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Abstract: The self-organizing map (SOM) is a powerful clustering algorithm which takes high-

dimensional data as the input and produces a low-dimensional representation of the data. The SOM

provides useful insights into the given data by recognizing similar input vectors and clustering them.

However, they take into account only the local similarity of the input data, as opposed to relevance

(any external ranking). In this paper, we propose two ranking-aware variants of the SOM in an effort

to tackle this issue and incorporate evaluation metrics to evaluate our results.
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Introduction

Motivation
The self-organizing map (SOM) is an artificial neural network which preserves the topology of the

input data by producing a low-dimensional (typically 2-dimensional) representation of the data. In

this work, we consider interactive video retrieval task in which the user provides a query describing

their search needs; in our case, a target image. The SOM takes as input images represented by feature

vectors, and produces a grid (whose size is specified by the user) of images as output in which similar

images are mapped to adjacent nodes. This poses a problem to our task: the SOM considers only the

local similarity of the input data as it lacks the capability to take into account relevance (any external

ranking) even if it exists. In this work, we will experiment some of the possible approaches to tackle

this issue and evaluate each of them based on criteria which will be mentioned in this section shortly.

Contrary to the SOM-based approach which solely considers local similarity, one could take an

approach which selects and displays images solely based on their relevance scores (so that only K

highest scoring images are displayed on a grid of K nodes). Such approach is called Top-K display.

Since Top-K display only takes into consideration an external ranking of given data, it does not

preserve the topology of the original data. Similarly, it is clear that the SOM-based approach does

not preserve any external ranking of given data. These two approaches are described by a more

general and well-known problem: the exploration-exploitation dilemma [1], which describes the

trade-off between exploration and exploitation. Exploration means making a decision that appears

to be non-optimal at the moment, with hopes that the data observed thus far is not sufficient to truly

determine the optimal decision (which in turn better preserves the topology and diversity of given

data). On the other hand, exploitation means making the optimal decision based on the data observed

thus far. In our case, exploration corresponds to the SOM-based approach whereas exploitation

corresponds to Top-K display. In this work, we aim to find a middle ground between the two which

preserves both local similarity and relevance of given data.

Related work
Several others published works aimed at incorporating the notion of relevance in the SOM, such as

SOMHunter, Dimension-selective SOM (DSSOM) and Rating-aware SOM [2, 3, 4]. SOMHunter takes
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into consideration relevance of items with respect to a given query, resulting with SOM with regions

of highly relevant items [2]. However, one drawback is that the items within said regions don’t

preserve the topology of the original data. Furthermore, the position of items within the regions is

arbitrary [4]. More recently, Peška and Lokoč devised Rating-aware SOM by optimizing the SOM

with respect to non-discounted cumulative gain (nDCG) [4]. Rating-aware SOM explored one of

possible approaches to modifying the SOM; more specifically, its best matching unit (BMU) selection

procedure applied during training.

Peška and Lokoč delved into two of the possible node ordering for defining the "most prominent

area of the display" [4]. In this work, we will consider the row-first ordering, in which upper rows

are assumed to be more prominent than lower rows.

Aim
Our aim is to devise ranking-aware SOM variants by integrating the exploration-based approach

of the original SOM with the exploitation-based approach (Top-K display). We will evaluate our

variants with several evaluation metrics we devised, and determine whether (and to what extent)

they preserve the benefits of both approaches.

Thesis overview
This thesis is divided into four chapters.

In Chapter 1, background information for the rest of our paper will be introduced, such as

information retrieval, normalized discounted cumulative gain, and machine learning.

In Chapter 2, the original SOM will be described in detail.

In Chapter 3, we propose two ranking-aware SOM variants and their sub-variants. We also

describe the evaluation metrics to be used.

In Chapter 4, we evaluate our variants and examine their displays in more detail, using example

target images.
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Chapter 1

Preliminaries

This chapter aims to provide background information needed to understand our goal and experiments.

The self-organizing map will be described in detail in Chapter 2.

1.1 Information retrieval
Information retrieval (IR) is the process of searching, locating and retrieving information that is

relevant to an information need. Such need is identified by a user query. A query often takes the

form of a text string, to which an IR system returns a set of relevant items. An IR system does this by

assigning a numeric score called relevance score to each item in the database. Results generated by

IR searching are typically ranked by these scores and displayed in the order of relevance. In order to

improve the result set of an IR system for a given query, it is common to take an initial set of results

and gather user feedback on whether or not individual items in the set were relevant. This is called

relevance feedback.

1.1.1 Known-item search
Known-item search (KIS) refers to a task in which the user searches for a particular item. KIS is a

special case of IR, in which the user typically describes their information needs for some concrete

item with a query. For example, the user may wish to search for a particular scene occurring in a

video on YouTube by typing a text query describing that scene.

For KIS to be efficient, it is important that user queries are accurate (they provide an accurate

description of the sought item) and the query-processing algorithm works correctly.

1.1.2 Evaluation of an IR system
Evaluating an IR system is quite a complicated task. It involves measuring how well the information

retrieved by the system satisfies the information needs of the users. However, this can vary because
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different users may consider different items in the result to be "relevant". Nonetheless, we can use

evaluation metrics to quantify the performance of an IR system as well as objectively compare the

performances of distinct IR systems.

In this work, we evaluate the performance of the Self-organizing map (SOM) as an IR system. As

IR systems typically return a ranked list of items based on their degree of relevance, We want highly

relevant items to appear at the top of the ranking rather than mildly relevant or irrelevant items, and

vice versa. We use normalized discounted cumulative gain (nDCG) to measure the goodness of our

new ranking induced by the SOM in comparison to the original ranking.

Normalized discounted cumulative gain
The notion of normalized discounted cumulative gain (nDCG) was derived from cumulative gain

(CG) and discounted cumulative gain (DCG). Very often, IR systems assign some sort of relevance

scores to items in a list and rank them based on their relevant scores. CG is the sum of the relevance

scores in the list. CG alone does not provide much information about ranking quality; all items in

the ranking carry equal importance regardless of their individual ranks. CG may be identical for two

vastly different rankings since it is simply the sum of all relevance scores in the list. DCG resolves

this issue by penalizing items with high relevant scores appearing at lower ranks. DCG of an item at

a particular rank position p is calculated as follows:

DCGp =
p∑︂

i=1

2reli − 1
log2(i + 1)

where reli denotes the relevance score of the i-th item. log2(i + 1) ensures that items at lower ranks

contribute less towards the total DCG value. While the DCG is a significant improvement from CG

on measuring rank correlation (similarity of two rankings), it may provide unreliable results in case

the rankings have varying sizes (p value in the DCG formula). For example, a ranking of 50 items

and a ranking of 5 items would be difficult to compare with the DCG since it’s highly likely that the

former would yield a greater DCG value. Furthermore, it’d benefit us to normalize the DCG and have

it take on a value in a certain range. We do this by sorting the items in the ranking by relavance

score, taking top p items and obtaining the maximum possible DCG, called ideal DCG (IDCG). Then

we obtain the nDCG as follows:

nDCGp = DCGp

IDCGp

The nDCG takes on a value in the range [0, 1], where the perfect ranking (one in which DCG =

IDCG) yields an nDCG of 1. Figure 1.1 illustrates an example of nDCG calculation with two example

rankings: one which is well-ordered, and one which is not. For the first ranking in particular, we can

observe that DCG = IDCG, resulting in nDCG = 1.
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Figure 1.1: Example of nDCG calculation

1.1.3 Exploration-exploitation dilemma
The exploration-exploitation dilemma is a well-known problem in IR, which describes the trade-off

between exploration and exploitation. In IR systems, there’s always a choice of what items to display

to the user: do we (only) display items that are highly relevant to the given query, or do we display

items that are less relevant, but representative of the entire dataset? If the system opts for the "safe"

choice and presents items that are most relevant to the user at a given moment (exploitation), it

loses the possibility to gather information on other information, which can possibly be better (more

relevant) than the current ones. On the other hand, if the system presents various items regardless of

the degree of relevance (exploration), it may not provide good results to the user. Evidently, find a

good middle ground between exploration and exploitation is an important goal for IR systems.

1.2 Dataset overview
We used the V3C1 dataset [5] of 20,000 selected video frames, whose features were extracted using

convolutional neural networks. As described in detail by Peška and Lokoč [4], for a target image, the

relevance score for each item is calculated based on the Euclidean distance with some noise added to

simulate a real-life KIS scenario.

1.3 Machine learning
Machine Learning has been arguably one of the most influential technologies in the 21st century.

It learns from large amounts of data by recognizing patterns from the given data, and applies this

information to new data that it has not seen before. There are infinitely many applications of machine
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learning, from credit-card fraud detection and machine translation to marketing. A formal definition

of machine learning was given in 1997 by Tom Mitchel: a computer program is said to learn from

experience E with respect to some task T and some performance measure P, if its performance on T,

as measured by P, improves with experience E [6].

1.3.1 Process
In machine learning, a common task is to train the machine learning model on data, and make

predictions on data it hasn’t seen before. Building a machine learning model is an iterative process.

Generally speaking, the process can be divided into 5 steps: data collection, data preprocessing and

exploration, training, evaluation, and parameter tuning.

Data collection

As the name suggests, this step involves collecting data to train our machine learning model on. This

step, along with the next step, are crucial because building an accurate model heavily relies on the

quantity and quality of data used. It’s important that the data is accurate and meaningful for our

purpose.

Data comes in several forms: structured or unstructured. Structured data refers to data that is

stored in a machine-readable and organized format. Structured data is usually stored in a table, with

rows and columns. Common examples of structured data include spreadsheets and SQL databases.

Unstructured data is the opposite; it has no predefined structure, and therefore is difficult to process

for the machine. Structured data is much easier to train a machine learning model on and thus used

to train machine learning models most of the time.

Data preprocessing and exploration

During this step, we explore the data to gain a better insight, and format it into an optimal format

for training. Usually the first task performed during the step is data cleaning: in case our raw data

contains corrupt, inaccurate or irrelevant data, we either modify it or delete it. Afterwards, we

explore the data via statistical analysis and visualization. Statistical analysis helps us understand

the data better by providing information such as the distribution of each variable or relationship

between different variables. Likewise, We may plot the dataset or features against each other in order

to identify potential patterns.

Training

During the training process, the model uses the data to incrementally improve its ability to make

predictions. This is achieved by adjusting parameters of the model to better represent, or "fit" the

training data. Let us take Figure 1.2 as an example. At the very beginning of the training, the line

drawn by the model may represent the data quite poorly. Through training, it adjusts its m and b
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parameters in y = mx + b, resulting in the line better fitting the data points. The goodness of the fit

is measured by the cost function, which in our example is usually the least squares:

S =
n∑︂

i=1
r2

i

where ri = yi − f(xi).

Evaluation

Once training is complete, the model is evaluated using the test set. This is intended to be represen-

tative of how the model may perform in a real world scenario. Notice how the quality and quantity

of the data we select plays a pivotal role in the model’s performance. Usually, various evaluation

metrics are available for evaluating the machine learning model of choice.

Parameter tuning

During this step, the model tries to see if it can further improve its performance by tuning the

parameters. These parameters are often referred to as hyperparameters because their values are used

to control the learning process, as opposed to other parameters which are "learned" by the model.

1.3.2 Approaches
Machine learning algorithms are divided into two main categories based on the learning approach

they take: supervised learning and unsupervised learning

Supervised learning

In supervised learning, all of the input data is labelled; the data is given in the form of input-output

pairs, often denoted (xi, yi) for i = 1, 2, ..., n where n is the number of data points. xi is called the

input variable, and yi is called the label or target variable. The goal is to find the pattern between the

input variable and the target variable. Alternatively, the goal is to learn the mapping that describes

the relationship between the two. If the target variable is a categorical variable (one which takes on

a finite number of possible values), then we are dealing with a classification problem. If the target

variable is continuous, then we speak of a regression problem.

Classification

In classification, the machine learning model that we train is called a classifier. We train the classifier

to predict the correct output class of our input. Since the number of possible values for the target

variable is finite, trained classifiers usually assign a probability to each output class based on the

input and select the class with the highest probability to be the predicted output. A good example
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of classification is image classification. The task is to predict a single label for a given image. For

instance, let us suppose we have an animal species classification task in which the possible labels are

"dog" and "cat". Since there are only 2 possible labels, the task is called a binary classification task.

Given an input image, our classifier will predict whether the image contains a dog or cat.

Regression

In regression, the goal is to predict the value of the target variable based on a given input variable.

Since the target variable is continuous, it is practically impossible to accurately predict the true value.

Therefore, the focus is on making as close a prediction as possible with respect to the true value. A

common example of regression is linear regression. The simplest form of linear regression is when

the input variable and target variable are both one-dimensional. The machine learning model will

attempt to find a linear relationship between the two variables. The goal is to find a line that best fits

the input data.

Figure 1.2: Example of linear regression. Source: [7]

Unsupervised learning

Unlike supervised learning, data used in unsupervised learning has no label. In other words, for

every xi in i = 1, 2, ..., n, corresponding yi does not exist. This means the computer has to learn

from the given input, without guidance. Naturally, the goal in unsupervised learning is to detect

underlying patterns and structure in the data. A common usage of unsupervised learning is clustering.

Clustering is the task of partitioning data into groups such that items in the same group are similar

to each other in comparison to those in other groups. Each such group is called a cluster. Clustering

can help us explore, analyze and better understand our data. A common example of a clustering

algorithm is k-means clustering. With the value of k specified by the user, the algorithm divides the

data into k clusters as demonstrated below:
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(a) k = 3 (b) k = 6

Figure 1.3: Example of k-means clustering with different k values. The crosses represent the centroids

of each cluster.

1.4 Artificial neural networks
This section will only cover the basics of artificial neural networks needed to understand the SOM.

An artificial neural network (ANN) is an algorithm that is inspired by how neurons in the human

brain function. There are typically three types of layers in a typical ANN architecture: the input

layer, the output layer, and the hidden layer(s) in between the two aforementioned layers. Each

layer consists of one or more nodes (or neurons), which are connected only to other nodes in the

immediately preceding and following layers. Each connection between nodes has a weight, which

determines the degree of influence one node has on the other. A very important characteristic of

these weights is that they can be trained. In other words, the algorithm "reads" the input differently

at each iteration in order to learn and find the optimal weights for the given data.

Figure 1.4: A very simple ANN. f denotes some function which processes each input node with its

weight and produces an output y.
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Chapter 2

Self-Organizing Map

The self-organizing map (SOM) is an artificial neural network which was introduced in 1982 by Teuvo

Kohonen [8]. The SOM is trained using unsupervised learning, and is a powerful clustering algorithm

often used to simplify high dimensional input data into a low-dimensional (typically 2-dimensional),

topologically preserved representation.

2.1 Overview
The SOM was inspired by how our brain processes sensory information. Such information is mapped

to distinct parts of the cerebral cortex in such a way that neurons containing similar information

are physically close to each other and can exchange signals. However, the SOM was not the first

attempt in imitating our brain’s cognitive function; In 1973, Von der Malsburg [9] invented earlier

models of self-organizing neural networks. Malsburg’s model had a crucial downfall that their

self-organizing power was quite weak. Furthermore, it required the input and output layer be of

the same dimension, which meant that the model had limited usage. Based on these predecessors,

Kohonen later invented the SOM which compresses input data (regardless of its dimension) into a

lower (often two-dimensional) output with a learning algorithm that is simpler and more intuitive.

The SOM consists of a set of nodes, which are fully connected to the input layer and often arranged in

a 2D rectangular grid. The nodes in the SOM are not connected to one another. Given an input space

of dimension n and the total number of nodes m specified by the user, each node in the network is

associated with a n-dimensional weight vector wi, i ∈= {1, 2, ..., m}. Each weight vector represents

the position of the corresponding node in the input space. In training, the pairwise distances between

the input x and w1, w2, ..., wm are calculated. The training process moves the weight vectors towards

the input data, resulting in the SOM eventually preserving the topology of the input space.

12



Figure 2.1: Structure of SOM. x denotes an input vector with n dimensions, and the grid on the right

depicts the SOM. The lines in the middle depict weight vectors associated with each SOM node,

connected to each dimension of x.

Figure 2.2: Example usage of SOM demonstrating SOM’s topology preservation, in clockwise direction

from top left. Source: [10]
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2.2 Training algorithm
There exist two widely used training algorithms of the SOM today: the online SOM algorithm and the

batch SOM algorithm. The former is the algorithm introduced in Kohonen’s original paper, and the

latter was introduced also by Kohonen in 1995. The key difference is that the online SOM algorithm

considers a single input vector for each iteration and the batch SOM uses the entire dataset. The batch

SOM algorithm is usually preferred in practice over the predecessor, due to its faster computation

speed and having fewer learning parameters [11].

The training process for the SOM can be divided into four steps: initialization, competition,

cooperation, and adaptation. We will discuss these steps first and delve into where the two algorithms

differ.

2.2.1 Initialization
Prior to training, each weight vector must be initialized. Given the total number of SOM nodes m as

the input, weight vectors w1, w2, ..., wm are initialized. This can be done in several ways:

1. Random initialization. Weights are assigned from samples from a probability distribution,

typically the standard normal distribution. This is the most commonly used method.

2. Linear initialization. Weights are initialized to span the first two principal components. It is

known to make the SOM converge faster [12].

3. Sample initialization. Weights are assigned to random samples from an input dataset.

2.2.2 Competition
During this step, the SOM nodes compete to be the winning neuron, often called the best matching

unit (BMU) in the context of SOM. Let x ∈ Rn
be an input vector. The SOM calculates pairwise

distances between x and w1, w2, ... and selects the closest node from x (i.e. node with the smallest

distance) as the BMU. Several distance metrics have been used in the SOM, but the Euclidean distance

is by far the most popular choice. Let bmu(x) be the index of the BMU for x. Then bmu(x) is selected

by:

bmu(x) = argmin
i
∥x− wi∥ , i = 1, 2, ..., m (2.1)

2.2.3 Cooperation
A core property of the SOM is that similar input items are grouped towards one area in the output

space. In other words, adjacent SOM nodes represent similar items from the input. This is done

during the cooperation process. Now that the BMU has been selected for x, the next step is to

calculate which other nodes are within the neighborhood of bmu(x). The SOM alters not only the

BMU, but the nodes that are "sufficiently adjacent". This is determined by the neighborhood function,

for which there are a few choices. Among them, the Gaussian function is the most popular choice:
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hi,bmu(x) = e−
d2

i,x

2σ2

It should be noted that Gaussian function’s neighborhood is gradual.

where d2
i,x = ∥ri − rx∥2

and ri is the position of node i. hi,bmu(x) denotes the neighborhood distance

between the BMU and another node i. Note that for either choice of functions, hi,bmu(x) decreases

as di,x increases and hi,bmu(x) is at its maximum when di,x = 0. There are two parameters from the

above formulas yet to be mentioned: σ and t, which entail understanding an important characteristic

of the SOM: its learning slows down over time and the map eventually converges. Likewise, the

radius of the neighborhood shrinks with time, eventually shrinking to the size of one node, itself.

This is accomplished by σ, which is typically the exponential decay function:

σ(t) = σ(t0)e
−t
λ , t = 1, 2, 3, ..., k. (2.2)

where σ0 denotes the initial neighborhood radius, λ is the time constant used to decay the learning

rate and neighborhood radius, and t is the current time-step of the algorithm (which keeps track of

time during the learning process). Summing up, the Gaussian function as our neighborhood function

takes the following form:

hi,bmu(x)(t) = e
−

d2
i,x

2σ(t)2
(2.3)

Figure 2.3: Illustration of neighborhood radius decay over time during training. As the radius

decreases, fewer nodes are influenced by the change caused by the BMU.
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2.2.4 Adaptation
During the adaptation process, the weight vectors for nodes within the BMU’s neighborhood are

updated as:

wi(t + 1) = wi(t) + α(t)hi,bmu(x)(t)[x− wi(t)] (2.4)

where α is the monotonically decreasing learning rate parameter in the range [0, 1], which is

usually the exponential decay function σ:

α(t) = α(t0)e
−t
λ , t = 1, 2, 3, ..., k. (2.5)

That is, the "updating rate" for a weight vector is determined by the current learning rate and

neighborhood function value for the corresponding node. The further the node is located from the

BMU and the later in the learning process, the lower the updating rate gets.

Once we repeat this training process for all input items for a given number of iterations, the

training is complete.

Figure 2.4: Example usage of SOM

Figure 2.4 demonstrates an example usage of the SOM; we can observe that the SOM groups

similar colors together. We use 1,000 randomly generated colors represented by RGB vectors (three-

dimensional vectors with corresponding RGB values following a uniform distribution in the range

[0, 1]) to train a 20-by-20 SOM. After training, we determine the BMU of each input item to display

the output. Since the number of input items is much greater than the total number of nodes in this

example, it’s likely that multiple images are assigned to the same node. In such a case, we selected

an arbitrary image.
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Figure 2.5: BMU (the node in the center of the SOM) and nodes within its neighborhood radius

Summary

Let us summarize the variables and parameters we use for the SOM:

• x is the input vector. X denotes the entire dataset.

• n is the input length (the dimension of x).

• m is the total number of SOM nodes.

• w1, w2, ..., wm are weight vectors for the corresponding SOM nodes.

• t is the current iteration of the algorithm.

• k is the total number of iterations, specified by the user.

• bmu(x) is the BMU of x.

• λ is the time constant.

• α(t) is the learning rate for t given by:

α(t) = α(t0)e
−t
λ , t = 1, 2, 3, ..., k.

• σ(t) is the neighborhood radius for t given by:

σ(t) = σ(t0)e
−t
λ , t = 1, 2, 3, ..., k.

• hi,bmu(x) is the neighborhood function for a node i and bmu(x) given by:

hi,bmu(x) = e−
d2

i,x

2σ2
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2.2.5 Online SOM algorithm
The online SOM algorithm performs the four steps of the training process above on a single input

vector at a time. Thus it is a recursive and stepwise algorithm. It can be described as follows:

Algorithm 1: Online SOM

Input: X, k (total number of iterations)

Output: Trained {w1, w2, ..., wm}

Initialize w1, w2, ..., wm randomly.

while i < k do
for x in X do

find bmu(x) by computing the Euclidean distances between x and {w1, w2, ..., wm}.
Determine the neighbors of bmu(x).
Update the weight vectors of bmu(x) and its neighbors.

i← i + 1
end

end

2.2.6 Batch SOM algorithm
Contrary to the online algorithm, the batch algorithm takes the entire dataset as one batch and

update all weight vectors concurrently in one cycle. The batch algorithm is known to be faster and

safer, and its convergence is considerably faster as well [11]. It also makes things simpler as it doesn’t

involve the learning rate parameter α as in the online algorithm. The weight vectors are updated as:

wi(t + 1) =

l∑︁
j=1

hi,bmu(xj)(t)xj

l∑︁
j=1

hi,bmu(xj)(t)
, i ∈ {1, 2, ..., m} (2.6)

where l is the total number of input vectors in X .
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Algorithm 2: Batch SOM

Input: X, k (total number of epochs)

Output: Trained {w1, w2, ..., wm}

Initialize w1, w2, ..., wm randomly.

while i < k do
find bmu(x) by computing the Euclidean distances between x and {w1, w2, ..., wm} for

all x.

Determine the neighbors of bmu(x) for all x.

Update the weight vectors concurrently.

i← i + 1
end

Figure 2.6: Illustration of one epoch in the batch SOM. Source: [11]

2.3 Evaluation methods
There are two widely used evaluation metrics for the SOM: quantization error and topographic error.

The former measures the resolution of the SOM or the "goodness of its fit", whereas the latter assesses

the topology preservation of the SOM. Quantization error is often used as a basic quality measure.
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2.3.1 Quantization error
Quantization error is the average distance between each input vector and its BMU. In other words,

QE = 1
N

N∑︂
i=1

⃦⃦⃦
xi − wbmu(xi)

⃦⃦⃦
(2.7)

where N is the total number of input vectors in the dataset and wbmu(xi) is the weight vector

associated with the BMU of xi. This metric measures the relationship between input vectors and

their BMUs. Quantization error is a clustering metric, analogous to calculating the distance between

each data point within a cluster and the centroid in k-means clustering.

2.3.2 Topographic error
One of the main properties of the SOM is topology preservation. Topographic error assesses the

quality of topology preservation by finding the BMU and second-BMU of each input vector and

comparing their positions as follows:

TE = 1
N

N∑︂
i=1

t(xi) (2.8)

t(xi) =

⎧⎨⎩0 if bmu(x) and second_bmu(x) are adjacent

1 otherwise

In other words, topographic error measures the proportion of input vectors whose BMU and

second-BMU are not adjacent.

2.3.3 U-matrix
U-matrix is a visual representation of the SOM which displays the distances between adjacent SOM

nodes in a grayscale image. A lighter coloring between nodes indicates the weight vectors associated

with the nodes are close to each other, and vice versa. U-matrix is a useful tool that provides a visual

topology representation of the SOM.
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Figure 2.7: Example of a U-matrix. Source: [13]
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Chapter 3

Experiments

3.1 Aim

Figure 3.1: Output of Plain SOM. The target frame of the query is emphasized with a mint rectangular

patch at its bottom right corner. The other frames have similar rectangular patches, whose colors are

represented as the G value of an RGB triplet (with R and B values being zero).

Although the SOM is a powerful clustering and dimensionality reduction algorithm, it poses a notable

problem for our use case: known-item search in video frames. Our video frames have relevance

scores assigned with respect to a target image and we wish to display top-scoring images in the
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Figure 3.2: Output of 30-by-30 Plain SOM for randomly generated colors

upper rows of output display, and vice versa. The SOM only takes into account the similarity of given

data; it organizes the input items solely based on the similarity of input items in the original feature

space, whether or not there exists some ranking among them. This is demonstrated in Figure 3.1, in

which higher-scoring frames have patches in lighter shades of green (except for the target frame,

which has the mint patch). In the language of IR systems, the original SOM only has the "exploration"

capabilities as opposed to exploitation. The display utilizing only the exploitation capabilities is often

called Top-k display, in which items are selected and displayed solely in the order of their relevance.

Our goal is to modify the SOM so that it considers the individual relevance scores as well as local

similarity in the original feature space (i.e. our goal is find a middle ground between the original

SOM and Top-k display). With this in mind, we devised two variants of the SOM: Rating dimension
SOM and Rating-weighted SOM. For the sake of clarity, the original SOM will be denoted as Plain
SOM henceforth.

For illustration purposes, we will be training our SOM variants with randomly generated colors

as shown in Figure 3.2. This time, we train a 10-by-10 SOM on 1000 randomly generated colors

represented by RGB vectors (with corresponding RGB values following a uniform distribution in

the range [0, 1]). To introduce the notion of rating to this data, we select a target color, and assign a

relevance score to each color image based on its similarity to the target color. This leaves us with a

realistic use case that is much simpler and more intuitive.

Figure 3.3: An example target color for our task, represented by RGB triplet (0.6, 0.3, 1.0)
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Probabilistic sample selection
While training the SOM on the entire dataset improves the diversity of the display, it often hinders

more relevant images from being displayed. This does not benefit our use case in which the user

intends to exploit results relevant to their query. To tackle this problem, Kratochvil et. al devised

a probabilistic sample selection procedure, in which each item from the dataset is selected with a

probability proportional to its respective relevance score [2, 4]. An alternative approach to this may

be to simply select top N images. However, SOM with porbabilistic sample selection may produce

more diverse displays, especially if N is small. In either case, pre-processing items from the original

dataset would result in displays with more relevant objects.

3.2 Rating dimension SOM
The main idea behind Rating dimension SOM (RDSOM) is adding a new dimension of relevance

scores to both the training data and the weight vectors of the SOM, and keeping the orientation of

the SOM close to that of the data with respect to the new dimension. For each input vector x from

our dataset, we add a corresponding relevance score as its new dimension. Similarly, for each weight

vector of the SOM, we add a relevance score as its new dimension based on its position; since we

want top-scoring images to be displayed in top rows, we assign the highest query score to the top left

node, and so forth. With input images and their respective scores, we have the desired final layout of

scores in the SOM. With this in mind, we reorganize the SOM to recognize and respect that layout

during training.

There are a few approaches to this we can take, which we will explore in this section.

3.2.1 Initial bias
Prior to training, adding initial bias to the weight vectors to match the orientation of top-k ordering of

images can help the SOM arrange the images in the order of importance as well as find the topology

of given data. We assign the new dimension of each weight vector the relevance score of the image

that would appear at the corresponding node position in top-k ordering.

As for the new dimension of our data, we need to ensure that its variance is significant enough

for the SOM. Otherwise, the SOM will disregard the score distinction. Hence, we scale up the rating

dimension so that its variance is greater than the rest of the features combined by dividing it with its

standard deviation, which adjusts the variance to 1.
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Figure 3.4: Trained weight vectors of the SOM with initial bias

3.2.2 Re-biasing
It may happen that we need to bias the SOM during the training process. For example, with the initial

bias method above, the SOM may unexpectedly move the top-scoring images to lower positions

because we are not adding any bias to the SOM during the training process. For this reason, we

propose an alternative approach we call "re-biasing", which biases the rating dimension of the weight

vectors during training. The core idea of re-biasing is nearly identical to that of initial bias. However,

since this method is applied during training, it poses a few questions to be answered: how far through

training do we halt re-biasing (i.e. when is the optimal timing to stop re-biasing)? In what manner

do we apply re-biasing? For example, do we apply it to all of the weight vectors as re-biasing, or

perhaps only to ones in the top and bottom rows?

As for the optimal timing to halt re-biasing, it is important that we let the SOM train on its own

(without bias) towards the end of training. As mentioned in Chapter 2, σ determines the radius of

neighborhood (informally, the "area of influence") and its value decays over time during training.

The last iterations with low σ allow the SOM to spread out properly and find a better fit for the data.

For that reason, re-biasing near the end of the training process can hinder such a process. Thus we

experimented with the following thresholds (which we call cut-points throughout the rest of this

paper): 0.1 (i.e. re-biasing up to 10% of the total number of iterations), 0.25, 0.5, 0.75 and 0.9.

Nonetheless, several options remain for the very method of introducing bias to the weight vectors

during training. We experimented with adding bias from the top m images of our dataset (e.g. in

case of a 10-by-10 SOM, use top 100 images to affect the score dimension of the weight vectors), and

adding bias to the top row and bottom row only (e.g. use top 10 images to bias the weight vectors in

the top row of SOM, and bottom 10 images to bias the bottom row). Of these two sub-variants of

Rating Dimension SOM, the former will be denoted in results as RDSOM-all (short for all rows; also

denoted in subsequent figures as full_re-biasing), while the latter will be denoted as RDSOM-first_last
(short for first and last rows only).
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Algorithm 3: RDSOM-all

Input: X (dataset), s (scores), k (total number of iterations), c (cut-point)

Output: Trained {w1, w2, ..., wm}

Initialize w1, w2, ..., wm randomly, with n+1 dimensions.

Add s column to X to make n+1 dimensions.

Sort X based on the (n+1)-th dimension.

while i < k do
if i < k ∗ c then

r ←
√︂

1− i
k∗c

wj[n + 1]← r ∗ xj[n + 1] + (1− r) ∗ wj[n + 1] ∀j ∈ 1, 2, ..m
end
for x in X do

find bmu(x) by computing the Euclidean distances between x and {w1, w2, ..., wm}.
Determine the neighbors of bmu(x).
Update the weight vectors of bmu(x) and its neighbors.

i← i + 1
end

end
Once training is complete, the BMU of each input vector is determined in order to display the

output. It is possible that multiple items are be mapped to the same node, leaving some nodes empty.

In such a case, we select the next closest node possible. We repeat this process until we find an empty

node to assign the item to.

Figure 3.5: Trained weight vectors with re-biasing applied with cut-point = 0.75 (i.e. up to the third

quarter of training). High-scoring, purple-shaded images have been moved noticeably further up via

re-biasing.
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3.3 Rating-weighted SOM
Rating-weighted SOM (RWSOM) revolves around modifying the distance metric to take the rating

into consideration. The Euclidean distance is the default metric for the SOM, which we calculate for

each pair of feature vectors ("images") and weight vectors ("nodes"). At each iteration, we select the

node with minimal distance from the current image. Let us denote the Euclidean distance between

a feature vector and a weight vector as L2(node, image). The main idea behind Rating-weighted

SOM is creating a new metric which adds bias to L2(node, image):

dist(node, image) = L2(node, image) + f(node, image) (3.1)

where f is some function that adds bias depending on the rating (or ranking) of the corresponding

node and image. Our initial question was whether to use ordinal ranks or original ratings (relevance

scores) for Rating-weighted SOM. We opted for ratings, as our original dataset contains 20,000 images

and the output of f can grow very large, overwhelming any local similarity. To determine potential

choices for f , we need to consider its desirable characteristics:

• f must recognize the relative importance of nodes (e.g. the top left node is very important, the

rightmost node in the third row isn’t as important, and the bottom right node is completely

unimportant).

• if both the image and the node have high ratings, f must "reward" the node by setting the

distance low, making it more likely for the BMU selection process to select the associated node.

On that note, we devised node ratings and node weights. The notion of node ratings was added in

order to specify the relative importance of nodes at different positions. The top left node will have

the highest rating of 1, and the bottom right node will have the lowest rating of 0. For all nodes in

between, we generated a set of evenly spaced numbers within interval (0, 1), and assigned the values

in decreasing order starting with nodes in the top row. Furthermore, we assigned a node weight

1
node_ratingi

for the i-th node (i = 1, 2,...,m), where the first node is the top left node, the second is the

node next to it, and the m-th node is the bottom right node.

Putting these notions together, we devised the following functions for f :

1. f(nodei, imagej) = node_weighti ∗ ∥node_ratingi − image_ratingj∥

2. f(nodei, imagej) = node_weighti ∗
|node_ratingi − image_ratingj|

max(node_ratingi, image_ratingj)

3. f(nodei, imagej) = node_weighti ∗
|node_ratingi − image_ratingj|

min(node_ratingi, image_ratingj)

4. f(nodei, imagej) = node_weighti ∗ log(|node_ratingi − image_ratingj|)
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In results, Rating-weighted SOM with the above choices of f will be denoted as RWSOM-euc
(short for Euclidean distance), RWSOM-frac_min (short for fractional difference with minimum),

RWSOM-frac_max (short for fractional difference with maximum), RWSOM-log (short for logarithm,

also denoted in subsequent figures as log_abs), respectively.

In Chapter 2, the BMU for x was selected as follows in Plain SOM:

bmu(x) = argmin
i
∥x− wi∥ , i = 1, 2, ..., m (3.2)

Combining this with f , we have the following formula for BMU selection:

bmu(x) = argmin
i

(β ∗ L2(x, wi) + (1− β) ∗ f) (3.3)

where β is a hyperparameter which helps us tune the trade-off between Plain SOM and Top-K

display [4].

3.4 Evaluation protocol
Evaluating the SOM’s display is quite a complicated task. Since all of the images are intended for

humans, it is important that the output is visibly suitable for the given query - which is very difficult

to quantify and can vary from person to person. Additionally, simply by looking at the images,

it’s not often clear how organized the results are with respect to the relevance and similarity of

the data. Consequently, any claims of the "optimal" evaluation metric would be highly disputable.

Nevertheless, we can put together several practical measures in an effort to evaluate the goodness of

our output.

Due to the nature of our task, we need to evaluate how well our SOM variants preserved both

the relevance and the local similarity of the data. Since our goal is nearly identical to that of

Peška and Lokoč [4], note that this section of the paper was heavily inspired by their evaluation

protocol: relevance scores of candidate items were computed as ri = e−exp∗L2(xt+b,xi)
, where t is

an arbitrary target image and exp is a scoring hyperparameter tuning the steepness of the rele-

vance model, and b is a random noise vector selected from a normal distribution with µ = 0 and

σ = 0.1 in case of RGB colors, and µ = 0 and σ = 0.2 for the video frames [4]. Similarly, we

experimented with β ∈ {0.001, 0.003, 0.01, 0.03, 0.1, 0.2, 0.5, 0.8, 0.9} for Rating-weighted SOM,

cut-point ∈ {0.1, 0.25, 0.5, 0.75.0.9} for Rating dimension SOM, exp ∈ {5, 10} for the color dataset

and exp = 10 for the frame dataset.

Outputs of the following SOM variants were evaluated against Top-K display:

• Plain SOM

1. Plain SOM

2. Plain SOM+prob
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• Rating dimension SOM

1. Rating dimension SOM with initial bias only

(a) RDSOM-initial_bias
(b) RDSOM-initial_bias+prob

2. Rating dimension SOM with re-biasing

2.1. Rating dimension SOM with full re-biasing

(a) RDSOM-all (followed by cut-point denoted as a suffix; e.g. RDSOM-all_0.1)

(b) RDSOM-all+prob (e.g. RDSOM-all_0.1+prob)

2.2. Rating dimension SOM with re-biasing on first and last rows only

(a) RDSOM-first_last (e.g. RDSOM-first_last_0.1)

(b) RDSOM-first_last+prob (e.g. RDSOM-first_last_0.1+prob)

• Rating-weighted SOM

1. RWSOM (followed by a choice of f and β; e.g. RWSOM-log_0.001)

2. RWSOM+prob (e.g. RWSOM-log_0.001_+prob)

where RDSOM denotes Rating dimension SOM, RWSOM denotes Rating-weighted SOM, and

+prob denotes probabilistic sample selection. Variants without the + symbol run on all images from

our dataset (i.e. without any image selection process prior to training).

Peška and Lokoč formulated three requirements to determine good SOM output: relevance,

diversity, and topology preservation [4]. The requirements state that the output must contain the

most relevant results in the most prominent areas of the display, and that it must preserve the

diversity and topology of given data. On that note, they put together three evaluation metrics: nDCG,

div(all), and divRatio.

NDCG evaluates the display in terms of relevance preservation, whose values closer to 1 indicate

that the SOM display resembles Top-K display.

Both div(all) and divRatio are obtained by comparing the distance of images on the output screen

and their distance in the feature space. div(all) evaluates overall diversity (coverage) of the display,

which is calculated as mean Euclidean distance with respect to all pairs of displayed items. Note that

higher div(all) values indicate more diverse results.

Finally, divRatio denotes the ratio between neighbors’ diversity and overall diversity (i.e. divRatio =
div(neighbors)/div(all)), and measures orderliness of the display. For each node on the SOM display,

all nodes within its "immediate surroundings" are considered its neighbors. For example, the node at

index [0, 0] has three neighbors: at [0, 1], [1, 0], and [1, 1]. div(neighbors) is then calculated as mean

Euclidean distance between nodes and their neighbors:

divRatio =
∑︂

∀i∈[m],j∈Ai

L2(wi, wj)
|A|

(3.4)
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where Ai is the set of all adjacent nodes for the i-th node. Note that lower divRatio values indicate

more orderly results [4].

30





Chapter 4

Results and Discussion

(a) Rating dimension SOM with exp = 10 and cut-point represented by markers

(b) Rating-weighted SOM

Figure 4.1: Results of Rating dimension SOM and Rating-weighted SOM trained on RGB colors (left)

and video frames (right). X-axis depicts nDCG (i.e. exploitation capability) while Y-axis depicts the

overall diversity of selected images (i.e. exploration capability) [4], and the colors of the data points

depict the corresponding SOM (sub-)variants.



Figure 4.2: divRatio measured on Rating Dimension SOM and Rating-weighted SOM with exp = 10.

cut-point was applied where applicable.

In this chapter, we will evaluate our SOM variants using the evaluation metrics described in

Chapter 3. Subsequently, we will examine example displays of the SOM variants trained on RGB colors

to visually compare the results. We will then compare Rating dimension SOM and Rating-weighted

SOM individually with different hyperparameter settings.

Figure 4.1 and Figure 4.2 show overall results for the RGB color dataset and video frame dataset,

measured by our evaluation metrics. Note that since both Rating dimension SOM and Rating-

weighted SOM have quite a few sub-variants and combinations of hyperparameters, we restricted

the experiment settings to exp = 10 and without probabilistic selection in case of Rating dimension

SOM. As for Rating-weighted SOM, its sub-variants were evaluated by the mean values obtained

from all possible β values.

In both figures, we can observe that Rating dimension SOM and Rating-weighted SOM bridge the

gap between Plain SOM and Top-k display. This aligns with Rating-aware SOM [4]. However, Figure

4.1 (b) indicates that probabilistic sample selection didn’t present sufficient help in improving nDCG

with respect to the rating-weighted distance metrics. As for Rating dimension SOM, increasing

cut-point values generally resulted in improved nDCG, although it caused a sharp decrease in div(all)
for the color data. Furthermore, it’s worth noting that RDSOM-first_last showed a clear improvement

on nDCG while preserving the overall diversity of the data fairly well.

Let us explore our SOM variants in mote detail by simulating a known-item search scenario with

a target image and relevance scores (ratings) assigned to the color dataset. As shown in Figure 4.3,

it’s clear that Rating-weighted SOM’s output is quite disorderly (especially RWSOM-log), in contrast

to Rating dimension SOM. However, while the upper half of its display is cluttered, it consistently

displayed a fairly high-scoring image in the top left node in the current experiment setting. As

for Rating dimension SOM, RDSOM-initial_bias displayed high-scoring images in upper rows while

preserving the diversity of the data. However, top-scoring images are not displayed in the top left

corner, which illustrates why initial bias alone is often not sufficient. Unsurprisingly, among RDSOM

variants, RDSOM-all was most successful in displaying high-scoring images.
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Figure 4.3: Example display of our SOM variants trained on RGB colors. All methods utilized

β = 0.03, exp = 10, cut-point = 0.5 where applicable. Starting from the top row, Plain SOM,

RDSOM-initial_bias, RDSOM-all, RDSOM-first_last, RWSOM-euc, RWSOM-frac_max, RWSOM-

frac_min, and RWSOM-log are displayed in order.



Figure 4.4: Example display of Rating dimension SOM with probabilistic sample selection and

various cut-point values. RDSOM-all and RDSOM-first_last are displayed in the order of RDSOM_0.1,

RDSOM_0.1+prob, RDSOM_0.5, RDSOM_0.5+prob, RDSOM_0.9, RDSOM_0.9+prob. Note that Figure

4.4 and Figure 4.5 are a continuation of the first example in Figure 4.3.

Figure 4.4 depicts the display of Rating dimension SOM with probabilistic sample selection and

different cut-point values. Without probabilistic selection, it is apparent that RDSOM-all covers the

entire screen with highly relevant images with higher cut-point while RDSOM-first_last tends to

populate only the upper part of the display with such images.

Let us now consider Rating-weighted SOM in more detail. Since RWSOM-log failed to provide

marginally satisfactory results, it will be omitted from further experiments.

As previously mentioned, Figure 4.5 indicates that Rating-weighted SOM usually displays a

high-scoring image in the top left node, despite (possibly) dissimilar images adjacent to it. We suspect

that this is potentially caused by low σ, currently fixed to 1.0. Furthermore, generally speaking,

higher β appears to provide more orderly and smooth displays while moderately preserving the

relevance of given data. This is in line with Rating-aware SOM as evaluated by Peška and Lokoč [4].
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Figure 4.5: Example display of Rating-weighted SOM with probabilistic sample selection and various

β values



Discussion
Although Rating-weighted SOM showed a noticeable improvement with prior-to-training probabilistic

sample selection, our study has some potential limitations.

Firstly, since there exist many sub-variants of our variants and thus many combinations of

hyperparameter values, α (learning rate) and σ (neighborhood radius) of our SOM variants were

fixed to 1.0. As briefly mentioned above, it is possible that Rating-weighted SOM can improve with

different hyperparameter settings e.g. custom distance metrics with higher σ. Tuning β may help us

find a suitable middle ground between Plain SOM and Top-k display, as demonstrated in Figure 4.6.

Secondly, as stated in the Introduction, this study considered only the row-first ordering of nodes;

whereas Peška and Lokoč considered both the row-first ordering and triangular ordering when

performing their experiments [4]. The "golden triangle" pattern is known to closely resemble the

user’s eye movement when viewing images online [14, 15]. For our use case, the triangular ordering

better serve as the "prominency ordering" of nodes.
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Figure 4.6: Example display of Rating-weighted SOM with different combinations of β and σ values.

For the sake of brevity, probabilistic sample selection was omitted.



Conclusion

In this work, we proposed two rating-aware variants of SOM and their sub-variants in order to

incorporate the relevance of given data in SOM: Rating dimension SOM and Rating-weighted SOM.

We used three evaluation metrics proposed by Peška and Lokoč [4] to evaluate our results, aimed at

measuring the diversity, relevance and the degree of topology preservation of the display. Furthermore,

we examined example displays with color images (simulating a known-item search scenario) to

visually compare the results.

Our results showed an improvement over Plain SOM with respect to these metrics, although they

also indicated there’s room for further improvement.

Future work
As mentioned in Chapter 4, different hyperparameter settings may help improve the results; particu-

larly for Rating-weighted SOM. Furthermore, we may be able to find a better choice of f that better

takes the relevance of given data into account while preserving the local similarity.

As for the prominence ordering of nodes mentioned in Chapter 4, we may also modify our SOM

variants such that it considers the triangular ordering (e.g. as for Rating dimension SOM, by re-biasing

the weight vectors in a different order). Furthermore, in a similar manner as β, Rating dimension

SOM may also be tuned by some hyperparameter.
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