produc-
tion, we leave out the details of this topic. We just note that the set of common
parameters is ω = (x, y, z, px, py, pz, θ, ϕ,M)⊺, where x, y, z are coordinates of
the decay vertex, px, py, pz is mother momentum (in laboratory frame) and θ and
ϕ are angles of the momenta of the daughters in the rest frame of the mother.
Four-momentum conservation then implies a decay model which correlates the
daughter momenta and vertices (x, y, z, px, py, pz)± in the laboratory frame to
ω. We followed the formalism in Ref. [94] and used an analytical derivative of
the decay model. We, however, still deem two-body decay parametrization and
related features to be experimental.

The daughter particles’ trajectories need to be included in a single combined
GBL trajectory fit object to include correlations among the two tracks in the
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alignment problem, see Sec. 11.3. For that purpose, we have to define the vector
ω of the parameters of the combined object and projectionsHω,i for each daughter
trajectory.

Before the MillepedeCollector module (see Sec. 13.4), the candidate decay
particle list has to be created and fitted with a vertex fitter, followed by an update
of the daughter momenta and positions. After this vertex fit, the common vertex
(now exactly the same for both tracks) is known and can be used as a seed for
GBL reference trajectory propagation by inserting it as the first point of every
single trajectory. This is particularly important as the individual trajectories
typically start at the first PXD layer, which is at a larger radius than the beam
pipe, usually representing the major material contribution seen along the path of
the tracks. By starting from the common vertex, usually inside the beam pipe,
its material is then taken into account in each individual GBL trajectory.

We construct the local measurement system for each trajectory with axes
u = (ux, uy, uz)⊺, v = (vx, vy, vz)⊺ and a normal n at the point of the common
fitted vertex vvtx such that the normal coincides with the track direction. This
defines a local frame at each initial point.

In case only the geometric constraint for the common track origin is required,
the set of common parameters that fully defines the state of (for example) two
daughter tracks at the vertex is

ω = (x, y, z, q/p(1), u
′
(1), v

′
(1), q/p(2), u

′
(2), v

′
(2))⊺, (11.32)

where x, y, and z are coordinates of the vertex, q/p(i) is curvature and u′
(i) and

v′
(i) are track slopes at the vertex for daughter i. The implementation allows for

an arbitrary number of daughters, but only two daughters have been used so far
in practice.

The projections from the common set of parameters to the local parameters
of each trajectory at the first point, defined in Eq. 11.23, then require as input
the matrices

∂(u, v)⊺
∂(x, y, z)⊺ (11.33)

for each first point of each trajectory, discussed further in Sec. 12.5. These are,
in fact, obtained from the transformations ∂(q/p,u′,v′,u,v)⊺

∂(x,y,z,px,py ,pz)⊺ , regularly used in GEN-
FIT2 to convert track states between local and global frames.

11.7 Alignment Data Samples
A rich topology of tracks used for alignment is crucial to suppress possible weak
modes. Our alignment software framework supports a wide variety of inputs,
from simple and cosmic ray tracks to two-body decays with invariant mass or
even primary four-momentum constraint7. These have been implemented before
the first data with somewhat optimistic expectations on the machine luminosity.
In the future, some of the advanced features could become interesting but will
require more thorough testing. Instead, for practical reasons, the list of data
sample categories is limited to the following three basic ones:

7A preliminary version of the primary four-momentum constraint was implemented before
the new interface to the beam boost, and invariant mass calibration was introduced. So it will
require a minor update to be usable for real data.
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• cosmic tracks in a magnetic field,

• single tracks from IP or outside of IP (off-IP), and

• IP-constrained decays.

The three most important of them are illustrated with real recorded events using
the Belle II event display in Fig. 11.5.

Figure 11.5: Event display of a typical event from a hadron (left), di-muon (mid-
dle), and cosmic (right) skim recorded by the Belle II detector. The tracks are
fitted with GBL. The blue bars are TOP modules that enclose the CDC. The
CDC wires are not shown. The red spikes represent energy deposits in the ECL
crystals, and the green boxes are KLM hits.

Cosmic ray data without a magnetic field are not listed. This is usually a
primary alignment sample and was used a lot for alignment at the start of the
data-taking, see Chapter 14. But tight schedules of the data-taking resulted in
a very limited amount of data without a magnetic field. Only a couple of hours
are usually devoted to taking this data at the start and end of each data-taking
period, i.e., four times a year. In addition, CDC calibration is not being derived
automatically for this data. Thus there is no recent data with a good calibration
to show in this section, and in turn, for the alignment itself.

The IP-constrained decays are entirely represented by e+e− → µ+µ− events.
These can only be used in later alignment stages when the detector is already well-
calibrated. Only then a reliable time-dependent IP calibration can be provided
to be used as a (possibly floating) constraint. Nevertheless, the di-muon events
are also used in the initial stages, only as single muon tracks.

Other single tracks are usually taken from a hadronic sample with multi-track
events. All tracks are used in this case. In addition, tracks originating outside of
the interaction (off-IP events) are mixed into the sample.

The basic data samples collected in specialized skims, and their MC equiv-
alents will be briefly described in the following subsections. The comparison to
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MC simulation is important as we want to do some alignment performance esti-
mates based on simulation studies. The aim is, however, not to match data and
simulation as close as possible. We even do not have an established simulation
for the off-IP events. But as long as the tracks are reconstructed correctly, more
information and track topologies should only improve the alignment. Thus, in
general, one should only check that MC covers at least the same phase space as
the data. A possible issue may be if one would, for example, assume that cosmic
tracks with a large d0 are recorded, while, in fact, these would be absent, e.g.,
due to some trigger limitations. Then MC could possibly overestimate align-
ment performance. The general philosophy of all alignment performance studies
is to provide conservative estimates for physics analyses, with upper bounds on
possible systematics. Thus, richer topology (e.g., momentum spectrum for cos-
mic rays) in real data samples with respect to MC simulation is not an issue,
in contrast to physics analyses, where one naturally aims for as close data/MC
correspondence as possible.

11.7.1 Cosmic Ray Tracks

Cosmic ray muons traversing the detector are essential for a reliable alignment.
They connect opposite halves of the detector, in contrast to tracks coming from
the IP. Their momentum spectrum goes far beyond what is possible in collision
events which makes them insusceptible to multiple scattering. In addition, they
are not correlated to the IP position, cover a wide range of phase space, and in
general, break the symmetry of events from the IP. On the other hand, there are
practically no horizontal tracks in the underground experimental hall, and the
angular asymmetry of the cosmic rays can cause issues in the alignment (if not
combined with other samples).

In the early stages of data collection, cosmic ray data were recorded in be-
tween luminosity runs. Prior to this, cosmic rays were the only available data for
alignment. However, due to the erratic availability of these data, many concerns
arose. Since Autumn 2019, a dedicated cosmic trigger and corresponding skim
have been introduced. In this skim, the cosmic ray tracks recorded during the
collisions are preserved and separated for further calibration and analysis. This
ensures all alignment data is recorded at the same time and therefore has the
same misalignment.

The cosmic software trigger looks for events with exactly two reconstructed
charged tracks. For each track, the related ECL cluster energy E corresponding to
the photon hypothesis is accumulated. For each track, it requires pt > 0.5 GeV/c,
E < 1 GeV (to suppress electrons that have a large energy deposit in the ECL),
and z0 and d0 in the region of a well understood magnetic field. With a condition

z0 < 57 cm or |d0| > 26.5 cm (11.34)

the forward region near the beamline with the complex field of the QCS and the
compensating magnets is avoided. Finally, the two tracks must be matched in the
polar and azimuthal angles within two degrees. As the real data sample is still
contaminated by tracks from collisions, an additional requirement |z0| > 0.4 cm
is used beyond the skim requirements.
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Figure 11.6: Distributions of helix parameters d0, ϕ0, pt, tan λ and z0 for the
cosmic ray simulation (blue) and cosmic data skim (red).

The initial reconstruction of cosmic ray tracks for trigger output calculation
on the HLT is provided by the standard reconstruction chain, and thus cosmic
particles are reconstructed as two separate tracks, split at the point of the closest
approach to the origin. For alignment, these tracks are always used as merged
and correctly oriented into a single list of hits, later used in the fits and for GBL
trajectory construction.

For MC simulations, two generators for cosmic ray events are available in
the Belle II software packages. A more realistic and advanced CRY [95] gener-
ator was used for some studies, but it was generally not used for any alignment
tests because of its long-standing issues and complicated configuration. Instead,
a generator imported from Belle is generally used, which is more efficient and
sufficiently realistic for our purposes.

The helix parameters of the reconstructed merged cosmic tracks are compared
to the simulation in Fig. 11.6. The phase space observed in the data is well
covered by the MC simulation, although some very high momentum tracks are
missing. The most important feature for alignment is the very wide acceptance
of the triggers in z0 and d0. On the other hand, the spectrum of angles is quite
limited. Note that the region with ϕ0 > 0 corresponds to tracks for which the
orientation becomes ambiguous as they do not come from top to bottom but
almost horizontally, entering and exiting primarily in the upper half of the CDC.
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11.7.2 Hadron Skim and Generic BB MC

A hadronic event candidate may be easily identified by the presence of many
charged tracks. In addition, a so-called Bhabha veto is imposed. The hadron
skim at Belle II [96] contains qq continuum, τ+τ− events, and BB events. It is
the baseline for most physics analyses. While this sample contains a lot of low
momentum tracks, which are generally not considered interesting for alignment,
there is a priori no reason to reject any correctly reconstructed and modeled
trajectory. For MC studies, we are only using generic BB events, which have,
on average, an even softer spectrum of particles from B meson decays. The
hadronic skim and our default MC to simulate it is compared in Fig. 11.7. As
we did not observe any issues on MC with the inclusion of the low-momentum
tracks, we do not impose any additional selections. In fact, in the initial stages
of the experiment, we simply used all reconstructed charged tracks. Later, it
became necessary to separate the events into individual skims to apply pre-scales
for processes with very high yields, like Bhabha scattering.
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Figure 11.7: Distributions of helix parameters d0, ϕ0, pt, tanλ and z0 for the
generic BB simulation (blue) and hadron data skim (red).
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11.7.3 Off-IP Tracks
Tracks stemming from accelerator operations but not originating from the lumi-
nous region have many different sources and are in most cases only considered
to be a background. One example is beam-gas events, where the beam interacts
with residual gas molecules in the beam pipe. Another example is beam halos
that interact with the material of the beam pipe or regions further upstream or
downstream of the beamline. Also, secondary particles from such interactions
produce such off-IP tracks.
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Figure 11.8: Distributions of helix parameters pt, z0, d0, ϕ0 and tan λ for the
off-IP data skim.

Following the alignment philosophy to utilize as much (reliable) information
as possible, we include off-IP events into the alignment data sample, although no
definitive positive effect was ever observed. On the other hand, no tensions have
been found when this sample is added/removed. There is no readily available
simulation of the combination of such backgrounds that could be easily used. In
addition, also the data skim itself may be further optimized. The distributions of
helix parameters from this skim are shown in Fig. 11.8. The software HLT decision
requires at least one track in the event to have ≥ 3 SVD hits and ≥ 20 CDC
hits and to satisfy |z0| > 2 cm. Currently, also criterion |d0| > 1 cm is included,
which is, however, not optimal and shall be removed.

Comparing Fig. 11.7 and 11.8, one can see a large overlap between the hadron
and off-IP skims (also seen in average high track multiplicity of the off-IP events),
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still mostly populated around the IP. In the future, this sample should be made
more orthogonal to the hadron sample. Note that in the z0 distribution, one can
identify so-called hot spots. These are special places where the beamline cross-
section is limited by structures providing detector shielding and beam collimation.
Secondary particles from these material interactions then shine into the detector.
These structures can be identified e.g. around z0 ∼ −120,−70, 60 and 110 cm.

11.7.4 Di-muon Events
The process e+e− → µ+µ−, called di-muon or µµ events, is an essential channel
for many calibrations with a clear experimental signature. In the preliminary
stages of the alignment, the two muon tracks are used individually, as usually, a
fine calibration of the IP is not yet available. In later alignment stages, the tracks
are combined into a single object to utilize the knowledge of their common origin
and its location and uncertainty in an IP-constrained fit.

Currently, the so-called tight di-muon skim is used for all alignment pro-
ductions. Its previous version was more efficient but significantly contaminated,
especially by electrons from Bhabha events, whose tracks pass through the gaps
between the barrel and the end-caps of the ECL and can thus mimic a di-muon
process [96]. The remnants of this problem can still be observed in the angu-
lar distributions of tracks from the di-muon sample, which are compared to MC
simulation in Fig. 11.9. Note the peaks in tan λ at ∼ 30◦ and ∼ 130◦, which
exactly correspond to the gaps, where the Bhabha (electron) veto is not efficient.
Because in the current alignment, only the geometric information is used, and no
kinematic assumptions are made on the two tracks, the small electron contami-
nation is not expected to cause any issues as the tracks still originate from the
primary luminous region.
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Figure 11.9: Distributions of helix parameters pt, ϕ0 and tanλ for di-muon sim-
ulation (blue) and tight di-muon data skim (red).

For the di-muon skim, two tracks with |d0| < 2 cm, |z0| < 4 cm, associated
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deposited ECL cluster energy E < 0.5 GeV, pt > 0.2 GeV/c and CM momentum
p⋆ > 0.5 GeV/c are required. The total deposited ECL energy must be less than
2 GeV, and the polar and azimuthal angles of the two tracks in the CM frame
must match within 10◦.

For MC, the KKMC generator is being used, and no further selections are
imposed on the reconstructed events as there is naturally no contamination from
other backgrounds like Bhabha events.

11.8 Selection of Hits and Tracks
Only limited pre-selection of hits and tracks is performed. For each hit in the
CDC, we require a converged DAF fit (see Sec.13.2) with reasonable weights
assigned to left / right measurements by the standard reconstruction and remove
bad hits from tracks. We reject tracks with more than 80% of removed CDC hits.
To avoid region where the description of the magnetic field is not reliable, we only
accept cosmic ray tracks which satisfy z0 < 57 cm or |d0| > 26.5 cm. Finally, we
only use tracks with goodness-of-fit p-value greater than 1 × 10−5 for data (and
1× 10−4 for MC). No further selections are used. We rely on the internal outliers
down-weighting by Millepede II. With these conditions, about 1% (3%) of the
remaining tracks provided to Millepede II are rejected on MC (data).
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CHAPTER 12

Alignment Parametrization,
Derivatives, and Constraints
In this chapter, we properly define all alignment parameters and derive analytical
expressions for the derivatives of the residuals with respect to them, ∂rij/∂a, as
defined in Sec. 11.1. Following the Millepede II conventions, we call these global
derivatives; in contrast to the local derivatives of the residuum with respect to
the track model parameters, automatically provided from a constructed GBL
trajectory, discussed in Sec. 11.3. At the end of this chapter, the linear equality
constraints on the global parameters will be discussed.

Although similar derivations can be found in literature [81, 74, 97], which had
been many times our inspiration, we are not aware of a fully consistent set of
results to which we could refer. The true value of the derivations in this chapter
is that most have been validated with simulations and real experiment data and
cross-checked with the software implementation.

12.1 Global and Local Frames
Any sensitive element records the best estimate of the track intersection position
in its natural local coordinate system, while the coordinates of, for example,
a pixel or strip used as input for track reconstruction are given in the global
reference frame. To translate from pixel or strip coordinates to a point in global
coordinates, one needs to know the position and orientation of the sensor itself.

If the local frame origin in the global frame is r0 and the local frame is rotated
with respect to the global frame by rotation matrix R, a point in the global frame
r can be obtained from the point in the local frame q as

r = Rq + r0 (12.1)

r0

R

y

x

r

R

q

Rq

Figure 12.1: Transformation of a point with position vector q in the local reference
frame (left) to a point r in global reference (right) is performed by rotation in
the local frame by R (middle) followed by a shift of the local frame origin by r0.
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Figure 12.2: Definition of local frame axes u, v, w and rotations α, β, γ.

as shown in Fig. 12.1. In fact, the transformation between the local and global
systems are so common that a unified interface is created for the VXD sensors,
which stores the combined transformations T (R, r0) for each sensor.

In practice, the alignment consists of finding corrections to these transfor-
mations. These corrections are usually expressed in the local system, such that
under a rotation ∆R and shift1 ∆q a point q changes to

q → q′ = ∆Rq + ∆q. (12.2)

Consequently, in the global frame, the updated point from Eq. 12.1 reads

r → r′ = R(∆Rq + ∆q) + r0. (12.3)

At this point, a proper definition of the rotation matrices, parametrized by
rotation angles, should be given. An important remark is that R and ∆R are
using different angle conventions. For R, used for geometry construction and
detector placements, Euler angles are used. At the alignment level, the actual
definition used to construct R is not relevant as we directly read these placement
matrices and extract the elements of the rotation matrix R, which are invariant
to angular conventions. Truly relevant are the alignment corrections ∆R, which
are using Tait-Brian angles. The angles are defined counter-clockwise, and the
(active) rotation (in a right-handed coordinate system) is performed by angle α
around the first axis, followed by rotation by angle β around the (new) second
axis, followed by rotation by angle γ around the (new) third axis. Therefore

∆R = R3(γ)R2(β)R1(α), (12.4)

where

R1(α) =

⎛⎜⎝0 0 0
0 cosα − sinα
0 sinα cosα

⎞⎟⎠ , R2(β) =

⎛⎜⎝ cos β 0 sin β
0 0 0

− sin β 0 cos β

⎞⎟⎠ ,

R3(γ) =

⎛⎜⎝cos γ − sin γ 0
sin γ cos γ 0

0 0 0

⎞⎟⎠ .
(12.5)

If the local system is the same as the global system, R = 1 and r0 = 0 and
the three axes are (1, 2, 3) = (x, y, z). One usually then denotes the angle γ as

1In the formalism in this section, ∆R and ∆r do not need to be small.
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Figure 12.3: Global and local half-shell, ladder, and sensor frames in the VXD
hierarchy.

ϕ. We will use this notation later for the alignment of the CDC, where we do
not construct local alignment systems. In all other cases, we define the local
alignment frame with axes (1, 2, 3) = (u, v, w) and the respective rotation angles
as in Fig. 12.2. In the case of silicon sensors, the local system is naturally placed
with its origin at the sensor center. The v-coordinate is then chosen to point
along the long sensor side, i.e., in the global z-direction (for non-slanted sensors).

12.1.1 VXD Mechanical Hierarchy
In the real implementation of the geometry in ROOT [98] and GEANT4 [99],
the transformations by rotations, translations, and scales are expressed as one
combined matrix operation, which can be achieved formally by defining 4 × 4
transformation matrices of general homogeneous transformation T (R, r0). The
advantage of this approach is that one can collect the chain of transformations
as matrix multiplications [100].
T (R, r0) transforms the local sensor coordinate q to the global point r as

r = T (R, r0)q, (12.6)
performing the same transformation as in Eq. 12.1. Originally only T (R, r0)
was needed for the reconstruction. For the purposes of alignment, we introduced
virtual intermediate local frames or hierarchy levels. These local frames directly
correspond to the geometry placements2 of the VXD half-shells to the global
system T shell→global, ladders into half-shell systems T ladder→shell, and sensors into
ladders’ systems T sensor→ladder. The orientation of the local frames is depicted in
Fig. 12.3. Note that two 90◦ rotations are needed to transform from ladder to
sensor frame. Thus we decompose the full sensor transformation in Eq. 12.6 as

T = T shell→globalT ladder→shellT sensor→ladder (12.7)
and can determine corrections in the local systems of the three hierarchy levels,
updating the transformation matrices as

T B→A → T B→A∆T B→A(∆RB,∆rB), (12.8)
2The geometry placements are using matrices T−1, chained to descend into deeper and

deeper levels of the geometry. We store their inverted counter-parts to revert the geometry
transformations and get hits in global coordinates.

187



r

t

n'

n

m'

m

p(Δs)

s=0

s=Δs

linearized
track

r

t

n'n

m'

m

p(Δs)

Figure 12.4: Illustration of the geometric situation to formulate the vector equa-
tion for the residual r of a distorted measurement m′ for a track with direction t
defined by the prediction p parameterized by the arc-length s. The normal to the
original (moved) measurement plane is denoted as n (n′), and the (new) residual
as r. The quantities in the figure are further described in the text.

where the transformation between each two levels A and B depends on the cor-
rections to rotations and shifts of the lower level B, denoted as ∆RB, ∆rB, with
B ∈ {sensor, ladder, shell}.

12.2 Rigid Body Alignment
In this section, the alignment of shifts and rotations of rigid bodies in different
frames is discussed, and the corresponding formulas are derived for global deriva-
tives. This covers all alignment parameters, except sensor deformations, reviewed
in the next section.

12.2.1 Residual for a Displaced Measurement
For a small displacement vector ∆d and small rotation matrix ∆R applied to a
rigid body, a measured point m at some original plane with normal n moves to
point m′ as

m→m′ = ∆Rm+ ∆d. (12.9)

The direction of the normal vector is rotated as n → n′ = ∆Rn. To make
the situation simpler, let us assume the initial track-to-hit residual of the hit is
zero (we will be interested only in differences) and the track with unit direction
vector t described by prediction p(s), linearized at the original intersection with
the plane is expressed as

p(s) = m+ st (12.10)

such that p(0) = m. The situation is depicted in Fig. 12.4. With the new,
displaced plane, the track has to be propagated to s = ∆s such that the new
residual

r = m′ − p(∆s) (12.11)

188



lies in the new plane (is perpendicular to n′). By construction, solving

0 = (m′ − p(∆s)) · n′ (12.12)

for ∆s, one obtains the expression for the residual on the displaced plane

r = m′ −m− (m′ −m) · n′

t · n′ t. (12.13)

The residual depends on the small displacement through both m′ (depending on
rotations and shifts) and n′ (depending only on rotations). One can check that
by replacing n′ with n, we neglect only terms of second order in the small pa-
rameters3. Thus, in the small misalignment approximation, the residual depends
on the displacement only through m′ as{︄

∂r

∂m′

}︄
ij

≈ δij −
tinj
t · n

, (12.14)

where i, j = 1, 2, 3. This 3×3 matrix will become useful for the following sections.

12.2.2 Alignment in Local Frame
A special case arises when the alignment parameters influencing a measurement
are expressed in the same local frame as the local track frame constructed at
the measurement. We use this convenient parameterization for planar detectors.
The local system and definition of rotation angles are shown in Fig. 12.2 and Eqs.
12.4, 12.5 .

The track direction in the local coordinates is t = (u′, v′, 1)⊺/
√

1 + u′2 + v′2,
where u′ = du

dw
= tanψ and v′ = dv

dw
= tan ζ. With a normal n = (0, 0, 1)⊺, the

expression 12.14 evaluates to

∂r

∂m′ =

⎛⎜⎝1 0 −u′

0 1 −v′

0 0 0

⎞⎟⎠ . (12.15)

For small rotation angles ∆α, ∆β, ∆γ and small displacement vector
(∆u,∆v,∆w)⊺ in the local frame, Eq. 12.9 can be explicitly written using local
coordinates for m = (u, v, 0)⊺ as

m′ =

⎛⎜⎝ 1 −∆γ ∆β
∆γ 1 −∆α
−∆β ∆α 1

⎞⎟⎠
⎛⎜⎝uv

0

⎞⎟⎠+

⎛⎜⎝∆u
∆v
∆w

⎞⎟⎠ . (12.16)

For a vector of alignment parameters a = (∆u,∆v,∆w,∆α,∆β,∆γ)⊺, one gets

∂m′

∂a
=

⎛⎜⎝1 0 0 0 0 −v
0 1 0 0 0 u
0 0 1 v −u 0

⎞⎟⎠ , (12.17)

3∆R = 1 + o(small angles).
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which is combined with Eq. 12.15 using the chain rule to obtain an expression for
the global derivative of the local residual r = (ru, rv, rw = 0)⊺ as ∂r

∂a
= ∂r

∂m′
∂m′

∂a
.

Therefore the matrix of global derivatives explicitly reads

∂(ru, rv)⊺
∂(∆u,∆v,∆w,∆α,∆β,∆γ)⊺ =

(︄
1 0 −u′ −u′v u′u −v
0 1 −v′ −v′v v′u u

)︄
. (12.18)

The (omitted) last row ∂rw/∂a of the matrix is identically zero, as the local
w-residual rw is zero for a planar measurement.

12.2.3 Alignment in Local Hierarchy Frames
The global derivatives for the parameters at the different hierarchy levels are
discussed in this section. If the hierarchy levels L1, L2 ... LN are organized as

global frame← L1 ← L2 ← ...← LN(sensitive elements) (12.19)

one can obtain the transformation between rigid body parameters
aA = (∆u,∆v,∆w,∆α,∆β,∆γ)⊺A and aB = (∆u,∆v,∆w,∆α,∆β,∆γ)⊺B of any
two levels LA and LB (A < B) using 6× 6 matrices derived in Appendix D:

∂aA

∂aB
=
(︄
R DR
0 R

)︄
,

∂aB

∂aA
=
(︄
R⊺ −R⊺D
0 R⊺

)︄
, (12.20)

where the R is the rotation matrix of the local system of the level B with respect
to the level A. The matrix D is defined as

D =

⎛⎜⎝ 0 z −y
−z 0 x
y −x 0

⎞⎟⎠ (12.21)

where (x, y, z)⊺ = r0 is the center of the B frame in coordinates of the level A,
such that the local-to-‘global’ (lower-to-upper; B → A) transformation equivalent
to Eq. 12.1 of a local point q in the frame B to point r in the frame A goes as
r = Rq + r0. The necessary rotation matrix and position is extracted from
the stored geometry transformations T (R, r0), which include sum of previous
alignment corrections, as in Eq. 12.8.

While our implementation allows for arbitrary hierarchy (recursively traversed),
only N = 3 hierarchy levels with L1 = shell, L2 = ladder and L3 = sensor are
implemented for the VXD geometry. The desired global derivatives are obtained
using the chain rule, which for the half-shells evaluates to

∂(ru, rv)⊺
∂ashell

= ∂(ru, rv)⊺
∂asensor

∂asensor

∂aladder

∂aladder

∂ashell
, (12.22)

where ∂(ru,rv)⊺
∂asensor

= ∂(ru,rv)⊺
∂(∆u,∆v,∆w,∆α,∆β,∆γ)⊺ as defined in Eq. 12.18. Similarly, for

ladders, we have
∂(ru, rv)⊺
∂aladder

= ∂(ru, rv)⊺
∂asensor

∂asensor

∂aladder
. (12.23)
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Therefore, if ladders and half-shells are aligned together with the sensors, the
matrix of global derivatives for each planar measurement will have 6 + 6 + 6 = 18
columns and 2 rows:

∂(ru, rv)⊺
∂a

=
(︄
∂(ru, rv)⊺
∂asensor

∂(ru, rv)⊺
∂aladder

∂(ru, rv)⊺
∂ashell

)︄
(12.24)

For the case of only one-dimensional measurement available from any SVD hit,
only the corresponding row is effectively used.

One can also exclude a hierarchy level from the alignment. In particular, one
can align only half-shells together with the sensors. In such case, the sensors are
(virtually) placed directly into the half-shells, and the necessary transformation
is obtained by multiplying the matrices in the chain:

∂asensor

∂ashell
= ∂asensor

∂aladder

∂aladder

∂ashell
. (12.25)

It should be noted that by introducing the additional alignment degrees of
freedom for ladders and half-shells, one has to include a set of linear equality
constraints. For example, any movement of a ladder can be canceled by an op-
posite coherent movement of all sensors in the ladder. So, two sets of parameters
correspond to the same alignment configuration. Obviously, this makes the prob-
lem underdetermined. To resolve this issue, one has to fix the average movement
of the sensors in every ladder such that all correlated movements are absorbed
only in the ladder parameters. We discuss the necessary constraints in Sec. 12.6.1.

12.2.4 Alignment in Global Frame
For alignment in the global reference frame, the measurement is expressed as
m = (x, y, z)⊺. The alignment parameters a = (∆x,∆y,∆z,∆α,∆β,∆γ)⊺ are
directly the shifts and rotations in the global coordinate system. The distorted
measurement from Eq. 12.9 evaluates to

m′ =

⎛⎜⎝ 1 −∆γ ∆β
∆γ 1 −∆α
−∆β ∆α 1

⎞⎟⎠
⎛⎜⎝xy
z

⎞⎟⎠+

⎛⎜⎝∆x
∆y
∆z

⎞⎟⎠ (12.26)

and its derivative with respect to the alignment parameters is

∂m′

∂a
=

⎛⎜⎝1 0 0 0 z −y
0 1 0 −z 0 x
0 0 1 y −x 0

⎞⎟⎠ . (12.27)

While the alignment parameters are expressed in the global system, the align-
ment input is the change of the local residual rl = (ru, rv, rw)⊺ defined in the
local track frame at the measurement. If the residual in the global coordi-
nates is r = (rx, ry, rz)⊺, it can be projected to a local frame with unit axes
u = (ux, uy, uz)⊺, v = (vx, vy, vz)⊺ and normal n = w = (wx, wy, wz)⊺, where
||u|| = ||v|| = ||w|| = 1. One has ru = r · u, rv = r · v, rw = r ·w and thus

∂rl
∂r

=

⎛⎜⎝ux uy uz
vx vy vz
wx wy wz

⎞⎟⎠ = R⊺. (12.28)
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The desired derivatives of the local residual with respect to the alignment param-
eters in the global reference frame are obtained using the chain rule as

∂(ru, rv, rw)⊺
∂(∆x,∆y,∆z,∆α,∆β,∆γ)⊺ = ∂rl

∂a
= ∂rl
∂r

∂r

∂m′
∂m′

∂a
, (12.29)

where for ∂r
∂m′ one should use Eq. 12.14. We will need only some elements of this

matrix of derivatives for the alignment of CDC wires and layers.

An equivalent expression can be obtained using the previous result for align-
ment in the local frame ∂rl/∂alocal from Eq. 12.18 and the global-to-local rigid
body parameter transformation ∂alocal/∂aglobal:

∂rl
∂a

= ∂rl
alocal

∂alocal

∂aglobal
, (12.30)

where
∂plocal
∂pglobal

=
(︄
R⊺ −R⊺D
0 R⊺

)︄
(12.31)

is defined in Sec. 12.2.3 (using A = global, B = local frame) and the rotation
matrix R⊺ is in fact the transformation matrix from Eq. 12.28, already silently
denoted above.

12.3 Sensor Surface Deformations
The brief history of alignment of the surface deformations of the silicon sensors is
discussed in Chapter 14. The main message is that, in reality, the silicon sensors
are not flat but deformed at a similar scale as the thickness of the sensors—about
50µm for PXD and sometimes over 300µm for SVD sensors. Neglecting this fact
in the reconstruction and alignment can lead to significant degradation of the
sensor resolution.

We parametrize each silicon sensor surface by two-dimensional Legendre poly-
nomials up to the fourth order. The one-dimensional Legendre polynomials of
interest, shown in Fig. 12.5, are defined as

L0(x) = 1
L1(x) = x

L2(x) = 1
2(3x2 − 1)

L3(x) = 1
2(5x3 − 3x)

L4(x) = 1
8(35x4 − 30x2 + 3).

(12.32)

They are orthogonal in the interval x ∈ [−1, 1]. The orthogonality is impor-
tant for properly separating the different degrees and can be guaranteed in 2D
mathematically if the sensor is illuminated uniformly in at least one of the two
coordinates.
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Figure 12.5: Legendre polynomials up to fourth order.

At each point with local coordinates (u, v) on the sensor, we define the nor-
malized, relative sensor coordinates as

ur = 2u/W
vr = 2v/L,

(12.33)

where W is the width and L is the length of the sensor. At each point, the local
w-coordinate (w = 0 for a flat sensor) is then generally given as

n∑︂
i=2

i∑︂
j=0

pi−j,jLi−j(ur)Lj(vr), (12.34)

where n is the order of the parametrization. This expression evaluates explicitly
for the third order to
w(ur, vr) = p20L2(ur) + p11L1(ur)L1(vr) + p02L2(vr)

+ p30L3(ur) + p21L2(ur)L1(vr) + p12L1(ur)L2(vr) + p03L3(vr)
+ p40L4(ur) + p31L3(ur)L1(vr) + p22L2(ur)L2(vr) + p13L1(ur)L3(vr)

+ p04L4(vr),
(12.35)

where the 3+4+5 parameters pij are the coefficients of the surface decomposition
into the Legendre base, shown in Fig. 12.6, and correspond to the actual alignment
parameters.

In the simulation, track finding, and extrapolation, the sensors are assumed
to be flat. To reduce the measurement residual, we shift the local measurement
coordinates during the GENFIT2 measurement construction using a simple ge-
ometric correction. The situation is depicted for the u-dimension in Fig. 12.7.
This approximate method assumes that

• the track curvature can be neglected, and

• the change of the length of the sensor due to the deformation can be ne-
glected, in the sense that the point H in Fig. 12.7 can be identified with the
local coordinate uh on a theoretically un-deformed sensor by simply moving
it along w.
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Figure 12.6: Base 2D Legendre polynomials corresponding to the decomposition
coefficients and alignment parameters pij. The rows show from top to bottom
quadratic, cubic, and quartic deformations.

At the aligned flat sensor surface, the track is locally parametrized with pa-
rameters ( q

p
, du
dw
, dv
dw
, up, vp), where the purpose of the subscript in up, vp is to dif-

ferentiate the estimates from the track prediction and from the actual local hit
coordinates (uh, vh). For SVD hits with only one coordinate measured, the pre-
diction from the track is used instead of the hit coordinate. The angles of the
track with respect to the (flat) sensor surface du

dw
= tanψ, dv

dw
= tan ζ can be used

to correct the local hit positions to first order as

uh → u′
h = uh + w(urh, vrh) tanψ

vh → v′
h = vh + w(urh, vrh) tan ζ,

(12.36)

where the superscript r denotes the relative normalized local coordinates.

From the above Eqs. 12.35 and 12.36, the derivatives of the corrected track-
to-hit residual vector r = (ru = u′

h− up, rv = v′
h− vp)⊺ with respect to any of the

surface alignment parameters pij is

∂(ru, rv)⊺
∂pij

=
(︄
Li(urh)Lj(vrh) tanψ
Li(urh)Lj(vrh) tan ζ

)︄
. (12.37)
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Figure 12.7: A charged track (green) crosses the real deformed sensor surface
(red) and creates a nearby hit at point H, with local u-coordinate uh. The track
prediction on the assumed flat sensor surface (blue) has coordinate up. By shifting
uh → u′

h, the track-to-hit residual can be reduced using the track incidence angle
ψ and the local sensor deformation at the hit position w(urh, vrh), using normalized
relative coordinates, i.e. urh = 2uh/W , where W is the width of the sensor.

12.4 CDC Layers and Wires
In the CDC, the sensitive elements are the ∼ 14 × 103 sense wires. The wires
are, to a good approximation, straight-line segments4. These are defined by
two three-dimensional points—one at each wire end at the respective backward
or forward CDC end-plate. The results of mechanical surveys of the chamber
during construction and installation [21] are used for the initial positions of the
wires as displacements (see Sec. 13.6.1). For each wire, the displaced end-point
positions are denoted (x0

b , y
0
b , z

0
b ) and (x0

f , y
0
f , z

0
f ) below.

For the purposes of the CDC alignment, we introduced additional degrees
of freedom to describe alignment corrections for a higher level of mechanical
structures: the layers. Each layer has six alignment parameters
(∆xb,∆yb,∆ϕb,∆xf−b,∆yf−b,∆ϕf−b). The three former are general shifts and
rotation of the layers at the backward end-plate; the three latter are the differences
between the forward and backward end-plate shifts and rotations.

The alignment corrections for the individual wires are applied on top of dis-
placements and layer alignment corrections. The track-based alignment cannot be
performed for the wire z-positions5, and thus there are four alignment parameters
per each wire: (∆xwb ,∆ywb ,∆xwf ,∆ywf ).

The layer rotation is performed before shifts due to layer and wire alignment,
4The wire tensions were measured after CDC construction to estimate the effect of gravita-

tional wire sagging in the reconstruction, where for the final estimate, the wire is parametrized
as a parabola.

5At least not with this basic method. In general, the resolution in z-direction is for CDC
worse than mechanical survey precisions, and thus the wire z-positions should be fixed to the
best knowledge from the survey.
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Figure 12.8: CDC layer and wire alignment parameters. The aligned wire (ma-
genta) is obtained from the initial (nominal + displacement) wire and layer po-
sitions (gray) after application of shifts and rotations due to the layer alignment
parameters (∆xb,∆yb,∆ϕb,∆xf−b,∆yf−b,∆ϕf−b), followed by application of the
wire shift parameters (∆xwb ,∆ywb ,∆xwf ,∆ywf ) for each wire-end on the backward
(left) and forward (right) CDC end-plate.

such that wires are rotated in-layer and not around the origin, although the
difference is fully negligible for small layer rotations and shifts. To be explicit,
the aligned wire end positions (xb, yb, zb, xf , yf , zf ) are defined as6:

xb = +x0
b cos ∆ϕb − y0

b sin ∆ϕb + ∆xb + ∆xwb
yb = +x0

b sin ∆ϕb + y0
b cos ∆ϕb + ∆yb + ∆ywb

zb = +z0
b

xf = +x0
f cos(∆ϕb + ∆ϕf−b)− y0

f sin(∆ϕb + ∆ϕf−b) + ∆xb + ∆xf−b + ∆xwf
yf = +x0

f sin(∆ϕb + ∆ϕf−b) + y0
f cos(∆ϕb + ∆ϕf−b) + ∆yb + ∆yf−b + ∆ywf

zf = +z0
f

(12.38)
In the track parametrization at a given wire hit, the local coordinate system

is constructed as depicted in Fig. 11.1. Thus the wires are not aligned in the
same coordinate system as the one used for the local parametrization, unlike
planar sensors. The local track frame is constructed at each wire hit such that
the local (insensitive) v-coordinate points from backward to forward wire-end
and the normal points along the track direction. Therefore the (only) sensitive
coordinate is u.

For the vector (∆xb,∆yb,∆ϕb,∆xf−b,∆yf−b,∆ϕf−b)⊺ of layer alignment pa-
rameters, the first three affect the residual equivalently on the backward and
forward end-plate. The influence of the latter three parameters is proportional to

6Note that the angles ∆ϕb, ∆ϕf−b are by mistake defined clock-wise in the software, same as
rigid body angles. This wrong sign is then compensated by a wrong sign of the global derivatives
with respect to rotations. The same sign flip is also present for VXD alignment. However, this
non-standard definition (which gets applied after reading constants from payloads) has been
kept for several years for backward compatibility. One must keep this in mind when manually
interpreting the raw parameter values in the alignment payloads.
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the relative z-position of the hit. Therefore, using the elements of the full general
matrix of derivatives ∂rl

∂p
from Eq. 12.29, the derivative of the local u-residual can

be written as
∂ru

∂(∆xb,∆yb,∆ϕb,∆xf−b,∆yf−b,∆ϕf−b)⊺
=

=
(︂
∂ru

∂∆x
∂ru

∂∆y
∂ru

∂∆γ zr ∂ru

∂∆x zr ∂ru

∂∆y zr ∂ru

∂∆γ

)︂
(12.39)

where zr ∈ [0, 1] is the relative normalized z-coordinate of the hit with z-prediction
zp from the track, defined as

zr = zp − zb
zf − zb

(12.40)

with zb and zf being the backward and forward wire-end z-position, respectively.
For the vector (∆xwb ,∆ywb ,∆xwf ,∆ywf )⊺ of the wire alignment parameters, we

align directly the shifts at both wire-ends. Thus similarly to the layers, the
derivatives of the local u-residual for the wire alignment are

∂ru
∂(∆xwb ,∆ywb ,∆xwf ,∆ywf )⊺ =

(︂
(1− zr) ∂ru

∂∆x (1− zr) ∂ru

∂∆y zr ∂ru

∂∆x zr ∂ru

∂∆y

)︂
(12.41)

where zr is defined in Eq. 12.40.
When wires are aligned together with layers, the additional degrees of freedom

introduced for layer alignment will result in a singular problem, as one can, for
example, compensate layer rotation by an equivalent coherent rotation of the
wires in the layer. Thus, similarly to the VXD alignment hierarchy, a set of basic
wire constraints needs to be introduced, which will be discussed in Sec. 12.6.3

12.5 IP Position Alignment
The IP position measured previously from many tracks can (together with its co-
variance) provide an additional strong constraint to the alignment problem. But
this position is itself correlated to the alignment, and thus it might be necessary
to determine corrections also for the IP position in the alignment procedure.

An initial estimate of the IP position b = (bx, by, bz)⊺ and the reconstructed
prediction of a common vertex vvtx = (vvtx

x , vvtx
y , vvtx

z )⊺ of (usually two) tracks
form a global 3D measurement residual defined as

r = b− vvtx. (12.42)

We construct the local measurement system for each track with unit axes u =
(ux, uy, uz)⊺, v = (vx, vy, vz)⊺ and a normal n at the point of the vertex vvtx such
that the normal coincides with the track direction. The residual in the global
system r = (x, y, z)⊺ can be projected to the local system q = (u = r · u, v =
r · v, w = 0)⊺ using the following matrix

P = ∂(u, v)⊺
∂(x, y, z)⊺ =

(︄
ux uy uz
vx vy vz

)︄
. (12.43)

The local residual is determined as

(ru, rv)⊺ = P r (12.44)
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and its global derivatives with respect to the beam spot (IP) alignment parameters
(∆bx,∆by,∆bz)⊺ are

∂(ru, rv)⊺
∂(∆bx,∆by,∆bz)⊺

= P . (12.45)

In addition, the local external measurement (2D) covariance is

V (ru,rv)⊺ = P V bP
⊺, (12.46)

where V b is the (3D) IP position covariance matrix in the global coordinates.
This is a completely external input, which must be provided by an estimate7 of
the size of the luminous region ellipsoid and its exact orientation in space.

12.6 Alignment Constraints

In this section, the linear equality constraints on the alignment parameters, in-
troduced in Sec. 11.1.4, are discussed. The constraints basically fall into three
categories:

• Trivial (or basic) constraints remove additional degrees of freedom intro-
duced for alignment of high-level structures. These constraints become
necessary for VXD if ladders and/or half-shells are aligned together with
the sensors and for the CDC if wires are aligned together with the layers.

• Reference constraints define the global reference frame and remove the basic
six undefined degrees of freedom that describe coherent movements of the
whole tracking system. Most of the constraints on the parameters of the
CDC layers fall into this category, as we decided to use the CDC to define
the Belle II alignment reference frame.

• Special constraints remove weakly defined degrees of freedom, which the
alignment procedure cannot sufficiently constrain. In this category, we have
a constraint on the twist of the CDC and various types of constraints on
the parameters of CDC wires, mainly fixing their radial movements.

12.6.1 VXD Constraints
The constraints removing the additional degrees of freedom for alignment of lad-
ders and half-shells can be retrieved from the hierarchy of geometry transfor-
mations. We have already discussed how the rigid-body alignment parameters
of consecutive hierarchy levels are related. A change in a higher-level A will
propagate to all daughter elements of a lower-level B as

∆aB = ∂aB

∂aA
∆aA. (12.47)

7At least a preliminary estimate is needed to assign reasonable weights to the external IP
position measurement (via its uncertainty).
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One can invert this relation and extract the coherent part of translations and
rotation of lower-level structures by simply8 taking an average over all elements
B which belong to A as:

∆aA = 1
N

N∑︂
B∈A

∂aA

∂aB
∆aB. (12.48)

Such correlated movements must be removed from the solution as we already
represent them by the parameters aA Thus the six constraints that remove the
redundant degrees of freedom of the higher level A will read

N∑︂
B∈A

∂aA

∂aB
(∆u,∆v,∆w,∆α,∆β,∆γ)⊺B = 0. (12.49)

These constraints are generated automatically from the known structure of the
hierarchy and stored transformation matrices ∂aA

∂aB
, ∂aB
∂aA

. Therefore if both ladders
and half-shells are aligned with the sensors, there will be six constraints for each
half-shell fixing the ladders inside the half-shells. There will be six constraints
needed for each ladder, fixing the average movements of sensors in the ladder.

12.6.2 CDC Layer Constraints
In this section, we will mainly discuss the method of fixing CDC as a rigid body in
space. For this, coherent movements have to be extracted from the combinations
of alignment parameters and set to zero. To fix movements along x and y and
rotation in the x− y plane, one needs the following three constraints:

• ∆xb-constraint (shift along x):

55∑︂
l=0

∆xb,l = 0 (12.50)

• ∆yb-constraint (shift along y):

55∑︂
l=0

∆yb,l = 0 (12.51)

• ∆ϕb-constraint (rotation in x− y plane, angle ϕ or γ):

55∑︂
l=0

∆ϕb,l = 0 (12.52)

8This is simple only to first order as rotation and translation generally do not commute.
One can, however, iterate this relation by back-propagating higher-level updates to lower-level
structures using Eq. 12.47. One may even need to update the linearized transformations
between the local systems for substantial shifts and rotations. In practice, we have needed only
a couple of iterations with the former approach so far.
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Figure 12.9: Left: reconstruction of the z-coordinate from stereo and axial hit
pattern at z = 0 projection in the CDC [88]. Right: schematic projection of axial
wires and wires with a stereo angle (top right) and how the apparent crossing
point of stereo and axial wires (assumed in reconstruction) moves with changing
alignment parameter ∆ϕb (bottom right), controlling coherent layer rotation at
both end-plates.

Similarly, the rotation around angles α and β9 can be fixed by constraining
the average difference of the relative shifts in y and x between the backward and
forward end-plate. In terms of the already introduced alignment parameters, this
evaluates to:

• ∆yf−b-constraint (rotation in y − z plane, angle α):

55∑︂
l=0

∆yf−b,l = 0 (12.53)

• ∆xf−b-constraint (rotation in x− z plane, angle β):

55∑︂
l=0

∆xf−b,l = 0 (12.54)

Note that all these constraints could be removed if, for example, a fixed VXD
could be used as an alignment reference. Similarly, if, for example, a fixed IP
position is introduced as an alignment constraint through IP-constrained decays,
one could remove constraints for shifts in x, y, and z (discussed in the follow-
ing subsection). These variations amount to different definitions of alignment
reference frames.

Z-Offset Constraint

So far, we have only provided constraints that fix the CDC movements as a
rigid body in five parameters. To understand the method to constrain effective
movement in the z-coordinate, it is best to see how the local approximate z-
position of a track can be inferred from the hit pattern in alternating axial and
stereo layers, as sketched in Fig. 12.9 (left). The stereo hits appear as shifted

9These rotation angles are defined to be around the center of the coordinate system, while the
layer alignment parameters ∆xf−b, ∆yf−b rather correspond to rotations around the backward
side at negative z and thus amount to a combined rotation and shift (of the CDC center of
mass), which are both unwanted.

200



because the track hits different stereo wires along its path. Thus the z-coordinate
of a track can be locally estimated from the shift of axial wire hits in the projection
at z = 0. If a continuous hit pattern is left, the track is close to vertical (tan λ ∼ 0)
and with z0 ∼ 0. Only tracks that are passing near the crossing points of stereo
and axial wires, as sketched in Fig. 12.9 (top right), will leave the hit pattern
undisturbed. In the design geometry, this crossing point occurs for all wires at
z = 0.

By inducing a specific rotation pattern to the axial layers, one can syn-
chronously move the crossing points in z by ∆z. The rotation must occur by
the same amount at both end-plates and thus is related to the layer alignment
parameter ∆ϕb. Consider such a small rotation by ∆ϕb in a specific axial layer
with stereo angle ϕstereo and radius R. As sketched in Fig. 12.9 (bottom right),
the shift of the crossing point is related to the layer alignment as

∆z = R∆ϕb tan(ϕstereo). (12.55)

The same ∆z must be produced in all stereo layers10. In that case, the total effect
is an effective shift of the center of the CDC in the z-coordinate. If we wish to
remove the combination of alignment parameters resulting in such CDC shifts in
z, we have to introduce the following z-offset constraint:

55∑︂
l=0

Rl tan(ϕstereo,l)∆ϕb,l = 0 (12.56)

to which actually only the stereo layers contribute as ϕstereo = 0 for axial layers.

Twist Constraint

This last constraint for the CDC layers belongs to the special category and may
not be needed if the track sample contains the necessary information to prevent
momentum biases for oppositely charged tracks. A simple set of tracks from
the IP will not provide such a constraint, and the CDC could be easily twisted
(backward and forward end-plate rotated relative to each other), changing the
momenta of the reconstructed tracks as a function of the polar angle and charge.

Such a kind of twist deformation can be removed from the spectrum of possible
alignment solutions by introducing the twist constraint:

55∑︂
l=0

∆ϕf−b,l = 0. (12.57)

12.6.3 CDC Wire Constraints
The main set of constraints involving alignment parameters of the wires
(∆xwb ,∆ywb ,∆xwf ,∆ywf ) is needed when wires are aligned together with the layers.
As we introduced the additional layer alignment parameters describing correlated
wires shifts and rotations, these movements at the wire level have to be removed
from the alignment solution. The correlated wire shifts are removed by two

10Otherwise, the tracks would not be smooth.
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constraints at each end-plate per every layer L:

backward:
∑︂

wire∈L
∆xwb,wire = 0 (x-shift),

∑︂
wire∈L

∆ywb,wire = 0 (y-shift),

forward:
∑︂

wire∈L
∆xwf,wire = 0 (x-shift),

∑︂
wire∈L

∆ywf,wire = 0 (y-shift),

(12.58)
To remove average rotations of wires in the layers, the vector of wire alignment
parameters (∆xwf/b,∆ywf/b)⊺ has to be projected to the R − ϕ coordinate using
wire angle ϕb/f,wire = atan2(y0

b/f,wire, x
0
b/f,wire) at the respective end-plates. This

results in two additional constraints per layer:

backward:
∑︂

wire∈L
− sin(ϕbwire)∆xwb,wire + cos(ϕbwire)∆ywb,wire = 0 (ϕ-rotation),

forward:
∑︂

wire∈L
− sin(ϕfwire)∆xwf,wire + cos(ϕfwire)∆ywf,wire = 0 (ϕ-rotation),

(12.59)

Radial Constraints

The radial constraints belong to the category of special constraints, as it is gen-
erally very difficult to align the wires in the radial coordinate. A typical physics
track moves in an approximately radial direction, and thus by construction, the
residuals of the wire measurements do not depend on the radial shift of the wires.
We will study the impact of the absence of any radial constraints in the full align-
ment with wires in Chapter 16. Let us here only summarize the different types
of radial constraints one may introduce.

Similarly to removing rotations of wires in layers, one can project the wire
alignment parameters to the radial direction. Using again the wire angle ϕb/fwire =
atan2(y0

b/f,wire, x
0
b/f,wire) at the respective end-plates, we define radial constraint

for a set of wires X at backward (b) or forward (f) side as:

Crad(X; side) :=
∑︂

wire∈X
+ cos(ϕside

wire)∆xwside,wire + sin(ϕside
wire)∆ywside,wire (12.60)

Using this notation, we can define a set of two layer radius constraints for
some layer L

Crad(layer L; b) = 0
Crad(layer L; f) = 0

(12.61)

or for more layers (two constraints per each layer). We also define CDC radius
constraints, fixing the average change of the CDC radius at both sides. In such
case, the sums run over all wires in the CDC:

Crad(CDC; b) = 0
Crad(CDC; f) = 0

(12.62)

One last version of radial constraints is discussed in the next subsection, where
we split layers into hemispheres.
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Hemisphere Constraints

The last, truly special constraints have been introduced to directly suppress an
observed weak mode in the full alignment with wires (see Chapter 16). These are,
in fact, variations on the already presented hierarchy constraints fixing average
rotations of wires and average radial movement of wires in a layer. Instead of
fixing the average over all wires in the layer, the wires are split into hemispheres,
for the rotations to left and right and for radial shifts to the upper and lower
hemispheres. Obviously, if such constraints are introduced for a layer L, the pre-
vious constraints for the averages over the whole layer are automatically fulfilled
and thus must be removed if the hemisphere constraints are used.

Using the notation from previous sections, let us first define circular con-
straint for a set of wires X as:

Ccir(X; side) :=
∑︂

wire∈X
− sin(ϕside

wire)∆xwside,wire + cos(ϕside
wire)∆ywside,wire (12.63)

and using the definition of the radial constraint in Eq. 12.60, we define a set of
eight hemisphere constraints for a layer L:

Ccir({wire ∈ L, cos(ϕbwire) ≤ 0}; b) = 0
Ccir({wire ∈ L, cos(ϕfwire) ≤ 0}; f) = 0
Ccir({wire ∈ L, cos(ϕbwire) > 0}; b) = 0
Ccir({wire ∈ L, cos(ϕfwire) > 0}; f) = 0

Crad({wire ∈ L, sin(ϕbwire) ≤ 0}; b) = 0
Crad({wire ∈ L, sin(ϕbwire) ≤ 0}; f) = 0
Crad({wire ∈ L, sin(ϕfwire) > 0}; b) = 0

Crad({wire ∈ L, sin(ϕfwire) > 0}; f) = 0.

(12.64)
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CHAPTER 13

Alignment Software
In this chapter, the alignment method will be described in terms of the soft-
ware implementation. This topic will be discussed only briefly, without aiming
to provide any actual documentation. Just one code example will demonstrate
the user interface to the alignment. However, the importance of this topic should
not be underestimated. In fact, any serious experimental physics work nowadays
requires a lot of time spent on software development. After implementing all the
concepts presented in the previous sections, extensive testing and validation on
simulations and later real data were required. For this work to be practically
useful for physics, it cannot be done separately but needs to be fully integrated
into the complete workflow of the experiment and automated. The author was
the leading alignment developer since the first lines of code, with occasional con-
tributions from other collaboration members.

The Belle II core software framework will be introduced in the following sec-
tions. Its most crucial part for the alignment, the track finding, and reconstruc-
tion, will be described briefly. As the alignment is only one of many detector
calibrations, the general framework for automating all calibration tasks will be
introduced before describing the actual alignment software.

In addition, alignment validation and misalignment will be included in this
chapter. These are slightly less software-oriented topics but had to be imple-
mented along with the alignment procedure itself to exercise it on simulations,
validate its results with MC or real data or estimate its related systematic effects
for physics analyses.

13.1 Belle II Software Framework

The Belle II Analysis Software Framework (basf2) [101] provides a foundation for
practically all software-related tasks of the Belle II experiment, from GEANT4
[99] simulation and detector response modeling (digitization) to reconstruction
and physics analysis. It has a modular design, and its core features are written
in compiled C++ (C++17 standard). The user interfaces and many additional
functionalities use Python code with bindings to the compiled layer. The basf2
is divided into external software, utility tools, and more than 30 packages with
experiment-related code. Millepede II is part of the external software provided
with the framework.

The main task of HEP frameworks is efficient event-level processing, where
large amounts of experimental data are split into individual triggered events,
which need to be simulated, reconstructed, calibrated, and analyzed. In the
event loop, the building blocks providing well-defined tasks, called modules, are
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executed in the order given by the user. This order does not need to be strictly
linear. The user puts the modules in a path, and depending on an optional return
value of any of the modules; this path can be split such that some modules
are executed only conditionally. This is illustrated in Fig. 13.1. The modules
exchange mutable data via a DataStore based on ROOT I/O functionalities
providing object persistence, streaming, and storage.

Figure 13.1: Schema of basf2 paths with modules and conditional branches (top)
and interaction of modules with the common DataStore and conditions database
(bottom).

In addition to event data, the processing also needs many other inputs, which
may depend on time and conditions during the experiment operation. This condi-
tion data is stored in a database. The database directly stores the C++ objects
with the conditions, like calibration or alignment constants, called payloads.
Each such payload is assigned an Interval of Validity (IOV), which defines the
range of experiment and run numbers where it is supposed to be valid. The set of
IOVs and payloads are accumulated for all possible condition types in a global
tag. Each global tag (GT) has a unique identifier. Global tags can be chained
together such that if no valid payload is found in the GT with the highest priority,
other GTs are searched for a valid set of calibration constants.

A standard reconstruction path in the current production has over 100 mod-
ules. In the next section, we will discuss only the most relevant part for the
alignment: hit and track reconstruction in the CDC and VXD. Naturally, the
reconstruction continues to the outer detectors and is also performed for other
particles, which do not leave any signal in the tracking detectors, like photons in
the ECL or K0

L mesons in the KLM.
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13.2 Belle II Track-Finding and Tracking
To even start any alignment studies, one needs to find the particle trajectories in
the reconstructed hit patterns. The process of track finding follows after initial
unpacking (or simulation of particle propagation and detector response on MC)
and preliminary hit level processing, like masking of hot channels and clustering,
all provided by the respective modules from the sub-detector packages. The
tracking chain [88] is highly modular. Its simplified schema is shown in Fig. 13.2.

13.2.1 Tracking Inputs
The PXD hits, which enter the full tracking chain, are determined by Regions
of Interest (ROI), provided by the HLT with preliminary tracking without the
PXD. The neighboring individual pixel hits with a charge above a given threshold
are merged into clusters. The charge of the cluster and the best estimate of the
particle intersection with the sensors are provided to the tracking.

In the SVD hit reconstruction, a similar clustering procedure is employed at
the strip level, where the additional time and signal wave-form information can
be utilized to improve signal and off-time beam background discrimination.

In the CDC hit reconstruction, the front-end electronics providing analog
signal digitization with a time resolution of ∼ 1 ns is used to measure the delay
from the trigger signal to the time of arrival of the drift electrons to the sense
wires and the read-out. Assuming the particle propagates at the speed of light,
the drift time of the electrons to the wire can be estimated and converted to drift
length using a calibrated x− t relation. Additional amplitude information related
to the unit energy loss of the particle is used for dE/dx particle identification.

Figure 13.2: Simplified schema of the Belle II tracking chain with modules in blue
and intermediate DataStore objects in white boxes. [88]
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13.2.2 CDC Track Finding
After initial CDC hit filtering to suppress background hits, CDC track finding
follows. This step is performed in two different approaches whose results are later
combined (merged). The global CDC tracking-finding is based on the Legendre
transformation and is mainly aimed at the reconstruction of tracks from nearby
the interaction point. The algorithm starts in the R − ϕ plane with axial wires,
where every CDC hit is represented by a drift circle. A transformation into the
conformal plane of plausible circles crossing the origin and being a tangent to
each of these drift circles is performed. The result is a plot with many sine-like
functions. In this conformal mapping, tracks are found as common intersections
of these functions (whose coordinates correspond to the track parameters). This
is iterated with the previously found and assigned hits being removed. A fast
circle fit is performed, and additional merging of compatible tracks is done, with
possible hit reassignment or attachment of unassigned hits. Finally, the stereo
hits are added to the tracks by similar procedures, only now the tracks are straight
lines in the appropriate conformal space, where the intersections correspond to
the helix parameters z0 and tan λ [88].

The local CDC track finding approach complements the global approach by
searching for tracks without assumptions about their origin. It is based on a
weighted cellular automaton that searches for connected hits in CDC super-layers,
called segments. Compatible segments are combined into tracks, with weighting
based on χ2 of a circle fit or a linear fit when stereo hits are combined.

At the merging stage, tracks found in the global approach are used as a
baseline, and segments from the local approach can be added using a multivariate
method trained on simulations to discriminate between wrong and good matches.

13.2.3 Tracking for SVD and PXD
The resulting tracks from the CDC are extrapolated to the SVD by Combinato-
rial Kalman Filter (CKF) [88], which starts from an initial seed and iteratively
extrapolates inwards, looking for compatible SVD hits. For tracks that do not
reach the CDC or leave only a few CDC hits, a standalone SVD track finding
algorithm is used. The inputs are 3D reconstructed global positions of the SVD
hits. Connected graphs are created with compatible hits, determined using a map
of compatible sectors, and trained on simulations. This significantly reduces the
initial combinatorics. A cellular automaton is applied to the graphs, which yields
plausible paths, forming track candidates. As a final step, the final collection of
tracks is retrieved by selecting the best non-overlapping candidates.

Once the SVD hits are attached to the CDC tracks, these tracks are merged
with CDC-only and SVD-only tracks and a combined fit by a Deterministic An-
nealing Filter (DAF) is performed [88]. DAF is used instead of a standard Kalman
Filter (on which it is based), as it allows additional down-weighting of bad mea-
surements. This is very important for left/right passage disambiguation for the
CDC hits as the wrong side hits are down-weighted. In fact, DAF is used at multi-
ple stages in the tracking chain to yield the best estimate of the track parameters.
These estimates are provided by GENFIT2, already discussed in Sec. 11.2, which
is interfaced with the tracking. All track finding and fitting algorithms operate on
a common DataStore object representing a track candidate and its fitted version,
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called RecoTrack.
In the final stage of the track finding, the PXD hits are attached to the

RecoTracks using CKF, and the final track fit is performed.

13.2.4 Tracking Output

Each RecoTrack can be an input to the alignment framework. The resulting
weights from DAF are used to choose the correct left/right side for each CDC
hit, such that only a single measurement is added at any arc length of the GBL
trajectory. This is a general design requirement of GBL. For SVD hits, which usu-
ally come as two individual 1D measurements at the same point of the RecoTrack,
these must be first combined into a 2D measurement. For slanted SVD sensors,
this also requires a non-diagonal covariance matrix, which encodes the correlation
of the two non-orthogonal strip hits.

The chain of the modules can also be reorganized for the reconstruction of
cosmic ray tracks. Each RecoTrack is extrapolated to the origin in the standard
reconstruction chain to determine its helix parameters and construct a compact
high-level Track object, which is the input of further reconstruction and physics
analyses. For most use-cases, the hit-level information is pruned to save disk
space. Alignment, however, needs complete hit-level information.

It should also be noted that a particle hypothesis is required for track extrap-
olation and fitting. The default particle hypothesis is a pion, the most commonly
produced particle. In alignment, if the inputs are directly the RecoTracks, we
instead assume the muon hypothesis. This is correct for cosmic ray tracks and
di-muons. For hadron and off-IP samples, a mix of particle species is present, but
the effect of using incorrect mass can be mostly neglected on average.

13.2.5 Vertexing

Finally, a very common procedure after the tracks are found is the decay recon-
struction and vertex fitting. Several options are available in basf2. The default is
TreeFitter [102], providing a global decay chain fit that allows to include some
additional constraints, not only on particle masses but also on lifetimes, allowing
to, e.g., include K0

S decay into the vertex fit. Naturally, the vertex fit, which
requires two or more tracks to meet at a single point (the vertex), is the most
common. In addition, one may introduce more constraints stemming from the
underlying physics process knowledge, e.g., an invariant-mass constraint or an IP
profile constraint, which includes information about the probability distribution
of the vertices coming from the primary interaction region. For alignment, the
RAVE [103] vertex fitter is used for di-muon decays. After the vertex fit, the
helix parameters of the daughter particles can be updated. This updated set of
parameters is used as a seed for constructing the GBL reference trajectory instead
of the original track seeds provided by the track finding. These are used only in
case plain RecoTracks are the input of the alignment.

209



13.3 Belle II Calibration Framework and Au-
tomation

A dedicated basf2 calibration package with a subset of tools known as Cali-
bration and Alignment Framework (CAF) was introduced to automate common
calibration-related tasks and allow developers (usually physicists) to concentrate
on algorithm development. The building blocks for each particular calibration
included in the CAF are

• Collector module, aggregating calibration-specific data and executed in
the event loop, and

• Algorithm class, which contains the logic of the calibration and is exe-
cuted over the collected and merged data.

Both are implemented in C++ with Python bindings exposed, such that most of
the CAF code devoted to workflow management can be written in Python.

The CAF takes care of the parallelization of the data collection step. Different
back-ends for batch submission provided by computing clusters are supported, as
well as a local back-end for testing and development. The calibration developer
should provide the collector and algorithm code and a basf2 path with neces-
sary pre-processing before data can be retrieved by the collector, typically with
standard reconstruction modules.

The individual calibrations are typically dependent on each other, and the
CAF takes care of the correct execution order. In addition, the databases and
payloads are managed by the CAF, as well as possible iterations, which can be
requested by the algorithm.

Figure 13.3: A snapshot of the Belle II Airflow-based calibration website shows
the current automated calibration status in the prompt processing of one calibra-
tion block (bucket 27) after the alignment task has finished.

The high-level automation of all calibration tasks is managed by the Python-
based Apache Airflow [104] platform for workflow scheduling and monitoring.
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Calibration is an Airflow task that creates new conditions by producing payloads
and their corresponding IOVs. The calibration workflow is separated into four
stages:

1. Local calibrations, which are independently provided by the sub-detector
groups. These contain mainly operating conditions but also initial calibra-
tions, like masking of hot or dead channels.

2. Raw data calibrations, which require full access to the data at the hit level.
Before alignment, the CDC tracking calibration, described below, is exe-
cuted. Only then the alignment of the CDC and VXD can run, followed by
the alignment of the KLM, which is also done using the alignment frame-
work and Millepede II. This, like the following calibrations, rely on properly
calibrated tracking detectors.

3. Data production for high-level calibrations, which run over all data and
reconstruct it again for storage in a final format, known as calibration DST
(cDST). In cDST, the usually available information for high-level physics
analysis is accompanied by additional data objects useful for further cali-
brations and validations.

4. Data-driven high-level calibrations use the cDST information without the
need for any additional data reconstruction and thus are usually very fast.
Examples are calibration of the IP size and position, the boost vector, or
the CDC dE/dx calibration.

The calibrations are submitted by experts from a convenient web interface,
which allows selecting input data and configuring the prepared calibration tasks.
Each task executes a CAF instance, which can be composed of multiple dependent
calibrations. The list of all the calibration tasks currently present is illustrated
in Fig. 13.3.

13.3.1 CDC Calibration
Alignment relies upon a reasonable calibration of the CDC unless only a stand-
alone VXD tracking and alignment is performed. In the CDC hit reconstruction,
initially, the drift time Tdrift of the electrons needs to be derived, which is related
to the TDC count when the signal arrives in the readout electronics as

Tdrift = T0 − Tevent − TTOF − Tprop − Ttw − a · TDC, (13.1)

where T0 is a constant offset per channel (wire), which needs to be calibrated first.
Tevent is the event time of the trigger, synchronized with the TDC clock, TTOF is
the estimated track flight time from the IP (or a reference plane for cosmic rays)
to the wire, Tprop is the propagation time of the induced signal along the sense
wire to the backward end-plate [21], Ttw is correction for the time-walk effect,
which is a function of the hit charge in values of ADC1, and a = 0.98 ns/count
is TDC clock resolution. CDC calibration proceeds in iterations with multiple
reconstructions of the tracks. After initial T0 corrections are converged, the x− t

1Usual parametrization is Ttw ∝ 1/
√

ADC.
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relation, necessary to translate Tdrift into drift length and position residual with
respect to a fitted track, is calibrated. This is followed by calibration of position
resolution and the time-walk corrections. Multiple passes may be needed for some
steps or possibly for the full chain.

CDC tracking calibration is very time-consuming—it usually takes about two
days on the computing cluster. This is naturally caused by the large number of
constants to be derived. There are about 14 × 103 T0 constants, one per wire.
The time-walk corrections are parametrized per each of 299 front-end readout
boards. The x− t relation is parametrized by a 5th order Chebyshev polynomial.
Near the cell boundary, the parametrization is replaced by a linear function. The
x− t relations are determined separately for each layer, side (left or right passage
of track w.r.t. wire), incident angle α, and polar angle θ, see also Sec. 18.2.4.
Also, the position resolution is parameterized separately for each layer, side, and
different incident angles [21].

13.3.2 Buckets and Prompt Calibration Automation

The initial purpose of the fully automated calibration in Airflow was to provide
preliminary constants for the experiment data in a timely manner. This so-called
prompt calibration loop is executed over data blocks, known as buckets. A
bucket should ideally span several consecutive days with stable operating condi-
tions. In practice, the buckets are currently longer, usually corresponding to two
weeks of data-taking between each two maintenance days. The integrated lumi-
nosity target is 9 fb−1 per bucket, but occasionally smaller buckets are processed.
Much more often, more data is collected, and the bucket is pre-scaled to 9 fb−1

equivalent of data.
The automated prompt calibration has been used since the end of 2019, and

over 30 buckets have been processed so far. In addition, the Airflow infrastructure
is also partially used for large data reprocessings, which usually happen once
per year.

13.4 The Belle II Alignment Package

The alignment package, developed and maintained by the author, provides the
complete implementation of the presented method, additional tools, and the in-
frastructure to efficiently and reliably apply the method to simulated or real data.
One of the most considerable benefits is the very tight integration. For exam-
ple, alignment uses exactly the same inhomogeneous magnetic field, energy loss
estimation, or extrapolation methods as the full official reconstruction. This is
possible because we previously integrated GBL into GENFIT2, which in turn is
tightly integrated into basf2 tracking. This integration is partially experiment-
independent. One can replace the geometry and interfacing detectors and run
the alignment (properly configured). This can be used, for example, for beam
tests or studies of future vertex detector upgrades.
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13.4.1 Core Components
The core of the alignment package is the interface, which calculates the global
derivatives with respect to the alignment parameters for every measurement used
to construct the GBL trajectory. The classes that translate the local hit coor-
dinates into measurements on virtual GENFIT2 planes are called RecoHits—for
example, PXDRecoHits or CDCRecoHits. In the alignment package, special classes
derive from those, as well as from abstract base class, which allows passing global
and local derivatives to the GBL trajectory construction.

Another key component hidden from the user is a number of generic C++
classes to handle different types of payloads and standardize the access to the
various alignment and calibration constants, calculation of global derivatives,
and management of possible time-dependence. In fact, in developing this in-
frastructure, the major challenge was to coordinate work across several mostly
independent groups and the ways their software packages and interfaces were or-
ganized. Beyond the alignment constants discussed in this thesis, we have imple-
mented a number of other calibrations and alignments. In particular, alignment
for EKLM and BKLM, as well as calibration of a number of CDC parameters,
are supported. While KLM alignment is used in production, it is performed af-
ter the VXD and CDC alignment, not simultaneously. All CDC calibrations are
currently experimental in different stages of testing (see also Chapter 18), and
currently, Millepede II is not used for any of the CDC calibrations introduced
above.

From the CAF point of view, the method is integrated into the
MillepedeCollector module and the MillepedeAlgorithm class. Prior to the
collector, a standard (or cosmic) reconstruction must be executed without hit
pruning. The collector loops over RecoTracks in arrays specified by the user or
RecoTracks related to particles from particle lists or decays, which must be pro-
vided by the user by putting appropriate modules to the pre-collector path. For
each such track or decay, a simple or combined GBL trajectory is constructed
and fitted to obtain the p−value, on which the user can impose a cut. Ac-
cepted trajectories are written to binary files to be used by the algorithm. The
MillepedeAlgorithm prepares the configuration files for Milepede II, executes
the external tool over the collected binary files, and processes the output into
payloads by updating alignment parameters determined previously.

13.4.2 Code example
From the CAF user perspective, much of the details are hidden, and a relatively
simple but highly configurable Python interface is provided. For easier config-
urations, fixing parameters, or adding constraints, several utility functions and
classes are provided. A much larger configuration space opens with unlimited cat-
egories of input data samples. Every data sample is usually provided by a separate
collection. A collection is a set of jobs with the same pre-collector path and col-
lector configuration. The collector supports single trajectories (also from cosmic
rays, including those without magnetic field) as well as vertex-constrained decays.
Further supported is the IP constraint, which adds the knowledge of the primary
IP to the alignment. In addition, experimental support was added for two-body
decays to include an invariant mass constraint. This can be combined with the
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IP constraint. A full four-momentum constraint, which utilizes the knowledge of
machine boost and invariant mass and could be used for e+e− → µ+µ− events,
was also developed.

Let us demonstrate the features of the alignment package by a realistic ex-
ample of a user configuration script (adjusted from an actual production script),
which could be executed by the CAF and performs full-scale alignment with over
60× 103 free global parameters. The configured calibration to be executed (also
demonstrated) is created by a single function call with a number of parameters.
The example code follows in Listing 13.1:

1 import m i l l e p e d e c a l i b r a t i o n as mpc
2
3 di−muon path = c r e a t e s t d p a t h ( )
4 f i l l P a r t i c l e L i s t ( ”mu+: good ” , ”p > 1 and muonID > 0 . 9 ” , path = di−muon path )
5 r e c o n s t r u c t D e c a y ( ” Upsi lon (4 S ) :mumu −> mu+: good mu−:good ” , ”9 < M and M < 11 ” , path = di−

muon path )
6 r a v e F i t ( ” Upsi lon (4 S ) :mumu” , 0 . 0 , daughtersUpdate=True , path=di−muon path )
7
8
9

10 c a l = mpc . c r e a t e (
11 name= ’ VXDCDCalignment ’ ,
12
13 d b o b j e c t s =[ ’ VXDAlignment ’ , ’ CDCAlignment ’ , ’ BeamSpot ’ ] ,
14
15 c o l l e c t i o n s =[
16 mpc . m a k e c o l l e c t i o n ( ” cosmic ” , path=c r e a t e c o s m i c s p a t h ( ) , t r a c k s =[” RecoTracks ” ] ) ,
17 mpc . m a k e c o l l e c t i o n ( ” hadron ” , path=c r e a t e s t d p a t h ( ) , t r a c k s =[” RecoTracks ” ] ) ,
18 mpc . m a k e c o l l e c t i o n ( ”mumu” , path=di−muon path , p r i m a r y V e t i c e s =[” Upsi lon (4 S ) :mumu” ] )
19 ] ,
20
21 t a g s =[” d a t a r e p r o c e s s i n g p r o m p t ” ] ,
22
23 f i l e s =d i c t ( hadron = [ ] , cosmic = [ ] , mumu= [ ] ) ,
24
25 timedep =[
26 ( ( al ignment . parameters . beamspot ( ) ,
27 [ ( 0 , run , 0) f o r run i n range ( 0 , 1 0 0 ] ) ) ,
28 ( ( al ignment . parameters . v x d h a l f s h e l l s ( ) ,
29 [ ( 0 , run , 0) f o r run i n range ( 0 , 100 , 1 0 ] ) )
30 ] ,
31
32 c o n s t r a i n t s =[
33 al ignment . c o n s t r a i n t s . VXDHierarchyConstraints ( type =2, pxd=True , svd=True ) ,
34 al ignment . c o n s t r a i n t s . CDCLayerConstraints ( z o f f s e t=False , t w i s t=F a l s e ) ,
35 al ignment . c o n s t r a i n t s . CDCWireConstraints ( l a y e r r i g i d=True , l a y e r r a d i u s = [ 5 3 ] ,

c d c r a d i u s=True , hemisphere = [ 5 5 ] )
36 ] ,
37
38 f i x e d=
39 al ignment . parameters . v x d s e n s o r s ( r i g i d=False , s u r f a c e 2=False ,
40 s u r f a c e 3=False , s u r f a c e 4=True )
41
42 commands=[
43 ”method decomposit ion 6 0 . 0 0 1 ” ,
44 ” s c a l e e r r o r s 1 . ” ] ,
45
46 params=d i c t (
47 minPValue =0.00001) ,
48 )
49
50
51 c a l f w = CAF( )
52 c a l f w . a d d c a l i b r a t i o n ( c a l )
53 c a l f w . backend = backends . HTCondor ( )
54 c a l f w . run ( )

Listing 13.1: Alignment script example.

Let us explain it by individual parts, identified by the line numbers:

• Line (1) only includes the basic import. Other needed imports are not
shown to keep the example shorter.

• Lines (3–6) demonstrate how a special track sample, in this case, IP-
constrained di-muon events, can be created. The definition of create std path
is not shown, but only the basic data unpacking modules and standard (or
cosmic for create cosmic path below) reconstruction modules are added,
followed by one final DAF fit. The user then can fill a particle list and per-
form decay reconstruction and vertex fit using standard framework utility
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functions from the analysis package. The final particle list of the mother
particle can be passed as alignment input, as well as the individual particle
lists, identified by unique names. Charge conjugation is always imposed in
the analysis package, so the reconstruction of µ+ means that also corre-
sponding µ− particle list is created.

• Lines (10–11) create a fully configured Python Calibration class with a
unique name using a single function call configured by several arguments,
discussed below.

• Line (13) defines the payloads whose constants should be calibrated. All
constants in the given payload are subject to alignment by default. The
user can limit the number of parameters via the fixed argument, described
below. The possible options which correspond to payload names are:

– VXDAlignment, which enables alignment of all sensor, ladder, and half-
shell parameters for VXD,

– CDCAlignment, which enables alignment of the CDC layers and CDC
wires

– BeamSpot for alignment of the IP position in case some decays with
primary beam constraint are used as input (see below),

– CDCTimeZeros for calibration of CDC T0 per each wire,

– CDCTimeWalks for calibration of the time-walk corrections per each
front-end board,

– CDCXtRelations, which allows still fully experimental calibration of
the x− t relations,

– BKLMAlignment and/or EKLMAlignment, which enables rigid body align-
ment of the BKLM and EKLM modules.

• Lines (15–19) define the input data for alignment, in this case in the form
of three collections with standard data samples introduced in Sec. 11.7. An
alignment collection is defined by a unique name, the pre-collector path,
and the name of input arrays for alignment2. These inputs can be

– tracks for single GBL trajectories created from the RecoTracks,

– particles for single GBL trajectories created from the RecoTracks
assigned to user-defined reconstructed particles,

– vertices for composed GBL trajectories with a vertex constraint cre-
ated from the RecoTracks of all daughters for each mother particle in
the list,

– primaryVertices, which in addition adds the primary IP constraint
and allows for alignment of the IP position,

2And optionally specific configuration options for the given collector
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– twoBodyDecays and their several variations3, which work only for de-
cays into two same-mass particles of type V 0 → f+f− and automati-
cally add an invariant mass constraint based on the mass of the mother
particle from the EvtGen table.

• Line (21) defines the input global tags, which contain the set of initial
calibration and alignment constants.

• Line (23) is to provide the list of input file names per each collection defined
above.

• Lines (25–30) demonstrate an advanced feature to define time-dependent
parameters. This is achieved by increasing the number of global parameters
by the corresponding number of blocks. The boundaries of these blocks can
be defined by 3-tuples with experiment, run, and the event number. In
this particular example, the three parameters for BeamSpot (IP position)
alignment (x, y, z) will be determined for every run from 0 to 100, while the
alignment of the 24 parameters for rigid body alignment of the four VXD
half-shells is done every ten runs. For each half-shell alignment block, a new
set of 24 constraints is needed to fix the average movement of sensors with
respect to half-shells in each given interval. The time-dependent constraints
are generated automatically. All parameters, including the time-dependent
ones, are determined in the simultaneous global fit. This feature is very
powerful and potentially useful but requires prior explicit configuration with
a good knowledge of the input data. Automating such a time-dependent
configuration will require additional development in the automated Airflow
workflow if used in the future.

• Lines (32–36) define the sets of constraints to be included in the solution.
Several Python classes implement the linear equality constraints defined in
Sec. 12.6. The type=2 for VXD constraints means sensors are placed into
half-shells (ladders are not used). Special constraints are used for layer 53
and CDC radius, and for layer 55, the hemisphere constraints are active.

• Lines (38–40) define fixed parameters. In this particular example, only
the highest-level surface deformations for all VXD sensors are fixed. This
is mostly used to exclude entire sets of parameters but can also be utilized
to fix individual parameters, e.g., to define alignment reference (instead of
constraints).

• Lines (42–44) allow to pass (or override default) configuration commands
to Millepede II. In this case, the decomposition method with a minimum
of six iterations for outlier rejection and down-weighting and convergence
limit of 0.001 is used for the solution. The parameter scaleerrors has no
effect when set to 1 but can be utilized for preliminary alignment in case of
very large misalignments to scale the measurement errors.

3For example primaryTwoBodyDecays, which implements the full four-momentum kinematic
constraint together with the IP-constraint
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• Lines (46–48) allow to set or override default parameters common to all
collector modules. Here the p-value of the GBL fit performed on each trajec-
tory (single or combined) is required to be larger than minPValue = 0.00001.
Collection-specific configurations can be set during collection creation.

• Lines (51–54) add the created Calibration object to the CAF and execute
it, using the HTCondor back-end.

With proper data as input, this script will span many collector jobs, typically
one per input file in each collection. After all collector jobs finish, their output
is passed to the algorithm, which runs Millepede II and produces the updated
payloads from the line (13). In case the solution method also provides parameter
error estimates σa, we also compute the normalized sum of parameter pulls

S = 1
N

N∑︂
i

∆a2
i /σ

2
ai
. (13.2)

For S ≥ 1 or maxi |ai/σai
| > 10, iterations with full re-running of the collectors

using the just determined constants are requested. The CAF will iterate until
the convergence criterion is fulfilled or the maximum number of iterations (by
default 5) is reached.

13.5 Alignment Validation
In this section, we shall briefly discuss various alignment validation methods. For
MC tests, we can directly validate the alignment quality by looking at the final
payloads. For data, the only way to estimate the goodness of the alignment is
to utilize multiple methods that cross-check the real performance of the tracking.
A variety of methods exist, but we will only mention those really developed and
applied to the Belle II data. More details can be found in Chapter 14 and 17, or
in the corresponding references.

Validation with Residuals

Validation methods based directly on the track-to-hit residuals can be divided
into two categories: those that do not need track information (like its incidence
angle) and those that utilize the track parameters.

The former methods only use the average residuals collected in each sensor
(or integrated over groups of sensors). Depending on how long the range of the
data is accumulated in each such distribution, the method becomes sensitive to
effects happening at different time scales. From a physics point of view, the
total accumulated dataset is usually used, and thus most stochastic effects will
be averaged, only contributing to a worse resolution and with some probability
to some small systematic deformation4. By evaluating average residuals from the
sensors over such a large dataset, one can estimate the average statistical precision
of the alignment. An example for data of one bucket is shown in Fig. 13.4,

4With N sensors randomly displaced with a fixed misalignment of statistical precision σ,
the average size of the expected coherent movement should be roughly proportional to σ/

√
N
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Figure 13.4: Histograms of the medians of distributions of track-to-hit residuals
in u (left) and v (right) from all VXD sensors for real data of bucket 14 with
default prompt alignment (red), the same data after run-dependent alignment of
the VXD half-shells (blue, denoted as ‘realig’) and MC simulation (with one more
PXD sensor, no background) misaligned using day-to-day alignment difference
from data (black). The number of entries (sensors), the mean µ, and the RMS
denoted as σ of the medians are shown (in µm).

compared to a case with an improved alignment and to an MC simulation with
misalignment, derived from a day-to-day alignment difference. The statistical
alignment precision estimated with this method is around 1 µm and 2 µm for the
R− ϕ and z directions, respectively. However, such a method does not allow full
decoupling of the alignment degrees of freedom contributing to the sub-optimal
residuals.

Increasing the time resolution of the method by using smaller blocks of data
allows for observing the evolution of the residuals. We devote Sec. 17.3 to these
residual-based methods and their results.

The second class of methods utilizes the information about the coordinates
of the track intersection with the sensor and its incidence angles. This allows
us to extract additional information and perform validation of almost all VXD
sensor alignment parameters [105] (also as a function of run), including sensor
deformations, which can be directly monitored. This method and some of its
results are briefly discussed in Chapter 14.

One additional method explored at Belle II is based on overlap residuals [106],
created by tracks crossing a VXD layer twice, where the sensors overlap. This
method can detect and distinguish some weak mode misalignments, and its results
for cosmic data are briefly demonstrated in Chapter 14.

Validation with Cosmic Rays

Muons from cosmic rays constitute a unique validation data sample. In the
standard method employed for the vertex performance evaluation and alignment
checks, used at both BaBar [70] and Belle [16], each cosmic track is split at the
POCA to the origin. Each of the two arms is then reconstructed separately.
The differences in the two arms’ helix parameters can be used to measure detec-
tor resolutions. Their correlation to the helix parameters can be used to study
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Figure 13.5: Difference of the reconstructed helix parameters of the upper and
lower cosmic arm in the prompt alignment data of exp 12 (black) and MC with
a model of prompt misalignment (red) as a function of helix parameters.

systematic misalignment.
In Fig. 13.5, we show the correlations of cosmic helix parameter differences

as a function of the helix parameters themselves. In this particular example, one
set of points comes from real data (prompt alignment) and the second from MC
simulation with misalignment, extracted from the difference between prompt and
reprocessing alignment. We discuss this method and the improvement due to the
reprocessing in Chapter 17. Notable are the correlations in the upper two rows
with vertex parameter differences, which are nicely reproduced by the misaligned
MC.

Validation with Di-muon Events

Muons from e+e− → µ+µ− events, as well as, e.g., electrons from Bhabha scat-
tering events e+e− → e+e− constitute relatively high momentum, experimentally
clean, low-background samples. The tracks from these events are back-to-back in
the CM frame and originate from a common interaction vertex. This knowledge
can be exploited to compare the expected helix parameters of the two tracks,
similarly to the cosmic validation. We devote Sec. 17.2 to this method.

Validation with Physics Analysis

The alignment shall also be validated at a much higher level by checking physics
performance. These checks currently have the disadvantage that a long time range
must be accumulated for sufficient statistics and that they usually depend also
on the quality of other calibrations or on the level of data/MC correspondence.
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Various analysis groups have performed multiple such cross-checks. Namely,
studies of the estimated particle lifetime dependence (currently at least for D0,
D+, Λ+

c ) on the data-taking period, azimuthal or polar angle, etc., constitute an
important check of possible alignment systematics. None of these checks revealed
any statistically significant deviation from expectations with the available dataset,
except for problems with early data, which have been fixed, see Chapter 14.
With much more data in the future, more subtle details could be resolved, and
such lifetime analyses could serve as a standard validation tool for alignment
performance evaluation.

13.6 Misalignment
In this section, we first discuss the implementation of the detector misalignment at
the simulation and reconstruction level and its evaluation and visualization using
a couple of typical examples. Afterward, the actual misalignment configurations
are discussed, with emphasis on residual misalignment scenarios used for the
estimation of the systematic uncertainty due to alignment in physics analyses.

13.6.1 Simulation of Misalignment
The geometrical configuration of sensitive elements of a real detector can never
be known exactly. In other words, the detector is misaligned. If the misalignment
is sufficiently large, physics performance can be degraded. In real data, the mis-
alignment is for free, and we aim to reduce it. However, in the basf2 GEANT4
[99] simulations, the detector is assumed ideal for technical reasons. If misalign-
ment is applied to the simulation, the sensitive volumes could start to overlap
with the support structures, which is not allowed for a reliable simulation.

Despite that, the concept of displacement was introduced. Displacement
means a difference from the design geometry directly at the simulation level. If
such displacement is implemented, the geometry needs to be checked for overlaps,
and these need to be (somehow) resolved. Currently, displacements are only used
for CDC wires, using information from a mechanical survey [21]. The VXD is
always simulated in the design position.

A correct simulation of misalignment on top of a design geometry should take
into account, for example, edge effects, where some hits get lost (or should be
added) to a misaligned sensor. This would require modification of the simulation
result at the level of individual digits, even before track-finding. We have not
implemented this approach. Instead, the misalignment is simulated by using
incorrect non-zero alignment payloads in the reconstruction (both track finding
and track fitting are using alignment-corrected sensor positions). Thus the correct
final alignment result in MC tests should be exactly the nominal geometry
(design + displacements), i.e., zeros for all alignment parameters. The difference
to the ideal result is called residual misalignment. Such an approach makes
the check of the alignment result rather trivial.

The task of the alignment method on MC is then to bring the alignment
constants as close to zeros as possible5. Exactly the same approach is used to

5Ideally, the level of residual misalignment on simulation should also correspond to that in
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correct for misalignment with real data. But with real data, the expected result
is, of course, non-zero, as the source geometry is not nominal.

13.6.2 Evaluation and Visualization of Misalignment
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Figure 13.6: Ring-plot visualization of the residual misalignment for VXD sensor
shifts from an MC test of the baseline alignment without constraints (top) and
after transformation into constraints’ reference frame (bottom), where sensors
and half-shells are aligned together and the coherent movements are absorbed
into half-shell parameters, shown as histograms in Fig. 13.7.

One drawback for the evaluation of the resulting residual misalignment occurs
in the (typical) case when linear equality constraints are used. With constraints,
the alignment parameters are expressed in a different reference frame. As an
example, consider a situation where the misalignment resulted in an average
total shift of the sensors in the local v coordinate (which points along the global
z direction). For a hierarchy where sensors are placed in half-shells, the alignment
is restricted, such that this average over sensors cannot change. Thus it has to
move the half-shell along z in the opposite direction. After (successful) alignment,
the absolute position of the sensors will be close to the nominal, but the actual
parameters in the payloads will be non-zero. We can we discuss the residual
misalignment only after we correctly interpret them and combine the corrections
for sensors and half-shells.

Therefore, one needs to do some additional calculations to interpret the resid-
ual misalignment, or one can already do this transformation before the misalign-
ment is applied. In the latter case, we say the misalignment respects the con-
straints. We are mainly using this latter approach as we find it more convenient

data. This is, however, pretty much impossible to guarantee, and the goodness-of-alignment
must be evaluated using performance studies. Relying entirely on MC simulation is not suffi-
cient.
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to aim for numbers as close to zeros as possible in the payloads after MC align-
ment tests. Both approaches are equivalent, and the necessary transformations
are achieved by iterative application of Eq. 12.48 and Eq. 12.47, which allows
solving for parameter values, which satisfy the constraints in Eq. 12.49.
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Figure 13.7: Histograms of residual misalignment for shifts of the VXD sensors
(top) and half-shells (bottom) from an MC test of the baseline alignment with-
out using constraints (black) and after transformation into constraints’ reference
frame (red), where sensors and half-shells are aligned together, and the coherent
movements are absorbed into half-shell parameters. Note that the black distri-
butions in the bottom plots would be identically zeros. The number of entries
(sensors or half-shells), the mean µ, and the RMS denoted as σ of the residual
misalignment distributions are shown (in µm).

As an example, residual misalignment from an alignment MC test (baseline
alignment with cosmic rays and single tracks from BB events), where the de-
tector was intentionally misaligned as a telescope (250 µm of initial amplitude),
is shown in Fig. 13.6. This is an example of so-called ring plots, in which val-
ues of alignment parameters for all VXD sensors can be visualized. Sensors are
organized into six concentric layers, where the ladder numbers are shown. The
sensors in each ladder are shown from the most forward (inner-most) to the most
backward. The slanted SVD sensors have a larger area, which might be slightly
visually misleading. One also clearly sees that only four PXD sensors are installed
in the second layer, in ladders 4 and 5.

After the alignment (with multiple iterations), where the sensors were aligned
individually with respect to the CDC (and each other) without constraints, we
observed residual misalignment with a scale up to 16 µm for sensor shifts. One
can directly see in Fig. 13.6 that there is a global shift of all sensors towards
+v (+z in the global system). After transformation to the system of half-shell
constraints, we can see the dominant pattern is gone, and the actual scale of the
misalignment at the sensor level (relative to half-shells) is only in the range of
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±4 µm.
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Figure 13.8: Residual misalignment for six CDC layer parameters plotted as a
function of the layer number from an MC test of the baseline alignment.

The histograms of the rigid body parameters corresponding to the shifts6 of
the sensors and half-shells are shown in Fig. 13.7. From these figures, we can
read the global shifts absorbed into the half-shell parameters. Their mean µ is
the systematic global offset caused by a weak mode in the CDC layers, causing the
vertical deformation responsible for the global residual shift in y of about 8 µm.
This can also be clearly seen in our typical representation of the CDC layer
alignment parameters. The corresponding residual misalignment of the CDC
layers is shown in Fig. 13.8. The parameter controlling the vertical movement
at the backward end-plate ∆yb (forward end-plate moves coherently as ∆yf−b is
close to zero) shows a clear slope, and layer zero is lower by ∼ 10 µm. The VXD
half-shells directly follow this deformation at the inner part.

Similarly, the global shift in z by about 14 µm is a typical weak mode. Such
global offsets are irrelevant for physics at this scale. These only represent the
absolute systematic error in the determination of the center of the detector from
tracks with respect to the reference system defined by the CDC constraints7. We
will return to the systematic biases and weak modes in Sec. 15.2.1 and Sec. 15.4.2.

The systematic precision of the relative half-shell position determination can
be estimated from the RMS in Fig. 13.7 (denoted as σ) to be an order of magni-
tude better, about 1 µm.

13.6.3 Misalignment for MC Studies
We have developed utilities for the generation of misalignment for two basic types
of MC studies:

• to test the alignment procedure and its ability to recover from misalignment,
and

6Rotations are not very interesting in this case, they change only marginally after the trans-
formation.

7With a CDC radius of about 1 m, these ∼ 10 µm systematic alignment errors translate to
a relative precision around 10 ppm in the determination of the CDC center from (cosmic and
collision) tracks.
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• to study effects of various types and levels of misalignment on the tracking
and physics performance.

Since the first data arrived, we have produced several special misalignment sce-
narios for estimating alignment systematics, discussed in the next section. In
addition, we could also use the total derived misalignment from data as a starting
point for the alignment tests on MC. This misalignment or its variants represent
the most realistic estimates of the starting geometry after detector construction.

Figure 13.9: The name, generating expression and schematic visualization for
nine classical weak modes, where sensors are misaligned in radial, R − ϕ or z
direction, depending on their cylindrical coordinates.

Two main categories of misalignment can be distinguished and generated in
the alignment package:

• Random misalignment, where misalignment for each parameter and, e.g., a
sensor is drawn from a normal or uniform distribution. Random misalign-
ments can be resolved by a single Millepede II iteration even at a level of
200 µm or larger, which was verified on MC.

• Systematic or weak mode misalignment, where long-range coherent defor-
mations are introduced. Following the work of BaBar, [70] and CMS [81,
74, 107], we introduce nine classical categories of systematic misalignment
for the VXD, typical for a detector with cylindrical symmetry in a solenoid
magnetic field and tracks coming from IP, illustrated in Fig. 13.9.

In addition, one can generate global misalignments of the VXD half-shells or
CDC layers, or any parameter at will by modifying the payloads.
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Systematic misalignment is the most challenging8. While from sensor to sen-
sor, the residual misalignment is small, the total effect over all sensors can lead to
a systematic deformation causing biases in estimated track parameters. The clas-
sical weak modes correspond to the invariant modes of the χ2 for tracks coming
only from the origin. For example, radial expansion can cause bias in estimated
particle momenta or particle lifetimes, as the detector appears smaller/larger.
Similarly, z-expansion modifies the total z scale, crucial for time-dependent CP -
violation measurements.

In the past, the effects of these systematic misalignments at larger scales
(around 200 µm usually) were studied for their physics impact, as well for the
possibility of identifying them with some validation methods, like the overlap
residuals. In Chapter 15, it will also be demonstrated that our alignment method
can recover from such misalignments, but sometimes iterations are needed, even
for systematic misalignments small in scale with respect to random misalign-
ments, recoverable easily in a single alignment step.

13.6.4 Misalignment for Physics Analyses
One important task of the author was to provide methods for the evaluation of
alignment-related systematic uncertainties for physics analyses. Naturally, the
alignment cannot be absolutely perfect, and for example, for lifetime measure-
ments, it can be a major source of systematic uncertainty.

The recommended procedure is to generate and simulate analysis-specific sig-
nal decays and reconstruct them with different misalignments applied on MC.
The parameters of interest shall be extracted from the complete (signal-only)
analysis, typically using a maximum likelihood estimate. The difference between
the result with nominal geometry (without misalignment) is then taken as the
systematic error corresponding to a given misalignment scenario.

It should be noted that maximum likelihood fits might be potentially sensitive
to variations in the event content in the likelihood function. With different mis-
alignments, some particular requirements, e.g., on the track quality, could lead
to different events entering the likelihood calculation for different misalignments.
This could lead to over-estimation of the alignment systematics when it is not
statistically significant. The simplest solution to this problem is a simulation of
a significantly larger MC sample than what is expected for real data. In this
approach, the statistical error on MC can be brought down such that systematic
deviations due to misalignment become statistically significant.

We introduced three complementary types of misalignment scenarios recom-
mended for alignment systematics estimation on MC:

1. Residual misalignments from MC studies, which are results of exercising
the alignment algorithm on a misaligned detector. These (we provide sev-
eral options) misalignment scenarios should represent the precision of the
alignment method itself.

2. Day-to-day misalignment, which was extracted from real data, when a dif-
ference of alignment constants determined from two consecutive days in

8Apart from distortion stemming from systematic effects due tracking or detector mis-
modeling, which are not weak modes.
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Figure 13.10: Histograms of the residuals misalignment for all alignment param-
eters in the model of prompt misalignment (black) and for the day-to-day align-
ment difference extracted from data (red). Wires (last row) are only misaligned
in the prompt misalignment model.

2020 was taken. This misalignment, partially visualized in Fig.13.11, rep-
resents the typical scale and distribution of effects, which can be easily left
uncorrected even after the reprocessing, especially at lower luminosities.
Besides a large bowing in the second PXD layer and misaligned slanted
SVD sensors, one can also identify a typical (real) CDC deformation in the
∆xb parameter. We have validated this misalignment on MC by comparing
distributions of medians of residuals from all VXD sensors to those observed
on average bucket data, see Fig. 13.4. This validation suggests that the sta-
tistical alignment precision is around one and two micrometers in the R−ϕ
and z direction, respectively- It is also well reproduced by the day-to-day
misalignment.

3. Model of the prompt misalignment from data, partially visualized in Fig.13.12,
which was derived during 2021 data reprocessing. As we have been able to
improve the alignment performance significantly, we investigated what the
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difference in the alignment constants is. This difference was then (with
an opposite sign) used to produce a special misalignment payload, which
reproduces the previously observed alignment problems on validation with
MC, as demonstrated in Fig. 13.5. This misalignment scenario represents
a realistic estimation of the misalignment in the prompt calibration and a
very conservative upper estimate for the reprocessing.

The latter two misalignment scenarios are compared in Fig. 13.10, also show-
ing half-shell parameters not shown in the visualizations.

Such misalignments are the baseline for alignment systematic studies in physics
analyses. In the future, more variants of the day-to-day alignment or residual mis-
alignments can be officially introduced. However, simulation of the misaligned
signal samples is computationally expensive, as the full event reconstruction must
be repeated. In addition, many analyses are using the IP information, which
needs to be re-calibrated for each particular misalignment. The reason is the
small movement of the apparent center of the detector due to a slightly deformed
CDC (by a weak mode or a real misalignment). While such an effect is not observ-
able in data, for MC simulation, the default beam spot calibration is determined
for a perfectly aligned detector, and this difference becomes observable as an in-
correct IP position. Thus for every misalignment, the MC sample with di-muon
events needs to be generated in addition, on which the IP position calibration is
repeated. Otherwise, unrealistically large systematic effects can be estimated.
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Figure 13.11: Visualization of the day-to-day misalignment extracted from data
for VXD sensors’ rigid body (top two rows) and surface (middle two rows) param-
eters and CDC layers (bottom two rows). The CDC layer alignment parameters
are shown as a function of the layer number.
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Figure 13.12: Visualization of the prompt misalignment model extracted from
data for VXD sensors’ rigid body (top two rows) and surface (middle two rows)
parameters and CDC layers (bottom two rows). The CDC layer alignment pa-
rameters are shown as a function of the layer number.
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CHAPTER 14

Belle II Alignment History
The evolution of the Belle II alignment from the first tests to the complete auto-
mated infrastructure for the determination of about sixty thousand parameters
has a long history, which started with the authors’ project conducted at DESY
Summer Student Program in 2013 [108]. This resulted in the authors’ master
thesis [77], and the alignment procedure successfully applied to the 2014 beam
test [109]. At the end of the master thesis, the very first test of a complete VXD
alignment on simulations was performed.

Since that first implementation, the code was completely rewritten for bet-
ter automation and a more straightforward addition of further sub-detectors and
alignment or calibration constants, such that support for alignment of the CDC
or BKLM and EKLM could be added. Features like the VXD alignment hierarchy
or vertex and IP-constrained decays were added continuously. The main develop-
ment was basically finished at the end of Summer 2019 when full support for time
dependence was introduced. Most of the latter effort was devoted to understand-
ing and improving the performance of the real data, as well to the finalization
of procedure automation. The introduction of several features in real data, like
the use of specialized data samples with cosmic rays recorded during collisions or
application of IP constraint in di-muon events, had to wait for sufficient maturity
of the experiment.

The following sections will briefly review the main periods where experimen-
tal results were achieved and often also published. These gradually led to the
increased complexity of the alignment problem and improved performance, up to
its current status, presented in this thesis.

14.1 Beam Tests
At all stages, we wanted to test the method on any available real data next to
extensive simulation studies. Such data was initially only available in dedicated
beam tests of subsections of the vertex detector, where the alignment method
was successfully applied.

There were two major beam test campaigns at DESY in 2014 [109], and 2016
[110], which followed after a number of tests with smaller matrices and preliminary
designs of the DEFPET sensors at the CERN’s SPS accelerator.

In 2014, the first combined beam test of the PXD (only one layer) and four
layers of the SVD was organized at the DESY beam test facility. The setup,
illustrated in Fig. 14.1 was placed in a 1 T solenoid magnetic field and illuminated
by a 2–6 GeV/c electron beam.

This was also the first time we used basf2 and the newly developed alignment
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Figure 14.1: The geometry in basf2 used for the 2014 beam test simulation and re-
construction with a single PXD matrix and four SVD sensors, with three EUDET
telescope modules in front and behind the VXD setup. Different colors denote
different material types: silicon (light orange), copper (orange), aluminum (blue),
electronic boards (magenta) and plastic (green).

procedure. Only a limited number of parameters can be left floating for alignment
in such a setup. The reference system was defined by fixing one of the sensors
(we usually used the first SVD layer). In addition, three sensors had to be fixed
in the vertical direction, corresponding to the direction of beam bending by the
magnetic field, to remove the weak bending mode. While this weak mode could
be removed by also using primary positrons in the beam or by combining with
data without the magnetic field, this could not be practiced in the beam tests.
We did not switch to positron beam, although that is in principle possible at the
DESY beam test facility. Several runs without the magnetic field were taken,
but the data could not be combined due to large (> 40 µm) movements. The
last sensor along the beam was also fixed in the horizontal coordinate to fix the
otherwise unconstrained global rotation along the vertical axis.

In 2016, a full section of the vertex detector (to be installed during the Belle II
commissioning phase) was the subject of beam tests at DESY. An example of
track-to-hit residuals and improvement in momentum estimation is illustrated in
Fig. 14.2. While full SVD ladders were installed, only the central sensors were
sufficiently illuminated, and thus the alignment setup was almost identical to the
2014 configuration.

The beam tests were essential in many aspects. Next to gaining operational
experience with the complex setup, we solved many issues. Some of the challenges
for alignment were data clean-up, particularly masking of hot pixels/strips and
proper configuration of track finders and outliers down-weighting. Also, problems
with the correct matching of hardware and software channel counting directions
were identified and fixed, as well as issues in the GBL and GENFIT2 interface.
The recorded data allowed for the characterizations of the sensors, verified cooling
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Figure 14.2: Track-to-hit residuals (left) in the horizontal (local u) coordinate for
the second SVD sensor in the 2016 beam test before (blue) and after alignment
(red). Improvement of the track momentum estimation for a 3 GeV/c electron
beam after alignment (right).

procedure, proved the concept of PXD data reduction, validated trigger and data
acquisition chain, track finding and fitting, alignment, as well, as access to the
condition database.

14.2 First Collisions and Phase 2
The start-up of the SuperKEKB accelerator and the Belle II experiment was
divided into three phases:

• Phase 1, where the SuperKEKB accelerator was commissioned, still without
beam collisions and the Belle II detector at the IP position at the beginning
of 2016. After detector roll-in into the beam-line position in 2017, a global
cosmic ray test was performed, which resulted in the first full calibration
and alignment of the CDC [21]. This was handled by stand-alone procedures
developed by the CDC group and served as a baseline for the next data-
taking period.

• Phase 2, taking place in Spring 2018, was devoted to SuperKEKB and
Belle II detector and background commissioning. The vertex detector was
reduced to one section of 18 sensors and accompanied by specialized back-
ground radiation detectors.

• Phase 3, starting in March 2019, with the full Belle II detector.

The first collisions were recorded on 26 April 2018. The first VXD alignment
was provided just a couple of hours later [111]. The existing CDC alignment
from the global cosmic ray test was used as a reference. Full tracks, including
CDC hits, were provided to Millepede II, but all CDC alignment parameters were
fixed. We aligned all 108 rigid body parameters (18 sensors × six parameters)
simultaneously using only the collision data. The residual distributions integrated
over all VXD sensors are compared before and after alignment in Fig. 14.3.
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Figure 14.3: Track-to-hit residuals in the v (left) and u (right) local coordinate in-
tegrated over all VXD sensors in Phase 2 before (black) and after (red) alignment.
A simple particle gun (electrons, positrons, protons) is used to generate 20× 103

tracks originating near the IP for comparison to MC without any misalignment.
All histograms are normalized.

The large angular spread of the incident tracks allowed for the first time to
study sensor deformations, where the necessary validation work was conducted
by J. Kandra [105]. Using the same geometrical considerations as in Sec. 12.3,
the reconstructed w-coordinate residual (for inclined tracks) is defined as

rw = ru
tanψ or rw = rv

tan ζ , (14.1)

where ru, rv are the residuals in u and v direction, and ψ and ζ are the respective
track incidence angles. The average w-residuals from many tracks binned over
the sensor area, weighted by their respective precision, proportional to tan2 ψ
(tan2 ζ), can be used to determine deviations from the flat sensor surface. Such
a distribution is shown in Fig. 14.4 (left) for one particular SVD sensor with a
simple rigid-body alignment.

As we have observed significant deformations of the sensors, in particular in
the SVD, where the total deformation amplitude can reach almost 0.5 mm, the
alignment and reconstruction were extended to correct for this effect, as described
in Sec. 12.3. This led to further significant improvements in the residual distribu-
tions. The effect of correcting up to second and third-order surface deformations
is demonstrated in Fig. 14.4 (middle and right).

14.3 SVD and VXD Commissioning and First
Cosmics in Completed Belle II Detector

After Phase 2 data-taking finished on 17 July 2018, the VXD assembly and
installation preparations started. During this period, only cosmic ray tracks
triggered by scintillator plates were used to independently align the two SVD
half-shells. After the installation of PXD into the SVD, we aligned the setup
again. A snapshot from the event displays of the two configurations is shown in
Fig. 14.5.
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Figure 14.4: SVD sensor 4.1.2 in Phase 2 and the distribution of the average
w-residuals before surface alignment (left), after using 2nd order deformations
(middle) and including also 3rd order deformations (right). The blank space
corresponds to a broken APV chip resulting in an inactive part of this particular
sensor.

Due to challenges in the PXD ladder assembly, the full two-layer PXD could
not be completed in time, and so it was decided to proceed with only the first
PXD layer fully equipped. Only four DEPFET sensors were available for the
second layer, which was intentionally oriented to cover a problematic sensor in
the first layer. This sensor (backward sensor in the third ladder with ID 1.3.2)
was later fully disabled.

Figure 14.5: Visualization of the two SVD half-shells (left) and the completed
VXD (right) in the basf2 cosmic reconstruction.

This was the first time we had to use alignment constraints, typically fixing
the total average shift and rotation of all SVD sensors. For the first time, we
got an almost complete picture of the total VXD misalignment after assembly,
including sensor deformations.

After VXD installation into the Belle II detector, two periods with a global
cosmic run followed, first without magnetic field and second after solenoid exci-
tation, when the end-yokes hosting the forward EKLM had been closed.

Already in this data, the most serious historical alignment problem could be
observed. Unfortunately, the related validation arrived only much later, when
we fixed the issue soon after the first collisions in 2019. The problem can be
seen on residuals collected from sensor overlaps [106]. With the cosmic sample, a
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Figure 14.6: Overlap residuals for different (left) and same sensor number (mid-
dle) and residuals without an overlap (right) from Spring 2019 cosmic ray data
before the fix of SVD barrel sensor pitch (top) and after (bottom). [106]

strange snowman structure was identified in Fig. 14.6. We show overlap residual
distributions in the same figure after a fix, discussed at the beginning of the next
section. Since this fix, no further problems were identified in this overlaps residual
validation, which requires a large amount of data and is only sensitive to coherent
VXD deformations with amplitudes larger than several tens of micrometers.

14.4 Phase 3 and Early Physics Data
In March 2019, the first collisions in the full Belle II detector were recorded.
Soon after, the aforementioned issue was identified in the dependence of track
transverse impact parameter d0 on its azimuthal angle ϕ0. As at Belle II, the
nominal IP position is about 0.5 mm from the origin of the alignment reference
system; this induces a correlation of the helix parameters extrapolated to the
POCA to the origin. This distribution with just a nominal geometry before any
alignment, with the initial alignment with collision data, and after a fix is shown
in Fig. 14.7. After a number of investigations, we could not find any problem in
the alignment itself. By careful inspection of the inputs, the SVD group found
a mistake in the XML configuration file used for geometry construction. The
problem was a slightly wrong pitch of the rectangular SVD sensors in the u-
coordinate. This led to effects resembling radial expansion (about 100 µm for the
barrel SVD sensors), which can also be identified with the overlap residuals in
Fig. 14.6 by comparing to MC studies with various misalignments [106].

We have entirely recomputed the alignment with the correct SVD sensor pitch
and obtained rigid body parameters shown in Fig. 14.8. At that point, the VXD
was aligned sensor by sensor with respect to the CDC (still with its stand-alone
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Figure 14.7: Transverse impact parameter d0 for collision tracks from early 2019
data as a function of track azimuthal angle ϕ0 without any alignment (right),
with alignment before the SVD pitch was fixed (middle) and after (right).

alignment derived before collisions), without alignment hierarchy enabled. First,
one can identify a large global shift with respect to the CDC reference system
origin, about 1 mm towards +z (v). Notable is the scale of the initial misalign-
ment and that this was recovered without any dedicated pre-alignment procedures
completely using Millepede II1. Many sensors are displaced more than 300 µm
from their nominal position, which was considered a limit of VXD mechanical
construction precision.

Figure 14.8: Rigid body parameters of the VXD sensors showing the total VXD
misalignment with respect to design geometry, determined sensor-by-sensor.

The second feature is the alternating pattern for the SVD sensors in the outer
layer in the u (R−ϕ) shift and angle β. This is known as a zebra effect, and it is
caused by a slightly wrong diameter of bending of the cooling pipes connecting
doublets of outer SVD ladders at the forward side. This pattern can also be
observed in some of the deformation parameters, namely P11. The determined
surface alignment parameters up to third order are shown in Fig. 14.9.

1About five iterations are needed, where initial measurement errors need to be scaled and
requirements on track quality removed.
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Figure 14.9: Surface deformation parameters of 2nd (top) and 3rd (bottom) order
for the VXD sensors showing the total VXD misalignment with respect to design
geometry, determined sensor-by-sensor.

The amplitude of bowing in the u-direction (P20) is apparent in SVD layers
starting from layer four (L4), reaching over 100 µm. On the other hand, even
larger bowing is present for L4 in the v-direction (P02). Note that the total
deformation amplitude is the sum of all the contributions, which is larger than
300 µm for some sensors. While the scale of second-order deformations is up to
250 µm, we only observe amplitudes up to 60 µm for third-order deformations.
At that time, higher-level deformations were not considered; their scale was only
about 10 µm. We started to use also this level of deformations since the 2021
data reprocessing.

Figure 14.10: Preliminary analysis of D0 lifetime dependence in D0 → K−π+ on
the azimuthal angle of reconstructed D0 momentum in early 2019 data before
CDC alignment with Millepede II (left) [112]. The absence of any significant
variations after we introduced the new alignment is demonstrated using a larger
dataset, including data from Autumn 2019 (right).

Already with the early physics data, the Belle II Charm analysis group started
with their first look at D0 lifetime measurements [113], as it was recognized that
Belle II should be able to improve the current most precise measurements already
with less than 100 fb−1. These early studies identified [112] a bias in the lifetime
as a function of D0 flight direction, shown in Fig. 14.10 (left). Other indications
for similar problems in analyses that utilize the IP position information lead to the
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first global VXD and CDC alignment. At that point, the wire-by-wire alignment
was taken from the previous older stand-alone CDC alignment, and only the
layers were aligned together with VXD. At that time, it was not known that
large deformations CDC could easily happen—this came as a large surprise later,
after the first data-taking period in 2019 finished in the Summer. Nowadays,
we can understand better what happened. Since its last alignment, CDC has
been deformed. Even with VXD realignment, an inconsistency is introduced in
the IP position seen by the VXD and the (misaligned) CDC. All these problems
disappeared after we switched to the global VXD and CDC layer alignment. One
example from the D0 lifetime analysis with much more data from a later period
is also shown in Fig. 14.10 (right).

Figure 14.11: Initial alignment parameters of the CDC layers, showing the total
misalignment with respect to surveys (displacements). The horizontal axis shows
the layer number. The range of vertical axis is±300µm for shifts and∼ ±0.4mrad
for rotations.

The initially determined CDC layer alignment constants are shown in Fig. 14.11.
Note that these are determined on top of displacements already implemented in
the geometry. The corrections to shifts are under 200 µm, and we can see that a
larger misalignment is generally present in the inner layers.

Most of the features from these plots, as well as the previous for VXD, are
still present, only much smaller corrections are induced from alignment to align-
ment, and in addition, the alignment has a tendency to oscillate, with occasional
re-alignment of the detector after a misaligned period. This can be nicely demon-
strated on alignment validation plots for the PXD sensors as, for example, in
Fig. 14.12, showing data just before the Summer 2019 shutdown. Here an initial
constant alignment is used to see time-dependent deviations. This method [105,
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Figure 14.12: Alignment validation for rigid body parameters u (blue), v (red), w
(green) (top) and surface parameters P20 (blue) and P02 (red) (bottom) showing
time-dependence with two major QCS events denoted by vertical lines. On 28
May 2019, a QCS power supply issue occurred, while on 9 June 2019, a quench
happened in the QCS magnets. [114]

114] is based on the determination of the local w-residual like for validation of
sensor deformations. This allows extracting estimates for rigid-body (except an-
gle γ) and surface misalignment. However, as the shifts in u and v are subtracted
first using means of the residual distributions, the results can be misleading.
This method cannot fully decouple the responsible alignment degrees of freedom
and, for example, shows apparently too large misalignments in v, which are, in
fact, combinations of sensor rotation and shift along w. However, this method is
sufficient for qualitative insight into the time-dependence.

Two major events could be correlated to the large misalignment changes, one
due to a power supply issue and the second due to a quench in the QCS magnet
system. However, besides those, one can see many more steps and sometimes con-
tinuous time evolution, for which no explanation exists yet. It is also interesting
that the parameters eventually return very close to the initial (aligned) positions,
at least for some time. This highly complex time dependence was analyzed for
a long time to find a reasonable alignment strategy. Until then, alignment was
computed for all VXD sensors and CDC layers only once per data block, spanning
even a month. One of the main limitations preventing more frequent alignment
was that cosmic ray tracks, essential for a good alignment, were recorded only in
dedicated runs without collisions and beams. Thus we could not be sure if the
alignment is compatible with the physics runs taken at a different time.

We generally observed a good performance for stable alignment periods or
when a dedicated alignment was performed, even with ignored time dependence.
In the initial collision data from 2019, after the above-mentioned alignment issues
were fixed, a vertex resolution study was performed, particularly for the transverse
direction. The results are shown in Fig. 14.13, where two independent methods
are utilized for the estimate and compared to MC simulation [115].

The first standard method compares the helix parameters of two tracks, typi-
cally from di-muon or Bhabha events. These tracks, extrapolated to the average
position of the IP, should have the same origin. The comparison of their trans-
verse impact parameters d0 is shown on the left. On the right, we utilize the tiny
IP size in the nano-beam scheme, where for the vertical direction σy ∼ 1.5 µm
for the early physics runs. This is much smaller than the detector resolution,
and for horizontal tracks (ϕ0 ∼ 0 ± π), the spread of individual tracks coming
from the IP should be entirely dominated by the VXD resolution in d0. The
width of this distribution should follow σ(d0) =

√︂
σ2
i + (σx sinϕ0)2 + (σy cosϕ0)2,
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Figure 14.13: Spread of d0 difference (left) between two tracks from IP and the
spread of the d0 distribution for the tracks (right) as a function of track azimuthal
angle ϕ0 for early 2019 data (red) and MC simulation (blue). The dashed line
shows an ideal distribution for a detector with infinite resolution, assuming beam
size expected from machine parameters and validation measurements [115].

where σi is the detector resolution and σx ∼ 15 µm is the IP size in the horizon-
tal direction. Both methods agree on the detector resolution (averaged over the
momentum range of mostly Bhabha events) in the transverse impact parameter
14± 0.1stat µm. Both methods also agree on the slight discrepancy with respect
to the MC simulation. This is now understood as a too optimistic simulation of
the SVD sensor resolution.

Towards the end of the first data-taking period in 2019, we also experimented
for the first time with the CDC wire-by-wire alignment using Millepede II, to-
gether with VXD and CDC layers. A large amount of cosmic data without a
magnetic field was taken with a closed Belle II detector after a fire accident at
the LINAC equipment. This accident resulted in a break of a couple of weeks
when cosmic data without and later with magnetic field were taken (on a spe-
cial request of the alignment group). A dedicated full CDC calibration was also
available, and thus, we combined this data with collision tracks to determine an
average wire alignment from scratch (after resetting the existing old wire-by-wire
alignment). As we verified that this new alignment improved several validation
plots with average tracking biases, we started to use it officially, despite no cor-
responding MC studies being available at that time. This wire alignment was, in
fact, left unchanged for production until the reprocessing in 2021.

14.5 Towards Automation
and Higher Luminosity

The second data-taking period in 2019 following the Summer shutdown marked
several important steps toward alignment improvements and automation, fully
commissioned for the prompt calibration loop starting in 2020. These were
mainly:

• New cosmic skim, where cosmic ray tracks recorded during collisions started
to be stored in a dedicated skim. This allowed us to combine cosmic and
collision data consistently for the first time.
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• Automation with Airflow [104], which allowed us to drastically simplify the
regular calculation of the calibration constants.

• Finalized development in the alignment package with newly supported time-
dependence in the global alignment.

In fact, the new time-dependent feature was used for the reprocessing of Au-
tumn 2019 data, which followed shortly after the data-dating finished in mid-
December. The data set was split into several blocks manually, using only a
guess and observations from preliminary results and validations. Thanks to an
increased accelerator luminosity, this was also the first time for IP-constrained
di-muon events to be used, and also the IP alignment was performed simulta-
neously with the VXD and CDC layer alignment. However, it was realized that
the IP is significantly intra-run dependent, so the IP constraint’s full and reliable
utilization had to wait for a more advanced IP calibration. While preliminary IP
calibration was available, this was only performed once per run and significantly
overestimated IP size in y.

It was soon realized that the Autumn CDC layer alignment significantly differs
from values before the Summer shutdown and that this change actually occurred
soon after the data-taking restarted, but almost no collision data was taken yet.

Figure 14.14: The data from a monitoring system of gaps between the QCS
magnet and the inner CDC cylinder from Autumn 2019 (left) shows a large
vertical drop by about 100 µm from late October for one of the gap sensors
(red). Right: exaggerated visualization of CDC layer alignment difference in late
November data with respect to alignment from the beginning of Summer 2019,
showing the mostly vertical deformation with the sinking of the inner part. The
green layer is the inactive layer 54, for which no corrections are determined.

In Fig. 14.14, we show an exaggerated illustration of the layer alignment
difference between Summer and (most of the) Autumn data. The scale and timing
of the deformation have been correlated to readings from a hydrostatic leveling
system and sensors monitoring the gap between the CDC forward outer support
cylinder and the QCS magnet. As the experimental hall and the accelerator
tunnel have different depths of their foundations (the hall is founded deeper), they
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react differently to changing underground water levels. Relative movements of the
tunnel and experimental hall then lead to the accelerator’s movements relative to
the detector. Due to issues with space for VXD cables during installation, it is
very likely that the accelerator can get into unexpected mechanical contact with
the CDC, and its movements cause deformation of the chamber, mostly in the
vertical direction with a scale up to 100–150 µm. Later, with the more frequent
and automated alignment, we learned that changes in the QCS magnetic field also
cause CDC deformations, typically when the magnets are turned off/on during a
maintenance day.

During 2020, the automated baseline alignment was performed regularly for
each bucket. A number of studies were performed to understand the time-
dependence better, how to suppress it in the alignment, and in particular, what is
the possible physics impact. Also, several other issues were revealed in the valida-
tions, and as we started to suspect large CDC deformations can easily happen, it
was also desirable to recompute the wire alignment regularly. The baseline align-
ment and its extension to the full alignment with the CDC wires are discussed in
the following two chapters, followed by a chapter that compares the performance
of the two approaches on data.
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CHAPTER 15

Baseline Alignment Studies
This chapter is devoted almost entirely to MC studies of the first fully deployed
simultaneous alignment of the VXD and the CDC with about 3×103 parameters.
However, for the CDC, only layer alignment is considered. We fix the wires to
previously determined positions (zeros for simulations). We refer to any such
alignment without wires as baseline alignment. At the time of writing, most of the
Belle II data was still calibrated by the baseline alignment running in the prompt
calibration loop, see Sec. 13.3.2. Baseline alignment was not using IP-constrained
di-muons, as the fine time-dependent IP calibration was regularly performed only
after the alignment for real data. Naturally, this baseline alignment started for
the VXD only. Quite soon, we added support for a relative VXD and CDC
alignment, and soon after the arrival of the first collision data, the CDC layer
alignment was officially introduced, as also briefly discussed in Chapter 14.

We have decided not to expose the reader to the full path, which led to the
baseline alignment configuration. We even do not aim for an optimal alignment
at this stage, as the final precision is achieved by the advanced full alignment de-
scribed in Chapter 16, where on the contrary, we attempt to explain the reasoning
step by step. Following a conservative philosophy, we look for the worst case to
set upper limits on alignment precision in MC studies. The focus will be on
cross-checking the final procedure configuration, subject to reasonable variations
or additional studies to demonstrate some of our arguments explicitly.

Although the reprocessing alignment will supersede this result, the baseline
alignment is essential to the entire workflow. The final alignment depends on a
well-aligned detector to provide a good linearization point, which is the baseline
alignment’s primary purpose.

15.1 Alignment Configurations
Many possible variations can be easily derived from the baseline alignment. First,
in reality, the alignment will likely start with cosmic-ray tracks without a mag-
netic field, which we have almost completely skipped in this thesis. While this
sample and possibly also cosmic ray tracks in the magnetic field can be used
for a very reasonable starting alignment, especially for the VXD internal align-
ment (with sufficient statistics), the aim is to present properties of setups used to
derive alignment for physics analysis. Thus we also do not explicitly discuss triv-
ial variations with limited degrees of freedom (e.g., standalone VXD alignment).
In practice, this is never recommended, as CDC deformations are frequent, and
neglecting them can lead to systematic biases.

The basic rule for a good alignment is to combine cosmic ray and collision
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tracks, and this is mostly common to all configurations presented. Collision-only
single tracks should never be used for the global alignment or standalone VXD
alignment. The resulting systematic displacement of some sensors is larger than
30 µm [71], which is not acceptable. In most cases, only the hadron sample
is used for collision tracks. In some cases, we also include single muon tracks
from di-muon events and occasionally demonstrate the effect of IP-constrained
di-muons. Typically roughly 0.5× 106 to 1× 106 cosmic ray tracks are combined
with 0.5−2×106 generic BB events and/or 0.5−1×106 events from the di-muon
MC sample.

We do not simulate backgrounds for the misalignment studies. The effect
of adding backgrounds is only an increased fraction of rejected data (outliers),
while the alignment result is almost unaffected. On the other hand, we have
observed some dependence on the track quality cut (p-value requirement in the
MillepedeCollector module, see Sec. 11.8 and Sec. 13.4.2), which is since then
always imposed.

Regarding the alignment parameters, in addition to the fixed CDC wires, we
also do not consider quartic deformations of silicon sensors. In addition, the VXD
ladders are not aligned in any of the presented configurations: either no hierarchy
is used, or the sensors are placed into half-shells. This later became the default
for real data. Regarding CDC layer constraints, we used all six constraints fixing
CDC as a rigid body and the twist constraint (seven constraints in total), see
Sec. 12.6.2.

15.2 Alignment Precision in Misalignment
Studies

We have performed several simulation campaigns to cross-check the ability of
the alignment to recover from a wide range of possible misaligned configurations.
Before the first data arrived, these tests were limited to random misalignment
and individual weak mode distortions for the VXD. At that time, we only probed
misalignments at levels up to 300 µm. With the first cosmic ray tracks, it became
apparent the actual misalignment was more prominent than assumed initially. We
identified about 1 mm shift of the VXD relative to the CDC in the z-coordinate,
significant deformations of the SVD sensors or the zebra effect (see Chapter 14
and Figs. 14.8 and 14.9) in the outer SVD layers. Naturally, we wanted to verify
that we can also align such a configuration from scratch in simulations.

This section will use several variants of the baseline alignment to assess the
alignment performance, evaluated from the residual misalignment. We probed
those in different campaigns, with varying versions of software, relative fractions
of input data samples, or configurations for constraints for the CDC or VXD
hierarchy. All such variations are also deemed plausible in real data and should
yield a very good alignment. This section is devoted to the demonstration of this
last statement.

We have selected four MC campaigns for this evaluation (the color code is
used for most histograms in the various figures in this section):

1. Test with a completely realistic misalignment imported from data,
performed soon after first collisions. At that time, we did not use the VXD
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Figure 15.1: Residual misalignment for rigid body parameters of the VXD sensors
after MC test of a realistic misalignment imported from data.
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Figure 15.2: Residual misalignment for surface deformation parameters of the
VXD sensors after MC test of a realistic misalignment imported from data.

hierarchy and aligned the VXD sensors with respect to the CDC (and each
other). We noted that Millepede II handles the related correlations very
well, and the result is almost identical (after transformation to the half-shell
system) to that when hierarchy is used. However, the alignment hierarchy
is useful in practice, as the real movements are truly mostly correlated and
separation of these degrees of freedom allows for a frequent realignment of
the half-shell positions with much less data. We show residual misalignment
for (most of) the parameters in the traditional approach in Fig. 15.1 for rigid
body sensor parameters, Fig. 15.2 for surface deformations, and Fig. 15.3
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Figure 15.3: Residual misalignment for CDC layer parameters after MC test of
a realistic misalignment imported from data.

for CDC layers. Parameters of the VXD half-shells will be discussed in
detail in the next subsection.

2. Test of weak mode misalignment as a telescope (with scale∼ 250 µm),
performed around the same time and also not using VXD hierarchy. We
transformed the payloads from (1) and (2) into the half-shell constraint
system for the following comparisons. We have already used this residual
misalignment for the discussion in Sec. 13.6 and shown some of its param-
eters in Figs. 13.6, 13.7, and 13.8.

3. Test of the most recent prompt alignment, starting from the realistic
data misalignment, which is slightly artificially modified (ladder level align-
ment is removed, and the total z shift of the VXD half-shells is reduced).
This and the following campaign already used the VXD (half-shell) hierar-
chy, as all data currently used for physics analyses. In this specific case,
the alignment algorithm is not fully converged, as the final S, defined in
Eq. 13.2 is close to 1.3. This means the automated algorithm would per-
form one additional iteration. However, this iteration is supposed to be not
necessary; we only utilize it as a solid convergence cross-check. Thus we
include this residual misalignment into our evaluation to check that this
iteration is, in fact, not needed.

4. Explicit test of a wide range of weak mode distortions for VXD, dis-
cussed in detail in the next section. As these tests use exactly the same data
as input, the variations of the residual misalignment are very small. Thus
we select one particular example after alignment of the ‘curl’ deformation
with an initial scale of ∼ 700 µm after the fourth alignment iteration.

These residual misalignments will be the basis for evaluating the baseline
alignment precision. The size of the simulated data samples is roughly the same
as that used for data. Therefore, we should resemble both statistical and sys-
tematic precision. The residual misalignment is a combination of statistical and
systematic effects. However, systematic effects dominate, as can be seen, e.g.,
from the colorful patterns in the ring plots of the VXD sensors. Nevertheless,
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the distributions of the parameters are often close to Gaussian, which permits a
straightforward interpretation of the residual misalignment as an overall align-
ment precision. Naturally, the scale of any systematic effect cannot be larger
than the displacement of any sensor. Thus one could simply use any maximal
displacement as an upper bound on the scale of any systematic distortion. A more
stable estimate would take, e.g., 3σ of the Gaussian distribution as this upper
limit. Keeping this in mind, we will evaluate this σ for various parameter cate-
gories to give quantitative estimates of the alignment precision. In later sections,
we will look at the systematic distortions directly. Here, we will simply produce
histograms of the residual misalignment parameters after medium to very large
misalignment on MC. Many systematic effects can be hidden in these histograms,
but a straightforward quantification is possible.

15.2.1 Global Degrees of Freedom
Let us first concentrate on what we call systematic global biases. These are
specific to our simultaneous alignment of the CDC and VXD, and we will see
that these represent the dominant systematic effect of the entire problem. We
briefly mentioned those in Sec. 13.6.

The major systematic bias in z is also a weak mode in the baseline alignment.
It results in the final positions of the VXD half-shells being different from z = 0.
We can see this effect in Fig. 15.4 (top right). Here we can see the true nature of
a weak mode with a reasonable eigenvalue but at the low end of the spectrum.
The control over the z-positions is definitely solid, as the initial misalignment was
about 1 mm (0.5 mm) in z in the black (green) case. As we will see in Sec. 15.4.1,
the range of the eigenvalues is quite large, spanning seven to eight orders of
magnitude. This implies a possible loss of precision and a large sensitivity to input
data. The CDC precision in z is poor (1–2 mm), and many tracks are necessary
to determine the VXD z-position with good statistical accuracy. However, the
actual minimum with the optimal VXD position with respect to the CDC1 is
shallow along the direction of this eigenvector in the high-dimensional objective
function. This results in a large sensitivity to, e.g., data outliers or subtle mis-
modeling effects. Indeed, for the green case, we realized that introducing a p-value
requirement can reduce the bias in z from ∼ 30 µm to the ∼ 10 µm visible in
the histogram. Since then, this requirement has been strictly imposed, see also
Sec. 11.8.

The histograms in Fig. 15.4 should be interpreted with care. The estimates
of the means µ represent the absolute precision of the positions (and rotations)
of the VXD in space. It would be wrong to interpret them as a precision relative
to the CDC. In fact, the VXD position follows the inner CDC layers. This
is demonstrated in Fig. 15.6, where we have used studies without any initial
misalignment but with different sample compositions. This figure shows the VXD
and the CDC layers together, but only for the x and y parameters of the VXD
half-shells and the xb and yb parameters for the CDC layers (see Fig. 12.8). The
residual CDC misalignment shows quite a clear functional dependence on the

1This is coupled with a systematic pattern in the CDC layer alignment. Therefore it is
rather a distortion of the CDC that causes the VXD to settle at non-zero absolute global z
position.
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Figure 15.4: Histograms of residual misalignment for the VXD half-shells after
different misalignments. Scenarios: (1) realistic misalignment, (2) telescope
misalignment, (3) realistic prompt misalignment, (4) weak mode mis-
alignment.

layer radius, and the VXD position is compatible with the residual misalignment
induced to the inner layer—such that tracks are smooth at the interface of the sub-
detectors. The worse precision in y is due to the absence of horizontal cosmic ray
tracks, leaving room for a small sagitta distortion of the tracking system with off-
centering of the inner CDC layers and the VXD as illustrated in Fig 15.5. Notable
is the reduction of the systematic effects from the nominal case with cosmic and
hadron samples (blue) achieved by the addition of high momentum single muons
tracks (red), di-muons with an IP constraint and floating IP (green), and finally
with fixed IP position, which almost removes the effect (black) in Fig. 15.6.

On the other hand, the spread of residual misalignment of the individual
VXD half-shells is much smaller. In Fig. 15.4, this can be connected with the
RMS, denoted σ, which can be interpreted as the alignment precision of the VXD
half-shells relative to each other. This precision is roughly 1 µm.

The global CDC deformations thus cause the global offsets of VXD half-
shells. As we can see from histograms in Fig. 15.7 with the residual misalignment
of the CDC layer parameters, in the worst case, a layer can be misaligned by
∼ 15 µm, which is remarkable over the entire CDC radius of 1.2 m. As the
CDC layer constraints are used to define the reference system, the means of the
distributions are trivially zeros within numerical precision. In general, the RMS
σ, which indicates the alignment precision for the CDC layers, is significantly
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Figure 15.5: Illustration of the off-centering in the y-direction (right) to which
cosmic ray tracks (mostly vertical) are poorly sensitive. For the off-centering
in the x-direction (left), this distortion creates a kink in the (merged) cosmic
trajectory, which makes it resolvable by the alignment to much better precision.
[81]
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Figure 15.6: Residual misalignment after starting from the nominal geometry us-
ing different combinations of data samples in the x (left) and y (right) coordinate
for the VXD half-shells and xb and yb parameters of the CDC layers. The VXD
half-shell points are not used for the linear or quadratic fit. The color code is not
related to other plots (histograms) in this section.

better than 10 µm. Also, the rotation parameters are well under control, with
the largest deviations in the inner layers at smaller radii. When the rotation
parameters are translated into the corresponding shifts of the wires, these are
significantly smaller than 10 µm.

Let us now summarize the alignment precision for the global degrees of free-
dom. We follow a conservative philosophy and take the maximal observed de-
viation as estimates for µ and σ. Furthermore, we separate the PXD and SVD
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Figure 15.7: Histograms of residual misalignment for the CDC layers after dif-
ferent misalignments. Scenarios: (1) realistic misalignment, (2) telescope
misalignment, (3) realistic prompt misalignment, (4) weak mode mis-
alignment.

parameters. The summary of global offsets and relative precisions of all the pa-
rameters is shown in Table 15.1. Generally, the local relative precision of the
half-shell alignment is 1 to 2 µm, naturally slightly better for the PXD. The
global offsets are shared by the PXD and the SVD and also roughly correspond
to the local precision for the CDC layers in the horizontal and vertical shifts.
The vertical shift is less under control due to the absence of horizontal cosmic
ray tracks. The most noticeable effect is the global z offset (bias), with the most
significant observed value of about (−)24 µm identified in our MC studies. Such
residual misalignments have no (or negligible) effect on physics performance.

15.2.2 Local Degrees of Freedom

Let us now turn our focus to the parameters of the individual VXD sensors. The
histograms of residual misalignments in our MC studies are shown in Fig. 15.8
for rigid body parameters. Figs. 15.9 and 15.10 show the quadratic and cubic
deformation parameters.

We can see that no single sensor is misaligned by more than 4.5 µm, and
this maximum occurs for the w-coordinate, perpendicular to the sensor surface.
Most problematic in this sense are the slanted outer SVD sensors. As all the
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Sub-detector parameter
[unit]

global
precision
(max. bias µ)

local
precision
(max. σ)

PXD

x [µm] 1.3 0.77
y [µm] 8.8 0.61
z [µm] 24 0.37
α [mrad] 0.035 0.012
β [mrad] 0.027 0.0078
γ [mrad] 0.013 0.086

SVD

x [µm] 1.8 0.31
y [µm] 8.1 1.7
z [µm] 24 1.2
α [mrad] 0.0022 0.044
β [mrad] 0.0012 0.00073
γ [mrad] 0.0095 0.0081

CDC

xb [µm]

——
(reference)

1.0
yb [µm] 7.4
ϕb [mrad] 0.0019
xf−b [µm] 1.7
yf−b [µm] 1.9
ϕf−b [mrad] 0.004

Table 15.1: Global and local alignment precision for the global degrees of freedom
of PXD, SVD (half-shells), and CDC (layers). No numbers are shown for the
global precision for CDC layers as CDC (as a rigid body) is fixed as an alignment
reference by the constraints.
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Figure 15.8: Histograms of residual misalignment for the VXD sensors’ rigid body
parameters after different misalignments. Scenarios: (1) realistic misalign-
ment, (2) telescope misalignment, (3) realistic prompt misalignment,
(4) weak mode misalignment.

distributions are close to Gaussian with a mean at zero, we evaluate the total
precision as a sum of the average bias µ and RMS σ in quadrature.

In general, we can see the alignment precision is at the level of 1 − 2 µm
for all the parameters. For the rotations, the size of the sensors is important
for precision, which can be seen in the summary Table 15.2, where we separate
the parameters to PXD and SVD sensors. The larger sensors result in higher
precision for the rotations α, β, and γ (and partially for surface deformations)
for the SVD than the PXD, while the precision for most other parameters is
comparable between the two sub-detectors.

From these histograms, we can barely extract some information about sys-
tematic distortions. As mentioned earlier, the scale of any such distortion cannot
be larger than the maximum sensor misalignment2. One can roughly estimate
the maximum as three times the alignment precision in Table 15.2. We will study
these systematic effects in the next section and then connect them to proper weak
modes of the solution.

2Technically, the scale can be twice as large, depending on the form of the deformation and
the definition of its amplitude.
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parameter
[unit]

PXD
precision

SVD
precision

u [µm] 1.2 1.1
v [µm] 1.0 0.9
w [µm] 1.4 1.7
α [mrad] 0.047 0.018
β [mrad] 0.28 0.04
γ [mrad] 0.048 0.013
P20 [µm] 1.6 1.5
P11 [µm] 1.9 1.8
P02 [µm] 1.3 1.2
P30 [µm] 1.8 1.5
P21 [µm] 1.8 2.0
P12 [µm] 2.2 2.0
P03 [µm] 1.5 1.2

Table 15.2: Local alignment precision
√︂

max(µ)2 + max(σ)2 for each type of local
degree of freedom, separately for the PXD and the SVD.
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Figure 15.9: Histograms of residual misalignment for the VXD sensors’ quadratic
surface deformation parameters after different misalignments. Scenarios: (1) re-
alistic misalignment, (2) telescope misalignment, (3) realistic prompt
misalignment, (4) weak mode misalignment.

15.3 Sensitivity to Systematic Distortions

For the VXD, we explicitly test the alignment of the classical nine weak-mode
distortions introduced in Sec. 13.6.3. We generally follow the parametrization of
BaBar [70], but for example, ‘bowing’ can have a linear, absolute value-like, or
quadratic shape. Previously we have used parametrization with an absolute value.
Also, for example, the elliptical deformation scale was proportional to the sensor
radius. Although we have also tested these variants, simplified parameterizations
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Figure 15.10: Histograms of residual misalignment for the VXD sensors’ cubic
surface deformation parameters after different misalignments. Scenarios: (1) re-
alistic misalignment, (2) telescope misalignment, (3) realistic prompt
misalignment, (4) weak mode misalignment.

are sometimes used for the exposition in this section to allow for a simple scale fit.
For most of the distortions, we have also tried large scales around 500 µm. There
is generally no difference in the result apart from a higher number of iterations
needed. Following the BaBar vertex detector alignment paper [70], we present
here results from initial deformations usually starting with a scale of ∼ 50 µm,
except for the ‘curl’ deformation (as an example of a large initial misalignment).

The result of the alignment of these nine distortions is shown in Fig. 15.11.
This new way of visualizing the residual misalignment allows us to recognize and
categorize the distortions. On the horizontal axis of each sub-plot, the sensor
radius, azimuthal angle, or the z-coordinate is plotted. The residual misalignment
is shown on the vertical axes, separately for each of the three translational degrees
of freedom. Global movements are absorbed into half-shell parameters and are
not visible in these projections. For example, the global z bias would look like
a significant offset in all plots showing v (∆z). In each subfigure, the name
of the weak mode, the fit results to the amplitude of the deformations of the
initial misalignment A(0), and in the n-th alignment iteration A(n) are shown,
together with an error estimate from a simple χ2 fit. The fit functions are chosen
(sometimes together with the misalignment parametrization) such that the initial
deformation is well described and a scaling factor is introduced, such that its
amplitude encodes roughly the displacement of the most misaligned sensor. We
use linear, first-order polynomial, or trigonometric functions to fit the initial and
remaining deformation. As the final deformations generally do not correspond
to these simple functions, the fit of the final amplitude may only estimate the
systematic local effects to first order. The initial misalignment is, in all cases,
completely removed, although from 2 to 3 iterations may be needed (4 for the
large ‘curl’ misalignment). The remaining patterns have very small amplitudes,
with the most noticeable distortion being the z-expansion (z-contraction in this
case) with a scale of 1.4 µm. The second most prominent effects are related to
deformations which are functions of the azimuthal angle, presumably due to the
asymmetry of the distribution of cosmic ray tracks.
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Figure 15.11: MC tests of baseline alignment of the nine classical weak mode
distortions, showing initial and residual misalignment projected into cylindrical
coordinates. The initial misalignment (black points) is fitted with a function
(red curve) to extract the scale of the deformation, corresponding to the most
misaligned sensor. The final misalignment after the n-th iteration is shown (red
points) together with the corresponding fit result to the scale (blue curve).

In Fig. 15.11, each subfigure shows the residual misalignment of that particular
misalignment study. However, we have observed that the difference among the
final misalignments is almost entirely independent of the initial misalignment.
We have selected cases (1) and (3) from the misalignment studies to show more
detailed examples of the residual misalignment in this view. This time, each
subfigure shows the same misalignment, only in a different projection. The cases
are shown in Fig. 15.12 and Fig. 15.13. In this case, we do not show the (very
large) initial misalignment, only the final fit to the amplitude. We have chosen
quadratic instead of linear function for ‘bowing’ as suggested by the residual
pattern.

The small z-expansion is clearly visible in both cases. Also, some oscillatory
patterns are present in the second row, and elliptical distortion is usually the
most prominent. In all cases, the extracted amplitude is 2 µm or less, but, for
example, quite a large 4 µm error for the elliptical deformation amplitude remains
visible in Fig. 15.13. As 4 µm is also roughly the maximal sensor displacement,
we prefer to refer to this number as a maximal scale of any deformation—even
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Figure 15.12: Residual misalignment from a study starting from realistic mis-
alignment (1) extracted from the data, projected into cylindrical coordinates.
This alignment configuration was not using the VXD hierarchy. We transformed
the residual misalignment into the half-shell coordinate system for these plots.

those which average over the detector. For example, ϕ-dependent telescope or
radial expansion would average to zero in the corresponding subfigures in the top
row.

15.4 Weak Modes
In other parts of this thesis, we use the term weak mode quite freely. Also, in the
previous section’s explicit test of weak mode distortions for the VXD, we used
the classical set of nine canonical weak modes. In reality, these do not really
correspond to the true eigenvectors of our solution, which are significantly more
complicated. This section will explicitly study the eigenvectors and associated
weak modes and attempt to partially categorize them and connect them to the
already observed residual systematic effects, like the systematic global offsets.

15.4.1 Spectra of Eigenvalues
The about three thousand parameters of the baseline alignment allow for a fast
solution with the diagonalization method. By diagonalization, the symmetric
global matrix C can be expressed as C = UΛU ⊺, where Λ = diag(λ1, λ2, . . . λn)
is a diagonal matrix and U = (u1,u2, . . . ,un) is formed from columns of vectors
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Figure 15.13: Residual misalignment from after a study starting from realistic
prompt misalignment (3) extracted from the data, projected into cylindrical
coordinates.

satisfying UU ⊺ = U ⊺U = 1. The numbers λi and the associated orthogonal
vectors ui correspond to the eigenvalues and eigenvectors of the matrix C, re-
spectively.

Using the eigenvalues and eigenvectors, the solution of the alignment problem
C∆a = g can be written as [116]

∆a =
n∑︂
i=1

1
λi

(ui · g)ui, (15.1)

where each eigenvector in the sum is multiplied by its projection onto the vector
g (formed from the gradient of the objective function; after matrix reduction in
Millepede II) and by the inverse of the corresponding eigenvalue. Eigenvalues
close to zero prevent matrix inversion. Very low eigenvalues cause a large sensi-
tivity to input data (residuals), as the gradient of the objective function along the
corresponding direction (eigenvector) is shallow. This means that even a large
change of the alignment parameters in the direction of such an eigenvector has a
small impact on the total χ2 value. Or, in the opposite direction, a small change
in the scalar product ui · g is multiplied by a large number 1/λi and thus can
result in a large change of the estimated parameter values in ∆a.

Suppose the largest eigenvalue λmax is significantly larger than the smallest one
λmin. In that case, a loss in numerical precision is possible, where the movement
along some weak-mode direction might happen only at the very last couple of
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Figure 15.14: Spectra of eigenvalues, ordered from smallest to largest one for
several variants of sample composition in MC and for data of prompt bucket 15.
The inset shows in detail the low end of the spectrum. The condition number c
for each of the solutions’ global matrix is shown in the legend.

digits of the objective function or even below the numerical resolution. One can
define a condition number for the matrix C as

c = log10
λmax

λmin
, (15.2)

where we already introduce logarithmic scaling because, in the alignment prob-
lems, the eigenvalues typically span several orders of magnitude. We show ex-
ample spectra of the eigenvalues for the baseline alignment in MC and data in
Fig. 15.14. First, no zero or vanishing eigenvalues can be seen. The smallest
eigenvalue is larger than 106. On the other hand, the condition numbers are
near c ∼ 7, i.e., the largest eigenvalue is about ten million times larger than the
smallest one. We compare several MC variants with different data samples and
one example from real data of bucket 15 (see Sec. 13.3.2), taken during the last
two weeks before the 2020 Summer shutdown.

In the inset of Fig. 15.14, we also show in detail the low end of the spectrum
with the twenty lowest eigenvalues. As expected, the blue case with cosmic-only
data has the lowest eigenvalue and worst c among the MC spectra. Addition
of the hadron sample (orange) and single muons (green) further flattened the
spectrum and decreased the condition number. The best condition number and
the flattest spectrum are naturally achieved by fixing the global offsets with IP-
constrained di-muons. However, we do not normalize the spectra in any way, so
an exact 1:1 comparison is not possible. The number of parameters for data is
slightly smaller (e.g., due to one inactive CDC layer). In general, the spectrum
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for data seems the least flat and more similar to the worse cases in MC, with the
largest condition number c = 7.4. On the other hand, the very low end of the
spectrum is subjectively more flat for data than for most of the cases with MC
simulation. Note that the data example includes off-IP tracks, single muons, and
cosmic ray tracks and has a slightly different sample size and composition than
the MC alignments.

We can conclude that the MC studies faithfully reproduce essential charac-
teristics, like the condition number of the global matrix. Furthermore, no truly
weak χ2-invariant modes are present, and the lowest-lying ones should still be
under reasonable control given machine numerical precision3. However, these
eigenvectors can be suspected to be the most sensitive to variations in the data
input and correspond to some of the previously observed systematic effects. The
similarity of data and MC will be further supported by investigating the indi-
vidual eigenvectors corresponding to the low end of the spectra in the following
sub-section.

15.4.2 Eigenvectors and true Weak Modes
Visually pleasing and sufficiently compact visualization of the entire vector of
global parameters is difficult to obtain (especially for CDC layer parameters and
in particular after wires are added). Multiple different ways to look at the global
parameters are used in this thesis with their advantages and limitations.

The most compact way is to draw the parameters ordered by a continuous
index. This is used in Fig. 15.15, where seven eigenvectors with the smallest
eigenvalues for one alignment on MC (cosmics + hadron corresponding to the
orange spectrum in Fig. 15.14) and one on data (bucket 15—black spectrum in
Fig. 15.14) are shown. On the vertical axis is the weight of each parameter in
the eigenvector, between −1 and +1. The vertical dashed lines visually separate
the VXD layers, and the last block of parameters on the right are the parameters
of the CDC layers. The parameters are further separated by type using different
markers. The (sometimes detached) points at the first and third dashed lines
correspond to the PXD and SVD half-shells (i.e., the global degrees of freedom
for the VXD).

Let us discuss qualitatively several of the eigenvectors in detail, in particular,
the first three in MC, trying to identify them also in data. The most recurrent
eigenvector (first on both data and MC) corresponds to a known global z bias,
as we can see from the large weight for the z parameters of VXD half-shells.
Interestingly, the sign of this eigenvector is the opposite in MC and data. For
the green spectrum in Fig. 15.14 (cosmics + hadron + muons), this eigenvector
is, in fact, only the second weakest, switched with the second one on the left in
Fig. 15.15. This z bias weak mode is, however, the most interesting one. Also, it
is the most often observed lowest-lying eigenvector. Moreover, it seems to almost
correspond to a misalignment deformation of the real detector, later removed by
the reprocessing.

From the figure of the global vector, we can only hardly see the pattern in
the weights of parameters other than the z positions of the VXD half-shells.

3Note, however, that single precision (float) would be at resolution limits and instead double
precision should be used for all calculations.
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Figure 15.15: Parameter weights of seven eigenvectors with lowest eigenvalues for
MC simulation (cosmics + hadron) (left) and real data of bucket 15 (right).
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Figure 15.16: Eigenvector of the global z offset with the smallest eigenvalue on
data for VXD sensors’ and CDC layers’ parameters.
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Figure 15.17: The smallest eigenvector of the global z-offset (in data) for the
VXD sensor shifts projected into cylindrical coordinates. The vertical axis shows
parameter weight.
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Thus we also visualize the VXD sensor and CDC layer parameters tradition-
ally in Fig. 15.16. The most prominent pattern is the z-expansion in the outer
SVD layers (the v coordinate). In addition, a clear pattern is also visible in the
u-coordinate. These patterns can possibly be identified in the prompt misalign-
ment model (see Fig. 13.12). Also, the angles and surface parameters show some
patterns, but their weight is generally one order of magnitude smaller than for the
z-expansion. Thus we see that the global z offset can be coupled with z-scaling
effects. In Fig. 15.17, this weakest eigenvector is also shown for the VXD shifts
as a function of the cylindrical coordinates of the sensors. This time the vertical
axis represents the weight of the parameters in the eigenvector. We can see clear
patterns in the elliptical, clamshell, and z-expansion subfigures. The pattern in
the skew subfigure is connected with the z-expansion, where the most significant
weight is on the most forward outer slanted SVD sensors, roughly constant as a
function of ϕ.

For what concerns the CDC layer parameters in the weakest mode, the pat-
terns shown in Fig. 15.16 (bottom) are complex, and no straightforward inter-
pretation of how the coupling among these degrees of freedom works has been
found.

Regarding other weak modes, we can roughly identify the two remaining global
offsets by the large weights of the CDC layer alignment parameters. Namely the
second mode for MC (left in Fig. 15.15) corresponds to the global CDC deforma-
tion in x. Interestingly, this mode has a lower eigenvalue than the y-deformation,
which can be at least partially identified in the third MC mode. However, in this
case, the yb parameters are also coupled with the yf−b parameters, next to the
y-shift of the VXD. This is slightly surprising as, from the misalignment studies,
one would naturally expect the y-deformation to be more problematic. Also, in
data, these global modes are only third and sixth weakest, interleaved by weak
modes mostly localized in the VXD. Possibly the spectrum for data is so flat at
the low end that the order of weakest modes can be interchanged.

The VXD parameters show some interesting oscillatory patterns among the
eigenvectors. Mostly the u and w coordinates are affected, followed by v, and
quite surprisingly also, some deformation parameters in the outer SVD layers can
have a large weight and contribute to these specific distortions of the VXD. A
simple interpretation by means of any of the classical weak modes is not possible.
Instead, we always see that several parameter categories are coupled. Sometimes
we also see modes where local sensor parameter misalignment is coupled with the
global degrees of freedom, e.g., for the fourth eigenvector for the data spectrum
in Fig. 15.15 (right).

For completeness, let us also visualize the weak modes from real data explic-
itly for the VXD sensors and their shifts (weights of rotations are much smaller
in the eigenvectors) using ring plots in Fig. 15.18. The lowest-lying mode coupled
with the global z bias is not shown here (see Fig. 15.16 top row). The following
four modes are very different from the weakest one: practically only u and w
parameters are affected. Notable is the similarity of the last two shown eigenvec-
tors. This might look strange as the eigenvectors are expected to be orthogonal.
However, by looking back into Fig. 15.15 (fifth and sixth row, right), we can see
these eigenvectors affect differently local (VXD sensors) and global degrees of
freedom (CDC layers and VXD half-shells).
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Figure 15.18: The eigenvectors from second to sixth (first is shown in Fig. 15.16)
for data of prompt bucket 15 alignment ordered (from top to bottom) start-
ing with the lowest eigenvalue for the VXD sensor shifts. The color axis shows
parameter weight.
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15.5 Summary
In this chapter, we have started with directly exercising our baseline alignment
procedure on the entirely realistic misalignment of the VXD and CDC. We have
demonstrated that the baseline alignment can recover from a wide range of mis-
alignments, including a number of systematic distortions for the VXD. Variations
in the different studies allow the assessment of the alignment capabilities and re-
duce the risk of a good result achieved by accident and irreproducible.

Following a conservative approach, we quote the worst observed results as our
precision estimates. Nevertheless, the results would be excellent if such precision
could be really achieved on data. In general, the alignment precision is 1–2 µm
for the VXD sensor parameters, including parameters of surface deformations and
rotations (when translated into shifts of sensor corners). Systematic distortions
in the VXD are limited to less than ∼ 4 µm in amplitude, with z-expansion being
the most prominent systematics at an average scale around 1.4 µm considering
a simple parametrization. For the CDC layers, the precision is from 1 − 7 µm,
dominated by a residual global misalignment, which results in a limited systematic
precision on the absolute position of the VXD half-shells. These are ∼ 1 µm in
the x-coordinate, ∼ 8 µm in the y-coordinate, and ∼ 24 µm in the z-coordinate
(where the CDC resolution is worst).

We have also directly identified the eigenvector connected with the largest
observed systematic effect of the global z bias. This usually indeed corresponds
to the lowest eigenvalue. The systematic study of the weak modes and spectrum
of eigenvalues is for completeness; some aspects are not yet fully understood.
One cannot, for example, identify the VXD parameter patterns among MC and
data eigenvectors. The CDC layer weights are roughly similar, at least in the
three main global distortions, but for the VXD parameters, at least the phase of
parameter oscillations seems systematically shifted. The additional tracks (like
off-IP or wider phase space of available cosmic ray tracks) in data likely result in
such differences. Anyway, we have built our confidence in the alignment procedure
by direct tests and later by data validation.

However, the weakest mode is probably present significantly in the prompt
baseline alignment of the real data. As we have no indication for its significant
presence in the MC studies, this was probably caused by other inconsistencies,
which distort the minimum of the objective function. One should not rely on sim-
ulations entirely. For alignment, validation with real data is absolutely essential.
We devote to this validation Chapter 17, where we will identify some problems.
To mitigate most of them, the reprocessing alignment was developed, which also
includes IP-constrained di-muons and wire-by-wire alignment of the CDC4. This
work is discussed in the next chapter. To save some space, the validation of the
reprocessing alignment is compared to the prompt baseline alignment simultane-
ously. The alignment precision becomes comparable in data and MC studies only
after this advanced alignment.

4In addition, run-dependent alignment is applied for a limited number of parameters.
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CHAPTER 16

Studies of full Alignment
with Wires
In this chapter, the alignment problem will be scaled up by order of magnitude
to include the geometrical alignment of CDC wires. Without any additional
optimizations, this would correspond to two orders of magnitude higher memory
requirements and an increase in the required raw computing time by three orders
of magnitude. The study presented here only became possible with the recent
developments in Millepede II, allowing us to solve this large alignment problem
exactly in a reasonable time. We will start with the formulation of the problem
and basic optimizations on MC. Once satisfied, we will also consider real data
and optimize the alignment based on validation results.

Before Summer 2020, the only solution methods for ∼ 60 × 103 parameters
with a reasonable runtime were approximate. Solution by inversion took over half
a day. This could be acceptable for a one-time alignment for data but not for
extended systematic studies on simulations. All wire alignment attempts previ-
ously used the approximate MINRES-QLP method; see Sec. 11.1.2. In fact, this
solution method was used to derive the wire alignment used for data reconstruc-
tion until 2021 reprocessing. At that time, relatively fresh data taken without a
magnetic field with a proper CDC calibration were used together with standard
cosmic data taken with a magnetic field and collision tracks. Although the align-
ment has performed well in data validations, strong support for its validity from
MC studies was missing. In addition, a possible degradation of the alignment
was suspected (see Sec. 14.5), and thus, a method for a regular re-alignment of
the wires was desirable.

The MC studies to evaluate the full wire alignment revealed issues with the
MINRES-QLP method. This was finally confirmed after its solution was com-
pared to a result achieved by inversion. Fortunately, in Summer 2020, a new,
faster exact solution method—Cholesky decomposition—became available. With
solution times decreased to about three hours, it became feasible not only to use
the method for data but also for a set of systematic studies of the procedure on
MC. Finally, since Spring 2021, the solution time could be decreased to about
20 minutes1. This was achieved by using external highly-optimized implementa-
tions [84] of linear algebra libraries LAPACK [83]. While the results presented
in this chapter were derived before this feature became available, the 2021 data

1The tests were using ten cores on Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz. The
required memory (mainly) to store the global matrix is 20 GB for the full problem with wires.
Baseline alignment needs less than 2 GB of memory and a couple of minutes to finish the
algorithm step. The total alignment times are dominated by the data collection, submitted as
batch jobs to a computing cluster.
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reprocessing was already using this fast solution method.
Some results of this chapter were presented at the 25th International Con-

ference on Computing in High-Energy and Nuclear Physics (CHEP2021) and
published as proceedings [117].

16.1 Alignment Setup
One of the motivations for studies in this chapter is the need to realign the CDC
without cosmic ray tracks recorded when the magnetic field is turned off. This
data can only be collected when the Belle II solenoid is not excited at the start
and end of the data-taking period. Considering how large deformations (up to
about 100 µm) can be induced when the superconducting optics’ magnetic fields
and compensating magnets are ramping up and down, one expects significant
deformations to occur also when the main 1.5 T solenoid is (de)excited. Thus data
without and with magnetic field are likely not compatible, and it is not known if
the associated deformations could be entirely absorbed in larger structures like
the CDC layers. In addition, data without the magnetic field requires a dedicated
CDC calibration that is not performed regularly.

To be able to perform the full realignment frequently, we must resort to more
abundant data samples recorded during luminosity runs. Three types of such
data samples are considered, together with their MC equivalents:

• Cosmic ray tracks with both arms reconstructed as a single trajectory,
recorded during collisions in the dedicated cosmic skim.

• Di-muon e+e− → µ+µ− events from a dedicated skim with tight selection
criteria.

• All charged tracks from hadron skim, which is mainly populated by multi-
track hadronic events with a soft momentum spectrum. As an MC equiva-
lent of this sample, generic BB events are used. In the real production of
alignment constants, this sample is also mixed with tracks coming far from
the interaction point, such as protons from beam-gas events.

The initial composition of the MC data samples is based on preliminary studies
and an educated guess: 5 × 105 cosmic events, 106 di-muon events, and 2 × 106

tracks from generic BB events. Further optimizations based on MC studies are
discussed in the next section.

The floating alignment degrees of freedom are configured as follows:

• All VXD half-shell and sensor parameters, including sensor surface defor-
mations up to third order, are floating. Corresponding 6 × 4 constraints
for sensor movements inside the half-shells are included automatically (see
Sec. 12.6.1).

• The IP position is used as a fixed constraint by default unless mentioned
explicitly otherwise.

• All CDC layer parameters are floating, with the default layer constraints:
∆xb, ∆yb, ∆ϕb, ∆xf−b, ∆yf−b, z-offset constraint and twist constraint as
defined in Sec. 12.6.2 (7 constraints), unless mentioned otherwise.
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• All wire parameters are floating with the default constraints fixing aver-
age shifts and rotation of wires in each layer at each end-plate (6 × 56
constraints), see Sec. 12.6.3 unless mentioned otherwise.

The total number of these default constraints is 367. In the next sections, ad-
ditional constraints will be derived and tested. The total number of variable
alignment parameters is 60,192. The resulting number of floating parameters
(global matrix size) is 59,825 for this set of constraints (367). The solution is
performed by Cholesky decomposition.

16.2 Studies without Misalignment
It is convenient to start the initial studies without introducing any misalignment.
In the ideal case, running the procedure with a perfectly aligned detector should
result in all parameter estimates consistent with zero. This is usually not the
case for realistic alignment configurations, and one should study if a larger data
sample, additional track topologies, more constraints, or external measurements
could improve the result.

Extensive studies of the baseline alignment without wires showed that very
good alignment could be achieved just by a combination of cosmic ray tracks (in a
magnetic field) and simple tracks from e+e− collisions. Preliminary results of the
full alignment with wires indicated that IP-constrained di-muons are a necessary
additional ingredient to reach reasonable results. Thus we start by combining the
three primary data samples. After the weak modes of the wire alignment will be
under control, further optimization of the data sample composition will follow.

16.2.1 Impact of radial Constraints and Surveys
The weak modes affecting radial scale are a typical alignment problem. For a
wire chamber like CDC, there is no redundancy analogous to geometrical sensor
overlaps in the VXD. Thus the radius of the chamber must be fixed by external
input. A good solution would constitute using mass-constrained decays of heavy
unstable particles with precisely known mass to fix the absolute mass scale, re-
sulting in constraints on the radial scale, as done at the CMS [74]. A change
in the CDC radius would result in a systematic change of momenta of charged
tracks, shifting reconstructed invariant masses of the decaying particles.

An obvious candidate is J/ψ → µ+µ− decays, with a narrow width (about
90 keV, although smeared by detector resolution). Its mass is well defined, and the
mass peak is only slightly asymmetric (due to final state radiation). A measured
J/ψ mass off by 1 MeV (which is less than detector resolution) corresponds to a
relative change of ∼ 1/6×10−3 in momenta of the daughter muons. With a CDC
radius of 1.2 m, this corresponds to a change in the radius of ∼ 200 µm. This
number is, unfortunately, about four times larger than the expected mechanical
precision of CDC construction and drilling (about 50 µm).

A heavier resonance or utilizing the e+e− → µ+µ− events directly (with peak
invariant mass of 10.57 GeV/c2) could be a solution in theory, but practically, the
collision mass itself is only known to a precision of > 1 MeV, and the mass peak
is very asymmetric with a low mass tail (due to ISR and FSR). No resonances
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with significantly higher (and narrow) mass than J/ψ are produced in sufficient
amount at SuperKEKB.
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Figure 16.1: Impact of radial constraints on the average residual misalignment
of wires in the radial direction for the default data sample composition as a
function of wire radius (left) and azimuthal angle (right). Open (filled) markers
show backward (forward) wires.

Thus we resort to external ad hoc constraints. Either the radius is completely
fixed in the baseline alignment, where radial degrees of freedom are not present
at all for the CDC (only layers are aligned), or we have to impose additional
linear equality constraints or external survey measurements to remove or restrict
certain degrees of freedom in the full alignment with wires. Several types of radial
constraints defined in Sec. 12.6.3 are considered and compared:

• no radial constraints,

• radial constraints for all layers,

• radial constraints for one outer layer,

• radial constraints for the whole CDC,

• combination of radial constraints for the outer layer and the whole CDC.

The impact of the different constraint options on the radial degrees of freedom
of CDC wires is shown in Fig. 16.1. These kinds of figures will be used frequently
in this chapter. Note that the actual alignment parameters for CDC wires are
the shifts in x and y on the backward and forward end-plate. This is a historical
compatibility choice but not necessarily the best way to interpret the results.
Better separation of the different systematic effects is achieved by projecting
the wire alignment corrections into the radial coordinate and the perpendicular,
circular R − ϕ direction, similarly as we do for the constraints in Sec. 12.6.3.
This gives us four different types of projections. The left subfigure in Fig. 16.1
shows the mean residual misalignment averaged over wires as a function of their
radius. The right subfigure shows the azimuthal angle dependence of the same
quantity. Both wire-ends are shown in each plot. Two remaining projections in
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Fig. 16.2 show the averaged residual misalignment in the R−ϕ coordinate, again
as a function of wire radius and azimuthal angle. The left subfigure will not be
generally shown as the points (usually) trivially sit at zero. The reason is that
average wire rotation (fixed to zero by constraints) in a layer is absorbed into
layer rotation parameters.
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Figure 16.2: Impact of radial constraints on the average residual misalignment of
wires in the R−ϕ direction for the default data sample composition as a function
of wire radius (left) and azimuthal angle (right). Open (filled) markers show
backward (forward) wires.

The gray points in Fig. 16.1 (left) show why radial constraints are needed.
Without them, CDC shrinks by about 900 µm at the forward and 300 µm at
the backward outer edge. The right plot shows the misalignment values averaged
over radius with an almost constant offset, meaning the radial change is almost
symmetric in the azimuthal angle. All the considered options with radial con-
straints give reasonable results. The option with only the outer layer radius being
constrained results still in an average change of the CDC radius by 50 µm, al-
though the maximal deviation occurs in the middle of the CDC, not at the outer
edge. The same result is shown in detail in Fig. 16.3 (left). Based on this study,
we have chosen two possible options to continue with. The combination of the
whole-CDC and outer-layer radius constraints will be kept as a backup if needed
for data. It was believed that the radial movement of wires has no significant
physics impact [21]. Thus we will continue this chapter assuming this hypothesis
and use radius constraints for each layer. It does not affect our results much, as
the radial degrees of freedom seem nicely decoupled for both chosen constraint
options. In the end, we can just switch to the option with CDC and outer layer
radius constraint. With this option, we expect appearance of the additional small
± 20 µm systematics (blue points in Fig. 16.3 (left)). Thus, this kind of projection
will be trivial as well and will not be shown in the next section.

Finally, we consider one more option. Millepede II allows the inclusion of
external (survey) measurements of (linear combinations of) alignment parameters.
In contrast to constraints, the equality (usually to zero) is not exact but has a
defined precision. We have tested to include an external measurement for each
wire position in the radial direction with zero expectation value and 100 µm
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Figure 16.3: Impact of various radial constraints on the average residual misalign-
ment of the wires in the radial direction for the default data sample composition as
a function of wire radius. The left plot compares several options with constraints.
The right plot compares CDC radius constraints (blue) to the case when external
survey measurements for wire radii are used instead of constraints (red). Open
(filled) markers show backward (forward) wires.

precision. In Fig. 16.3 (right), the result is compared to the case where two degrees
of freedom are removed by using the CDC radius constraints (for backward and
forward end-plate). The CDC shrinks by about 150 µm for the survey option (red
points). While the used wire placement uncertainty was twice larger as expected,
a naive extrapolation of the results suggests that a better precision than for the
constraints cannot be achieved.

16.2.2 Impact of Data Samples and Statistics
In this section, we will use the radial constraints for each layer and investigate
how the composition of the data samples affects the result. The cosmic data sam-
ple is absolutely essential to reach a good alignment already for the VXD. The
IP-constrained di-muon sample is another key ingredient for achieving reasonable
systematic errors for the full alignment with wires. This can be clearly seen in
Fig. 16.4, when di-muons are excluded from the full alignment (blue points). A
systematic trend can be observed in the residual misalignment for both ∆R and
R∆ϕ components with an average amplitude of about 70 µm. The negative im-
pact of the absence of the hadron sample on radial systematic versus azimuthal
angle in Fig. 16.4 (left, red points) can probably be explained by the larger curva-
ture of tracks in this low momentum sample, which causes enhanced sensitivity to
radial movements of the wires. Making the IP position parameters floating (green
points) does not significantly degrade the result with respect to the nominal case
(black) with all data samples included and fixed IP position.

So all the three main data samples we consider seem to be needed for a
reasonable result. One may wonder if this result can be further improved by
optimizing their size. Note that in all considered cases below, the statistical
errors of the parameters are expected to be smaller than the residual systematic
misalignment.
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Figure 16.4: Impact of data samples on the radial (left) and R− ϕ residual wire
misalignment as a function of wire azimuthal angle. The default data sample
composition (black) is compared to cases when the di-muon sample (blue) or
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sition and floating IP position is shown in green. Open (filled) markers show
backward (forward) wires.

Fig 16.5 compares the result with the nominal size of the cosmic sample, one-
half of the cosmic tracks, and ∼ one-fourth of the tracks. Surprisingly, lowering
the number of cosmic ray tracks seems to improve the average residual misalign-
ment. This, in fact, illustrates that the balance of data samples matters. The
systematic effects for the smallest amount of cosmic tracks (blue points) are not
better (closer to zero) over the full ϕ range. It becomes increasingly difficult to
judge an overall alignment quality at this level. For example, the reduced cosmic
sample leads to a smaller amplitude of the systematic effects, most pronounced
in the outer layers. However, the average precision for most wires gets slightly
worse. In general, the RMS of the determined residual misalignment parameters
of the wires is 9 to 12 µm. We will return to a more detailed look into the align-
ment result later. For now, we should only remind that no ideal optimization
target variable2 exists, and some optimization steps might be based on subjective
reasoning.

Cosmic ray tracks are getting a large weight in the alignment solution thanks
to their high momenta. Thus not many of them are needed to constrain some
global distortions. On the other hand, cosmic tracks suffer from azimuthal and
polar asymmetry. This was already studied in the baseline alignment, where this
asymmetry is responsible for the induced deformation of the CDC layers in the y
direction. A significant amount of tracks from the IP is needed to suppress this
residual effect, especially if those are mostly low momentum hadrons. Also, in
this case, we seem to observe that a large number of tracks from the IP will be
needed to reduce these unwanted features of the cosmic sample. Let us vary the
other samples to understand which features they influence and how the scale of

2For example, it is not clear how much a priori weight we assign to the quality of the wire
alignment compared to the VXD alignment. Also, inner wires are likely more important for
physics than outer wires. Some types of systematic biases might be more relevant than others,
despite having the same scale, etc.
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Figure 16.5: Impact of the size of the cosmic sample on the average residual wire
misalignment in the radial (left) and R−ϕ direction (right) as a function of wire
azimuthal angle. Open (filled) markers show backward (forward) wires.

the effect depends on the sample size.
The result of variation in the size of the hadron sample is demonstrated in

Fig. 16.6. Its impact is primarily relevant for the radial systematics, and only
a minor reduction of the amplitude (about 5 µm) is observed when two million
instead of one million tracks are used. The result from variation (reduction) of
the cosmic sample suggests that 4× 106 tracks from the hadron sample could be
optimal, but the improvement from the case of 2× 106 tracks will be only minor.
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Figure 16.6: Impact of the size of the hadron sample on the average residual wire
misalignment in the radial (left) and R−ϕ direction (right) as a function of wire
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Finally, the size of the di-muon sample is varied. In Fig. 16.7, the default
case with 5 × 105 di-muon events (black) is compared to twice (red) and half
the amount (blue). With 1× 106 events, the R− ϕ systematics (right) is further
reduced to ∼10 µm, while radial systematics is almost unchanged. We will return
to the evaluation of the impact of such residual misalignment later, but already
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at this point, any of the options should result in an acceptable alignment.
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Figure 16.7: Impact of the size of the di-muon sample on the average residual
wire misalignment in the radial (left) and R−ϕ direction (right) as a function of
wire azimuthal angle. Open (filled) markers show backward (forward) wires.

One should not over-optimize at this stage. The MC data samples are not the
exact equivalents of their data counterparts. Also, the exact number of the input
tracks is not known beforehand, as different amounts can pass selection criteria.
Especially the p-value and CDC hit quality requirements could reject a different
amount of tracks depending on the CDC calibration. Therefore the sample size
can vary by ∼30% in practice.

This MC study suggests the ideal combination of the data samples is 5× 105

cosmic ray tracks, 1× 106 di-muon events, and 2× 106 to 4× 106 hadron tracks.
This chapter will be continued using the default 2 × 106 hadron tracks, but for
data, we use 4 × 106 hadron tracks. Such an amount of data can be reasonably
obtained in less than two days at typical 2021 luminosities (1 fb−1/day), taking
a safety factor of two for the di-muon sample into account3.

16.2.3 Interplay of Wire and Baseline
Alignment Parameters

So far, we have only concentrated on the residual misalignment of the CDC wires.
However, in each case, all the parameters of the baseline alignment were floating,
too. This must be the case to resolve all correlations. On the other hand, the
VXD and CDC layer alignment can be degraded with respect to the baseline case.
The most apparent changes are more significant systematic deviations in the layer
alignment, which is also one of the most problematic sets of degrees of freedom
in the baseline alignment. The global residual misalignment of the CDC layers
and VXD half-shells in x and y coordinate is demonstrated in Fig.16.8, where the
default sample composition is compared to options with excluded samples, as we
did for Fig. 16.4.

3The di-muon sample is driving the integrated luminosity requirement (currently). Tracks
from hadronic decays are very abundant, and (usable) cosmic ray tracks are recorded at a
frequency higher than 20 Hz, such that the required amount of data is acquired sooner than
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Figure 16.8: Residual misalignment of the VXD half-shells and CDC layers in
the vertical (left) and horizontal direction (right). The VXD half-shells are put
at an arbitrary radius for visualization. The default data sample composition
(black) is compared to cases when the di-muon sample (blue) or hadron sample
(red) are not used. The option with the default sample composition and floating
IP position is shown in green. Linear or quadratic fits to the CDC layer points
are shown (the VXD points are not included in the fit).

The large impact of the hadron sample for systematics in the global x direction
is likely caused by the different topology (large curvature) of low momentum
tracks compared to high energy muons from the di-muon and cosmic samples.
We have also tested the possibility of keeping the IP position floating in the
alignment. This obviously leads to larger but still acceptable systematics. In
any case, we will keep the IP position fixed to a previously well-determined (and
time-dependent) position and profit from this additional strong constraint. The
possible unresolved correlations are expected to be negligible if the wire alignment
is started from a fully converged baseline alignment. This way, the systematic
global offsets from the baseline alignment will be imprinted in the full alignment.
In principle, further iterations with time-dependent IP determination can remove
any remaining effects.

Regarding the sensor level alignment, it was confirmed that all reasonable
configurations with all data samples lead to local sensor alignment almost iden-
tical to the case where all wires are fixed. It can be shown that the additional
degrees of freedom can truly degrade the internal VXD alignment. In Fig. 16.9,
the residual misalignment for the VXD sensor rigid body parameters is shown for
the default sample composition. This can be hardly distinguished from the case
with fixed wires (the maximum deviation is only 0.2 µm larger, and the color
pattern nicely matches visually). On the other hand, when the di-muon sample
is excluded, not only the wire alignment gets significantly worse in Fig. 16.4, but
also the internal VXD alignment is degraded significantly. This can be seen in
Fig. 16.10, which has a twice wider range of the scales, and one can see the rel-
ative color pattern among the parameters changes. This effect must be caused

for the di-muon sample at the current SuperKEKB luminosity.
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Figure 16.9: Residual misalignment for the VXD sensor rigid body parameters
for the default data sample composition.

by the wire alignment as the cosmic and hadron samples together are sufficient
to reach maximum rigid body parameter deviations of ≤4 µm with fixed wires.
The alignment parameters of the VXD sensor surface deformations also experi-
ence some degradation in such cases. A more detailed overview of the residual
misalignment of all the parameters will be given at the end of this chapter once
the final alignment configuration is found4.

16.3 Studies with Wire Misalignment

At this point, we are ready to test the procedure with a misaligned detector. A
single realistic wire misalignment will be used for these tests. This misalignment
was derived during preliminary studies of wire alignment on data taken before
Summer 2020. The RMS of the wire misalignment parameters ranges from 39
to 48 µm (larger at the forward end-plate). It contains both statistical and sys-
tematic misalignment. However, the radius of all layers was fixed by constraints,
and thus no radial misalignment is present on average in each layer. In addition,
because this misalignment is derived from data, the wires in layer 54 are not
misaligned, as this layer was deactivated.

In contrast to CDC wires, the CDC layers and the whole VXD are not mis-
aligned, as one of the necessary checks is to confirm that the baseline alignment
does not get significantly degraded by the inclusion of the additional thousands
of degrees of freedom. This was checked in the previous section, and the optimal

4But the VXD sensor parameters change only negligibly, so these are skipped. Also, thanks
to the di-muon sample, the precision is slightly better than for the baseline alignment, and thus,
following our conservative philosophy, we keep the baseline values as our precision estimates for
non-wire parameters.
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Figure 16.10: Residual misalignment for the VXD sensor rigid body parameters
for the default data sample composition without di-muons.

configuration truly achieves almost identical alignment quality for the baseline
parameters as in the case when the wires are fixed.
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Figure 16.11: Average initial (black) and residual misalignment from the first
(red), second (blue), and third (green) iteration of the alignment with the optimal
MC sample composition and radial constraints for all layers in the radial (left)
and R− ϕ direction as a function of wire azimuthal angle. Open (filled) markers
show backward (forward) wires.

The alignment with the optimal sample composition from previous sections
and radial constraints for all layers is iterated twice with the full reconstruction,
starting with the initial realistic misalignment. The additional iterations were
motivated by the observation of a weak mode appearance. While we cannot run
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diagonalization for such a large problem to extract the eigenvectors corresponding
to the lowest eigenvalues directly, we can iterate the alignment such that the weak
mode gets more pronounced and could be extracted by looking at the result.
The initial and residual misalignment after iterations 0, 1, and 2 are shown in
Fig. 16.11. The initial systematic distortions are not present anymore, but a weak-
mode deformation develops. The residual misalignment after the final iteration
is also visualized in Fig. 16.12.
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Figure 16.12: Residual wire misalignment for the third iteration of the alignment
with the optimal MC sample composition and radial constraints for all layers on
backward (left) and forward end-plate (right). Only 20% of wires are randomly
shown by an arrow denoting the direction and size of the misalignment.

One can identify a clear systematic pattern in these figures, slightly different
for the backward and forward end-plate wire ends. At the first order in Fourier
decomposition, the weak mode behaves like an even (cosine-like) function of the
azimuthal angle for the radial distortions and an odd (sine-like) function for the
R − ϕ distortions. The average amplitude of this effect is about 30 µm over all
wires and quickly grows, starting from the middle of the CDC, with some outer
wires being misaligned as much as ∼ 100 µm. Note that the average of the radial
wire movements in each layer is zero in these plots.

Two possible ways to mitigate this weak mode were considered and tested.
The first idea was to fix all wires in some outer layer. If this layer was not initially
misaligned (this is the case for layer 54 in our realistic testing misalignment),
this results naturally in almost weak-mode-free alignment. The amplitude of
systematic effects in our typical projection plots is suppressed to almost 5 µm, and
the RMS of the residual wire misalignment is 8–9 µm. However, for this result,
several hundreds of degrees of freedom are removed. Furthermore, in reality, this
layer will be misaligned. To check a more realistic case, we fixed the outer layer 55
with misalignment derived from data. The result was not acceptable: the outer
layer misalignment gets imprinted in the overall CDC deformation, resulting in
the amplitude of average systematic effects in the R−ϕ direction close to 70 µm.
Thus this idea was abandoned.

The second idea was to break the symmetry of the induced weak mode de-
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Figure 16.13: Average wire alignment constants projected into radial (left) and
R−ϕ direction (right) as function of wire azimuthal angle determined for wires in
the outer CDC layer in real data (bucket 15). All remaining wires’ alignment is
reset to survey positions. Open (filled) markers show backward (forward) wires.

formations by special constraints. The basic idea behind this approach can be
understood from Fig. 16.11. In the left subfigure, one can require that the average
change of the radius is not zero over all wires in the layer but separately for wires
in the top and bottom hemispheres. This will automatically cancel the sine-like
behavior, at least in this outer layer. Similarly, we can split the default constraint,
which fixes the average rotation of wires in the layer, and include two constraints
per end-plate instead, separately for wires in the left and right hemisphere. This
will cancel the cosine-like behavior in the right subfigure. These hemisphere con-
straints are defined in Sec. 12.6.3. Because four default constraints are removed
and replaced by eight new ones, there are four fewer degrees of freedom.

Of course, any actual misalignment that does not respect the hemisphere
constraints will be again imprinted in the CDC deformation. Thus a quick pre-
liminary check with real data was also performed. The wire alignment was reset
to zero (surveys [21]), and starting from the baseline alignment, only the wire
positions in the last layer were aligned. Assuming the baseline misalignment can
be, in a reasonable approximation, decoupled from the wire alignment, no sys-
tematic effects stemming from the alignment method itself are present at this
stage. The resulting determined misalignment in our traditional projections is
shown in Fig. 16.13. We do not observe any indications that this misalignment
does not respect the hemisphere constraints significantly, and thus the imprinted
effects should be small. On the other hand, note that the estimated layer radius
is different from zero on average. It is not possible to tell if this is a local effect
(and layer 55 really has its radius larger by 50 µm) or a global effect, and the
whole CDC radius is different. It, however, suggests the level of effects that we
are going to neglect by imposing a layer radius constraint on just a single layer.
This is entirely acceptable, as the corresponding relative change of the CDC ra-
dius is less than 1×10−4. Based on physics performance studies, a fine correction
to the measured momenta can be achieved by scaling the momenta of the final
state particles at the analysis level.

From now on, the hemisphere constraints will be used. The MC misalignment
study is repeated while imposing the hemisphere constraints on the (misaligned)
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Figure 16.14: Initial (black) and residual (red) misalignment for the optimal MC
configuration and hemisphere constraints. Parameters are shown wire-by-wire
(right four plots for each wire parameter) and as projections of the residual wire
misalignment into the radial (top right) and R− ϕ direction (bottom right) as a
function of azimuthal angle.

outer layer 55. A test using the non-misaligned layer 54 showed only a small
improvement (by 1 µm for RMS of wire parameters), again indicating it is un-
likely that the imprinted effects will be severe. To take this into account anyway,
we continue using hemisphere constraints for layer 55. In Fig. 16.15 the initial
realistic misalignment is compared to the first iteration of our new alignment con-
figuration. Next to the usual projection plots, the parameters are also compared
wire-by-wire. The RMS of the distribution of the individual wire alignment pa-
rameters is shown too. The average misalignment is reduced significantly, down
to ∼ 12 µm. One can still see the remaining systematic effects in the radial
coordinate—but with a maximal average amplitude of 20 µm, these are expected
to be entirely negligible for physics.

The misalignment is almost negligible in the inner part but can grow up
to 50 µm for outer wires. This can be clearly seen by splitting the residual
misalignment projections by layers, for example, as in Fig. 16.16. The effect of
removal of just four (two at each end-plate) degrees of freedom can also be shown
by visualization of the residual wire misalignment in Fig. 16.15. This figure
uses the same scale as Fig. 16.11, and the difference is evident. Note that some
asymmetries might be induced by the misalignment of the realistically misaligned
layer 55, which does not respect the hemisphere constraints exactly.

At this point, we shall briefly return to the main problem that motivated all
this effort: the limitations of the approximate MINRES-QLP solution method.
Parameter variations, like numerical tolerance, never led to a satisfying solution
when starting with a realistic misalignment. While this method is successfully
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Figure 16.15: Residual wire misalignment for the first iteration of alignment for
the optimal MC configuration and hemisphere constraints on backward (left) and
forward end-plate (right). Only 20% of wires are randomly shown by an arrow
denoting the direction and size of the misalignment.
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Figure 16.16: Residual wire misalignment split by layer in the radial (left) and
R−ϕ direction (right) as a function of wire azimuthal angle for the first iteration
of alignment for optimal MC configuration and hemisphere constraints. Open
(filled) markers show backward (forward) wires.

used for the CMS tracker alignment [74], their global matrix is sparse. This is not
the case for our alignment problem, with more than 90 % non-zero elements. As
a demonstration, this approximate method is used in the exact same alignment
configuration as we have just derived above. The result is shown in Fig. 16.17:
the R−ϕ systematic pattern is not resolved, and the overall result for individual
wires shows a final RMS from 28 to 41 µm.

The improvement with an exact solution method is striking and indicates
possible limitations of the MINRES method in alignment problems without a
sparse global matrix. The possibility to profit from the inclusion of all correlations
among the measurements induced by tracks crossing different detector elements
is a crucial advantage of the global Millepede II approach. However, it can be
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Figure 16.17: Results for MINRES-QLP solution method: Initial (black) and
residual (red) misalignment for the optimal MC configuration and hemisphere
constraints. Parameters are shown wire-by-wire (right four plots for each wire
parameter) and as projections of the residual wire misalignment in the radial (top
right) and R− ϕ direction (bottom right) as a function of azimuthal angle.

considered a happy coincidence that the size of our alignment problem gives a
reasonable solution time on the currently available (high performance) hardware.
Even with the most modern methods, the solution time still scales as the cube
of the number of the alignment parameters. Thus, for example, for CMS, exact
solution methods could be are again too slow practically, with more than several
hundreds of thousands of parameters [85].

One last untested hypothesis should be checked before moving to studies with
real data. The residual misalignment should not affect physics. This was also
confirmed using a simple MC study. As a generator, a particle gun with pions in
the full angular acceptance is used. The momentum is set to exactly 2 GeV/c, and
the tracks are generated exactly at the center of the global coordinate system. In
Fig. 16.18, distributions of the reconstructed vertex parameters and momentum
from 5 × 104 generated events are shown. The ideal case is compared to a re-
construction using the residual misalignment discussed above. The IP position is
fixed to the true value, so no significant shift of the vertex parameter distributions
is expected. The observed biases are caused by small shifts of the whole VXD
detector together with CDC layers, up to 1 µm, and are only observable in such
simplified MC studies, where the true (generated) vertex is known precisely. In
reality, especially the shift in the z-coordinate has no measurable reconstruction
effect for data unless really large. A more interesting distribution is the recon-
structed momenta. No change in the bias is observed, and the width does not
increase significantly. The degradation of the momentum resolution is entirely
negligible. We have also checked, for example, the azimuthal dependence of the
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Figure 16.18: Results of simple MC validation: reconstructed particle transverse
impact parameter d0 (left), longitudinal impact parameter z0 (middle) and mo-
mentum (left) for ideal geometry (cyan) and geometry with residual misalignment
(black) from the optimal MC configuration.

reconstructed momenta. No statistically significant differences to the ideal case
have been observed.

16.4 Studies with Real Data

For the studies in this section, data from the last bucket (bucket 15) before the
2020 Summer shutdown are used. The data sample composition for alignment
follows the results of the MC study:

• 5× 105 events from the cosmic skim,

• 106 events from the tight di-muon skim, and

• 4× 106 events from the hadron skim.

The prompt alignment and calibration are used as a linearization point, but all
wire alignment parameters are reset to zeros, removing any previously determined
values. Only the survey measurements are implemented as wire displacements,
and tensions [21]. The previously determined time-dependent IP position from
the prompt alignment is used as a fixed constraint.

The cosmic validation was used to compare the performance of the various
alignment options. The comparison of the prompt and 2020 reprocessing align-
ment, which is based on the output of the studies in this chapter, is discussed in
detail in Chapter 17. Here, we concentrate on the difference between the default
alignment configuration derived from the MC studies and the final configuration
with the best performance on data. Note that there is some freedom in our choice
of constraints. For example, fixing the radius for some layer might result in a
less biased alignment if that particular layer happened not to be significantly
misaligned in its radius. Effectively, such a layer then becomes the reference for
the radial scale. This can only be optimized by comparing the performance of
different alignments of real data. Such a process can be quite subjective and time-
consuming. In general, we require that no available validation plot deteriorates
significantly with the new alignment.
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Figure 16.19: Standard CDC cosmic validation plots for tracks with at least
four VXD hits for the optimal MC configuration (left) and configuration with
the best data performance (right), showing relative transverse momentum bias
as a function of the transverse momentum for positively and negatively charged
tracks.

In the previous section, we derived the optimal alignment configuration based
on MC studies. It was assumed that radial degrees of freedom have a small physics
impact, and thus all layer radii could be kept fixed by constraints. Whereas
some of the observed problems in the validation of the prompt alignment results
were reduced with the new, full realignment, several observables showed worsened
performance. The original wire alignment used for the prompt calibration was
derived without the special constraints and thus had larger freedom to reduce
possible true misalignment of the chamber.

Figure 16.20: Standard CDC cosmic validation plots for tracks with at least four
VXD hits for the optimal MC configuration (left) and configuration with the best
data performance (right), showing z0 bias as a function of the transverse impact
parameter d0 of the cosmic tracks.

We tried all the initially discussed radial constraint options, as well as remov-

287



ing some constraints for CDC layers. Only one configuration led to no significantly
worse performance than the existing prompt alignment while solving some of the
previously observed problems in the alignment validation. This best configura-
tion required removing the CDC twist constraint and z-offset constraint. Layer
radius constraint is required only for layer 53. The radial constraints for the
whole CDC are also used. The hemisphere constraints are applied to the outer
layer 55. The most significant differences from the optimal MC configuration can
be seen in Figs. 16.19 and 16.20.
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Figure 16.21: Determined wire alignment parameter for real data in bucket 15
and the optimal MC configuration. Parameters are shown wire-by-wire (left four
plots for each wire parameter) and as projections of the residual wire misalignment
in the radial (top right) and R − ϕ direction (bottom right) as a function of
azimuthal angle.

The determined alignment constants for the optimal constraints from the MC
study are shown in Fig. 16.21. The alternative configuration with the best data
performance is shown in Fig. 16.22. The large differences are most noticeable in
the wire-by-wire figures, while the tendency in the projections is at least partially
similar. The difference between these two alignments is essentially contained
in the radial degrees of freedom. The alignment estimates a significant radial
deformation in the inner and conical parts of the CDC. This can be better seen
in the corresponding projection in Fig. 16.23 (left), where the average radial
misalignment of wires reaches almost 200 µm in the conical section.

These radial deformations are probably connected with additional distortions
of the chamber, namely a tiny twist between the backward and forward end-
plate. When the twist constraint is removed, due to the interplay of the z-
position measurement and stereo layer rotation, the z-offset constraint should be
removed, too, while the IP position is fixed as a reference. The original alignment
configuration from the MC studies did not lead to a significant change in the layer
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Figure 16.22: Determined wire alignment parameters for real data in bucket 15
and the configuration with the best data performance. Parameters are shown
wire-by-wire (left four plots for each wire parameter) and as projections of the
residual wire misalignment in the radial (top right) and R− ϕ direction (bottom
right) as a function of azimuthal angle.

alignment parameters determined by the baseline prompt alignment. However,
significant differences appear after the removal of the constraints, as can be seen
in Fig. 16.24.
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Figure 16.23: Determined wire alignment parameters for real data in bucket 15
and the configuration with the best data performance. Shown are projections of
the residual wire misalignment in the radial (left) and R− ϕ direction (right) as
a function of wire radius.
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These differences are primarily localized in the stereo layers. We believe the
determined alignment parameters correspond (at least partially5) to reality as
the validation results confirm a better performance. In addition, an independent
study of radial deformations in the inner part of the chamber confirmed the align-
ment results. A more detailed look revealed a five-fold symmetry in the radial
deformation of the inner layers. This symmetric pattern exactly corresponds to
the deformation of the CDC inner plate that occurred during CDC construc-
tion. This structure was also confirmed by a study of material distribution using
hadronic interaction vertices and in a variation of wire gains. We believe the
deformation of the inner plate leads to modified electrostatic forces on the inner
wires, projecting the five-fold deformation into the wire misalignment.
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Figure 16.24: Difference between determined CDC layer alignment parameters
for real data of bucket 15 with baseline alignment and the configuration with
the best data performance using released z-offset and twist constraints.

The most significant improvement with the best alignment configuration is
observed in the dependence of the ∆z0 bias as a function of tanλ of cosmic ray
tracks. We suspected such a bias is potentially dangerous for further high pre-
cision time-dependent CP -violation measurements and thus investigated ways to
reduce it. While the exact mechanism of how this inconsistency arises is not
understood, it is almost removed by the realignment, see Fig. 16.25 (right). In
addition, we can reproduce its effects to a large degree on MC, see Chapter 17 or
Fig. 13.5. As a brief demonstration that wire alignment can have an impact on
precision vertex measurements, we have also realigned the baseline parameters
with CDC wires fixed to surveys [21]. In Fig. 16.25 (left), these can be seen
as blue points with a systematic variation having about 5 µm amplitude. No
better performance can be achieved without CDC alignment at the wire level.
While such effects would be acceptable in previous experiments, future precision
measurements could deteriorate visibly if the full VXD+CDC alignment is not
regularly performed. This becomes especially important when the CDC defor-

5We suspect inconsistencies caused by the additional CDC end-plate deformation due to
weight of the VXD, not implemented in the wire displacements, namely the wire z-positions.
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Figure 16.25: Cosmic validation of real data from bucket 15 for tracks with
at least four VXD hits showing biases (differences of upper and lower arm) of
the transverse impact parameter d0 as a function of ϕ0 (left) and longitudinal
impact parameter z0 as a function of tan λ. The case with wire alignment reset
to surveys (blue) is compared to the preliminary prompt alignment (black) and
the full alignment with the best data performance (red). Linear fits to the slopes
of the biases are superimposed.

mation changes significantly with time, which is, unfortunately, the case for the
Belle II CDC.

16.5 Final Alignment Overview

In the previous section, several initially assumed constraints were removed to
reach optimal data performance. It is desirable to repeat the MC study for this
final alignment configuration to verify that no additional significant systematic
effects appear. Thus the final alignment configuration was executed, starting with
the realistic wire misalignment. The wire-by-wire results are shown in Fig. 16.26.
The RMS of the residual misalignment for wire positions is naturally slightly
larger due to the additional radial systematics but still fully acceptable—the
wires are aligned with an average precision of 13 to 14 µm, slightly better on the
backward end-plate.

The projections of the initial and residual wire misalignment into the natural
coordinate system allow decoupling of the individual systematics. This time,
we show all four projections in Fig. 16.27. In addition to the previous optimal
result on MC with radial constraints for all layers, the corresponding systematics
reappear in ∆R vs. R, while the rest is almost unaffected. The variations of the
wire misalignment in the radial direction can also be noticed in Fig. 16.28 in the
conical regions, in addition to the already discussed systematic pattern visible
mainly in the outer layers.

Regarding the VXD alignment parameters, no significant degradation is ob-
served with the final alignment configuration when compared to the previous
results. This is also the case for CDC layer alignment, which suggests that the
twist constraint is, in fact, redundant and that the twist can be resolved by the
cosmic sample. Nevertheless, the observed residual systematics for layer param-
eters shown in Fig. 16.29 are slightly larger and different than in our previous
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Figure 16.26: Initial (black) and residual misalignment (red) for the configu-
ration with the best performance on data. Wire shifts at backward (top) and
forward (bottom) end-plates are shown for each wire, together with the RMS of
the distribution.

discussion. Notable is the slight average twist (right-most bottom plot) and the
well-known deformation in the vertical direction (middle, top plot). The vertical
systematics has a different sign with respect to Fig. 16.8, but a similar scale. Such
effects are fully acceptable and practically unobservable as the CDC spatial res-
olution is about 100 µm. It is important to note that the starting misalignment
does not respect the hemisphere constraints, and thus some imprinted systemat-
ics could make some of the results slightly worse. Nevertheless, such a realistic
scenario is more suitable for estimating the alignment precision.

16.6 Summary and Prospects

The results of this chapter suggest that the derived alignment configuration can
easily recover from any statistical misalignment as well as local CDC deforma-
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Figure 16.27: Initial (black) and residual misalignment (red) for the configuration
with the best performance on data. Projections of average misalignment in the
radial (left) and R−ϕ direction (right) are shown as a function of wire azimuthal
angle (top) and radius (bottom). Open (filled) markers show backward (forward)
wires.

tions. Some global distortions are expected to be resolvable, too. For example,
an elliptical deformation with its long semi-axis along the horizontal direction
would respect the hemisphere constraints and should be fully resolvable. On the
other hand, by shifting the deformation phase by 90◦, such a distortion would not
respect the constraints maximally and could never be resolved with our method.
Similarly, if the radius of the CDC is different, the method cannot correct for such
an effect. On the other hand, especially in the two examples just given, a simple
correction at the physics analysis level can be applied to account for such effects
when observed, e.g., as an azimuthal dependence of the reconstructed invariant
masses of unstable particles.

The exact same alignment configuration is used for the full realignment in
the 2021 data reprocessing. On top of an average alignment per bucket, run-
dependent alignments need to be derived. For this purpose, the number of floating

293



100 50 0 50 100
X (Backward end-plate) [cm]

100

50

0

50

100
Y 

(B
ac

kw
ar

d 
en

d-
pl

at
e)

 [c
m

]
100 um

50 um

20 um

100 50 0 50 100
X (Forward end-plate) [cm]

100

50

0

50

100

Y 
(F

or
wa

rd
 e

nd
-p

la
te

) [
cm

]

100 um

50 um

20 um

Figure 16.28: Residual wire misalignment for the configuration with the best data
performance (starting from realistic wire misalignment). Only 20% of wires are
randomly shown by an arrow denoting the direction and size of the misalignment.
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Figure 16.29: Residual misalignment for CDC layer parameters for the configu-
ration with the best data performance. Note that while starting from realistic
wire misalignment, layers are not misaligned initially.

parameters must be in a feasible range. Based on the previous investigations
by the author and other collaboration members, it is necessary to perform a
more frequent alignment of the VXD half-shells and PXD sensors. The time
dependence of the internal SVD alignment, on the other hand, seemed relatively
stable. As we already observed that most global movements of the VXD are
correlated to CDC deformations, the CDC layer alignment also needs to be time-
dependent. With such a limited number of degrees of freedom (and so many
fixed parameters serving as a reference), the solution is expected not to suffer
from significant weak modes. For the run-dependent alignment, only the di-
muon data sample combined with cosmic-ray tracks is used. The default mix of
the samples includes all available di-muon events mixed with about 1/5 of cosmic

294



events. Based on a simple MC study, the required statistics to reach statistical
precision at the level of ≤ 1µm for VXD sensor parameters and ≤ 3µm for VXD
half-shell z-positions (which have the lowest statistical precision) is about 8×104

events.
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CHAPTER 17

Prompt and Reprocessing
Alignment Performance
In this chapter, the performance of the official alignments used in physics analyses
will be reported and compared to Monte Carlo simulations with the help of the
validation methods introduced in Sec. 13.5. We will attempt to explain the origins
of some discrepancies and possible ways to mitigate them. The reported results
were produced during the 2021 data reprocessing (known as proc12) for one
continuous block of data recorded in Spring 2020 (experiment 12). The main goal
was to understand alignment performance over several months of data taking and
evaluate the improvement from prompt to reprocessing alignment. The gained
experience should lead to further improvements for future operations at higher
luminosities.

The results in this chapter do not aspire to be a definitive evaluation of the
detector performance. One reason is a tight schedule and data availability in
the official 2021 reprocessing. Most of the data for this chapter were processed
just after the alignment finished and before the rest of the calibration chain
was completed. The actual difference from the official physics performance is,
however, negligible.

In several figures, we will also compare the results to an MC simulation
with the prompt misalignment model extracted during the reprocessing; see also
Sec. 13.6.4.

17.1 Validation with Cosmic Rays
Muons from cosmic rays penetrating the Belle II detector constitute a unique
validation data sample. The momentum spectrum goes far beyond the maximal
momenta of particles produced in collisions. Particles with high momentum are
less affected by multiple scattering effects, and in the infinite momentum limit,
the resolution of the track parameters is entirely dominated by the resolution of
the detector itself. On the other hand, the angular coverage of cosmic tracks is
limited as the detector is installed in an underground hall, and horizontal cosmic
rays are thus scarce.

The idea of cosmic validation is to reconstruct the cosmic particle trajectory
as two independent tracks, split at the POCA to the origin. The reconstructed
track parameters are then compared, and their difference is a measure of the track
parameter resolution. We will concentrate on full cosmic tracks, which cross all
three tracking sub-detectors: PXD, SVD, and CDC. This way, we can scan the
phase space of track parameters covering most of the tracks relevant for physics
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analyses. For particles with longer lifetimes like K0
S meson or Λ baryon, one

may enlarge the space by relaxing the requirement on hits in the PXD and thus
allowing for a larger d0 and z0 of the cosmic ray tracks. The data sample is based
on the cosmic skim recorded during collisions. Due to the strict requirement of
at least one PXD hit and at least four VXD hits on each cosmic arm, the total
collected data sample is limited. About 130 × 103 such full tracks are collected
in the data for experiment 12. Note that this does not correspond to the total
amount of initially recorded cosmic ray tracks. Pre-scales are applied to limit the
total amount of data at the calibration center, which results in approximately
10×106 triggered cosmic events available per bucket. The MC sample of a similar
size as the real data is generated using the Belle-based cosmic generator (see
Sec. 11.7. The data-driven background for this specific experiment is simulated
too.

To select a clean data sample, we require exactly two reconstructed (un-
merged) tracks in an event, and for each track |z0| > 0.3 cm to suppress contami-
nation from collision events. This requirement can be clearly seen in Fig. 17.1 (top
right). In this figure, the distributions of the five helix parameters (pt is shown
instead of ω) and the number of degrees of freedom of the tracks are compared
in data and MC. The histograms are shown separately for the upper and lower
track arm. One can generally see a nice correspondence, but the data momen-
tum spectrum is softer than the MC one. This would then result in the natural
degradation of the data/MC agreement in most validations where tracks with all
momenta are combined. In principle, we could reweight the MC to match the
data pt distribution. However, even in such cases, an additional degradation is
expected due to the lower average number of degrees of freedom (and thus fewer
CDC hits on tracks). Thus one should expect slightly worse performance on data,
even for a (purely theoretical) perfect alignment and calibration.

17.1.1 Helix Parameter Resolutions
The standard Belle II cosmic reconstruction attempts to derive the correct orien-
tation of the two track halves before the track fitting. This is in contrast to the
initial standard reconstruction, which incorrectly assumes both arms originate
from the IP. Thanks to the proper orientation of the track halves, the material
extrapolation and energy loss are calculated in the correct direction of propaga-
tion1. This also means that all five helix parameters are expected to be the same
on average for both arms at any point along the particle trajectory, and no sign
flip occurs for d0.

To avoid issues with different momentum spectrums in data and MC, we
use a transverse reference momentum of 5 GeV/c by selecting only tracks with
4.5 GeV/c < pt < 5.5 GeV/c. At such momenta, the spread for most helix param-
eters reaches almost the plateau of the minimum influence of multiple scattering
and thus can be used to estimate the detector resolution. The difference of upper
and lower arms’ helix parameters h ∈ {d0, z0, ϕ0, tanλ, ω}, defined as

∆h = hup − hdown, (17.1)
1In fact, for some cosmic tracks, the distinction between the upper and lower arm becomes

ambiguous for the tracking software.
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Figure 17.1: Distributions of the five helix parameters (transverse momentum
pt is shown instead of ω) and the number of degrees of freedom (number of 1D
measurements minus five) for cosmic validation data sample for data (red) and
MC simulation (blue). The parameters of the lower and upper arms of the split
cosmic tracks are shown separately.

can be used to estimate the associated detector resolution and bias as

resolution2 = Var[∆h/
√

2]
bias = mean[∆h/

√
2].

(17.2)

We do not explicitly show the bias in the following sections, but ∆h, to make
the discrepancies better visible with respect to the resolution. In contrast to the
resolution, here, the factor of 1/

√
2 is used by convention. In this section, we

estimate the mean and variance from a Gaussian fit to the distribution of ∆h/
√

2
within a range containing 90% of events, symmetric around its mean.

The resolution for the five helix parameters for simulated tracks is shown
in Fig. 17.2. Notable are the small biases in vertex parameters, namely for d0,
where the bias of −0.7 µm is significant and corresponds to about 8% of the
9 µm resolution. We did not study the origin of such a bias but can observe
a similar effect in e+e− → µ+µ− validation, and it will be visible also in the
following section. This illustrates that even the MC reconstruction is not perfect
and effects below the 1 µm level are irrelevant.

The helix parameter differences for the prompt alignment are shown in Fig. 17.3.
The resolutions are already close to the MC expectations. Only a small 1.2 µm
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Figure 17.2: Resolution in the five helix parameters for the MC cosmic data
sample without any misalignment. Only tracks with 4.5 GeV/c < pt < 5.5 GeV/c
are used. The red lines are results of a Gaussian fit to a range containing 90%
of the events. The denoted parameters µ and σ correspond to the mean and the
width of the fit function, with their estimated statistical uncertainties.
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Figure 17.3: Resolution in the five helix parameters for the data of experiment
12 with prompt alignment. Only tracks with 4.5 GeV/c < pt < 5.5 GeV/c are
used. The red lines are results of a Gaussian fit to a range containing 90% of the
events. The denoted parameters µ and σ correspond to the mean and the width
of the fit function, with their estimated statistical uncertainties.

bias is visible in d0, whose resolution is about 2 µm worse than for MC, simi-
larly as for z0. This corresponds to about 26% and 14% worse data resolution
for d0 and z0, respectively. This would already not meet the original precision
requirements—that data is not more than 20% worse than MC. For the helix
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angles ϕ0 and tan λ, the data resolutions seem actually even slightly better than
in simulation at our reference momentum of 5 GeV/c, which is only a result of an
imperfect fit of the MC distributions, while the resolution of the track curvature
is about 8% worse. CDC calibrations and the gas composition drive the worse
momentum resolution. Further improvements in the momentum resolution do
not seem to be achievable through a better alignment.
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Figure 17.4: Resolution in the five helix parameters for the data of experiment
12 with reprocessing (proc12) alignment. Only tracks with 4.5 GeV/c < pt <
5.5 GeV/c are used. The red lines are results of a Gaussian fit to a range contain-
ing 90% of the events. The denoted parameters µ and σ correspond to the mean
and the width of the fit function, with their estimated statistical uncertainties.

In Fig. 17.4, the resolutions after reprocessing are shown. The d0 bias is re-
moved, and the d0 and z0 resolutions for data are now only by 7% and 9% worse
than MC, significantly improved by the reprocessing. A more detailed study
over a wider momentum range to extract vertex resolutions will be discussed in
Sec. 17.1.3. In general, the reprocessing performance is better in all validations.
An exception is a bias in tanλ, which develops in the reprocessing and is not
present in the prompt alignment. This bias is statistically significant but consti-
tutes only about 8% of the actual tanλ resolution at 5 GeV/c, and its potential
physics impact for mostly lower momentum tracks (with corresponding worse
tanλ resolution) is likely negligible.

The appearance of tanλ bias is believed to be connected to deeper issues
and inconsistencies beyond the alignment degrees of freedom. We will return to
it in the next section, where the biases will be analyzed as a function of helix
parameters, allowing us to observe systematic effects that might be averaged out
and thus not visible in the resolution plots.

17.1.2 Helix Parameter Correlations
As any difference between the reconstructed helix parameters should, in principle,
only be caused by the detector resolution, it should follow a normal distribution

301



with a mean consistent with zero. This was more or less confirmed in the pre-
vious section. This may hold even despite the presence of a significant misalign-
ment. Any functional dependence of the biases on helix parameters indicates a
systematic misalignment or other problem influencing tracks systematically. If
uncorrected and significant, an associated systematic error for physics analyses
may need to be derived.

The correlations are produced as simple profiles. Each bin shows an average
over of the parameter differences. Two additional selections remove far outliers:
|∆z0| < 200 µm and |∆d0| < 100 µm. In the previous section, one cannot see
such events by eye, justifying the cut. We also require the transverse momentum
of both arms to be higher than 0.6 GeV/c to remove the low momentum tail of
the momentum spectrum—present in data but not in MC.

2− 0 2 4

 [cm]0z

20−

10−

0

10

20

m
]

µ
 [

0
d

∆

1− 0.5− 0 0.5 1

)λtan(

20−

10−

0

10

20

m
]

µ
 [

0
z

∆

Figure 17.5: The major systematic effects observed in the prompt alignment
(black) and in the reprocessing (proc12, red) for experiment 12 data using the
cosmic validation. The average difference in the estimated d0 (left) and z0 (right)
of the two arms is averaged in bins of z0 (left) and tanλ (right). The error bars
show the statistical error of the average in each bin. Bins around z0 = 0 are
affected by a cut removing tracks from collisions (background for our validation).

In the ideal case, ∆h should be consistent with a constant zero function.
Fig. 17.5 shows the most striking correlations in the prompt alignment and the
improvement with the reprocessing. The dependence of the d0 bias on track z0
is completely removed and consistent with a perfect alignment. The correlation
of the z0 bias is significantly reduced, but some remaining effects can be seen,
slightly larger for the forward tracks. The local biases at the level of 2 − 3 µm
correspond to at most 20% of z0 resolution (which gets worse for the forward
tracks, and thus the bias gets even less significant) and are expected to have a
negligible impact on physics.

Five helix parameters imply 25 corresponding different validations. These
plots are compared for prompt alignment and MC in Fig. 17.6. The results after
reprocessing are compared with the ideal MC in Fig. 17.7.

Firstly, some imperfections are again observed on MC, indicating what level
of biases is likely negligible. The previously reported d0 bias is with some effort
visible in the first row—basically constant as a function of all helix parameters,
except ω. Surprisingly, this bias is almost zero for negative and about 2 µm for
positive tracks, nearly independent of the actual curvature.

After reprocessing, only small remaining correlations are present in some vali-
dations. In general, we observe improvements in all validations, where some issues
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are observed in the prompt alignment, which concerns namely the first two rows
with vertexing systematics. The small sine-like dependence remaining in the ∆z0
vs. ϕ0 correlation is reduced, but not entirely. We will return to biases of this
type later. This particular dependency is suspected to be a remnant of a typ-
ical time-dependent deformation at the SVD sensor level. These improvements
are of high importance to reach the ultimate performance mainly for future high
precision time-dependent CP -violation measurements.

On the other hand, we have found at least two slight degradations. The
tanλ bias was already discussed and can be with some difficulty observed also
by comparing the third row in Fig. 17.6 and Fig. 17.7. In addition, we observe a
slight increase in ∆ω vs. ϕ0 dependence. This could potentially be caused by the
wire alignment and global CDC deformation, which cannot be entirely corrected
by the alignment procedure. This effect should have only a small physics impact,
which can be corrected ad hoc at the analysis level, as was already discussed in
Sec. 16.3

17.1.3 Impact Parameter Resolution
for Physics-like Tracks

This section will discuss a more elaborate analysis of the resolution in the two
most crucial helix parameters, d0 and z0. From the 25 subfigures of the previous
section, we conclude that the reprocessing alignment should provide unbiased
measurements, free of any significant systematic errors. These validations use
only limited selections to identify any problems. To evaluate detector performance
for physics, one must be stricter and make the cosmic sample as similar as possible
to the actual collision tracks, for which the performance should be estimated. We
also intend to compare the results to the previously derived performance figures
from simulations (see Fig. 3.7), which used a simple particle gun with muons
originating from the IP rather than cosmic ray simulation.

Most tracks originate from the inside of the beam pipe. Its material represents
the limiting factor for maximum achievable resolution due to multiple scattering
and a generally soft spectrum of tracks interesting for physics. Some cosmic tracks
hitting the PXD do not cross the beam pipe. For such tracks, the resolution
seems significantly better. Thus we require |d0| < 1 cm for both arms, which is
the beam pipe radius. Another contamination seems to come from cosmic tracks
with a large z0, which cross the Titanium coating of the beam-pipe and thus are
also not representative of a typical physics track. These tracks are removed by
imposing -2 cm < z0 < 4 cm for both arms. The reasoning behind these cuts
can be best understood when the estimated helix errors from the tracking are
investigated. As an example, the reprocessing alignment is used in Fig. 17.8 to
compare the estimated d0 tracking errors as a function of pseudo-momentum. We
do not use the tracking errors in our evaluations as there are still some issues, and
fine-tuning is needed to reach unit pulls. However, these tracking errors encode
information about the material crossed during track extrapolation and thus can
be used to identify tracks passing more or less material than expected. These
selections leave the distribution without indications of significant contamination
by non-standard tracks present initially.

We report the resolution as a function of pseudo-momentum, defined sepa-
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Figure 17.8: Estimated errors from tracking for d0 for data of experiment 12
with reprocessing alignment (difference to MC or prompt alignment is small)
as a function of pseudo-momentum. The distribution before (left) and after cuts
(right) to remove tracks not hitting the beam-pipe or hitting its Titanium coating
are shown.

rately for the transversal and longitudinal projection as

p̃d0 = pβ sin(θ)3/2

p̃z0 = pβ sin(θ)5/2,
(17.3)

which reflect the geometrical dependence of the amount of crossed material (and
level arm) as a function of track polar angle2 and can be used to decouple this
effect for a more elaborate resolution estimate. By using the pseudo-momenta,
the resolutions can be parametrized as

σ2(p̃) = a2 + b2

p̃2 , (17.4)

where a stands for the detector resolution and b parametrizes the material budget
affecting smearing by multiple scattering, which is proportional to the inverse of
the particle momenta. Thus in the high momentum limit, the multiple scattering
term gets negligible, and the resolution reaches a plateau, corresponding to the
detector resolution.

The width of the ∆d0/
√

2 and ∆z0/
√

2 distributions for tracks passing all
selections is evaluated with the σ68 method per each bin of the pseudo-momentum:
a symmetric range around the mean of the distribution is built such that 68%
of events lie within it. Half of this symmetric range length is then reported as a
resolution estimate. This method is more robust against outliers and has become
a standard in the Belle II Collaboration. The error for the estimate in each
bin is estimated as σ68(∆h/

√
2)/
√
N , where N is the number of events in the

corresponding momentum bin.
In Fig. 17.9, Eq. 17.4 is used to extract the resolution from a fit to points in

separate pseudo-momentum bins. The ideal MC case is compared to the prompt
and reprocessing alignment. The multiple scattering factors b agree in data and

2This parametrization assumes that the material can be described as a concentric tube,
which is not exactly the case, especially with slanted SVD sensors.
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Figure 17.9: Estimated resolution in the cosmic validation for d0 (left) and z0
(right) in bins of pseudo-momentum for MC without misalignment (red) and ex-
periment 12 data with prompt (black) and reprocessing (blue) alignment. Vertical
error bars are plotted but not visible. The lines are the results of χ2 fits—the
estimated parameters of the fits and their statistical errors are shown.

MC. This means that the material distribution is well parametrized in the simu-
lation.

Regarding the estimated resolutions, a significant improvement is achieved by
the reprocessing. In general, the observed reprocessed data resolutions are ap-
proximately one micrometer larger than for the ideal simulation. The situation
is slightly worse for d0, where data are about 17% worse than expected. This
was already observed in previous analyses in the Collaboration and is at least
partially explained by a worse intrinsic resolution of the SVD sensors. A coor-
dinated effort of the SVD group to make simulation closer to reality is still in
progress. Thus it is likely that alignment is not responsible for the entire dis-
crepancy. Such a discrepancy is still acceptable, especially at this early stage of
the experiment. We arrived at a different relative degradation estimate when the
resolution was evaluated at 5 GeV/c reference momentum. All these methods
have some systematic errors (correlated across different data samples) that result
in wide variations when differences in parameters are compared and expressed
relative to the MC estimate.

The estimated reprocessing z0 resolution is already very close to the ideal
MC and improves significantly from the prompt alignment. Here we suspect the
alignment to further reduce time-dependent variations in the future, but any such
improvement will have only a minimal physics impact. This is also true for d0,
as most physics analyses use tracks with momentum smaller than 2 GeV/c.

Statistical and Systematic Errors

To estimate the statistical error of the determined impact parameter resolutions,
we generate 100 bootstrap replicas (with replacement) of the data set and retrieve
uncertainties from the standard deviation of the distributions of the parameters
a and b.
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For systematic uncertainties, we consider the following sources:

• The number of pseudo-momentum bins in the resolution plots, which is
varied from 12 to 10, 20, and 30.

• The maximum range of pseudo-momentum, which is varied from 8.5 GeV/c
to 10, 15, and 20 GeV/c.

• The number of bins for resolution per each pseudo-momentum bin, varied
from 24× 103 to 10× 103, 12× 103, and 48× 103.

• The range used to evaluate the resolution in each pseudo-momentum bin,
varied from 600 µm to 200 µm, 400 µm, and 1000 µm.

The last two items estimate systematics stemming from the σ68 method, which
is evaluated on histograms instead of raw arrays of data. However, the largest
systematic uncertainty for the a term stems from the pseudo-momentum range
(wider ranges give slightly better resolutions). The b term is sensitive to the
binning in pseudo-momentum (finer binning gives larger estimates of b). We use
the maximum observed deviation from the nominal fit value in each category and
sum the contributions in quadrature.

In summary, we obtain as the detector impact parameter resolution the fol-
lowing values for experiment 12 data after the (proc12) reprocessing

σd0 (proc12) = (9.8± 0.1± 0.7) µm⊕ (21.2± 0.6± 2.3) µm ·GeV/c/p̃d0

σz0 (proc12) = (13.8± 0.2± 0.4) µm⊕ (22.6± 1.1± 7.1) µm ·GeV/c/p̃z0 ,
(17.5)

where the first uncertainty is statistical (from the bootstrap method) and the
second systematic. For prompt calibration of the same data, we get

σd0 (prompt) = (10.6± 0.1± 0.6) µm⊕ (22.5± 0.8± 3.4) µm ·GeV/c/p̃d0

σz0 (prompt) = (14.5± 0.2± 0.4) µm⊕ (24.0± 1.2± 6.0) µm ·GeV/c/p̃z0

(17.6)
and finally, for MC simulation, the estimates yield

σd0 (MC) = (8.4± 0.1± 0.5) µm⊕ (22.2± 0.6± 1.8) µm ·GeV/c/p̃d0

σz0 (MC) = (12.9± 0.1± 0.3) µm⊕ (20.2± 0.8± 3.2) µm ·GeV/c/p̃z0 .
(17.7)

This means the data/MC disagreement improves from (26± 10)% to (17± 11)%
and from (13±4)% to (7±4)% for d0 and z0, respectively, due to the reprocessing
alignment.

The method is not suitable for estimation of the b parameter, which depends
on a steep slope at low pseudo-momenta and would deserve, among other things,
a finer binning in this region. However, as the alignment practically contributes
only to the a term, this method is sufficient for our purposes.

17.2 Validation with e+e− → µ+µ− Events
Di-muon events have two important advantages over the cosmic rays. They cover
the full angular acceptance and are produced at a much higher rate, which will
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further increase by more than an order of magnitude when the full luminosity is
reached. We have already utilized this sample for the final run-dependent stage
of the reprocessing alignment. With higher luminosity, the time resolution could
be further increased for the price of higher computing resources dedicated to the
alignment, possibly executed online in the future.

As the dedicated tight di-muon skim already represents a clean sample, we do
not impose any further selections besides the following:

1. Exactly two charged tracks reconstructed in an event.

2. For both tracks p > 1.0 GeV/c, |dz| < 0.2 cm, and dr < 0.5 cm, where dz
and dr are longitudinal and transverse impact parameters relative to the
IP position.

3. For the reconstructed invariant mass of the pair to fall in [9.5, 11] GeV/c2.

In contrast to the previous chapter, no background is simulated for MC, which
we use for comparison. We expect its effect to be small, if not negligible, for the
figures in this section. The MC was, however, simulated realistically with most
missing and dead channels. We simulate the MC only in a particular run range
for the comparison.

Because this validation was produced right after the alignment finished, the IP
calibration was not yet recalculated after the new alignment was derived. While
run-dependent constant offsets are determined in the final reprocessing alignment
stage, these are discarded for the beam spot payloads. The reason is a missing
implementation to sum the corrections with intra-run-dependent IP calibration.
The IP calibration procedure should be repeated with the final alignment in any
case. This, however, means that we must determine the beam spot position during
the validation procedure to perform a pivot transformation of the helix parameter
of the two muons before their comparison. This is necessary because the default
pivot for the helix in the Belle II tracking is the origin of the coordinates, while
the actual IP position in our global reference frame is displaced from the origin by
several hundreds of micrometers. It then further oscillates around this position
and can also experience larger shifts when adjusted by the accelerator operators,
for example, to find a sweet spot for the highest luminosity.

We do not attempt to determine a fine intra-run dependent beam spot po-
sition but evaluate its mean in the x, y, and z coordinates as a median of the
corresponding distributions after a vertex fit. We do so for all events in each data
file3. With the average IP coordinates, the pivot transformation is performed for
the helix parameters of both muons. Only the transformed helix parameters are
used in all shown plots.

In contrast to correctly oriented cosmic ray tracks, the two muons have, by
definition, an opposite sign of d0, and thus, we are interested in the distribution
of the quantities

Σd0 = d+
0 + d−

0

∆z0 = z+
0 − z−

0 ,
(17.8)

where the sum and difference are taken between the helix parameters of the
positive and negative muon.

3On average, each data file contains 2000 to 6000 events, but much smaller files are possible.
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17.2.1 Impact Parameter Resolutions

The resolutions in d0 and z0 are evaluated using the σ68 method in bins of the
positive track’s azimuthal angle ϕ0 and polar angle, expressed as tanλ. The
distributions for prompt and reprocessing (denoted as proc12) alignment are
compared to the ideal MC and MC with the prompt misalignment model (see
Sec. 13.6.3). A range of muon momenta is summed together in these validations
(where the high momentum muons dominate), so the estimated resolutions are
slightly worse numerically than, for example, for the reference momentum used
in the cosmic validation.
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Figure 17.10: Estimated resolution in d0 for the di-muon sample as a function
of positive track ϕ0 (left) and tanλ (right). The resolution estimated with σ68
method is compared for MC without misalignment (solid black line), MC with
the model of prompt misalignment (dashed black line), and data of experiment
12 with prompt (blue) and reprocessing (red) alignment. Error bars correspond
to the errors of the standard deviation for values in each bin. For clarity, the
error bars are only shown for data; they are similar for MC.

In Fig. 17.10, the d0 resolution is shown. Only a minimal improvement is
achieved by the reprocessing. We see a slight general offset from the expected
MC resolution, larger at large polar angles, where the resolution gets quickly worse
(as expected). This might be caused by residual sensor deformations beyond the
current parametrization or a larger influence of the SVD, which has probably
significantly worse intrinsic resolution than expected on MC in this direction
(discussed later). In the ϕ0 dependence, one can also see that some subtle patterns
from MC are reproduced in data. Similar conclusions can be drawn for the z0
resolution, shown in Fig. 17.11. Here, the improvement from prompt alignment
can be clearly seen.

The very small remaining discrepancies can be caused by an average uncor-
rected random time-dependent misalignment or some (possibly) constant system-
atic effect. For example in the ϕ0-dependent resolution (see left in Fig. 17.10 for
d0 and Fig. 17.11 for z0), the best data/MC correspondence seems to occur near
ϕ0 = 0 ± π. The larger difference in other regions, especially for z0 resolution,
seems to be caused by specific deformation effects evolving in time. This will get
more evident in the next sections.
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Figure 17.11: Estimated resolution in z0 for the di-muon sample as a function of
positive track ϕ0 (left) and tan λ. The resolution estimated with σ68 method is
compared for MC without misalignment (solid black line), MC with the model of
prompt alignment (dashed black line), and data of experiment 12 with prompt
(blue) and reprocessing (red) alignment. Error bars are errors of the standard
deviation for values in each bin. For clarity, the error bars are only shown for
data; they are similar for MC.

17.2.2 Impact Parameter Biases
The vertex parameter biases provide a more robust look into the possible align-
ment problems, which easily get averaged out over tracks going in various direc-
tions. In Fig. 17.12, the d0 bias is shown as a function of the positive muon ϕ0
and tan λ. A slight positive bias is again present in the MC, similarly to the
cosmic ray validation. Whether the origin of this bias is the same is not currently
known. We use it as an argument to neglect biases of a similar scale observed on
data.
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Figure 17.12: Estimated biases in d0 for the di-muon sample as a function of
positive track ϕ0 (left) and tan λ. The biases are compared for MC without
misalignment (solid black line), MC with the model of prompt alignment (dashed
black line), and data of experiment 12 with prompt (blue) and reprocessing (red)
alignment. Error bars are errors of the means in each bin. For clarity, the error
bars are only shown for data; they are similar for MC.

Regarding the Σd0 vs. ϕ0 dependence, some residual misalignment with a
structure resembling the PXD ladders can be observed in the prompt alignment.
After reprocessing, this effect is suppressed well under one micrometer on av-
erage. Some slight dependence can be observed for tanλ in both MC and the
reprocessing, albeit with an opposite sign. The prompt alignment seems surpris-
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Figure 17.13: Estimated biases in z0 for the di-muon sample as a function of
positive track ϕ0 (left) and tan λ. The biases are compared for MC without
misalignment (solid black line), MC with the model of prompt alignment (dashed
black line), and data of experiment 12 with prompt (blue) and reprocessing (red)
alignment. Error bars are errors of the means in each bin. For clarity, the error
bars are only shown for data; they are similar for MC.

ingly better than the reprocessing, but only in the regions where the resolution
is already worse, see Fig. 17.10 (right).

The z0 biases, shown in Fig. 17.13 are more interesting. The large slope in
the right figure is entirely removed by the reprocessing. The local biases have a
similar scale to the ideal MC. In addition, the prompt result can be accurately
reproduced by the prompt misalignment model. This slope is likely related to
the corresponding dependence in the cosmic ray validation. In the ϕ0 dependence
(Fig. 17.13 left), a small oscillation is visible with ∼ 3 µm amplitude and nodes
of zero bias at ϕ0 = 0±π, corresponding to the slight variations of z0 resolutions.
This suggests that some specific deformation remains on average, which could
not be corrected by the time-dependent reprocessing alignment.

In conclusion, the vertex parameter bias study shows that the average final
performance is good, sometimes appearing even less biased than the nominal
MC. No serious issues have been identified, even at this more detailed level. To
observe the remaining inconsistencies in detail, time-dependent validation must
be utilized.

17.2.3 Run Dependence of Average Biases
and Resolutions

The time dependence of the average d0 and z0 biases is shown in Fig. 17.14. We
evaluate the bias per each data file and plot them binned every ten runs. Instead
of the time axis, run numbers are used. One can still see gaps usually correspond-
ing to maintenance days, where non-physics runs are taken. Two significant shifts
up to 4 µm occur for the d0 bias, which is recovered in the reprocessing, whose
points are generally closer to and consistent with zero within 1–2 µm. For z0,
the improvement is much less visible. The luminosity was lower for runs < 2000,
which results in larger fluctuations and statistical errors (taken as errors of the
mean). The MC data are generated only for a subset of runs for a reference,
shown as black points in the plots.

In Fig. 17.15, the run-dependence of the resolutions is shown. A small im-
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Figure 17.14: Estimated track parameter biases in d0 (left) and z0 (right) for the
di-muon sample as a function of the run number of experiment 12. Estimated bias
values are averaged in bins of ten runs—error bars show errors of the averages.
Biases are compared for MC without misalignment (solid black line), MC with
the model of prompt alignment (dashed black line), and the data of experiment
12 with prompt (blue) and reprocessing (red) alignment.

provement by about 0.5 µm, consistent over the entire experiment period, can
be observed for the d0 resolution. Much larger effects can be seen in the z0
resolution. The resolution in the prompt alignment gets significantly degraded
after run 3000. The fact that the repeated bucket-by-bucket baseline alignment
does not remove this effect suggests that it could be related to an evolving CDC
deformation at the wire level, which is only corrected in the reprocessing.
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Figure 17.15: Estimated track parameter resolutions in d0 (left) and z0 (right) for
the di-muon sample as a function of the run number of experiment 12. Estimated
resolution values are averaged in bins of ten runs—error bars show errors of the
averages. Resolutions are compared for MC without misalignment (solid black
line), MC with the model of prompt alignment (dashed black line), and the data
of experiment 12 with prompt (blue) and reprocessing (red) alignment.

A significant improvement is achieved for the z0 resolution in the reprocess-
ing. But for some periods, we see a gradual increase or decrease of the resolution
by up to about 5 µm. Such periods usually directly follow after a gap in the
runs, meaning a maintenance day or some major event, like QCS magnet quench,
followed by a longer break in the physics data-taking, happened in the gap. In
addition, one can observe a slight continual worsening of the best achieved repro-
cessing z0 resolution towards the end of the data-taking period. This degradation
may be related to increasing backgrounds at higher luminosity.

313



Note that the run-dependent alignment is performed for pixel sensors, VXD
half-shells, and CDC layers, but not for the SVD sensors, which are still aligned
only once per bucket, even in the reprocessing. It seems that these uncorrected
evolving degradations are caused by systematic biases stemming from a contin-
uous deformation of the SVD. Whether this is directly connected to the CDC
deformation is not yet clear. So far, we have had difficulties decoupling the dif-
ferent deformations and correlating them to machine and detector events, except
for a couple of major ones. From the evolution of the z0 resolution in the prompt
and reprocessing alignment, it is easy to see why it is so. Instead of the continuous
increase seen in the reprocessing in the problematic periods, the prompt align-
ment shows a step-like behavior. The problem is that more severe misalignments
occur, which make more subtle effects challenging to resolve. Only after the re-
processing of the complete experiment 12 and this validation have we started to
suspect time-dependent systematic deformation in the SVD inside the buckets to
be non-negligible for the overall vertex performance. This was not obvious until
the majority of other misalignment effects were removed by the reprocessing.

17.2.4 Investigation of the Remaining Time Dependence
Let us briefly look at an example of movements determined by the run-dependent
alignment. We do not have a convenient set of degrees of freedom to describe the
whole VXD displacement as a rigid body, but we construct such parameters by
averaging alignment corrections to all four half-shells. To a first approximation,
these move together, and in addition, this movement is correlated to deformations
of the CDC. Such a situation was completely unexpected before the first data and
when the alignment parametrization was defined.
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Figure 17.16: Averaged reprocessing alignment corrections in experiment 12 as a
function of run number for shifts (left) and rotations (right), showing estimated
coherent movements of all VXD half-shells with respect to the run-independent
prompt alignment. Corrections are averaged in bins of ten runs. The error of the
average is shown as an error bar.

For each half-shell parameter, the mean over all corrections determined in ex-
periment 12 is first subtracted. An average over the four half-shells is then taken.
Its mean is shown in Fig. 17.16, binned every ten runs. The short horizontal lines
of connected points mean that the payload IOVs were extended, either (1) due
to a break in the data taking (without bucket boundary) or (2) because multiple
runs were merged to reach sufficient statistics. Case (2) happens mostly for the
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initial runs < 2000, and case (1) is typical for the higher run numbers. A gap
without points indicates a bucket boundary. One can identify seven original buck-
ets in these figures. In practice, the gap is filled with the last available alignment
corrections.

The angle corrections show no apparent trends, except for the step for runs
3000–4000. This will be our candidate serving as an example of a problematic
run range. Naturally, the precision for angle γ is lowest due to the shortest
corresponding level arm (VXD radius vs. length).

3− 2− 1− 0 1 2 3
 [rad]

0
φ

10−

5−

0

5

10

15

m
] 
/ 
0
.2

 
µ

>
 [

0
 d

Σ
<

MC (nominal)
MC (misaligned)
Data exp12 (prompt)
Data exp12 (proc12)

Belle II

Preliminary

 (exp 12)
-

µ +µ → 
-

e+e

runs 3000 - 4000

2− 1− 0 1 2 3 4

)λtan(

10−

5−

0

5

10

15

m
] 
/ 
0
.2

 
µ

>
 [

0
 d

Σ
<

MC (nominal)
MC (misaligned)
Data exp12 (prompt)
Data exp12 (proc12)

Belle II

Preliminary

 (exp 12)
-µ +µ → 

-
e+e

runs 3000 - 4000

3− 2− 1− 0 1 2 3
 [rad]

0
φ

40−

30−

20−

10−

0

10

20

30

40

50

m
] 
/ 
0
.2

 
µ

>
 [

0
 z

∆
<

MC (nominal)
MC (misaligned)
Data exp12 (prompt)
Data exp12 (proc12)

Belle II

Preliminary

 (exp 12)
-

µ +µ → 
-

e+e

runs 3000 - 4000

2− 1− 0 1 2 3 4

)λtan(

40−

30−

20−

10−

0

10

20

30

40

50
m

] 
/ 
0
.2

 
µ

>
 [

0
 z

∆
<

MC (nominal)
MC (misaligned)
Data exp12 (prompt)
Data exp12 (proc12)

Belle II

Preliminary

 (exp 12)
-µ +µ → 

-
e+e

runs 3000 - 4000

Figure 17.17: Estimated biases in d0 (top) and z0 (bottom) for the di-muon sample
in run range 3000–4000 of experiment 12 as a function of positive track ϕ0 (left)
and tanλ (right). The biases are compared for MC without misalignment (solid
black line), MC with the model of prompt alignment (dashed black line), and
the data of experiment 12 with prompt (blue) and reprocessing (red) alignment.
Error bars are errors of the means in each bin. For clarity, the error bars are only
shown for data; they are similar for MC.

Regarding the shifts of the half-shells, the most significant deviations are
observed for the z-coordinate. To be able to absorb mainly thermal deforma-
tions of the accelerator and beam-line structures, to which the vertex detector
is attached, flexible connections were designed, providing some freedom in the
z-direction. We can observe that during experiment 12, two major steps in the
z-position of the VXD occur, from −100 µm to zero and +100 µm, where again,
the run range 3000–4000 is specific. Otherwise, the VXD z-position is stable
within about 50 µm, which could be explained by expansions/contractions in
the flexible mounts. In the future, possible correlations to various temperature
measurements should be investigated. However, it is notable how large correc-
tions need to be derived by the alignment procedure for this coordinate and how
small the effects are on the overall performance. For the prompt alignment, there
would be only seven constant lines for each bucket in this figure, completely ig-
noring the additional variations. However, as shown in the previous sections, the
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average performance is already good. This demonstrates how unimportant the
correlated global movements of the VXD and CDC layers (almost identical to our
typical weak modes) are in practice. From MC alignment studies, we estimate
that the sensitivity to (systematic residual misalignment in the direction of) such
deformations is about an order of magnitude better (smaller) than the observed
corrections in reality.

The CDC deformation seems to happen mainly in the vertical direction, and
the VXD moves mostly coherently with the first CDC layer. This can be seen in
several slopes of the blue points in Fig. 17.16 (left), usually after a gap (mainte-
nance day). It is now almost certain that this deformation mainly happens when
the superconducting accelerator optics (QCS magnets) is switched off. The ab-
sence of forces from the QCS leads to a quick relaxation. At that point, no physics
data are taken. While cosmic data might be recorded after the QCS is de-excited;
usually, local runs for internal sub-detector calibrations are taken. The physics
data taking is then typically restarted near the evening of each maintenance day.
Before this, the QCS is turned on, which restores the magnetic forces. However,
it seems that the deformation evolves continuously over several days, which can
be seen as the slopes in variations of the y-position of the VXD within about
80 µm range. For the x-direction, the range of movements is about twice smaller
in some problematic periods and seems to be correlated to the y-movement.

Most interesting is the apparent correlation of the large continuous y-movements
and the change in the z0 vertex resolution in Fig. 17.15 (right). The CDC layers
are aligned at the same frequency as the VXD half-shells and PXD sensors. Thus
the remaining uncorrected misalignment must occur in other degrees of freedom.
The alignment determines an average over the full bucket for the SVD sensors
and CDC wires. Large deviations from the average in the unstable periods then
cause systematic effects, which contribute to a worse resolution. This especially
happens when multiple periods, including a maintenance day, are merged into
one bucket. This was sometimes done to process the data more quickly, but as
can be seen, it can lead to significant degradation. By splitting the problematic
buckets, one could further suppress this effect.

The validations of vertex biases are shown separately for the most problematic
run range (3000–4000) in Fig. 17.17. Large systematic effects can be seen in
the prompt alignment, significantly suppressed in the reprocessing. However,
the bottom left figure showing z0 bias as a function of positive track azimuthal
angle ϕ0 exhibits the already well-known (minus) sine-like dependence with about
10 µm amplitude. This represents a typical deformation effect left uncorrected by
the reprocessing and is probably the worst scenario as it is observed mainly with
one sign and does not entirely average to zero over long periods. Fortunately,
these periods of continuous deformations represent only a limited fraction of all
data, and, thus, the average effect observed for experiment 12 is well within
acceptable limits. It is desirable to limit the number of events leading to change
in the deformation (change of the QCS magnetic field) and to split data into
buckets using a higher granularity. In such a way, these effects can be suppressed
automatically, without resorting to complex alignment strategies that may still
not reach optimal splitting of the validity of the alignment constants.

As a demonstration of a period of equivalent length, but without any major
issues, we also show the validation for run range 5200–6000 in Fig. 17.18. After
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reprocessing, the resulting performance is excellent, without indications of any
systematic effects, practically identical to the ideal MC simulation.
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Figure 17.18: Estimated biases in d0 (top) and z0 (bottom) for the di-muon sample
in run range 5200–6000 of experiment 12 as a function of positive track ϕ0 (left)
and tanλ (right). The biases are compared for MC without misalignment (solid
black line), MC with the model of prompt alignment (dashed black line), and
the data of experiment 12 with prompt (blue) and reprocessing (red) alignment.
Error bars are errors of the means in each bin. For clarity, the error bars are only
shown for data; they are similar for MC.

The remaining average ϕ0-dependent z0 bias in the problematic periods seems
to be caused by deformations in the SVD leading to movements of the sensors in
the z-direction, but further investigations are needed to understand what hap-
pens. If such deformation can be described by a single or just a couple of pa-
rameters (which seems, however, currently unlikely), we could add them to the
set of alignment parameters and determine them with much lower statistics (and
thus higher frequency) than required for a full realignment of the SVD sensor-
by-sensor. The PXD is going to be replaced in 2022 or 2023, and hopefully, with
redesigned cable layout, the deformations of the CDC should not occur anymore.
So it seems premature to re-parametrize the alignment at this point, even when
a model of the deformation is derived.

17.3 Validation with Track-To-Hit Residuals
In this section, we return to the very basics of alignment: the residuals. All
(new) issues in this chapter are caused by the complex time dependence of the
vertex detector misalignment. We performed a number of preliminary studies
on a limited dataset (one bucket) before the reprocessing. As will be shown,
many effects could be significantly suppressed by the reprocessing, and this is
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observed consistently over the whole experiment 12. To limit the number of
figures, we often use two representative periods: a short bucket 11 and a long
bucket 15 (last bucket of experiment 12). The long bucket represents a more
typical situation in the current data taking. The short bucket could, on the other
hand, represent an ideal situation where the bucket size is limited to only several
days.
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Figure 17.19: Unbiased track-to-hit residuals in u (left) and v (right) from stan-
dard tracking (with DAF) integrated over all PXD sensors and all di-muon valida-
tion files in experiment 12, using the reprocessing alignment (black points—error
bars shown, but not visible). The data distribution is compared to MC simulation
without misalignment (cyan).

Before moving to individual buckets, let us briefly review the residual distribu-
tions integrated over the entire experiment 12 and all sensors. For pixel sensors,
the integrated residuals are shown in Fig. 17.19. For these figures, only the final
reprocessing alignment is used. The improvement over the prompt alignment is
marginal (usually sub-micron for widths) in such integrated distributions. No
particular requirements are applied on the track or hit quality beyond the stan-
dard selections of the tight di-muon sample. For MC, no background is simulated,
and thus it is possibly slightly optimistic. Nevertheless, very good correspondence
is achieved for the v (z) PXD residuals, which are only approximately 5% worse
than MC. For u residuals, we again observe worse data/MC correspondence. But
we suspect this effect, in fact, to come from a significantly worse intrinsic SVD
resolution in the u-coordinate. The residual distributions integrated over all SVD
sensors are shown in Fig. 17.20. Whereas the v coordinate is about 20% worse
than MC, the u residuals are wider by 50%.

This large discrepancy has two possible reasons: significant misalignment
or overestimated MC resolution of the SVD sensors (or issues only on data
reconstruction—for example, due to background, which are unlikely to be re-
sponsible for the full difference). As all the distributions are nicely centered, and
this is also the case for any individual SVD (or PXD) sensor integrated over all
data or over any bucket, this could only be caused by time-dependent instabili-
ties (inside buckets). These must be well averaged but large enough to effectively
smear the sensor resolutions. As we will see in the next section, we can really
observe such instabilities. However, their scale can be quantified and does not
explain the discrepancy of the SVD u (R− ϕ) resolution between data and MC.
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Figure 17.20: Unbiased track-to-hit residuals in u (left) and v (right) from stan-
dard tracking (with DAF) integrated over all SVD sensors and all di-muon valida-
tion files in experiment 12, using the reprocessing alignment (black points—error
bars shown, but not visible). The data distribution is compared to MC simulation
without misalignment (cyan).

17.3.1 Time Dependence of PXD Sensor Residuals

As we already suspected that PXD sensors move significantly, every sensor was
aligned with the VXD half-shells in each block during reprocessing. With ∼
50×103 di-muon events, the alignment precision for sensor parameters is already
at 1 µm level or better. Thus we can afford to align PXD sensors too.

Using the two buckets as examples, we have collected the medians of his-
tograms of the track-to-hit residuals per every tight di-muon skim file with about
2000− 6000 events. For the u-residuals, the prompt and reprocessing alignment
is compared for the two buckets in Fig. 17.21. The blue (prompt) points seem
to follow almost linear paths along the three days of the small bucket. The am-
plitude of this movement can be even larger than 5 µm, and the forward sensors
(number 1) are slightly more affected. Most of these movements are significantly
suppressed by the reprocessing, but short periods can be observed for some sen-
sors, where probably due to suboptimal merging, the alignment fails to correct for
the movement entirely (for example, the brief peak for sensor 1.7.2). For the long
bucket, over two weeks, even larger excursions (over 15 µm) of the sensors can
be observed and are mostly removed, but again with some problematic periods
(e.g., for sensor 1.5.1).

The results for the v-coordinate, shown in Fig. 17.22, indicate much more sig-
nificant instabilities of the PXD sensors. The largest movements can be observed
for sensor 2.4.1 in the second (incomplete) PXD layer, where the medians of the
residual distribution can be more than 30 µm away from zero in some periods,
and one can definitely observe continuous movements in the prompt alignment.
While such movements are largely suppressed by the reprocessing, the alignment
is still not fast enough to follow them. Some isolated uncorrected points are
likely a result of the sub-optimal merging of smaller runs with a possible time
gap, where the large movements happen, but data are not taken. We will attempt
to quantify the initial (prompt) and remaining (after reprocessing) residual insta-
bilities in Sec. 17.3.2, but one can draw qualitative conclusions already from these
time-dependent validations. Somehow unexpected is the very different behavior
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Figure 17.21: Time-dependence of medians of track-to-hit u-residuals in the short
bucket 11 (top) and long bucket 15 (bottom) of experiment 12 compared for
prompt (blue) and reprocessing (red) alignment. Each point corresponds to the
median of the histogram in a file with > 2000 di-muon events, error bars not
shown. The points are ordered in run number (and file number) for each PXD
sensor. The sensor identifiers are shown at the bottom.

of the forward (number 1) and backward (number 2) PXD sensors. Due to lower
statistics recorded in the forward sensors (about six times fewer hits than number
2 sensors for the di-muon sample), the spread of the points is naturally larger.
But we can only identify continuous movements at our resolution in the forward
sensors.

An initial attempt to derive a quantitative estimate of the residual instabilities
and their possible physics impact was to just integrate the distributions in the
time-dependent plots over all periods (in a bucket) and all PXD sensors. The
histograms of all the collected medians for the two example buckets are shown
in Fig. 17.23. A significant reduction of the standard deviation of the medians is
observed after reprocessing, but as can be seen for the v-coordinate, even after the
reprocessing, the RMS is significantly larger for the long bucket (4.74 µm) than
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Figure 17.22: Time-dependence of medians of track-to-hit v-residuals in the short
bucket 11 (top) and long bucket 15 (bottom) of experiment 12 compared for
prompt (blue) and reprocessing (red) alignment. Each point corresponds to the
median of the histogram in a file with > 2000 di-muon events, error bars not
shown. The points are ordered in run number (and file number) for each PXD
sensor. The sensor identifiers are shown at the bottom.

for the shorter bucket (3.85 µm). For the u-coordinate, the residual instabilities
after reprocessing seem much closer for the two buckets. This again indicates
that the time resolution of the alignment is still not sufficient to remove the time
dependence. But as we have already learned, this seems to be the case only for
some sensors. Moreover, the values after the reprocessing already suggest that
the remaining effect on physics should be negligible according to our previous
studies [71, 72], with RMS of the medians being less than 3 µm and 5 µm in u
and in v, respectively.
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Figure 17.23: Distribution of medians of track-to-hit u (left) and v (right) residu-
als integrated over all PXD sensors in the short bucket 11 (top) and long bucket
15 (bottom) of experiment 12 compared for prompt (blue) and reprocessing (red)
alignment. The mean and RMS of the distributions are shown together with their
statistical errors. Only files with > 2000 di-muon events are used.

Correlations of PXD Sensor Residual

The time-dependent plots also suggest that movements among some sensors are
highly correlated, at least before the reprocessing. We have thus plotted the
medians of one sensor versus the other for all sensor combinations. For entirely
random movements, the points should not exhibit any significant correlation.
We extract the correlation factors from all these plots and all buckets. One
can generally observe many interesting patterns in such correlation plots. As an
example, for correlations in the u-coordinate, the extracted correlation factors for
the long bucket are compared in Fig. 17.24 for the prompt and the reprocessing
alignment.

The sensors of the second layer are localized in the lower right 4 × 4 block
of the correlation matrix. The large red and blue blocks, visible nicely in the
prompt alignment, correspond to divisions into half-shells. One cannot decouple
half-shell movements from individual sensor movements easily in such plots, espe-
cially before the time-dependent (relative) half-shell movements are suppressed
in the reprocessing. This can be clearly observed in the bottom figure, where
the estimated correlations are reduced for all sensors, from more than 70% to
less than about 30%. Very similar patterns can be observed in the correlations
for long buckets with higher luminosities. For the initial three buckets, it seems
the half-shell movements are still present, probably because two long periods are
needed to accumulate the required statistics for one alignment block. Towards
the end of the data-taking period, the removal of correlations seems to be more
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efficient. Thus we show the last bucket as it should be more representative of
future data taken at higher luminosities. For two short (3 and 5 days long) buck-
ets, the prompt correlations are almost identical to those after the reprocessing,
showing similar patterns. After the reprocessing, the remaining correlations in
the u-coordinate do not indicate serious issues.

For the v-coordinate, very different correlation patterns, shown in Fig. 17.25,
are observed. The sub-division into half-shells is not really apparent. This could
indicate that the instabilities observed for sensors in the u-coordinate are mostly
caused by small relative coherent movements of all sensors in a given half-shell or
all sensors in the PXD with respect to the SVD. But in the v-coordinate, much
more significant correlations are observed for very different and quite specific
combinations of the sensors. Namely, the sensors 1.3.1 and 1.4.1 in the first layer
are correlated to the sensors in the second layer and especially to the forward
sensors 2.4.1 and 2.5.1. Sensor 1.3.2 is missing because it is not working. This
makes a gap (with sensor material present), and thus the residuals could be
correlated (at least partially) as an effect of the tracking, possibly projecting
instabilities from the second layer to the first layer (or vice versa).

Whereas this analysis cannot de-correlate such effects, the alignment method
could do so in principle, with a sufficient time resolution. Despite for the v-
coordinate, a general decrease in the correlations coefficients for all sensors is
observed, this is less significant than for the case of the u-coordinate, especially
for the problematic correlations. For example, the correlation coefficient between
sensors 1.4.1 and 2.4.1 is reduced only slightly—from -95% to -91%.

The correlation coefficients themselves do not reflect the size of the movements
but only the degree to which they are related. As we have seen, the scale of the
median variations was significantly reduced on average by the reprocessing. Thus
the remaining correlations themselves are likely not dangerous but indicate that
those sensors could move together. If it only remains as a result of only slightly
too long alignment blocks, we should be able to see in the determined reprocessing
alignment constants what degrees of freedom are genuinely responsible, see the
next Sec. 17.4. Here we are more interested in the final effect we can observe with
our collected validation data sample.

17.3.2 Time Stability of the VXD Sensor Alignment
Variations in the means or more robust medians of residual distribution for the
VXD sensors can be attributed to the combination of random fluctuations due to
limited statistics σstat and true variations of the sensor positions in time combined
with stochastic contribution, e.g., due to high-frequency4 vibrations, correspond-
ing to instabilities σtime in the two sensitive coordinates. The time instabilities
σtime
u and σtime

v are of interest in this section. As the alignment parameters are
constant within a range of one or more runs (or even a whole bucket for the
SVD sensors and CDC wires), these variations correspond to instabilities in the
sensor alignment and contribute to a worse per-sensor resolution, if these are well
averaged out over time. If the movements result in a non-Gaussian distribution
on average (over large data sets), this can also contribute to a worse statistical

4Much smaller than our alignment resolution, being several hours on average in the later
buckets of experiment 12.
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Figure 17.24: Correlations of medians of track-to-hit u residuals among all pairs
of PXD sensors in long bucket 15 of experiment 12 compared for prompt (top)
and reprocessing (bottom) alignment.
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Figure 17.25: Correlations of medians of track-to-hit v residuals among all pairs
of PXD sensors in long bucket 15 of experiment 12 compared for prompt (top)
and reprocessing (bottom) alignment.
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alignment precision. For the PXD, we will thus only quantify the instabilities ob-
served in the previous section but consider all buckets. In addition, instabilities
will be evaluated for all VXD sensors to provide an estimate of the total effect
on the observed sensor resolution.

Unfortunately, the analysis is not well suited for the outer SVD layers, where
some sensors have only a limited number of hits. This will result in larger es-
timated uncertainties of the method. The data set is split into files with about
4000 − 6000 di-muon events on average. All smaller files are discarded and for
each residual histogram evaluated, at least 20 entries are required.

The analysis is first performed per each sensor individually. Given sensor and
coordinate u or v, the median of the residuals (from a histogram collected by a
DQM module) med[ru,v] is evaluated. The median is used instead of the mean at
this point for better robustness against outliers.

The instability for each sensor is then evaluated by taking averages over all
files in experiment 12 as

σtime
u,v =

⌜⃓⃓⎷σ2
68[med[ru,v]]− med2

[︃
σ68[ru,v]√

N

]︃
, (17.9)

where med
[︃
σ68[ru,v ]√

N

]︃
is our estimate of σstat and N is the number of entries in each

histogram where the median is evaluated.
Although we generally follow the formalism of Ref. [118], we have replaced

most estimators with their more robust counterparts. The σ68 method is used
instead of the standard deviation to estimate the error of the mean of the residual
distribution for each file. As residuals have tails from multiple scattering and δ-
electrons and uncorrected movements can be present, their distributions might
be non-Gaussian5. The approach of taking median over all files to estimate σstat

is used to cope with variations in the sample (file) size, which is however small,
and no small files are used. A dedicated data sample would be more suitable,
with more even distribution of the number of events per file and ideally also pre-
scaled in cos θ. However, in this section, we are limited to the validation data set
collected during the reprocessing. The used file size is the maximum available
at the calibration center for the tight di-muon skim. For other data samples, no
such reliable simulation is available. In theory, the Bhabha events would be more
suitable (due to the much higher cross-section) and can be simulated reliably, but
these are significantly pre-scaled at the calibration center.

To estimate the systematic errors of this method, we have used the same
process to derive time instabilities for sensors in MC simulation. As we do not
simulate any time dependence, these results should be consistent with zero. This
is, however, generally not the case. We have experimented with many combi-
nations of estimators. It is notable that when the standard deviation is used
instead of the σ68 method to estimate σstat, the MC underestimates the insta-
bilities, giving negative results of generally corresponding size as with the σ68
method. Constructing an unbiased estimator for such a large range of observed
statistics per sensor is difficult.

5This estimate assumes Gaussian-distributed residuals. The error of the mean is used instead
of the error of the median, which is less trivial to calculate.
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For highly populated sensors, the MC bias of our estimator is less than 1 µm.
Once the average histogram statistics becomes lower, the bias grows and also
gets generally less stable across the ladders. It grows up to about 4 µm for some
sensors in the SVD layer six and the most backward sensors. It also oscillates by
about 2 µm towards lower values. These sensors also receive the lowest amount
of hits, and the bias could be caused by failing approximations in the estimations
of the statistical error contribution. However, the MC is simulated without small
files and with four times larger average statistics per file (about 15000 events),
and thus such effects should be suppressed. This seems not to be the case, and
much larger statistics would be needed. Even with large statistics, very subtle
dependence on the sensor occupation and possibly the geometric position of the
sensor in combination with the correlations in the track sample could remain.

Thus, instead of attempting to derive an unbiased estimator of the instability,
we use the MC without misalignment to sample the expected distributions of the
residuals observed in the data. For this reason, all MC files are merged to produce
high statistics templates of the expected shape of the residual histogram for each
sensor (without time instabilities). For each residual histogram observed in the
data, a new histogram is sampled from the MC template with the same number
of events as observed in the data. To allow for an unbiased estimator, at least
in principle, we have to allow also negative values for σtime

u,v . When a negative
argument under the square root is obtained, −

√
− . . . is returned instead.

The instability is then evaluated both for data histograms and for the sam-
pled histograms from MC. We test this method by estimating the instabilities of
the ideal MC. As already mentioned, this method estimates a non-zero positive
instability for almost all sensors. As discussed below, we take a mean over the
ladders to suppress the instabilities across the ladders. The standard deviation
of the estimates over the ladder is taken as a statistical error. The sampled MC
estimates averaged over ladders, and the MC instabilities match almost perfectly.
The largest deviation of the MC estimate from the re-sampled MC estimate,
about 0.3 µm, is taken to be the systematic error of the method. We add it in
quadrature to the estimated error band for all re-sampled MC estimates averaged
over ladders. In fact, we expected some finite resolution of this method as the
input residual histograms are binned in bins of 1 µm width.

Finally, as already mentioned, once the instability, its error, and the corre-
sponding re-sampled MC estimate for each sensor are evaluated, the results are
averaged over ladders in each layer separated by sensors’ z-position (the so-called
sensor number, where sensors with sensor number 1 are the most forward). This
separation is the most natural, as in general, the time-dependent effects seem to
mostly depend on the z-coordinate of the sensors and layer number. As a function
of ladder number, the only larger systematic deviations of the estimated insta-
bilities occur for the PXD around the position of the disabled sensor in layer 1
and above in layer 2. A much less significant ladder-dependent effect is seen in
SVD layer 3. This can also be seen in Fig. 17.26, where the mean instabilities are
illustrated for each sensor in the first three layers individually. More outer layers
do not show any significant systematic variation over ladders.

The final instabilities (and corresponding errors) are determined as averages

327



0 2 4 6 8 10 12
Ladder number

4

2

0

2

4

6

Es
t. 

in
st

ab
ilit

y 
in

 v
 (z

) [
m

] MC est. L1 S #1
MC est. L1 S #2
MC est. L2 S #1
MC est. L2 S #2
MC est. L3 S #1
MC est. L3 S #2
L1 sensor #1
L1 sensor #2
L2 sensor #1
L2 sensor #2
L3 sensor #1
L3 sensor #2

Figure 17.26: Estimators of instability σtime
v for every sensor in the first three
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edge, connected with dashed line for clarity) re-sampled to mimic statistics per
every histogram observed on data. The points have no associated estimated
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over all ladders:
⟨σtime

u,v ⟩ = mean[σtime
u,v ]

σ⟨σtime
u,v ⟩ = std[σtime

u,v ].
(17.10)

As we have just evaluated the bias of our MC estimator, we directly subtract it
from the data estimates and do so for every average over ladders. The results are
shown in Fig. 17.27 and also compared for the prompt and reprocessing alignment.
While after reprocessing, most instabilities do not seem significant within the
resolution of our method, this is not the case for several sensors in the prompt
alignment.

For the u-coordinate, very good time stability can be generally observed,
well under 3 µm for all sensors except the most backward sensors in SVD layer
six. Such a level of random residual misalignment is known to have a negligible
physics impact, and no corresponding degradation of resolution is expected. A
small, general trend can be observed with growing instability towards the forward
sensors (and backward for SVD layers > 4). But here, the estimated error of
the method, shown by the gray bands (corresponding to one and two standard
deviations of the averages over ladders for the re-sampled MC estimates), is large.
The systematic error of 0.3 µm is added in quadrature to all error bands, primarily
affecting the error bar size of the most precisely measured sensors for the u-
coordinate.

In the longitudinal v (z) coordinate, the instabilities are significantly larger.
However, practically all estimates are well within 5 µm needed for negligible
resolution degradation in the z-coordinate after the reprocessing.

The instability growing towards a larger sensor radius (and size) and distance
from the center of the structure seems natural. Generally, the larger effect at the
forward structures is probably related to the way the vertex detector is attached
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Figure 17.27: Estimated unbiased average instability for the VXD sensors sep-
arated into layers as a function of sensor number in u (top) and v (bottom)
coordinate. The difference of the data estimator averaged over ladders ⟨σtime

u,v ⟩
and the (biased) MC estimator ⟨σtime

MC,u,v⟩ is plotted. Data are shown as points
with error bars, separately for prompt (no edge) and reprocessing (points with
edge and black error bar) alignment. The error bars of the data points show
the standard deviation of estimated values across all sensors in ladders with the
same sensor number (and layer). The gray bands show one and two standard
deviations of the re-sampled MC estimates across ladders (like for data), which
mimic statistics for every histogram observed on data. The error bands of the
MC estimates (which are trivially exactly zero after bias subtraction) include a
systematic error of 0.3 µm added in quadrature to the standard deviation of the
MC estimates.
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to the rest of the construction. However, one should note that the instabilities
in the outer SVD layers are not significant within the estimated resolution of
the method. The re-sampled MC without any misalignment would have the
(bias-subtracted) mean precisely at zero. However, the values would oscillate
around zero with the standard deviation shown by the gray bands. The measured
estimates on data are, in fact, positive for every single sensor. Thus on average,
non-zero positive instabilities are observed with a high significance. After the
bias subtraction, only the most stable sensors with number 2 in SVD layer three
have a slightly negative estimate, consistent with zero within the estimated errors.
We have thus only indications that the instabilities actually grow for the outer
sensors, given the large estimated uncertainties.

What is, however, slightly worrisome is the large instability of the forward
PXD sensors, namely in the (incomplete) second layer. These are also signifi-
cant within our resolution for the u-coordinate. The estimated remaining time
instabilities in the range 3 − 5 µm could lead to a very small degradation of
the z0 resolution in the forward direction. It is not clear if the absent sensors
cause these effects, and the overall structure of the complete PXD with both
layers fully equipped with sensors could be more stable. The larger instabilities
observed in the forward sensors could be related to the elastic connection of the
support structures to the silicon elements and some thermal tensions. While
the backward sensors are connected to the forward ones, these seem to move
somewhat independently, possibly being slightly rotated around the joints’ axis
and/or deformed. In the following section, we will try to shed some light on these
movements.

Such instabilities could become a limiting factor for the complete PXD z0
resolution or for any further upgrades, but fortunately seem to be reduced to an
acceptable level by the time-dependent alignment. It should be investigated to
what operational conditions these instabilities are correlated to mitigate them.
One possible cause could be thermal expansions/contractions from beam heating
or switching high voltage of the PXD and/or SVD on and off. This can happen
regularly at the start and end of data-taking, often in the afternoon and morning
JST, or after a lost accelerator beam or other issues requiring turning off PXD
low voltage to prevent detector damage from accelerator background conditions.

Nevertheless, the expected physics impact of the estimated remaining insta-
bilities should be only very small. These should only be observable as a very
slight degradation of the resolution in the v (z) coordinate. This is also true for
the whole SVD. Thus the larger width of the u-residuals for the SVD observed
in the data cannot be caused by residual alignment instabilities. This is yet an-
other confirmation that the MC simulation for the SVD sensors is too optimistic,
and additional effort is needed to bring the simulation closer to reality. It is
possible that this difference could be observed as degraded d0 resolution for V 0
particles (K0

S and Λ0) without PXD hits on tracks. Otherwise, as was shown in
the previous section, the overall effect on the resolution for tracks from IP is still
acceptable, and data are less than 20% worse than MC simulation.
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17.4 Time-dependent Alignment Constants
In this section, we will look at the extracted time-dependent constants themselves.
There are about 300 run blocks in experiment 12 reprocessing, each with 786
determined parameters (VXD half-shells, CDC layers, and PXD sensors up to
cubic deformations), while using 30 constraints (24 for VXD and 6 for CDC—
twist constraint is not used). By presenting and evaluating the results in detail,
we could easily make this thesis twice longer and still leave plenty of room for
end-less hypothesizing about the explanations of our observations. Instead, we
have demonstrated good physics performance using detailed validations in the
previous sections. Here, we will look into some of the determined constants just
briefly to better understand the time-dependence in the PXD at the sensor level.
After relative half-shell positions, these are the most important degrees of freedom
for the precision measurements and, unfortunately, also the most unstable.

1000 2000 3000 4000 5000 600020

10

0

10

v 
[

m
]

2.5.1 2.5.2

20 0 2020
10
0

10
20

= -0.19

1000 2000 3000 4000 5000 600010

0

10

20

w
 [

m
] 2.5.1 2.5.2

20 0 2020
10
0

10
20

= 0.79

1000 2000 3000 4000 5000 600040
20
0

20
40

×
L/

2 
[

m
] 2.5.1 2.5.2

20 0 2020
10
0

10
20

= -0.97

1000 2000 3000 4000 5000 6000
Run number

50

0

50

m
ed

[r v
] [

m
]

prompt 2.5.1 prompt 2.5.2

50 0 50
50

0

50 = 0.41

PXD sensors 2.5.1 vs. 2.5.2

Figure 17.28: Determined run-dependent alignment corrections (first three rows)
in v, w and α and medians of residuals with the prompt alignment (bottom row)
in the v-coordinate for PXD sensors 2.5.1 and 2.5.2. The panels on the right show
the correlations and correlation factors of the points on the left.

We have observed the most significant instabilities in the second PXD layer
in the previous sections. We were wondering why only the forward sensors seem
to be affected. This strange inconsistency is visible in the v residuals, residual
correlations, and estimated instabilities. All these methods use track-to-hit resid-
uals and cannot decouple the correlated changes in different degrees of freedom.
However, alignment does precisely this. We can look at the most unstable param-
eters v, w, and α for the sensors 2.5.1 and 2.5.2 of the same ladder in layer two.
Instead of α, we translate this parameter into the corresponding shift at the edge
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of the sensor by multiplying α by the half-length of the sensor. The alignment
corrections as a function of run number are shown in Fig. 17.28, where the last
row shows the medians of the v-residuals for a reference.

We can see that the apparent calmness of the backward sensors was only
an illusion. The reason is that di-muon tracks originating from the IP hit the
backward sensors approximately in the middle of their length. As roughly the
same amount of tracks points forward and backward, the residuals will average
these two effects. But for the forward sensors, all tracks go forward from the
IP, and thus the averaging is not in effect here, and we can observe the biases
with average residuals over the sensor and all di-muon tracks. The parameters
α are the most unstable—moving sensor edges in the range of ±20 µm—and
highly anti-correlated. Furthermore, these movements are obviously connected
with the shifts in w, with roughly ±10 µm range. Regarding the v parameter,
the forward sensor seems to be more affected. The total combined movement
results in the PXD ladder’s bowing around the sensors’ glue joint. The changes
in v might be signs of the glue joint expanding or contracting. However, this
could also be caused by external effects coming from the mechanical support. In
any case, we can see that despite the residuals can have means even +50 µm for
the forward sensor, this actually results from a combination of misalignment in
several different degrees of freedom. These are themselves more stable, but the
total effect is rather significant if ignored.
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Figure 17.29: Determined run-dependent alignment corrections (first three rows)
in v, w and α and medians of residuals with the prompt alignment (bottom row)
in the v-coordinate for PXD sensors 1.3.1 and 2.4.1. The panels on the right show
the correlations and correlation factors of the points on the left.

Let us look at one more example of time-dependent PXD sensor alignment
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constants to explain one of the previously observed mysteries: the large correla-
tion between v-residuals for sensors 2.4.1 and 1.3.1, which lie in different layers.
We show comparison of their movements and median residuals in Fig. 17.29.
The large anti-correlations of the residual medians are not clearly present among
the alignment parameters. Thus the residuals are likely correlated due to the
tracks, which mostly hit this combination of sensors. The instabilities in the first
layer are much smaller for α, but we can observe a similar scale for the v and w
movements as in the previous example.

These two examples demonstrate an additional benefit of the reprocessing
alignment. It can help us to understand our detector from a mechanical point
of view. For this, we will need to investigate the corrections as a function of
time, rather than a run number, to be able to overlay them with, e.g., continuous
temperature measurements. Moreover, the run-dependent alignment for the PXD
sensors is certainly not an overkill. The combined instabilities can lead to residual
biases several times larger than the sensor resolution, especially for tracks entering
under a large incidence angle.

17.5 CDC Performance
The purpose of this brief section is to look at the performance of the CDC in the
prompt and reprocessing calibration and compare it to the MC expectations. We
use full cosmic (PXD+SVD+CDC) tracks from the beginning of this chapter for
evaluation. It is important to remark that CDC momentum resolution depends
on the gas composition (and resulting gain), which is time-dependent (due to the
addition of water vapor to prevent discharge in a high radiation environment)
and not reflected in our MC simulation for comparison. In fact, the momentum
resolution was best at the beginning of the experiment, before the water started
to be added to the gas. The momentum resolution seems almost independent of
the alignment improvements, as can be seen in Fig. 17.30. The extracted values
of the relative momentum resolution σ(pt)/pt, where σ(pt) is sigma of a Gaussian
fit to ∆pt = (pup

t − pdown
t )/

√
2, for data just agree with the expectations [10], see

Sec. 3.2 and differ from the ideal simulation by less than 20%. After reprocessing,
we get

σ(pt)
pt

= (0.099± 0.001)% pt ⊕ (0.307± 0.003)%, (17.11)

where pt is in units of GeV/c.
More interesting are charge-dependent relative momentum biases ∆pt/pt as

a function of pt, shown in Fig. 17.31. We can see a momentum bias also in the
MC simulation, but charge-independent. The biases in the prompt alignment are
reduced by the proc12 reprocessing, but not entirely. Also, it looks like only
the momentum bias for positively charged tracks changed. In the past, these
biases used to be much larger. We managed to successfully reduce them by
excluding cosmic ray tracks passing the poorly described magnetic field regions
from the alignment procedure. We suspect the remaining biases to be related
to inconsistencies in the geometrical description of the CDC; see also Sec. 16.4.
Nevertheless, the relative size of the remaining effects is only at 10−4 level or
smaller.
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Figure 17.30: Relative momentum resolution of cosmic ray tracks in MC (left)
and data of experiment 12 for prompt (middle) and proc12 reprocessing (right).
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Figure 17.31: Relative momentum bias for positively (red) and negatively (blue)
charged cosmic ray tracks in MC (left) and data of experiment 12 for prompt
(middle) and proc12 reprocessing (right).

17.6 Summary
In this chapter, we have demonstrated a very good alignment performance af-
ter the reprocessing. We have also identified some problems in the preliminary
prompt alignment and verified that those had been largely mitigated. Beyond
this, we identified some remaining issues. These are mostly related to the remain-
ing systematic effects stemming from uncorrected time-dependent deformations
of the SVD, mainly affecting the z-coordinate. Residual statistical misalignment
is dominated by time instabilities, which are suppressed to an acceptable level
by the reprocessing. The most significant remaining instabilities are observed in
the second PXD layer for the z-coordinate. In general, negligible or only mini-
mal degradation of physics performance is expected as the result of any residual
misalignment based on the validation results.

This is not true for the prompt alignment, where significant degradation is
observed both in systematic deviations and reduced statistical precision of the
alignment due to the ignored time dependence. While the prompt alignment has
a good performance in general, it is desirable to perform physics analyses that are
particularly dependent on the vertex detector using the reprocessed data. As the
delay of the reprocessing from the prompt alignment and thus data-taking can
be close to one year, we aim to move the workflow to the prompt alignment loop.
If this effort is successful, publication-level precision alignment can be achieved
shortly (in a couple of weeks) after the data-taking.
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CHAPTER 18

Possible Extensions
This chapter will give an overview of possible extensions to this work. Technically,
almost all discussed features are already implemented and at various testing levels.
However, these extensions (except stand-alone KLM alignment) are not used in
the actual production of calibrations constants for physics analysis yet. Thus we
only summarize the various ways of extensions and often also briefly discuss what
still needs to be done if we want to use them. The primary challenges are lack
of workforce (primarily for validation), lack of data, and a number of practical
aspects arising when moving from perfect MC simulation to the real detector
output.

We have envisioned the full simultaneous alignment and calibration of the
VXD, CDC, and KLM, corresponding to more than 150×103 global parameters.
In principle, everything is in place to exercise this approach, and, of course, many
partial tests have been performed in the past. However, the general alignment
philosophy has evolved since the first data from the completed Belle II detector
arrived. As the alignment is a calibration on which most others depend, any
recalculation due to possible errors requires a complete data re-processing. Thus
the preferred alignment philosophy is very conservative: any update of the offi-
cial alignment must be extensively validated, such that the performance is not
degraded in any aspect (ideally is improved in some validations). For example, as
the existing CDC calibration is working well, there is no urgent need to replace,
e.g., T0 or x − t relation calibrations by other methods. Furthermore, any such
replacement will require additional validation work. Nevertheless, several of these
extensions were used in (usually unsuccessful) attempts to improve some aspects
of alignment performance on the real data.

18.1 Data Samples
The alignment software allows for a wide range of different input data and usage of
some advanced constraints beyond the IP constraint for di-muon events. However,
these advanced data samples are not yet used for real constant production for
various reasons.

In the future, with higher luminosities and dedicated calibration skims, we
could utilize J/ψ → µ+µ− decays with an invariant mass constraint. Possi-
bly, also other two-body decays could be used. Already at current luminosities,
e+e− → µ+µ− events can be used with the full four-momentum constraint. The
beam energy and the boost are also time-dependent, and thus an established
calibration of these quantities is needed first. This calibration also has to derive
the corresponding covariance matrices for the parameters of beam kinematics,
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which are inputs for the additional external measurement at the common vertex
of a GBL trajectory, combined from the two muons. Such calibration is currently
being deployed to the automated prompt calibration.

Another interesting data source are multi-body vertex-constrained decays
from channels like D⋆+ → π+

slowD
0(→ K3π). Here D⋆+ is produced by the e+e−

collision and the slow pion πslow is used for its identification and reconstruction.
The true interest is in the four-body decay D0 → K−π−π+π+. In this case,
the tracks connect potentially four different parts of the detector, in contrast to
(merged) cosmic rays and di-muon events, possibly further improving alignment
systematics. Also, in this case, probably higher luminosity is needed, as well
as dedicated alignment skims to start with tests using real data. Of course, as
always, a dedicated MC study should be available before updates of the official
alignment procedures.

One of the potential drawbacks of such advanced data samples is background
contamination, which must be minimal for the use in alignment. This then nat-
urally limits the available statistics. Another challenge might arise from ISR
and FSR for kinematic constraint when the mass constraint is incorrect as some
four-momentum is lost due to the radiated photon. This is yet another reason
for dedicated MC studies to eliminate such kinds of events, e.g., by using ECL
information as a veto.

18.2 Calibration Constants

18.2.1 KLM Alignment
The initial implementation of the alignment of the BKLM modules was enabled
by extending the RecoTrack capabilities to include KLM hits into the track fit.
Several issues had to be solved to provide unbiased residuals [119] for the GBL
trajectory. The BKLM is separated into backward and forward parts, each with
eight segments. There are 15 layers of detection modules, of which the innermost
two use scintillators, while the rest is equipped with RPCs. This gives 240 (2×
8× 15) modules with six rigid-body parameters, i.e. 1440 alignment parameters.

The EKLM alignment was implemented later. The EKLM has 14 detection
layers in the forward and 12 in the backward end-cap. It is divided into four
sectors in R − ϕ. Each layer is composed of two orthogonal planes with strips.
This gives 104 modules, for which three rigid-body alignment parameters are
considered: u, v shifts and rotation γ in the module plane, giving 312 alignment
parameters.

The (simultaneous) alignment of BKLM and EKLM with Millepede II is im-
plemented in the CAF [120] and included in the regular automated Belle II prompt
calibration [121]. It runs after the completed VXD+CDC alignment and uses
single muons from di-muon events and (unmerged) cosmic ray tracks. It is not
executed simultaneously with VXD+CDC alignment due to issues with backward
extrapolation for cosmic ray tracks to outer detectors. The hits from outer de-
tectors are attached to the tracks using a GEANT4-based extrapolation module.
Unlike un-merged cosmic tracks, the standard merged cosmic tracks, which are
essential for a good alignment, have assigned KLM hits only on the bottom arm.
This could introduce new unwanted asymmetries mainly to the CDC alignment,
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Figure 18.1: Determined amplitudes of the CDC wire sagging corrections (top
left), average correction for wires per layer (bottom left) and visualization of the
corrections for each wire (right).

and thus we postponed full KLM integration into the global alignment.

18.2.2 Alignment of CDC Wire Sagging
Due to gravitational and electrostatic forces, the wires are not exactly straight.
The nominal tension for each sense wire is 50 g. The total tension from sense and
field wires is 4.1 tonnes, and thus CDC had to be pre-stressed before wire-stringing
[10]. Calculations show that the total expected deformation of the inner end-plate
due to the tension is about 2 mm [21]. This deformation is taken into account in
the wire z alignment parameters at both end-plates (which cannot be aligned from
tracks). The tensions for the wires were measured after wire-stringing, and the
results are used to correct the nominal tensions. The total tension for each wire
is used to calculate its sagging due to gravitational force, using an approximate
parabolic model. The total amplitude of the sagging applied in the reconstruction
is up to 200 µm [10].

These values may also be updated using track-based alignment. One of the
complications seems to be a non-linear relationship between the sagging ampli-
tude and the wire tension, which caused drifts to non-physical regions in pre-
liminary alignment tests. Another attempt was to align the corrections to the
sagging amplitude, which could be, in principle, also extended to corrections
to the wire shape in the horizontal direction due to electrostatic forces. These
are currently entirely neglected in the reconstruction. The application of any
such corrections will require some additional modifications of codes for the CDC
parametrization and reconstruction. Nevertheless, a number of unofficial tests
were performed, and the wire-sagging estimates were calculated by Millepede II
using the MINRES-QLP solution method before Cholesky decomposition became
available.
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As we did not observe any improvement in the alignment performance, we
have not proceeded with this feature yet. Also, a full set of simulation studies
still needs to be performed to validate the method. The determined gravitational
wire sagging amplitude corrections are shown in Fig. 18.1. These results are only
very preliminary but suggest that significant corrections should be applied for
some wires, especially in the bottom part of the outer layers. For those, the
physics impact is relatively small, which could explain why basic validations did
not show any improvements, and dedicated studies might be required before we
can include wire-sagging alignment into the full automated global method and
perform it simultaneously with the wire-by-wire alignment.

18.2.3 CDC T0 Calibration
The T0 calibration constant needs to be determined per each wire, giving about
14 × 103 global parameters. The CDC calibration can determine these numbers
from scratch. We foresee that the Millepede alignment framework will only de-
termine minor corrections to the previous values, ideally simultaneously with the
rest of the alignment and calibration constants.

The derivative of the local u residual at each CDC hit with respect to T0 is
∂ru
∂T0

= vdrift · s, (18.1)

where vdrift is the estimate of the drift velocity for the given hit, and s is a sign
factor to differentiate left/right track passage. The total sign might still need
synchronization with other global and calibration parameter sets. This calibration
constant is closely related to the additional track time correction we include
into each track fit with CDC hits (fulfilling given requirements, see Sec. 11.8).
Together, these would result in an undefined degree of freedom, so one needs to
introduce one additional constraint to fix the average of all T0 corrections to zero.
Such an approach assumes that the global T0 offset (to shift average event time
to zero) is already performed by other means before or after the Millepede II
calibration.

Calibration of T0’s was already exercised. The method performs well and is
under integration into the global alignment.

18.2.4 CDC Time Walk Calibration
The time-walk effect introduces corrections depending on the collected charge in
units of ADC. A simple parametrization Ttw ∝ 1/

√
ADC was recently replaced

by Ttw = p0
tw exp(−p1

twADC), where two parameters have to be calibrated for
each of the 299 front-end read-out boards. For each hit, two global derivatives
are added to each GBL measurement representing a CDC hit:

∂ru
∂p0

tw
= −vdrift · s · exp(−p1

tw · ADC)

∂ru
∂p1

tw
= +vdrift · s · ADC · p0

tw · exp(−p1
tw · ADC),

(18.2)

where the total sign might still need synchronization with other global and cali-
bration parameter sets. Time-walk calibration still needs more studies, including
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validation on MC, especially after the recent change in the parametrization, which
introduces non-linearities for which we previously observed issues in tests with
the alignment of wire tensions. A reasonable preliminary calibration will be nec-
essary for the global approach if we want to avoid additional iterations, which
are generally not needed for the current bucket-to-bucket alignment updates.

18.2.5 Calibration of CDC x− t Relations
The x − t relations parametrize the function ldrift(Tdrift), which translates time
information into position measurement. The function is different for left/right
passage (due to asymmetries resulting from Lorentz deflection for drifting elec-
trons in the 1.5 T magnetic field), for every layer, each of 7 bins in the inci-
dent angle θ (17, 40, 60, 90, 120, 130 and 150◦) and 18 bins of angle α (from
−90◦ to +80◦ in 10◦ steps). The fit function is 5th order Chebyshev polynomial
plus a linear function for larger drift times, giving nine calibration parameters
for each x − t function, where one parameter determines the position Tb of the
Chebyshev-to-linear transition1. This gives 112 286 additional global parame-
ters (2 × 56 × 7 × 18 × 8 excluding the boundary parameter, which cannot be
determined in Millepede calibration). Therefore six global derivatives shall be
attached to each CDC hit for Tdrift < Tb:

∂ru
∂pix−t

= s · Ci(Tdrift) (18.3)

for i = 0 . . . 5, where Ci is Chebyshev polynomial (of the first kind) of i-th order;
and two global derivatives

∂ru
∂p7

x−t
= s

∂ru
∂p8

x−t
= s · (Tdrift − Tb)

(18.4)

for Tdrift ≥ Tb. It should be noted that for some angles, the statistics is limited,
and thus not all x− t relations can be calibrated and must be taken from simu-
lation estimates. In practice, about 80% of the x− t relations can be calibrated
from the data with reasonable precision. However, the standard CDC calibration
takes care of all such corner cases, which is not possible in the one-time simulta-
neous global solution. Thus one first needs to determine which parameters can be
reasonably included in the minimization with Millepede II and start the studies
ideally on MC with a smaller subset of constants. We expect this task to be the
most challenging if indeed pursued up to a point where it can be deployed for
regular data calibration and alignment. So far, we have only implemented this
calibration in the common Millepede method.

18.2.6 Extension to other Sub-Detectors
With the recent speed-ups in Millepede II, even more parameters, e.g., from the
remaining outer sub-detectors, could be added if all the studies are performed.

1Tb is used as 6th parameter p6
x−t.
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However, additional work is needed for these sub-detectors to fully integrate their
information into the track fit with GENFIT2 and thus the GBL trajectory con-
struction. TOP, ARICH, and ECL already have their corresponding stand-alone
alignment algorithms, which naturally rely on a good alignment of the tracking
system.

18.3 Optimization of Time Dependence
and Online Alignment

In Chapter 17, we have identified the most significant alignment issue to be the
residual time dependence. In particular, we observed some uncorrected evolv-
ing deformation of the SVD. The time dependence for the PXD sensors, VXD
half-shells, and CDC layers is defined by simply requiring enough events per each
alignment block in the reprocessing. The alignment for this restricted set of pa-
rameters is computed for each block separately, on top of the previous full global
alignment without any time dependence. Consecutive runs may be merged to
make a block with enough events. However, the blocks might contain incompat-
ible data in the sense that alignment changed significantly within the block.

As mentioned in Sec. 13.4.2, we have implemented the possibility of almost
arbitrary time-dependence, which can be resolved in the global fit without the
need to align each block independently. In addition, in this global approach,
maximum information is used, and the final stage of run-dependent alignment
could be merged into a single iteration with the wire alignment. Moreover, one
could define different time dependence for the PXD and SVD sensors and possibly
optimize them to describe the constants’ evolution better.

However, the configuration for the time dependence must be defined before-
hand. For that, we would need to develop specialized validation methods, which
could provide optimized splitting of the data automatically. Such an approach is
under consideration.

Currently, the selection of ROIs in the PXD selects the entire sensor for read-
out, as the data rate is still low. However, at higher luminosities, we will have to
enable ROI selection and limit the area of the PXD sensors to be read out and
whose digits are passed to clustering and tracking. Once this feature is enabled,
the quality of the alignment at the moment of data-taking can have a direct and
significant impact on the PXD hit efficiency.

Therefore enabled ROIs will possibly require more frequent alignment updates
in the online global tag. The online global tag is currently updated only sporad-
ically, at the request of calibration experts. That means the alignment used for
data-taking can be even one year old in the current practice. Even more regular
updates might not be sufficient, and some implementation of online alignment,
possibly running on the express reconstruction, might be needed.

We have envisioned online alignment from the beginning, and some important
features have been implemented to make it possible. In particular, the possibility
to stream binary data for Millepede II as calibration objects instead of writing
them into binary files directly. In such a way, several worker nodes could perform
the reconstruction, filling of DQM histograms, and in addition, collecting GBL
data from reconstructed tracks. The data from worker nodes can be collected and
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merged in the express reconstruction similarly to DQM histograms and written
to binary files, which could be used to compute the alignment, e.g., after each
run finishes.

This would probably require performing full global alignment soon after the
start of each data-taking period, which could serve as a baseline, on top of which
the online alignment will be derived. After this alignment is added to the online
global tag, regular realignments after each (long-enough) run could compare the
results to the previous run and decide if a new alignment is needed in case of a
significant difference. This information could also be useful to define the time-
dependent configuration for the full global alignment, which would be performed
later off-line in the prompt calibration loop.

To even start implementing such procedures, a discussion with DAQ and
IT experts is needed. In fact, the main issue with implementing updates of
the alignment online is a stringent security protocol. The DAQ infrastructure
operates separately from the rest of the KEK network and the Internet. So far,
we have not found a way to establish such an automated back-propagation of
constants from the express reconstruction to the HLT, where extrapolation to
PXD to define ROIs is performed. Whether this will require substantial changes
to the DAQ remains to be understood in the future when the need for online
alignment can arise. It should not be difficult to adjust the existing alignment
framework for such a task.
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CHAPTER 19

Discussion
In this chapter, we will summarize the alignment performance and connect some
findings from different chapters to critically assess the results of this part of the
thesis. We will start from the simulation studies, continue with findings from
real data experience, and finish by discussing physics impact in the first precision
measurements.

Simulation studies suggest an excellent control over systematic effects: coher-
ent distortions of the VXD do not exceed 4 µm in amplitude1, roughly the largest
observed misalignment of any VXD sensor. Typically, the sensors in outer layers,
particularly the forward slanted SVD sensors, suffer from the most significant
weak mode contributions to their alignment precision. Precision for individual
sensor parameters is 1− 2 µm, including sensor surface deformations. The half-
shells of the PXD and SVD can be aligned with similar precision. The most
significant systematic effects can be observed in the residual misalignment of the
global VXD position, stemming from systematic distortions of the CDC. How-
ever, even the largest observed residual misalignment of 24 µm in the z-coordinate
does not have any practical physics effects. The systematic global distortions of
the CDC layers are limited to about 10 µm, where vertical deformations are the
most significant due to the absence of horizontal cosmic ray tracks. Regarding
global distortions at the wire level, average effects are limited to roughly 20 µm
in magnitude, where radial distortions are more pronounced than R−ϕ deforma-
tions. Systematic effects naturally increase towards the outer edge of the CDC,
where the scale of the effects is roughly twice larger than average. The align-
ment precision for the CDC wires is about 14 µm, slightly better at the backward
end-plate.

Validation with reconstructed tracks is essential to assess alignment quality
on real data. We have used multiple validation methods, which revealed issues
with the baseline alignment. This alignment version does not include any wire
alignment, does not use IP-constrained di-muons, and in particular, ignores any
time-dependence over typically two to three weeks of data-taking. The most dan-
gerous for physics are systematic biases, but we also observed significant insta-
bilities in the PXD, particularly its second, incomplete layer, which can visibly
degrade its resolution. We have verified that the new reprocessing alignment,
which combines the full global alignment with wires followed by run-dependent
alignment, fixes most of the observed issues. This last alignment stage involves
a regular determination of positions of the CDC layers, VXD half-shells, and in-
dividual PXD sensors (including cubic sensor surface deformation parameters).

1To be really conservative, one should include one additional safety factor of two for a
different definition of the amplitude, e.g., as a difference of the most displaced sensors in both
directions.
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We estimate that any residual misalignment contributes negligibly or only little
to the overall physics performance using this approach. Given that some residual
systematic effects related to the z0 measurements are still partially present but
reduced at least three times in scale by the reprocessing, we can include a safety
factor of two to the maximum scale of some systematic distortions. This esti-
mate is possible thanks to our ability to faithfully reproduce the observed biases
in MC simulations with known misalignment. Namely, the z-expansion is likely
only controlled to better than ∼ 10 µm. This is still well below our requirements
(50 µm over the entire VXD), and thus the total size of the VXD should be safely
known to a precision better than 10−4 (also in the radial direction) after the re-
processing. This estimate includes thermal effects and fabrication precisions of
the sensors, which are at most at a ∼ 10−5 level.

The data/MC correspondence of impact parameter resolutions is better than
20%, see Sec. 17.1.3. After the reprocessing, we obtain in the limit of infinite
momentum (the a term):

σd0 = (9.8± 0.7) µm
σz0 = (13.8± 0.4) µm,

(19.1)

while for ideal MC simulation, we get

σd0 = (8.4± 0.5) µm
σz0 = (12.9± 0.3) µm.

(19.2)

The difference is thus only roughly 1 µm, and in addition, part of the worse d0 res-
olution is caused by too optimistic SVD simulation. Given this fact, the data/MC
agreement is very good. Such an agreement was never achieved at Belle, where the
data/MC difference was around ∼ 50%[16] (for SVD2). The resolution is slightly
worse than for the older design simulations, as those include the complete second
PXD layer. The degradation due to the missing PXD sensors is visible primarily
in z0. Nevertheless, the goal of roughly twice better resolution than Belle was
achieved even in this limited PXD configuration (see also Fig. 20.1). Even if we
attribute the total data/MC difference in quadrature to the misalignment (which
is very unlikely), we obtain the corresponding contribution to the resolution to
be ∼ 5 µm, which was in the older MC misalignment studies still considered as
an acceptably small misalignment with an almost negligible physics impact.

Regarding the CDC alignment performance, we have observed some remaining
charge-dependent biases (at a smaller scale than 10−4) even after the reprocessing.
However, these biases were reduced considerably in the past by excluding cosmic
ray tracks passing regions with a poorly described magnetic field. Nevertheless,
the alignment is somehow not able to fully remove the charge asymmetry. We
strongly suspect a relation of the remaining vertexing bias in z0 versus tanλ and
a known weak mode with possible inconsistency in the geometrical description
of the CDC. As we have seen in Sec. 15.4.2, the z-biases can be coupled with
z-expansion effects in the VXD at a much smaller scale. A possible deformation
of the CDC end-plates could be responsible for tensions forcing the solution to
settle in a wrong configuration. Most likely, the IP-constrained di-muons force
the alignment solution to optimize for consistency of tracks originating from the
IP, possibly by inducing some artificial alignment correction to the CDC. We
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have also seen a slight bias in tanλ measurements introduced by the reprocessing
alignment. These effects may be all connected, and a possible CDC end-plate
deformation is currently the only hypothesis.

To test such a hypothesis, we will need to re-run the alignment followed by
validations using various artificial deformations at the end-plates. For such stud-
ies, input from, e.g., finite element analysis of the CDC suggesting a plausible
deformation model would be beneficial. The success of such a try-and-fail study
is not guaranteed, and we could be easily wrong in our assumptions about the
origin of the remaining systematic issues. Nevertheless, all these effects are not
large. Most of the (charge-independent) momentum biases in CDC are, in fact,
caused by an imperfect description of the magnetic field, and analysis-level cor-
rections are already being applied to physics data. These corrections can also
include the effect of the charge asymmetry and thus almost entirely eliminate the
residual effects even when these will not be resolved at the alignment level.

Nonetheless, the remaining systematic effects are generally so small that find-
ing their origin is difficult. In particular, one will need high statistics. For exam-
ple, the z0 versus tanλ bias needs more than a week worth of cosmic ray data to
measure the linear slope as significant after the reprocessing.

The time-dependence is an entirely different story. In general, the detector
is substantially less mechanically stable than expected. We can observe defor-
mations of the CDC and correlate the most significant of them to relaxations
and restorations of magnetic forces in the super-conducting optics. As the VXD
seems to follow the CDC center movement, we believe the whole structure gets
into mechanical contact with the accelerator structures through densely packed
cables from the VXD. Furthermore, significant instabilities have been observed
for the PXD sensors. While these are greatly reduced by the run-dependent
alignment during the reprocessing, the current automated method is far from
optimal. After the reprocessing, the residual instabilities are, in general, smaller
than 3 µm and 5 µm in the R − ϕ and z-direction, respectively. As this consti-
tutes roughly 30% of the corresponding resolutions, the impact of the alignment
should be at most at ∼ 5% level and thus only small if not negligible for most
sensors. However, the residual instabilities in the second PXD layer are close to
our upper limits in this case and have not fully recovered to the level observed
in other sensors. Thus we are convinced that the current time resolution and, in
particular, the simple method of run merging is not optimal and could be signifi-
cantly improved, albeit the margin of the overall improvement in terms of physics
performance will be relatively small. This will, however, become more and more
important at higher luminosities, which should also automatically lead to more
frequent re-alignments.

We leave the optimized treatment of the time-dependence and further exten-
sions and improvements of the procedure for future studies and devote Chapter 18
to the discussion of the various ways of such endeavors. Before such optimiza-
tions, we should understand the origins of some of the instabilities much better—
either to mitigate them or to give hints to the future algorithms optimizing the
time-dependence. For that, extensive regular validations over long time periods
correlated with various detector operation conditions will need to be monitored.
For example, we see residual deformation at the sensor level in the SVD, which is
supposed to be stable in each bucket. While the physics effect will be small, the
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resulting evolving biases are clearly visible in the validations. These particular
remaining deformations should be the main focus of future studies. At this point,
we should admit that currently, the validations are mostly run by experts and
not yet automated and tuned to the extent where such studies are easily feasible.

After the reprocessing, the VXD sensor instabilities look rather Gaussian and
thus will not produce any significant biases when averaged over reasonably large
data sets. However, the standard misalignment technique introduced in Sec 13.6
cannot reproduce the time instabilities in MC simulations. To simulate them, we
have to smear every single hit. We have also tested this approach, getting an
even better data/MC agreement, but there is currently no official procedure for
this. On the other hand, the total effect should result in just a slightly worse
resolution (and no biases), which is scalable in practically all physics analyses,
typically as a parameter multiplying the width of a Gaussian resolution function
(see, e.g., the resolution function Rqq in Eq. 7.10 in part II).

What the analyses cannot (usually) absorb is a residual systematic misalign-
ment. Therefore we have provided several of the residual misalignments and
special misalignments derived from data to the analysts. The level of these mis-
alignments has only a minor impact on the overall physics performance, like
vertex resolution, but they emulate some possible remaining residual distortions.
In particular, we have derived the model of prompt misalignment, reproducing
the major observed vertexing biases.

Since the introduction of the misalignment scenarios, several physics analyses
have investigated their impact. In particular, signal MC fits for the lifetimes of
D0 and D+ mesons, the Λ+

c baryon, and the τ lepton have been examined by their
respective analysis groups. This allows us to directly give concrete estimates of
the alignment precision at the physics level. In general, in these analyses, the
estimated alignment systematics is at a sub-micron level, i.e., less than ∼ 1 fs
in terms of absolute lifetimes (0.72 fs for D0 and 1.70 fs for D+ lifetime [5] in
D0 → K−π+ and D+ → K−π+π− decays). The measured lifetimes are τD0 =
(410.5 ± 1.1 ± 0.8) fs and τD+ = (1030.4 ± 4.7 ± 3.1) fs. The alignment-related
systematic uncertainty corresponds to a relative precision of about 10−3, which is
ten times larger than our conservative estimate for absolute scale determination
in the VXD. This suggests that naive estimates are not robust and explicit tests
with a fully developed physics analysis workflow are necessary to assess alignment
systematics at such a precision level with reasonable confidence.

So far, only the τ lifetime measurement (at roughly 200 fb−1, still not un-
blinded) appears to be sensitive enough that the new reprocessing alignment will
be absolutely essential to reach a world-leading precision measurement. This
means the measurement has to be delayed until the data (mostly from the first
part of the year 2021) is reprocessed. After that, the estimated τ lifetime un-
certainty due to the alignment should be reduced from ∼ 0.4 fs (for prompt
misalignment model) to ∼ 0.25 fs (for day-to-day misalignment model). Given
that the current world average is ττ = (290.3 ± 0.5) fs, the efforts put into the
alignment improvements finally pay off and demonstrate the importance of align-
ment performance in such precision measurements.
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CHAPTER 20

Conclusion
The Belle II experiment is entering a phase where it can deliver the first precision
measurements. In terms of detector performance, the most significant difference
from the previous generation of B-Factories is its vertex detector that includes
pixel sensors. It offers approximately twice better impact parameter resolution
than available previously. Such a level of precision is only possible with an ad-
vanced alignment procedure.

This thesis presents the alignment strategy at Belle II, developed by the au-
thor from the first lines of code to the present status. This method is based on
experiment-independent packages, Millepede II and General Broken Lines, inte-
grated into the Belle II software framework. A brief historical excursion and the
two following chapters took us from the first beam tests with tens of parameters
of a couple of VXD sensors towards simultaneous determination of roughly sixty
thousand parameters of the vertex detector and the drift chamber. To our best
knowledge, using an exact solution method for an alignment problem of such a
scale has no equivalent counterpart in any other HEP experiment. Belle II was
the first detector to use this new Millepede II feature in actual data production.
The scale of the Belle II alignment problem allows for reasonable solution times
with (highly optimized) exact methods. This is a fortunate coincidence, as, for
example, CMS with more than three times more parameters (due to a higher
number of sensors) would require more than 33-times longer solution time. We
have also demonstrated that approximate methods heavily utilized, e.g., at CMS,
are unsuitable for the presented problem. The specific needs of the Belle II exper-
iment have been one of the main driving factors for Millepede II development in
recent years. The concept of simultaneous global and local alignment of multiple
very different sub-detectors was never explored in such a setup and at a similar
scale with real data. Thus it deserved extensive validation.

We have validated the procedure on simulations and evaluated its performance
using some of the first data recorded by the Belle II experiment. The com-
plete reprocessing alignment almost entirely fixed issues identified in the baseline
method. The alignment meets all initial requirements and results in an overall
good data/MC agreement regarding VXD (as well as CDC1) performance. The
detector’s final measured impact parameter resolutions are about twice better
than what was achieved at Belle, see Fig. 20.1, and differ from the ideal MC
simulation only by roughly 1 µm, see Sec. 17.1.3, demonstrating excellent align-
ment performance. The presented alignment procedure is fully automated and
regularly performed for all newly collected collision data.

However, the ultimate precision of our vertex detector allows us to observe

1But for CDC, the calibration is the most essential for a good performance.
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Figure 20.1: Comparison of impact parameter resolution with cosmic rays for
Belle (SVD2 experiment) and Belle II (experiment 12 and proc12 reprocessing).
The quoted parameter uncertainties, also reflected in the grey ±1σ error bands
(obtained by sampling the estimated parameters using a normal distribution and
their total estimated uncertainty), are combinations of (symmetrized) statistical
and systematic errors.

some remaining inconsistencies. To assess the physics impact of the residual
misalignment, we provided dedicated misalignment payloads to analysts. These
misalignments include estimates derived from real data as well as several MC
studies. Apart from the measurements mentioned in the Discussion, analysis
of B0 meson lifetime and mixing frequency ∆md recently evaluated alignment
uncertainties using the provided misalignments, observing smaller effects than in
equivalent analyses at Belle, even with the prompt misalignment model.

The recently published D0 and D+ lifetime measurements [5], with a signif-
icant contribution from the author, are the most precise to date and consistent
with the world average. They also demonstrate the alignment and vertex detector
performance. Contrary to LHCb, which measures lifetimes relative to τD0 , the
small IP at Belle II and clean collision environment allow for absolute lifetime
measurements at unprecedented precision in some cases. Similar measurements
of Λ+

c baryon or τ lepton lifetimes should follow soon. Thus the presented align-
ment procedure is already of great physics relevance even at these preliminary
stages of the experiment with a limited data sample and (probably) long before
the advertised high-precision time-dependent CP -violation measurements can be
performed.
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Epilogue
The measurement in the first part of this thesis is in agreement with the SM pre-
dictions and previous results. The combination of our and BaBar measurement
[48] improves the consistency of CP -violation parameters between B0 → ηcK

0
S

and other charmonia, confirming the SM. This should not come as a disappoint-
ment, quite the opposite. The smallness of possible NP deviations is the primary
motivation for the new generation of precision experiments, and the Belle II ex-
periment has just entered the game, with the most exciting times still ahead. In
the author’s humble opinion, before any definitive sign of NP is confirmed, one
should enjoy the tremendous success of the Standard Model. In addition, one
should appreciate the ingenuity with which experiments sensitive to the subtle
effects of CP -violation were designed, as well as the complexity of the analyses
needed to extract these fundamental SM parameters and the enormous amount
of collaborative effort essential to make such measurements possible.

The second part of this thesis is the main contribution to the search for NP.
Precise and unbiased vertex measurements highly depend on the quality of the
vertex detector alignment. While high statistics measurements of time-dependent
CP -violation are still ahead, the vertexing capabilities of Belle II could be already
demonstrated on the world’s most precise measurement of the D0 and D+ meson
lifetimes [5]. This result was achieved with just a preliminary prompt alignment,
which can be further improved, as we demonstrated. The improved alignment
quality is now provided automatically, already in the prompt calibration loop. We
are confident that already at this initial stage of the experiment, the alignment
quality is good enough to perform future CP -violation measurements with the
final precision. The first world-leading physics results come as a great satisfaction
for all the effort and time spent on many unsuccessful experiments, especially with
real data, while trying to understand the issues and improve the performance.

The alignment efforts also resulted in the further spread of the knowledge
among not only our Prague Belle II members and led to several academic degrees
awarded to the author’s younger colleagues for alignment-related studies. These
studies would be impossible without all the developments presented in this thesis.

Finally, let us note that the alignment of HEP detectors is a never-ending
story and can always be improved. This should go hand-in-hand with a better
understanding of the detector, and we have numerous ideas on what to do next.
This effort, which will surely produce many interesting results and insights, is left
for further research.
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APPENDIX A

Summary of Model Parameters
and Fit Results
This appendix summarizes the fit results and parameters of the final 2D and 4D
fits to the Belle data. The 2D fit parameters are shown in Tables A.2 and A.3 for
the control and signal mode, respectively. The final 4D fit parameters are shown
in Tables A.4 and A.5 for the control and signal mode, respectively. Whether a
parameter is determined in the fit or fixed from some previous (MC or data) fit
or PDG is denoted by notation explained in Table A.1.

Source Description
F Floating fit parameter
PDG Physics parameter fixed from PDG
MC Truth Parameter fixed from MC truth information (not fitted)
2D MC Signal MC fit in ∆E ×M(K0

SK
+π−)

2D M SB Data fit in ∆E ×M(K0
SK

+π−) in the M(K0
SK

+π−) sideband
4D MC Signal MC fit in ∆E ×M(K0

SK
+π−)×∆t× q × l

4D Mbc SB Data fit in ∆E ×M(K0
SK

+π−)×∆t× q × l in Mbc sideband
4D BB MC Fit in ∆E ×M(K0

SK
+π−)×∆t× q × l to generic BB MC (⋆)

2D CS Full 2D fit in ∆E ×M(K0
SK

+π−) of the control sample
4D CS Full 4D fit in ∆E ×M ×∆t× q × l of the control sample

Table A.1: Description of sources of values for floating/fixed parameters of the
data model. (⋆)—with removed signal and peaking background contributions.
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Table A.2: 2D model parameters and fit results for the
control mode B+ → ηc(K0

SK
+π−)K+.

Parameter
(dim) [unit]

Source SVD1 Value SVD2 Value

µmain(∆E) [GeV] 2D MC 0.001260± 0.000060 0.000922± 0.000049
µCF

main(∆E) [GeV] F −0.0002± 0.0011 −0.00061± 0.00040
σmain(∆E) [GeV] 2D MC 0.009242± 0.000057 0.009284± 0.000045
σCF

main(∆E) F 1.26± 0.10 1.111± 0.039
µ1

tail(∆E) [GeV] 2D MC −0.00248± 0.00030 −0.00050± 0.00029
σ1

tail(∆E) 2D MC 1.557± 0.033 1.520± 0.030
f1(∆E) 2D MC 0.1767± 0.0047 0.1349± 0.0034
µ2

tail(∆E) [GeV] 2D MC −0.0080± 0.0010 −0.00389± 0.00085
σ2

tail(∆E) 2D MC 4.72± 0.13 4.42± 0.10
f2(∆E) 2D MC 0.0660± 0.0030 0.0606± 0.0024
µVoigt(M)[GeV/c2] 2D MC 0.000065± 0.000073 0.000088± 0.000087
σVoigt

main (M)[GeV/c2] 2D MC 0.00666± 0.00034 0.00636± 0.00033
σVoigt

tail (M) 2D MC 5.48± 0.51 5.54± 0.77
f(M) 2D MC 0.102± 0.017 0.075± 0.017
kcorr

1 (∆E ×M) 2D MC 0.0387± 0.0021 0.0404± 0.0017
kcorr

2 (∆E ×M) 2D MC 0.728± 0.012 0.821± 0.011
c1

mis(M) 2D MC 0.290± 0.074 0.261± 0.067
fmis(M) MC Truth 0.01067± 0.00052 0.00990± 0.00043
c∆E

1 (∆E) F −0.279± 0.055 −0.154± 0.021
cM1 (M) F 0.004± 0.059 0.063± 0.022
µ∆E

pb (∆E) [GeV] 2D M SB −0.0029± 0.0021 −0.0000± 0.0020
σ∆E

pb (∆E)[GeV] 2D M SB 0.0100± 0.0031 0.0116± 0.0026
f pb

sig
F 0.193± 0.080 0.075± 0.036

Nsig F 359.5± 31.1 1978± 75
Nbkg F 1038± 41 7216± 104
Parameter [unit] Source Global value
mηc [GeV/c2] PDG 2.9839± 0.0005
Γηc [GeV] PDG 0.0320± 0.0007
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Table A.3: 2D model parameters and fit results for the
signal mode B0 → ηc(K0

SK
+π−)K0

S. Source of parame-
ters denoted with (⋆) is rare-B MC for the SVD1 exper-
iment.

Parameter
(dim) [unit]

Source SVD1 Value SVD2 Value

µmain(∆E) [GeV] 2D MC 0.001485± 0.000080 0.001221± 0.000060
µCF

main(∆E) [GeV] 2D CS −0.0002± 0.0011 −0.00061± 0.00040
σmain(∆E) [GeV] 2D MC 0.009337± 0.000079 0.009063± 0.000059
σCF

main(∆E) 2D CS 1.26± 0.10 1.111± 0.039
µ1

tail(∆E) [GeV] 2D MC −0.00206± 0.00043 0.00055± 0.00038
σ1

tail(∆E) 2D MC 1.684± 0.046 1.723± 0.040
f1(∆E) 2D MC 0.1833± 0.0069 0.1479± 0.0047
µ2

tail(∆E) [GeV] 2D MC −0.0029± 0.0013 0.00245± 0.00089
σ2

tail(∆E) 2D MC 4.40± 0.18 4.11± 0.11
f2(∆E) 2D MC 0.0614± 0.0047 0.0685± 0.0038
µVoigt(M)[GeV/c2] 2D MC 0.00014± 0.00014 0.00009± 0.00011
σVoigt

main (M)[GeV/c2] 2D MC 0.00668± 0.00038 0.00669± 0.00037
σVoigt

tail (M) 2D MC 5.76± 0.58 5.684± 1.072
f(M) 2D MC 0.103± 0.017 0.061± 0.018
kcorr

1 (∆E ×M) 2D MC 0.0388± 0.0030 0.0445± 0.0022
kcorr

2 (∆E ×M) 2D MC 0.719± 0.017 0.793± 0.014
c1

mis(M) 2D MC 0.294± 0.059 0.164± 0.052
fmis(M) MC Truth 0.0303± 0.0012 0.02574± 0.00090
c∆E

1 (∆E) F −0.33± 0.12 −0.279± 0.043
cM1 (M) F −0.05± 0.12 0.096± 0.045
µ∆E

pb (∆E) [GeV] 2D M SB 0.0011± 0.0038 −0.0018± 0.0015
σ∆E

pb (∆E)[GeV] 2D M SB (⋆) 0.01092± 0.00027 0.0114± 0.0015
f pb

sig
F 0.42± 0.28 0.244± 0.077

Nsig F 64± 15 548± 39
Nbkg F 251± 20 1707± 52
Parameter [unit] Source Global value
mηc [GeV/c2] PDG 2.9839± 0.0005
Γηc [GeV] PDG 0.0320± 0.0007
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Table A.4: Final 4D model parameters and fit results for
the control mode B+ → ηc(K0

SK
+π−)K+.

Parameter
(dim) [unit]

Source SVD1 Value SVD2 Value

µmain(∆E) [GeV] 4D MC 0.001241± 0.000060 0.000926± 0.000049
µCF

main(∆E) [GeV] F −0.0004± 0.0010 −0.00049± 0.00037
σmain(∆E) [GeV] 4D MC 0.009275± 0.000057 0.009306± 0.000045
σCF

main(∆E) F 1.233± 0.092 1.106± 0.035
µ1

tail(∆E) [GeV] 4D MC −0.00265± 0.00031 −0.00061± 0.00029
σ1

tail(∆E) 4D MC 1.538± 0.032 1.504± 0.030
f1(∆E) 4D MC 0.1715± 0.0045 0.1320± 0.0033
µ2

tail(∆E) [GeV] 4D MC −0.0079± 0.0010 −0.00373± 0.00083
σ2

tail(∆E) 4D MC 4.65± 0.13 4.381± 0.097
f2(∆E) 4D MC 0.0675± 0.0030 0.0615± 0.0024
µVoigt(M)[GeV/c2] 4D MC −0.00022± 0.00010 0.000083± 0.000087
σVoigt

main (M)[GeV/c2] 4D MC 0.00670± 0.00028 0.00644± 0.00032
σVoigt

tail (M) 4D MC 5.54± 0.51 5.92± 0.79
f(M) 4D MC 0.100± 0.014 0.070± 0.015
kcorr

1 (∆E ×M) 4D MC 0.0354± 0.0019 0.0368± 0.0016
kcorr

2 (∆E ×M) 4D MC 0.737± 0.012 0.828± 0.010
c1

mis(M) 4D MC 0.290± 0.074 0.261± 0.067
fmis(M) MC Truth 0.01067± 0.00052 0.00990± 0.00043
c∆E

1 (∆E) F −0.274± 0.055 −0.154± 0.021
cM1 (M) F 0.012± 0.058 0.061± 0.022
µ∆E

pb (∆E) [GeV] 2D M SB −0.0029± 0.0021 −0.0000± 0.0020
σ∆E

pb (∆E)[GeV] 2D M SB 0.0100± 0.0031 0.0116± 0.0026
τbkg(∆t) [ps] 4D Mbc SB 0.967± 0.078 0.767± 0.022
µδ(∆t) [ps] 4D Mbc SB −0.024± 0.022 0.0039± 0.0075
fδ(∆t) 4D Mbc SB 0.559± 0.045 0.485± 0.017
µbkg sng(∆t) [ps] 4D Mbc SB −0.094± 0.046 −0.020± 0.012
f tail

bkg sng(∆t) 4D Mbc SB 0.032± 0.012 0.0629± 0.0058
smain

bkg sng(∆t) 4D Mbc SB 1.170± 0.034 1.305± 0.015
stail

bkg sng(∆t) 4D Mbc SB 5.51± 0.74 4.72± 0.15
µbkg mlt(∆t) [ps] 4D Mbc SB 0.08± 0.10 0.003± 0.034
f tail

bkg mlt(∆t) 4D Mbc SB 0.146± 0.041 0.134± 0.013
smain

bkg mlt(∆t) 4D Mbc SB 0.954± 0.050 1.029± 0.023
stail

bkg mlt(∆t) 4D Mbc SB 3.02± 0.35 4.18± 0.21
f∆t
qq̄ (∆t) F 0.818± 0.058 0.840± 0.018

Continued on next page
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Table A.4—continued from previous page
Parameter

(dim) [unit]
Source SVD1 Value SVD2 Value

f̃
0
sig (r-bin) 4D MC 0.4279± 0.0037 0.4068± 0.0033
f̃

1
sig (r-bin) 4D MC 0.2874± 0.0029 0.3317± 0.0026
f̃

2
sig (r-bin) 4D MC 0.1744± 0.0022 0.1877± 0.0019
f̃

3
sig (r-bin) 4D MC 0.1685± 0.0020 0.1416± 0.0016
f̃

4
sig (r-bin) 4D MC 0.1151± 0.0016 0.1147± 0.0014
f̃

5
sig (r-bin) 4D MC 0.1503± 0.0016 0.1572± 0.0014
η̃CF

0 (r-bin) F 1.29± 0.11 1.199± 0.062
η̃CF

1 (r-bin) F 0.81± 0.12 0.918± 0.058
η̃CF

2 (r-bin) F 0.85± 0.16 1.119± 0.076
η̃CF

3 (r-bin) F 0.75± 0.14 1.044± 0.082
η̃CF

4 (r-bin) F 0.65± 0.16 1.041± 0.083
η̃CF

5 (r-bin) F 1.02± 0.13 1.037± 0.060
f̃

0
bkg (r-bin) F 0.411± 0.026 0.4052± 0.0090
f̃

1
bkg (r-bin) F 0.218± 0.019 0.2818± 0.0070
f̃

2
bkg (r-bin) F 0.181± 0.016 0.1390± 0.0050
f̃

3
bkg (r-bin) F 0.134± 0.013 0.1083± 0.0043
f̃

4
bkg (r-bin) F 0.080± 0.010 0.0725± 0.0034
f̃

5
bkg (r-bin) F 0.0438± 0.0078 0.0366± 0.0026
f pb

sig
F 0.198± 0.076 0.054± 0.028

Nsig F 358± 30 1990± 70
Nbkg F 1039± 40 7205± 100
Parameter [unit] Source Global value
mηc [GeV/c2] PDG 2.9839± 0.0005
Γηc [GeV] PDG 0.0320± 0.0007
τeff [ps] 4D BB̄ MC 1.152± 0.017
τ [ps] PDG 1.641± 0.008
SCP F −0.027± 0.080
ACP F −0.052± 0.059
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Table A.5: Final 4D model parameters and fit results
for the signal mode B0 → ηc(K0

SK
+π−)K0

S. Source of
parameters denoted with (⋆) is rare-B MC for the SVD1
experiment.

Parameter
(dim) [unit]

Source SVD1 Value SVD2 Value

µmain(∆E) [GeV] 4D MC 0.001473± 0.000079 0.001239± 0.000060
µCF

main(∆E) [GeV] 4D CS −0.0004± 0.0010 −0.00049± 0.00037
σmain(∆E) [GeV] 4D MC 0.009429± 0.000078 0.009125± 0.000059
σCF

main(∆E) 4D CS 1.233± 0.092 1.106± 0.035
µ1

tail(∆E) [GeV] 4D MC −0.00203± 0.00043 0.00031± 0.00038
σ1

tail(∆E) 4D MC 1.630± 0.044 1.687± 0.039
f1(∆E) 4D MC 0.1672± 0.0060 0.1381± 0.0042
µ2

tail(∆E) [GeV] 4D MC −0.0029± 0.0012 0.00260± 0.00084
σ2

tail(∆E) 4D MC 4.20± 0.14 4.000± 0.096
f2(∆E) 4D MC 0.0671± 0.0047 0.0724± 0.0037
µVoigt(M)[GeV/c2] 4D MC 0.00015± 0.00014 0.00008± 0.00011
σVoigt

main (M)[GeV/c2] 4D MC 0.00674± 0.00038 0.00674± 0.00028
σVoigt

tail (M) 4D MC 6.13± 0.60 6.32± 0.91
f(M) 4D MC 0.101± 0.015 0.059± 0.011
kcorr

1 (∆E ×M) 4D MC 0.0316± 0.0025 0.0364± 0.0019
kcorr

2 (∆E ×M) 4D MC 0.742± 0.017 0.812± 0.013
c1

mis(M) 2D MC 0.294± 0.059 0.164± 0.052
fmis(M) MC Truth 0.0303± 0.0012 0.02574± 0.00090
c∆E

1 (∆E) F −0.32± 0.12 −0.276± 0.043
cM1 (M) F −0.07± 0.12 0.096± 0.045
µ∆E

pb (∆E) [GeV] 2D M SB (⋆) 0.0011± 0.0038 −0.0018± 0.0015
σ∆E

pb (∆E)[GeV] 2D M SB 0.01092± 0.00027 0.0114± 0.0015
τbkg(∆t) [ps] 4D Mbc SB 1.11± 0.44 0.951± 0.068
µδ(∆t) [ps] 4D Mbc SB −0.011± 0.062 −0.017± 0.017
fδ(∆t) 4D Mbc SB 0.61± 0.16 0.548± 0.039
µbkg sng(∆t) [ps] 4D Mbc SB −0.02± 0.16 −0.052± 0.036
f tail

bkg sng(∆t) 4D Mbc SB 0.050± 0.033 0.064± 0.016
smain

bkg sng(∆t) 4D Mbc SB 1.176± 0.094 1.302± 0.030
stail

bkg sng(∆t) 4D Mbc SB 5.96± 1.15 4.33± 0.40
µbkg mlt(∆t) [ps] 4D Mbc SB −0.03± 0.26 0.055± 0.083
f tail

bkg mlt(∆t) 4D Mbc SB 0.26± 0.32 0.136± 0.037
smain

bkg mlt(∆t) 4D Mbc SB 1.03± 0.28 1.095± 0.051
Continued on next page
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Table A.5—continued from previous page
Parameter

(dim) [unit]
Source SVD1 Value SVD2 Value

stail
bkg mlt(∆t) 4D Mbc SB 2.315± 1.068 3.55± 0.57
f∆t
qq̄ (∆t) 4D M SB 0.83± 0.11 0.803± 0.030
f̃

0
sig (r-bin) 4D MC 0.4293± 0.0048 0.4115± 0.0040
f̃

1
sig (r-bin) 4D MC 0.2993± 0.0037 0.3423± 0.0032
f̃

2
sig (r-bin) 4D MC 0.1628± 0.0027 0.1904± 0.0023
f̃

3
sig (r-bin) 4D MC 0.1523± 0.0025 0.1285± 0.0018
f̃

4
sig (r-bin) 4D MC 0.1172± 0.0021 0.1116± 0.0017
f̃

5
sig (r-bin) 4D MC 0.1537± 0.0021 0.1650± 0.0018
η̃CF

0 (r-bin) 4D CS 1.29± 0.11 1.199± 0.062
η̃CF

1 (r-bin) 4D CS 0.81± 0.12 0.918± 0.058
η̃CF

2 (r-bin) 4D CS 0.85± 0.16 1.119± 0.076
η̃CF

3 (r-bin) 4D CS 0.75± 0.14 1.044± 0.082
η̃CF

4 (r-bin) 4D CS 0.65± 0.16 1.041± 0.083
η̃CF

5 (r-bin) 4D CS 1.02± 0.13 1.037± 0.060
f̃

0
bkg (r-bin) 4D Mbc SB 0.410± 0.017 0.3963± 0.0061
f̃

1
bkg (r-bin) 4D Mbc SB 0.238± 0.013 0.2897± 0.0048
f̃

2
bkg (r-bin) 4D Mbc SB 0.1226± 0.0094 0.1385± 0.0034
f̃

3
bkg (r-bin) 4D Mbc SB 0.1132± 0.0086 0.1120± 0.0029
f̃

4
bkg (r-bin) 4D Mbc SB 0.0866± 0.0073 0.0738± 0.0023
f̃

5
bkg (r-bin) 4D Mbc SB 0.0318± 0.0045 0.0293± 0.0015
f pb

sig
F 0.20± 0.20 0.214± 0.069

Nsig F 68± 14 548± 37
Nbkg F 247± 19 1707± 51
Parameter [unit] Source Global value
mηc [GeV/c2] PDG 2.9839± 0.0005
Γηc [GeV] PDG 0.0320± 0.0007
τeff [ps] 4D BB̄ MC 1.111± 0.033
τ [ps] PDG 1.519± 0.007
SCP F 0.588± 0.165
ACP F 0.161± 0.116
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APPENDIX B

SVD1 Experiment Projections
In this appendix, 4D fit model and data projections of the signal MC sample
(Fig. B.1) and Mbc sideband data (Fig. B.2) for the SVD1 experiment are shown.
The corresponding projections for the SVD2 experiment are included in the main
text.
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Figure B.1: Fit model and data projections for the signal MC sample of the SVD1
experiment for the signal (left) and control mode (right).
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Figure B.2: Fit model and data projections for the Mbc sideband data of the
SVD1 experiment for the signal (left) and control mode (right).
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APPENDIX C

Final Result Projections
In this appendix, we show data and fit projection in the full signal window, while
single-enhanced region is used for projections in the main text. The control mode
is shown in Fig. C.1 and the signal mode in Fig. C.2. Note that only data with
|∆t| < 7 ps are projected (such that the same events are present in all shown
histograms).
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Figure C.1: Control mode data and fit projections in the full signal window.

383



0

20

40

60

80

100

120

140

160

180

200

 E
v
e

n
ts

 /
 (

 5
 M

e
V

 )

Data

Total Fit

Signal

Continuum Bkg.

Peaking Bkg.

(a)

0.1− 0.08− 0.06− 0.04− 0.02− 0 0.02 0.04 0.06 0.08 0.1

E [ GeV ]∆ 

2−
0
2

P
u
ll 

 

0

20

40

60

80

100

120 )
2

 E
v
e

n
ts

 /
 (

 5
 M

e
V

/c Data

Total Fit

Signal

Continuum Bkg.

Peaking Bkg.

(b)

2.85 2.9 2.95 3 3.05

 ]2) [ GeV/c-
π 

+
 K

0

S
 M(K

2−

0
2

P
u
ll 

 

0

20

40

60

80

100

120

140

160

 E
v
e

n
ts

 /
 (

 0
.3

5
0

 p
s
 )

Data

Total Fit

Signal

Continuum Bkg.

Peaking Bkg.

(c)

6− 4− 2− 0 2 4 6

t ( q = +1 ) [ ps ]∆ 

2−
0
2

P
u
ll 

 

0

20

40

60

80

100

120

140

160

180

 E
v
e

n
ts

 /
 (

 0
.3

5
0

 p
s
 )

Data

Total Fit

Signal

Continuum Bkg.

Peaking Bkg.

(d)

6− 4− 2− 0 2 4 6

t ( q = -1 ) [ ps ]∆ 

2−
0
2

P
u
ll 

 

0

100

200

300

400

500

600

700

800

 E
v
e

n
ts

Data

Total Fit

Signal

Continuum Bkg.

Peaking Bkg.

0 1 2 3 4 5 6 7

 r-bin index

2−

0
2

P
u
ll 

 

Figure C.2: Signal mode data and fit projections in the full signal window.
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APPENDIX D

Rigid Body Parameter
Transformations
In Sec. 12.2.3, we discuss alignment in different local hierarchy frames defined by
their coordinate systems. The 6× 6 transformation matrices between rigid body
parameters of two coordinate frames can be decomposed into four 3× 3 blocks

∂aA

∂aB
=
(︄
M1 M2
0 M3

)︄
, (D.1)

where the lower left block corresponds to ∂(∆α,∆β,∆γ)⊺A
∂(∆u,∆v,∆w)⊺B

and is zero as angles do not

change under translations. Block M1 corresponds to ∂(∆u,∆v,∆w)⊺A
∂(∆u,∆v,∆w)⊺B

. If the origin
of the local frame B in the A-frame is1 rA, one can write

rA = RR⊺rA = RrB, (D.2)

where rB is the same vector as rA, but now expressed in coordinates of the lower
frame B. A small change of the daughter’s frame origin in its local coordinates
(∆u,∆v,∆w)⊺B will then translate to a change in mother frame (∆u,∆v,∆w)⊺A
as

(∆u,∆v,∆w)⊺A = R (∆u,∆v,∆w)⊺B. (D.3)
Therefore block M1 = R.

Lemma: For an infinitesimal rotation matrix ∆R of the form

∆R =

⎛⎜⎝ 1 −∆γ ∆β
∆γ 1 −∆α
−∆β ∆α 1

⎞⎟⎠ , (D.4)

the vector
α = (∆α,∆β,∆γ)⊺ (D.5)

is (up to a multiplication factor) the axis of the rotation ∆R.
Proof:

∆Rα = α (D.6)
and thus α is unchanged by the rotation R (α is an eigenvector of ∆R with
eigenvalue of one). Therefore α must be the axis of the rotation.

1We have previously denoted rA as r0, for the case of A being the global frame. The
convention for the rotation matrix is the same as defined before, so R transforms vectors from
lower to upper frame.
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Block M3 = ∂(∆α,∆β,∆γ)⊺A
∂(∆α,∆β,∆γ)⊺B

. In the daughter frame, an infinitesimal rotation ∆R
will have axis αB = (∆α,∆β,∆γ)⊺B. But any direction vector, in particular the
rotation axis, transforms from daughter to mother frame using R as αA = RαB
and therefore

(∆α,∆β,∆γ)⊺A = R (∆α,∆β,∆γ)⊺B (D.7)
and block M3 = R.

In block M2, we are interested in the partial derivatives ∂(∆u,∆v,∆w)⊺A
∂(∆α,∆β,∆γ)⊺B

. By ex-
panding (∆u,∆v,∆w)⊺A to first order in (∆α,∆β,∆γ)⊺A, one gets

(∆u,∆v,∆w)⊺A = ∂(∆u,∆v,∆w)⊺A
∂(∆α,∆β,∆γ)⊺A

R (∆α,∆β,∆γ)⊺B, (D.8)

where we have already used Eq. D.7. In the mother frame, the daughter frame
origin is rA = (u, v, w)⊺A and rotations in mother frame propagate to small shifts
of rA as ⎛⎜⎝∆u

∆v
∆w

⎞⎟⎠
A

=

⎛⎜⎝ 1 −∆γ ∆β
∆γ 1 −∆α
−∆β ∆α 1

⎞⎟⎠
A

⎛⎜⎝uv
w

⎞⎟⎠
A

. (D.9)

The desired matrix of partial derivatives evaluates to

D = ∂(∆u,∆v,∆w)⊺A
∂(∆α,∆β,∆γ)⊺A

=

⎛⎜⎝ 0 w −v
−w 0 u
y −u 0

⎞⎟⎠
A

(D.10)

and block M2 = DR. In total, the transformation from daughter to mother
frame reads

∂aA

∂aB
=
(︄
R DR
0 R

)︄
(D.11)

and for the inverted relation, one gets

∂aB

∂aA
=
(︄
R⊺ −R⊺D
0 R⊺

)︄
, (D.12)

as can be checked by direct multiplication: ∂aB
∂aA

∂aA
∂aB

= ∂aA
∂aB

∂aB
∂aA

= 16×6.
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