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Introduction
It is undoubtful that Artificial Intelligence has become a significant part of our
daily lives. Many of its fields, like Machine Learning with Neural Networks, are
thriving. Their popularity is at an all-time high, and with the rising power of the
hardware, so is their performance.

Neural networks can achieve state-of-the-art performance in a wide range
of fields, but understanding how and why they come up with a solution is still
unclear. However, with application in high-risk fields like medicine or autonomous
vehicles, understanding their reasoning has become very important.

In particular, Convolutional Neural Networks (CNNs) have demonstrated
great success in processing visual data. CNNs are structured to function with
a two-dimensional image input, and as a result, they maintain the spatial rela-
tionships for what the model learns. However, even the most successful network
can be fooled with not too much effort required with so-called adversarial exam-
ples. These perturbations offer an opportunity to understand the work of CNNs
better.

Considering this, the primary goal of this thesis is to create a tool that allows
the visualization of a CNN’s inner activations. There are many other approaches
to visualizing CNNs, and we should not limit ourselves to only a single method.
The aim is to implement an interface for a comprehensive educational analysis
of CNN’s behavior in various scenarios. In summary, these are the features that
our implementation should support:

• User-friendly environment - the user interface must be simple enough for
the tool to be straightforward to use.

• Activation-based visualization - the tool should provide a visualization fo-
cusing on the network’s activations to examine where the CNN decides for
a prediction.

• Variety of visualizations - the tool’s purpose is to provide a broad analysis of
a model. Therefore different explanations of CNN’s prediction are needed.

• Not model-specific - various pre-trained models need to be provided. Also,
the user should be able to load their model of choice.

• Adversarial examples - the user should be able to inspect the effects of
adversarial examples.

This thesis consists of six separate chapters. Chapter 1 introduces CNNs,
their structure, and the models used in the visualization tool. In chapter 2 we
discuss Adversarial examples and some methods of generating them. In chapter
3 we discuss different approaches to visualize CNNs. Chapter 4 focuses on the
implementation of the tool, and chapter 5 introduces the user to the use of the
application. The final chapter 6 discusses our outputs of performed experiments.
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1. Convolutional Neural
Networks
Convolutional Neural Networks (CNNs), as a type of Artificial Neural Network
(ANN), is a computing processing system inspired by how organic nervous sys-
tems, like the human brain, function. The primary building blocks are referred
to as neurons, a high number of interconnected computational nodes divided into
layers (input, hidden, output) that self-optimize through learning. After loading
the input to the input layer, it would distribute the data to the hidden layers.
The hidden layers carry out the learning process. They make decisions from the
previous layer and weigh up how a stochastic change within itself detriments or
improves the final output [1].

input
layer

hidden layers

output
layer

Figure 1.1: Simple ANN architecture [2].

CNNs are different from other ANNs in that they focus on a particular type of
input (a multidimensional array) rather than the entirety of the problem domain,
thus making it possible to reduce the number of parameters and solve complex
tasks with large models [3].

In this chapter, we take a look at CNN’s key elements and how they work.
We also introduce some real examples of CNN that we use in the visualization
tool.

1.1 CNN structure
The architecture of a CNN can vary. However, they share a lot of fundamen-
tal elements, namely convolutional, pooling, and fully-connected layers [4]. The
difference between a fully connected and convolutional layer is that neurons in
a convolutional layer are connected to a local region in the layer before it. In
contrast, each neuron in a fully-connected layer has connections to all activations
in the previous layer.
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1.1.1 Convolutional layers
As the name suggests, a convolutional layer is the main part of CNN’s computa-
tions. The convolutional layer learns to represent the features of the inputs [4]. It
comprises a set of filters (or convolution kernels), convolving with a given input
x to generate an output feature map f :

f(i, j) = (x ∗ k)(i, j) =
∑︂
m

∑︂
n

x(m, n)k(i − m, j − n), (1.1)

where k is a two-dimensional filter [5]. To convolve means multiplying the filter
with a local region of neurons in the previous layer, and the sum of this product
is a neuron of a feature map. The filter slides along the previous layer to obtain
a full feature map as we can see in figure 1.2. We call the local region from the
previous layer the neuron’s receptive field.

The convolution filters do exactly what the name hints at. They filter out
specific features of the image. The filters in the first convolutional layers are
designed to detect low-level features such as edges and curves, while the filters in
higher layers learn to encode more abstract features. The values in the filter are
referred to as the weights. The weights are randomly initialized, and the network
learns their values through back-propagation. Back-propagation is an algorithm
for training ANNs and computes the gradient of the loss function with respect to
the parameters of the network. The errors are recursively sent backward through
the multi-layered network [6]..

Figure 1.2: Example of a convolutional operation. The filter is sliding across
the whole previous layer. The filter is highlighted in green, and orange is the
receptive field of the blue destination neuron in the convolved image [6].

The convolved image is usually put through a non-linear activation function
to squeeze its values into a narrower range. The non-linearity in CNN is essential
to detect non-linear features. In the absence of non-linearities, the network is
equivalent to a linear mapping from the input to the output domain. A non-linear
function can also be perceived as a selecting mechanism, which decides whether
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a neuron will fire or not given all of its input [6]. Typical activation functions are
sigmoid, hyperbolic tangent function, and ReLU (the rectified linear unit).

x

f(x)

1

0
-1

sigmoid(x)
tanh(x)
ReLU(x)

Figure 1.3: Some of the most common activation functions: Sigmoid, Tanh,
ReLU.

• Sigmoid: as we can see in figure 1.3 the sigmoid activation function σ(x)

transforms the input in the range [0, 1]. It is defined as f(x) =
1

1 + e−x
[7].

• Tanh: in contrast with the sigmoid is symmetric around 0 and its values lie

in the range [−1, 1]. It can be defined as f(x) = 2σ(2x) − 1 =
ex − e−x

ex + e−x
[7].

• ReLU: is defined as f(x) = max(0, 1) [7]. The ReLU function is very
commonly used, and many variations exist to overcome its defects.

The non-linear activation functions are differentiable so that the weight of the
network can be updated during back-propagation.

Convolutional layers can optimize their output and thus reduce the complexity
of the model through hyperparameters. Based on the application, they are design
choices of the network architecture set by the user. These parameters are:

• Number of filters: by adjusting the number of neurons in each layer
concerning the same area of the input, the depth of the output volume
generated by the convolutional layers may be manually set. Reducing this
hyperparameter can drastically lower the total number of neurons in the
network, with the expense that it can also significantly lower the model’s
capacity for pattern recognition [1].

• Stride: a step along the horizontal or vertical position the filter takes in
order to calculate each value of the output feature map. The bigger the
stride, the smaller the output feature map. This dimension reduction is
referred to as the sub-sampling operation [6]. For example, with stride 2 in
figure 1.2 the convolution operation would omit steps (b), (d-f), and (h),
and that would result in the 4 × 4 feature map.

• Zero-padding: border of zeroes added to the input to allow more control
over the output’s dimension. That is done by increasing the input size to
achieve desired dimensions of the output feature map. The padding must
involve at least one original input value in the convolution operation [6].
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The spatial dimensionality of the output feature map after tweaking the hyper-
parameters can be calculated using the formula:

(V − F ) + 2Z

S + 1 .

Where V represents the input size, F represents the filter size, Z is the amount
of zero padding set, and S refers to the stride [1]. The stride has to be set, so the
formula gives an integer.

1.1.2 Pooling layers
Stacking more convolutional layers can increase the depth of the output. Using
pooling layers reduces the complexity of a CNN. The pooling layer performs
downsampling along the spatial dimensionality of the feature maps [4]. Like a
convolution filter, pooling is done on a block of input values across the feature
map. Therefore the stride and size of the pooled block are set. A pooling function
replaces the output feature map at a certain location with a summary statistic
of the nearby block outputs [5]. The Commonly used pooling functions are max
pooling and average pooling. In max pooling, the pooling operator maps the
block to its maximum value, while the average pooling maps the block to its
average value [1].

Figure 1.4: Example of max pooling with stride 1 over block of size 2 × 2 [6].

The goal of pooling is to transform the feature representation into a new
one that preserves important information while discarding irrelevant detail [8].
Pooling layers usually lie between convolutional layers.

1.1.3 Fully-connected layers
Each neuron in a fully-connected layer is connected to all the neurons from both
the previous and the next layer, similarly to traditional ANN. A fully connected
layer’s main disadvantage is that it has many parameters that need complicated
calculations in training samples. They are usually used towards the end of the
model. Its operation can be described as:

y = f(Wx + b)

where x and y are the vectors of input and output activations, respectively, W
denotes the matrix containing the weights of the connections between the layer
units, b represents the bias term vector, and f(·) is element-wise nonlinear func-
tion [6, 3].

The last fully connected layer, also called the output layer, contains class
scores in the case of an image classification problem [9]. For classification tasks,
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the softmax function is commonly used. It is also commonly known as a nor-
malized exponential function because it normalizes the output of a network to
a probability distribution of the output classes. The optimum parameters for a
specific task can be obtained by minimizing an appropriate loss function [4].

1.2 CNN Models
Convolutional neural networks have been proven to be an effective tool for image
classification [10]. In image classification, the model tries to categorize the image
into one of the classes based on the main object of the image. Two of the most
popular classification datasets are MNIST and ImageNet.

The MNIST (Modified National Institute of Standards and Technology)
database is a collection of handwritten digits. It is a subset of a more extensive
set available from NIST, hence modified NIST. There are 60,000 training and
10,000 test examples drawn from the same distribution. The original black and
white (bi-level) images from NIST were size normalized, preserving their aspect
ratio. As a result of the anti-aliasing technique, the resulting images contain grey
levels. The images were centered in a fixed-size image where the center of gravity
of the intensity lies at the center of the image with 28 × 28 pixels [11, 12].

Figure 1.5: Samples from the MNIST dataset [13].

ImageNet is a large-scale ontology of images organized according to the
WordNet hierarchy of nouns. Each meaningful concept in WordNet is called a
”synonym set” or ”synset.” Each synset is a node in the ImageNet hierarchy,
depicted by hundreds and thousands of images. There are over 15 million hand-
labeled, high-resolution images in roughly 22,000 categories. Images of each con-
cept are quality-controlled and human-annotated. [14, 9]. The ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) has been running annually since
2010. It is an object recognition contest with 1000 classes. ILSVRC uses a subset
of ImageNet images for training the algorithms and some of ImageNet’s image col-
lection protocols for annotating additional images for testing the algorithms [15].

In the following sections, we look at the models used in the visualization tool.
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Figure 1.6: Samples from the ImageNet dataset used in ILSVRC2012-2014 [15].

1.2.1 Simple MNIST model
MNIST is a relatively simple database, so we do not need a highly complex model.
In the visualization tool, we use a straightforward model with only six hidden
layers, as shown in figure 1.7. Namely, it consists of a convolution layer, followed
sub-sampling max-pooling layer, then two more convolution layers again followed
by a sub-sampling, then a flatten layer, and ends with two fully connected (dense)
layers. The flatten layer reduces the input data into a single dimension instead of
2 dimensions. The input to the model is a fixed-size 28×28 greyscale image, as is
standard in the MNIST dataset. We used ReLU as the activation function in the
weight layers. The output layer uses softmax as its activation. The model was
trained for ten epochs on the MNIST train dataset and reached 98.95% accuracy
on the test collection.

1.2.2 VGG-16
In the 2014 ILSVRC, the VGG architecture was introduced to the world. Despite
being the challenge’s runner-up, the VGG became one of the most popular CNN
models. Its popularity is due to its simple and elegant architecture with only
16–19 (depending on the configuration) weight layers. The VGGnet architecture
strictly uses 3 × 3 convolution filters. Stacking two 3 × 3 convolution layers is
equivalent to one 5 × 5 convolution layer, and stacking three 3 × 3 convolution
filters replaces a 7×7 convolution layer. Using smaller filters leads to a relatively
reduced number of parameters and efficient training and testing because it com-
putes faster than a large convolution filter. Most importantly, with smaller filters,
one can stack more layers resulting in deeper networks, which is the central idea
of this architecture [16, 6, 9].

The configuration D commonly referred to as VGG-16, is one the most suc-
cessful and is the one we use in the visualization tool. It contains 16 weight
layers. The default input size of an image for this model is 224 × 224 × 3. The
image is passed through stacks of convolution layers with a stride 1 and padding
1, followed by a max pooling layer with 2 × 2 window with a stride of 2. There
are two stacks of two and three stacks of three convolutional layers. Towards
the end, there are three fully-connected layers. All hidden layers use the ReLU
activation function, while the final layer is a softmax classification layer [6, 9].
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Figure 1.7: Model summary of the simple MNIST model used in the tool.

1.2.3 ResNet50
The deep CNNs had been proven to be successful, but adding layers increases
performance only up to a certain depth, then it rapidly decreases. Unexpectedly,
such degradation is not caused by overfitting but rather a high training error.
The Residual Network (ResNet) battles this issue with the identity skip connec-
tions in the residual blocks. The ResNet architecture won the ILSVRC 2015
challenge. The ResNet architecture is a stack of residual blocks with different
depth variations [18].

The residual block can be formaly denoted as:

y = F(x, {Wi}) + x, (1.2)

where x and y are the input and output vectors of the layers considered and
Wi their weights. The residual block splits the transformation function into an
identity and a residual mapping. The function F(x, {Wi}) represents the residual
mapping and can contain multiple convolutional layers. In figure 1.9, it contains
two layers, so F = W2σ(W1x) where σ denotes ReLU operation. The original
input x is added to the transformation using the ”skip identity connection”, a
direct connection bypassing the transformation layers from the input, perform-
ing the identy mapping. The second ReLU nonlinearity is performed after the
addition [18, 6].

ResNet has different depth varieties, such as 34, 50, 101, or 152 layers for
the ImageNet dataset. For a deeper network (50 and more layers), it uses the
bottleneck design to improve efficiency. Each residual function F uses a stack of
three layers with 1, 3, and 1 convolution filters, where the 1 layers reduce and
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Figure 1.8: The VGG-16 architecture [17].

Figure 1.9: Residual block [18].

then increase dimensions, leaving the 3 layer a bottleneck with smaller input and
output dimensions [18, 9].

The unreferenced mapping learned in traditional architectures is sometimes
far more complex than the residual feature mapping. Therefore in practice, such
an architecture achieves stable learning of very deep models.

In the visualization tool, we use the configuration of ResNet with 50 layers
(Resnet50). This configuration consists of 16 residual bottleneck blocks stacked
on top of each other. After the last block, a global average pooling layer is added.
There is only one fully connected layer to classify 1,000 classes with softmax (see
figure1.10) [18].
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Figure 1.10: ResNet architecture [19]. ResNet50 corresponds to a varient with 50
layers i.e. it contains 3 cfg[0] blocks, 4 cfg[1] blocks, 6 cfg[2] blocks, and 3 cfg[3]
blocks. The input comes in the shape (224 × 224 × 4).
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2. Adversarial Examples
The CNNs are reaching state-of-the-art performance, nearing human abilities in
image classification. However, by applying a certain, to human eye hardly no-
ticeable, perturbation we can cause the network to misclassify an image. This
property was first explored in the 2014 paper [20], where the perturbed images
were labeled ”adversarial examples.” The adversarial example is found by max-
imizing the network’s prediction error. The paper even states that the specific
nature of the perturbations is not a random artifact of learning but rather non-
intuitive characteristics and intrinsic blind spots of the deep neural networks.

Szegedy et al. [20] pointed out an interesting property of adversarial exam-
ples, their generalization of deceptive images across different CNNs. The same
noise can fool various models. The 2014 paper [21] argued that linear behavior
in high-dimensional spaces is sufficient to cause adversarial examples rather than
excessive nonlinearity of the network as was thought previously. CNNs as com-
plex Deep Learning models are not linear mapping of the input to class scores.
The convolution of a filter with its input and matrix multiplications, the compo-
nents that comprise CNN, are linear functions. CNNs are also often intentionally
designed to behave in very linear ways, making them easier to optimize.

These results are neither CNN-, image-specific, nor a ”flaw” in Deep Learning.
However, the fundamental issue affects a variety of other fields (such as voice
recognition systems) and, more significantly, old-fashioned linear classifiers (such
as the Softmax classifier).

2.1 Types of Adversarial Attacks
We can categorize the adversarial attacks and their strength considering the at-
tack surface and adversarial goals and capabilities. In this we taxonomize the
threat models as seen in [22, 23]

An adversary may try to tamper with the model, the data gathering and
processing, or the model’s outputs. We identify the threat surface to anticipate
where and how an adversary would try to sabotage the system that is under
attack.

• Evasion Attack: tries to deceive the system by adjusting malicious sam-
ples during the testing phase.

• Poisoning Attack: tries to sabotage the learning process by introducing
thoroughly designed samples into the training data.

• Exploratory Attack: tries to learn as much as possible about the under-
lying system’s learning algorithm and training data pattern with black-box
access to the model. It does not influence the training dataset.

An attacker’s knowledge about the system is referred to as adversarial capa-
bilities. If two adversaries are working on the same attack surface and one is
an internal adversary, has access to the model architecture, and the other has
access only to the set of images fed to the model during testing time, the former
adversary is thought to have far more knowledge and is thus strictly ”stronger.”
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• There are three general attack strategies for altering the model during the
training phase to influence or corrupt the model directly by altering the
training dataset:

– Data Injection: There is no access to the training data or the learning
algorithm but can augment new data to the training set (inserting
adversarial samples into the training dataset).

– Data Modification: There is no access to the learning algorithm
but has full access to the training data (modifying the data before
training).

– Logic Corruption: The adversary can tamper with the learning al-
gorithm (controlling the model by altering the learning logic).

• Testing phase attacks can be generally classified into either White-Box or
Black-Box attacks:

– White-Box Attacks: A white-box attack involves an adversary with
full knowledge of the classification model. The attacker has access to
the training data distribution and algorithm employed during training
(such as gradient-descent optimization). Additionally, the fully trained
model architecture’s parameters are known. All available information
is utilized to find the vulnerability of the feature space, and by altering
an input, the model is exploited. The attack strategy is based on a
greedy local search that uses changes in input to approximate the
gradient for the current output.

– Black-Box Attacks A black-box attack makes no assumptions re-
garding the model and analyzes the vulnerability of the model using
knowledge of the settings or previous inputs. The adversary does not
attempt to discover the parameters of the target model. A black-box
adversary’s main goal is to use the data distribution to train a local
model. The attack strategy is based on the network loss function’s
gradient for the input.

The following broad categories can be used to classify adversarial goals ac-
cording to their influence on the integrity of the classifier output:

• Confidence Reduction: The adversary seeks to lower the target model’s
prediction confidence.

• Misclassification: The adversary tries to change an input’s classification
to a different class than it originally was.

• Targeted Misclassification: The adversary tries to produce inputs that
force the output of the classification model to be a specific target class.

• Source/Target Misclassification: The adversary attempts to create in-
puts that cause the classification to be a particular target class.
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2.2 Adversarial Examples Generation
Our visualization tool works with already trained models, so we only focus on
evasion attacks during the testing phase. Moreover, since we already have access
to the models, we can focus on white-box attacks. In this section, we describe
the generation methods used in the tool. Both of the methods described are
gradient-based, also called first-order methods.

2.2.1 Fast Gradient Sign Method
The fast gradient method (FGSM), first introduced in [21], was yielded by the
view that the linear behavior is behind the existence of adversarial examples.
In model training, the goal is to minimize the loss, and the gradient descent
technique uses the gradient to update the weights. The FGSM generates the
adversarial pattern that maximizes the loss for an input image. Therefore we can
take the gradients with respect to the input. The adversarial perturbation η for
the input x is described as:

η = ϵ sign(∇xJ(θ, x, y)), (2.1)

where θ denotes the parameters of a attacked model, y ground-truth label corre-
sponding to x, J(θ, x, y) the loss function and ϵ is a constant scaler. The idea is
to find the direction each pixel in the input contributes to the loss and add per-
turbation accordingly, large enough for misclassification but small enough, so it
stays undetected. Since the model is no longer being trained and the parameters
remain constant, computing the gradient is very efficient. The only focus is to
deceive a trained model.

The pertubation described in 2.1 is not targeted. If we wanted to target class
ỹ we would use η = −ϵ sign(∇xJ(θ, x, ỹ)).

Figure 2.1: Demonstration of the FGSM. Original image x (on the left), labeled
as ”panda” with 57.7% confidence is transformed into adversarial example (on
the right) labeled as ”gibbon” with 99.3% confidence. The adversarial pattern
(in the middle) was generated using ϵ of .007 [21].

The adversarial example x̃ is computed as the sum of the original image x
and adversarial pattern η, formally:

x̃ = x + ϵ sign(∇xJ(θ, x, y)).
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In the figure 2.1 we can see FGSM generated adversarial example for ϵ = 0.007.
Even though FGSM is one of the very first methods for generation of adversarial
examples, it is very fast and reliable approach.

2.2.2 Projected Gradient method
We can look at the FGSM attack as a one-step strategy for maximizing the loss.
A simple iterative variation of FGSM was introduced in [24] called Basic Iterative
Method (BIM). BIM repeatedly runs FGSM while the perturbation is bounded
to an ϵ-neighborhood:

x̃0 = x, x̃n+1 = Clipx,ϵ{x̃n + α sign(∇xJ(x̃N , y))}, (2.2)

where Clipx,ϵ{x′} is a function performing per-pixel clipping of x′, keeping it in
L∞ ϵ-neighborhood of the original x.

The multi-step alternative is a more powerful attack, and the perturbations
are less detectable than the plain one-step variant (see figure 2.2).

Figure 2.2: Comparison of FGSM and basic iterative variation with ϵ = 32 [24].

BIM is equivalent to the projected gradient descent (PGD) on the negative
loss function [25]:

xn+1 = Πx+S(xn + α sign(∇xJ(θ, x, y))), (2.3)

where Πx+S is a projection onto the set of allowed perturbations S for each data
point x (i.e. Πx+S(z) = Clipx,ϵ{y}), and α is the step size. The difference is
that PGD initializes to a random perturbation (decided by the L∞ norm from
the S) and does random restarts, while BIM initializes to the original x. Then
a series of gradient descent steps decreases the probability of the ground-truth
label. During a targeted attack, the gradient descent increases the probability of
a target label, and 2.2 is modified as the targeted version of 2.1.
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3. Visualization techniques
This chapter looks at different techniques used to visualize CNN models. When
working with a CNN model, there are various approaches we can take to under-
stand its working better. The straightforward method is to portray the model’s
architecture. If we look inside the model, another simple approach is visualizing
learned convolution filters to see what properties our model is learning. Other
methods work with the model’s parameters like its activations and gradient to
see what parts of the input are essential for the output. We describe some of the
latter approaches in the upcoming sections.

3.1 Activation Based Visualizations
Activation-based techniques interpret the activations of individual neurons or
groups of neurons to gain an understanding of what they are learning. When
we visualize activations of CNN, we can be input-specific or try to find broad
features learned.

Feature visualization is a method for making the learned characteristics ex-
plicit. Feature visualization finds the input that maximizes the activation of the
unit of a CNN (individual neurons, feature maps, entire layers, or the final class
probability), similarly to adversarial examples. Feature visualizations offer a dis-
tinct perspective on how CNNs behave and show that CNNs initially learn basic
edge and texture detectors before moving up to more complex part and object
detectors (see figure 3.1). Many feature visualization images are incomprehen-
sible. They include certain abstract aspects for which we lack words or mental
concepts [26].

Figure 3.1: Examples of feature visualization. Feature depicted from left: edges,
textures, patterns, parts, and objects [27].

In our visualization tool, we implement an input-specific visualization. Our
approach focuses on the output feature maps of the convolution and fully con-
nected layers. We omit the outputs of other layers (e.g. pooling layers) because
they do not bring any new information to the visualization

The main idea is to compare the feature maps of filters on each layer to see
where the different classifications start to differ. In other words, we are trying to
find a point in the network where the model decides on a class. There are two
modes of this visualization, depending on what we are comparing:

• Images - we compare the activations of two input images. This can be
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useful in comparing adversarial examples with the original images to see
where the network was confused.

• Classes - we compare the pixel-wise average activation of two classes (the
two top predictions of a set of input images). It is interesting to see how
the activations blend for inputs of the same class and how it differs from
another.

3.2 Image-Specific Class Saliency
Simonyan et al. introduced in [28] a visualization technique called ”Image-Specific
Class Saliency.” This technique computes a class saliency map specific to a given
image based on computing the gradient of the output with respect to the input
image. The resulting image highlights the most important regions of the input
that contribute the most to the class score, making it a class-specific visualization.

Figure 3.2: Example of the saliency maps on images from the ILSVRC-2013 test
set for the highest scoring class. [28].

The method to generate class saliency map Mc ∈ Ru×v is described in [28] as
follows. For a given input x ∈ Ru×v, class C, and score function S(x), we want to
rank the pixels of x based on the influence on score S(x) to obtain a class saliency
map. We compute the gradient of the loss function with respect to the input x
for the class C, resulting in a map of negative and positive values with the size of
the input features. The score function S(x) is a highly non-linear function of the
input. The concept behind employing the gradient is to approximate the score
using a first-order Taylor expansion:

S(x) ≈ wT x + b, (3.1)

where b is the model’s bias, and w is the derivative of the score with respect to
x:

w = ∂S

∂x
. (3.2)

We find the derivative w by back-propagation. Let us denote the index h(i, j, c)
of the element in w where c is the color channel of the pixel (i, j) in x. We take
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the maximum magnitude of w across all color channels to compute the values of
the class saliency map Mc for each index (i, j):

Mij = max
c

⃓⃓⃓
wh(i,j,c)

⃓⃓⃓
. (3.3)

The magnitude of the derivative reveals the pixels with the most impact on
the class score. Since only one back-propagation step is needed, computing the
image-specific saliency map for a single class is very quick.

3.3 Grad-CAM
Gradient-weighted Class Activation Mapping (Grad-CAM) is a technique for pro-
ducing visual explanations for the decisions of CNNs and was proposed by Sel-
varaju et al. in [29]. Grad-CAM uses the gradients flowing into the final convolu-
tional layer to produce a coarse localization map highlighting the regions of im-
portant neurons in the image for a prediction. Grad-CAM is a class-discriminative
visualization. It is a generalization of a technique called Class Activation Mapping
(CAM). CAM interprets CNNs without any fully-connected layers. Grad-CAM
applies to a broader range of CNN models.

Figure 3.3: Example of the Grad-CAM for the ‘tiger cat’ class and ‘boxer’ class.
Left: Original image with a cat and a dog. Middle: Grad-CAM ’tiger cat’. Right:
Grad-CAM ’boxer’ [29].

As is described in [29], to obtain the class-discriminative localization map
Grad-CAM Lc ∈ Ru×v for an input x ∈ Ru×v and a class c, we first compute
the gradient ∂yc

∂Ak of the score yc for class c (the activation of the neurons before
the softmax layer) with respect to feature maps Ak of a convolutional layer. To
obtain the importance of the neuron αk

c , we apply global-average-pooling to the
gradients to weight each feature map neuron by the gradient:

αc,k =

global average pooling⏟ ⏞⏞ ⏟
1
Z

∑︂
i

∑︂
j

∂yc

∂Ak
ij⏞ ⏟⏟ ⏞

gradients

. (3.4)

The weight αk
c reflects the significance of feature map k for a target class c and

represents a partial linearization of the CNN downstream from A.
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Lastly to obtain Lc, we apply ReLU after a weighted combination of forward
activation maps:

Lc = ReLU
(︄∑︂

k

αk
c Ak

)︄
⏞ ⏟⏟ ⏞

linear combination

. (3.5)

We are only interested in features that positively impact the class of interest,
so we apply ReLU to the linear combination of maps. Without using ReLU
here, localization maps occasionally emphasize classes other than the one required
because ReLu omits the negative pixels, which are probably part of different
picture types.
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4. Implemantation
The main goal of this thesis was to implement a visualization tool for better
understanding CNNs. The resulting application is called CNN Visualizer and
incorporates the visualization techniques described in chapter 3.

In this chapter, we describe the implementation of the application: CNN Vi-
sualizer. In attachment A.1, a directory tree of all the mentioned files is provided.

4.1 Language and Libraries
Before we get to the project details, we need to state the basics. The program
is implemented in the programming language Python 3.8. It is a widely used
language, especially in machine learning. Therefore there are a lot of useful
libraries. In the visualization app, besides the standard libraries, we also use
TensorFlow, Keras, NumPy, Opencv, Pillow, Matplotlib, and Cleverhans.

We use TensorFlow and Keras for working with models. TensorFlow [30] is
an open-source platform for machine learning, and Keras [31] is a Python deep
learning API that runs on top of TensorFlow. They contain a wide range of
accessible utilities, and both belong among the most popular software used in
machine learning.

For data processing, we utilize NumPy and also TensorFlow. NumPy [32] is
open-source software that adds support for multi-dimensional arrays and matrices
and a vast number of high-level mathematical functions operating on these arrays.

We do not have high requirements for the graphical interface. Therefore we
use the Tkinter, the standard Python GUI toolkit. Pillow [33], a Python Imaging
Library (PIL), is used for manipulating and displaying images. Some visualiza-
tions use OpenCV [34] for image processing, and Matplotlib [35] for plotting
graphs.

We also use Cleverhans [36], which provides a standardized reference imple-
mentation of adversarial attacks.

The specific versions of all the packages can be found in the requirements.txt
in the electronic attachment to this thesis.

4.2 Project Structure and Working
In this section, we describe the overall structure and implementation of the CNN
Visualizer. The project can be divided into a computational and a visual part
implemented in the python files utils and pages respectively. Then the python
file Visualizer ties the application together.

4.2.1 Utils
The utils python file contains a Tools class. As we mentioned, it serves as the
computing engine. Therefore the Tools class contains the function generating
the visualizations. You can find the overview of the class methods in the figure
4.1.
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Figure 4.1: The Tools class and its methods.

Attributes and Methods

These are the attributes of the Tools class:

• model - all computations share this pre-trained model

• input shape - specification of the input shape to be compatible with the
model

• dataset - what kind of data are we dealing with

• data folder - a path to a directory where to find the data while loading
defaultly

They are initialized when the class is constructed, but the user can update them.
The class Tools contains all logic behind the CNN Visualizer app. Therefore

it consists of a lot of functions. The following methods are used for acquiring
data:

• set data folder(path) - sets the data folder parameter to pathit

• set dataset(x) - sets the dataset parameter to x

• mnist dataset(n) - loads and returns n random images from the MNIST
dataset

• load image(path) - loads, preprocesses and returns image from path

• default dataset(n) - loads and returns dataset of n images from the
data folder directory

• choose dataset(n) - calls either default dataset(n) or mnist dataset(n),
according to the current model, and returns the output
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• custom load(paths) - returns a dataset of loaded images from paths

These methods are implemented for data handling:

• find class(preds, wanted, n=1) - for models VGG16 and ResNet50 re-
turns the names and confidence of top n predicted classes, otherwise the
class number and its confidence

• find frequent classes(classes, n=2) - returns n most frequent classes
from the list classes

• new shape(n) - returns (x, y) for n, such that x is almost square root of
n, used to reshape the one-dimensional output of a fully-connected layer

• scale(data) - returns scaled data to the values 0-255

• find top n preds(prediction, n=3) - returns indices of the top n pre-
dicted classes

• find last conv() - returns the last convolutional layer of the model

And for acquiring the model, we use these methods:

• load model(path) - loads model from path and sets model paramer

• mnist model() - sets model parameter to an instance of the ResNet50
model

• resnet model() - sets model parameter to an instance of the MNIST model

• create model() - sets model parameter to a default model, the VGG16

• check model() - checks if the model is set, if not sets it by call suitable
method

Since the methods generating visualizations are the most important and com-
plicated, we describe them individually in the upcoming sections.

Generating Average Activation

As stated in section 3.1, this approach focuses on the output feature maps of
the convolution and fully connected layers. To obtain average activation for each
filter on each layer we call function vis aa(data, n, classes, ord, load), with
the parameters and their default values:

• data - images as arrays used in the computation. If None, they need to be
loaded. Default: None.

• n - defines how many images are to be loaded. Default: 20.

• classes - determines the visualization mode, whether we are comparing
classes or images. Default: True.

• ord - the order of the norm used in the computation. Default: 2.
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• load - list of paths to the images we want to load and use in visualization.
Default: None.

This method aims to ensure the model is set and the desired data is obtained
and pre-processed. Then it calls average activation difference(data, classes,
ord) method to perform the computation and at last return its output.

The average activation difference(data, classes, ord) function parses
through every output feature map of each filter in all convolutional and fully-
connected layers. The data are divided into two groups according to the visu-
alization mode. Then the averages are computed respectively, and so is their
difference. We calculate the norm of each average difference activation for order-
ing the filters on each layer. Then if the current feature map is the output of
a fully-connected layer, we reshape the one-dimensional activations as close to a
square as possible for comprehensive visualization. Finally, we uniformly scale
the activations and match them with appropriate descriptions. Then the average
activations for each filter and layer are returned.

Generating Grad-CAM

To compute gradient-weighted class activation map we call the vis gc(data,
load, class indices, n) function, with the parameters and their default values:

• data - images as arrays used in the computation. If None, they need to be
loaded. Default: None.

• load - list of paths to the images we want to load and use in visualization.
Default: None.

• class indices - list of classes we want to see their heatmap. Default: [].

• n - number of top predicted classes for the heatmap. Default: 5.

This method ensures the model is set, and the desired image is obtained and
pre-processed. It also assigns relevant descriptions to the predicted classes and
the original image. Then to perform the computation we call the function com-
pute heatmap(img array, pred indces), and at last return its output.

The compute heatmap(img array, pred indces) method, with respect
to the activations of the final convolutional layer, calculates the gradient of the
desired predicted class for our input image. Then takes the mean intensity of the
gradient of each desired output neuron over a specific feature map channel. To
generate the heatmap class activation, we multiply each channel in the feature
map array by ”how significant this channel is” regarding the top predicted class,
then add up all the channels. Finally, we add scaled heatmaps to the relevant
dictionaries in pred indces and return them.

Generating Class Saliency Map

To compute the class saliency map we call the vis sm(data, load) function,
with the parameters data and load, which are the same as in the previous two
visualizations. This method ensures the model is set and the desired image is
obtained and pre-processed. By computing the gradient with respect to the top
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class score, we can identify the most contributing pixels in the image. We take
the maximum absolute gradient values along each RGB channel to obtain the
saliency map. At last, we return the original image, normalized saliency map,
and relevant description.

Generating Adversarial Examples

To generate an adversarial example, we call the function vis ae(load, method,
epsilon, targe, ord), with the parameters and their default values:

• load - a path to the image we want to load and use in visualization. Default:
None.

• method - a method to be used for finding an adversarial pattern. Default:
”FGSM.”

• epsilon - a constant used in finding the adversarial pattern. Default: 0.1.

• target - a class targeted with the adversarial attack or None. Default:
None.

• ord - order of the norm used. Default: infinity.

As with the Grad-CAM, this method ensures the model is set, and the desired im-
age is obtained and pre-processed. It also assigns relevant descriptions to the orig-
inal image. Then the computation is done by the adversarial example(image,
method, target, epsilon, ord) function.

In the method adversarial example(image, method, target, epsilon,
ord), we use the Cleverhans functions to generate adversarial examples with the
FGSM and PGD techniques. We also generate random white noise to see what
effect, if any, it has on the classification of the image. Then we return the adver-
sarial pattern and perturbated image together with an appropriate description.

4.2.2 Pages
The pages python file holds classes representing each visualization method. As
we have stated earlier, it is in charge of the graphical side of the project.

Figure 4.2: The Page class and its methods.

The Page class is derived from Tkinter Frame, so it groups widgets forming
a scene in the application window. The Page class holds the fonts used. The
methods of Page class (see figure 4.2) consists of:
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• show() - displays the given Page instance in the window application.

• set tools instance(tools) - sets the Tools instance for computational
functions.

• text resize(event) - bound to a resizing event, it resizes displayed text in
proportion to the window size.

Each visualization is represented by a subclass of Page. The structure of
Page dependencies can be seen in figure 4.3. The widgets needed for displaying
the page are initialized in a constructor of each Page subclass. Then each class
representing a visualization has a set of methods specific for a given visualization.
The methods all of the classes share are:

• on resize(event) - resizes the frames containing the visualization in pro-
portion to the window size.

• init data(*args) - sets the parameters of the class according to the re-
ceived arguments.

• new computation() - clears the widgets for a new visualization.

• select file() or load images() - opens a file dialog for loading data for
the visualization.

• change scene() - updates the widgets according to the visualization.

• show img() - displays the visualization.

Figure 4.3: The dependencies of the Page class.

AverageActivation

The class AverageActivation represents the visualization of average activation.
It displays three images for each filter and layer consisting of the two average
activations and their difference. Instead of the activation difference, there is an
option to display a histogram of the two current average activations, or for each
layer, the average difference, or even the graph of the norms of differences across
the layers. The methods executing the above activities and more are:
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• save data(data, path) - saves given data to a provided path.

• save computed() - saves all of the computed activation averages.

• load precomputed() - loads previously computed and saved activation
averages.

• reset buttons() - sets the state of the buttons to a default.

• difference graph() - shows or hides the graph of average/max/min norms
of differences across the layers.

• create histogram(recreate) - shows or hides the histogram for the cur-
rent average activations displayed.

• layer average() - show or hides the average activation difference of the
current layer.

• build filter slider(range) - create a slider for selecting filters (only for
convolutional layers).

• change layer(layer) - updates the widgets for a new layer.

• vis average activation() - initializes a new visualization by calling the
vis aa(data, n, classes, ord, load) function from the Tools instance.

The overview of the AverageActivation class with all of its methods can be seen
in the figure 4.4.

Figure 4.4: The AverageActivation class and its methods.

GradCam

The class GradCam represents the visualization of Grad-CAM. It displays two
images: the original image and the image with overlayed heatmap. These are its
methods:

• validate(P) - check if the target entry contains only digits.

• set radio buttons() - creates buttons for displaying heatmap for each
desired class.
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• overlay heatmap(heatmap, image, alpha) - super-imposes the gener-
ated heatmap onto the original image.

• vis gradcam() - initializes a new visualization by calling the vis gc(data,
load, class indices, n) function from the Tools instance.

The overview of the full GradCam class can be seen in the figure 4.5.

Figure 4.5: The GradCam class and its methods.

SaliencyMap

The class SaliencyMap represents the visualization of Grad-CAM. It displays two
images: the original image and the class saliency map. The only unique method
in this class is vis saliency map() for initializing a new visualization by calling
the vis sm(data=None, load=None) function from the Tools instance. The
overview of all methods of SaliencyMap can be seen in the figure 4.6.

Figure 4.6: The SaliencyMap class and its methods.
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AdversarialExample

The class AdversarialExample represents the visualization of an adversarial ex-
ample. It displays three images: the original image, the adversarial example, and
its pattern. These are its methods:

• validate(P) - same as in the GradCam class.

• comp activation() - sends the original and perturbated image to be vi-
sualized with the average activation method.

• comp gradcam() or comp smap() - sends either the original or the
perturbated image to be visualized with the grad-CAM or saliency map
method

• vis adversarial example() - initializes a new visualization by calling the
vis ae(load, method, epsilon, targe, ord) function from the Tools
instance.

The overview of the AdversarialExample class with all of its methods can be
seen in the figure 4.7.

Figure 4.7: The AdversarialExample class and its methods.

MenuPage

The class MenuPage is also derived from Page. It acts as the introductory page
and displays the menu. On this page, the user sets the data folder and model
parameters of the Tools instance. The model can be set to the provided models
or to a loaded one. The methods executing the above activities are:

• load model() - opens a file dialog and loads the model.
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• set model() - sets the model parameter.

• select dir() - opens a folder dialog window and sets the data folder pa-
rameter to the selected directory.

The overview of the MenuPage class can be seen in the figure 4.8.

Figure 4.8: The MenuPage class and its methods.

4.2.3 Visualizer
The python file Visualizer contains the class VisualizerApp deriving from the
Tkinter Tk. It functions as a master for frames and creates the whole app.
The code can be run by running the python file Visualizer. The functions
implemented inside have the following purpose:

• select page(page) - displays page, an instance of Page subclass.

• option selction() - calls select page(page) with page selected from op-
tions menu.

• set data(page, *args) - sets data of page, an instance of Page subclass,
by calling its method init data(*args).

• text resize(event) - same as in the Page class.

The structure of VisualizerApp can be seen in the figure 4.9.

Figure 4.9: The VisualizerApp class and its methods.
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4.3 Adding more visualizations
In this section, we describe how one could add more visualizations into the CNN
Visualizer app.

4.3.1 New Visualization method
The new visualization technique should be implemented in the utils python file
inside the Tools class, so it can access the model. For the data needed for
the visualization, the class provides sufficient methods on how to acquire them.
Therefore only the visualization function is needed.

4.3.2 New Page
To display the new visualization, it is needed to create a new subclass of Page.
Each page is divided into two Tkinter Frames, one contains the images with de-
scriptions, and the second one contains the control buttons. Then it is important
to decide whether two or three images are to be displayed and create widgets
accordingly. Each visualization needs an individual approach, but one can take
inspiration from the implemented visualizations. The classes AverageActivation
and AdversarialExample implement visualization with three images, and classes
GradCam and SaliencyMap with two.

After creating a new subclass of Page and adding all necessary functions
into the Tools class, they need to be united with the rest of the app. The
new page needs to be constructed in the class VisualizerApp and also added
to the options menu so we can access it. For example, in the following code
we can see constructed a page NewPage called NEW PAGE incorporated to the
VisualizerApp class.
# The options menu after adding the new page:
options = ["Menu",

" Average Activation ",
" Adversarial example ",
" Saliency Map",
"Grad -CAM",
"NEW PAGE"]

# Constructing the pages together with the new class:
for O, P in zip(options , [pages.MenuPage ,

pages. AverageActivation ,
pages. AdversarialExample ,
pages. SaliencyMap ,
pages.GradCam ,
pages. NewPage ]):

# Initialize each page object .
page = P(self)
page. set_tools_instance ( tools_instance )
self.pages[O] = page
page.place(in_=frame , x=0, y=0, relwidth =1, relheight =1)
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5. User Guide
In this chapter, we give detailed instructions on the installation and usage of our
visualization tool.

5.1 Installation
In the electronic attachment, there is an executable application included. To run
the visualization CNN Visulizalizer, Windows 10 or 11 is required. After down-
loading the attachments, the visualizer can be launched via CNN Visualizer.exe.

It is important to keep the mnist folder, containing the mnist.npz and
mnist model.h5, in the data folder. And the data folder in the same folder
as the CNN Visualizer.exe file. Otherwise, the application will not be able to
find the provided MNIST model and dataset.

5.2 Main Menu
The application consists of five different pages. After running the application, we
are greeted by the menu page. The page consists of several buttons configuring
the visualizer. We can choose one of the provided pre-trained models with buttons
(A) (see figure 5.1). The button (B) loads a model from the disk to be used in the
visualizations. The button (C) selects a directory from where the visualizations
load data. It is advised to set this directory right away.

A

C
B

D

Figure 5.1: The main menu.

After clicking on (D), a collapsible options menu occurs. The options menu
is accessible from anywhere inside the application. It is used to navigate between
pages. Option (A) in figure 5.2 always takes us back to the main menu, and
the rest of the options display a relevant visualization. Option (B) starts the
average activation visualization; option (C) starts the visualization of adversarial
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example; option (D) starts the class saliency map visualization; option (E) starts
the Grad-CAM visualization.

A
B

C
D

E

Figure 5.2: The collapsible options menu.

5.3 Average Activation
The Average Activation is visualization described in section 3.1. In the figure 5.3
we can see its introductory page with various settings. The button (A) runs the
visualization. The button (B) loads previously saved visualization, and button
(C) loads images for the visualization. Note that only JPG and JPEG files are
allowed. They both open a dialog window. Always load a sufficient amount of
images. For the images mode two images, and for the classes mode at least one
image from two different classes. The buttons in (D) determine the mode, and
the buttons in (E) determine the order of the norm used in the visualization.

AB

C

D E

Figure 5.3: The introductory page of the Average Activation Visualization.

After running the visualization with the button (A) from figure 5.3, we can
see the results as shown in the figure 5.4. The displayed images on the sides
are the two average activations for a given layer and filter, and the image in
the middle is their difference. The highlighted area (A) contains the displayed
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images’ descriptions. The slider (B) is used to navigate across the layers of the
used CNN. The layers are ordered in ascending order as they occur in the network.
The slider (C) navigates across the filter of each layer. The filters are ordered in
descending order with respect to the norm of the activation difference. The real
number of the filter can be found in the displayed description.

The buttons (D − F ) display an image instead of the activation difference.
After clicking the button, the text on it will change to ”Hide ...”, and then when it
is clicked, the average difference will be displayed again. The button (D) displays
the average difference activation of a current layer, and the button (E) displays
the graph of average, minimum, and maximum differences in each layer. The
button (E) displays a histogram for the displayed average activations, and when
the (F ) is checked, a logarithm is applied to the graph’s y-axis.

After clicking the (I) button, a pop-up message window asks if you are sure.
The reason is that the (I) button saves the current visualization, but the data to
be saved can be extensive. When we are ready for a new visualization, we can
press button (H), which throws away the current one and takes us back to the
introductory page of Average Activation visualization from figure 5.3.

H

IE

FD

A
G

B

C

Figure 5.4: Output of Average Activation Visualization.

5.4 Adversarial Example
This visualization generates and displays an adversarial example, the pattern,
and the original input image. In the figure 5.5 we can see its introductory page
with various settings. The button (A) runs the visualization, and the button
(C) loads an image for the visualization. The entry (C) only takes a digit, the
targeted class. The not targeted attack is performed when (C) is left empty.
The buttons in (E) determine the method of the attack: either FGSM, PGD
(both described in 2.2) or random white noise. The slider (D) defines the epsilon
parameter of the methods generating the adversarial example.
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AB

C D

E

Figure 5.5: The introductory page of the Adversarial Example Visualization.

The figure 5.6 depicts the output adversarial example. The highlighted area
(A) contains the description. The buttons (B − D) sends the current data for
further visualizations. The button (B) sends both the original image and the
perturbated image to the Average Activation visualization. The buttons in (E)
selects whether the original or the perturbated image is to be sent further. The
buttons (C) and (D) sends the selected image to the Saliency Map and Grad-
CAM visualizations respectively. The button (H) throws away the current vi-
sualization and takes us back to the introductory page of Adversarial Example
visualization.

F
B

C D

E

A

Figure 5.6: Output of the Adversarial Example Visualization.
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5.5 Grad-CAM
The Grad-CAM visualization (as described in section 3.3) displays the input
image and a heatmap of predictions for the top five classes and an optional sixth
one. In the figure 5.7 we can see its introductory page with the button (A) for
running the visualization and button (B) for loading an input image. The entry
(C) again only takes digits and determines the optional sixth class.

A B
C

Figure 5.7: The introductory page of the Grad-CAM Visualization.

An example of the output of Grad-CAM can be seen in the figure 5.8. In
the area (A) is pointing to, the description is displayed. Buttons in the area (C)
select the class for which the heatmap is displayed, and button (B) takes us back
to the introductory page of Grad-CAM for a new visualization.

B
C

A

Figure 5.8: Output of Grad-CAM Visualization.
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5.6 Saliency Map
The last visualization is Saliency Map. It is the most simple one. It only displays
the input image and its saliency map. The introductory page of the Saliency
Map visualization can be seen in the figure 5.9, where the button (A) runs the
visualization and the button (B) loads an input image.

A
B

Figure 5.9: The introductory page of the Saliency Map Visualization.

The figure 5.6 depicts an example of the Saliency Map output. The arrow
(B) points to the description, and the button (A) takes us back to initialialize a
new visualization on the introductory page.

A
B

Figure 5.10: Output of Saliency Map Visualization.
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6. Experiments
In this chapter, we describe the behavior of CNNs in various scenarios as observed
by the visualization tool CNN Visualizer. The main goal is to show the variety
of possible visualizations and analyses of networks inside the application. All of
the images used are from the MNIST dataset [11] or from a subset of ImageNet
[14] called Imagenette [37].

6.1 Average Activation Visualization Results
This section describes the results obtained using the Average Activation Visual-
ization.

6.1.1 Filters Across the Network
As we have mentioned in section 1.1.1 the complexity of the detected features of
the image depends on how deep in the network the given convolutional filter lays.
This can be observed while sliding across the layers of the network, we can notice
how the average feature maps get from clear outlines of the original images to
unrecognizable shapes (see figure 6.1).

Figure 6.1: The Average Activation for the filters with the biggest difference from
the first, the seventh, and the last convolutional layer respectively in the VGG16
model.
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Also, as we dive deeper into the network, thanks to the histogram feature,
we can notice that number of pixels with low-value increases. This can indicate
that the filters indeed filter out only the learned features and focus on them (see
figure 6.2).

Figure 6.2: The histograms for the images in figure 6.1. From left: first, seventh,
last convolutional layer.

Deep inside the network, in the last convolutional layers, we have experienced
that two images classified differently, tend to activate different filters. On the
other hand, the activated filters for the images placed in the same class signifi-
cantly overlap.

6.1.2 Prediction
Someone might hope that the visualization of the last layers would indicate how
the network chooses a specific classification. This is far from the truth. Usually,
the last layers of a CNN are fully-connected, and their output is just a one-
dimensional array. In the application, we transform the array into a matrix for a
comprehensible visualization, but the resulting image only gives out a noise.

The most legible fully-connected layer is the very last one, used for prediction.
In the visualization of the last layer, we can usually clearly see that one pixel is
brighter than the others. This brightest pixel corresponds to the predicted class
(see figure 6.3).

Figure 6.3: The outputs of fully-connected layers of the VGG16 model for an
image classified as English springer.
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6.2 Fooling CNN
This section looks at what the network focuses on when dealing with an input
that is meant to confuse it.

6.2.1 Partially Covered Input
First, we explore what happens when we cover the crucial part of the input image
for the classification. Grad-CAM helps us reveal the targeted region.

Figure 6.4: On the left: the heatmap for the English springer prediction, and on
the right: the heatmap for the Welsh springer spaniel in the original image.

Then we cover the highlighted area and the resulting image put into the
VGG16 model. The original image was classified as English springer with over
86% confidence. The covered was classified as Welsh springer spaniel, which orig-
inally had under 6% confidence. When we covered other parts of the image, the
original classification did not change. It is safe to say that the grad-CAM really
returns the crucial region for a classification.

Figure 6.5: On the left: the heatmap for the English springer prediction, and on
the right: the heatmap for the Welsh springer spaniel in the covered image.

When we put the original image into the Average Activation Visualization,
we discovered that other than in the covered region, the neurons act more or less
the same, especially in the first half of the VGG16 network. In the deeper layers,
the change in the image spread across a bigger part of the image.
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Figure 6.6: The first row is the Average Activation output with the biggest differ-
ence from the first layer, and the second is from the seventh convolutional layer.

6.2.2 Adversarial Example
In this section, we explore how the prediction process differs with an adversarial
example from the process with the original input. First, we generate the adver-
sarial example using the FGSM method, with epsilon 0.2. Then we send the data
for further visualization.

Figure 6.7: The original image was correctly classified as 0 with 100% confidence,
while the adversarial example was classified as 8 with almost 80% confidence

First, we use the Grad-CAM to see the important regions in the images for
the classifications. We can see that in the original image, it is the middle part of
the number for the correct classification (figure 6.8a). The miss-classified class
highlights mostly the background in the original image. In the perturbed image,
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the highlighted region for class 8 significantly intensified (figure 6.8b).

(a)

(b)

Figure 6.8: Heatmaps of (a) the original image, and the (b) adversarial example
for classes 0 and 8.

In the visualization of Average Activation we can see that perturbed image’s
activation differ from the one of the original image in the first layer. This is
not surprising because even if, to a human, the change can be unnoticed, the
adversarial example added noise across the whole image. In the figure 6.9 we can
see the first layer with the filter with the biggest difference. We can see that the
noise is persistent in the activations.

Figure 6.9: The Average Activation output with the biggest difference from the
first layer for the adversarial example and the original image from the figure 6.7.
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Conclusion
We implemented a tool for visualizing the convolutional neural networks. In the
introduction, we listed five requirements the implementation should include, and
we designed the application around them. In this section, we describe how we
accomplished them.

Activation-based visualization: We have included the Average Activation Vi-
sualization, which provides an insight into what features were detected in the
decision process of a network. The user has an opportunity to observe the pro-
cess of transforming the input image through abstract feature maps all the way
to the prediction.

Variety of visualizations: Besides the Average Activation Visualization, we
included the visualizations of the Class Saliency Map and also the Grad-CAM.
They provide a look inside the interconnected workings and the focus of the
model.

Not model-specific: We have provided three pre-trained models, VGG16,
ResNet50, and a simple model for classifying data from the MNIST dataset.
The option to input own pre-trained model is also supported.

Adversarial examples: We implemented an option to generate an adversarial
example so that it can be used for more profound analyses of the network. It is
connected to all visualizations, so the user has a chance to see them in action.

User-friendly environment: The graphical interface was designed with sim-
plicity in mind. The descriptions at each step guarantee smooth usage of the
tool.

All of these goals ensured there are opportunities for broad and precise analy-
ses of CNN models. We have also shown how the tool can be used to understand
different prediction scenarios. The Average Activation Visualization is useful for
better comprehension of the convolutional filters. But to fully apprehend the
working of CNNs, it is best to use a combination of instruments.

To further extend the visualizer, more visualization techniques could be added.
The new possible methods could include visualizations of the model’s architecture
or the updated versions of the implemented methods. One could even implement
an option to modify or ultimately create an input for the network.
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A. Attachments

A.1 Contents of electronic attachment

data.......................................a directory containing data
mnist.............................a directory containing mnist data

mnist.npz ...................................... MNIST dataset
mnist model.h5..................................MNIST model

test................a directory containing data used in exmeriments
src.................................a directory containing source codes

pages.py.....................python file containing the page classes
requirements.txt...required packedges for running the source codes
Vysualizer.py..................python file building the application
utils.py ........................ python file containg the tools class

thesis.pdf.............................electronic version of this thesis
CNN Visualizer.exe...................................the application

47


	Introduction
	Convolutional Neural Networks
	CNN structure
	Convolutional layers
	Pooling layers
	Fully-connected layers

	CNN Models
	Simple MNIST model
	VGG-16
	ResNet50


	Adversarial Examples
	Types of Adversarial Attacks
	Adversarial Examples Generation
	Fast Gradient Sign Method
	Projected Gradient method


	Visualization techniques
	Activation Based Visualizations
	Image-Specific Class Saliency
	Grad-CAM

	Implemantation
	Language and Libraries
	Project Structure and Working
	Utils
	Pages
	Visualizer

	Adding more visualizations
	New Visualization method
	New Page


	User Guide
	Installation
	Main Menu
	Average Activation
	Adversarial Example
	Grad-CAM
	Saliency Map

	Experiments
	Average Activation Visualization Results
	Filters Across the Network
	Prediction

	Fooling CNN
	Partially Covered Input
	Adversarial Example


	Conclusion
	Bibliography
	Attachments
	Contents of electronic attachment


