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Abstract: We study long-time and large-data existence theory of selected recently
developed fluid mechanics models suitable for describing the mechanical behavior of
materials with complex microstructure. In the first part of this work we focus on the
Bingham type models for granular materials with the activation parameter (a critical
value for the magnitude of the stress) dependent on the internal pore pressure. Our
motivation comes from recent research concerning the implicitly constituted materials
and also from an interesting paper by Chupin and Mathé [1], where the existence of
weak solutions to the given problem was proved only in two spatial dimensions. Here
we consider slightly different model (than in [1]) that we are able to derive from the
basic governing equations of the theory of mixtures and we extend the existence result
to three spatial dimensions. In the second part of this work we are concerned with fast
developing field of viscoelastic materials. We study long-time and large-data existence
of viscoelastic rate-type fluid models of higher order as they represent the simplest
models suitable for describing the mechanical behavior of viscoelastic materials with
complex microstructure. We are not aware of any long-time and large-data existence
results for such models. Motivated by a study by Masmoudi [2], where the proof of
the existence of weak solutions to the Giesekus model was briefly sketched, we prove
the existence of weak solutions to the second order model, which can be written as a
mixture of two Giesekus models, in two spatial dimensions.

Keywords: Bingham model, Burgers model, Giesekus model, existence theory, weak
solution

iii



Contents

1 Introduction 3

Introduction 3
1.1 Bingham type model for water saturated granular materials . . . . . . 5
1.2 Viscoelastic rate-type fluid model . . . . . . . . . . . . . . . . . . . . . 12
1.3 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Analysis of unsteady flows of pore pressure activated Bingham fluids 16
2.1 Formulations of the problem . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Definition of weak solution and main result . . . . . . . . . . . . . . . . 19
2.3 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Proof of Theorem 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Analysis of unsteady flows of pore pressure activated granular mate-
rials 39
3.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Preliminaries and main results . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Attainment of the constitutive equations . . . . . . . . . . . . . . . . . 43
3.4 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Proof of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Analysis of planar flows of viscoelastic fluids of Burgers type 52
4.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Formulation of the main result . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Two useful lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 System with evolutionary equation for the tensor F . . . . . . . . . . . 57
4.5 Proof of Theorem 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Parabolic ε-approximations . . . . . . . . . . . . . . . . . . . . 59
4.5.2 Limit ε → 0+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.3 Strong continuity of F in time . . . . . . . . . . . . . . . . . . . 61
4.5.4 Compactness of {Fε} in (L2(QT ))2×2 . . . . . . . . . . . . . . . 63
4.5.5 Positivity of detF . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Proof of Theorem 4.2.1 with G1 = 1, G2 = 0 . . . . . . . . . . . . . . . 75
4.7 Proof of Theorem 4.2.1 with G1, G2 > 0 arbitrary . . . . . . . . . . . . 77

4.7.1 System with equations for F1, F2 . . . . . . . . . . . . . . . . . 77
4.7.2 Parabolic approximation . . . . . . . . . . . . . . . . . . . . . . 78
4.7.3 Weak convergence results as ε → 0+ . . . . . . . . . . . . . . . . 79
4.7.4 Compactness of F1,ε,F2,ε in (L2(QT ))2×2 . . . . . . . . . . . . . 79
4.7.5 Concluding the result . . . . . . . . . . . . . . . . . . . . . . . . 80

Conclusion 81

Bibliography 82

List of author’s publications 88

1



A Appendix 89
A.1 Proof of Proposition 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2 Proof of Proposition 4.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.3 Existence of solution to parabolic approximation to (4.4.1)–(4.4.6) . . . 98

A.3.1 Galerkin approximations . . . . . . . . . . . . . . . . . . . . . . 99
A.3.2 Uniform n-independent estimates . . . . . . . . . . . . . . . . . 100
A.3.3 Limit n → +∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.3.4 Attainment of the initial data . . . . . . . . . . . . . . . . . . . 103

2



1. Introduction
This work is devoted to selected recently developed fluid mechanics models suitable for
describing the mechanical behavior of materials with complex microstructure. Our aim
is to justify the use of these models, more precisely to put the models into the context
of the theory of interacting continua and to provide the robust mathematical analysis
for them. We focus especially on the long-time and large-data existence theory for two
particular models.

The first model is a generalization of the Bingham type model introduced in [1]. The
model gives certain insight into the mechanical behavior of granular water saturated
materials and into the physics of flows in porous media. Here, we present the results
from the articles [3] and [4]. In [3] we provide the derivation of the model from the basic
thermodynamical principles of interacting continua, and we provide the proof of the
existence of weak solutions to the corresponding initial and boundary value problem
in three spatial dimensions. (In [4] we consider more general model than in [3] and
we prove the existence result under weaker assumptions for the data of the problem.)
Let us note that in [1] the existence of weak solutions is proved only in two spatial
dimensions.

The second model is a generalized version of the model introduced in [2]. We con-
sider a viscoelastic rate type fluid model of the second order. The model is capable
of capturing two different relaxation mechanisms, hence it represents one of the sim-
plest models suitable for modeling the flows of viscoelastic materials with complex
microstructure. Let us note that the model analyzed in [2] (the Giesekus model) is
just a first order model. Here, we present the results from the preprint [5], i.e. we
provide the proof of the existence of weak solutions to the model that can be written
as a mixture of two Giesekus models in two spatial dimensions.

In all cases we prove the existence of weak solutions [v, p,S] to the following system
of equations supposed to be satisfied in QT := (0, T ) × Ω, where T ∈ (0,∞) is a
given number and Ω ⊂ Rd is a flow domain (i.e. bounded, open and connected set),
d = 2 or 3

div v = 0,
∂tv + div(v ⊗ v) + ∇p− div(2νD) = div S + f ,

G(S,D,∇v, h) = O.

Here and in what follows, ∂t denotes the partial time derivative, div h denotes the
divergence of the vector field h with respect to the spatial variables, i.e. div h :=∑︁d

j=1 ∂xjhj. Next, we define D as D := 1
2(∇v + (∇v)T ), where the symbol ∇ stands

for the gradient with respect to the spatial variables and for any tensor A ∈ Rd×d

the symbol AT denotes the transpose of A. Finally 2ν is a given constant, f is a
given vector-valued function, G is a given generally nonlinear continuous tensor-valued
function, and h is an additional parameter.

The long-time and large-data existence theory is a fundamental and starting point
of the development of the robust PDE analysis for the given initial and boundary value
problem. We find the concept of weak solutions as a suitable concept of solutions. It is a
concept that might be well defined for [v, p,S] satisfying the apriori estimates provided
by the corresponding system of equations (the apriori estimates also indicate, in which
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function spaces we shall search for the weak solution) and the numerical methods such
as mixed finite element or spectral methods are based on this concept of solutions.

In all models, which we study, in two spatial dimensions we can use the solution
v as a test function in the evolutionary equation for v (the so called energy equality
holds true). However, in three spatial dimensions we are not allowed to do so. As one
may expect, this is the crucial difference between the analysis in the twodimensional
and threedimensional setting. Having the possibility to test the equation for v by the
solution itself, it is much easier, for example, to show the convergence of nonlinear
terms (acting in suitably introduced approximations to the problem in interest) to the
proper functions.

Let us note that for the first model (the Bingham type model that we study in
Chapter 2) and its generalization (studied in Chapter 3), the function G is monotone
with respect to S and D, i.e. for all couples [S1,D1], [S2,D2] satisfying G(S1,D1) =
G(S2,D2) = O, we have (the symbol ” : ” stands for the scalar product of two tensors)

(S1 − S2) : (D1 − D2) ≥ 0.

Once we have the introduced monotonicity, we can relatively simply overcome the lack
of the energy equality in three spatial dimensions, introducing standard truncations of
the velocity fields whose applications generate the weak L1 limits of nonlinear (uni-
formly bounded in L1(QT )) terms in the biting sense (e.g. L∞ truncation, see [6], [7],
or [8], or parabolic Lipschitz truncation, see [9] or [10]), and then proceeding in the
limit of the nonlinear term G(S,D) in virtue of [11]. We use the introduced attitude
for example in the relations (2.4.59), (2.4.60), their consequence (2.4.62) and in the
rest of the proof of Theorem 2.2.1 including the use of Proposition 2.3.3 in Chapter 2.

For the viscoelastic rate-type fluid model (studied in Chapter 4) we do not know
whether the function G is monotone with respect to S and D, and, as a consequence, the
lack of the energy equality in three spatial dimensions cannot be overcome directly by
the procedure described above. This is the main reason why we restrict ourselves just
to the two dimensional setting. However, the existence theory in the three dimensional
setting is a subject of our current research.

In the rest of the Introduction, we introduce the general model for mixtures, from
which all models of our interest are derived under physically reasonable simplifying
assumptions. Then we briefly describe the physical background and the derivation of
the particular models (the derivation of the models can be also found in [3] and [5]).
Last, we introduce the basic notation needed in the analysis of these models performed
in forthcoming chapters.

General model
We come from the general model for an N component mixture (N ∈ N), where we
distinguish the densities and the velocities of each component and we consider the
energy and the entropy for the whole mixture. The resulting system of equations (see
e.g. [12] or [13]), supposed to be satisfied in QT := (0, T ) × Ω, where T ∈ (0,∞) is
arbitrary, Ω ⊂ Rd is a flow domain (i.e. bounded, open and connected set), d = 2, 3,
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reads as follows (α = 1, ..., N)

∂tρα + div(ραvα) = mα,

∂t(ραvα) + div(ρα(vα ⊗ vα)) = ραf +mαvα + Iα,

Tα = (Tα)T ,

∂t

(︄
ρ

(︄
e+ |v|2

2

)︄)︄
+ div

(︄
ρ

(︄
e+ |v|2

2

)︄
v

)︄
= div(Tv − qe) + ρf · v + ρr,

ρη̇ + div qη = ξ

such that mα and Iα satisfy
N∑︂

α=1
mα = 0,

N∑︂
α=1

mαvα + Iα = 0.

Here, ρα, vα and Tα (α = 1, ..., N) stand for the densities, velocities and the Cauchy
stress tensors (respectively) of the individual components of the mixture, T denotes the
Cauchy stress tensor for the whole mixture. Next, the terms mα, mαvα and mαvα +Iα

represent the transport of mass, the consequent transport of linear momenta and the
total transport of linear momenta (respectively) of the individual components inside the
mixture. Finally, f denotes the density of the external forces (for example the gravity),
e stands for the internal energy, qe stands for the heat flux, r for the outer energy sources
(e.g. radiation), qη for the entropy flux and ξ for the rate of entropy production, all
these quantities are related to the whole mixture. In order to close the system we
have to introduce the so called constitutive relations between the static variables, i.e.
the densities, the velocities and the internal energy, and the other quantities, i.e. the
Cauchy stress tensors, the energy and entropy fluxes, the entropy and the rate of
entropy production. The constitutive relations can be fully determined once we have
the constitutive relations for two scalar quantities, for example for the rate of entropy
production and for the Helmholtz free energy Ψ defined as Ψ := e−θη, where θ denotes
the temperature.

1.1 Bingham type model for water saturated gran-
ular materials

Figure 1.1: Sketch of the typical problem
geometry and zoom into the structure of the
material composed of a graular unconsoli-
dated solid filled with an interstitial fluid.

The mechanical behavior of water saturated
geological materials such as soils or sands is
known to involve the notion of the so-called ef-
fective pressure, introduced in 1920 by Terza-
ghi [14]. We are concerned with internal flows
of the materials with the value of the activa-
tion stress (once the stress exceeds this value,
the material starts to flow) dependent on the
effective pressure. The effective pressure is de-
fined as the difference between the mean nor-
mal stress in the medium and the pressure in
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the interstitial fluid - pore pressure. Water saturated geological materials are mixtures
composed of an unconsolidated granular solid material and an interstitial pore space
occupied by a fluid, see Fig. 1.1. With this picture in mind the total stress exerted on
any control surface in such a medium comprises two contributions, namely the stress
transmitted by the fluid and the stress transmitted by the granular solid. Mechanical
loading or unloading of such a saturated material due to external forcing leads to redis-
tribution of the stresses between the two constituents, which in general can be a rather
complex process. Despite its complexity, several general observations can be made.
First, if during the process the stress in the granular material increases, for example
by reducing the pore pressure while keeping the total loading constant, the granular
structure compactifies and becomes more rigid. A textbook example of this process is
the beach sandcastle stabilization, when the fluid flowing out of the wet sand stabilizes
the sand by “sticking” the sand grains closer together (here also capillary phenomena
play a significant role). Second, as an opposite extreme, it may happen that during
some processes the pressurized interstitial fluid bears almost the whole mechanical load
exerted on the system, which leads to effective mechanical decoupling of the solid grains
and the so called “liquefaction” can occur.

We develop a mathematical theory for a model that can be viewed as a simple toy
model for the process of pore-pressure activated flows of saturated granular materials
decribed above. We give up the ambition to model the actual process of liquefaction
of real-world geological materials such as soils, since compared to what is presented
here, this would require much more involved modeling of the activation yield criteria
for such materials and of their rheological properties after the activation. However,
we believe that even the strongly simplified setting presented here provides certain
qualitative insight into the physics of pore-pressure activated flows and may even have
some relevance to the problems of static liquefaction (see [15]) or enhanced oil recovery.1
All this in our view justifies to study the associated initial and boundary value problems
in terms of the mathematical well-posedness.

The model developed here is obtained within the context of the theory of inter-
acting continua initiated by Truesdell [19], [20] (see also the review articles by Bowen
[21], Atkin and Craine [22], and the numerous appendices in the book on rational
thermodynamics by Truesdell [23], and the books by Samohýl [24], Rajagopal and Tao
[12]). Within this framework, we are concerned with the flow of a mixture composed of
two components, one representing the unconsolidated granular material flowing once
the activation criterion is met, and the second fluid being Newtonian, representing the
pore-space fluid. The Darcy-type flow of the pore fluid relative to the second material
is considered, driven by the pore pressure gradient and gravity. This flow accomodates
the pore presssure. Once the pore pressure reaches a certain threshold, the “granular”
material starts to flow.

1In enhanced oil recovery steam or carbon dioxide is injected to reclaim oil that remains after initial
extraction (see [16] for a discussion of enhanced oil recovery and [17], [18] for modeling and numerical
studies). The recovery takes place after a pressure builds-up in the porous substrate containing the
remnant oil and the oil starts to flow. Before the flow takes place we do have the steam/carbon
dioxide being pumped into the porous rock and this flow is governed by some Darcy-like equation.
The pressures involved are quite high and the material properties like the viscosity of the fluid would
be pressure dependent, and at such high pressures the porous rock would undergo some deformation,
these two effects are being ignored. We are also not modeling the porous rock as an individual
constituent, as the considered mixture is constituted by steam and oil.
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Derivation of the model
We refer to quantities related to the granular material (flowing after an activation
criterion takes place) as solid (denoted by subscript ”s”) and to the interstitial fluid
simply as fluid (denoted by subscript ”f”).

Based on the theory of multi-component materials (see e.g. [12], [13], from where
we have the General model introduced above), we first formulate the individual mass
and momentum balances for both components (constituents). Restraining ourselves to
a purely mechanical setting, for simplicity, we do not need to formulate the balance
equations for energy and entropy.

All the equations bellow used in the derivation of our model are supposed to be
satisfied in QT := (0, T )×Ω, where T ∈ (0,∞) and Ω ⊂ R3 is a flow domain (bounded,
open and connected set).

The balance equations for mass read as follows:
∂(ϕρm

f )
∂t

+ div(ϕρm
f vf) = 0 , (1.1.1a)

∂((1−ϕ)ρm
s )

∂t
+ div((1−ϕ)ρm

s vs) = 0 . (1.1.1b)

Here, ρm
f and ρm

s denote the material (true) densities of the fluid and the solid, ϕ
denotes the volume fraction of the fluid (equal to the porosity of the granular solid in the
saturated case considered here), and vf and vs denote the velocities of the constituents,
respectively. The zero on the right-hand side of equations (1.1.1) expresses the fact
that we do not consider any mass transfer between the constituents.

The balance equations for linear momenta of these two constituents take the form
∂(ϕρm

f vf)
∂t

+ div(ϕρm
f vf⊗vf) = divTf + ϕρm

f f + I , (1.1.2a)

∂((1−ϕ)ρm
s vs)

∂t
+ div((1−ϕ)ρm

s vs⊗vs) = divTs + (1−ϕ)ρm
s f − I , (1.1.2b)

where, for u,w ∈ R3, the symbol u⊗w denotes the tensor of components (u⊗w)ij :=
uiwj with i, j = 1, 2, 3, while Tf and Ts stand for the fluid and solid Cauchy stresses,
respectively, both of which are assumed to be symmetric (i.e. Tf=TT

f , Ts=TT
s ). The

quantity I represents the interaction force between the constituents. The interaction
nature of this force is reflected by the fact that it appears with plus sign in one equation
and with minus in the other. Finally f is the body force (same for both constituents,
typically this is the gravity acceleration vector). In reality, both constituents are com-
pressible, i.e. both material densities ρm

s and ρm
f must be specified by a corresponding

state equation. In the isothermal setting considered here, such relation would take the
form of dependence on the material stress state of the particular constituent. Since
the dominant compressibility effect in the context of real-world geological materials is
not related to the changes of material densities, but rather to the changes in porosity
in reaction to the applied loading (see [25], chapter 4), we neglect the former effect by
setting

ρm
f = constf and ρm

s = consts. (1.1.3)

Dividing now (1.1.1a) by ρm
f and (1.1.1b) by ρm

s and summing the resulting equations,
we obtain

div vs = − div(ϕ(vf−vs)) . (1.1.4a)
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Inserting this relation into (1.1.1b) (divided by ρm
s ) yields the evolutionary equation

for the porosity

∂ϕ

∂t
+ vs · ∇ϕ = −(1−ϕ) div (ϕ(vf−vs)) . (1.1.4b)

Under the assumptions (1.1.3), the system of equations (1.1.4) is equivalent to the
system (1.1.1).

The balance equations for linear momentum (1.1.2) are reformulated in terms of
an equivalent system, where the balance equation for linear momentum of the solid
is replaced by the balance equation for linear momentum of the mixture as a whole.
Thus, using (1.1.3), we get

ρm
f

(︄
∂(ϕvf)
∂t

+ div(ϕvf⊗vf)
)︄

= divTf + ϕρm
f f + I , (1.1.5a)

ρm
s

(︄
∂vs

∂t
+ div (vs⊗vs)

)︄
= divT + ρf − ∂

∂t
(ϕ(ρm

f vf−ρm
s vs))

− div(ϕ(ρm
f vf⊗vf − ρm

s vs⊗vs)) ,
(1.1.5b)

where, in the second equation, we introduced the total Cauchy stress T and the total
density ρ by

T := Ts + Tf , ρ := ϕρm
f + (1−ϕ)ρm

s = ρm
s + ϕ(ρm

f − ρm
s ). (1.1.6)

Next we introduce several simplifications.

• In the balance of linear momentum for the fluid (1.1.5a), we ignore the inertial
forces, i.e. the whole left-hand side of (1.1.5a) is set to zero. We further consider
Tf of the form

Tf = −pt
fϕ I , (1.1.7)

where pt
f is the true pressure in the interstitial fluid (pore pressure). Finally, the

interaction force I takes a simple form corresponding to the linear drag

I = −α(vf−vs) + pt
f∇ϕ , (1.1.8)

where α is the drag coefficient of the form

α := ϕ2µf

k(ϕ) , (1.1.9)

µf being the dynamic viscosity of the fluid (assumed to be constant for simplicity)
and k(ϕ) the permeability of the granular material. The presence of the second
term on the right-hand side of (1.1.8) is known from multiphase continuum theory
as an artefact of the volume averaging technique [26], which must be present to
cancel out in the fluid momentum balance with a corresponding term coming
from the divergence of eq. (1.1.7). See also [13], where such terms occur from
the derivation directly.
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• In the balance equation (1.1.5b), we keep the inertial term only on the left-hand
side and neglect the last two terms on the right hand side using a rough scaling
argument stating that the scale of these terms is at most the scale of the left hand
side, multiplied by the scale of porosity, which, in the considered applications,
typically does not exceed a few percent. Furthermore, since ϕ is typically below
0.1, we conclude that ρ introduced in (1.1.6) is approximately equal to ρm

s , so we
replace ρf by ρm

s f in (1.1.5b).

With these simplifications, the balance equations (1.1.4) and (1.1.5) take the form

∂ϕ

∂t
+ vs · ∇ϕ = −(1 − ϕ) div (ϕ(vf − vs)) , (1.1.10a)

div vs = − div(ϕ(vf − vs)), (1.1.10b)
ϕ∇pt

f = ϕρm
f f − α(vf − vs), (1.1.10c)

ρm
s

(︄
∂vs

∂t
+ div(vs ⊗ vs)

)︄
= divT + ρm

s f . (1.1.10d)

Next, we multiply (1.1.10c) by ϕ
α
, use (1.1.9) and apply divergence to the result. After

inserting the outcome of these computations in (1.1.10b) we obtain

div vs = div
(︄
k(ϕ)
µf

(∇pt
f − ρm

f f)
)︄
. (1.1.11)

As a consequence, (1.1.11) replaces (1.1.10b).
The next assumption states that the porosity of the granular solid can be described

by a constitutive relation of the form

ϕ = ˆ︁ϕ(peff) where peff := p− pt
f . (1.1.12)

The quantity peff, called effective pressure as introduced by Terzaghi [14], is defined
as the difference between the total mixture pressure and the fluid (pore) pressure.
The quantity peff is assumed to reflect the part of the loading bore by the granular
solid. Inserting the constitutive assumption (1.1.12) in (1.1.10a) and using (1.1.10b)
and (1.1.11), we obtain the following evolutionary equation for the effective pressure

d ˆ︁ϕ
dpeff

(︄
∂peff

∂t
+ vs · ∇peff

)︄
= (1−ϕ) div

(︄
k(ϕ)
µf

(∇pt
f − ρm

f f)
)︄
. (1.1.13)

Setting

− 1
β

:= d ˆ︁ϕ
dpeff with β > 0, (1.1.14)

replacing pt
f in (1.1.11) and (1.1.13) by p− peff and splitting the total Cauchy stress T

as

T = −pI + S, (1.1.15)
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we arrive at the following set of governing equations

div vs = div
(︄
k(ϕ)
µf

(∇p− ∇peff − ρm
f f)

)︄
, (1.1.16a)

ρm
s

(︄
∂vs

∂t
+ div (vs⊗vs)

)︄
= −∇p+ div S + ρm

s f , (1.1.16b)

∂peff

∂t
+ vs · ∇peff = −(1−ϕ)β div

(︄
k(ϕ)
µf

(∇p− ∇peff − ρm
f f)

)︄
, (1.1.16c)

vf = vs − 1
α
ˆ︁ϕ(peff)

(︂
∇pt

f − ρm
f f
)︂
. (1.1.16d)

Since pt
f = p− peff , we can view (1.1.16) as the system of partial differenctial equations

describing the evolution of p, vs, peff and vf , where the rheology of the material needs
to be specified by providing a constitutive relation for the stress S. We shall assume
that the material behaves as very stiff until the threshold is reached at which moment
the material starts to flow as a liquid. The simplest constitutive relation for this
type of response is characterized by the so-called Bingham fluid [27], where the solid
part responses as a perfectly rigid body until the magnitude of the stress exceeds the
threshold when the solid flows as a Newtonian fluid. This type of response is usually
written in the following way:⎧⎪⎪⎨⎪⎪⎩

|S| ≤ τ(peff) if and only if D = O,

|S| > τ(peff) if and only if S = τ(peff) D
|D| + 2ν∗D.

(1.1.17)

Here D is the symmetric part of the velocity gradient

D := 1
2(∇vs + (∇vs)T) ,

ν∗ > 0 is the viscosity and τ(peff) is the threshold, depending on the effective pressure.
Typically,

τ(peff) = q0(peff)+, (1.1.18)
where q0 is a constant and the symbol ()+ denotes the positive part of a quantity, i.e.
(ψ)+ := max(ψ, 0).

The activation criterion (1.1.17) is too simple to describe the shear instability of
real-world granular materials since it does not take into account any concept of internal
friction. In reality, it should be replaced by some form of Mohr-Coulomb criteria, see,
e.g., [28]. Similarly, also the fact that the material, which is a mixture of flowing
solid particles and fluid (a slurry), is supposed to response, after being activated, as
a Navier-Stokes (linear viscous) fluid, is a severe limitation of the model considered
here. To overcome this defficiency one would need to incorporate more realistic models
used for description of flows of granular materials (capable of exhibiting normal stress
differences, etc.). Such models have been developed in [29], [30], see also a review
article [31].

Despite these important limitations, the system (1.1.16) – (1.1.18) seems to be a
meaningful, physically justified and relatively simple model worth of studying. We
however do not further investigate this system here, as our goal is to identify the
assumptions that lead to the model analyzed in [1]. Towards this aim, we introduce
the following additional assumptions:
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• Pore pressure evolution approximation. Using the relation pt
f = p−peff we rewrite

(1.1.16c) as an evolutionary equation for pt
f

∂pt
f

∂t
+ vs · ∇pt

f = ∂p

∂t
+ vs · ∇p+ (1−ϕ)β div

(︄
k(ϕ)
µf

(∇pt
f − ρm

f f)
)︄
. (1.1.19)

Next we assume that the dominant contribution to the total pressure p in the
equation (1.1.19) comes from the hydrostatic part, which may in general depend
explicitly on time to include problems with evolving boundary. Consequently,
we replace p(x, t) by ps(x, t) in eq. (1.1.19), where ps is a given function. Also,
we replace (1−ϕ) by 1 on the right-hand side of (1.1.19) since, as set above, we
are interested in situations where ϕ < 0.1 and finally, we assume that both the
permeability k and the compressibility parameter β are constant. Setting thus

K := βk

µf
≥ 0 , (1.1.20)

the equation (1.1.19) simplifies to the form

∂pt
f

∂t
+ vs · ∇pt

f = K∆pt
f − div(Kρm

f f) + ∂ps

∂t
+ vs · ∇ps. (1.1.21)

• Yield criterion approximation. Also in the yield criterion, we replace the pressure
p in the definition of the effective pressure (1.1.12) by ps, i.e. instead of (1.1.18),
we have

τ(pt
f) = q0(ps − pt

f)+ . (1.1.22)

• Incompressibility. We ignore the effect of porosity changes in (1.1.16a) by replac-
ing (1.1.16a) with the incompressibility constraint

div vs = 0 . (1.1.23)

With the above set of simplifying assumptions, the final reduced system of governing
equations reads as follows

div vs = 0 , (1.1.24a)

ρm
s

(︄
∂vs

∂t
+ div (vs⊗vs)

)︄
= −∇p+ div S + ρm

s f , (1.1.24b)

∂pt
f

∂t
+ vs · ∇pt

f = K∆pt
f − div(Kρm

f f) + ∂ps

∂t
+ vs · ∇ps , (1.1.24c)

where S satisfies⎧⎪⎪⎨⎪⎪⎩
|S| ≤ τ(pt

f) if and only if D = O,

|S| > τ(pt
f) if and only if S = τ(pt

f) D
|D| + 2ν∗D,

with τ(pt
f) = q∗(ps −pt

f)+, (1.1.25)

and where the velocity vf is given by

vf = vs − 1
α
ˆ︁ϕ(p− pt

f)
(︂
∇pt

f − ρm
f f
)︂
. (1.1.26)
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Since vf does not enter into (1.1.24) and (1.1.25), the equation (1.1.26) describing
the evolution of vf is not considered anymore in what follows (as vf can be always
obtained from equation of Darcy’s type (1.1.26) once vs and pt

f are known/computed
from (1.1.24) and (1.1.25)).

Let us note that, following a recent observation in [10] (see also [32], [33], [34]) the
rheological behaviour (1.1.25) can be equivalently written as

2ν∗D = (|S| − τ(pt
f))

+

|S|
S, where τ(pf) = q∗(ps − pt

f)+. (1.1.27)

One of the motivations for analyzing the introduced model is a recent paper by
Chupin and Mathé [1], where the authors characterize the tensorial response (1.1.27)
through two scalar constraints:

|Z| ≤ τ(pt
f) & Z : D ≥ τ(pt

f)|D|, where Z := S− 2ν∗D & τ(pt
f) = q∗(ps − pt

f)+. (1.1.28)

The equivalence between (1.1.25), (1.1.27) and (1.1.28) will be proved in Chapter 2.

1.2 Viscoelastic rate-type fluid model
Viscoelastic rate-type fluid models involving the stress and its observer-invariant time
derivatives of higher order represent the simplest fluid mechanics models suitable to de-
scribe the behaviour of materials with complex microstructure. This is due to the fact
that higher order viscoelastic rate-type fluid models are capable of capturing several
different relaxation mechanisms (as well as other non-Newtonian phenomena). Geo-
materials such as asphalt, biomaterials such as vitreous in the eye, synthetic rubbers
such as styrene butadiene rubber, are examples of materials that are described by the
viscoelastic rate-type fluid models of the second order. Here we refer to Monismith,
Secor [35], Narayan et al. [36], Málek, Rajagopal, Tůma [37], Sharif-Kashani et al. [38],
Řehoř et al. [39] for experimental data and for corroboration this data using higher
order viscoelastic rate type fluid models.

Derivation of the model
A standard model belonging to the category of viscoelastic rate type fluids of the second
order is the model due to Burgers, see [40], where Burgers developed a one-dimensional
model. The d-dimensional form (d ≥ 2) of the Burgers model, considered in the time-
space cylinder QT := (0, T ) × Ω, where T ∈ (0,∞) and Ω is an open, bounded and
connected set, takes the form:

div v = 0, (1.2.1)
ρ (∂tv + div(v ⊗ v)) = divT + ρf , (1.2.2)

T = −pI + 2νD + S, (1.2.3)
∇∇
S + α1

∇
S + α0S = β1

∇
D + β0D. (1.2.4)

Here again, v = (v1, . . . , vd) denotes the velocity, D := 1
2

(︂
∇v + (∇v)T

)︂
is the sym-

metric part of the velocity gradient ∇v, T is the Cauchy stress tensor, I is the identity
tensor and p (often called the pressure) is a scalar quantity associated with the fact
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that the fluid is incompressible, i.e. with the constraint (1.2.1). A given vector-valued
function f represents the density of external forces acting on the body, the parameter
ρ > 0 stands for the (constant) density, 2ν, α0, α1, β0, β1 are positive material coeffi-
cients. Finally, for any A : QT → Rd×d, the nonlinear differential operators

∇
A and

∇∇
A

stand for
∇
A := ∂tA +

d∑︂
j=1

vj∂xj
A − ∇vA − A(∇v)T and

∇∇
A :=

∇
∇
A. (1.2.5)

Setting S = O in (1.2.1)–(1.2.4), the governing equations reduce to the incompress-
ible Navier-Stokes system. If S is involved, the additional tensorial equation (1.2.4)
is nonlinear (with the nonlinearities containing ∇v in virtue of (1.2.5)), contains the
time derivatives of S of the second order, and does not involve a diffusion term. Con-
sequently, without having any additional insight it may be a nontrivial task to achieve
a priori estimates for the unknowns v and S controlled by data of the problem. It is
thus beneficial to observe, see [37] for details, that the system (1.2.1)–(1.2.4) follows
from the following set of equations satisfied in QT :

div v = 0, (1.2.6)
ρ (∂tv + div(v ⊗ v)) − divT − ρf = 0, ρ > 0, (1.2.7)

∇
Bi + 1

τi

(Bi − I) = O, τi > 0 (i = 1, 2), (1.2.8)

−pI + 2νD +
2∑︂

i=1
Gi(Bi − I) = T, ν, G1, G2 > 0 (1.2.9)

provided that we define

S :=
2∑︂

i=1
Gi(Bi − I)

and set

α1 := τ1 + τ2

τ1τ2
, α0 := 1

τ1τ2
, β1 := 2

G1 +G2
, β0 := 2

(︃
G1

τ1
+ G2

τ2

)︃
.

In fact, this viewpoint reflects the physical underpinnings of the model, see [40, 41,
42]. Note that (1.2.6)–(1.2.9) reduces to the standard viscoelastic Oldroyd-B model
(see [43]) if either B1 (or G1) or B2 (or G2) vanish. Saying differently, due to its
equivalent description (1.2.6)-(1.2.9), one can view the original model (1.2.1)–(1.2.4)
as a mixture of two Oldroyd-B models of the first order.

Carrying on a thermodynamical approach developed by Rajagopal and Srinivasa
[44] for modeling of responses (constitutive relations) of viscoelastic fluids, see also [45,
46, 41, 47] for extension and further details, Málek, Rajagopal and Tůma [42] have
recently developed a physically well sounded hierarchy of viscoelastic rate-type fluid
models capturing two different relaxation mechanisms. This class of models is described
by the following set of equations (fulfilled in QT ):

div v = 0, (1.2.10)
ρ (∂tv + div(v ⊗ v)) − divT − ρf = 0, ρ > 0, (1.2.11)

∇
Bi + 1

τi

(B2−λi
i − B1−λi

i ) = O, τi = Gi

νi

> 0, λi ∈ R (i = 1, 2), (1.2.12)

−pI + 2νD +
2∑︂

i=1
Gi(Bi − I) = T, 2ν,G1, G2 > 0, (1.2.13)
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where Bi are supposed to be of the form

Bi = FiFT
i , Fi ∈ Rd×d, detFi > 0 in QT (i = 1, 2). (1.2.14)

Here, Fi, i = 1, 2, denote the deformation tensors representing elastic parts of the
overall responses associated with two different relaxation mechanisms of the material,
see for example [42] for details and physical interpretation. Notice that (1.2.10)–(1.2.13)
coincides with (1.2.6)–(1.2.9) if we set λ1 = λ2 = 1.

As a starting point of the development of the long-time and large-data existence
theory for the system (1.2.10)–(1.2.14) completed with suitable initial and boundary
conditions and carrying on the study by Masmoudi [2], where the couple of original
ideas for proving the existence of weak solutions to the system (1.2.10)–(1.2.14) with
G1 = 1, G2 = 0 and λ1 = 0 were brought (and we are not aware of any other results
concerning a robust PDE analysis of the system (1.2.10)–(1.2.14)), we study the system
(1.2.10)–(1.2.14) with λ1 = λ2 = 0 and G1, G2 > 0 arbitrary (in this work just in two
spatial dimensions).

1.3 Basic notation
Let Ω ⊂ Rd (d ∈ N, d ≥ 2) be a domain (i.e. bounded open connected set) and let us
assume that its boundary ∂Ω is Lipschitz. For given T ∈ (0,∞), we setQT := (0, T )× Ω
and ΣT := (0, T )×∂Ω. Next, the operator “·” denotes the scalar product of two vectors,
the operator “ : ” denotes the scalar product of two tensors. The operator “⊗” denotes
the tensor product of two vectors, i.e. (b ⊗ z)ij := bizj. For a matrix A = {Aij}d

i,j=1

and a vector b = (b1, . . . , bd) we define the third order tensor A⊗b = {(A ⊗ b)ijk}d
i,j,k=1

as
(A ⊗ b)ijk := Aijbk.

For a matrix-valued function A = (Aij)d
i,j=1 and a vector-valued function b = (b1, ..., bd)

we define the operator div acting on the third order tensor A ⊗ b as

div(A ⊗ b) :=
d∑︂

j=1
∂xj

(bjA).

The symbol | · | denotes the Euclidean norm of a vector, the Frobenius norm of a tensor,
or the Lebesgue measure of the given measurable subset of Rd, d ∈ N.

For q ∈ [1,∞] the symbol ∥ · ∥q stands for the norm in the usual Lebesgue space
Lq(Ω) (or in its multidimensional variant (Lq(Ω))d, (Lq(Ω))d×d, etc.), while the symbol
∥·∥1,q stands for the norm in the usual Sobolev spaceW 1,q(Ω) (or in its multidimensional
variant (W 1,q(Ω))d, (W 1,q(Ω))d×d, etc.). The symbol M(QT ) stands for the space of
the Radon measures defined on the closure of QT . If X is a Banach space, then
X∗ denotes its dual space. The dualities between Banach spaces and their duals are
denoted as ⟨·, ·⟩. If X is a Banach space, then Lq(0, T ;X) is the corresponding Bochner
space, C([0, T ];X) is the space of functions continuous in [0, T ] with values in X,
Cweak([0, T ];X) is the space of functions weakly continuous in [0, T ] with values in X.
For an open set O ⊂ Rd, C∞

c (O) is the space of smooth functions compactly supported
in O, Lq

loc(O) is the space of functions, whose q-power is locally integrable over O.
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Then we introduce the spaces relevant to our problem. For any q ∈ [1,∞) we set

W 1,q
0 (Ω) := {u ∈ W 1,q(Ω);u = 0 on ∂Ω},
W 1,q

0,div := {u ∈ (W 1,q(Ω))d; u = 0 on ∂Ω; div u = 0 in Ω},

and we equip the spaces with the norms (due to the Poincaré inequality)

∥u∥W 1,q
0 (Ω) := ∥∇u∥q, ∥u∥W 1,q

0,div
:= ∥∇u∥q.

Next, we define

Lq
n,div := {u ∈ (C∞

c (Ω))d; div u = 0 in Ω}∥·∥q
,

W 1,q
n := {u ∈ (W 1,q(Ω))d; u · n = 0 on ∂Ω},

W 1,q
n,div := {u ∈ (W 1,q(Ω))d; u · n = 0 on ∂Ω; div u = 0 in Ω},

where n : ∂Ω → Rd denotes the outer unit normal vector. The latter spaces are
equipped with the norms

∥u∥W 1,q
n,div

= ∥u∥W 1,q
n

:= ∥u∥1,q, ∥u∥Lq
n,div

:= ∥u∥q.

Also, we use the notation W−1,q
n,div := (W 1,q

n,div)∗ and W−1,q
n := (W 1,q

n )∗. Let us mention
that if we assume Ω ∈ C1,1, then the following Helmholtz decomposition holds true

W 1,2
n = W 1,2

n,div ⊕ {∇φ;φ ∈ W 2,2(Ω),∇φ · n = 0 on ∂Ω}.

Note that such decomposition is not valid for (W 1,2
0 (Ω))d.

If no misunderstanding can occur, we write the integrals over time and space with-
out the symbols dt, dx, for example, if g = g(t,x) is a given function defined in QT ,
we write

∫︁
QT
g instead of

∫︁
QT
g dx dt. We denote the positive constants of uniform

bounds, whose exact values are not essential for our aims, as C, C̃, Ĉ, C, C∗, their
values can change throughout the text.
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2. Analysis of unsteady flows of
pore pressure activated Bingham
fluids
We consider internal flows of the model represented by (1.1.24), (1.1.27), when the
whole boundary is impermeable and we study the problem with stick-slip boundary
conditions (that can be, similarly as the tensor S, see Section 1.1, equivalently written
as an implicit constitutive equation on the boundary and characterized by two in-
equalities). Stick-slip (or threshold slip) states that the velocity does not slip until the
amplitude of the tangent part of the normal traction on the boundary exceeds a cer-
tain critical value. This boundary condition, which is physically relevant to the pore
pressure activated fluids considered in the bulk, includes Navier’s slip and (perfect)
slip boundary conditions as special cases. We establish the long-time and large-data
existence of the corresponding weak solutions; see Section 2.2 for the formulation of
the main result and Section 2.4 for its proof. We exploit the characterization of the
implicit constitutive equations by two scalar constraints, both in the bulk and on the
boundary, as a tool to show that the limit object of suitable approximative sequences
fulfils these constitutive equations as well, see Proposition 2.3.3 proved in Section 2.3,
where we also introduce the approximations and study their properties.

2.1 Formulations of the problem
Let Ω ⊂ R3 be a flow domain (i.e. bounded, open and connected set) with Lipschitz
boundary ∂Ω, let T ∈ (0,∞), QT := (0, T ) × Ω and ΣT := (0, T ) × ∂Ω. The symbol
n : ∂Ω → R3 denotes the outer unit normal vector, while for any vector z defined on
∂Ω we set zτ := z − (z · n)n representing the projection of z to the tangent plane.

We consider unsteady flows of a homogeneous incompressible non-Newtonian fluid
of a Bingham type with a variable threshold, described in Section 1.1, see (1.1.24)-
(1.1.25), where, as we will show, (1.1.25) can be replaced by (1.1.27) or by (1.1.28). In
what follows, we slightly change the notation and write v instead of vs, ϱ∗ instead of
ρm

s and pf instead of pt
f . We also set g := ∂ps

∂t
− div(Kρm

f f).
We are thus interested in solving the following problem. For given ϱ∗, ν∗, q∗ ∈ (0,∞),

and for given functions f : QT → R3, g, ps : QT → R, we look for v : QT → R3,
p, pf : QT → R and S : QT → R3×3 satisfying in QT (we denote D := ∇v+(∇v)T

2 )

div v = 0,
ϱ∗ (∂tv + div(v ⊗ v)) − div S + ∇p = ϱ∗f ,

G(S,D, pf) = O,

∂tpf + v · ∇pf −K∆pf = g + v · ∇ps,

(2.1.1)

where G is a continuous function defined on R3×3
sym × R3×3

sym × R through

G(S,D, pf) = (|S| − q∗(ps − pf)+)+

|S|
S − 2ν∗D. (2.1.2)
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In addition, the unknown functions (v, p, pf ,S) are required, for given σ∗, γ∗ ∈ [0,∞)
and v0 : Ω → R3 (such that div v0 = 0 in Ω) and p0 : Ω → R, to fulfil the following
initial and boundary conditions:

v(0, ·) = v0 and pf(0, ·) = p0 in Ω, (2.1.3)
v · n = 0 and ∇pf · n = 0 on ΣT , (2.1.4)

and

γ∗vτ = (|s| − s∗)+

|s|
s on ΣT , (2.1.5)

where s∗ ∈ (0,∞). The conditions in (2.1.4) state that the boundary is impermeable,
while (2.1.5) characterizes the result of the interaction of the fluid and the boundary
along the boundary. Here

s := −(Tn)τ = −(Sn)τ .

Note that (2.1.5), usually written as⎧⎨⎩|s| ≤ s∗ if and only if vτ = 0,
|s| > s∗ if and only if s = s∗

vτ

|vτ | + γ∗vτ ,
(2.1.6)

describes the stick-slip (or threshold slip) and includes, as special cases, Navier’s slip
condition by taking s∗ = 0 and γ∗ > 0, and perfect slip condition if s∗ = 0 and γ∗ = 0.
Note that the no-slip condition is obtained by letting either s∗ → +∞ or γ∗ → +∞.

Let us recall that one of the motivations for this work is a recent paper by Chupin
and Mathé [1] where the authors characterize the tensorial response (2.1.2) through
two scalar constraints introduced in (1.1.28). In fact, Chupin and Mathé [1] consider
the second constraint with the equality sign in their existence result concerning planar
flows, but then they incorrectly argue when performing the limit in the constitutive
equation (see Step 2 (a) in [1]). This difficulty can be overcome easily if the inequality is
used here instead of the equality, as shown in the proof of Theorem 2.2.1 in Section 2.4
below.

Before we prove that (2.1.2) and (1.1.28) are equivalent, we provide analogously a
condition that characterizes (2.1.5). It takes the form

|z| ≤ s∗ and z · vτ ≥ s∗|vτ |, where z := s − γ∗vτ . (2.1.7)

Next, we prove the following statement.
Proposition 2.1.1. The following equivalences hold:

(a) (1.1.25) ⇐⇒ (2.1.2) ⇐⇒ (1.1.28);

(b) (2.1.6) ⇐⇒ (2.1.5) ⇐⇒ (2.1.7).

Proof. The equivalence (1.1.25) ⇐⇒ (2.1.2) is simple. We prove that (2.1.2) is
equivalent to (1.1.28). Let us first assume that (S,D, pf) fulfil (2.1.2). If D = O then
|S| ≤ τ(pf ) and Z = S and (1.1.28) holds. If D ̸= O, then |S| > τ(pf ), and the formula
(2.1.2) implies

S − 2ν∗D = τ(pf ) S
|S|
. (2.1.8)
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Hence Z := S − 2ν∗D fulfils |Z| = τ(pf). Next, by taking the modulus of (2.1.8) it
follows

|S| − τ(pf) = 2ν∗|D|.

Inserting this back to (2.1.2), we get

S
|S|

= D
|D|

.

Employing this in (2.1.8), we obtain first

Z = S − 2ν∗D = τ(pf ) D
|D|

and then, after taking the scalar product with D,

Z : D = τ(pf)|D|,

which is the second assertion in (1.1.28).
Next, we assume that (S,D, pf) fulfil (1.1.28). Then, if D ̸= O,

τ(pf)|D| ≤ Z : D ≤ |Z||D| ≤ τ(pf)|D|,

which implies
Z : D = τ(pf)|D| (2.1.9)

as well as the equality in the Cauchy-Schwarz inequality. Then necessarilly

Z = aD.

Inserting this structure in (2.1.9) we obtain

τ(pf)|D| = a|D|2.

Hence Z = τ(pf) D
|D| and

S = 2ν∗D + τ(pf)
D
|D|

. (2.1.10)

Also, we have

|S| =
(︄

2ν∗|D| + τ(pf)
|D|

)︄
|D| = 2ν∗|D| + τ(pf),

which implies (as D ̸= O)

|S| − τ(pf) > 0, and also S
|S|

= D
|D|

.

This together with (2.1.10) implies (2.1.2) for D ̸= O. If D = O then, by (1.1.28),
S = Z and |S| ≤ τ(pf) and (2.1.2) holds. The proof of the equivalence of (2.1.2) and
(1.1.28) is complete.

The proof of the statement (b) is done in the same manner.
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2.2 Definition of weak solution and main result
In the rest of this chapter, the symbol Dφ stands for the symmetric part of the gradient
of a vector-valued function φ, i.e. Dφ := ∇φ+(∇φ)T

2 . In what follows, we also set for
simplicity and without loss of any generality

ϱ∗ = 2ν∗ = γ∗ = K = q∗ = 1.

Definition 1 (Definition of weak solution). Let s∗ > 0,

v0 ∈ L2
n,div, p0 ∈ L∞(Ω), f ∈ L2(0, T ;W−1,2

n ), (2.2.1)

and let one of the following requirements be satisfied

ps ∈ L∞(QT ), ps(0) ∈ L∞(Ω), g ∈ Lq(QT ), ∂tps − ∆ps ∈ Lq(QT ) with q > 5
2 , (2.2.2)

ps ∈ Lq(0, T ;W 1,q(Ω)) with q > 10 and g ∈ Lq(QT ) with q > 5
2 . (2.2.3)

We say that (v, pf , p,S, s) is a weak solution to the problem (2.1.1)-(2.1.5) if

v ∈ L∞(0, T ;L2
n,div) ∩ L2(0, T ;W 1,2

n,div), ∂tv ∈ (L2(0, T ;W 1,2
n ) ∩ (L5(QT ))3)∗,

pf ∈ L∞(QT ) ∩ L2(0, T ;W 1,2(Ω)), ∂tpf ∈ L2(0, T ; (W 1,2(Ω))∗),
p = p1 + p2, where p1 ∈ L2(QT ) and p2 ∈ L

5
4 (0, T ;W 1, 5

4 (Ω)),
S ∈ (L2(QT ))3×3, s ∈ (L2(ΣT ))3,

if, for all w ∈ W 1,2
n , z ∈ W 1,2(Ω) and almost all t ∈ (0, T ), the following identities

hold true

⟨∂tv,w⟩ +
∫︂
Ω

(div(v ⊗ v) · w + S : Dw) +
∫︂

∂Ω

s · wτ = ⟨f ,w⟩

+
∫︂
Ω

(p1 div w − ∇p2 · w) ,
(2.2.4)

⟨∂tpf , z⟩ −
∫︂
Ω

(pfv · ∇z − ∇pf · ∇z) =
∫︂
Ω

(gz − psv · ∇z) , (2.2.5)

if the following constitutive relations are satisfied

Dv = (|S| − τ(pf))+

|S|
S, where τ(pf) = (ps − pf)+ a.e. in QT , (2.2.6)

vτ = (|s| − s∗)+

|s|
s a.e. on ΣT , (2.2.7)

and if the initial conditions v0, p0 are attained in the sense

lim
t→0+

(∥v(t) − v0∥2 + ∥pf(t) − p0∥2) = 0. (2.2.8)
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The aim of this chapter is to prove the following theorem.

Theorem 2.2.1 (Main Theorem). For any Ω ∈ C1,1, T ∈ (0,∞) and for arbitrary
v0, p0, ps, f fulfilling (2.2.1) and for arbitrary g and ps fulfilling either (2.2.2) or (2.2.3),
there exists a weak solution to the problem (2.1.1)–(2.1.5) in the sense of Definition 1.

Remark. We wish to emphasize that due to Proposition 2.1.1, the tensorial constitutive
equation Dv = (|S|−τ(pf))+

|S| S in QT as well as the vectorial equation vτ = (|s|−s∗)+

|s| s on
ΣT can be replaced by any of its equivalent forms. It is in particular interesting that
the tensorial equations can be characterized by two (scalar) inequalities.

Note that Theorem 2.2.1 presents the existence result to a supercritical problem;
this is a problem where the solution itself is not an admissible test function in the weak
formulation of the governing equations. Indeed, in our case v belongs to (L 10

3 (QT ))3,
however, admissible test functions have to be from (L5(QT ))3 due to the fact that
div(v ⊗ v) = ∑︁3

r=1 vr
∂v
∂xr

and ∇p2 belong to (L 5
4 (QT ))3. This is the reason why we

cannot involve in our analysis such tools as the energy equality, used in the analysis
of planar time-dependent flows in Chupin and Mathé [1] or the higher differentiability
techniques used in [48] and [49], also in the analysis of two-dimensional unsteady flows
of the Bingham fluids and in the analysis of steady flows in three dimensions in [50].
Neither can we incorporate the tools of calculus of variations suitable for Stokes-type
problems (see for example [51] and the references therein). On the other hand, we
intentionally aim at avoiding tools such as multivalued calculus or variational inequal-
ities [52] in our analysis, see [53], or [54] (which is considered however in a different
context). In our opinion, the concept of solution (expressed in terms of identities)
considered here is stronger, its large-data existence can be proved and has some other
advantages. For example, it forms the foundation for a direct application of mixed
finite element (or spectral) methods. In order to identify the non-linear constitutive
equation pointwise in the considered domain (0, T ) × Ω when taking the limit from
the approximative problem to the original one, and in order to overcome difficulties
connected with the low integrability of v, we incorporate the so-called L∞-truncation
method. This method replaces vn − v, where {vn}+∞

n=1 is solution to a suitably con-
structed approximative problem, by a truncated function that coincides with vn − v
on a large set and the measure of the complementary set can be made arbitrarly small
uniformly with respect to n. Although the origin of the method goes back to elliptic
problems with an L1-right-hand side (see [11], [55] and [56]), we refer here mainly to its
development for evolutionary problems in fluid mechanics, see [6], [7], [8]. The result by
Wolf [8] similarly as those by Solonnikov (see [57] and [58]) and Koch and Solonnikov
[59] concerning the properties of evolutionary Stokes-like systems with no-slip bound-
ary conditions indicate the difficulties connected with the impossibility to establish
the integrability of the pressure p for generalizations of the Navier-Stokes equations
(with variable viscosity) in three spatial dimensions. This is why we treat the stick-slip
boundary conditions in this study. It reveals that the analysis of the three-dimensional
evolutionary supercritical problems associated with the stick-slip boundary conditions
differs remarkably from the analysis of analogous problems connected with the no-slip
boundary conditions. We refer to [33] for a detailed discussion of this issue noting that
Theorem 2.2.1 guarantees that p ∈ L1(QT ). We remark that the integrability of the
pressure is important in the analysis of problems with the viscosity dependent on the
temperature (see [60], [34] or [61]) or the viscosity dependent on the pressure (see [7]
or [62]), but it is also an interesting mathematical question itself.
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2.3 Approximations
Before introducing the approximations, we recall that in this section we set

Z = S − Dv,

and analogously we can also define

z := s − vτ .

For any n ∈ N, let Gn : R → R be a smooth function such that Gn(u) = 1 if |u| ≤ n,
Gn(u) = 0 if |u| ≥ 2n and |G′

n| ≤ 2
n
. We consider the following approximative system

of equations satisfied in QT :

div v = 0, (2.3.1)
∂tv + div(v ⊗ v)Gn(|v|2) − divDv − divZ + ∇p = f , (2.3.2)

∂tpf + v · ∇pf − ∆pf = g + v · ∇ps, (2.3.3)

where Z and z fulfill

Z = Zn(pf ,Dv) := (ps − pf)+ Dv

|Dv| + 1
n

in QT , (2.3.4)

z = ζn(vτ ) := s∗
vτ

|vτ | + 1
n

on ΣT , (2.3.5)

and the initial conditions are attained in the sense

v · n = 0 and ∇pf · n = 0 on ΣT , (2.3.6)
v(0, ·) = v0 and pf(0, ·) = p0 in Ω. (2.3.7)

It is not difficult to check that if Z = Zn(pf ,D) and Ẑ = Zn(pf , D̂), then

(Z − Ẑ) : (D − D̂) ≥ (ps − pf)+

n

(|D| − |D̂|)2(︂
|D| + 1

n

)︂ (︂
|D̂| + 1

n

)︂ ≥ 0. (2.3.8)

A similar monotone property holds for z = ζn(vτ ).

Proposition 2.3.1. Let n ∈ N be fixed and s∗ > 0. Let v0 ∈ L2
n,div, p0 ∈ L2(Ω),

f ∈ L2(0, T ;W−1,2
n ), g ∈ L2(QT ) and ps ∈ L5(QT ), then there exists a weak solution

to the problem (2.3.1)–(2.3.7), i.e. there exists a quadruple (vn, pn
f ,Zn, zn) such that

vn ∈ L∞(0, T ;L2
n,div) ∩ L2(0, T ;W 1,2

n,div), ∂tv
n ∈ L2(0, T ;W−1,2

n,div), (2.3.9)
pn

f ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)), ∂tp
n
f ∈ L

4
3 (0, T ; (W 1,2(Ω))∗), (2.3.10)

Zn ∈ (L 10
3 (QT ))3×3, zn ∈ (L∞(ΣT ))3, (2.3.11)

for all w ∈ L2(0, T ;W 1,2
n,div) and z ∈ L4(0, T ;W 1,2(Ω)), it holds∫︁ T

0 ⟨∂tv
n,w⟩ +

∫︁
QT

Dvn : Dw + Zn : Dw +Gn(|vn|2) div(vn ⊗ vn) · w

+
∫︂

ΣT

(zn + vn
τ ) · wτ =

T∫︂
0

⟨f ,w⟩, (2.3.12)

T∫︂
0

⟨∂tp
n
f , z⟩ −

∫︂
QT

(pn
f vn · ∇z − ∇pn

f · ∇z) =
∫︂

QT

(gz − psv
n · ∇z), (2.3.13)
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where

Zn = Zn(pn
f ,Dvn) a.e. in QT , (2.3.14)

zn = ζn(vn
τ ) a.e. in ΣT , (2.3.15)

and the initial conditions v0, p0 are attained in the sense

lim
t→0+

(∥vn(t) − v0∥2 + ∥pn
f (t) − p0∥2) = 0. (2.3.16)

Proof. Due to the presence ofGn that truncates the convective term and the properties
of the approximations Zn and ζn introduced above, the proof of the existence of weak
solutions to the problem (2.3.1)–(2.3.7) is a variant of the standard monotone operator
technique (see [63], [64] or [7]). To be more specific, we briefly outline the proof using
the Galerkin method. Since n is fixed, we write (v, pf ,Z, z) instead of (vn, pn

f ,Zn, zn)
in the proof.

Step 1. Galerkin system. Let {wi}i∈N be an orthogonal basis in W 1,2
n,div consisting of

eigenfunctions of the Stokes operator subject to v ·n = 0 and [(Dv)n]τ = 0 on ΣT . Let
analogously {zj}j∈N be an orthogonal basis in W 1,2(Ω) consisting of eigenfunctions of
the Laplace operator subject to the relevant homogeneous boundary conditions. Then
the local in time existence of

vm(t,x) :=
m∑︂

r=1
cm

r (t)wr(x), pm
f (t,x) :=

m∑︂
r=1

dm
r (t)zr(x), (2.3.17)

satisfying for all r = 1, ...,m that∫︂
Ω

∂tv
m · wr +

∫︂
Ω

(︂
Dvm : Dwr + div(vm ⊗ vm)G(|vm|2) · wr

)︂

+
∫︂
Ω

Zn(pm
f ,Dvm) : Dwr +

∫︂
∂Ω

(vm
τ + ζn(vm

τ )) · wr = ⟨f ,wr⟩,
(2.3.18)

and ∫︂
Ω

∂tp
m
f z

r −
∫︂
Ω

(︂
pm

f vm · ∇zr − ∇pm
f · ∇zr

)︂
=
∫︂
Ω

(gzr − psv
m · ∇zr), (2.3.19)

together with the corresponding initial conditions vm
0 and pm

0 , obtained by project-
ing v0 ∈ L2

n,div onto the span of {w1, . . . ,wm} and p0 ∈ L2(Ω) onto the span of
{z1, . . . , zm}, follows from the Caratheodory theory for systems of ordinary differential
equations (see Appendix of [65] for details).

Global in time existence is, as usual, a consequence of the uniform estimates which
we show next.

Step 2. Uniform estimates. Multiplying (2.3.18) by cm
r (t) and (2.3.19) by dm

r (t)
and taking the sum over r from 1 to m, we obtain

1
2

d
dt∥vm∥2

2 + ∥Dvm∥2
2 +

∫︂
Ω

Zn(pm
f ,Dvm) : Dvm + ∥vm

τ (t)∥2
2,∂Ω

+
∫︂

∂Ω

ζn(vm
τ ) · vm

τ = ⟨f ,vm⟩,
(2.3.20)

1
2

d
dt∥p

m
f (t)∥2

2 + ∥∇pm
f (t)∥2

2 =
∫︂
Ω

(gpm
f − psv

m · ∇pm
f ). (2.3.21)
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By Korn’s and Young’s inequalities (see for example [7, Lemma 1.11] for details), using
also the fact that the last two terms at the right-hand side of (2.3.20) are non-negative,
one concludes from (2.3.20) that

sup
t∈[0,T ]

∥vm(t)∥2
2 +

∫︂
QT

(︂
|Dvm|2 + |vm|

10
3
)︂

+
∫︂

ΣT

|vm
τ |2

≤ C(∥f∥2
L2(0,T ;W −1,2

n ) + ∥v0∥2
2) =: C(f ,v0),

(2.3.22)

where we also used the interpolation inequality

∥z∥ 10
3

≤ ∥z∥
2
5
2 ∥z∥

3
5
6 ≤ C∥z∥

2
5
2 ∥z∥

3
5
1,2. (2.3.23)

Similarly, using also

T∫︂
0

|(psv
m,∇pm

f )| ≤ ∥ps∥5,QT
∥vm∥ 10

3 ,QT
∥∇pm

f ∥2,QT
,

one obtains from (2.3.21), using also (2.3.22), that

sup
t∈[0,T ]

∥pm
f (t)∥2

2 +
∫︂

QT

|∇pm
f |2 ≤ C∥g∥2,QT

+ C(f ,v0)∥ps∥5,QT
+ ∥p0∥2

2. (2.3.24)

By the interpolation inequalities (2.3.23) and

∥z∥4 ≤ ∥z∥
1
4
2 ∥z∥

3
4
6 ≤ C∥z∥

1
4
2 ∥z∥

3
4
1,2, (2.3.25)

and by the trace inequalities (see [7, Lemma 1.11]), we obtain

sup
m

(︂
∥pm

f ∥ 10
3 ,QT

+ ∥vm
τ ∥ 8

3 ,ΣT

)︂
< +∞, (2.3.26)

and also

sup
m

⎛⎝ T∫︂
0

(︃
∥vm∥

8
3
4 + ∥pm

f ∥
8
3
4

)︃⎞⎠ < +∞. (2.3.27)

It then follows from the explicit formulas for Zn and ζn that Zm := Zn(pm
f ,Dvm) and

zm := ζn(vm
τ ) fulfil

sup
m

(︂
∥Zm∥ 10

3 ,QT
+ ∥zm∥∞,ΣT

)︂
< +∞. (2.3.28)

Finally, the fact that the projectors

W 1,2
n,div ↦−→ span {w1, . . . ,wm}, W 1,2(Ω) ↦−→ span {z1, . . . , zm}

are continuous and (2.3.27) imply that

sup
m

(︃
∥∂tv

m∥L2(0,T ;W −1,2
n,div) + ∥∂tp

m
f ∥

L
4
3 (0,T ;(W 1,2(Ω))∗)

)︃
< +∞. (2.3.29)

Step 3. Limit. The above uniform estimates imply the existence of v, pf , Z and
z and subsequences of {vm}, {pm

f }, {Zm} and {zm} converging weakly (or *-weakly) to
v, pf ,Z and z in the function spaces indicated in Proposition 2.3.1, and fulfilling the
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following strong convergences (due to Aubin-Lions compactness lemma and its variant,
see [7, Lemma 1.12], involving the trace theorem):

vm → v a.e. in QT and strongly in (Lq(QT ))3 for any q ∈
[︃
1, 10

3

)︃
, (2.3.30)

pm
f → pf a.e. in QT and strongly in Lq(QT ) for any q ∈

[︃
1, 10

3

)︃
, (2.3.31)

vm
τ → vτ a.e. in ΣT and strongly in (Lq(ΣT ))3 for any q ∈

[︃
1, 8

3

)︃
. (2.3.32)

These weak and strong convergences suffice to show that v, pf ,Z and z fulfil the weak
formulations (2.3.12)–(2.3.13) stated in Proposition 2.3.1.

Since the proof of the attainment of the initial conditions is standard, see e.g. [66],
it remains to show that Z = Zn(pf ,Dv) and z = ζn(vτ ).

Step 4. Attainment of the constitutive equations. We first notice that (2.3.32)
together with (2.3.28) imply, by Lebesgue’s theorem that

zm = ζn(vm
τ ) ⇀ ζn(vτ ) weakly in (L2(ΣT ))3.

It implies that
z = ζn(vτ ) a.e. in ΣT (2.3.33)

and
lim

m→+∞

∫︂
ΣT

zm · vm
τ =

∫︂
ΣT

ζn(vτ ) · vτ . (2.3.34)

Next, integrating (2.3.20) over (0, T ) and taking limsup of the resulting identity, we
obtain, using the above convergences and the weak lower semicontinuity of the L2-norm,
that

1
2∥v(t)∥2

2 +
∫︂

QT

|Dv|2 +
∫︂

ΣT

|vτ |2 +
∫︂

ΣT

ζn(vτ ) · vτ

+ lim sup
m→+∞

∫︂
QT

Zm : Dvm ≤
T∫︂

0

⟨f ,v⟩ + 1
2∥v0∥2

2.

(2.3.35)

On the other hand, taking w = v in the established weak formulation of the equation
for v, we get, using also (2.3.33),

1
2∥v(t)∥2

2 +
∫︂

QT

|Dv|2 +
∫︂

ΣT

|vτ |2 +
∫︂

ΣT

ζn(vτ ) · vτ

+
∫︂

QT

Z : Dv =
T∫︂

0

⟨f ,v⟩ + 1
2∥v0∥2

2.

(2.3.36)

Comparing (2.3.35) with (2.3.36), we conclude that

lim sup
m→+∞

∫︂
QT

Zm : Dvm ≤
∫︂

QT

Z : Dv. (2.3.37)

Finally, it follows from (2.3.8) that

0 ≤
∫︂

QT

(Zn(pm
f ,Dvm) − Zn(pm

f ,A)) : (Dvm − A) for all A ∈ (L2(QT ))3×3. (2.3.38)
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Since, by (2.3.31),

Zn(pm
f ,A) := (ps − pm

f )+ A
|A|+ 1

n

→ (ps − pf)+ A
|A|+ 1

n

=: Zn(pf ,A) strongly in (L2(QT ))3×3

and
Dvm ⇀ Dv weakly in (L2(QT ))3×3,

we conclude from (2.3.38) and (2.3.37) that

0 ≤
∫︂

QT

(Z − Zn(pf ,A)) : (Dv − A) for all A ∈ (L2(QT ))3×3. (2.3.39)

The choice A = Dv ± λB for B ∈ (L2(QT ))3×3 arbitrary and λ > 0, leads to

0 ≤ ±
∫︂

QT

(Z − Zn(pf ,Dv ± λB)) : B for all B ∈ (L2(QT ))3×3.

Letting λ → 0+, we obtain

0 =
∫︂

QT

(Z − Zn(pf ,Dv)) : B for all B ∈ (L2(QT ))3×3,

which implies Z = Zn(pf ,Dv) a.e. in QT .
The proof of Proposition 2.3.1 is complete.

Proposition 2.3.2. Let all the assumptions in Proposition 2.3.1 be satisfied. In addition,
assume that p0 ∈ L∞(Ω) and one of the following requirements holds true:

ps(0) ∈ L∞(Ω), ps ∈ L∞(QT ) and g, ∂tps − ∆ps ∈ Lq(QT ) with q >
5
2 , (2.3.40)

ps ∈ Lq(0, T ;W 1,q(Ω)) with q > 10 and g ∈ Lq(QT ) with q >
5
2 , (2.3.41)

then, for each n ∈ N, there exists a weak solution to the problem (2.3.1)–(2.3.7) in the
sense of Proposition 2.3.1 satisfying pn

f ∈ L∞(QT ). In fact,

sup
n

∥pn
f ∥∞,QT

< +∞. (2.3.42)

Consequently, we have ∂tp
n
f ∈ L2(0, T ; (W 1,2(Ω))∗) and (2.3.13) holds true for all z

belonging to L2(0, T ;W 1,2(Ω)).
Proof. In what follows we shall prove explicitly that pf := pn

f ∈ L∞(QT ) for every
fixed n ∈ N using the Moser iteration technique. Then, since (throughout the proof)
any constant of uniform bounds does not depend on n, we immediately obtain (2.3.42).

By the interpolation inequality (2.3.23), it follows that

T∫︂
0

∥z∥
10
3

10
3

≤ C

(︄
sup

t∈[0,T ]
∥z∥2

)︄ 4
3

T∫︂
0

∥z∥2
1,2. (2.3.43)

Consequently,
pf ∈ L

10
3 (QT ) and v ∈ (L 10

3 (QT ))3. (2.3.44)
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Let us first consider the case given by (2.3.40). Then, once we set h := −(∂tps − ∆ps),
G := g + h and P := pf − ps, we can rewrite the equation (2.3.3) as

∂tP + v · ∇P − ∆P = G with G ∈ Lq(QT ) and q >
5
2 . (2.3.45)

For s > 2 and m ∈ N consider |Pm|s−2Pm with Pm := Tm(P ) as test function in the
weak formulation of (2.3.45). Here Tm : R → R is defined through Tm(z) = z if |z| ≤ m
and Tm(z) = m sgn z if |z| > m. Note that |Pm|s−2Pm is an admissible test function.
After integrating by parts and employing div v = 0, we get

1
s

d
dt∥Pm∥s

s + (s− 1)
∫︂
Ω

|∇Pm|2|Pm|s−2 ≤
∫︂
Ω

|G||Pm|s−1. (2.3.46)

Next, integrating with respect to the time, straightforward computations imply

∥|Pm(t)| s
2 ∥2

2 + 4s(s− 1)
s2 ∥∇|Pm|

s
2 ∥2

2,QT
≤ s

∫︂
QT

|G||Pm|s−1 + ∥P (0)∥s
s =: A. (2.3.47)

Since 4s(s−1)
s2 > 1, it follows from (2.3.47) that

sup
t∈[0,T ]

∥|Pm(t)| s
2 ∥2 ≤ A

1
2 ,

T∫︂
0

∥∇|Pm(t)| s
2 ∥2

2 ≤ A. (2.3.48)

Using (2.3.23) and (2.3.43) with z = |Pm| s
2 , and combining the result with (2.3.48), we

obtain
T∫︂

0

∥Pm(t)∥
5s
3

5s
3

=
T∫︂

0

∥|Pm(t)| s
2 ∥

10
3

10
3

≤ C

(︄
sup

t∈[0,T ]
∥|Pm(t)| s

2 ∥2

)︄ 4
3

T∫︂
0

∥∇|Pm(t)| s
2 ∥2

2 ≤ CA
5
3 .

(2.3.49)

The definition of A and (2.3.49) then leads to

∥Pm∥ 5s
3 ,QT

≤ s
1
sC

3
5s ∥G∥

1
s
q,QT

∥Pm∥
s−1

s

q′(s−1),QT
+ C

3
5s ∥P (0)∥∞. (2.3.50)

We can introduce the following iteration scheme. Setting

s0 := 10
3 ,

q

q − 1(s̃i − 1) := si and si+1 := 5
3 s̃i, (2.3.51)

which leads to s̃i = q−1
q
si + 1 and hence

si+1 = 5
3
q − 1
q

si + 5
3 , s̃i+1 = 5

3
q − 1
q

s̃i + 1, (2.3.52)

we obtain
∥Pm∥si+1,QT

≤ s̃
1
s̃i
i C

3
5s̃i ∥G∥

1
s̃i
q,QT

∥Pm∥
s̃i−1

s̃i
si,QT

+ C
3

5s̃i ∥P (0)∥∞.
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Noticing that
5
3
q − 1
q

> 1 ⇐⇒ q >
5
2 ,

we observe that si → +∞ as i → +∞. By iteration, we get

∥Pm∥si+1,QT

≤ C
∑︁i

j=0
3

5s̃j

∏︁i

h=j+1
s̃h−1

s̃h

i∏︂
j=0

s̃
1

s̃j

∏︁i

h=j+1
s̃h−1

s̃h

j ∥G∥
∑︁i

j=0
1

s̃j

∏︁i

h=j+1
s̃h−1

s̃h
q ∥P∥

∏︁i

j=0
s̃j −1

s̃j
s0

+
i∑︂

j=1
C
∑︁i

r=j
3

5s̃r

∏︁i

h=r+1
s̃h−1

s̃h

i∏︂
k=j+1

s̃
1

s̃k

∏︁i

h=k+1
s̃h−1

s̃h
k

·∥G∥
∑︁i

k=j+1
1

s̃k

∏︁i

h=k+1
s̃h−1

s̃h
q ∥P (0)∥

∏︁i

k=j+1
s̃k−1

s̃k∞ .

(2.3.53)
Next, we use

∥G∥q,QT
≤ C1 where C1 := max{1, ∥G∥q,QT

},
∥P (0)∥∞ ≤ C2 where C2 := max{1, ∥P (0)∥∞}.

Since s̃h−1
s̃h

≤ 1, we notice that all products can be bounded by 1. Consequently,
(2.3.53) leads to (assuming that C ≥ 1)

∥Pm∥si+1,QT
≤ C

∑︁i

j=0
3

5s̃j e
∑︁i

j=0
ln s̃j

s̃j C

∑︁i

j=0
1

s̃j

1 max{1, ∥Pm∥s0,QT
}

+
i∑︂

j=0
C
∑︁i

r=j
3

5s̃r e
∑︁i

r=j+1
ln s̃r

s̃r C

∑︁i

r=j+1
1

s̃r
1 C2.

(2.3.54)

Note that the right-hand side is independent of m as well as n. Taking the limit as
i → +∞, since si+1 → +∞, by the convergence of the sums due to the d’Alambert
criterion, we conclude that

Pm ∈ L∞(QT ) for all m ∈ N ⇒ P ∈ L∞(QT ).

From the relation pf = P + ps and since ps ∈ L∞(QT ), it finally follows that

pf ∈ L∞(QT ).

On the other hand, assuming (2.3.41) we first observe that if ps ∈ Lq(0, T ;W 1,q(Ω))
with q > 10 and v ∈ L

10
3 (QT ), then v · ∇ps ∈ Lℓ(QT ) with ℓ > 5

2 . Consequently,
(2.3.41) implies that g + v · ∇ps ∈ Lℓ(QT ) with ℓ > 5

2 . Then, we conclude exactly as
in the case given by (2.3.40) that

pf ∈ L∞(QT ).

□
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The following lemma regards the attainment of the constitutive equations.
Proposition 2.3.3 (Convergence Lemma). Let U ⊂ QT be an arbitrary measurable
bounded set and let {Zn}+∞

n=1, {Dn}+∞
n=1 and {pn

f }+∞
n=1 be such that

Zn = τ(pn
f ) Dn

|Dn| + 1
n

with τ(pn
f ) = q∗(ps − pn

f )+, (2.3.55)

sup
n∈N

∥pn
f ∥∞ < +∞, (2.3.56)

Zn ⇀ Z weakly in (L2(U))3×3, (2.3.57)
Dn ⇀ D weakly in (L2(U))3×3, (2.3.58)
pn

f → pf strongly in L2(U) and a.e. in U, (2.3.59)

lim sup
n→∞

∫︂
U

Zn : Dn ≤
∫︂
U

Z : D, (2.3.60)

then, setting S = Z + D,

D = (|S| − τ(pf))+

|S|
S a.e. in U. (2.3.61)

Proof. We split the proof into three steps. Using the fact that (2.3.61) is, by
Proposition 2.1.1, equivalent to (1.1.28) (with 2ν∗ = q∗ = 1), we first show that
|Z| ≤ τ(pf). Then in order to verify that Z : D ≥ τ(pf)|D| in the third step, we
show that Zn : Dn ⇀ Z : D weakly in L1(U), which is the second part of the proof.

Step 1. For all n ∈ N, by (2.3.55), Zn = τ(pn
f ) Dn

|Dn|+ 1
n

and thus |Zn| ≤ τ(pn
f ). For

any subset ω ⊂ U it holds ∫︂
ω

|Zn| ≤
∫︂
ω

τ(pn
f ). (2.3.62)

Since τ(·) is Lipschitz, (2.3.59) implies that

τ(pn
f ) → τ(pf) strongly in L2(U) (2.3.63)

and
τ(pn

f ) → τ(pf) a.e. in U. (2.3.64)
By virtue of (2.3.62), (2.3.64) and the lower semicontinuity of

∫︁
ω |Zn| with respect to

the weak convergence in L1(ω) (which follows from (2.3.57) since U is bounded), we
get

∥Z∥L1(ω) ≤ ∥τ(pf)∥L1(ω) for all ω ⊂ U. (2.3.65)
Lebesgue’s differentiation theorem then implies

|Z| ≤ τ(pf) a.e. in U. (2.3.66)

Step 2. In order to establish that

Zn : Dn ⇀ Z : D weakly in L1(U) (2.3.67)

we set ˆ︁Zn := τ(pn
f ) D

|D| + 1
n

, (2.3.68)
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and
ˆ︁Z :=

⎧⎪⎨⎪⎩
τ(pf) D

|D| if D ̸= O,
O otherwise. (2.3.69)

Thanks to (2.3.64) we have that ˆ︂Zn → ˆ︁Z almost everywhere in QT , and since ˆ︁Zn is
essentially bounded (because of (2.3.77)), Lebesgue’s Convergence Theorem yields

ˆ︁Zn → ˆ︁Z strongly in (L2(U))3×3. (2.3.70)

Employing (2.3.57) and (2.3.60) and the convergences (2.3.70) and (2.3.58), we get

lim sup
n→∞

∫︂
U

(Zn − ˆ︁Zn) : (Dn − D) ≤ 0. (2.3.71)

But due to (2.3.68), the monotone property (2.3.8) yields

(Zn − ˆ︁Zn) : (Dn − D) ≥ 0 a.e. in U.

This together with (2.3.71) implies that

(Zn − ˆ︁Zn) : (Dn − D) → 0 strongly in L1(U),

and thus surely
(Zn − ˆ︁Zn) : (Dn − D) ⇀ 0 weakly in L1(U). (2.3.72)

Since the strong convergence (2.3.70) and weak convergence (2.3.58) imply that

ˆ︁Zn : (Dn − D) ⇀ 0 weakly in L1(U), (2.3.73)

so (2.3.72) yields
Zn : (Dn − D) ⇀ 0 weakly in L1(U). (2.3.74)

Finally employing (2.3.57) in (2.3.74) we conclude

Zn : Dn ⇀ Z : D weakly in L1(U). (2.3.75)

Step 3. It remains to show Z : D ≥ τ(pf)|D|. First we note that

|τ(pn
f )|Dn| − Zn : Dn| = τ(pn

f ) 1
n

|Dn|
|Dn| + 1

n

. (2.3.76)

Since τ is a Lipschitz function, (2.3.56) gives

∥τ(pn
f )∥∞ ≤ C uniformly in n. (2.3.77)

Then the right hand side of (2.3.76) is essentially bounded by C
n

and thus

|τ(pn
f )|Dn| − Zn : Dn| → 0 in L∞(U), (2.3.78)

which implies, for all φ ∈ L∞(U), that

lim
n→+∞

∫︂
U

φ(τ(pn
f )|Dn| − Zn : Dn) = 0. (2.3.79)
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Moreover, from (2.3.58) and (2.3.63) we get, for all φ ∈ L∞(U), that

φτ(pn
f )Dn ⇀ φτ(pf)D in L1(U) (2.3.80)

and the weak lower semicontinuity of the L1-norm implies that, for all φ ∈ L∞(U) such
that φ ≥ 0, ∫︂

U

φτ(pf)|D| ≤ lim inf
n→+∞

∫︂
U

φτ(pn
f )|Dn|. (2.3.81)

Using (2.3.67) together with (2.3.79) and (2.3.81), we obtain∫︂
U

φ(τ(pf)|D| − Z : D) ≤ lim inf
n→+∞

∫︂
U

φ(τ(pn
f )|Dn| − Zn : Dn) = 0 (2.3.82)

for any non-negative φ ∈ L∞(U). Hence

Z : D ≥ τ(pf)|D| a.e. in U,

which is (1.1.28)2.
□

2.4 Proof of Theorem 2.2.1
The proof is split into the following five steps.

Step 1. Approximations. From Proposition 2.3.1 and Proposition 2.3.2, we get,
for each n ∈ N, the existence of (vn, pn

f ,Zn, zn) satisfying, for all w ∈ L2(0, T ;W 1,2
n,div)

and for all z ∈ L2(0, T ;W 1,2(Ω)), the following identities
T∫︂

0

⟨∂tv
n,w⟩ +

∫︂
QT

Gn

(︂
|vn|2

)︂
div(vn ⊗ vn) · w +

∫︂
QT

(Dvn + Zn) : Dw

+
∫︂

ΣT

(vn
τ + zn) · wτ −

T∫︂
0

⟨f ,w⟩ = 0,

(2.4.1)

T∫︂
0

⟨∂tp
n
f , z⟩ −

∫︂
QT

(pn
f vn · ∇z − ∇pn

f · ∇z) =
∫︂

QT

(gz − psv
n · ∇z), (2.4.2)

and it holds

Zn = (pn
f − ps)+ Dvn

|Dvn| + 1
n

a.e. in QT and zn = s∗
vn

τ

|vn
τ | + 1

n

a.e. in ΣT . (2.4.3)

Step 2. Reconstruction of the pressure. We set

pn := (−∆N)−1 div hn with
∫︂
Ω

pn(t, ·) = 0, (2.4.4)

where −∆N denotes the Laplace operator associated with the homogeneous Neumann
boundary conditions and

hn := − div (Dvn + Zn) + div(vn ⊗ vn)Gn(|vn|2) − f , (2.4.5)
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associated with the boundary condition v · n = 0 and zn = s∗
vn

τ

|vn
τ |+ 1

n

on ΣT . It means
that pn satisfies for all φ ∈ W 2,2(Ω) such that ∇φ · n = 0 on ∂Ω and for almost all
t ∈ [0, T ] ∫︂

Ω

pn∆φ = ⟨hn,∇φ⟩ +
∫︂

∂Ω

(vn
τ + zn) · (∇φ)τ , (2.4.6)

whereas
hn ∈ L2(0, T ;W−1,2

n ). (2.4.7)
Consequently,

pn ∈ L2(QT ). (2.4.8)
Since any w ∈ W 1,2

n satisfies

w = w̃ + ∇φ where w̃ ∈ W 1,2
n,div, φ ∈ W 2,2(Ω),∇φ · n = 0 on ∂Ω,

we observe that due to (2.4.1) and (2.4.6) we get

⟨hn, w⟩ =
∫︂
Ω

(Dvn + Zn) : Dw +
∫︂
Ω

div(vn ⊗ vn)Gn(|vn|2) · w +
∫︂

∂Ω

(vn
τ + zn) · wτ − ⟨f , w⟩

= −⟨∂tv
n, w̃⟩ +

∫︁
Ω pn∆φ = −⟨∂tv

n, w̃ + ∇φ⟩ +
∫︁

Ω pn div(w̃ + ∇φ).

Hence it holds, for all w ∈ W 1,2
n , that

⟨∂tv
n,w⟩ +

∫︂
Ω

(Dvn + Zn) : Dw +
∫︂

∂Ω

(vn + zn) · wτ

+
∫︁

Ω div(vn ⊗ vn)Gn(|vn|2) · w =
∫︁

Ω p
n div w + ⟨f ,w⟩.

(2.4.9)

Step 3. Uniform estimates with respect to n and limit as n → +∞.
Taking vn as test function in (2.4.1) and pn

f in (2.4.2), and proceeding similarly as in
the derivation of (2.3.22) and (2.3.26) using also Korn’s inequality, we obtain

sup
n

(︂
∥vn∥L∞(0,T ;L2

n,div) + ∥Dvn∥2,QT
+ ∥∇vn∥2,QT

+ ∥vn
τ ∥2,ΣT

)︂
< +∞, (2.4.10)

sup
n

(︂
∥pn

f ∥L∞(0,T ;L2(Ω)) + ∥∇pn
f ∥2,QT

)︂
< +∞, (2.4.11)

sup
n

(︂
∥vn∥ 10

3 ,QT
+ ∥vn∥ 8

3 ,ΣT

)︂
< +∞. (2.4.12)

Also, from Proposition 2.3.2, we have that

sup
n

∥pn
f ∥∞,QT

< +∞. (2.4.13)

It then follows from (2.4.3) that

sup
n

(∥Zn∥∞,QT
+ ∥zn∥∞,ΣT

) < +∞. (2.4.14)

Since
Gn(|vn|2) div(vn ⊗ vn) =

3∑︂
h=1

vn
h

∂vn

∂xh

Gn(|vn|2),

31



and supn ∥Gn(|vn|2)∥∞,QT
≤ 1, it follows from (2.4.10), (2.4.13) and Hölder’s inequality

that
sup

n
∥Gn(|vn|2) div(vn ⊗ vn)∥ 5

4 ,QT
< +∞. (2.4.15)

For further analysis it is suitable to perform the following decomposition of the pressure
pn. Setting

hn
2 := Gn(|vn|2) div(vn ⊗ vn)

and
pn

2 := (−∆N)−1 div hn
2 ,

we conclude from (2.4.15) that

sup
n

∥∇pn
2 ∥ 5

4 ,QT
< +∞. (2.4.16)

Furthermore, hn
1 := hn − hn

2 fulfills supn ∥hn
1 ∥L2(0,T ;W −1,2

n ) < +∞, consequently pn
1 :=

pn − pn
2 satisfies

sup
n

∥pn
1 ∥2,QT

< +∞. (2.4.17)

Hence, integrating (2.4.9) over (0, T ), we have, for all w ∈ L2(0, T ;W 1,2
n ) ∩ (L5(QT ))3,

that
T∫︂

0

⟨∂tv
n,w⟩ =

∫︂
QT

(−Zn − Dvn + pn
1 I) : ∇w +

T∫︂
0

⟨f ,w⟩ −
∫︂

ΣT

(vn
τ + zn) · wτ

−
∫︂

QT

(︂
Gn(|vn|2) div(vn ⊗ vn) + ∇pn

2

)︂
· w.

(2.4.18)

The above uniform estimates then imply that

sup
n

∥∂tv
n∥(L2(0,T ;W 1,2

n )∩(L5(QT ))3)∗ < +∞, (2.4.19)

and similarly
sup

n
∥∂tp

n
f ∥L2(0,T ;(W 1,2(Ω))∗) < +∞. (2.4.20)

Due to the uniform estimates (2.4.10), (2.4.13), (2.4.14), (2.4.15), (2.4.16), (2.4.17),
(2.4.19), (2.4.20), the Aubin-Lions compactness lemma and the compact embedding
of the Sobolev spaces into the space of traces, we get the following convergences for
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subsequences that we do not relabel:

vn ⇀ v weakly in L2(0, T ;W 1,2
n,div), (2.4.21)

pn
f ⇀ pf weakly in L2(0, T ;W 1,2(Ω)), (2.4.22)

pn
f → pf strongly in Lq(QT ) for all q ∈

[︃
1, 10

3

)︃
, (2.4.23)

∂tp
n
f ⇀ ∂tpf weakly in L2(0, T ; (W 1,2(Ω))∗), (2.4.24)

pn
f ⇀

∗ pf weakly∗ in L∞(QT ), (2.4.25)
Zn ⇀ Z weakly∗ in (L∞(QT ))3×3, (2.4.26)
zn ⇀ z weakly∗ in (L∞(ΣT ))3, (2.4.27)

vn → v a.e. in QT and strongly in (Lq(QT ))3 for all q ∈
[︃
1, 10

3

)︃
, (2.4.28)

vn
τ → vτ a.e. in ΣT and strongly in (Lq(ΣT ))3 for all q ∈

[︃
1, 8

3

)︃
, (2.4.29)

pn
1 ⇀ p1 weakly in L2(QT ), (2.4.30)
pn

2 ⇀ p2 weakly in L
5
4 (0, T ;W 1, 5

4 (Ω)), (2.4.31)
∂tv

n ⇀ ∂tv weakly in (L2(0, T ;W 1,2
n (Ω)) ∩ (L5(QT ))3)∗, (2.4.32)

Gn(|vn|2) div(vn ⊗ vn) ⇀ g weakly in L
5
4 (0, T ;W 1, 5

4 (Ω)). (2.4.33)

It is not difficult to observe that due to the fact that

∥Gn(|vn|2)∥∞,QT
≤ 1 and Gn(|vn|2) → 1 strongly in Lq(QT ) for all q ∈ [1,+∞),

and due to (2.4.21) and (2.4.28) we have

g = div(v ⊗ v).

Taking then the limit as n → ∞ in (2.4.18), we obtain, for all w belonging to
L2(0, T ;W 1,2

n ) ∩ (L5(QT ))3, that

T∫︂
0

⟨∂tv,w⟩ +
∫︂

QT

div(v ⊗ v) · w +
∫︂

QT

(Dv + Z) : Dw −
T∫︂

0

⟨f ,w⟩

+
∫︂

ΣT

(vτ + z) · wτ −
∫︂

QT

(p1 div w − ∇p2 · w) = 0.
(2.4.34)

Integrating (2.4.2) with respect the time between 0 and T and taking the limit as
n → ∞ we get, for all z ∈ L2(0, T ;W 1,2(Ω)), that

T∫︂
0

⟨∂tpf , z⟩ −
∫︂

QT

(pfv · ∇z − ∇pf · ∇z) =
∫︂

QT

(gz − psv · ∇z). (2.4.35)

Let us note that from (2.4.34) and (2.4.35) valid for all w ∈ L2(0, T ;W 1,2
n ) ∩ (L5(QT ))3

and z ∈ L2(0, T ;W 1,2(Ω)) we immediately conclude the validity of (2.2.4) and (2.2.5)
for all w ∈ W 1,2

n , z ∈ W 1,2(Ω) and almost all t ∈ (0, T ).
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Step 4. Attainment of the constitutive equation on the boundary. Since
the structure of the constitutive equation on the boundary (2.4.3)2 is simpler than that
used in Proposition 2.3.3, we can apply this assertion to this case as well. Indeed, we
know that not only

zn = s∗
vn

τ

|vn
τ | + 1

n

a.e. on ΣT ,

zn ⇀ z weakly in (Lq(ΣT ))3 for all q ∈ [1,+∞),
vn

τ ⇀ vτ weakly in (L 8
3 (ΣT ))3,

but also
vn

τ → vτ strongly in (Lq(ΣT ))3 for all q ∈
[︃
1, 8

3

)︃
.

Consequently,
lim

n→+∞

∫︂
ΣT

zn · vn
τ =

∫︂
ΣT

z · vτ ,

and by Proposition 2.3.3 we get for s = z + vτ

vτ = (|s| − s∗)+

|s|
s a.e. on ΣT .

Step 5. Attainment of the constitutive equation in the bulk. We wish to
use Proposition 2.3.3, and we can notice that all of its assumptions (2.3.55)–(2.3.59)
are all fulfilled except (2.3.60). To prove it, we have to overcome the difficulty that v
is not an admissible test function in (2.4.34). This is why we employ the so-called L∞-
truncation method applied to vn − v. Let {λn}, A,B such that 0 < A ≤ λn ≤ B < ∞,
where A,B are independent of n (but sufficiently large) and together with λn will be
specified later. Consider the truncated velocity difference

wn := Tλn(vn − v) := (vn − v) min
{︄

1, λn

|vn − v|

}︄
. (2.4.36)

Since supn ∥wn∥∞,QT
≤ B, and vn → v a.e. in QT , Lebesgue’s dominated convergence

theorem implies that

wn → 0 strongly in (Ls(QT ))3 for every s ∈ [1,∞), (2.4.37)

and similarly, as supn ∥wn∥∞,ΣT
≤ B, by (2.4.29) and the Lebesgue theorem, we have

wn
τ → 0 strongly in (L2(ΣT ))3. (2.4.38)

Since

∇wn =

⎧⎪⎪⎨⎪⎪⎩
∇vn − ∇v if |vn − v| ≤ λn,

λn

|vn − v|
(∇vn − ∇v) − λn(vn − v) ⊗ (∇vn − ∇v)(vn − v)

|vn − v|3
otherwise,

(2.4.39)
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we observe that

|div wn| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if |vn − v| ≤ λn,

2λn(|∇vn| + |∇v|)
|vn − v|

otherwise
(2.4.40)

and
|∇wn| ≤ 2|∇vn − ∇v|. (2.4.41)

Then, due to (2.4.10) and (2.4.41), ∇wn is uniformly bounded in (L2(QT ))3×3 and,
up to a subsequence, it converges weakly in (L2(QT ))3×3. But employing (2.4.37) it
follows that the weak limit has to be zero, i.e.

∇wn ⇀ O weakly in (L2(QT ))3×3 and Dwn ⇀ O weakly in (L2(QT ))3×3. (2.4.42)

Inserting wn in (2.4.18), we get

lim sup
n→∞

∫︂
QT

Zn : ∇wn − pn
1 div wn + Dvn : Dwn

= lim sup
n→∞

[︄
−

T∫︂
0

⟨∂tv
n,wn⟩ −

∫︂
QT

G
(︂
|vn|2

)︂
div (vn ⊗ vn) · wn

+
∫︂

ΣT

(vn
τ + zn) · wn

τ −
∫︂

QT

∇pn
2 · wn −

T∫︂
0

⟨f ,wn⟩
]︄
.

(2.4.43)

Now, by virtue of (2.4.37), (2.4.33) and (2.4.31), we observe that

lim
n→∞

∫︂
QT

(︂
Gn

(︂
|vn|2

)︂
div(vn ⊗ vn) + ∇pn

2

)︂
· wn +

T∫︂
0

⟨f ,wn⟩ = 0, (2.4.44)

and by virtue of (2.4.10) and (2.4.38), it holds

lim
n→∞

∫︂
ΣT

(vn
τ + zn) · wn

τ = 0. (2.4.45)

Since wn ⇀ 0 weakly in L2(0, T ; (W 1,2(Ω))3) ∩ (L5(QT ))3 by (2.4.37) then

lim
n→+∞

T∫︂
0

⟨∂tv,w
n⟩ = 0, thus

lim inf
n→+∞

T∫︂
0

⟨∂tv
n,wn⟩ = lim inf

n→+∞

T∫︂
0

⟨∂t(vn − v),wn⟩. (2.4.46)

Moreover,

T∫︂
0

⟨∂t(vn − v),wn⟩ =
T∫︂

0

∂t

(︄
|vn − v|2

2

)︄
min

{︄
1, λn

|vn − v|

}︄
=
∫︂

QT

∂tF
n, (2.4.47)
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where

F n :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|vn − v|2

2 if |vn − v| ≤ λn,

λn|vn − v| − (λn)2

2 if |vn − v| > λn.

Thus from (2.4.47) and since F n(0, ·) = 0 almost everywhere in Ω (as vn(0, ·) =
v(0, ·) = v0 a.e. in Ω), we get

T∫︂
0

⟨∂t(vn − v),wn⟩ =
∫︂
Ω

F n(T, ·), (2.4.48)

taking the liminf we finally arrive at

lim inf
n→+∞

T∫︂
0

⟨∂t(vn − v),wn⟩ = lim inf
n→+∞

∫︂
Ω

F n(T, ·) ≥ 0, (2.4.49)

but this is equivalent to

lim sup
n→∞

[︄
−

T∫︂
0

⟨∂tv
n,wn⟩

]︄
≤ 0. (2.4.50)

Collecting (2.4.44), (2.4.45), (2.4.50), it follows from (2.4.43) that

lim sup
n→∞

∫︂
QT

Zn : Dwn − (pn
1 div wn) + Dvn : Dwn ≤ 0. (2.4.51)

Since (Dvn − Dv) : Dwn ≥ 0 and limn→+∞
∫︁

QT
Dv : Dwn = 0, (2.4.40) and (2.4.51)

imply that

lim sup
n→∞

∫︂
QT

Zn : Dwn + Dvn : Dwn

≤ lim sup
n→∞

∫︂
QT

|pn
1 ||div wn|

≤ lim sup
n→∞

∫︂
{|vn−v|>λn}

λn

|vn − v|
|pn

1 |(|∇vn| + |∇v|).

(2.4.52)

Let Z ∈ (L 10
3 (QT ))3×3 be such that

Z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O if Dv = O,

τ(pf)
D
|D|

if Dv ̸= O.
(2.4.53)

Since limn→+∞
∫︁

QT
Z : Dwn = 0 thanks to (2.4.42), we arrive at

lim sup
n→∞

∫︂
QT

(Zn − Z) : Dwn ≤ lim sup
n→∞

∫︂
{|vn−v|>λn}

λn

|vn − v|
|pn

1 |(|∇vn| + |∇v|). (2.4.54)
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Splitting the integral on the left-hand side of (2.4.54) into two parts, one integrated
over {|vn − v| ≤ λn} the other over {|vn − v| > λn}, using (2.4.39), and moving the
latter to the right-hand side and estimating it by (2.4.41), we get

lim sup
n→∞

∫︂
{|vn−v|≤λn}

(Zn − Z) : D(vn − v) ≤ C lim sup
n→∞

∫︂
{|vn−v|>λn}

λn

|vn − v|
In, (2.4.55)

where

In := (|pn
1 |2 + |∇vn|2 + |∇v|2 + |Zn|2 + |Z|2) and sup

n

∫︂
QT

In < +∞.

Let N ∈ N be arbitrary. We fix A = N and B = NN+1 and define

Qn
i := {[t,x] ∈ QT ;N i < |vn − v| ≤ N i+1}, i = 1, . . . , N.

Since
N∑︂

i=1

∫︂
Qn

i

In ≤ C∗, (2.4.56)

there is, for each n ∈ N, an index in ∈ {1, . . . , N} such that∫︂
Qn

in

In ≤ C∗

N
. (2.4.57)

Setting λn = N in , the right-hand side of (2.4.55) can be estimated as follows using
(2.4.57) and the fact that In is uniformly bounded in L1(QT )

∫︂
{|vn−v|>N in }

N in

|vn − v|
In

=
∫︂

{N in <|vn−v|≤N in+1}

N in

|vn − v|
In +

∫︂
{|vn−v|>N in+1}

N in

|vn − v|
In

≤
∫︂

Qn
in

In + 1
N

∫︂
{|vn−v|>N in+1}

In ≤ C∗

N
.

(2.4.58)

Let
W n :=

(︂
Zn − Z

)︂
: (Dvn − Dv) .

Then (2.4.55) and (2.4.58) imply that

lim sup
n→∞

∫︂
|vn−v|≤λn

W n ≤ C∗

N

⇐⇒ lim sup
n→∞

∫︂
|vn−v|≤λn

|W n| ≤ C∗

N
+ 2 lim sup

n→∞

∫︂
|vn−v|≤λn

(W n)−
(2.4.59)

Now we show that
(W n)− → 0 strongly in L1(QT ). (2.4.60)
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Recalling that Zn = Zn(pn
f ,Dvn) and incorporating (2.3.8), we get

W n =(Zn − Zn(pn
f ,Dv)) : (Dvn − Dv) + (Zn(pn

f ,Dv) − Z) : (Dvn − Dv)
≥ (Zn(Dv, τ(pn

f )) − Z) : (Dvn − Dv).
(2.4.61)

Splitting QT = {|Dv| = 0} ∪ {|Dv| > 0}, thanks to the definitions of Zn and Z and
since pn

f converges pointwise, we get

Zn(Dv, τ(pn
f )) → Z a.e. in QT .

Also, independently of n,

|Zn(Dv, τ(pn
f )) − Z| ≤ C|Dv|.

By the Dominated Convergence Theorem and since (Dvn −Dv) is uniformly bounded
in (L2(QT ))3×3, we conclude (2.4.60).
Combining (2.4.59), (2.4.60) and recalling that A = N ≤ λn,

lim sup
n→∞

∫︂
|vn−v|≤N

|W n| ≤ C∗

N
. (2.4.62)

With the help of the Hölder and Chebyshev inequalities, we observe that∫︂
QT

√︂
|W n| ≤

∫︂
|vn−v|≤N

√︂
|W n| +

∫︂
|vn−v|>N

√︂
|W n|

≤ |QT |
1
2

⌜⃓⃓⎷ ∫︂
|vn−v|≤N

|W n| + ∥W n∥
1
2
L2(QT )

√︂
|{|vn − v| > N}| ≤ C√

N

(2.4.63)

which implies that for a suitable subsequence,

W n → 0 a.e. in QT . (2.4.64)

Applying Egorov Theorem, one concludes that

W n → 0 strongly in L1(QT \ Ej) ,

where Ej ⊂ QT are such that limj→∞ |Ej| = 0. It follows from the definition of W n

and the weak convergences (2.4.21), (2.4.26) that

lim sup
n→∞

∫︂
QT \Ej

Zn : Dvn = lim sup
n→∞

∫︂
QT \Ej

Z : (Dvn − Dv) + Zn : Dv =
∫︂

QT \Ej

Z : Dv.

Thus, the assumptions (2.3.55)-(2.3.60) of Proposition 2.3.3 are verified with U =
QT \Ej, for all j ∈ N. Due to the properties of Ej, we finally conclude, using (2.3.61),
that

Dv = (|S| − τ(pf))+

|S|
S.

The proof of Theorem 2.2.1 is complete.
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3. Analysis of unsteady flows of
pore pressure activated granular
materials

3.1 Formulation of the problem
In this chapter we strengthen the results from Chapter 2. More specifically, we investi-
gate the following system of PDEs supposed to be satisfied in QT := (0, T ) × Ω, where
T ∈ (0,∞) and Ω ⊂ R3 is a flow domain, i.e. bounded, open and connected set (with
Lipschitz boundary ∂Ω)

div v = 0, (3.1.1a)
ρm

s (∂tv + div (v⊗v)) = div S − ∇p+ ρm
s f , (3.1.1b)

∂tpf + v · ∇pf = K∆pf − div(Kρm
f f) + ∂tps + v · ∇ps , (3.1.1c)

vf = v − 1
α
ˆ︁ϕ(p− pf) (∇pf − ρm

f f) , (3.1.1d)

where S and Dv := ∇v+(∇v)T

2 satisfy

Dv = O ⇒ |S| ≤ τ(pf),

Dv ̸= O ⇒ S = τ(pf)
Dv

|Dv|
+ 2ν∗ (|Dv| − δ∗)+ Dv

|Dv|
with τ(pf) := q∗(ps − pf)+.

(3.1.1e)

The system (3.1.1) coincides with the equations (2.1.1) stated in Chapter 2 (see also
[1]) provided that we set δ∗ = 0 in (3.1.1e) and we identify the symbols v and pf with
vs and pt

f used in Chapter 2. Note that vf appears only in (3.1.1d) and can be always
obtained a posteriori once v, pf and p are obtained from (3.1.1a)–(3.1.1c) and (3.1.1e).
Consequently, in what follows, we consider the system (3.1.1) without the equation
(3.1.1d). It is worth observing that the constitutive relation (3.1.1e) can be rewritten
in a more compact way as an implicit constitutive relation:

S = Z + 2ν∗ (|Dv| − δ∗)+ Dv

|Dv|
with Z fulfilling (|Z| − τ(pf))+ + ||Dv|Z − τ(pf)Dv| = 0.

(3.1.2)

We will exploit formulation (3.1.2) in our analysis. A systematic study of implicit
constitutive equations go back to the original works [67] and [68].

We complete the system (3.1.1a)–(3.1.1c) and (3.1.2) by considering the following
boundary and initial conditions:

v · n = 0 and ∇pf · n = 0 on ΣT := (0, T ) × ∂Ω, (3.1.3a)

s = z + γ∗ (|vτ | − β∗)+ vτ

|vτ |
with z fulfilling (|z| − s∗)+ + ||vτ |z − s∗vτ | = 0 on ΣT ,

(3.1.3b)

v(0, ·) = v0 and pf(0, ·) = p0 in Ω. (3.1.3c)
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Here, we used the following notation: n : ∂Ω → R3 stands for the unit outer normal
vector, while for any vector z defined on ∂Ω, zτ := z − (z · n)n denotes the tangential
component of z, in particular, s := −(Sn)τ , and γ∗, β∗, s∗ are non-negative constants.
Condition (3.1.3b) describes the shifted stick-slip (or threshold slip) and it is analogous
to that for the stress tensor in the bulk (see (3.1.2)). It includes as special cases, the
stick-slip by taking β∗ = 0 while s∗, γ∗ > 0, Navier’s slip s = γ∗vτ by taking s∗, β∗ = 0
while γ∗ > 0, and perfect slip s = 0 by setting s∗ = γ∗ = 0. Note that the no-slip
condition is obtained by letting either s∗ → +∞ or by setting β∗ = 0 and letting
γ∗ → +∞.

The main purpose of this chapter is to establish long-time and large-data theory to
the initial- and boundary-value problem described by (3.1.1a)–(3.1.1c), (3.1.2), (3.1.3),
see Theorem 3.2.1 below. The novelties consist not only in incorporating a more general
model with δ∗ ≥ 0, but more importantly in providing a different proof for more general
class of data (particularly for f that is merely L2-integrable). More precisely, we can
avoid using L∞-estimates for pf needed in Chapter 2 (see also [3]). Consequently, the
main tool for taking the limit in the constitutive equations cannot be applied in the
form given in Proposition 2.3.3 (or [3, Proposition 5.3]), but has to be modified in an
essential way due to a lower integrability of pf , but also a more complicated material
response.

The novel key tool regarding the attainment of the constitutive equations by the
limiting objects is proved separately in Proposition 3.3.1. The key assumption of this
proposition, namely (3.3.5) and (3.3.9), call for taking vn − v as a test function in
the weak formulation of the balance of linear momentum. However, vn − v is not an
admissible test function in the setting considered here. This difficulty can be overcome,
similarly as in Chapter 2 (see also [3]), by using the L∞-truncation method, which
requires to introduce an integrable pressure, as the truncations (vn − v)∞ are not
divergenceless. Following the approach originally developed in [7] (see also [33]), we
overcome such difficulty by considering slipping boundary conditions (3.1.3a)–(3.1.3b).
As pointed out in [69], the analysis for unsteady flows changes remarkably when the
no–slip condition is considered.

We use the L∞-truncation method in the proof of Theorem 3.2.1 below. While the
truncations (vn − v)∞ are difficult to make solenoidal, the authors of [9] succeeded to
make the Lipschitz approximations (vn −v)1,∞ divergenceless and they thus developed
a solenoidal version of the Lipschitz truncation method. This tool allows one to avoid
the presence of the pressure in the setting, therefore one may include more general
responses as well as boundary conditions. As a matter of fact, we present new results
available for systems describing materials that behave after activation |Dv| > δ∗, as a
power-law fluid, i.e. the constitutive equation (3.1.2) is replaced by

S = Z + 2ν∗|Dv|q−2 (|Dv| − δ∗)+ Dv

|Dv|
with Z fulfilling (|Z| − τ(pf))+ + ||Dv|Z − τ(pf)Dv| = 0.

(3.1.4)

The available results are presented in Theorem 3.2.2. We are not providing the proof
of these results as they can be deduced from the approach used when proving The-
orem 3.2.1 and from the methods used recently, for example, in [69]. Note that the
latter results are restricted to models (3.1.4) with q > 6

5 (in three spatial dimensions).
Recently, another concept of dissipative solution was introduced in [70] and, its long-
time and large-data existence is proved independently on what is the value of q (in
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particular also for q ∈ [1, 6/5]). In fact in the theory developed in [70] the stress tensor
can be merely subdifferential of a convex potential depending on Dv, whose growth
is at least linear. There are other approaches to analyze the mathematical properties
of Bingham fluids (see e.g. [50] and [49]), but they are usually based on regularity
techniques requiring smoother data.

3.2 Preliminaries and main results
For the sake of simplicity in the right-hand side of (3.1.1c), which has the form g :=
∂tps − div f , we omit the effect of ∂tps as it plays the role of a given external force
and it can be easily incorporated into the analysis. We also set without loss of any
generality ρm

s = ρm
f = K = 2ν∗ = γ∗ = q∗ = 1, while we assume δ∗, s∗, β∗ ≥ 0. In

this chapter again, the symbol Dφ stands for the symmetric part of the gradient of a
vector-valued function φ, i.e.

Dφ := ∇φ + (∇φ)T

2 .

We are ready to enunciate the first result, which is the existence of weak solutions
to the system (3.1.1a)–(3.1.1c), (3.1.2), (3.1.3), proved in Section 3.5.
Theorem 3.2.1. For any Ω ∈ C1,1, T ∈ (0,∞) and for any v0, p0,f , ps fulfilling

v0 ∈ L2
n,div, p0 ∈ L2(Ω), f ∈ (L2(QT ))3, ps ∈ L5(QT ),

there exists a quintuplet (v, pf , p,S, s):
v ∈ L∞(0, T ;L2

n,div) ∩ L2(0, T ;W 1,2
n,div), ∂tv ∈ (L2(0, T ;W 1,2

n ) ∩ (L5(QT ))3)∗
,

pf ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)), ∂tpf ∈ L
4
3 (0, T ; (W 1,2(Ω))∗),

p = p1 + p2 where p1 ∈ L2(QT ) and p2 ∈ L
5
4 (0, T ;W 1, 5

4 (Ω)),
S ∈ (L2(QT ))3×3, s ∈ (L 8

3 (ΣT ))3,

satisfying, for all w ∈ L2(0, T ;W 1,2
n ) ∩ (L5(QT ))3 and for all z ∈ L4(0, T ;W 1,2(Ω)),

the following equations:
T∫︂

0

⟨∂tv,w⟩ +
∫︂

QT

S : Dw −
∫︂

QT

(v ⊗ v) : Dw +
∫︂

ΣT

s · wτ

=
∫︁

QT
f · w +

∫︁
QT
p1 div w −

∫︁
QT

∇p2 · w,

(3.2.1)

T∫︂
0

⟨∂tpf , z⟩ −
∫︂

QT

pfv · ∇z +
∫︂

QT

∇pf · ∇z =
∫︂

QT

f · ∇z −
∫︂

QT

psv · ∇z, (3.2.2)

and the following constitutive relations:

S = Z + (|Dv| − δ∗)+ Dv

|Dv|
with Z fulfilling (|Z| − τ(pf))+ + ||Dv|Z − τ(pf)Dv| = 0,
where τ(pf) = (ps − pf)+ a.e. in QT ,

(3.2.3)

s = z + (|vτ | − β∗)+ vτ

|vτ |
with z fulfilling (|z| − s∗)+ + ||vτ |z − s∗vτ | = 0 a.e. on ΣT ,

(3.2.4)
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and attaining the initial conditions in the following sense:

lim
t→0+

(∥v(t) − v0∥2 + ∥pf(t) − p0∥2) = 0. (3.2.5)

The second result concerns the system (3.1.1a)–(3.1.1c), (3.1.3), and (3.1.4).

Theorem 3.2.2. Let Ω ∈ C0,1, T ∈ (0,∞), and q > 6
5 . Set m := max{2, q′} and

r := max
{︂
q, 5q

5q−6

}︂
. For any v0, p0,f , ps fulfilling

v0 ∈ L2
n,div, p0 ∈ L2(Ω), f ∈ (Lm(QT ))3, ps ∈ L

10q
5q−6 (QT ),

there exists a quadruplet (v, pf ,S, s):

v ∈ L∞(0, T ;L2
n,div) ∩ Lq(0, T ;W 1,q

n,div), ∂tv ∈ Lr′(0, T ; (W 1,r
n,div)∗),

pf ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)), ∂tpf ∈ (L2(0, T ;W 1,2(Ω)) ∩ L
10q

5q−6 (QT ))∗,

S ∈ (Lq′(QT ))3×3, s ∈ (L2(ΣT ))3,

attaining the initial conditions (3.2.5), fulfilling, for all φ ∈ Lr(0, T ;W 1,r
n,div) and z ∈

L2(0, T ;W 1,2(Ω)) ∩ L
10q

5q−6 (QT ), the following equations:

T∫︂
0

⟨∂tv,φ⟩ +
∫︂

QT

S : Dφ −
∫︂

QT

(v ⊗ v) : Dφ +
∫︂

ΣT

s · wτ =
∫︂

QT

f · φ, (3.2.6)

T∫︂
0

⟨∂tpf , φ⟩ +
∫︂

QT

∇pf · ∇φ−
∫︂

QT

pfv · ∇φ =
∫︂

QT

(f − psv) · ∇φ, (3.2.7)

and the following constitutive relations:

S = Z + (|Dv| − δ∗)+ |Dv|q−2 Dv

|Dv|
with Z fulfilling (|Z| − τ(pf))+ + ||Dv|Z − τ(pf)Dv| = 0,
where τ(pf) = (ps − pf)+ a.e. in QT ,

(3.2.8)

s = z + (|vτ | − β∗)+ vτ

|vτ |
with z fulfilling (|z| − s∗)+ + ||vτ |z − s∗vτ | = 0 a.e. on ΣT .

(3.2.9)

This result is stated without the proof here. The proof can be however achieved
in the spirit of Theorem 3.2.1 by employing a solenoidal version of the Lipschitz-
truncation method developed in [9], and by using the approximation scheme presented
in [69, Theorem 3.3].
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3.3 Attainment of the constitutive equations
In this section, we establish a new scheme how to take the limit in the constitutive
equations needed when proving Theorem 3.2.1.
Proposition 3.3.1. Let U ⊂ QT be an arbitrary measurable bounded set and let
{Zn}+∞

n=1, {Dn}+∞
n=1 and {pn

f }+∞
n=1 be sequences such that

Zn = τ(pn
f ) Dn

|Dn| + 1
n

with τ(pn
f ) = (ps − pn

f )+ a.e. in U, (3.3.1)

Zn ⇀ Z weakly in (L2(U))3×3, (3.3.2)
Dn ⇀ D weakly in (L2(U))3×3, (3.3.3)
pn

f → pf strongly in L2(U) and a.e. in U, (3.3.4)

lim sup
n→∞

∫︂
U

Zn : Dn ≤
∫︂
U

Z : D. (3.3.5)

Then
(|Z| − τ(pf))+ + ||D|Z − τ(pf)D| = 0 a.e. in U. (3.3.6)

In addition, assume that {Vn}+∞
n=1 is a sequence such that

Vn =
(︄

1 − δ∗

|Dn|

)︄+

Dn a.e. in U, (3.3.7)

fulfilling

Vn ⇀ V weakly in (L2(U))3×3, (3.3.8)

lim sup
n→∞

∫︂
U

Vn : Dn ≤
∫︂
U

V : D. (3.3.9)

Then
V =

(︄
1 − δ∗

|D|

)︄+

D a.e. in U. (3.3.10)

Proof. First, note that by virtue of (3.3.4) and the Lipschitz-continuity of τ , it follows
that

τ(pn
f ) → τ(pf) strongly in L2(U). (3.3.11)

Now, as for any A ∈ (L2(U))3×3, A ̸= O, it holds(︄
τ(pf)

Dn

|Dn| + 1
n

− τ(pf)
A

|A| + 1
n

)︄
: (Dn − A) ≥ 0, (3.3.12)

integrating this inequality over U , subtracting and adding Zn and using (3.3.1), we get

∫︂
U

(︄
τ(pf)

Dn

|Dn| + 1
n

− τ(pn
f ) Dn

|Dn| + 1
n

)︄
: (Dn − A)

+
∫︂
U

(︄
Zn − τ(pf)

A
|A| + 1

n

)︄
: (Dn − A) ≥ 0.

(3.3.13)
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Taking limsup as n → ∞ and employing the facts that the first integral converges
to zero due to (3.3.11), the term Dn

|Dn|+ 1
n

is uniformly bounded in (L∞(U))3×3 and the
sequence Dn − A is bounded in (L2(U))3×3, we obtain

lim sup
n→∞

∫︂
U

(︄
Zn − τ(pf)

A
|A| + 1

n

)︄
: (Dn − A) ≥ 0. (3.3.14)

Referring then to the convergences (3.3.2) and (3.3.3) and using also (3.3.5), we
conclude that

∫︂
U

(︄
Z − τ(pf)

A
|A|

)︄
: (D − A) ≥ 0. (3.3.15)

Now, for any δ > 0, ε ∈ (0, δ) and for arbitrary matrices C and B1 bounded in
(L2(U))3×3 and satisfying |C| ≤ 1 and B1 ̸= O, consider

A := B1 χ{|D|=0} + (D − εC)χ{|D|>δ} + Dχ{0<|D|≤δ}.

Note that such A’s are non-zero in U . Inserting them into (3.3.15) we obtain

−
∫︂

{|D|=0}

(︄
Z − τ(pf)

B1

|B1|

)︄
: B1 + ε

∫︂
{|D|>δ}

C :
(︄
Z − τ(pf)

D − εC
|D − εC|

)︄
≥ 0. (3.3.16)

Letting first ε → 0 in (3.3.16), we observe that∫︂
{|D|=0}

Z : B1 ≤
∫︂

{|D|=0}

τ(pf )|B1| (3.3.17)

for any B1 ̸= O. Consider, for any a > 0 and ω ⊂ U , the matrix B1 of the form

B1 = a Iχ{(U\ω)∪{Z=O}} + Z
|Z|

χ{ω\{Z=O}}.

It then follows from (3.3.16) that∫︂
{|D|=0}∩ ω ∩{Z ̸=O}

|Z| ≤
∫︂

{|D|=0}∩ ω∩{Z̸=O}

τ(pf) + aC
∫︂

(U\ω) ∪{Z=O}

(τ(pf) + |Z|)

with C positive constant, which implies letting a → 0∫︂
{|D|=0}∩ ω ∩{Z ̸=O}

|Z| ≤
∫︂

{|D|=0}∩ ω∩{Z̸=O}

τ(pf).

Since ω is arbitrary, we conclude that

|Z| ≤ τ(pf) on the set {|D| = 0}. (3.3.18)

Next, letting |B1| → 0 in (3.3.16), employing (3.3.17), we get
∫︂

{|D|>δ}

C :
(︄
Z − τ(pf)

D − εC
|D − εC|

)︄
≥ 0,
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which, after letting ε → 0, leads to
∫︂

{|D|>δ}

C :
(︄
Z − τ(pf)

D
|D|

)︄
≥ 0.

Finally, letting δ → 0, we get, for arbitrary C,
∫︂

{|D|>0}

C :
(︄
Z − τ(pf)

D
|D|

)︄
≥ 0.

This implies
Z = τ(pf)

D
|D|

when |D| ≠ 0. (3.3.19)

The latter and (3.3.18) coincide with (3.3.6).

It remains to prove (3.3.10), which however follows from standard Minty’s argument.
Indeed, by the monotonicity, we have

lim sup
n→∞

∫︂
U

⎛⎝Vn − A
(︄

1 − δ∗

|A|

)︄+
⎞⎠ : (Dn − A) ≥ 0

for any A ∈ (L2(U))3×3. By virtue of (3.3.9) and of convergences (3.3.8) and (3.3.3)
we get

∫︂
U

⎛⎝V − A
(︄

1 − δ∗

|A|

)︄+
⎞⎠ : (D − A) ≥ 0.

Choosing A := D ± εC, with arbitrary C ∈ (L2(U))3×3 and ε > 0, and after the
limit as ε → 0 we obtain

∫︂
U

C :
⎛⎝V − D

(︄
1 − δ∗

|D|

)︄+
⎞⎠ = 0

for any C, which implies (3.3.10).
□

Note that here we provided a proof of (3.3.6), which is simplified and shorter than
the one given in Proposition 2.3.3 (or [3, Proposition 5.3]).

3.4 Approximations
In this section, we prepare all the needed tools in order to prove Theorem 3.2.1. For
any n ∈ N, we introduce the following approximating system supposed to be satisfied
in QT

div v = 0,
∂tv + div(v ⊗ v)Gn(|v|2) − div S + ∇p = f ,

∂tpf + v · ∇pf − ∆pf = − div f + v · ∇ps,

(3.4.1)
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where Gn : R → R is a smooth function such that Gn(u) = 1 if |u| ≤ n, Gn(u) = 0
if |u| ≥ 2n and |G′

n| ≤ 2
n
. Next, we consider the following regularization of the

constitutive equations (both in the bulk and on the boundary)

S = Sn(pf ,Dv) = Zn(pf ,Dv) +
(︄

1 − δ∗

|Dv|

)︄+

Dv,

where Zn(pf ,Dv) := τ(pf)
Dv

|Dv| + 1
n

with τ(pf) = (ps − pf)+ in QT ,

(3.4.2)

s = sn(vτ ) = ζn(vτ ) +
(︄

1 − β∗

|vτ |

)︄+

vτ , (3.4.3)

where ζn(vτ ) := s∗
vτ

|vτ | + 1
n

on ΣT , (3.4.4)

and we complete the problem with the boundary and the initial conditions
v · n = 0 and ∇pf · n = 0 on ΣT , (3.4.5)

v(0, ·) = v0 and pf(0, ·) = p0 in Ω. (3.4.6)

Note that both mappings D ↦→ Zn(pf ,D) and D ↦→
(︂
1 − δ∗

|D|

)︂+
D are monotone, i.e.

(Z − Ẑ) : (D − D̂) ≥ 0 for any Z = Zn(pf ,D), Ẑ = Zn(pf , D̂), (3.4.7)
see formula (2.3.8), and

(V − V̂) : (D − D̂) ≥ 0 for any V =
(︄

1 − δ∗

|D|

)︄+

D, V̂ =
(︄

1 − δ∗

|D̂|

)︄+

D̂, (3.4.8)

see Lemma B.1 in [69]. Therefore, due to the presence of the truncation in the con-
vective term and the introduced approximations in the constitutive equations, the ex-
istence of weak solutions to the system (3.4.1)–(3.4.6) can be proved through standard
techniques of monotone operators, following also the spirit of the proof in Proposi-
tion 2.3.1. We enunciate the relevant result below and for the reader’s convenience the
proof can be found in Appendix A.1.

Proposition 3.4.1. Let n ∈ N be fixed. For any
v0 ∈ L2

n,div, p0 ∈ L2(Ω), f ∈ (L2(QT ))3 and ps ∈ L5(QT ),
there exists a weak solution to the problem (3.4.1)–(3.4.6). More precisely, for each
n ∈ N there is a quadruplet (v, pf ,S, s) := (vn, pn

f ,Sn, sn) such that
v ∈ L∞(0, T ;L2

n,div) ∩ L2(0, T ;W 1,2
n,div), ∂tv ∈ L2(0, T ;W−1,2

n,div), (3.4.9)
pf ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)), ∂tpf ∈ L

4
3 (0, T ; (W 1,2(Ω))∗), (3.4.10)

S ∈ (L2(QT ))3×3, s ∈ (L 8
3 (ΣT ))3, (3.4.11)

satisfying, for all w ∈ L2(0, T ;W 1,2
n,div) and z ∈ L4(0, T ;W 1,2(Ω)),

T∫︂
0

⟨∂tv,w⟩ +
∫︂

QT

(S : Dw +Gn(|v|2) div(v ⊗ v) · w) +
∫︂

ΣT

s · wτ =
∫︂

QT

f · w, (3.4.12)

T∫︂
0

⟨∂tpf , z⟩ −
∫︂

QT

pfv · ∇z +
∫︂

QT

∇pf · ∇z =
∫︂

QT

(f · ∇z − psv · ∇z), (3.4.13)

46



where

S = Sn(pf ,Dv) a.e. in QT , (3.4.14)
s = sn(vτ ) a.e. in ΣT , (3.4.15)

and
lim

t→0+
(∥v(t) − v0∥2 + ∥pf(t) − p0∥2) = 0. (3.4.16)

3.5 Proof of Theorem 3.2.1
The proof is split into the following steps.

Step 1. Approximations. From Proposition 3.4.1 and following the reconstruc-
tion of the pressure in the proof of Theorem 2.2.1, Step 2, we get for each n ∈ N the
existence of (vn, pn

f , p
n, Sn, sn), with pn ∈ L2(QT ), satisfying

T∫︂
0

⟨∂tv
n,w⟩ +

∫︂
QT

(Sn : Dw + div(vn ⊗ vn)Gn(|vn|2) · w) +
∫︂

ΣT

sn · wτ

=
∫︂

QT

pn div w +
∫︂

QT

f · w,

(3.5.1)

T∫︂
0

⟨∂tp
n
f , z⟩ −

∫︂
QT

(pn
f vn) · ∇z +

∫︂
QT

∇pn
f · ∇z =

∫︂
QT

(f − psv
n) · ∇z, (3.5.2)

with Sn, sn fulfilling (3.4.14), (3.4.15) respectively, and satisfying also (3.4.16).

Step 2. Uniform estimates with respect to n and limit as n → +∞. Setting
w := vn in (3.5.1) and z := pn

f in (3.5.2), following the analogous step as in the proof
of Theorem 2.2.1, we obtain

sup
n

(︂
∥vn∥L∞(0,T ;L2(Ω)3) + ∥Dvn∥2,QT

)︂
< +∞, (3.5.3)

sup
n

(︂
∥pn

f ∥L∞(0,T ;L2(Ω)) + ∥∇pn
f ∥2,QT

)︂
< +∞, (3.5.4)

sup
n

(︂
∥vn∥ 10

3 ,QT
+ ∥pn

f ∥ 10
3 ,QT

+ ∥vn∥ 8
3 ,ΣT

)︂
< +∞, (3.5.5)

sup
n

(︂
∥Zn∥ 10

3 ,QT
+ ∥Vn∥2,QT

+ ∥sn∥ 8
3 ,ΣT

)︂
< +∞, (3.5.6)

where we set Vn :=
(︂
1 − δ∗

|Dvn|

)︂+
Dvn. Consequently, as supn ∥Gn(|vn|2)∥∞,QT

≤ 1 by
employing (3.5.3), (3.5.5) and Korn’s inequality, it follows that

sup
n

∥Gn(|vn|2) div(vn ⊗ vn)∥ 5
4 ,QT

< +∞. (3.5.7)

Now, let us introduce

pn
2 := (−∆N)−1

(︂
Gn(|vn|2) div(vn ⊗ vn)

)︂
, pn

1 := pn − pn
2 ,

then
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sup
n

(︃
∥pn

2 ∥
L

5
4 (0,T ;W 1, 5

4 (Ω))
+ ∥pn

1 ∥2,QT

)︃
< +∞, (3.5.8)

and this implies that

sup
n

∥∂tv
n∥(L2(0,T ;W 1,2

n )∩(L5(QT ))3)∗ < +∞. (3.5.9)

Analogously

sup
n

∥∂tp
n
f ∥

L
4
3 (0,T ;(W 1,2(Ω))∗)

< +∞. (3.5.10)

Then, there exist subsequences of {vn}, {pn
f }, {Zn}, {Vn}, {sn}, {pn

1 }, {pn
2 }, which

we do not relabel, that converge weakly and *-weakly in the corresponding function
spaces. By virtue of the established limits, by the Aubin-Lions compactness lemma
and the compact embedding of the Sobolev spaces into the space of traces, we also
have

pn
f → pf strongly in Lq(QT ) for all q ∈

[︃
1, 10

3

)︃
, (3.5.11)

vn → v strongly in (Lq(QT ))3 for all q ∈
[︃
1, 10

3

)︃
, (3.5.12)

vn
τ → vτ strongly in (Lq(ΣT ))3 for all q ∈

[︃
1, 8

3

)︃
. (3.5.13)

Since

∥Gn(|vn|2)∥∞,QT
≤ 1 and Gn(|vn|2) → 1 strongly in Lq(QT ) for all q ∈ [1,+∞),

it follows from (3.5.12) that

Gn(|vn|2) div(vn ⊗ vn) ⇀ div(v ⊗ v) weakly in (L 5
4 (QT ))3. (3.5.14)

Finally, with the obtained convergences it is standard to prove, for all w belonging
to L2(0, T ;W 1,2

n ) ∩ (L5(QT ))3 and for all z ∈ L4(0, T ;W 1,2(Ω)), that
T∫︂

0

⟨∂tv,w⟩ +
∫︂

QT

(Z + V) : Dw +
∫︂

QT

s · wτ −
∫︂

QT

(v ⊗ v) : Dw

=
∫︂

QT

p1 div w −
∫︂

QT

∇p2 · w +
∫︂

QT

f · w

(3.5.15)

and
T∫︂

0

⟨∂tpf , z⟩ −
∫︂

QT

pfv · ∇z +
∫︂

QT

∇pf · ∇z =
∫︂

QT

(f − psv) · ∇z. (3.5.16)

Step 3. Attainment of the constitutive equations on the boundary. Using
that

sn ⇀ s weakly in (L 8
3 (ΣT ))3

and (3.5.13), it easily follows

lim sup
n→+∞

∫︂
ΣT

sn · vn
τ =

∫︂
ΣT

s · vτ .
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Thus, a suitable adjustment of Proposition 3.3.1 implies that (3.2.4) is fulfilled.

Step 4. Attainment of the constitutive equations in the bulk. In order
to employ Proposition 3.3.1 we need to prove the limsup property (3.3.5), but as the
solution itself cannot be used as test function in (3.5.15), we follow the strategy as in
Chapter 2 (or in [3]) and perform the L∞-truncation method. To this aim, we introduce

wn := Tλn(vn − v) := (vn − v) min
{︄

1, λn

|vn − v|

}︄

where λn ∈ [A,B] with 0 < A < B < ∞ will be suitably chosen numbers independent
of n, but depending on parameter N tending to +∞, see details below. For the reader’s
convenience, we recall all the properties of wn below,

wn → 0 strongly in (Ls(QT ))3 for every s ∈ [1,+∞), (3.5.17)
wn → 0 strongly in (L2(ΣT ))3, (3.5.18)
wn ⇀ 0 weakly in L2(0, T ;W 1,2

n ), (3.5.19)

|div wn| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if |vn − v| ≤ λn

2λn (|∇vn| + |∇v|)
|vn − v|

if |vn − v| > λn,
(3.5.20)

∇wn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇vn − ∇v if |vn − v| ≤ λn

λn

|vn − v|
(∇vn − ∇v) − λn(vn − v) ⊗ (∇vn − ∇v)(vn − v)

|vn − v|3

if |vn − v| > λn.

(3.5.21)

Inserting wn as test function in (3.5.1), using the properties of wn we get (cfr. [3])

lim sup
n→∞

∫︂
QT

(Zn + Vn) : Dwn ≤ lim sup
n→∞

∫︂
QT

|pn
1 || div wn|. (3.5.22)

Now, let us define

Z :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O if Dv = O,

τ(pf)
Dv

|Dv|
if Dv ̸= O.

(3.5.23)

and
V :=

(︄
1 − δ∗

|Dv|

)︄+

Dv. (3.5.24)

Employing (3.5.19) and (3.5.20), formula (3.5.22) can be rewritten as

lim sup
n→∞

∫︂
QT

(Zn − Z) : Dwn +
∫︂

QT

(Vn − V) : Dwn

≤ lim sup
n→∞

∫︂
{|vn−v|>λn}

|pn
1 | (|∇vn| + |∇v|) λn

|vn − v|
.

(3.5.25)
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Moving the part of the integral on the left-hand side on the set {|vn − v| > λn} to the
right, it follows that

lim sup
n→∞

∫︂
{|vn−v|≤λn}

(︂
(Zn − Z) : (Dvn − Dv) + (Vn − V) : (Dvn − Dv)

)︂

≤ C lim sup
n→∞

∫︂
{|vn−v|>λn}

In λn

|vn − v|

(3.5.26)

where
In := |pn

1 |2 + |Zn|2 + |Z|2 + |Vn|2 + |V|2 + |∇vn|2 + |∇v|2.
Note that it holds (see (2.4.60) or formula (6.60) in [3])(︂

(Zn − Z) : (Dvn − Dv)
)︂−

→ 0 strongly in L1(QT ), (3.5.27)

and analogously the monotonicity implies(︂
(Vn − V) : (Dvn − Dv)

)︂−
→ 0 strongly in L1(QT ). (3.5.28)

Let N ∈ N and fix A = N , B = NN+1. For i ∈ {1, ..., N} let us define

Qn
i := {N i < |vn − v| ≤ N i+1}.

Since
N∑︂

i=1

∫︂
Qn

i

In ≤ C∗,

for every n there exists in ∈ {1, ..., N} such that∫︂
Qn

in

In ≤ C∗

N
.

Set λn := N in , then it holds∫︂
{|vn−v|>λn}

In λn

|vn − v|
=
∫︂

Qn
in

In N in

|vn − v|
+

∫︂
{|vn−v|>N in+1}

In N in

|vn − v|
≤ C∗

N

where we keep the symbol C∗ for a different constant. The latter relation, (3.5.26),
(3.5.27) and (3.5.28) give

lim sup
n→+∞

⎛⎜⎝ ∫︂
{|vn−v|≤λn}

|(Zn − Z) : (Dvn − Dv)|

+
∫︂

{|vn−v|≤λn}

|(Vn − V) : (Dvn − Dv)|

⎞⎟⎠ ≤ C∗

N
.

(3.5.29)

Using that∫︂
QT

√︂
|(Zn − Z) : (Dvn − Dv)| =

∫︂
{|vn−v|≤N}

√︂
|(Zn − Z) : (Dvn − Dv)|

+
∫︂

{|vn−v|>N}

√︂
|(Zn − Z) : (Dvn − Dv)|

(3.5.30)
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and ∫︂
QT

√︂
|(Vn − V) : (Dvn − Dv)| =

∫︂
{|vn−v|≤N}

√︂
|(Vn − V) : (Dvn − Dv)|

+
∫︂

{|vn−v|>N}

√︂
|(Vn − V) : (Dvn − Dv)|,

(3.5.31)

by Hölder’s and Chebyshev’s inequalities we obtain

lim sup
n→+∞

∫︂
QT

√︂
|(Zn − Z) : (Dvn − Dv)| ≤ 2C√

N
, (3.5.32)

and
lim sup
n→+∞

∫︂
QT

√︂
|(Vn − V) : (Dvn − Dv)| ≤ 2C√

N
, (3.5.33)

which means, by letting N → ∞, that

(Zn − Z) : (Dvn − Dv) → 0 a.e. in QT ,

(Vn − V) : (Dvn − Dv) → 0 a.e. in QT .

Egoroff’s theorem then gives that for all ε > 0 there exists U ⊂ QT , |QT \U | ≤ ε such
that ∫︂

U

(Zn − Z) : (Dvn − Dv) → 0, (3.5.34)

∫︂
U

(Vn − V) : (Dvn − Dv) → 0. (3.5.35)

We conclude, thanks to the weak convergences of Zn,Vn,Dvn respectively to Z,V,Dv
that

lim
n→∞

∫︂
U

Zn : Dvn = lim
n→∞

∫︂
U

Zn : Dv =
∫︂
U

Z : Dv

and
lim

n→∞

∫︂
U

Vn : Dvn = lim
n→∞

∫︂
U

Vn : Dv =
∫︂
U

V : Dv.

Finally, all assumptions of Convergence Lemma 3.4.1 are fulfilled, thus (3.1.2) holds
almost everywhere in U . Since |QT \ U | ≤ ε we can let ε → 0 and obtain that (3.1.2)
holds almost everywhere in QT . Theorem 3.2.1 is proved.
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4. Analysis of planar flows of
viscoelastic fluids of Burgers type

4.1 Formulation of the problem
Let us recall from Section 1.2 that we are interested in the system (1.2.10)–(1.2.14).
In order to set-up a meaningful initial- and boundary-value problem, we complete the
system (1.2.10)–(1.2.14) with the no-slip boundary condition for the velocity and with
the initial conditions for v, B1 and B2, i.e.,

v = 0 on ΣT := (0, T ) × ∂Ω, (4.1.1)
v(0, ·) = v0 and Bi(0, ·) = Bi0(i = 1, 2) in Ω, (4.1.2)

where v0 and Bi0 are given functions satisfying suitable compatibility conditions spec-
ified later.

Our general goal concerning the problem (1.2.10)–(1.2.14), (4.1.1)– (4.1.2) is to
develop a robust PDE analysis for this problem. As a starting point, we aim at de-
veloping a sounding existence theory for arbitrary regular enough data (domain, time
interval, boundary and initial data, external forces, material coefficients). The results
presented here represent the first step towards this goal.

To put our investigation in proper context, we first show what kind of a priori esti-
mates one can expect for the problem (1.2.10)–(1.2.14), (4.1.1)–(4.1.2). For simplicity,
let us suppose that f ≡ 0 in QT . Taking the scalar product of (1.2.11) with v, inte-
grating the result over Ω, using the integration by parts, the constraint (1.2.10), the
boundary condition (4.1.1) and the symmetry of T, we obtain

1
2

d
dt

∫︂
Ω

ρ|v|2 +
∫︂
Ω

T : D = 0. (4.1.3)

Next, we take the scalar product of (1.2.12) with (I − B−1
i ) and integrate the result

over Ω. Using again (1.2.10) and (4.1.1), and also (1.2.5), we arrive at

d
dt

∫︂
Ω

(trBi − d− ln detBi) +
∫︂
Ω

−2D : Bi + 1
τi

∫︂
Ω

|B
2−λi

2
i (I − B−1

i )|2 = 0. (4.1.4)

Finally, taking the scalar product of (1.2.13) with D and using the fact that div v = 0,
we get

2ν
∫︂
Ω

|D|2 +
∫︂
Ω

2∑︂
i=1

GiBi : D =
∫︂
Ω

T : D. (4.1.5)

Thus, multiplying (4.1.4) by Gi/2 followed by taking the sum over i = 1, 2, and adding
the result to (4.1.3), using also (4.1.5), we deduce (after integration with respect to
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time) that

1
2

∫︂
Ω

(︄
ρ|v(t)|2 +

2∑︂
i=1

Gi(trBi(t) − d− ln detBi(t))
)︄

+
t∫︂

0

∫︂
Ω

(︄
2ν|D|2 +

2∑︂
i=1

Gi

2τi

|B
2−λi

2
i (I − B−1

i )|2
)︄

= 1
2

∫︂
Ω

(︄
ρ|v0|2 +

2∑︂
i=1

Gi(trBi0 − d− ln detBi0)
)︄
.

(4.1.6)

This identity leads to a priori estimates for the non-negative terms at the left-hand side
of (4.1.6) provided that the right-hand side of (4.1.6) is finite, which one achieves by
putting the proper requirements on the initial data accordingly. Our aim is to establish
the existence of a global weak solution to (1.2.10)–(1.2.14) for a large class of λ1, λ2
and we want to perform the analysis based just on the information coming from (4.1.6)
since one may not hope, in particular in higher dimensions, for better information.

Let us note that even in the case when G2 = 0 (or B2 ≡ O), there are only few stud-
ies regarding the long-time and large-data existence theory. Lions and Masmoudi [71]
analyzed the system (1.2.10)–(1.2.13) with λ1 = 1, G2 = 0, but instead of the convec-
tive derivative

∇
B1 in (1.2.12), they considered the term (B := B1)

∂tB +
d∑︂

j=1
vj∂xj

B − WB − BWT ,

where W := 1
2(∇v − ∇vT ). This type of observer-invariant time derivative simplifies

the analysis significantly. Its form is however very restrictive from the physical point
of view. (Also, this type of time derivative does not come out naturally from the
thermodynamical approach presented in [42].) Later on, Masmoudi [2], carrying on
some ideas developed in Hu and Lelièvre [72] that are close to the thermodynamical
set-up mentioned above, presented the theorem regarding the long-time and large-data
existence of weak solutions to the system (1.2.10)–(1.2.13) withG2 = 0 and λ := λ1 = 0,
B := B1 = F1FT

1 . This leads to the so called Giesekus model, see [73]. In [2], Masmoudi
outlined the proof of the weak sequential stability of hypothetical weak solutions in
function spaces coming from a priori estimates. Appropriate approximative problems
are however not constructed and consequently the proof of the existence of a weak
solution is not given. Despite bringing a couple of original ideas, Masmoudi [2] did not
attempt to provide the rigorous mathematical background to the statements connected
with the presence of nonlinear terms ∇vB in the governing equations, which in our
opinion requires some additional work. Further, it seems that the proof of the property
detF > 0 (the requirement (1.2.14)), presented in [2], contains several inconsistencies
at some crucial points. We are not aware of any other results for viscoelastic rate-type
fluid models fulfilling even the equations (1.2.10)–(1.2.13) with G2 = 0. In particular,
the case of the Oldroyd-B model (λ1 = 1) remains still open.

As said above, our goal is to develop a robust mathematical theory for (1.2.10)–
(1.2.14), (4.1.1)–(4.1.2) for a large range of λ1, λ2. However, the only a priori estimate
(4.1.6) may not be even sufficient to guarantee the L1-integrability of all terms in the
definition of a weak solution to (1.2.10)–(1.2.13). The most critical terms are ∇vBi.
Thanks to (4.1.6), ∇v ∈ (L2(QT ))2×2. Thus, to make sure that the terms ∇vBi are at
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least L1-integrable, we need Bi ∈ (L2(QT ))2×2. On the other hand looking at (4.1.6),
one may deduce that Bi ∈ (L2−λi(QT ))2×2. Hence, we naturally get a restriction on λi,
namely λi ≤ 0.

We also restrict ourselves to the analysis of two-dimensional flows. This limitation is
needed essentially in the existence proof for the identification of weak limits of ∇vBi.
Since we work with weak limits in L1 or weak∗ limits in the sense of measures, the
technique presented in this study requires the validity of the energy equality (4.1.3).
However, within the context of weak solutions, this is known to be true only in two
spatial dimensions. We believe that, in the three-dimensional setting, this crucial step
can be overcome using recently developed techniques based on the notion of the limits
in biting sense. However, the application of, for example, the L∞ or the parabolic
Lipschitz truncation of the velocity fields is much more complicated than in the case
of the Bingham type models. In the case of the Bingham type models studied in
Chapters 2 and 3 the dependence between the deviatoric part of the Cauchy stress
tensor and the symmetric part of the velocity gradient is monotone, which simplifies
the analysis significantly. (Also, in three spatial dimensions we would have to proceed
more carefully while proving the property detF > 0. Here we use the (in)equality
|adj A| ≤ |A| valid for all matrices A ∈ R2×2, which does not hold true in three
dimensions, see the inequality (4.5.89) in Subsection 4.5.5.)

To conclude, in this study, we prove the long-time and large-data existence of weak
solutions to (1.2.10)–(1.2.14), (4.1.1)–(4.1.2) with λi = 0, i = 1, 2, in two spatial
dimensions. The precise formulation of this statement is given in the next section.

The rest of this chapter is organized as follows. In Section 4.2 we fix notations
needed to define the concept of weak solutions to the studied problem and we formu-
late the main result. In Section 4.3 we present two assertions used in the existence
proof. In Sections 4.4–4.6 we prove the main result for the Giesekus model. In Sec-
tion 4.7 we complete the proof of the main result by considering the full problem: the
mixture/combination of two Giesekus viscoelastic models.

4.2 Formulation of the main result
Let us note that throughout this chapter we use the notation D := ∇v+(∇v)T

2 . For
clarity, we start with recalling the problem that we investigate here (achieved by taking
λ1 = λ2 = 0 in (1.2.10)–(1.2.14), (4.1.1)–(4.1.2) and restricting ourselves to the planar
flows, i.e. setting d = 2). For given T ∈ (0,∞), Ω ⊂ R2 being a domain (open,
bounded and connected set), initial data v0, F10 , F20 , the external body forces f and
material parameters ρ, ν, G1, G2, τ1, τ2, being all positive, we look for v, p, F1, F2
satisfying in QT := (0, T ) × Ω

div v = 0, (4.2.1)

ρ (∂tv + div(v ⊗ v)) + ∇p− 2ν divD −
2∑︂

i=1
Gi divBi = ρf , (4.2.2)

∂tBi + div (Bi ⊗ v) − (∇v)Bi − Bi(∇v)T + 1
τi

(︂
B2

i − Bi

)︂
= O, (i = 1, 2) (4.2.3)

Bi = FiFT
i , (i = 1, 2) (4.2.4)

detFi > 0, (i = 1, 2) (4.2.5)
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together with
v = 0 on ΣT := (0, T ) × ∂Ω, (4.2.6)

and

v(0, ·) = v0, Fi(0, ·) = Fi0 and Bi(0, ·) = Bi0 := Fi0FT
i0 (i = 1, 2) in Ω. (4.2.7)

Motivated by the a priori estimate (4.1.6), we introduce the following concept of
weak solution.

Definition 2 (weak solution). Let Ω ⊂ R2 be a domain with Lipschitz boundary, let
T ∈ (0,∞) be arbitrary. Let v0 ∈ L2

n,div and Fi0 ∈ (L2(Ω))d×d fulfill detFi0 > 0 almost
everywhere in Ω, ln detFi0 ∈ L1(Ω), i = 1, 2, and f ∈ L2(0, T ; (W 1,2

0,div)∗). A triple
[v,F1,F2] is called a weak solution to the problem (4.2.1)–(4.2.7) if (i = 1, 2)

v ∈ C([0, T ]; L2
n,div) ∩ L2(0, T ; W 1,2

0,div), ∂tv ∈ L2(0, T ; (W 1,2
0,div)∗), (4.2.8)

Fi ∈ C([0, T ]; (L2(Ω))2×2) ∩ (L4(QT ))2×2, ∂tFi ∈ L
4
3 (0, T ; ((W 1,2(Ω))2×2)∗), (4.2.9)

detFi > 0 a.e. in QT , ln detFi ∈ L∞([0, T ]; L1(Ω)), (4.2.10)

if for Bi := FiFT
i it holds

Bi ∈ C([0, T ]; (L1(Ω))2×2) ∩ (L2(QT ))2×2, ∂tBi ∈ L1(0, T ; ((W 1,4(Ω))2×2)∗), (4.2.11)

if, for all w ∈ W 1,2
0,div, A ∈ (W 1,4(Ω))2×2 and almost all t ∈ (0, T ), the following

identities hold true

ρ⟨∂tv,w⟩ − ρ
∫︂
Ω

(v ⊗ v) : ∇w + 2ν
∫︂
Ω

D : ∇w +
2∑︂

i=1

∫︂
Ω

GiBi : ∇w = ⟨f ,w⟩, (4.2.12)

⟨∂tBi,A⟩ −
∫︂
Ω

(Bi ⊗ v) : ∇A −
∫︂
Ω

(∇v Bi) : A −
∫︂
Ω

(Bi(∇v)T ) : A

+
∫︂
Ω

1
τi

(︂
B2

i − Bi

)︂
: A = 0,

(4.2.13)

and if the initial conditions v0, Fi0 and Bi0 are attained in the sense

lim
t→0+

(∥v(t) − v0∥2 + ∥Fi(t) − Fi0∥2 + ∥Bi(t) − Bi0∥1) = 0. (4.2.14)

The main result of this chapter is stated in the following theorem.

Theorem 4.2.1. For arbitrary data of (4.2.1)–(4.2.7) satisfying the assumptions in
Definition 2, there exists a weak solution to (4.2.1)–(4.2.7).

The proof of Theorem 4.2.1 is given in Sections 4.4–4.7. In the following Section 4.3,
we formulate two assertions, which will be employed in the proof of Theorem 4.2.1.
In Sections 4.4–4.6 we provide a detailed proof of Theorem 4.2.1 restricting ourselves
to the case G1 = 1 and G2 = 0, i.e. we do not consider the equation for B2. In
Section 4.7, we conclude the result for arbitrary G1, G2 > 0. Finally for the sake of
completeness, in Appendix A.2 we provide an auxiliary result concerning the properties
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of the evolutionary Stokes systems, which plays an important role in our proof (in order
to derive uniform estimates for the pressure); while it is also well understood nowadays.

Also, to simplify the presentation, we set for simplicity the positive constants ρ, 2ν,
τ1, τ2 to be equal to one and the external forces f to be identically equal to zero. As
one may check, if we took ρ, 2ν, τ1, τ2 > 0 and f ∈ L2(0, T ; (W 1,2

0,div)∗) arbitrary, the
proof of the existence of weak solutions to the system (4.2.1)–(4.2.7) would be made
essentially in the same way. We do not set G1, G2 to be equal to one since we study
the system with two different relaxation mechanisms with different weights.

4.3 Two useful lemmas
In this section we state two lemmas useful in the proof of Theorem 4.2.1, both of
them hold true for any d ∈ N, d ≥ 2. The first lemma is the Friedrichs lemma on
commutators. The second lemma concerns the monotonicity of one special matrix
function.

For any z ∈ Rm, where m = d or m = d+ 1, and h ∈ L1
loc(Rm), we set

hδ(z) :=
∫︂
Rm

ωδ(z − y)h(y) dy, (4.3.1)

where ωδ is the standard mollifying kernel supported in the ball of radius δ > 0.
Lemma 4.3.1 (Friedrichs lemma on commutators). Let m = d or m = d + 1. Let
p, q, r ∈ R, 1 ≤ p, q ≤ ∞ and 1

r
= 1

p
+ 1

q
. Let f ∈ Lp(Rm), g ∈ (Lq(Rm))d, ∇g ∈

(Lq(Rm))d×d. Then

∥ div(fδg) − div(fg)δ∥Lr(Rm) ≤ ∥f∥Lp(Rm)
(︂
∥g∥(Lq(Rm))d + ∥∇g∥(Lq(Rm))d×d

)︂
.

Moreover, if r < ∞, then

div(fδg) − div (fg)δ → 0 strongly in Lr(Rm) as δ → 0+.

Proof. See [74], or [75, Lemma 11.12 and Corollary 11.3].

Lemma 4.3.2 (Monotonicity of one matrix function). The function S : Rd×d → Rd×d

defined as
S(X) := XXTX for all X ∈ Rd×d

is monotone, i.e.

(S(X) − S(Y)) : (X − Y) ≥ 0 for all X,Y ∈ Rd×d. (4.3.2)

Proof. In the whole proof the symbol δij, where i, j ∈ {1, ..., d}, stands for the Kro-
necker symbol, i.e.

δij :=
{︄

1, if i = j
0, if i ̸= j

.

The i, j component of any matrix X ∈ Rd×d is denoted either as Xij, or as (X)ij. For
brevity in the computations the Einstein summation convention is used, i.e. all sum
indices are omitted.
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For all matrices X,Y ∈ Rd×d it holds

S(X) − S(Y) =
1∫︂

0

d
ds (S (Y + s(X − Y))) ds (4.3.3)

and
d
ds (S (Y + s(X − Y))) = ∂S (K(s))

∂ (K(s))ab

Lab, (4.3.4)

where K(s) := Y+ s(X−Y), L := X−Y. Collecting (4.3.3) and (4.3.4), one concludes

(S(X) − S(Y)) : (X − Y) =
1∫︂

0

∂ (S (K(s)))ij

∂ (K(s))ab

LabLij ds,

thus in order to prove (4.3.2) it suffices to show
∂ (S(K))ij

∂Kab

LabLij ≥ 0 for all K,L ∈ Rd×d. (4.3.5)

We write
∂ (S(K))ij

∂Kab

= ∂

∂Kab

(KimKkmKkj)

= δiaδmbKkmKkj + δakδmbKimKkj + δakδbjKimKkm

= δiaKkbKkj + δakKibKkj + δbjKimKam,

and finally
∂ (S(K))ij

∂Kab

LabLij = (δiaKkbKkj + δakKibKkj + δbjKimKam)LabLij

= KkbKkjLibLij +KibKkjLkbLij +KimKamLajLij

= (KLT ) : (KLT ) + (KLT ) : (KLT )T + (KTL) : (KTL)

≥ 1
2
(︂
|KLT |2 − |(KLT )T |2

)︂
+ |KTL|2 = |KTL|2 ≥ 0,

where the first inequality follows from the Young inequality. The lemma is proved.

4.4 System with evolutionary equation for the ten-
sor F

As introduced above, first we prove Theorem 4.2.1 for G1 = 1 and G2 = 0, and since we
do not consider the equation for B2, we simply abbreviate B := B1 and also F := F1.
Let us recall that we consider the external forces f to be identically equal to zero.
Carrying on the ideas developed by Masmoudi [2], we start with the setting containing
the evolutionary equation for the tensor F instead of the evolutionary equation for
B = FFT . More specifically, we look for [v, p,F] satisfying in QT the following system
of equations:

div v = 0, (4.4.1)
∂tv + div(v ⊗ v) + ∇p− divD − divFFT = 0, (4.4.2)

∂tF + div(F ⊗ v) − (∇v)F + 1
2(FFTF − F) = O, (4.4.3)

detF > 0, (4.4.4)
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together with the boundary condition
v = 0 on ΣT , (4.4.5)

and with the initial conditions
v(0, ·) = v0 and F(0, ·) = F0 in Ω. (4.4.6)

Formally, multiplying (4.4.3) by FT from right, multiplying the transpose of (4.4.3) by
F from left and summing the results, we obtain the equation
∂t(FFT ) + div

(︂
(FFT ) ⊗ v

)︂
− ∇v(FFT ) − (FFT )(∇v)T + (FFT )2 − FFT = O. (4.4.7)

Setting B := FFT , G1 = 1, G2 = 0, the equation (4.4.7) coincides with (4.2.3).
To start with (4.4.1)–(4.4.6) brings several advantages. An obvious but also im-

portant one is that the tensor F has better integrability than B = FFT . Formally,
taking the scalar product of (4.4.2) with v, and the scalar product of (4.4.3) with F,
adding them together and integrating over QT , we deduce (for details see the rigorous
computations in Appendix A.3) the following a priori estimate (valid for all t ∈ (0, T )):

∥v(t)∥2
2 + ∥F(t)∥2

2 +
T∫︂

0

(︂
∥∇v∥2

2 + ∥F∥4
4

)︂
≤ C(T, ∥v0∥2, ∥F0∥2).

Better integrability of F expands the set of admissible test functions in the correspond-
ing equations, which increases the chance to obtain, for example, weak sequential
stability of these solutions, or to make a short proof of the property detF > 0 (the
condition (4.2.5)). Also, once we rigorously proceed from (4.4.3) to (4.4.7), we imme-
diately obtain B of the form B = FFT (the condition (4.2.4)), satisfying (4.2.3).

We state the existence result for the system (4.4.1)–(4.4.6) in the following theorem.
Let us note that this represents the key result from which we also read the validity of
Theorem 4.2.1.
Theorem 4.4.1. Let Ω ⊂ R2 be a domain with Lipschitz boundary and let T ∈ (0,∞).
Let v0 ∈ L2

n,div, F0 ∈ (L2(Ω))2×2, detF0 > 0 a.e. in Ω and ln detF0 ∈ L1(Ω). Then
there exists a couple [v,F] fulfilling

v ∈ C([0, T ];L2
n,div) ∩ L2(0, T ;W 1,2

0,div), ∂tv ∈ L2(0, T ; (W 1,2
0,div)∗),

F ∈ C([0, T ]; (L2(Ω))2×2) ∩ (L4(QT ))2×2, ∂tF ∈ L
4
3
(︂
0, T ; ((W 1,2(Ω))2×2)∗

)︂
,

detF > 0 a.e. in QT ,

satisfying, for all w ∈ W 1,2
0,div, A ∈ (W 1,2(Ω))2×2 and almost all t ∈ (0, T ),

⟨∂tv,w⟩ −
∫︂
Ω

(v ⊗ v) : ∇w +
∫︂
Ω

D : ∇w +
∫︂
Ω

(FFT ) : ∇w = 0, (4.4.8)

⟨∂tF,A⟩ −
∫︂
Ω

(F ⊗ v) : ∇A −
∫︂
Ω

((∇v)F) : A + 1
2

∫︂
Ω

(FFTF − F) : A = 0, (4.4.9)

and attaining the initial conditions in the sense
lim

t→0+
(∥v(t) − v0∥2 + ∥F(t) − F0∥2) = 0. (4.4.10)

The following section is devoted to the proof of Theorem 4.4.1. In Subsection 4.5.1,
we introduce the parabolic ε-approximation and establish the existence of its weak
solution. Then in the rest of Section 4.5 we take the limit ε → 0+ and prove Theo-
rem 4.4.1.
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4.5 Proof of Theorem 4.4.1

4.5.1 Parabolic ε-approximations
We start with the system approximating (4.4.1)–(4.4.6), where we add to the right-
hand side of the equation (4.4.3) the term representing stress diffusions. The system,
where ε ∈ (0, 1) is arbitrary and all the equations are supposed to be satisfied in QT ,
reads as follows:

div v = 0, (4.5.1)
∂tv + div(v ⊗ v) + ∇p− divD − div(FFT ) = 0, (4.5.2)

∂tF + div(F ⊗ v) − (∇v)F + 1
2
(︂
FFTF − F

)︂
= ε∆F. (4.5.3)

The system is completed with the boundary conditions

v = 0 and (∇F)n = O on ΣT , (4.5.4)

and with the initial conditions

v(0, ·) = v0 and F(0, ·) = F0 in Ω. (4.5.5)

Let us note that the functions v0, F0 introduced in (4.5.5) coincide with the functions
v0, F0 introduced in Section 4.2 and Section 4.4.

Let us introduce the advantages of our choice of approximations. First, the presence
of the term ε∆F provides the estimate

ε∥∇F∥2
2,QT

≤ C(T, ∥v0∥2, ∥F0∥2). (4.5.6)

The estimate (4.5.6) (together with the uniform bounds of F and ∂tF in appropriate
norms and the Aubin-Lions compactness lemma) makes the proof of the existence of
weak solutions to (4.5.1)–(4.5.5) relatively simple (the system (4.5.1)–(4.5.3) is close to
an advection-diffusion equation). Next, considering the sequence {vε}, {Fε} of weak
solutions to (4.5.1)–(4.5.5) and letting ε → 0+, we deduce that the weak limits of the
sequences {vε}, {Fε} are weak solutions to (4.4.1)–(4.4.6) provided that the sequence
{Fε} is compact in (L2(QT ))2×2. The proof of the compactness of {Fε} in (L2(QT ))2×2 is
the most complicated part of the proof of Theorem 4.4.1. However, with the introduced
approximations, it is not much more complicated than the proof of the weak sequential
stability of (hypothetical) weak solutions to (4.4.1)–(4.4.6). The only difference is that
without the presence of the supplementary stress diffusion term ε∆Fε (it is present
in (4.5.3), but not in (4.4.3)) the key relation (4.5.57) proved below would hold true
with equality. However, the achieved inequality in (4.5.57) does not complicate further
computations.

Since the parabolic approximation is not the main part of the paper and since the
existence of solutions to very similar problems in the context of problems of viscoelas-
ticity with stress diffusion were established e.g. in [76, 77, 78, 79] we do not provide
the detailed proof here, but the interested reader can find it in Appendix A.3 (see
Proposition A.3.1). However, for clarity, we recall that for each ε > 0 there exists a

59



couple (vε,Fε) fulfilling

vε ∈ C([0, T ];L2
n,div) ∩ L2(0, T ;W 1,2

0,div), (4.5.7)
∂tvε ∈ L2(0, T ; (W 1,2

0,div)∗), (4.5.8)
Fε ∈ Cweak([0, T ]; (L2(Ω))2×2) ∩ L2(0, T ; (W 1,2(Ω))2×2), (4.5.9)

∂tFε ∈ L
4
3
(︂
0, T ; ((W 1,2(Ω))2×2)∗

)︂
, (4.5.10)

and satisfying, for all w ∈ W 1,2
0,div, A ∈ (W 1,2(Ω))2×2 and almost all t ∈ (0, T ) (we

denote Dε := 1
2

(︂
∇vε + (∇vε)T

)︂
),

⟨∂tvε,w⟩ −
∫︂
Ω

(vε ⊗ vε) : ∇w +
∫︂
Ω

Dε : ∇w +
∫︂
Ω

(FεFT
ε ) : ∇w = 0, (4.5.11)

⟨∂tFε,A⟩ −
∫︂
Ω

(Fε ⊗ vε) : ∇A −
∫︂
Ω

((∇vε)Fε) : A + 1
2

∫︂
Ω

(FεFT
ε Fε − Fε) : A

+ε
∫︂
Ω

∇Fε : ∇A = 0,
(4.5.12)

with the initial conditions v0, F0 fulfilled in the sense

lim
t→0+

(∥vε(t) − v0∥2 + ∥Fε(t) − F0∥2) = 0. (4.5.13)

In addition, we have the following uniform bounds:

sup
t∈(0,T )

(︂
∥vε(t)∥2

2 + ∥Fε(t)∥2
2

)︂
+ ∥∇vε∥2

2,QT
+ ∥Fε∥4

4,QT
+ ε∥∇Fε∥2

2,QT

≤ C̃(T, ∥v0∥2, ∥F0∥2),
(4.5.14)

∥∂tvε∥L2(0,T ;(W 1,2
0,div)∗) + ∥∂tFε∥

L
4
3 (0,T ;((W 1,2(Ω))2×2)∗)

≤ C(T,Ω, ∥v0∥2, ∥F0∥2). (4.5.15)

In the rest of this section, we let ε → 0+ and prove Theorem 4.4.1.

4.5.2 Limit ε → 0+

The uniform estimates (4.5.14) and (4.5.15) imply the existence of v, F fulfilling the
following convergence results (for suitable subsequences of {vε}, {Fε}, which we do not
relabel):

vε ⇀
∗ v weakly-* in L∞(0, T ;L2

n,div), (4.5.16)
vε ⇀ v weakly in L2(0, T ;W 1,2

0,div) ∩ (L4(QT ))2, (4.5.17)
∂tvε ⇀ ∂tv weakly in L2

(︂
0, T ; (W 1,2

0,div)∗
)︂
, (4.5.18)

Fε ⇀
∗ F weakly-* in L∞

(︂
0, T ; (L2(Ω))2×2

)︂
, (4.5.19)

Fε ⇀ F weakly in (L4(QT ))2×2, (4.5.20)
ε∇Fε → O strongly in (L2(QT ))2×2×2, (4.5.21)
∂tFε ⇀ ∂tF weakly in L

4
3
(︂
0, T ; ((W 1,2(Ω))2×2)∗

)︂
. (4.5.22)
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Since v ∈ L2(0, T ;W 1,2
0,div) and ∂tv ∈ L2(0, T ; (W 1,2

0,div)∗), F ∈ L∞ (0, T ; (L2(Ω))2×2) and
∂tF ∈ L

4
3 (0, T ; ((W 1,2(Ω))2×2)∗), the functions v, F satisfy

v ∈ C([0, T ];L2
n,div), (4.5.23)

F ∈ Cweak

(︂
[0, T ]; (L2(Ω))2×2

)︂
. (4.5.24)

Next, to identify the nonlinearities involving v, we can employ (4.5.17), (4.5.18) and
the Aubin–Lions compactness lemma, to get

vε → v strongly in (Lq(QT ))2 for all q ∈ [1, 4). (4.5.25)

Then the weak convergences (4.5.17), (4.5.20) together with the strong convergence
(4.5.25) yield

vε ⊗ vε ⇀ v ⊗ v weakly in (L2(QT ))2×2, (4.5.26)
Fε ⊗ vε ⇀ F ⊗ v weakly in (L2(QT ))2×2×2. (4.5.27)

There are however nonlinearities involving F and ∇v that cannot be handled by the
convergence results (4.5.16)–(4.5.22) and (4.5.25). Using the notation f(aε) ⇀(∗) f(a)
weakly (or weakly-*) in some space X if aε ⇀ a in some space Y and {f(aε)} is
uniformly bounded in X, it follows from the above uniform estimates and convergences
that (for suitable subsequences)

∇vεFε ⇀ (∇v)F weakly in (L 4
3 (QT ))2×2, (4.5.28)

FεFT
ε ⇀ FFT weakly in (L2(QT ))2×2, (4.5.29)

|Fε|2 ⇀ |F|2 weakly in L2(QT ), (4.5.30)
FεFT

ε Fε ⇀ FFTF weakly in (L 4
3 (QT ))2×2, (4.5.31)

|FεFT
ε |2 ⇀∗ |FFT |2 weakly-* in M(QT ), (4.5.32)

∇vεFεFT
ε ⇀

∗ ∇vFFT weakly-* in (M(QT ))2×2, (4.5.33)
|Dε|2 ⇀∗ |D|2 weakly-* in M(QT ). (4.5.34)

These convergence results, when applied to (4.5.11) and (4.5.12), suffice to conclude
that, for all w ∈ W 1,2

0,div, A ∈ (W 1,2(Ω))2×2 and almost all t ∈ (0, T ),

⟨∂tv,w⟩ −
∫︂
Ω

(v ⊗ v) : ∇w +
∫︂
Ω

D : ∇w +
∫︂
Ω

FFT : ∇w = 0, (4.5.35)

⟨∂tF,A⟩ −
∫︂
Ω

(F ⊗ v) : ∇A −
∫︂
Ω

(∇v)F : A + 1
2

∫︂
Ω

(FFTF − F) : A = 0. (4.5.36)

In addition, almost identically as in the preceeding section, we can prove the attainment
of the initial conditions (4.4.10) and thus, we omit the details here. It remains to prove
the strong continuity of F in time and to identify the weak limits of nonlinear terms.

4.5.3 Strong continuity of F in time
The objective of this part is to strengthen (4.5.24), more precisely to prove

F ∈ C([0, T ]; (L2(Ω))2×2). (4.5.37)
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Recalling that

v ∈ L2(0, T ;W 1,2
0,div) ∩ (L4(QT ))2, F ∈ (L4(QT ))2×2,

∇vF,FFTF ∈ (L 4
3 (QT ))2×2,

(4.5.38)

we extend v by zero and F by the identity tensor outside of Ω. Let δ > 0 be arbitrary.
Then we test (4.5.36) by A(·) := ωδ(x−·)I, where x ∈ Ω is fixed, ωδ is the standard mol-
lifying kernel with respect to the spatial variable, see (4.3.1), and I is the identity tensor.
Multiplying the result by ϕ(t)Ã(x), where ϕ ∈ C∞

c ((0, T )) and Ã ∈ (C∞
c (R2))2×2 are

arbitrary and integrating it with respect to [t,x] over (0, T ) × R2, using also (4.5.38),
standard properties of mollification and the du Bois-Reymond lemma, we obtain

∂tFδ ∈ L
4
3 (0, T ; (C1(Ω))2×2)

and

∂tFδ = − div(F ⊗ v)δ + (∇vF)δ − 1
2
(︂
(FFTF)δ − Fδ

)︂
a.e. in QT . (4.5.39)

Taking the scalar product of (4.5.39) with 2Fδ and integrating the result over (t0, t1)×Ω,
we get

∥Fδ(t1)∥2
2 − ∥Fδ(t0)∥2

2 + 2
t1∫︂

t0

∫︂
Ω

(︂
div(Fδ ⊗ v) − (∇vF)δ

)︂
: Fδ

+
t1∫︂

t0

∫︂
Ω

(︂
(FFTF)δ − Fδ

)︂
: Fδ = 2

t1∫︂
t0

∫︂
Ω

Eδ : Fδ,

(4.5.40)

where
Eδ := div(Fδ ⊗ v) − div(F ⊗ v)δ.

Then we let δ → 0+ in (4.5.40). Employing (4.5.38), Lemma 4.3.1 implies

Eδ(t) → O strongly in (L 4
3 (Ω))2×2 for a.a. t ∈ (0, T ) (4.5.41)

and (using also the Young inequality)

∥Eδ(t)∥
4
3
4
3

≤ ∥F(t)∥
4
3
4 ∥v(t)∥

4
3
1,2 ≤ ∥F(t)∥4

4 + ∥v(t)∥2
1,2 for a.a. t ∈ (0, T ).

The application of the Lebesgue dominated convergence theorem on (4.5.41) with the
majorant ∥F∥4

4 + ∥v∥2
1,2 integrable over (0, T ) (the integrability over (0, T ) follows from

(4.5.38)) then leads to

Eδ → O strongly in (L 4
3 (QT ))2×2. (4.5.42)

Hence letting δ → 0+ in (4.5.40), using the integration by parts, (4.5.38), (4.5.42) and
standard properties of mollifying, we obtain

∥F(t1)∥2
2 − ∥F(t0)∥2

2 = 2
t1∫︂

t0

∫︂
Ω

(∇vF) : F −
t1∫︂

t0

∫︂
Ω

FFTF : F +
t1∫︂

t0

∥F∥2
2. (4.5.43)
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By (4.5.38) the terms |F|2, (∇v)F : F and FFTF : F are integrable over QT . Hence it
follows from (4.5.43) that

lim
t1→t0

∥F(t1)∥2
2 = ∥F(t0)∥2

2 for all t0 ∈ (0, T ),

lim
t1→0+

∥F(t1)∥2
2 = ∥F(0)∥2

2, lim
t1→T −

∥F(t1)∥2
2 = ∥F(T )∥2

2.

These identities combined with (4.5.24) are equivalent to (4.5.37).

4.5.4 Compactness of {Fε} in (L2(QT ))2×2

Our aim is to show that FFT = FFT , ∇vF = ∇vF and FFTF = FFTF in (4.5.35) and
(4.5.36). Since ∇vε ⇀ ∇v weakly in (L2(QT ))2×2 by (4.5.17) and Fε ⇀ F weakly in
(L4(QT ))2×2 by (4.5.20), we see that it is sufficient, for the above identifications, to
prove the compactness of {Fε} in (L2(QT ))2×2, which is the main result of this section.

Let us start with the observation

lim
ε→0+

∥Fε − F∥2
2,QT

= lim
ε→0+

∫︂
QT

(︂
|Fε|2 − 2Fε : F + |F|2

)︂
=
∫︂

QT

(︂
|F|2 − |F|2

)︂
,

where the last equality follows from (4.5.20) and (4.5.30). This observation reduces
the proof of the compactness of {Fε} in (L2(QT ))2×2 to proving

|F|2 = |F|2 a.e. in QT . (4.5.44)

Road map of the proof

We first present heuristic arguments how to prove (4.5.44) pointing out the main diffi-
culties. Following the approach outlined by Masmoudi, we formally scalarly multiply
(4.5.3) by Fε and (4.4.3) by F, make the difference of the resulting identities and let
ε → 0+. After the calculation, which incorporates, among other things, the use of the
evolutionary equations for vε and v, we arrive at the inequality formally written as

∂t(|F|2 − |F|2) + div
(︂
(|F|2 − |F|2) v

)︂
≤ L

(︂
|F|2 − |F|2

)︂
, (4.5.45)

where L is a fixed function. Let us note that the quantity |F|2 − |F|2 is nonnegative.
The inequality (4.5.45) may seem to be prepared for applying the Gronwall lemma
and concluding (4.5.44). However, this conclusion is not straightforward unless L ∈
L∞(QT ),

∫︁
Ω(|F|2−|F|2) belongs to C([0, T ]) and |F|2(0, ·) = |F|2(0, ·) almost everywhere

in Ω, about which we have no information (we do not even know whether |F|2 is weakly
continuous with respect to time). Deriving the inequality (4.5.45) in virtue of the
approach described above is also a non-trivial task and requires some new techniques.
For example, in order to avoid the obstacles connected with the presence of nonlinear
terms |FFT |2, coming from (4.5.3) (with Fε in the role of F) formally multiplied by Fε

and limited as ε → 0+, and FFTF : F, coming from (4.4.3) formally multiplied by F,
we show that the difference |FFT |2 − FFTF : F is nonnegative in M(QT ) employing
the monotonicity of the matrix function S(X) := XXTX for all X ∈ R2×2, introduced
in Lemma 4.3.2. Last but not least, in order to obtain a version of the inequality
(4.5.45), from which we will be capable of concluding (4.5.44), we need (due to the

63



presence of the terms ∇v : (FFT ), comming from (4.5.3) multiplied by Fε and limited
as ε → 0+, and ∇vF : F, comming from (4.4.3) multiplied by F) to use the evolutionary
equations for vε and v tested by functions that are not divergence free. This requires
to reconstruct the pressures pε, p and show the convergence of pε to p in a suitable
sense. As this is a kind of a more general tool, which might have further applications
(as one may check, we can replace FεFT

ε and FFT acting in Proposition 4.5.1 by any
Hε converging weakly to H in L2(0, T ; (L2

loc(Ω))2×2)), we introduce the result on the
reconstruction of the pressures and their convergence before we provide the proof of
(4.5.44) itself.

Reconstruction of the pressures and their convergence

For any Ω̃ ∈ C0,1, Ω̃ ⊂ Ω̃ ⊂ Ω, we use the following notation

W 1,2
0 (Ω̃) := {u ∈ W 1,2(Ω̃), u = 0 on ∂Ω̃},˜︂W 1,2

0,div := {u ∈ (W 1,2
0 (Ω̃))2, div u = 0 in Ω̃}.

Proposition 4.5.1. Let Ω̃ ⊂ Ω̃ ⊂ Ω, Ω̃ ∈ C∞. Then for every ε ∈ (0, 1) there exists pε

of the form pε = p1,ε + p2,ε, where

p1,ε ∈ L2(0, T ;W 2,2(Ω̃)), (4.5.46)
p2,ε ∈ L2((0, T ) × Ω̃), (4.5.47)

∂t (vε + ∇p1,ε) ∈ L2
(︂
0, T ; ((W 1,2

0 (Ω̃))2)∗
)︂

(4.5.48)

and, for all w ∈ (W 1,2
0 (Ω̃))2 and almost all t ∈ (0, T ), it holds

⟨∂t(vε + ∇p1,ε),w⟩ =
∫︂
Ω̃

(Gε : ∇w) +
∫︂
Ω̃

p2,ε div w, (4.5.49)

where Gε := (vε ⊗ vε) −Dε −FεFT
ε . Next, there exists p of the form p = p1 + p2, where

p1 ∈ L2(0, T ;W 2,2(Ω̃)), (4.5.50)
p2 ∈ L2((0, T ) × Ω̃), (4.5.51)

∂t (v + ∇p1) ∈ L2
(︂
0, T ; ((W 1,2

0 (Ω̃))2)∗
)︂

(4.5.52)

and, for all w ∈ (W 1,2
0 (Ω̃))2 and almost all t ∈ (0, T ), it holds

⟨∂t(v + ∇p1),w⟩ =
∫︂
Ω̃

(G : ∇w) +
∫︂
Ω̃

p2 div w, (4.5.53)

where G := (v ⊗ v) − D − FFT . Moreover, we have the following convergence results
as ε → 0+

p1,ε → p1 strongly in L2(0, T ;W 2,2
loc (Ω̃)), (4.5.54)

p2,ε ⇀ p2 weakly in L2((0, T ) × Ω̃). (4.5.55)

In addition, the functions ∇p1,ε and ∇p1 belong to C([0, T ]; (L2(Ω̃))2), and

∇p1,ε(0, ·) = ∇p1(0, ·) a.e. in Ω̃. (4.5.56)

Proof. The proof of the first eight statements, i.e. (4.5.46)–(4.5.53), follows almost step
by step the proof presented in [80]. However, for the sake of completeness we present
the full proof of the proposition in Appendix A.2.
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Rigorous proof of compactness of {Fε} in (L2(QT ))2×2 is split into the follow-
ing three key steps.

Step 1 - Differential (in)equalities for |F|2 and |F|2. In this step, we shall show
that, for all nonnegative φ ∈ C∞

c ((−∞, T ) × Ω), the following relations hold true:

−
∫︂

QT

|F|2∂tφ−
∫︂
Ω

|F0|2φ(0) −
∫︂

QT

(︂
|F|2v

)︂
· ∇φ− 2

⟨︂
∇v : (FFT ), φ

⟩︂
{M(QT ),C(QT )}

+
⟨︂
|FFT |2, φ

⟩︂
{M(QT ),C(QT )}

−
∫︂

QT

|F|2φ ≤ 0

(4.5.57)

and

−
∫︂

QT

|F|2 ∂tφ−
∫︂
Ω

|F0|2φ(0) −
∫︂

QT

(︂
|F|2v

)︂
· ∇φ− 2

∫︂
QT

∇vF : (φF)

+
∫︂

QT

(︂
FFTF : F − |F|2

)︂
φ = 0.

(4.5.58)

Let us note that in (4.5.57) and (4.5.58) all differential operators act on the test func-
tions φ. In further computations it enables us to extend all functions acting in the
difference between (4.5.57) and (4.5.58) by zero in (−∞, 0) × (R2 \ Ω) and to mollify
the equations over time and space such that the terms

∫︁
Ω(|F|2(t, ·) − |F|2(t, ·))δ tend

to zero as δ → 0+ and t → 0−. As we will see, this approach eliminates the obstacles
connected with the lack of information on the time continuity of |F|2. Moreover, in
(4.5.57) there is no more the term containing ε∆Fε : Fε, and this is the reason why in
(4.5.57) the inequality sign appears.
Step 2 - Differential inequality for |F|2−|F|2. In this step, we shall deduce (4.5.45),
which in a rigorous form can be written as

−
∫︂

QT

(︂
|F|2 − |F|2

)︂
∂tφ−

∫︂
QT

(︂
|F|2 − |F|2

)︂
v · ∇φ ≤

∫︂
QT

L
(︂
|F|2 − |F|2

)︂
φ, (4.5.59)

where L ∈ L2(QT ) is a fixed function specified below and φ ∈ C∞
c ((−∞, T ) × Ω)

nonnegative is arbitrary.
Step 3 - Renormalisation of (4.5.59) and final conclusion. In this step, we
renormalise (4.5.59) and then finally conclude (4.5.44). Let us note that due to the
renormalisation introduced below, we do not need the function L to be in L∞(QT ), it
suffices L ∈ L2(QT ). Also, in order to prove (4.5.44), we need to apply the fact that
Fε(0, ·) = F(0, ·) = F0 almost everywhere in Ω in an effective way, which we would not
be able to do without the renormalisation.

Ad Step 1: Proof of (4.5.57)–(4.5.58). First let us extend vε by zero and Fε con-
tinuously with respect to (W 1,2(R2))2×2 norm outside of Ω. For a fixed δ0 > 0
let us introduce the notation Ωδ0 := {x ∈ Ω; dist(x, ∂Ω) > δ0}. Let δ ∈ (0, δ0).
Throughout Step 1, in order to avoid writing too many lower indices, we denote the
standard mollification of a function g ∈ L1

loc(R2) with respect to the spatial vari-
able as gδ (instead of gδ). Since vε belongs to C([0, T ];L2

n,div) ∩ L2(0, T ;W 1,2
0,div) and
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Fε ∈ (L4(QT ))2×2, it follows from (4.5.12) and from standard properties of mollifying
that ∂tFδ

ε ∈ L
4
3 (0, T ; (C2(Ωδ0))2×2), and, almost everywhere in (0, T ) × Ωδ0 , we have

2∂tFδ
ε + 2 div

(︂
Fδ

ε ⊗ vε

)︂
− 2 (∇vεFε)δ +

(︂
FεFT

ε Fε − Fε

)︂δ
− 2ε∆Fδ

ε = 2Eδ
ε

with
Eδ

ε := div(Fδ
ε ⊗ vε) − div(Fε ⊗ vε)δ.

Let us multiply this identity scalarly by Fδ
εφ, where φ ∈ Cc((−∞, T )×Ωδ0) nonnegative

is arbitrary, and integrate the result over QT . Using the integration by parts and the
property div vε = 0, we get (let us note that Fδ

ε ∈ C([0, T ]; (L2(Ωδ0))2×2) as Fδ
ε ∈

L4(0, T ; (C2(Ω))2×2) and, as mentioned above, ∂tFδ
ε ∈ L

4
3 (0, T ; (C2(Ωδ0))2×2))

−
∫︂

QT

|Fδ
ε|2(∂tφ) −

∫︂
Ω

|Fδ
ε(0)|2φ(0) −

∫︂
QT

(|Fδ
ε|2vε) · ∇φ− 2

∫︂
QT

(∇vεFε)δ : (φFδ
ε)

+
∫︂

QT

(︂
FεFT

ε Fε − Fε

)︂δ
: (φFδ

ε) + 2ε
∫︂

QT

|∇Fδ
ε|2φ− |Fδ

ε|2∆φ

= 2
∫︂

QT

Eδ
ε : (φFδ

ε).

(4.5.60)

Now let us take the limit δ → 0+. Since Fε ∈ (L4(QT ))2×2, vε ∈ L2(0, T ;W 1,2
0,div), we

can use Lemma 4.3.1 to deduce for almost all t ∈ (0, T )

φEδ
ε(t) → O strongly in (L 4

3 (Ω))2×2 (4.5.61)

and

∥φEδ
ε(t)∥

4
3
4
3

≤ C∥Fε(t)∥
4
3
4 ∥vε(t)∥

4
3
1,2 ≤ C(∥Fε(t)∥4

4 + ∥vε(t)∥2
1,2), (4.5.62)

where the second inequality follows from the Young inequality. Since Fε ∈ (L4(QT ))2×2

and vε ∈ L2(0, T ;W 1,2
0,div), we see that for any fixed ε > 0 the right-hand side of

(4.5.62) is integrable over (0, T ), and thus using (4.5.61) and the Lebesgue dominated
convergence theorem, we obtain

lim
δ→0+

T∫︂
0

∥φEδ
ε∥

4
3
4
3

= 0.

Consequently, since Fε ∈ (L4(QT ))2×2 (hence supδ>0 ∥Fδ
ε∥4,QT

< ∞), we have that

lim
δ→0+

∫︂
QT

Eδ
ε : (φFδ

ε) = 0. (4.5.63)

Letting δ → 0+ in (4.5.60), employing (4.5.63), (A.3.29), the fact that Fε(0) = F0
almost everywhere in Ω, which follows from (A.3.41) with Fε in the role of F, using
also standard properties of mollifying and nonnegativity of the term 2ε

∫︁
QT

|∇Fδ
ε|2φ,

we arrive at

−
∫︂

QT

|Fε|2(∂tφ) −
∫︂
Ω

|F0|2φ(0) −
∫︂

QT

(|Fε|2vε) · ∇φ− 2
∫︂

QT

∇vε : (φFεFT
ε )

+
∫︂

QT

(︂
|FεFT

ε |2 − |Fε|2
)︂
φ ≤ 2ε

∫︂
QT

|Fε|2∆φ.
(4.5.64)
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At this stage, we let ε → 0+ in (4.5.64). Taking into account the convergences (4.5.25),
(4.5.30), (4.5.32), (4.5.33) and the fact that δ0 > 0 is arbitrary, we deduce (4.5.57).

To prove (4.5.58), we proceed similarly. Extending F and v by zero outside of Ω,
using very similar arguments as above, (4.5.36) implies that

−
∫︂

QT

|Fδ|2(∂tφ) −
∫︂
Ω

|Fδ
0|2φ(0) −

∫︂
QT

(|Fδ|2v) · ∇φ− 2
∫︂

QT

(︂
∇vF

)︂δ
: (φFδ)

+
∫︂

QT

(︂
(FFTF − F)δ : Fδ

)︂
φ = 2

∫︂
QT

Eδ : (φFδ)
(4.5.65)

with
Eδ := div(Fδ ⊗ v) − div(F ⊗ v)δ.

Using Lemma 4.3.1, the Lebesgue dominated convergence theorem, the properties F ∈
(L4(QT ))2×2, v ∈ L2(0, T ;W 1,2

0,div) and F0 ∈ (L2(Ω))2×2, we let δ → 0+ in (4.5.65) and
deduce (4.5.58).

Ad Step 2: Proof of (4.5.59). We shall derive the inequality (4.5.59) from (4.5.57)
and (4.5.58) attained in Step 1. Indeed, subtracting (4.5.57) from (4.5.58), we obtain

−
∫︂

QT

(|F|2 − |F|2)∂tφ−
∫︂

QT

(︂
(|F|2 − |F|2)v

)︂
· ∇φ ≤

∫︂
QT

(|F|2 − |F|2)φ

+ 2
⟨︂
∇v : (FFT ) − ∇vF : F, φ

⟩︂
{M(QT ),C(QT )}

−
⟨︂
|FFT |2 − FFTF : F, φ

⟩︂
{M(QT ),C(QT )}

.

(4.5.66)

Hence, we need to handle the second and the third term on the right-hand side of
(4.5.66). To this aim we show that1⟨︂

|FFT |2 − FFTF : F, φ
⟩︂
{M(QT ),C(QT )} ≥ 0, (4.5.67)⟨︂

∇v : FFT − ∇vF : F, φ
⟩︂
{M(QT ),C(QT )} ≤

∫︂
QT

L̃(|F|2 − |F|2)φ (4.5.68)

with L̃ ∈ L2(QT ) being a fixed function specified below.
We start with proving (4.5.67). The convergence results (4.5.20), (4.5.31) and

(4.5.32) imply that⟨︂
|FFT |2 − FFTF : F, φ

⟩︂
{M(QT ),C(QT )} = lim

ε→0+

∫︂
QT

(︂
|FεFT

ε |2 − (FεFT
ε Fε) : F

)︂
φ

= lim
ε→0+

∫︂
QT

(FεFT
ε Fε) : (Fε − F)φ− (FFTF) : (Fε − F)φ

= lim
ε→0+

∫︂
QT

(︂
(FεFT

ε Fε − FFTF) : (Fε − F)
)︂
φ ≥ 0,

where the last inequality follows from the monotonicity of the matrix function S(X) :=
XXTX for all X ∈ R2×2, see Lemma 4.3.2.

1Note that here is the main reason why we consider only the two dimensional setting. In order
to show (4.5.68) one needs to identify I1 in (4.5.72), which is known only in two dimensions. In the
three dimensional setting, one must use a different approach.
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The proof of (4.5.68) is more difficult. We decompose the left-hand side of (4.5.68)
into ∑︁3

j=1 Ij, where

I1 :=
⟨︂
∇v : (FFT ) − ∇v : FFT , φ

⟩︂
{M(QT ),C(QT )} (4.5.69)

I2 :=
∫︂

QT

(︂
∇v : FFT − ∇v : (FFT )

)︂
φ, (4.5.70)

I3 :=
∫︂

QT

(︂
∇v : (FFT ) − ∇vF : F

)︂
φ (4.5.71)

and treat each term separately.

For I1, we show, with the help of the limiting passage ε → 0+ in (4.5.11), that

I1 =
⟨︂
|D|2 − |D|2, φ

⟩︂
{M(QT ),C(QT )} . (4.5.72)

To prove (4.5.72), we employ Lemma 4.5.1 on the reconstruction of the pressures pε,
p and their convergence and the convergence results from Subsection 4.5.2. For ar-
bitrary φ ∈ C∞

c ((−∞, T ) × Ω) we can find a smooth set Ω̃ ⊂ Ω̃ ⊂ Ω such that
φ ∈ C∞

c ((−∞, T ) × Ω̃). Then for a fixed t ∈ (0, T ) we subtract (4.5.53) tested by
(v + ∇p1)φ from (4.5.49) tested by (vε + ∇p1,ε)φ, integrate the result over (0, T ), use
(4.5.34) and let ε → 0+ to obtain

I1 = lim
ε→0+

∫︂
QT

(︂
∇vε : (FεFT

ε ) − ∇v : (FεFT
ε )
)︂
φ = lim

ε→0+

9∑︂
j=1

Jj,ε,

where

J1,ε := −
T∫︂

0

⟨∂t(vε + ∇p1,ε), φ(vε + ∇p1,ε)⟩ +
T∫︂

0

⟨∂t(v + ∇p1), φ(v + ∇p1)⟩,

J2,ε :=
∫︂

QT

(vε ⊗ vε) : (φ∇vε) −
∫︂

QT

(v ⊗ v) : (φ∇v),

J3,ε :=
∫︂

QT

(vε ⊗ vε) : (vε ⊗ ∇φ) −
∫︂

QT

(v ⊗ v) : (v ⊗ ∇φ),

J4,ε :=
∫︂

QT

(vε ⊗ vε) : (∇p1,ε ⊗ ∇φ+ φ∇2p1,ε) −
∫︂

QT

(v ⊗ v) : (∇p1 ⊗ ∇φ+ φ∇2p1),

J5,ε :=
∫︂

QT

(︂
|D|2 − |Dε|2

)︂
φ,

J6,ε := −
∫︂

QT

Dε :
(︂
(vε + ∇p1,ε) ⊗ ∇φ+ φ∇2p1,ε

)︂
+
∫︂

QT

D :
(︂
(v + ∇p1) ⊗ ∇φ+ φ∇2p1

)︂
,

J7,ε :=
∫︂

QT

p2,ε ((vε + ∇p1,ε) · ∇φ+ φ∆p1,ε) −
∫︂

QT

p2 ((v + ∇p1) · ∇φ+ φ∆p1),

J8,ε :=
∫︂

QT

(FεFT
ε ) : ((vε + ∇p1,ε) ⊗ ∇φ) −

∫︂
QT

(FεFT
ε ) : ((v + ∇p1) ⊗ ∇φ),

J9,ε :=
∫︂

QT

(FεFT
ε ) : (φ∇2p1,ε) −

∫︂
QT

(FεFT
ε ) : (φ∇2p1).
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Our aim is to show that all terms Jj,ε, j = 1, ..., 9, except J5,ε, converge to zero. The
terms J3,ε, J4,ε and J6,ε, . . . J9,ε vanish, as ε → 0+, due to (4.5.17), (4.5.25), (4.5.26),
(4.5.29), (4.5.54) and (4.5.55). In order to treat J1,ε, we use the integration by parts
with respect to the time variable, i.e.

T∫︂
0

⟨∂t(vε + ∇p1,ε), φ(vε + ∇p1,ε)⟩ = −
∫︂
Ω

|vε(0) + ∇p1,ε(0)|2
2 φ(0) −

∫︂
QT

|vε + ∇p1,ε|2

2 ∂tφ

and
T∫︂

0

⟨−∂t(v + ∇p1), φ(v + ∇p1)⟩ =
∫︂
Ω

|v(0) + ∇p1(0)|2
2 φ(0) +

∫︂
QT

|v + ∇p1|2

2 ∂tφ.

Since vε, v belong to C([0, T ];L2
n,div), ∇p1,ε, ∇p1 belong to C([0, T ]; (L2(Ω̃))2), vε(0) =

v0 = v(0) and ∇p1,ε(0) = ∇p1(0) almost everywhere in Ω̃, we have

−
∫︂
Ω

|vε(0) + ∇p1,ε(0)|2
2 φ(0) +

∫︂
Ω

|v(0) + ∇p1(0)|2
2 φ(0) = 0.

Next, it follows from (4.5.25) and (4.5.54) that

lim
ε→0+

−
∫︂

QT

|vε + ∇p1,ε|2

2 ∂tφ+
∫︂

QT

|v + ∇p1|2

2 ∂tφ = 0,

hence J1,ε → 0 as ε → 0+. It remains to prove that J2,ε → 0 as ε → 0+. Using the
integration by parts and the property div vε = div v = 0 in QT , it holds

J2,ε = 1
2

∫︂
QT

(vε ⊗ vε) : (vε ⊗ ∇φ) − 1
2

∫︂
QT

(v ⊗ v) : (v ⊗ ∇φ),

which converges to zero by (4.5.25) and (4.5.26). Finally, as

J5,ε → ⟨|D|2 − |D|2, φ⟩{M(QT ),C(QT )}

as ε → 0+ by (4.5.34), the equality (4.5.72) is proved.

The term I2 (see (4.5.70)) is estimated, using (4.5.20), (4.5.29), (4.5.30) and the
Cauchy–Schwartz inequality (together with the inequality |XY| ≤ |X||Y| for all X,
Y ∈ R2×2) as follows:

I2 = lim
ε→0+

∫︂
QT

(︂
∇v : (FεFT

ε ) − ∇v : (FFT )
)︂
φ

= lim
ε→0+

∫︂
QT

∇v :
(︂
(Fε − F)(Fε − F)T

)︂
φ ≤ lim

ε→0+

∫︂
QT

|∇v||Fε − F|2φ

=
∫︂

QT

|∇v|
(︂
|F|2 − |F|2

)︂
φ.

(4.5.73)
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Before we estimate I3, we show a localised version of the Korn inequality for se-
quences. More precisely, we observe that (gδ denotes the standard mollification of
g ∈ L1

loc(R2))∫︂
QT

|∇vε − ∇v|2φ = lim
δ→0+

∫︂
QT

(∇vε − ∇v) · (∇vδ
ε − ∇vδ)φ

= − lim
δ→0+

∫︂
QT

φ(vε − v) · (∆vδ
ε − ∆vδ) −

∫︂
QT

(∇vε − ∇v) : ((vε − v) ⊗ ∇φ)

= − lim
δ→0+

T∫︂
0

2φ(vε − v) · div(Dδ
ε − Dδ) −

∫︂
QT

(∇vε − ∇v) : ((vε − v) ⊗ ∇φ)

= 2
∫︂

QT

|Dε − D|2φ

+
∫︂

QT

2(Dε − D) : ((vε − v) ⊗ ∇φ) − (∇vε − ∇v) : ((vε − v) ⊗ ∇φ),

and consequently, with the help of (4.5.17), (4.5.25), we deduce

lim
ε→0+

∫︂
QT

|∇vε − ∇v|2φ = 2 lim
ε→0+

∫︂
QT

|Dε − D|2φ. (4.5.74)

Then, the term I3 (see (4.5.71)) is estimated, employing (4.5.17), (4.5.20), (4.5.30),
(4.5.34), (4.5.74) and the Young inequality, as follows:

I3 =
∫︂

QT

(︂
∇vF − ∇vF

)︂
: (φF) = lim

ε→0+

∫︂
QT

(∇vε(F − Fε)) : (φF)

= lim
ε→0+

∫︂
QT

((∇vε − ∇v)(F − Fε)) : (φF) ≤ lim
ε→0+

∫︂
QT

|∇vε − ∇v| |Fε − F| |F|φ

≤ lim
ε→0+

∫︂
QT

(︃1
2 |∇vε − ∇v|2 + |Fε − F|2|F|2

)︃
φ

= lim
ε→0+

∫︂
QT

(︂
|Dε − D|2 + |Fε − F|2|F|2

)︂
φ

=
⟨︂
|D|2 − |D|2, φ

⟩︂
{M(QT ),C(QT )} +

∫︂
QT

(︂
|F|2 − |F|2

)︂
|F|2φ.

(4.5.75)

Summing (4.5.72), (4.5.73) and (4.5.75) and employing the definitions (4.5.69)
(4.5.70), (4.5.71), we obtain for all nonnegative φ ∈ C∞

c ((−∞, T ) × Ω), that

⟨︂
∇v : FFT − ∇vF : F, φ

⟩︂
{M(QT ),C(QT )} =

3∑︂
j=1

Ij ≤
∫︂

QT

L̃(|F|2 − |F|2)φ

with
L̃ := (|∇v| + |F|2) ∈ L2(QT ),
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which is the inequality (4.5.68). Finally, combining (4.5.66)–(4.5.68), we see that
(4.5.59) holds with

L := (1 + |∇v| + |F|2) ∈ L2(QT ). (4.5.76)

Ad Step 3: Proof of compactness of {Fε}. As introduced above, the last Step 3
consists of renormalising the inequality (4.5.59) achieved in Step 2, proving that the
renormalised inequality is valid even for nonnegative smooth test functions φ supported
up to the boundary of Ω and concluding by a suitable choice of such φ and of the
renormalisation function the result |F|2 = |F|2 almost everywhere in QT , i.e. (4.5.44).

For the rest of the proof, we denote f := |F|2 − |F|2. Note that f is nonnegative2,

f ∈ L2(QT ) ∩ L∞(0, T ;L1(Ω)) (4.5.77)

and for lucidity let us rewrite (4.5.59) to

−
∫︂

QT

f∂tφ−
∫︂

QT

fv · ∇φ ≤
∫︂

QT

Lfφ (4.5.78)

with L defined in (4.5.76), where φ ∈ C∞
c ((−∞, T ) × Ω) is an arbitrary nonnegative

function. Our goal is to show that f = 0 almost everywhere in QT .
We start the proof with the renormalisation of (4.5.78). It means, we show that, for

all nondecreasing B ∈ C1([0,∞) with B′ ∈ L∞((0,∞)) and for all φ ∈ C∞
c ((−∞, T ) ×

Ω) such that φ ≥ 0, it holds

−
∫︂

QT

B(f)∂tφ−
∫︂
Ω

B(0)φ(0) −
∫︂

QT

B(f)v · ∇φ ≤
∫︂

QT

LfB′(f)φ. (4.5.79)

To prove (4.5.79), we first mollify (4.5.78). Let δ0 > 0 and δ ∈ (0, δ0) be arbitrary.
We extend v, L and f by zero outside of QT , and for arbitrary h ∈ L1

loc(R × R2) we
denote its mollification over the time and the spatial variables as

hδ(t,x) :=
∫︂

R×R2

ωδ(t− ·,x − ·)h(·, ·),

where ωδ is the standard mollifying kernel of radius δ. Recall also the definition Ωδ0 :=
{x ∈ Ω; dist(x, ∂Ω) > δ0}. Then it directly follows from (4.5.78) that

∂tfδ + div(fv)δ ≤ (Lf)δ a.e. in (−∞, T − δ0) × Ωδ0 .

Let us multiply the above inequality by B′(fδ), which is nonnegative and bounded, to
get (using the fact that div v = 0)

∂tB(fδ)+div (B(fδ)v) ≤ (Lf)δB
′(fδ)+sδB

′(fδ) a.e. in (−∞, T −δ0)×Ωδ0 , (4.5.80)
2It directly follows from ∫︂

QT

(︂
|F|2 − |F|2

)︂
φ = lim

ε→0+

∫︂
QT

|Fε − F|2φ

valid for all nonnegative bounded φ.
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where
sδ := div(fδv) − div(fv)δ.

Now, multiplying (4.5.80) by arbitrary nonnegative φ ∈ C∞
c ((−∞, T − δ0) × Ωδ0),

integrating the result over (−2δ, T ) × Ω, using the fact that supp fδ ⊂ (−δ, T + δ) ×R2

and the integration by parts, we obtain
T∫︂

−2δ

∫︂
Ω

(−B(fδ)∂tφ−B(fδ)v · ∇φ) −
∫︂
Ω

B(0)φ(−2δ)

≤
T∫︂

−2δ

∫︂
Ω

((Lf)δB
′(fδ)φ+ sδB

′(fδ)φ) .

(4.5.81)

Finally, we let δ → 0+ in (4.5.81). First, since f ∈ L2((−∞, T ) × Ω) and v be-
longs to L2(−∞, T ;W 1,2

0,div), we can use Lemma 4.3.1 and get that sδ → 0 strongly in
L1

loc((−∞, T ) × Ω). Since B′ is bounded, it holds

lim
δ→0+

T∫︂
−2δ

∫︂
Ω

sδB
′(fδ)φ = 0. (4.5.82)

The identification of other limits is standard and directly follows from the properties
of the standard mollification and B. Hence, (4.5.79) follows for all nonnegative φ ∈
C∞

c ((−∞, T − δ0) × Ωδ0). Since δ0 > 0 is arbitrary, we deduce the validity of (4.5.79)
for all nonnegative φ ∈ C∞

c ((−∞, T ) × Ω).

In the next step, we strengthen (4.5.79). We show that it holds for all nonnegative
functions φ ∈ C∞

c ((−∞, T ) ×R2), i.e., we do not require φ being compactly supported
in Ω. Hence, let ψ ∈ C∞

c ((−∞, T ) × R2) be arbitrary nonnegative function. Since
Ω is Lipschitz, we can find a sequence of smooth nonnegative functions ξm ∈ C∞

c (Ω)
fulfilling 0 ≤ ξm ≤ 1 and satisfying

ξm(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if dist(x, ∂Ω) ≤ 1

2m,

1 if dist(x, ∂Ω) > 1
m
, i.e. if x ∈ Ω 1

m
,

|∇ξm(x)| ≤ Cm for all x ∈ Ω.

(4.5.83)

Next, setting φ := ψξm in (4.5.79), we obtain

−
∫︂

QT

B(f)(∂tψ)ξm −
∫︂
Ω

B(0)ψ(0)ξm −
∫︂

QT

B(f)ξm(v · ∇ψ)

≤
∫︂

QT

LfB′(f)ψξm +
∫︂

QT

B(f)ψ(v · ∇ξm).

Finally, we let m → ∞ in the above inequality. In the first four integrals, we can easily
identify the limits due to the integrability of the corresponding integrands, (4.5.83) and
the fact that |Ω \ Ω 1

m
| → 0 as Ω has a Lipschitz boundary, and deduce

−
∫︂

QT

B(f)(∂tψ) −
∫︂
Ω

B(0)ψ(0) −
∫︂

QT

B(f)(v · ∇ψ)

≤
∫︂

QT

LfB′(f)ψ + lim
m→∞

∫︂
QT

B(f)ψ(v · ∇ξm).
(4.5.84)
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Since ψ is bounded, B is Lipschitz, f ∈ L2(QT ), ∇v ∈ (L2(QT ))2×2, ∇ξm is not
supported outside of Ω \ Ω 1

m
and |Ω \ Ω 1

m
| → 0, employing also the Hardy inequality

for v ∈ L2(0, T ;W 1,2
0,div) and the Hölder inequality, we have

lim
m→∞

⃓⃓⃓⃓
⃓⃓⃓ ∫︂
QT

B(f)ψ(v · ∇ξm)

⃓⃓⃓⃓
⃓⃓⃓ ≤ ∥ψ∥L∞(QT )∥f∥L2(QT ) lim

m→∞

⎛⎜⎜⎝
T∫︂

0

∫︂
Ω 1

m

(︄
|v|

dist(·, ∂Ω)

)︄2
⎞⎟⎟⎠

1
2

≤ ∥ψ∥L∞(QT )∥f∥L2(QT ) lim
m→∞

∥∇v∥(︂
L2((0,T )×(Ω\Ω 1

m
))
)︂2×2 = 0.

Consequently, we see that the last term in (4.5.84) vanishes, and thus we conclude
(using also the identity −ψ(0) =

∫︁ T
0 ∂tψ) that

−
∫︂

QT

(B(f) −B(0))(∂tψ) −
∫︂

QT

B(f)(v · ∇ψ) ≤
∫︂

QT

LfB′(f)ψ (4.5.85)

for all nonnegative ψ ∈ C∞
c ((−∞, T ) × R2).

Now we are prepared to conclude that f = 0 a.e. in QT . In (4.5.85) we set
B(s) := ln(s+ ε) and ψ(t,x) := z(t), where z ∈ C∞

c (−∞, T ) is arbitrary nonnegative
and in addition we require that it is non-increasing in (0, T ), i.e., ∂tz(t) ≤ 0 in (0, T ).
Then, we see that the last term on the left-hand side vanishes and we get

∫︂
QT

|∂tz| ln
(︄
f + ε

ε

)︄
≤ ∥z∥L∞((0,T ))

∫︂
QT

|L| f

f + ε
≤ ∥z∥L∞((0,T ))

∫︂
QT

|L|. (4.5.86)

Since L ∈ L2(QT ), it follows from the above inequality that for all δ > 0, we have

lim
ε→0+

T −δ∫︂
0

∫︂
Ω

ln
(︄

1 + f

ε

)︄
< +∞,

but it is possible only if f = 0 almost everywhere in QT , i.e. only if (4.5.44) is satisfied.
The proof of the compactness of {Fε} in (L2(QT ))2×2 is finished.

4.5.5 Positivity of detF
In this section we show the nonnegativity of detF provided that detF0 > 0 almost
everywhere in Ω and ln detF0 ∈ L1(Ω). To justify the use of very special test function,
we again mollify the equation (4.4.3) with respect to the spatial variable, i.e., we have
that (δ > 0 is arbitrary)

∂tFδ + div(Fδ ⊗ v) − (∇vF)δ + 1
2(FFTF − F)δ = Eδ, (4.5.87)

where
Eδ := div(Fδ ⊗ v) − div(F ⊗ v)δ.
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The equation (4.5.87) is satisfied in (0, T ) × R2, where we use the convention that v
is extended by zero and F by the identity tensor outside of Ω. It also follows from
Lemma 4.3.1 that

Eδ → O strongly in (L 4
3 (QT ))2×2 as δ → 0+. (4.5.88)

Next, for arbitrary ϵ ∈ (0, 1), we define Aδ
ϵ as

Aδ
ϵ := (detFδ − ϵ)+F−T

δ

detFδ

.

Such a definition is meaningful even for (possibly) singular matrix Fδ, using the con-
vention Aδ

ϵ = O whenever detFδ ≤ ϵ. In addition, using the algebraic identity (valid
whenever detFδ ̸= 0)

F−T
δ = adj FT

δ

detFδ

,

we see, thanks to the fact that we consider the two dimensional setting, that3

|Aδ
ϵ | = (detFδ − ϵ)+

detFδ

|adj FT
δ |

detFδ

≤ |Fδ|
ϵ
. (4.5.89)

Using (4.5.89), the properties of convolution and the fact that F ∈ (L4(QT ))2×2, we see
that for δ → 0+ it holds

Aδ
ϵ → Aϵ := (detF − ϵ)+

detF F−1 strongly in (L4((0, T ) × R2))2×2. (4.5.90)

Next, we introduce Sϵ(a) as a primitive function to (a−ϵ)+

a2 , i.e.

Sϵ(a) :=

⎧⎪⎨⎪⎩
ln a+ ϵ

a
if a > ϵ,

ln ϵ+ 1 if a ≤ ϵ.

Using the relation ∂(ln detFδ) = ∂Fδ : F−T
δ (whenever detFδ>0), we see that

∂Sϵ(detFδ) = ∂Fδ : Aδ
ϵ .

Here, ∂ stands for ∂t, ∂x1 or ∂x2 .
Finally, we take the scalar product of (4.5.87) with Aδ

ϵ and get

∂tSϵ(detFδ) + div (Sϵ(detFδ)v) − (∇vF)δ : Aδ
ϵ + 1

2
(︂
FFTF − F

)︂
δ

: Aδ
ϵ = Eδ : Aδ

ϵ .

We integrate this identity over (0, t) × R2. Since Ω is bounded and v and (F − I) are
extended by zero outside of Ω, we see that vδ and also Fδ − I are identically equal to
zero outside of any bounded set Oδ := {x ∈ R2; Bδ(x) ∩ Ω ̸= ∅} (where Bδ(x) is a ball

3Note that in order to prove (4.5.89) one needs to use the (in)equality |adj Fδ| ≤ |Fδ|, which is
(generally) satisfied only in two spatial dimensions. In the three dimensional setting one must use a
different approach.
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with center x and radius δ), and therefore we deduce after the integration by parts
(using the fact that div v = 0)

∫︂
R2

Sϵ(detFδ(t)) − Sϵ(det(F0)δ) −
t∫︂

0

∫︂
R2

(∇vF)δ : Aδ
ϵ − 1

2
(︂
FFTF − F

)︂
δ

: Aδ
ϵ

=
t∫︂

0

∫︂
R2

Eδ : Aδ
ϵ .

(4.5.91)

Thanks to (4.5.88) and (4.5.90), the right-hand side of (4.5.91) tends to zero as δ → 0+.
The limits in all terms on the left-hand side of (4.5.91) are easy to identify (due to the
integrability properties of F, F0 and v) and we obtain that

∫︂
R2

Sϵ(detF(t)) − Sϵ(det(F0)) −
t∫︂

0

∫︂
R2

(∇vF) : Aϵ − 1
2
(︂
FFTF − F

)︂
: Aϵ = 0. (4.5.92)

Employing (4.5.92), using the fact that div v = 0, the definition of Aϵ and the fact that
v is extended by zero and F is extended by the identity tensor outside of Ω, we get

∫︂
Ω

Sϵ(detF(t)) − Sϵ(det(F0)) + 1
2

t∫︂
0

∫︂
Ω

(detF − ϵ)+

detF
(︂
|FFT |2 − 2

)︂
= 0. (4.5.93)

Consequently, we have for all t ∈ (0, T )

sup
ϵ∈(0,1)

⃓⃓⃓⃓
⃓⃓∫︂
Ω

Sϵ(detF(t))
⃓⃓⃓⃓
⃓⃓ ≤

⎛⎝1 +
∫︂
Ω

| ln detF0|

⎞⎠+
∫︂

QT

(2 + |FFT |2) < +∞, (4.5.94)

which directly gives detF > 0 almost everywhere in QT . In addition, we have

sup
t∈(0,T )

∥ ln detF(t)∥1 ≤ C(∥F0∥2, ∥ ln detF0∥1).

4.6 Proof of Theorem 4.2.1 with G1 = 1, G2 = 0
To complete the proof of Theorem 4.2.1 for G1 = 1 and G2 = 0, it remains to proceed
rigorously from (4.4.3) to (4.4.7) (i.e. to derive (4.2.13) from (4.4.9)) and to prove the
attainment of the initial condition B0 (i.e. to complete the proof of (4.2.14)) and the
continuity of B in time. To do so, we multiply (4.5.87) by FT

δ from right, then we take
the transpose of (4.5.87) and multiply it by Fδ from left. Summing both identities we
deduce almost everywhere in QT (using the fact that div v = 0)

∂t(FδFT
δ ) + div((FδFT

δ ) ⊗ v) − (∇vF)δFT
δ − Fδ(FT (∇v)T )δ

+1
2
(︂
(FFTF − F)δFT

δ + Fδ(FTFFT − FT )δ

)︂
= EδFT

δ + FδET
δ ,

(4.6.1)

where
Eδ := div(F ⊗ v)δFT

δ − div((FδFT
δ ) ⊗ v).
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Consequently, using the integration by parts, we deduce, for all A ∈ (C1
c ((−∞, T ) ×

R2))2×2, that

−
∫︂

QT

(︂
FδFT

δ

)︂
: ∂tA −

∫︂
Ω

(︂
(F0)δ(FT

0 )δ

)︂
: A(0) −

∫︂
QT

(︂
(FδFT

δ ) ⊗ v
)︂

: ∇A

−
∫︂

QT

(︂
(∇vF)δFT

δ + Fδ(FT (∇v)T )δ

)︂
: A + 1

2

∫︂
QT

(︂
(FFTF)δFT

δ + Fδ(FTFFT )δ

)︂
: A

−
∫︂

QT

(FδFT
δ ) : A =

∫︂
QT

(︂
EδFT

δ + FδEδ
T
)︂

: A.

(4.6.2)

Employing F ∈ (L4((0, T ) × R2))2×2, v ∈ L2(0, T ; (W 1,2(R2))2) and Lemma 4.3.1
together with Lebesgue’s dominated convergence theorem, we obtain that Eδ → O
strongly in (L 4

3 (QT ))2×2 (as δ → 0+). Thus, by means of standard properties of molli-
fying, we get

−
∫︂

QT

B : ∂tA −
∫︂
Ω

B0 : A(0) −
∫︂

QT

(B ⊗ v) : ∇A

−
∫︂

QT

(︂
∇vB + B(∇v)T

)︂
: A +

∫︂
QT

(︂
B2 − B

)︂
: A = 0,

(4.6.3)

with B := FFT and B0 := F0FT
0 . Hence, due to the properties of F, we have B ∈

(L2(QT ))2×2. Since also v ∈ L2(0, T ;W 1,2
0,div) ∩ (L4(QT ))2, C1(Ω) is dense in W 1,4(Ω)

and W 1,4(Ω) ↪→ L∞(Ω), it follows from (4.6.3) that

∂tB ∈ L1(0, T ; ((W 1,4(Ω))2×2)∗).

Finally, referring to the Du Bois-Reymond lemma, we conclude (4.2.13) from (4.6.3).
It remains to show

B ∈ C([0, T ]; (L1(Ω))2×2)
and the attainment of the initial condition B0. To achieve this goal, we write for all t0,
t1 ∈ [0, T ]∫︂

Ω

⃓⃓⃓
F(t1)F(t1)T − F(t0)F(t0)T

⃓⃓⃓
=
∫︂
Ω

⃓⃓⃓
F(t1)(F(t1) − F(t0))T + (F(t1) − F(t0))F(t0)T

⃓⃓⃓
,

≤
∫︂
Ω

|F(t1)| |F(t1) − F(t0)| + |F(t1) − F(t0)| |F(t0)|

≤ ∥F(t1)∥2∥F(t1) − F(t0)∥2 + ∥F(t1) − F(t0)∥2∥F(t0)∥2,

which converges to zero as t1 → t0 if t0 ∈ (0, T ), as t1 → t0+ if t0 = 0, as t1 → t0−
if t0 = T , since F ∈ C([0, T ]; (L2(Ω))2×2). Hence B = FFT ∈ C([0, T ]; (L1(Ω))2×2) and
the property B(0, ·) = B0 = F0FT

0 almost everywhere in Ω follows from (4.6.3).
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4.7 Proof of Theorem 4.2.1 with G1, G2 > 0 arbi-
trary

4.7.1 System with equations for F1, F2

Analogously to the case G2 = 0, we start with the evolutionary equation for Fi instead
of the equation for Bi, i = 1, 2. Thus, the starting system of governing equations for
v, p, F1, F2 in QT reads

div v = 0, (4.7.1)
∂tv + div(v ⊗ v) + ∇p− divD − div

(︂
G1(F1FT

1 ) +G2(F2FT
2 )
)︂

= 0, G1, G2 > 0,
(4.7.2)

∂tFi + div(Fi ⊗ v) − (∇v)Fi + 1
2(FiFT

i Fi − Fi) = O, i = 1, 2, (4.7.3)

detFi > 0, i = 1, 2. (4.7.4)

This system is completed with the boundary condition

v = 0 on ΣT (4.7.5)

and with the initial conditions

v(0, ·) = v0 and Fi(0, ·) = Fi0(i = 1, 2) in Ω. (4.7.6)

We prove the existence of weak solutions to (4.7.1)–(4.7.6), i.e. the existence of v, F1,
F2 fulfilling

v ∈ C([0, T ];L2
n,div) ∩ L2(0, T ;W 1,2

0,div),
∂tv ∈ L2(0, T ; (W 1,2

0,div)∗),
Fi ∈ C([0, T ]; (L2(Ω))2×2) ∩ (L4(QT ))2×2 (i = 1, 2),

∂tFi ∈ L
4
3
(︂
0, T ; ((W 1,2(Ω))2×2)∗

)︂
(i = 1, 2),

detFi > 0 a.e. in QT (i = 1, 2)

and satisfying, for all w ∈ W 1,2
0,div, A ∈ (W 1,2(Ω))2×2 and for almost all t ∈ (0, T ),

⟨∂tv,w⟩ −
∫︂
Ω

(v ⊗ v) : ∇w +
∫︂
Ω

D : ∇w +
2∑︂

i=1

∫︂
Ω

Gi(FiFT
i ) : ∇w = 0, (4.7.7)

⟨∂tFi,A⟩ −
∫︂
Ω

(Fi ⊗ v) : ∇A −
∫︂
Ω

((∇v)Fi) : A + 1
2

∫︂
Ω

(FiFT
i Fi − Fi) : A = 0, (i = 1, 2)

(4.7.8)

with initial conditions v0, F10 and F20 fulfilled in the sense

lim
t→0+

(∥v(t) − v0∥2 + ∥F1(t) − F10∥2 + ∥F2(t) − F20∥2) = 0. (4.7.9)
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4.7.2 Parabolic approximation
We start with approximations, where the term ε

∫︁
Ω ∇Fi : ∇A (ε ∈ (0, 1) is arbitrary)

representing the stress diffusion is added to the left-hand side of (4.7.8). Similarly as in
Section 4.5.1 and with the help of the methods used in the proof of Proposition A.3.1,
we have that for each ε ∈ (0, 1) there exist

v ∈ C([0, T ];L2
n,div), (4.7.10)

Fi ∈ Cweak

(︂
[0, T ]; (L2(Ω))2×2

)︂
(i = 1, 2) (4.7.11)

fulfilling the uniform bounds

sup
t∈(0,T )

(︄
∥v(t)∥2

2 +
2∑︂

i=1
∥Fi(t)∥2

2

)︄
+ ∥∇v∥2

2,QT
+

2∑︂
i=1

∥Fi∥4
4,QT

+ ∥∂tv∥L2(0,T ;(W 1,2
0,div)∗) +

2∑︂
i=1

∥∂tFi∥
L

4
3 (0,T ;((W 1,2(Ω))2×2)∗)

+ ε
2∑︂

i=1
∥∇Fi∥2

2,QT

≤ C(T,Ω, ∥v0∥2, ∥F10∥2, ∥F20∥2),

(4.7.12)

and satisfying, for i = 1, 2, for all w ∈ W 1,2
0,div, for all A ∈ (W 1,2(Ω))2×2 and for all

t ∈ (0, T ),

⟨∂tv,w⟩ −
∫︂
Ω

(v ⊗ v) : ∇w +
∫︂
Ω

D : ∇w +
2∑︂

i=1

∫︂
Ω

Gi(FiFT
i ) : ∇w = 0, (4.7.13)

⟨∂tFi,A⟩ −
∫︂
Ω

(Fi ⊗ v) : ∇A −
∫︂
Ω

((∇v)Fi) : A + 1
2

∫︂
Ω

(FiFT
i Fi − Fi) : A

+ε
∫︂
Ω

∇Fi : ∇A = 0
(4.7.14)

and attaining the initial data in the following sense

lim sup
t→0+

(︄
∥v(t) − v0∥2

2 +
2∑︂

i=1
Gi∥Fi(t) − Fi0∥2

2

)︄
≤ 0. (4.7.15)
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4.7.3 Weak convergence results as ε → 0+

Let {(vε,F1,ε,F2,ε)} denote the solutions to (4.7.13)–(4.7.14). Employing (4.7.12), we
can find subsequences (that we do not relabel) such that (i = 1, 2)

vε ⇀
∗ v weakly-* in L∞(0, T ;L2

n,div), (4.7.16)
vε ⇀ v weakly in L2(0, T ;W 1,2

0,div) ∩ (L4(QT ))2, (4.7.17)
∂tvε ⇀ ∂tv weakly in L2

(︂
0, T ; (W 1,2

0,div)∗
)︂
, (4.7.18)

Fi,ε ⇀
∗ Fi weakly-* in L∞

(︂
0, T ; (L2(Ω))2×2

)︂
, (4.7.19)

Fi,ε ⇀ Fi weakly in (L4(QT ))2×2, (4.7.20)
∂tFi,ε ⇀ ∂tFi weakly in L

4
3
(︂
0, T ; ((W 1,2(Ω))2×2)∗

)︂
, (4.7.21)

vε → v strongly in (Lq(QT ))2 for all q ∈ [1, 4), (4.7.22)
ε∇Fi,ε → O strongly in (L2(QT ))2×2×2, (4.7.23)
Fi,εFT

i,ε ⇀ FiFT
i weakly in (L2(QT ))2×2, (4.7.24)

Fi,εFT
i,εFi,ε ⇀ FiFT

i Fi weakly in (L 4
3 (QT ))2×2, (4.7.25)

∇vεFi,ε ⇀ ∇vFi weakly in (L 4
3 (QT ))2×2. (4.7.26)

Then, using (4.7.16)–(4.7.26), we let ε → 0+ in (4.7.13) with v := vε and in (4.7.14)
with Fi := Fi,ε, i = 1, 2, and conclude, for all w ∈ W 1,2

0,div, A ∈ (W 1,2(Ω))2×2 and almost
all t ∈ (0, T ), that

⟨∂tv,w⟩ −
∫︂
Ω

(v ⊗ v) : ∇w +
∫︂
Ω

D : ∇w +
2∑︂

i=1

∫︂
Ω

GiFiFT
i : ∇w = 0, (4.7.27)

⟨∂tFi,A⟩ −
∫︂
Ω

(Fi ⊗ v) : ∇A −
∫︂
Ω

(∇v)Fi : A + 1
2

∫︂
Ω

(FiFT
i Fi − Fi) : A = 0. (4.7.28)

As v ∈ L2(0, T ;W 1,2
0,div), ∂tv ∈ L2(0, T ; (W 1,2

0,div)∗), Fi ∈ L∞(0, T ; (L2(Ω))2×2), ∂tFi

belong to L 4
3 (0, T ; (W 1,2(Ω))2×2)∗), i = 1, 2, and (W 1,2(Ω))2×2 is dense in (L2(Ω))2×2,

the functions v, Fi after a possible change on a zero-measure subset of (0, T ) satisfy

v ∈ C([0, T ];L2
n,div), (4.7.29)

Fi ∈ Cweak

(︂
[0, T ]; (L2(Ω))2×2

)︂
(i = 1, 2). (4.7.30)

The attainment of initial conditions is done exactly as in Section 4.5.2 and we do not
repeat the proof here. Similarly, following step by step the procedure in Section 4.5.3,
we get

Fi ∈ C([0, T ]; (L2(Ω))2×2) (i = 1, 2). (4.7.31)
As Fi,ε ⇀ Fi, i = 1, 2 weakly in (L4(QT ))2×2 and vε ⇀ v weakly in L2(0, T ;W 1,2

0,div),
in order to conclude (4.7.7)–(4.7.8) from (4.7.27)–(4.7.28) it suffices to prove the com-
pactness of {Fi,ε} in (L2(QT ))2×2.

4.7.4 Compactness of F1,ε,F2,ε in (L2(QT ))2×2

As Fi,ε ⇀ Fi weakly in (L4(QT ))2×2, i = 1, 2, the compactness of Fi,ε in (L2(QT ))2×2 is
equivalent to the condition

fi := |Fi|2 − |Fi|2 = 0 a.e. in QT (i = 1, 2). (4.7.32)
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Note that the inequality fi ≥ 0 directly follows from the weak lower semicontinuity,
see also Step 3 in Section 4.5.4. Hence, our aim is to show that

G1f1 +G2f2 ≤ 0 a.e. in QT , (4.7.33)

which thanks to the positivity of each Gi implies (4.7.32). Proceeding exactly in the
same way as in Section 4.5.4, Step 1, we prove (4.5.57) and (4.5.58) with Fi,ε in the
role of Fε and Fi in the role of F (i = 1, 2). Next, following the computations from
Section 4.5.4, Step 2, we derive from the difference between (4.5.57) and (4.5.58) (with
Fi,ε in the role of Fε and Fi in the role of F) multiplied by Gi and summed over i = 1, 2,
for all φ ∈ C∞

c ((−∞, T ) × Ω), φ ≥ 0, the inequality

−
∫︂

QT

2∑︂
i=1

(Gifi)∂tφ−
∫︂

QT

2∑︂
i=1

(Gifi)v · ∇φ ≤
∫︂

QT

L
2∑︂

i=1
(Gifi)φ (4.7.34)

with
L :=

(︂
1 + 2(|∇v| + |F1|2 + |F1|2)

)︂
.

The only difference from the computations in Step 2 in Section 4.5.4 is that instead of
Fε and F we work with the sums ∑︁2

i=1 GiFi,ε and ∑︁2
i=1 GiFi. Then, following Step 3

in Section 4.5.4 and working with ∑︁2
i=1 Gifi instead of f , we conclude (4.7.33) from

(4.7.34). This proves the compactness of Fi,ε (i = 1, 2) and consequently we can
identify all weak limits in (4.7.27) and (4.7.28) and get the solution to (4.7.1)–(4.7.3)
(and (4.7.5)).

4.7.5 Concluding the result
To complete the proof of Theorem 4.2.1, it suffices to conclude (4.2.10), (4.2.13) and
the initial condition (4.2.14). However, in order to conclude (4.2.10), we repeat the
procedure from Section 4.5.5 with Fi in the role of F (i = 1, 2), and in order to conclude
(4.2.13) and (4.2.14), we repeat the procedure from Section 4.6 with Fi in the role of
F and Bi in the role of B (i = 1, 2).
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Conclusion
We developed a robust mathematical theory for selected models describing the mechan-
ical behavior of materials with complex microstructure. We focused, as a fundamental
point of the robust mathematical theory, on the long-time and large-data existence the-
ory (the existence of weak solutions satisfying relevant physical principles) for initial-
and boundary-value problems associated with two class of models.

In Chapters 2 and 3, we presented the results from the recently published papers
[4] and [3]. The model studied in [4], and its generalization treated in [3], describe
basic mechanical properties of flows of granular water saturated geological materials
and has some relevance to the problem of static liquefaction and enhanced oil re-
covery. Our motivation for writing [4] was recent research concerning the implicitly
constituted materials on one hand and a study by Chupin and Mathé [1] on the other
hand. We extended the results presented in [1] in several directions. First, we stud-
ied slightly different system of PDEs, namely the one we were able to derive from
the basic governing equations of the theory of mixtures, under the cascade of several
justified simplifications. Second, the activated system contains in comparison to [1],
a non-trivial right-hand side in the equation for the fluid pressure pf . Consequently,
we had to use a different approach to get L∞-estimates for pf . Third, inspired by [1]
we provided characterization of the constitutive equation in Proposition 2.1.1. Using
one of these equivalent descriptions, we corrected the proof in [1] and developed a
useful tool exploited in the proof of Proposition 2.3.3. Fourth, we considered stick-slip
boundary conditions that are physically relevant and, on contrary to no-slip boundary
condition, guarantees the integrability of the pressure up to the boundary. Finally, we
used L∞-truncation method to analyze three-dimensional flows (while the result in [1]
concerns planar flows).

In Chapter 3 (see also [3]) we strengthened the result from Chapter 2 (see also [4]).
Incorporating a more general model, we provided a different existence proof for more
general data (particularly for the external forces that are merely L2-integrable).

In Chapter 4, we present the results from [5], where we developed a robust mathe-
matical theory for a viscoelastic rate-type fluid model with two relaxation mechanisms
(the mixture of two Giesekus models, while the single Giesekus model was briefly an-
alyzed in [2]) in two spatial dimensions. More specifically, we proved the long-time
and large-data existence of weak solutions to unsteady flows of such fluids subject to
no-slip boundary conditions. It is the first long-time and large-data existence result for
a viscoelastic model of higher (second) order. We also gave a complete rigorous proof
of the long-time and large-data existence of weak solutions to the analogous problem
associated with the Giesekus model in two spatial dimensions. Doing so, we completed
and corrected the theoretical considerations outlined in [2]. The result established here
is currently used by the authors as an auxiliary tool for the development of a complete
and rigorous long-time and large-data theory for the same viscoelastic models in three
dimensions.
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Oldroyd-B models within the context of a thermodynamic basis. International
Journal of Non-Linear Mechanics, 76:42–47, 2015.
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[60] M. Buĺıček, E. Feireisl, and J. Málek. A navier-stokes-fourier system for incom-
pressible fluids with temperature dependent material coefficients. Nonlinear Anal-
ysis: Real World Applications, 10(2):992 – 1015, 2009.
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tions to evolutionary PDEs, volume 13 of Applied Mathematics and Mathematical
Computation. Chapman & Hall, London, 1996.
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A. Appendix

A.1 Proof of Proposition 3.4.1
Our goal is to prove Proposition 3.4.1. Let us recall that in this section we fix n ∈ N, we
consider Gn smooth function with the properties stated at the beginning of Section 3.4
and the regularization of the material responses given in (3.4.2) and (3.4.3). In what
follows, to simplify the notation we drop the indices n.

The proof is split in the following steps.

Step 1. Approximations. For any m ∈ N, we look for

vm(t,x) :=
m∑︂

r=1
cm

r (t)wr(x), pm
f (t,x) :=

m∑︂
r=1

dm
r (t)zr(x) (A.1.1)

satisfying for r := 1, ...,m∫︂
Ω

∂tv
m · wr +

∫︂
Ω

(︂
Sm : Dwr + div(vm ⊗ vm)G(|vm|2) · wr

)︂

+
∫︂

∂Ω

sm · wr =
∫︂
Ω

f · wr,
(A.1.2)

where

Sm := S(pm
f ,Dvm) = τ(pm

f ) Dvm

|Dvm| + 1
n

+ Dvm

(︄
1 − δ∗

|Dvm|

)︄+

with τ(pm
f ) = (ps − pm

f )+,

(A.1.3)

sm := s(vm
τ ) = s∗

vm
τ

|vm
τ | + 1

n

+ vm
τ

(︄
1 − β∗

|vm
τ |

)︄+

, (A.1.4)

and ∫︂
Ω

∂tp
m
f z

r −
∫︂
Ω

(pm
f vm · ∇zr − ∇pm

f · ∇zr) =
∫︂
ω

(f − psv
m) · ∇zr, (A.1.5)

where {wi}i∈N is an orthogonal basis in W 1,2
n,div consisting of eigenfunctions of the Stokes

operator with boundary conditions wi ·n = 0 and [(Dwi)n]τ = 0 on ∂Ω, while {zj}j∈N
is an orthogonal basis in W 1,2(Ω) consisting of eigenfunctions of the Laplace operator
subject to the Neumann homogeneous boundary conditions. The system is supple-
mented with the corresponding initial conditions vm

0 and pm
0 , obtained by projection

v0 ∈ L2
n,div onto the span of {w1, . . . ,wm} and respectively p0 ∈ L2(Ω) onto the

span of {z1, . . . , zm}. Then the local in time existence of vm and pm
f follows from the

Caratheodory theory for systems of ordinary differential equations, whereas the global
in time existence is a consequence of the uniform estimates established below.
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Step 2. Uniform estimates. Multiplying (A.1.2) by cm
r (t) and (A.1.5) by dm

r (t)
and taking the sum over r = 1, . . . ,m, we obtain

1
2

d
dt∥vm(t)∥2

2 +
∫︂

{|Dvm|>δ∗}

|Dvm|2 +
∫︂
Ω

τ(pm
f ) |Dvm|2

|Dvm| + 1
n

+
∫︂

∂Ω

sm · vm
τ =

∫︂
Ω

f · vm +
∫︂

{|Dvm|>δ∗}

δ∗|Dvm|,
(A.1.6)

1
2

d
dt∥p

m
f (t)∥2

2 + ∥∇pm
f (t)∥2

2 =
∫︂
Ω

(f − psv
m) · ∇pm

f , (A.1.7)

Adding
∫︁

{|Dvm|≤δ∗} |Dvm|2 to both sides of (A.1.6)

1
2

d
dt∥vm(t)∥2

2 +
∫︂
Ω

|Dvm|2 +
∫︂
Ω

τ(pm
f ) |Dvm|2

|Dvm| + 1
n

+
∫︂

∂Ω

sn(vm
τ ) · vm

τ

≤
∫︂
Ω

f · vm +
∫︂
Ω

δ∗|Dvm| + δ2
∗|Ω|

and then by the Young inequality, we get

1
2

d
dt∥vm(t)∥2

2 + 1
2

∫︂
Ω

|Dvm|2 +
∫︂
Ω

τ(pm
f ) |Dvm|2

|Dvm| + 1
n

+
∫︂

∂Ω

sn(vm
τ ) · vm

τ

≤
∫︂
Ω

f · vm + 3
2δ

2
∗|Ω|.

(A.1.8)

Integrating in time, by the Korn and the Young inequalities, using also the fact that
the last two terms on the left-hand side of (A.1.8) are non-negative, one concludes that

sup
t∈[0,T ]

∥vm(t)∥2
2 +

∫︂
QT

|Dvm|2 ≤ C(f ,v0, δ∗, |QT |). (A.1.9)

By the interpolation inequality

∥z∥ 10
3

≤ ∥z∥
2
5
2 ∥z∥

3
5
6 ≤ C∥z∥

2
5
2 ∥z∥

3
5
1,2 (A.1.10)

and the trace inequalities (see [7, Lemma 1.11]), we obtain

sup
m

(︂
∥vm∥ 10

3 ,QT
+ ∥vm

τ ∥ 8
3 ,ΣT

)︂
< +∞. (A.1.11)

As a consequence, integrating (A.1.7) in time, we deduce that

sup
t∈[0,T ]

∥pm
f (t)∥2

2 +
∫︂

QT

|∇pm
f |2 ≤ C∥f∥2

2,QT
+ C∥ps∥2

5,QT
∥vm∥2

10
3 ,QT

+ ∥p0∥2
2, (A.1.12)

and thus
sup

t∈(0,T )
∥pm

f (t)∥2 + ∥∇pm
f ∥L2(QT ) ≤ C(f , ps, p0). (A.1.13)
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Again (A.1.10) gives
sup

m
∥pf∥ 10

3 ,QT
< +∞. (A.1.14)

Recalling the explicit formulas for Sm and sm it then follows

sup
m

(︂
∥Sm∥2,QT

+ ∥sm∥ 8
3 ,ΣT

)︂
< +∞. (A.1.15)

Employing the inequality

∥z∥4 ≤ ∥z∥
1
4
2 ∥z∥

3
4
6 ≤ C∥z∥

1
4
2 ∥z∥

3
4
1,2

we deduce corresponding uniform estimates for vm and pm
f respectively in (L4(QT ))3

and L4(QT ), then by virtue of them it results

sup
m

∥∂tp
m
f ∥

L
4
3 (0,T ;(W 1,2(Ω))∗)

< +∞. (A.1.16)

Analogously and by virtue of the truncation in the convective term, we also get

sup
m

∥∂tv
m∥L2(0,T ;(W 1,2

n,div)∗) < +∞. (A.1.17)

Step 3. Limit. By virtue of uniform estimates established above there exist
subsequences of {vm}, {pm

f }, {Sm} and {sm}, converging respectively weakly (or *-
weakly) to v, pf ,S and s in the corresponding function spaces. Furthermore, the Aubin-
Lions compactness lemma implies the following strong convergences:

vm → v a.e. in QT and strongly in (Lq(QT ))3 for any q ∈
[︃
1, 10

3

)︃
, (A.1.18)

pm
f → pf a.e. in QT and strongly in Lq(QT ) for any q ∈

[︃
1, 10

3

)︃
, (A.1.19)

vm
τ → vτ a.e. in ΣT and strongly in (Lq(ΣT ))3 for any q ∈

[︃
1, 8

3

)︃
. (A.1.20)

As a consequence v, pf ,S and s fulfill the weak formulations stated in Proposition 3.4.1.

Step 4. Attainment of the constitutive equations. The convergence

sm ⇀ s weakly in (L 8
3 (ΣT ))3

together with (A.1.20) ensures that

lim
m→+∞

∫︂
ΣT

sm · vm
τ =

∫︂
ΣT

s · vτ . (A.1.21)

Then, thanks to the monotonicity it is standard to prove that

s = s(vτ ).

Next, it follows from the monotonicity that

0 ≤
∫︂

QT

(Sm − S(pm
f ,A)) : (Dvm − A) for all A ∈ (L2(QT ))3×3. (A.1.22)
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Now, note that by (A.1.19),

S(pm
f ,A) := (ps − pm

f )+ A
|A|+ 1

n

+ A
(︂
1 − δ∗

|A|

)︂+

→ (ps − pf)+ A
|A|+ 1

n

+ A
(︂
1 − δ∗

|A|

)︂+
=: S(pf ,A) strongly in (L2(QT ))3×3

(A.1.23)

while, as v can play the role of a test function in the established weak formulation, it
is standard to obtain

lim sup
m→+∞

∫︂
QT

Sm : Dvm ≤
∫︂

QT

S : Dv. (A.1.24)

Finally, thanks to the convergences

Dvm ⇀ Dv weakly in (L2(QT ))3×3,

Sm ⇀ S weakly in (L2(QT ))3×3,

and (A.1.23), the limit as m → +∞ in (A.1.22) gives

0 ≤
∫︂

QT

(S − S(pf ,A)) : (Dv − A) for all A ∈ (L2(QT ))3×3. (A.1.25)

At this point, it is standard to choose A = Dv ± εB for arbitrary B ∈ L2(QT ) and
ε > 0 and arrive at

0 =
∫︂

QT

B : (S − S(pf ,Dv)) for all B ∈ (L2(QT ))3×3,

which implies S = S(pf ,Dv) almost everywhere in QT . The proof of Proposition 3.4.1
is complete.

A.2 Proof of Proposition 4.5.1
Before making the proof of Proposition 4.5.1 let us quote from [81] the following lemma
concerning stationary Stokes problems.
Lemma A.2.1. Let d ≥ 2, m ≥ −1, q ∈ (1,∞), Ω̃ ⊂ Rd, Ω̃ ∈ Cmax{m+2,2}, let
g ∈ (Wm,q(Ω̃))d, w∗ ∈ (Wm+2− 1

q
,q(∂Ω̃))d and

∫︁
∂Ω̃ w∗ · n = 0. Then there exists

unique weak solution [w, p̃],
∫︁

Ω̃ p̃ = 0, to the Stokes problem

−∆w + ∇p̃ = g in Ω̃,
div w = 0 in Ω̃,

w = w∗ on ∂Ω̃,

more specifically, there exists unique couple [w, p̃] fulfilling

w ∈ (Wm+2,q(Ω̃))d, w − w∗ ∈ (W 1,q
0 (Ω̃))d, p̃ ∈ Wm+1,q(Ω̃),

∫︂
Ω̃

p̃ = 0

and ∫︂
Ω̃

∇w : ∇Φ −
∫︂
Ω̃

p̃ div Φ = ⟨g,Φ⟩ for all Φ ∈ (W 1,q′

0 (Ω̃))d,

∫︂
Ω̃

(div w)ϕ = 0 for all ϕ ∈ Lq′(Ω̃),
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which is equivalent to the existence of unique

w ∈ (Wm+2,q(Ω̃))d, w − w∗ ∈ (W 1,q
0 (Ω̃))d, div w = 0 in Ω̃

fulfilling ∫︂
Ω̃

∇w : ∇Φ = ⟨g,Φ⟩ for all Φ ∈ ˜︂W 1,q′

0,div.

Moreover, the solution satisfies the estimate

∥w∥(W m+2,q(Ω̃))d + ∥p̃∥W m+1,q(Ω̃) ≤ ∥f∥(W m,q(Ω̃))d + ∥w∗∥
(W m+2− 1

q ,q(∂Ω̃))d

with the convention W−1,q(Ω̃) = (W 1,q
0 (Ω̃))∗, W 0,q(Ω̃) = Lq(Ω̃).

Proof. See [81].

For lucidity let us recall the formulation of Proposition 4.5.1.
Proposition A.2.2. Let Ω̃ ⊂ Ω̃ ⊂ Ω, Ω̃ ∈ C∞. Then for every ε ∈ (0, 1) there exists pε

of the form pε = p1,ε + p2,ε, where

p1,ε ∈ L2(0, T ;W 2,2(Ω̃)), (A.2.1)
p2,ε ∈ L2((0, T ) × Ω̃), (A.2.2)

∂t (vε + ∇p1,ε) ∈ L2
(︂
0, T ; ((W 1,2

0 (Ω̃))2)∗
)︂

(A.2.3)

and, for all w ∈ (W 1,2
0 (Ω̃))2 and almost all t ∈ (0, T ), it holds

⟨∂t(vε + ∇p1,ε),w⟩ =
∫︂
Ω̃

(Gε : ∇w) +
∫︂
Ω̃

p2,ε div w, (A.2.4)

where Gε := (vε ⊗ vε) −Dε −FεFT
ε . Next, there exists p of the form p = p1 + p2, where

p1 ∈ L2(0, T ;W 2,2(Ω̃)), (A.2.5)
p2 ∈ L2((0, T ) × Ω̃), (A.2.6)

∂t (v + ∇p1) ∈ L2
(︂
0, T ; ((W 1,2

0 (Ω̃))2)∗
)︂

(A.2.7)

and, for all w ∈ (W 1,2
0 (Ω̃))2 and almost all t ∈ (0, T ), it holds

⟨∂t(v + ∇p1),w⟩ =
∫︂
Ω

(G : ∇w) +
∫︂
Ω

p2 div w, (A.2.8)

where G := (v ⊗ v) − D − FFT . Moreover, as ε → 0+, we have

p1,ε → p1 strongly in L2(0, T ;W 2,2
loc (Ω̃)), (A.2.9)

p2,ε ⇀ p2 weakly in L2((0, T ) × Ω̃). (A.2.10)

The functions ∇p1,ε and ∇p1 belong to C([0, T ]; (L2(Ω̃))2) and

∇p1,ε(0, ·) = ∇p1(0, ·) a.e. in Ω̃. (A.2.11)
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Proof. Let Ω̃ be an arbitrary smooth domain fulfilling Ω̃ ⊂ Ω̃ ⊂ Ω. For every t ∈ [0, T ]
let us introduce the Stokes problems

−∆w1,ε + ∇p1,ε = vε in Ω̃, (A.2.12)
div w1,ε = 0 in Ω̃, (A.2.13)

w1,ε = 0 on ∂Ω̃, (A.2.14)

−∆w2,ε + ∇p2,ε = divGε in Ω̃, (A.2.15)
div w2,ε = 0 in Ω̃, (A.2.16)

w2,ε = 0 on ∂Ω̃. (A.2.17)

Since vε ∈ L2(0, T ;W 1,2
0,div) ∩ C([0, T ];L2

n,div), Lemma A.2.1 implies for all t ∈ [0, T ]
the existence of unique weak solution [w1,ε, p1,ε],

∫︁
Ω̃ p1,ε = 0, to the system (A.2.12)–

(A.2.14), more precisely [w1,ε, p1,ε] satisfy for all Φ ∈ (W 1,2
0 (Ω̃))2, ϕ ∈ L2(Ω̃) and all

t ∈ [0, T ] ∫︂
Ω̃

∇w1,ε : ∇Φ −
∫︂
Ω̃

p1,ε div Φ =
∫︂
Ω̃

vε · Φ, (A.2.18)

∫︂
Ω̃

(div w1,ε)ϕ = 0 (A.2.19)

and the estimate

∥w1,ε∥(W m+2,2(Ω̃))2 + ∥p1,ε∥W m+1,2(Ω̃) ≤ ∥vε∥(W m,2(Ω))2 , m ∈ {−1, 0, 1}. (A.2.20)

Let us note that (A.2.19) and (A.2.20) imply the condition

div w1,ε = 0 a.e. in Ω̃. (A.2.21)

Next, Gε := (vε ⊗ vε − Dε − FεFT
ε ) belongs to (L2(QT ))2×2, hence divGε belongs

to L2(0, T ; ((W 1,2
0 (Ω̃))2)∗), and by Lemma A.2.1 there exists for almost all t ∈ (0, T )

unique weak solution [w2,ε, p2,ε],
∫︁

Ω̃ p2,ε = 0, to the Stokes problem (A.2.15)–(A.2.17),
more precisely, [w2,ε, p2,ε] satisfy for all Φ ∈ (W 1,2

0 (Ω̃))2, ϕ ∈ L2(Ω̃) and almost all
t ∈ (0, T ) ∫︂

Ω̃

∇w2,ε : ∇Φ −
∫︂
Ω̃

p2,ε div Φ = −
∫︂
Ω̃

Gε : ∇Φ, (A.2.22)

∫︂
Ω̃

div w2,εϕ = 0 (A.2.23)

and the estimate

∥w2,ε∥(W 1,2(Ω̃))2 + ∥p2,ε∥L2(Ω̃) ≤ ∥ divGε∥((W 1,2
0 (Ω̃))2)∗ . (A.2.24)

Let us note that (A.2.23) and (A.2.24) imply the condition

div w2,ε = 0 a.e. in Ω̃. (A.2.25)
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Let θ ∈ C∞
c ((0, T )), Φ0 ∈ ˜︂W 1,2

0,div be arbitrary. In (A.2.18) set Φ := Φ0, multiply the
result by ∂tθ and integrate over (0, T ) to obtain (use also the estimate (A.2.20))

T∫︂
0

∫︂
Ω̃

(vε · Φ0)∂tθ = −
T∫︂

0

∫︂
Ω̃

(∆w1,ε · Φ0)∂tθ. (A.2.26)

Since ∂tvε ∈ L2(0, T ; (W 1,2
0,div)∗), from (A.2.26) it follows ∂t∆w1,ε ∈ L2(0, T ; (˜︂W 1,2

0,div)∗)
and

⟨∂tvε,Φ0⟩ = −⟨∂t∆w1,ε,Φ0⟩ =
∫︂
Ω

(∂t∇w1,ε : ∇Φ0) a.e. in (0, T ). (A.2.27)

Next, setting in (A.2.22) Φ := Φ0 yields∫︂
Ω̃

Gε : ∇Φ0 = −
∫︂
Ω̃

∇w2,ε : ∇Φ0 a.e. in (0, T ). (A.2.28)

Summing (A.2.27) with (A.2.28) leads to

0 = ⟨∂tvε,Φ0⟩ −
∫︂
Ω̃

Gε : ∇Φ0 =
∫︂
Ω̃

∇(∂tw1,ε + w2,ε) : ∇Φ0 a.e. in (0, T ), (A.2.29)

where the first equality follows from (4.5.11). Since Φ0 ∈ ˜︂W 1,2
0,div is arbitrary, the

relations (A.2.19), (A.2.23) and (A.2.29) implies that wε := ∂tw1,ε + w2,ε ∈ ˜︂W 1,2
0,div

solves for almost all t ∈ (0, T ) the Stokes problem∫︂
Ω̃

∇wε : ∇Φ0 = 0 for all Φ0 ∈ ˜︂W 1,2
0,div. (A.2.30)

Lemma A.2.1 guarantees the existence of unique solution wε ∈ ˜︂W 1,2
0,div to the Stokes

problem (A.2.30), hence (the quadratic integrability of ∥∂tw1,ε + w2,ε∥W 1,2
0,div

over (0, T )
follows from (A.2.29) and the properties ∂tv ∈ L2(0, T ; (W 1,2

0,div)∗), Gε ∈ (L2(QT ))2×2)

∂tw1,ε + w2,ε ∈ L2(0, T ; ˜︂W 1,2
0,div) (A.2.31)

and
∂tw1,ε + w2,ε = 0 a.e. in (0, T ) × Ω̃. (A.2.32)

Now we are able to write for all Φ ∈ (C∞
c (Ω̃))2 and θ ∈ C∞

c ((0, T )) (in the first
equality we use (A.2.18), (A.2.22) and the integration by parts, the second and the
third equality is just the integration by parts, the last equality follows from (A.2.32))

T∫︂
0

∫︂
Ω̃

−(vε + ∇p1,ε) · (∂tθ)Φ −
T∫︂

0

∫︂
Ω

(Gε : ∇Φ)θ +
T∫︂

0

∫︂
Ω̃

(p2,ε div Φ)θ

=
T∫︂

0

∫︂
Ω̃

∆w1,ε · (∂tθ)Φ +
T∫︂

0

∫︂
Ω̃

(∇w2,ε : ∇Φ)θ

=
T∫︂

0

∫︂
Ω̃

w1,ε · (∂tθ)∆Φ −
T∫︂

0

∫︂
Ω̃

(w2,ε · ∆Φ)θ

=
T∫︂

0

∫︂
Ω̃

− (∂tw1,ε + w2,ε) · (θ∆Φ) = 0.
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Since Gε ∈ (L2(QT ))2×2 and p2,ε ∈ L2((0, T ) × Ω̃) (which follows from the estimate
(A.2.24) and the fact that ∥Gε∥2 is quadratically integrable over (0, T )), the last chain
yields

∂t(vε + ∇p1,ε) ∈ L2(0, T ; ((W 1,2
0 (Ω̃))2)∗),

which is (A.2.3), and (recall that C∞
c (Ω̃) is dense in W 1,2

0 (Ω̃)) for all Φ ∈ (W 1,2
0 (Ω̃))2

and almost all t ∈ (0, T ) it holds

⟨∂t(vε + p1,ε),Φ⟩ =
∫︂
Ω̃

Gε : ∇Φ +
∫︂
Ω̃

p2,ε div Φ, (A.2.33)

which is (A.2.4).
Next we prove (A.2.7) and (A.2.8). As vε is uniformly bounded in L2(0, T ;W 1,2

0,div),
the estimate (A.2.20) implies that w1,ε is uniformly bounded in L2(0, T ; (W 3,2(Ω̃))2),
p1,ε is uniformly bounded in L2(0, T ;W 2,2(Ω̃)), and since w1,ε ∈ L2(0, T ; ˜︂W 1,2

0,div) and∫︁
Ω̃ p1,ε = 0 for every ε ∈ (0, 1), there exists w1 ∈ L2(0, T ; (W 3,2(Ω̃))2 ∩ ˜︂W 1,2

0,div) and
p1 ∈ L2(0, T ;W 2,2(Ω̃)),

∫︁
Ω̃ p1 = 0, such that (for suitable subsequences of {w1,ε}, {p1,ε},

which we do not relabel)

w1,ε ⇀ w1 weakly in L2(0, T ; (W 3,2(Ω̃))2 ∩ ˜︂W 1,2
0,div), (A.2.34)

p1,ε ⇀ p1 weakly in L2(0, T ;W 2,2(Ω̃)). (A.2.35)

Let t ∈ (0, T ) be fixed. As vε → v strongly in (L2(QT ))2 (see (4.5.25)), taking the limit
ε → 0+ in (A.2.18) and (A.2.19), employing the convergences (A.2.34) and (A.2.35),
we observe that [w1, p1] satisfy for all Φ ∈ (W 1,2

0 (Ω̃))2, ϕ ∈ L2(Ω̃)∫︂
Ω̃

∇w1 : ∇Φ −
∫︂
Ω̃

p1 div Φ =
∫︂
Ω̃

v · Φ, (A.2.36)

∫︂
Ω̃

(div w1)ϕ = 0. (A.2.37)

Next, due the estimate (A.2.24) and due to the facts that Gε is uniformly bounded
in (L2(QT ))2×2, w2,ε ∈ L2(0, T ; ˜︂W 1,2

0,div) and
∫︁

Ω̃ p2,ε = 0 for every ε ∈ (0, 1), there
exist w2 ∈ L2(0, T ; ˜︂W 1,2

0,div), p2 ∈ L2((0, T ) × Ω̃),
∫︁

Ω̃ p2 = 0, such that (for suitable
subsequences)

w2,ε ⇀ w2 weakly in L2(0, T ; ˜︂W 1,2
0,div), (A.2.38)

p2,ε ⇀ p2 weakly in L2((0, T ) × Ω̃), (A.2.39)
Gε ⇀ G weakly in (L2(QT ))2×2, (A.2.40)

where G := v ⊗ v − D − FFT . Taking the limit ε → 0+ in (A.2.22) and (A.2.23), we
observe that w2, p2 satisfy for all Φ ∈ (W 1,2

0 (Ω̃))2, ϕ ∈ L2(Ω̃)∫︂
Ω̃

∇w2 : ∇Φ −
∫︂
Ω̃

p2 div Φ = −
∫︂
Ω̃

G : ∇Φ, (A.2.41)

∫︂
Ω̃

(div w2)ϕ = 0. (A.2.42)
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Lemma A.2.1 guarantees the uniqueness of the solution to problems (A.2.36)–(A.2.37)
and (A.2.41)–(A.2.42) and the estimates

∥w1∥(W m+2,2(Ω̃))2 + ∥p1∥W m+1,2(Ω̃) ≤ ∥v∥(W m,2(Ω))2 , m ∈ {−1, 0, 1},
∥w2∥(W 1,2(Ω̃))2 + ∥p2∥L2(Ω̃) ≤ ∥ divG∥((W 1,2

0 (Ω))2)∗ .

Now proceeding in the same way as on the approximate level, we conclude

∂t(v + ∇p1) ∈ L2(0, T ; ((W 1,2
0 (Ω̃))2)∗),

which is (A.2.7), and for all Φ ∈ (W 1,2
0 (Ω̃))2 and almost all t ∈ (0, T )

⟨∂t(v + p1),Φ⟩ =
∫︂
Ω̃

G : ∇Φ +
∫︂
Ω̃

p2 div Φ, (A.2.43)

which is (A.2.8).
Concerning the convergence results, as the weak convergence (A.2.10) follows imme-

diately from (A.2.39), it suffices to prove only the strong convergence (A.2.9). By sub-
tracting (A.2.36) from (A.2.18) and (A.2.37) from (A.2.19) it is obvious that w1,ε −w1,
p1,ε − p1 solve the Stokes problem with the right hand side vε − v. By Lemma A.2.1
the solution is unique and satisfies the estimate

∥w1,ε − w1∥(W m+2,2(Ω̃))2 + ∥p1,ε − p1∥W m+1,2(Ω̃) ≤ ∥vε − v∥(W m,2(Ω))2 , m ∈ {−1, 0, 1}.
(A.2.44)

From (A.2.44) with m = 0 it follows

lim
ε→0+

T∫︂
0

∥p1,ε − p1∥2
W 1,2(Ω̃) ≤ lim

ε→0+

T∫︂
0

∥vε − v∥2
(L2(Ω))2 = 0, (A.2.45)

where the second equality is achieved by the strong convergence (4.5.25). The relation
(A.2.45) yields

p1,ε → p1 strongly in L2(0, T ;W 1,2(Ω̃)). (A.2.46)

We need to show that also

∇2p1,ε → ∇2p1 strongly in L2(0, T ; (L2
loc(Ω̃))2×2). (A.2.47)

Let us denote
p̃ε := p1,ε − p1.

To prove (A.2.47) we will use the property

∆p̃ε = 0 a.e. in (0, T ) × Ω̃, (A.2.48)

which follows from the equality

−∆(w1,ε − w1) + ∇p̃ε = vε − v a.e. in (0, T ) × Ω̃

(w1,ε − w1, p̃ε is the solution to the Stokes problem with the right hand side vε − v
and ∆(w1,ε − w1), ∇p̃ε are integrable over QT ) and from the fact div vε = div v = 0 =
div w1,ε = div w1 almost everywhere in (0, T ) × Ω̃. The equation (A.2.48) implies∫︂

Ω̃

∇p̃ε · ∇φ = 0 for all φ ∈ W 1,2
0 (Ω̃). (A.2.49)
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Taking φ := ϕξ2, where ϕ ∈ W 1,2(Ω̃), ξ ∈ C∞
c (Ω̃), (A.2.49) can be rewritten as∫︂

Ω̃

∇(p̃εξ) · ∇(ϕξ) = −
∫︂
Ω̃

div(p̃ε∇ξ)ϕξ −
∫︂
Ω̃

(∇p̃ε · ∇ξ)ϕξ. (A.2.50)

Denote ψ := ϕξ, gε := − div(p̃ε∇ξ) − (∇p̃ε · ∇ξ). Since every ψ ∈ W 1,2
0 (Ω̃) can be

written in the form ϕξ, where the functions ϕ, ξ have the properties described above,
(A.2.50) gives ∫︂

Ω̃

∇(p̃εξ) · ∇ψ =
∫︂
Ω̃

gεψ for all ψ ∈ W 1,2
0 (Ω̃). (A.2.51)

Employing the local regularity of weak solutions to elliptic problems, we have

∥p̃εξ∥W 2,2(Ω̃) ≤ ∥gε∥L2(Ω̃). (A.2.52)

Since ξ ∈ C∞
c (Ω̃) is arbitrary, the inequality (A.2.52) together with the definitions of

p̃ε and gε implies for every ˜̃Ω ⊂ ˜̃Ω ⊂ Ω̃
T∫︂

0

∥∇2p1,ε − ∇2p1∥(L2( ˜̃Ω))2×2 ≤ C

T∫︂
0

∥p1,ε − p1∥W 1,2(Ω̃), (A.2.53)

and since the right hand side of (A.2.53) converges to zero by (A.2.46), we obtain
(A.2.47), which together with (A.2.46) concludes the strong convergence (A.2.9).

To finish the proof of the lemma, it remains to show the continuity of p1,ε, p1 with
respect to time and the convergence of the initial conditions p1,ε(0), p1(0). Let t1 and
t2 from [0, T ] be arbitrary. The functions w1,ε(t1) − w1,ε(t2), p1,ε(t1) −p1,ε(t2) solve the
Stokes problem with the right hand side vε(t1) − vε(t2). By Lemma A.2.1 this solution
is unique and it satisfies the estimate

∥w1,ε(t1) − w1,ε(t2)∥(W 2,2(Ω̃))2 + ∥p1,ε(t1) − p1,ε(t2)∥W 1,2(Ω̃) ≤ ∥vε(t1) − vε(t2)∥(L2(Ω))2 .

Since the right hand side converges to zero whenever t2 → t1 (as vε belongs to
C([0, T ];L2

n,div)), we conclude that ∇p1,ε belongs to C([0, T ]; (L2(Ω̃))2). The fact
∇p1 ∈ C([0, T ]; (L2(Ω̃))2) is proved in the same way.

Finally, from the relation (A.2.44) we have for all t ∈ [0, T ] (recall that vε,v ∈
C([0, T ];L2

n,div) and ∇p1,ε,∇p1 ∈ C([0, T ]; (L2(Ω̃))2))

∥∇p1,ε(t) − ∇p1(t)∥(L2(Ω̃))2 ≤ ∥vε(t) − v(t)∥(L2(Ω))2 . (A.2.54)

And since vε(0) = v(0) = v0 almost everywhere in Ω, we conclude ∇p1,ε(0) = ∇p1(0)
almost everywhere in Ω̃, which is the relation (A.2.11) completing the proof of the
proposition.

A.3 Existence of solution to parabolic approxima-
tion to (4.4.1)–(4.4.6)

In this section, for arbitrary ε ∈ (0, 1), we establish the existence of a weak solution to
parabolic approximation to (4.4.1)–(4.4.6) defined in Section 4.5. More precisely, we
study the problem (4.5.1)–(4.5.5).
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Proposition A.3.1. Let ε ∈ (0, 1), v0 ∈ L2
n,div, F0 ∈ (L2(Ω))2×2. Then there exists a

weak solution to the system (4.5.1)–(4.5.5), i.e. there exists a couple (v,F) fulfilling

v ∈ C([0, T ]; L2
n,div) ∩ L2(0, T ; W 1,2

0,div), ∂tv ∈ L2(0, T ; (W 1,2
0,div)∗),

F ∈ Cweak([0, T ]; (L2(Ω))2×2) ∩ L2(0, T ; (W 1,2(Ω))2×2), ∂tF ∈ L
4
3
(︂
0, T ; ((W 1,2(Ω))2×2)∗

)︂
,

and satisfying, for all w ∈ W 1,2
0,div, A ∈ (W 1,2(Ω))2×2 and for almost all t ∈ (0, T ),

⟨∂tv, w⟩ −
∫︂
Ω

(v ⊗ v) : ∇w +
∫︂
Ω

D : ∇w +
∫︂
Ω

(FFT ) : ∇w = 0,

(A.3.1)

⟨∂tF,A⟩ −
∫︂
Ω

(F ⊗ v) : ∇A −
∫︂
Ω

((∇v)F) : A + 1
2

∫︂
Ω

(FFTF − F) : A + ε

∫︂
Ω

∇F : ∇A = 0,

(A.3.2)

and attaining the initial conditions in the following sense

lim
t→0+

(∥v(t) − v0∥2 + ∥F(t) − F0∥2) = 0. (A.3.3)

Moreover, the following uniform estimates holds true

sup
t∈(0,T )

(︂
∥v(t)∥2

2 + ∥F(t)∥2
2

)︂
+

T∫︂
0

∥D∥2
2 + ∥F∥4

4 + ε∥∇F∥2
2 ≤ C(∥v0∥2

2 + ∥F0∥2
2) (A.3.4)

and

∥∂tv∥
L2(0,T ;(W 1,2

0,div)∗) + ∥∂tF∥
L

4
3 (0,T ;((W 1,2(Ω))2×2)∗)

≤ C(T, Ω, ∥v0∥2, ∥F0∥2), (A.3.5)

where C(T, Ω, ∥v0∥2, ∥F0∥2) denotes a generic constant depending only on T , Ω, ∥v0∥2 and
∥F0∥2.

The rest of this section is devoted to the proof of Proposition A.3.1.

A.3.1 Galerkin approximations
Let {wj}j∈N be a basis of W 1,2

0,div composed of eigenfunctions of the Stokes operator
subject to the boundary condition w = 0 on ∂Ω, orthogonal in W 1,2

0,div, orthonormal
in L2

n,div. Let {Aj}j∈N be a basis of (W 1,2(Ω))2×2 composed of eigenfunctions of the
Laplace operator subject to the boundary condition (∇A)n := {∇Akl · n}2

k,l=1 = O
on ∂Ω, orthogonal in (W 1,2(Ω))2×2, orthonormal in (L2(Ω))2×2. Let us denote Wn :=
span{w1, . . . ,wn}, Xn := span{A1, . . . ,An}. The orthogonal projection from W 1,2

0,div to
Wn is denoted by Pn and the orthogonal projection from (W 1,2(Ω))2×2 toXn byQn. The
projection Pn is continuous in L2

n,div and in W 1,2
0,div and the projection Qn is continuous in

(L2(Ω))2×2 and in (W 1,2(Ω))2×2. In addition, the norm of this projection is independent
on n. From the Carathéodory theory for ordinary differential equations (when the
external forces f are identically equal to zero, it suffices to use the Peano theory) it
follows that there exist time dependent coefficients αn

1 (t), . . . , αn
n(t), βn

1 (t), . . . , βn
n(t)

such that if we define vn and Fn as

vn(t,x) :=
n∑︂

j=1
αn

j (t)wj(x) and Fn(t,x) :=
n∑︂

j=1
βn

j (t)Aj(x), (A.3.6)
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then for all j ∈ {1, . . . , n} and for all t ∈ (0, t̃), where t̃ is certain positive number, the
following system of equations (we denote Dn := 1

2

(︂
∇vn + (∇vn)T

)︂
) holds true:∫︂

Ω

∂tvn · wj −
∫︂
Ω

(vn ⊗ vn) : ∇wj +
∫︂
Ω

Dn : ∇wj +
∫︂
Ω

(FnFT
n ) : ∇wj = 0, (A.3.7)

∫︂
Ω

∂tFn : Aj −
∫︂
Ω

(Fn ⊗ vn) : ∇Aj −
∫︂
Ω

(∇vnFn) : Aj + 1
2

∫︂
Ω

(FnFT
nFn) : Aj

−1
2

∫︂
Ω

Fn : Aj + ε
∫︂
Ω

∇Fn : ∇Aj = 0.
(A.3.8)

The functions vn are absolutely continuous in [0, t̃) with values in Wn, the functions
Fn are absolutely continuous in [0, t̃) with values in Xn and they satisfy the initial
conditions

vn(0, ·) = Pn(v0), Fn(0, ·) = Qn(F0) in Ω. (A.3.9)

The fact that t̃ = T is an easy consequence of the uniform estimates that follow.

A.3.2 Uniform n-independent estimates
Multiplying (A.3.7) by αn

j , (A.3.8) by βn
j and taking the sum over j = 1, . . . , n, we

obtain (using also the symmetry of FnFT
n )

d
dt

∥vn∥2
2

2 −
∫︂
Ω

(vn ⊗ vn) : ∇vn +
∫︂
Ω

Dn : ∇vn +
∫︂
Ω

(FnFT
n ) : ∇vn = 0,

d
dt

∥Fn∥2
2

2 −
∫︂
Ω

(Fn ⊗ vn) : ∇Fn −
∫︂
Ω

(∇vnFn) : Fn + ∥FnFT
n ∥2

2 − ∥Fn∥2
2

2 + ε∥∇Fn∥2
2 = 0.

Integrating both equations over (0, t), where t ∈ (0, T ) is arbitrary, and employing the
integration by parts and the properties div vn = 0 in QT , vn = 0 on ΣT , we arrive at

∥vn(t)∥2
2

2 +
t∫︂

0

∫︂
Ω

Dn : ∇vn +
t∫︂

0

∫︂
Ω

(FnFT
n ) : ∇vn = ∥vn(0)∥2

2
2 ,

∥Fn(t)∥2
2

2 −
t∫︂

0

∫︂
Ω

(∇vnFn) : Fn +
t∫︂

0

∥FnFT
n ∥2

2 − ∥Fn∥2
2

2 + ε

t∫︂
0

∥∇Fn∥2
2 = ∥Fn(0)∥2

2
2 .

By the symmetry of Dn it holds Dn : ∇vn = |Dn|2 and by the symmetry of FnFT
n it

holds (FnFT
n ) : ∇vn = (∇vnFn) : Fn, thus by summing the last two equations (both

multiplied by 2), we get for all t ∈ (0, T )

∥vn(t)∥2
2 + ∥Fn(t)∥2

2 +
t∫︂

0

(︂
2∥Dn∥2

2 + ∥FnFT
n ∥2

2 + 2ε∥∇Fn∥2
2

)︂

= ∥vn(0)∥2
2 + ∥Fn(0)∥2

2 +
t∫︂

0

∥Fn∥2
2 ≤ ∥vn(0)∥2

2 + ∥Fn(0)∥2
2 +

t∫︂
0

(︂
∥vn∥2

2 + ∥Fn∥2
2

)︂
.

(A.3.10)
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Since ∥vn(t)∥2
2 +∥Fn(t)∥2

2 is estimated by the right-hand side of (A.3.10), the Gronwall
lemma applied on (A.3.10) (the functions ∥vn(·)∥2 and ∥Fn(·)∥2 are continuous in
[0, T )) together with the condition (A.3.9) and the continuity of Pn in L2

n,div and of Qn

in (L2(Ω))2×2 implies

∥vn(t)∥2
2 + ∥Fn(t)∥2

2 ≤ et
(︂
∥vn(0)∥2

2 + ∥Fn(0)∥2
2

)︂
≤ et

(︂
∥v0∥2

2 + ∥F0∥2
2

)︂
. (A.3.11)

Let us note that the inequality (A.3.11) will be useful in the proof of attainment of the
initial conditions (4.5.5). In addition, the combination of (A.3.10) with (A.3.11) yields

sup
t∈(0,T )

(︂
∥vn(t)∥2

2 + ∥Fn(t)∥2
2

)︂
+

T∫︂
0

(︂
∥Dn∥2

2 + ∥FnFT
n ∥2

2 + ε∥∇Fn∥2
2

)︂
≤ C(T, ∥v0∥2, ∥F0∥2).

(A.3.12)
The matrix FnFT

n acting in (A.3.12) is symmetric, hence it is a diagonalizable matrix,
let us denote the corresponding diagonal matrix as Jn. The inequality ±ab ≤ 1

2(a2 +b2)
for all a, b ∈ R then gives in QT

|Fn|4 =
(︂
tr(FnFT

n )
)︂2

= (tr Jn)2 ≤ 2 tr(J2
n) = 2 tr((FnFT

n )2) = 2 |FnFT
n |2, (A.3.13)

hence for all t ∈ (0, T ) it holds

∥Fn∥4
4 ≤ 2∥FnFT

n ∥2
2. (A.3.14)

Taking the supremum over t ∈ (0, T ) at each term of (A.3.12) and using the Korn
inequality and (A.3.14) leads finally to

sup
t∈(0,T )

(∥vn(t)∥2
2 + ∥Fn(t)∥2

2) + ∥∇vn∥2
2,QT

+ ∥Fn∥4
4,QT

+ ε∥∇Fn∥2
2,QT

≤ C̃(T, ∥v0∥2, ∥F0∥2).
(A.3.15)

It remains to estimate the time derivatives of vn and Fn. Obviously, we can replace
in (A.3.7) the base functions wj by any function belonging to Wn and in (A.3.8) the
base functions Aj by any function belonging to Xn, and consequently, for arbitrary
w ∈ W 1,2

0,div and for all t ∈ (0, T ), it holds∫︂
Ω

(∂tvn · Pn(w)) =
∫︂
Ω

(︂
(vn ⊗ vn) − Dn − FnFT

n

)︂
: ∇Pn(w). (A.3.16)

Thanks to the orthogonality and the continuity of Pn in L2
n,div and in W 1,2

0,div, employing
the Hölder inequality, we derive from (A.3.16) that, for all w ∈ W 1,2

0,div and for all
t ∈ (0, T ),

|⟨∂tvn,w⟩| =
⃓⃓⃓⃓
⃓⃓∫︂
Ω

(∂tvn · w)
⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓∫︂
Ω

(∂tvn · Pn(w))
⃓⃓⃓⃓
⃓⃓

≤
∫︂
Ω

⃓⃓⃓
(vn ⊗ vn) − Dn − FnFT

n

⃓⃓⃓
|∇Pn(w)|

≤
(︂
∥vn∥2

4 + ∥∇vn∥2 + ∥Fn∥2
4

)︂
∥∇w∥2.

(A.3.17)
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To estimate the right hand side, we use the Ladyzenskaya inequality and thanks to
(A.3.15) it holds

∥vn∥4
4,QT

=
T∫︂

0

∥vn∥4
4 ≤

T∫︂
0

∥vn∥2
2∥∇vn∥2

2 ≤ Ĉ (T, ∥v0∥2, ∥F0∥2) . (A.3.18)

Integrating the second power of (A.3.17) over (0, T ), using (A.3.15), (A.3.18) and the
Minkowski inequality, we can write

∥∂tvn∥2
L2(0,T ;(W 1,2

0,div)∗) ≤ 2
T∫︂

0

(︂
∥vn∥4

4 + ∥∇vn∥2
2 + ∥Fn∥4

4

)︂
≤ C (T, ∥v0∥2, ∥F0∥2) .

(A.3.19)
Analogously we estimate ∥∂tFn∥

L
4
3 (0,T ;((W 1,2(Ω))2×2)∗)

. Let A ∈ (W 1,2(Ω))2×2, then by
(A.3.8) it holds for all t ∈ (0, T )∫︂

Ω

(∂tFn : Qn(A)) =
∫︂
Ω

(Fn ⊗ vn) : ∇Qn(A) +
∫︂
Ω

(︂
∇vnFn − FnFT

nFn + Fn

)︂
: Qn(A)

−ε
∫︂
Ω

∇Fn : ∇Qn(A).

(A.3.20)

Employing the orthogonality and the continuity of Qn in (L2(Ω))2×2 and also in
(W 1,2(Ω))2×2, the Cauchy-Schwartz and the Hölder inequality and the embedding
W 1,2(Ω) ↪→ L4(Ω) (if a ∈ W 1,2(Ω), then ∥a∥4 ≤ Ĉ∥a∥1,2, where Ĉ = Ĉ(Ω)), we
obtain from (A.3.20) for all A ∈ (W 1,2(Ω))2×2 and t ∈ (0, T )

|⟨∂tFn,A⟩| =
⃓⃓⃓⃓
⃓⃓∫︂
Ω

(∂tFn : A)
⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓∫︂
Ω

(∂tFn : Qn(A))
⃓⃓⃓⃓
⃓⃓

≤ (∥Fn∥4∥vn∥4 + ε∥∇Fn∥2) ∥∇A∥2 + ∥Fn∥2∥A∥2

+
(︂
∥∇vn∥2∥Fn∥4 + ∥Fn∥3

4

)︂
∥Qn(A)∥4

≤ (∥Fn∥4∥vn∥4 + ε∥∇Fn∥2 + ∥Fn∥2) ∥A∥1,2

+ Ĉ
(︂
∥∇vn∥2∥Fn∥4 + ∥Fn∥3

4

)︂
∥Qn(A)∥1,2

≤
(︂
∥Fn∥4∥vn∥4 + ε∥∇Fn∥2 + ∥Fn∥2 + Ĉ(∥∇vn∥2∥Fn∥4 + ∥Fn∥3

4)
)︂

∥A∥1,2.

Integrating the 4
3 -power of the last chain over (0, T ), using (A.3.15), (A.3.18) and the

Hölder and the Minkowski inequalities, we conclude (note that ε ∈ (0, 1))

∥∂tFn∥
4
3

L
4
3 (0,T ;((W 1,2(Ω))2×2)∗)

≤ (1 + C∗(T,Ω, ∥v0∥2, ∥F0∥2))
T∫︂

0

(ε∥∇Fn∥2)
4
3

+ C̃ (T,Ω, ∥v0∥2, ∥F0∥2)

≤
(︂
ε

2
3T

1
3 + C∗(T,Ω, ∥v0∥2, ∥F0∥2)

)︂⎛⎝ T∫︂
0

ε∥∇Fn∥2
2

⎞⎠
2
3

+ C̃ (T,Ω, ∥v0∥2, ∥F0∥2)
≤ C (T,Ω, ∥v0∥2, ∥F0∥2) .

(A.3.21)
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A.3.3 Limit n → +∞
The uniform estimates (A.3.15), (A.3.19) and (A.3.21) imply the existence of v, F
satisfying the following convergence relations (the relations hold true for suitable sub-
sequences of {vn}, {Fn}, which we do not relabel):

vn ⇀
∗ v weakly-* in L∞(0, T ;L2

n,div), (A.3.22)
vn ⇀ v weakly in L2(0, T ;W 1,2

0,div) ∩ (L4(QT ))2, (A.3.23)
∂tvn ⇀ ∂tv weakly in L2

(︂
0, T ; (W 1,2

0,div)∗
)︂
, (A.3.24)

Fn ⇀
∗ F weakly-* in L∞

(︂
0, T ; (L2(Ω))2×2

)︂
, (A.3.25)

Fn ⇀ F weakly in L2
(︂
0, T ; (W 1,2(Ω))2×2

)︂
∩ (L4(QT ))2×2, (A.3.26)

∂tFn ⇀ ∂tF weakly in L
4
3
(︂
0, T ; ((W 1,2(Ω))2×2)∗

)︂
. (A.3.27)

Let us note that thanks to the properties v ∈ L2(0, T ;W 1,2
0,div), ∂tv ∈ L2(0, T ; (W 1,2

0,div)∗),
F ∈ L∞ (0, T ; (L2(Ω))2×2) and ∂tF ∈ L

4
3 (0, T ; ((W 1,2(Ω))2×2)∗) together with the den-

sity of (W 1,2(Ω))2×2 in (L2(Ω))2×2, the functions v, F after a possible change in a
zero-measure subset of (0, T ) enjoy

v ∈ C([0, T ];L2
n,div), (A.3.28)

F ∈ Cweak

(︂
[0, T ]; (L2(Ω))2×2

)︂
. (A.3.29)

Employing (A.3.23), (A.3.24), (A.3.26), (A.3.27) and the Aubin–Lions compactness
lemma, we get

vn → v strongly in (Lq(QT ))2 for all q ∈ [1, 4), (A.3.30)
Fn → F strongly in (Lq(QT ))2×2 for all q ∈ [1, 4). (A.3.31)

From (A.3.23), (A.3.26), (A.3.30) and (A.3.31) we also obtain the following relations:

vn ⊗ vn ⇀ v ⊗ v weakly in (L2(QT ))2×2, (A.3.32)
Fn ⊗ vn ⇀ F ⊗ v weakly in (L2(QT ))2×2×2, (A.3.33)
∇vnFn ⇀ ∇vF weakly in (L 4

3 (QT ))2×2, (A.3.34)
FnFT

n ⇀ FFT weakly in (L2(QT ))2×2, (A.3.35)
FnFT

nFn ⇀ FFTF weakly in (L 4
3 (QT ))2×2. (A.3.36)

By the convergence results stated above and the facts that ⋃︁n∈NWn is dense in W 1,2
0,div,⋃︁

n∈NXn is dense in (W 1,2(Ω))2×2, we conclude from (A.3.7) and (A.3.8) the validity
of the equations (A.3.1) and (A.3.2). Due to (A.3.15), (A.3.22), (A.3.25), (A.3.28),
(A.3.29), due to (A.3.23), (A.3.26) and the weak lower semicontinuity of the relevant
norms, we obtain the uniform bound (A.3.4). The uniform bound (A.3.5) follows from
the uniform estimates (A.3.19) and (A.3.21) (using also (A.3.24), (A.3.27) and weak
lower-semicontinuity of the relevant norms).

A.3.4 Attainment of the initial data
Multiplying (A.3.7) by any ϕ ∈ C∞

c (−∞, T ), ϕ(0) ̸= 0, integrating the result over
(0, T ) and employing the orthogonality of Pn in L2

n,div (together with the condition
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(A.3.9)), we have, for every j ≤ n, wj ∈ Wj, that

−
∫︂
Ω

v0 · ϕ(0)wj −
∫︂

QT

vn · (∂tϕ)wj +
∫︂

QT

(︂
−(vn ⊗ vn) + Dn + FnFT

n

)︂
: (ϕ∇wj) = 0.

(A.3.37)
Multiplying (A.3.1) by the same ϕ and integrating over (0, T ), we have, for every
w ∈ W 1,2

0,div, that

−
∫︂
Ω

v(0) · ϕ(0)w −
∫︂

QT

v · (∂tϕ)w +
∫︂

QT

(︂
−(v ⊗ v) + D + FFT

)︂
: (ϕ∇w) = 0. (A.3.38)

Subtracting (A.3.37) from (A.3.38), applying (A.3.23), (A.3.32), (A.3.35), the density
of ⋃︁n∈NWn in L2

n,div and in W 1,2
0,div, letting n → ∞, j → ∞ and dividing the result by

ϕ(0), we obtain ∫︂
Ω

v(0) · w =
∫︂
Ω

v0 · w for all w ∈ L2
n,div. (A.3.39)

Similarly, multiplying (A.3.8) by ϕ ∈ C∞
c (−∞, T ), ϕ(0) ̸= 0, integrating the result

over (0, T ) and employing the orthogonality of Qn in (L2(Ω))2×2 (together with the
condition (A.3.9)), we have, for every j ≤ n, Aj ∈ Xj, that

−
∫︂
Ω

F0 : ϕ(0)Aj −
∫︂

QT

Fn : (∂tϕ)Aj −
∫︂

QT

(Fn ⊗ vn) : (ϕ∇Aj)

+
∫︂

QT

(︄
−∇vnFn + FnFT

nFn − Fn

2

)︄
: (ϕAj) + ε

∫︂
QT

∇Fn : (ϕ∇Aj) = 0.
(A.3.40)

Multiplying (A.3.2) by the same ϕ and integrating over (0, T ), we have, for every
A ∈ (W 1,2(Ω))2×2, that

−
∫︂
Ω

F(0) : ϕ(0)A −
∫︂

QT

F : (∂tϕ)A −
∫︂

QT

(F ⊗ v) : (ϕ∇A) −
∫︂

QT

(∇vF) : (φA)

+
∫︂

QT

FFTF − F
2 : (ϕA) + ε

∫︂
QT

∇F : (ϕ∇A) = 0.

Subtracting (A.3.40) from the last equation, applying (A.3.26), (A.3.33), (A.3.34) and
(A.3.36) and the density of ⋃︁n∈NXn in (L2(Ω))2×2 and in (W 1,2(Ω))2×2, letting n → ∞,
j → ∞ and dividing the result by ϕ(0), we obtain∫︂

Ω

F(0) : A =
∫︂
Ω

F0 : A for all A ∈ (L2(Ω))2×2. (A.3.41)

In order to prove the attainment of the initial conditions in the sense of (A.3.3)
we take the limit n → ∞ in (A.3.11). From (A.3.22) and (A.3.25) we deduce that
vn(t) ⇀ v(t) weakly in L2

n,div and Fn(t) ⇀ F(t) weakly in (L2(Ω))2×2 for almost all
t ∈ (0, T ), hence by the weak lower semicontinuity of L2(Ω) norm and the (weak)
continuity with respect to time (A.3.28) and (A.3.29), we have

∥v(t)∥2
2 + ∥F(t)∥2

2 ≤ et
(︂
∥v0∥2

2 + ∥F0∥2
2

)︂
for all t ∈ (0, T ). (A.3.42)
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Consequently,
lim sup

t→0+

(︂
∥v(t)∥2

2 + ∥F(t)∥2
2

)︂
≤ ∥v0∥2

2 + ∥F0∥2
2 (A.3.43)

and employing (A.3.39) with w := v0 and (A.3.41) with A := F0 (and using again
(A.3.28) and (A.3.29)), we conclude that

lim sup
t→0+

(︂
∥v(t) − v0∥2

2 + ∥F(t) − F0∥2
2

)︂
≤ 0, (A.3.44)

which gives (A.3.3).
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