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Sets with positive reach and their
intersections

Mathematical Institute of Charles University

Supervisor of the bachelor thesis: prof. RNDr. Jan Rataj, CSc.
Study programme: Mathematics

Study branch: General Mathematics

Prague 2022



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



I would like to thank very much my supervisor prof. RNDr. Jan Rataj, CSc. for
introducing me into this interesting topic, his patience and the amount of time
he devoted to me.

ii



Title: Sets with positive reach and their intersections

Author: Daniel Komárek
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Introduction
Sets with positive reach were introduced in the famous paper Federer [1959]
but also appear in literature as ”proximally smooth sets” or ”prox-regular sets”.
Sets with positive reach are generalization of convex sets which have a unique
metric projection on themselves from their positive neighbourhood. They are
also generalization of C2 sets. Initially, they were used with connection to the
Curvature Measures in Federer [1959]. One can see more various applications in
Colombo and Thibault [2010].

In a major part of this thesis, we collect basic properties of sets with positive
reach as they are in Federer [1959] and Rataj and Zähle [2019], accompanied by
some pictures and expanded proofs. In the last subsection 2.2.1, we describe a
generalization of the well-known Euler’s identity about the normal curvature on
C2-manifold.

In order to get to the curvatures of sets with positive reach, we need to
describe basic properties of sets themselves, which is the goal of Chapter 1. In
Rataj and Zähle [2019][Lemma 4.5, Corollary 4.6] a basic characterization of
sets with positive reach is given and it is used to prove more advanced results
throughout the thesis. We define and show duality of Tangent and Normal cones
(see Rockafellar [2015][Section 16]) and show an equivalent condition for the set
X being the set with positive reach in terms of the distance of a vector in a set
X from the Tangent cone of X.

In Chapter 2, we show a sufficient condition for the intersection of two sets
with positive reach to be the set with positive reach (Federer [1959][Theorem
4.10]). Using a distance function of a point from a set with positive reach X,
we show it is continuously differentiable, compute its gradient and show that
this gradient is Lipschitzian on some r-parallel neighbourhood of X (Lemma 3)
– this property would be used in order to prove some properties of mappings
from or onto the Normal Bundle (Federer [1959][Theorem 4.8(13)]), from which
we infer that the Unit Normal Bundle norX is actually a (d − 1)-dimensional
submanifold of Rd and the r-neighbourhood Xr of X is a closed C1-domain with
the Lipschitzian Gauss map.

From these properties of norX and Xr, we define a generalization of the prin-
cipal curvatures for a set with positive reach (Rataj and Zähle [2019][Proposition
4.23]) and we derive the main result of this thesis – generalization of the direc-
tional curvatures in R3 as the intersection of a plane and a set with positive reach
(Lemma 13 and its corollary).
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1. Geometric Properties
In this chapter we will define sets with positive reach and describe some basic
properties. Later, we define tangent and normal cones, show their duality and
convexity of tangent cones. In Theorem 8 we give an important characterization
of sets with positive reach.

1.1 Basic Definitions and Properties
The metric projection to a nonempty set X ⊂ Rd is not defined everywhere,
unless X is closed and convex. On a set X with positive reach we can define the
metric projection on some open neighbourhood of X.

Definition. Given a set ∅ ≠ X ⊂ Rd, we define its distance function as

dX : x ↦→ dist(x,X) = inf{ |x− a| | a ∈ X}.

UnpX denotes the set of all x ∈ Rd for which there exists a unique point a ∈ X
nearest to x. We also define the metric projection to X as the mapping

ΠX : UnpX → X,

then we write a =: ΠX(x).

Lemma 1. ΠX is continuous.

Proof. Assume for contrary that ΠX is not continuous at a point x ∈ UnpX.
So there exist points xi ∈ UnpX, xi → x, infi |ΠX(xi) − ΠX(x)| > 0. Let us have
y ∈ X such that ΠX(xi) → y. By assumption ΠX(x) ̸= y, but |y − x| = dX(x),
which contradicts that x ∈ UnpX.

Definition. We define the reach function of X as

reach(X, a) := sup{r ≥ 0 | B(a, r) ⊂ UnpX},

where B(a, r) is the open ball with the centre a and the radius r, and the reach
of X is set as

reachX := inf
a∈X

reach(X, a).

We denote by
Xr := {u ∈ Rd | dX(u,X) ≤ r}

the r-parallel body of the set X for r ≥ 0.

Note that reach ∅ = ∞ and any set with positive reach is closed.

Examples of sets with positive reach:

1. If X is closed and convex then (and only then) reachX = ∞.
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Figure 1.1: A set X with positive reach, reachX = r. The metric projection ΠX

of a point x. UnpX, where dashed lines do not belong to the UnpX.

2. If X is finite nonempty then reachX = min{1
2 |x− y| | x, y ∈ X, x ̸= y}.

3. The union of two disjoint compact sets with positive reach has positive
reach.

Recall that a function f : Rn → Rm is called K-Lipschitz if there exists a
positive real constant K ≥ 0 such that, for all x, y ∈ Rn,

|f(x) − f(y)| ≤ K |x− y| .

We show some basic differential properties of the distance function.

Lemma 2. Let f : U → R be Lipschitz and U ⊂ Rd open. Let g : U → R
continuous and 1 ≤ i ≤ d. If

∂

∂xi

f(x) = g(x) whenever f is differentiable at x ∈ U.

Then
∂

∂xi

f(x) = g(x) for all x ∈ U.

Proof. Suppose u ∈ U, r > 0 and B(u, 2r) ⊂ U . Let ei be ith unit vector of the
canonical basis of Rd. According to the Rademacher’s theorem f is differentiable
almost everywhere on U and for almost all x within r of u it follows, from the
absolute continuity of f , that

f(x+ tei) − f(x) =
∫︂ t

0

∂

∂xi

f(x+ wei) dw =
∫︂ t

0
g(x+ wei) dw whenever |t| < r.
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From the continuity of f and g it follows that

f(u+ tei) − f(u) =
∫︂ t

0
g(u+ wei) dw whenever |t| < r,

and finally ∂
∂xi
f(u) = g(u).

Lemma 3. If the distance function dX is differentiable at some point
x ∈ UnpX\X then its gradient is

∇dX(x) = x− ΠX(x)
|x− ΠX(x)| .

Further, dX is continuously differentiable on int(UnpX\X). d2
X is continuously

differentiable on int(UnpX) and ∇d2
X(x) = 2(x− ΠX(x)) for x ∈ int(UnpX).

Proof. We show that dX is 1-Lipschitz. From the triangle inequality follows

|dX(y) − dX(x)| ≤ |dX(x) + |x− y| − dX(x)| = |x− y| , x, y ∈ Rd.

Thus, for every x for which dX is differentiable, |∇dX(x)| ≤ 1. For

x ∈ Unp(X)\X and for u := x− ΠX(x)
|x− ΠX(x)| we obtain

dX(x− tu) = dX(x) − t, 0 ≤ t ≤ dX(x).

Consequently, ∇dX(x) = u whenever x ∈ Unp(X)\X and dX(x) is differentiable
at x.

Since ΠX is continuous and because of the previous lemma we get the contin-
uous differentiability of dX on W := int(UnpX\X).

For x ∈ W , the stated formula for ∇d2
X(x) follows from the first part of this

lemma. For x ∈ X, d2
X(x + h) ≤ |h|2 for h ∈ Rn, hence ∇d2

X(x) = 0, and also
ΠX(x) = x. Accordingly the formula holds for all x ∈ int(UnpX), and the con-
tinuity of the right side of the formula, from Lemma 1, implies the continuity of
∇d2

X(x) on int(UnpX).

Definition. We define the tangent cone of X ⊂ Rd at a point a ∈ X as the set
of all vectors u ∈ Rd such that either u = 0 or there exists a sequence of points
ai ∈ X\{a} with ai → a and ri(ai − a) → u, i → ∞, for ri > 0. We denote this
tangent cone by Tan(X, a). Note that Tan(X, a) is always closed for the general
set X.

Further we define the normal cone of X at a ∈ X as the polar cone of
Tan(X, a), i.e.

Nor(X, a) := Tan(X, a)◦ = {v | v · u ≤ 0 for any u ∈ Tan(X, a)}.

Note that the normal cone is always a closed convex cone.
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Lemma 4. Let reach(X, a) =: r > 0, a ∈ ∂X and n ∈ Sd−1. The following
statements are equivalent.

(i) ΠX(a+ tn) = a for some t > 0,

(ii) ΠX(a+ tn) = a for all 0 < t < r,

(iii) X ∩B(a+ rn, r) = ∅,

(iv) n ∈ Nor(X, a).

Proof. We show (i) ⇒ (ii). Let (i) be true and denote

τ := sup{t > 0 | ΠX(a+ tn) = a}.

We know that τ > 0 by assumption. Clearly ΠX(a + tn) = a for 0 < t < τ . In
order to show (ii), we have to verify that τ ≥ r. Assume, for the contrary, that
τ < r. Then xτ := a+ τn ∈ int UnpX (since reachX > τ). Consider differential
equation

g′(s) = ∇dX ◦ g(s), g(0) = xτ . (1.1)
By the Peano existence theorem, there exists δ > 0 and a differential function
g : (−δ, δ) → Rd such that g from 1.1 holds for |s| < δ. Since ∇dX is always a
unit vector, we have |g′(s)| = 1. Further,

(dX ◦ g)′(s) = ∇dX ◦ g(s) · g′(s) = g′(s) · g′(s) = 1,

hence, for any −δ < s1 < s2 < δ,

s2 − s1 =
∫︂ s2

s1
|g′(s)| ds =

∫︂ s2

s1
(dX ◦ g)′(s) ds

= dX(g(s2)) − dX(g(s1)) ≤ |g(s2) − g(s1)| .

It follows that an image of g must be a straight segment of length 2δ. By the
definition of g, any point of this segment will have its metric projection onto X
in a, which is a contradiction with the definition of τ .

The implications (ii) ⇒ (iii) ⇒ (iv) are clear. Now we will show that (iv) ⇒
(i). Assume for the contrary that n ∈ Nor(X, a) ∩ Sd−1 but (i) is not true. We
define the function x(t) := a + tn, t > 0. We know that x(t) /∈ X for sufficiently
small t > 0 (otherwise, n would be a tangent vector to X at x, contradicting the
assumption). Then, a(t) := ΠX(x(t)) ̸= a for all sufficiently small t > 0 by our
assumptions. By the continuity of ΠX we see that a(t) → a, t → 0. Now we will
show that the unit vectors n(t) := x(t)−a(t)

|x(t)−a(t)| converge to n as t → 0. We have

lim sup
t→0

(a(t) − a) · n ≤ 0

since n ∈ Nor(X, a). Thus

lim inf
t→0

n(t) · n = lim inf
t→0

(x(t) − a) · n+ (a− a(t)) · n
|x(t) − a(t)|

≥ lim inf
t→0

t

|x(t) − a(t)| ≥ 1,
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since |x(t) − a(t)| ≤ |x(t) − a| = t for all t. Hence n(t) → n, t → 0. By the
already proven implication (i) ⇒ (iii) applied to a(t) and n(t), the open balls
B(a(t) + tn(t), r) do not intersect X. But we have

B(a+ rn, r) ⊂
⋃︂
t>0

B(a(t) + rn(t), r),

hence B(a+ rn, r) ∩X = ∅. We have thus shown (iii) which clearly implies (i),
a contradiction.

Corollary. If reachX > 0, a, b ∈ X and v ∈ Nor(X, a) then

(a− b) · v ≤ |a− b|2 |v|
2 reachX . (1.2)

Proof. Assume that v ̸= 0 and let n := v/ |v|. From the previous lemma we
know that ΠX(a+ tn) = a for all 0 < t < reachX. For such t we compute

|a+ tn− b| ≥ dX(a+ tn) = t, |a− b|2 + 2tn · (a− b) + t2 ≥ t2,

2tn · (a− b) ≥ − |a− b|2 , v · (a− b) ≥ − |a− b|2 |v| /2t.

Lemma 5. If 0 < r < q < ∞, x, y ∈ Xr and

q ≤ reach(X,ΠX(x)), q ≤ reach(X,ΠX(y)),

then
|ΠX(x) − ΠX(y)| ≤ q

q − r
|x− y| .

Proof. Let a := ΠX(x), b := ΠX(y), one infers from Equation 1.2 that

(x− a) · (a− b) ≥ − |a− b|2 r/2q

and symmetrically
(y − b) · (b− a) ≥ − |b− a|2 r/2q.

Therefore

|x− a| · |a− b| ≥ (x− y) · (a− b)
= ((a− b) + (x− a) + (b− y)) · (a− b)
≥ |a− b|2 (1 − r/q),

|x− y| ≥ |a− b| (q − r)/q.

Now we combine this lemma, Lemma 1, Lemma 3 and conclude following corol-
lary.
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Figure 1.2: A set X with its Unit Normal Bundle norX.

Corollary. If 0 < s < r < reachX, then ∇dX is Lipschitzian on {x | s ≤ dX(x) ≤
r}, and ∇d2

X is Lipschitzian on Xr.

Definition. Given a set X ⊂ Rd with reach > 0, we define the unit normal
bundle of X (see Figure 1.2) as

norX := {(a, n) | a ∈ ∂X, n ∈ Nor(X, x) ∩ Sd−1}.

Lemma 6. norX is a closed subset of R2d.

Proof. Let (a, n) = limi→∞(ai, ni), (ai, ni) ∈ norX for all i. From Lemma 4 we
have B(ai+rni, r)∩X = ∅ for r = reachX and all i, hence also B(a+rn, r)∩X =
∅. Thus (a, n) ∈ norX, by Lemma 4.

Corollary. Let reachX > 0 and a ∈ X.

(i) If a ∈ ∂X then Nor(X, a) ̸= {0}.

(ii) If u ∈ Sd−1 belongs to the topological interior of Tan(X, a) then the segment
[a, a+ ϵu] is included in X for some ϵ > 0.

Proof. We prove (i). If a ∈ ∂X, there exist points xi ∈ Rd\X, xi → a. Then the
metric projections ΠX(xi) := ai also converge to a and ni := xi−ai

|xi−ai| ∈ Nor(X, ai)
by Lemma 4. We can achieve now that ni → n ∈ Sd−1. Then (a, n) ∈ norX since
norX is closed.

Now we prove (ii). Let such u be given. Assume, for the contrary, that there
exists a sequence ϵi → 0 such that xi := a + ϵiu /∈ X for all i. Now we denote
ai := ΠX(a+ ϵiu) → a, ni := xi−ai

|ai−xi| ∈ Nor(X, ai) and we can assume that
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ni → n ∈ Sd−1 ∩ Nor(X, a). From Equation 1.2 we see that (a − ai) · ni ≤
(2r)−1 |ai − a|2 where r := reachX, hence

u · ni = 1
ϵi

(xi − a) · ni ≥ 1
ϵi

(ai − a) · ni ≥ −|ai − a|2

2rϵi

.

Letting i → ∞ we get u · n ≥ 0 which, however, contradicts the fact that
n ∈ Nor(X, a) = Tan(X, a)◦ and u ∈ int Tan(X, a).

1.2 Polar Cones and Equivalent Statements for
the Positive Reach

We defined Nor(X, a) as the polar cone to the Tan(X, a), in notation Nor(X, a) :=
Tan(X, a)◦. Now we will properly define the polar cone and show some basic
properties. Recall that a cone (with centre at the origin) is a set C with the
property that if x ∈ C then also tx ∈ C for any t > 0.

Definition. The polar cone to a set C ⊂ Rd is given by

C◦ := {v ∈ Rd | u · v ≤ 0 for all u ∈ C}.

It is clear from the definition that C◦ is always a closed convex cone.
If C is already a cone then its second polar satisfies

C◦◦ = convC.

If C,D ⊂ Rd are closed convex cones then

(C ∩D)◦ = C◦ +D◦, (C +D)◦ = C◦ ∩D◦. (1.3)

The proof of this statement could be find in Rockafellar [2015][section 16].

Lemma 7. If reachX > 0 and a ∈ ∂X then Tan(X, a) = Nor(X, a)◦, hence
Tan(X, a) is convex.

Proof. First note that

Nor(X, a)◦ = Tan(X, a)◦◦ ⊃ Tan(X, a).

Hence it is enough to show that

Nor(X, a)◦ ⊂ Tan(X, a).

Let u /∈ Tan(X, a), |u| = 1 be a vector. Then, by the definition of tangent
vectors, there exist ϵ, γ > 0 such that the cone

V := {v | (v − a) · u > |v − a| cos γ}

does not intersect X ∩B(a, ϵ). We can assume that ϵ ≤ reachX. Denote x(t) :=
a+ tu, a(t) := ΠXx(t), n(t) := x(t)−a(t)

|x(t)−a(t)| , 0 < t < ϵ.
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Figure 1.3: The set X, the vector u, the cone V and following points from Lemma
7.

We can see from Figure 1.3 that the open cone V contains the open ball
B(x(t), t sin γ). We can see that |x(t) − a(t)| ≤ t, and since a(t) ∈ X, it must lie
outside V and we have thus

t sin γ ≤ |x(t) − a(t)| ≤ t, 0 < t < ϵ.

Further, Equation 1.2 implies

(a− a(t)) · n(t) ≤ |a− a(t)|2

2 reachX , 0 < t < ϵ.

Combining this two estimates, we obtain

u · n(t) = t−1((x(t) − a(t)) − (a− a(t))) · n(t)
= t−1(|x(t) − a(t)| − (a− a(t)) · n(t)

≥ sin γ − |a(t) − a|
reachX .
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In view of the compactness of the unit sphere, we can find a sequence ti → 0+
such that n(ti) → n ∈ Sd−1. Since also a(ti) → a, we have (a, n) ∈ norX by
Lemma 6, hence, n ∈ Nor(X, x). As

u · n ≥ lim inf
t→0

u · n(t) > 0,

since |a(t)−a|
reach X

→ 0, we infer that u /∈ Nor(X, x)◦.

In the proof of the next Theorem we will use the Separation theorem: let
A ⊂ Rd nonempty closed convex and K ⊂ Rd nonempty convex and compact,
A ∩K = ∅. Then there exists a hyperplane E strictly separating A from K, i.e.,
A and K are in the opposite open half-planes with a boundary E.

We now conclude equivalent statement for reachX ≥ r.

Theorem 8. Given a closed set X ⊂ Rd and r > 0, the following statements are
equivalent:

(i) reachX ≥ r,

(ii) for any a, b ∈ X, dTan(X,a)(b− a) ≤ |b−a|2
2r

.

Remark. Note that condition (ii) is equivalent to the following statement:
If a, b ∈ X with 0 < |b− a| < 2r then there exists a tangent vector 0 ̸= u to X
at a with β := ∠(b− a, u) ≤ arcsin b−a

2r
=: α.

We can see that equivalency as followed. We infer that |b−a|2
2r

= cos γ |b− a|,
for γ = π

2 − α, and |(b− a) − u| = sin β |b− a| (see Figure 1.4). Thus

sin β |b− a| ≤ cos γ |b− a| ⇔ sin β ≤ cos γ = cos
(︃
π

2 − α
)︃

= sinα ⇔ β ≤ α,

hence we see the equivalency we wanted.

Proof. We prove that (i) ⇒ (ii). Assume that reachX ≥ r and a, b ∈ X.
If a = b or |b− a| ≥ 2r then condition (ii) is satisfied with 0 ∈ Tan(X, a),
since |(b− a) − 0| ≤ |b− a| |b−a|

2r
. Assume thus that 0 < |b− a| < 2r and denote

u0 := b−a
|b−a| , γ := arcsin |b−a|

2r
and

C := {u | u · u0 ≥ |u| cos γ}.

We have to show that Tan(X, a) has nontrivial intersection with C. Assume,
for contrary, that the intersection is trivial. Since both are closed convex cones,
there must be a hyperplane strictly separating them. Thus there exists a unit
vector w such that v · w < 0 if v ∈ Tan(X, a) and u · w > 0 if u ∈ C. Note that
such w lies in Nor(X, a). Consider the vector w0 := u0 − (sin γ)w. The angle
formed by u0 and w0 is less or equal to γ (see Figure 1.5), hence, w0 ∈ C.

Further, we have

w · b− a

|b− a|
= w · u0 = w · (u0 − w0) + w · w0 > w · (u0 − w0) = sin γ = |b− a|

2r ,

which is in contradiction with Equation 1.2.
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Figure 1.4: Remark after the Theorem 1.4.

Now we show (ii) ⇒ (i). Assume that (ii) holds but reachX < r. Then
there exists a point x with s := dX(x) < r which has at least two different points
a, b ∈ X ∩ ∂B(x, s). Since X does not intersect B(x, s), any tangent vector to X
at a must form an angle with b− a of size at least arcsin |b−a|

2s
, which contradicts

the property (ii).
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Figure 1.5: Visualization of C and other cones from Theorem 8. A cone W is a
set of all w such that v · w < 0 if v ∈ Tan(X, a) and u · w > 0 if u ∈ C.
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2. Reach of Intersection
In this chapter we will describe when an intersection of two sets with positive
reach is a set with positive reach. As an example take the intersection of x-axis
with the graph of the function f(x) = x4 sin 1

x
for x ∈ [−1, 0)∩(0, 1] and f(0) = 0,

then this intersection has reach 0.
Then, we will show some properties of mappings from or onto the Normal

Bundle which gives us important properties of Xr and norX about its differen-
tiability, from which we infer existence of (generalized) principal curvatures of an
set with positive reach, as it is in Rataj and Zähle [2019]. Lastly we describe the
curvature of an intersection of a set with positive reach and a plane in R3.

Theorem 9. Let reachX, reach Y ≥ r > 0. Given a ∈ ∂(X ∩ Y ), denote

η(a) = inf
{︄

|u+ v|
|u| + |v|

⃓⃓⃓⃓
u ∈ Nor(X, a), v ∈ Nor(Y, a), |u| + |v| > 0

}︄
.

Set η = infa∈∂(X∩Y ) η(a). Assume that η > 0. Then for all a ∈ ∂(X ∩ Y ),

(i) Tan(X ∩ Y, a) = Tan(X, a) ∩ Tan(Y, a),

(ii) Nor(X ∩ Y, a) = Nor(X, a) + Nor(Y, a),

(iii) reach(X ∩ Y ) ≥ rη.

Proof. First note, that (i) and (ii) are equivalent by Equation 1.3. We will show
(ii).

Assume that reachX, reach Y ≥ r and let a ∈ X∩Y be given. If a /∈ ∂X∩∂Y
then (ii) is obvious. If a ∈ ∂X ∩ ∂Y and m ∈ Nor(X, a), n ∈ Nor(Y, a) are unit
vectors, then B(a+ rn, r) ∩X = B(a+ rn, r) ∩ Y = ∅ by Lemma 4 (iii). Hence,

(B(a+ rn, r) ∪B(a+ rn, r)) ∩ (X ∩ Y ) = ∅.

This implies that m,n belong to Nor(X ∪ Y, a), and if m,n are linearly inde-
pendent, then for any point z from the line segment [rm, rn], the open ball
B(z, |z − a|) is contained in B(a+rm, r)∪B(a+rn, r). Thus B(z, |z − a|) is dis-
joint with X∩Y , which implies that z−a ∈ Nor(X∩Y, a), since Tan(X∩Y, a) ⊂
Tan(Rd\B(z, |z − a|), a) = {u | u · (z − a) ≤ 0}. We have shown inclusion

Nor(X, a) + Nor(Y, a) ⊂ Nor(X ∩ Y, a).

For the opposite inclusion, take a vector u /∈ Nor(X, a) + Nor(Y, a), let H
be a hyperplane separating u and the convex cone Nor(X, a) + Nor(Y, a) and
let v be a vector perpendicular to H and forming an acute angle with u. Then
u ∈ int Tan(X, a)∩int Tan(Y, a), hence, there exists ϵ > 0 such that a+ϵv ∈ X∩Y
by the corollary of Lemma 6. Thus v ∈ Tan(X ∩ Y, a) and u /∈ Nor(X ∩ Y, a).
Thus (ii) is verified.

In order to show (iii), we will use Theorem 8. Let a, b ∈ X ∩ Y be given. We
will show that

(b− a) · w ≤ |b− a|2 |w|
2ηr , w ∈ Nor(X ∩ Y, a). (2.1)

14



Figure 2.1: Two sets X, Y , their intersection and η(a) from Theorem 9.

For w = 0 the inequality is clear. If w ̸= 0 we can represent w = u+ v with some
u ∈ Nor(X, a), v ∈ Nor(Y, a) by (ii), where at least one of u, v is nonzero. From
Equation 1.2 we have (b− a) · u ≤ |b−a|2|u|

2r
and (b− a) · v ≤ |b−a|2|v|

2r
. Hence

(b− a) · (u+ v) ≤ |b− a|2 (|u| + |v|)
2r ≤ |b− a|2 |u+ v|

2ηr ,

proving 2.1.
We know already from (i) and (ii) that Tan(X ∩ Y, a) is a convex cone and

Nor(X∩Y, a) = Tan(X∩Y, a)◦. Denote u = ΠTan(X∩Y,a)(b−a) and w = b−a−u.
We have u ·w = 0, since Tan(X ∩Y, a) is a cone, hence, |w| = |b− a| cosα, where
α is the angle formed by w and b− a. Also w ∈ Nor(X ∩ Y, a) and we infer from
2.1 that cosα ≤ |b−a|

2ηr
, hence |v| ≤ |b−a|2

2ηr
. Thus it holds that

dTan(X∩Y,a)(b− a) ≤ |b− a|2

2ηr ,

which implies (iii) by Theorem 8.
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2.1 Unit Normal Bundle
Now we show some properties of the Unit Normal Bundle in order to show that Xr

is a closed C1,1-domain and norX is a (d− 1)-dimensional Lipschitz submanifold
of R2d, if 0 < r < reachX.

Lemma 10. Let X ⊂ Rd. If

N := {(a, v) | a ∈ X, v ∈ Nor(X, a)},
σ : N → Rd, σ(a, v) := a+ v for (a, v) ∈ N,

ψ : Unp(X) → Rd × Rd, ψ(x) := (ΠX(x), x− ΠX(x)) for x ∈ Unp(X),

then

σ is Lipschitzian,
ψ(Unp(X)) ⊂ N, ψ is a homeomorphism, ψ−1 = σ|ψ(Unp(X)).

If furthermore

K ⊂ X, 0 < r < q, reach(X, a) ≥ q for a ∈ K,

W := Unp(X) ∩ {x | ΠX(x) ∈ K, x ∈ Xr},

then

ψ(W ) = N ∩ {(a, v) | a ∈ K, |v| ≤ r},
ψ|W is Lipschitzian;

in case K is compact and 0 ≤ t < ∞, then

N ∩ {(a, v) | a ∈ K, |v| ≤ t} is compact.

Proof. From Lemma 4 one can see that if x ∈ Rd, a ∈ X and dX(x) = |x− a|,
then

x− a ∈ Nor(X, a), (a, x− a) ∈ N, σ(a, x− a) = x.

In case x ∈ Unp(X), then a = ΠX(x), ψ(x) = (a, x − a), σ(ψ(x)) = x. This
implies the first part of this lemma. The second part follows from Lemmas 4, 5
and 7 with its proof. In case K is compact, then W,ψ(W ) are also compact and
the image of ψ(W ) under the transformation mapping (a, v) onto (a, tr−1v).

Corollary. If r > 0 and Xr is r-parallel body of X, then

dXr(x) = dX(x) − r whenever dX(x) ≥ r,

ΠX(ΠXr(x)) = ΠX(x) whenever dX(x) < reach(X),
reach(Xr) ≥ reach(X) − r.

Furthermore, if 0 < r < reach(X) and X ′
r := {x | dX(x) ≥ r}, then

dX′
r
(x) = r − dX(x) whenever 0 < dX(x) ≤ r,

ΠX(ΠX′
r
(x)) = ΠX(x) whenever 0 < dX(x) ≤ r,

reach(X ′
r) ≥ r.
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Proof. The formula for dXr follows from the definitions, and the formula for dX′
r

may be obtained with the aid of Lemma 4. Then the statement concerning reach
and Π can be obtained from Lemma 3, applied to X,Xr, X

′
r.

Recall that for a set X with C2-boundary ∂X, the Gauss map of X is defined
as the mapping

νX : ∂X → Sd−1,

where νX(x) denotes the outer unit normal at x ∈ ∂X. The differential DνX(x)
exists everywhere on ∂X and it is a self-adjoint linear map from Tan(X, x) ∼=
νX(x)⊥ to Tan(Sd−1, νX(x)) ∼= νX(x)⊥. The eigenvalues

κ1(x), . . . , κd−1(x) ≥ 0

of Dν(x) are called principal curvatures of X at x and the associated eigenvectors
b1(x), . . . , bd−1(x) we called principal directions. Note that

(b1(x), . . . , bd−1(x), ν(x))

is a positively oriented basis of Rd.
Corollary. If 0 < r < reachX then Xr is a closed C1-domain (i.e., a d-dimensional
C1-submanifold with boundary) with the Lipschitzian Gauss map x ↦→ νXr(x).
Further, norX is a (d− 1)-dimensional Lipschitz submanifold of R2d.

Proof. From Lemma 3, since dX is C1 on int(UnpX \X), we see that Xr is
a C1-submanifold. From Lemmas 3, 5 we infer that the Gauss map x ↦→ x−ΠX(x)

|x−ΠX(x)|
on ∂Xr is Lipschitzian. From the second part of the previous lemma choose
K = X, then ψ|W is Lipschitzian on Xr, thus norX is a Lipschitz submanifold
of R2d.

2.2 Principal Curvatures and Directions
Let X ⊂ Rd, reachX > r > 0 and let (x, n) ∈ norX be given. For such r it
holds that x + rn ∈ ∂Xr and the Gauss map νr on Xr satisfies νr(x + rn) = n.
Thus, if 0 < t < t + s < reachX, then the mapping y ↦→ y + sνt(y) is a bi-
Lipschitzian homeomorphism between ∂Xt and ∂Xt+s, and its inverse is z ↦→
z − sνt+s(z), because of Lemma 10 and its two corollaries. As the consequence,
νt is differentiable at y if and only if νt+s is differentiable at y + sn.

Since νr is Lipschitzian on the C1-submanifold ∂Xr, it is differentiable almost
everywhere on ∂Xr, according to the Rademacher’s theorem. Thus for almost all
points (x, n) ∈ norX, νr is differentiable at x+ rn. We call points (x, n) ∈ norX
with this property regular.

Theorem 11. If reachX > 0 and (x, n) ∈ norX is regular then
Tan(norX, (x, n)) is a (d− 1)-dimensional subspace and there exist vectors
b1(x, n), . . . , bd−1(x, n) in Rd and numbers
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κ1(x, n), . . . , κd−1(x, n) ∈ [− reachX,∞] such that (b1(x, n), . . . , bd−1(x, n), n)
form a positively oriented orthonormal basis of Rd and the vectors⎛⎝ 1√︂

1 + κ2
i (x, n)

bi(x, n), κi(x, n)√︂
1 + κ2

i (x, n)
bi(x, n)

⎞⎠ , i = 1, . . . , d− 1,

form an orthonormal basis of Tan(norX, (x, n)). (We set 1√
1+∞2 = 0 and

∞√
1+∞2 = 1.)

Proof. Let a regular point (x, n) ∈ norX be fixed and 0 < r < reachX. Recall
that νr(y) = n at x + rn, the Weintgarten mapping −Dνr(y) exists and, conse-
quently, there exist principal values (curvatures) κr

i (y) and principal directions
br

i (y) ∈ Tan(∂Xr, y). We could assume that the vectors br
1(y), . . . , br

d−1(y), n form
a positively oriented orthonormal basis of Rd. We will show that

− 1
reachX − r

≤ κr
i (y) ≤ 1

r
, i = 1, . . . , d− 1. (2.2)

This is a consequence of the fact that all directional derivatives of νr at y lie
within the given bounds which follow from

− 1
reachX − r

≤ νr(z) − νr(y)
|z − y|

· z − y

|z − y|
≤ 1
r
, z, y ∈ ∂Xr.

Left-hand side of the inequality follows from 1.2 as: since reachXr ≥ reachX− r

(corollary of Lemma 10) we get (z − y) · νr(z) ≤ |y−z|2
2(reach X−r) ,

(y − z) · νr(y) ≤ |y−z|2
2(reach X−r) , and by subtracting them we are done. For the

right-hand inequality, note that

νr(z) − νr(y)
|z − y|

· z − y

|z − y|
= 1
r

((z − ΠXz) − (y − ΠXy)) · (z − y)
|z − y|2

= 1
r

(︄
1 − (ΠXz − ΠXy) · (z − y)

|z − y|2

)︄
≤ 1
r
,

since we have shown in the proof of Lemma 5 that (ΠXz − ΠXy) · (z − y) ≥ 0.
Thus, 2.2 is proved.

The vectors br
i (y), i = 1, . . . , d− 1, form a basis of Tan(∂Xr, y). Note that for

σ from Lemma 10 we can have slightly modified map σr : norX → Rd,
σr(a, n) = a + rn which is also Lipschitzian, and its inverse map can be written
as

(σr)−1(y) = (y − rνr(y), νr(y)),

hence, it is differentiable as well, with differential

D(σr)−1(y) = (I − rDνr(y), Dνr(y)),

mapping Tan(∂Xr, y) onto Tan(norX, (x, n)). Thus, the vectors

D(σr)−1(y)br
i (y) = ((1 − κr

i )br
i , κ

r
i b

r
i ), i = 1, . . . , d− 1,

18



form a basis of Tan(norX, (x, n)). Setting bi(x, n) := br
i (y) and

κi(x, n) :=

⎧⎨⎩
κr

i (y)
1−κr

i (y)r if κr
i r < 1,

∞ if κr
i r = 1,

i = 1, . . . , d− 1,

we get the assertion.

Lemma 12. The values κi(x, n) from Theorem 11 are uniquely determined at any
regular point (x, n) ∈ norX, up to the order. Furthermore, for any 1 ≤ i ≤ d−1,
the subspace

Lin{bj(x, n) | κj(x, n) = κi(x, n)}
is uniquely determined.

Proof. Throughout the proof, we shall omit the argument (x, n) at κi and bi.
Assume that ⎛⎝ 1√︂

1 + κ2
i

bi,
κi√︂

1 + κ2
i

bi

⎞⎠ , i = 1, . . . , d− 1,

and ⎛⎝ 1√︂
1 + (κ′

i)2
b′

i,
κ′

i√︂
1 + (κ′

i)2
b′

i

⎞⎠ , i = 1, . . . , d− 1,

are two orthonormal bases of Tan(norX, (x, n)), where {bi}, {b′
i} are two or-

thonormal bases of n⊥. Then there exist coefficients cij such that

1√︂
1 + (κ′

i)2
b′

i =
∑︂

j

cij
1√︂

1 + κ2
j

bj, (2.3)

κ′
i√︂

1 + (κ′
i)2
b′

i =
∑︂

j

cij
κj√︂

1 + κ2
j

bj. (2.4)

We fix some 1 ≤ i ≤ d− 1 and assume that κi < ∞. Multiplying 2.3 with κ′
i and

comparing it with 2.4, we get

cij

⎛⎝ κj√︂
1 + κ2

j

− κ′
i√︂

1 + κ2
j

⎞⎠ = 0

for all j. Consequently, we have κj < ∞ and cijκ
′
i = cijκj for all j. Thus

cij = 0 or κ′
i = κj (2.5)

for any j.
Now assume that κ′

i = ∞. Then we have zero on the left-hand side of 2.3
which implies that cij/

√︂
1 + κ2

j = 0 or κj = ∞ for all j. Thus 2.5 holds for
all j. It follows from 2.5 that the sets of numbers {κi | 1 ≤ i ≤ d − 1} and
{κ′

i | 1 ≤ i ≤ d − 1} coincide and that any b′
i is a linear combination of those bj

belonging to the same κi.
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Corollary. Let (x, n) ∈ norX be a regular point and 0 < r < reachX. Then the
principal curvatures κr

i of Xr at x+ rn and the (generalized) principal curvatures
κi(x, n) of X at (x, n) are related by

κi(x, n) =

⎧⎨⎩
κr

i (x+rn)
1−rκr

i (x+rn) if κr
i (x+ rn) < 1

r
,

∞ if κr
i (x+ rn) = 1

r
,

i = 1, . . . , d− 1,

after an eventual change of order. Consequently,

lim
r→0+

κr
i (x+ rn) = κi(x, n), i = 1, . . . , d− 1.

The (generalized) principal directions bi(x, n), i = 1, . . . , d − 1 are the principal
directions br

i (x+ rn) of ∂Xr at x+ rn for all r < reachX.

2.2.1 Generalized Curvature of a Planar Section
Now we describe generalized curvatures of the intersection of a set with positive
reach and a plane.

Lemma 13. Let X ⊂ R3, reachX > 0 and F ⊂ R3 be a plane. For x ∈ X ∩ F
and for a regular point (x, n) ∈ norX let reach(X ∩ F, x) > 0. Let us denote L
a linear subspace such that F = x + L. We define the perpendicular projection
PL : Nor(X, x) → L and ΠL(n) := PL(n)

|PL(n)| .
Then for (u, v) ∈ Tan(norX, (x, n)) holds that(︄

u,
κ1 cos2 θ + κ2 sin2 θ

sin β u

)︄
∈ Tan(nor(F )(X ∩ F ), (x,ΠL(n))),

where κ1, κ2 are generalized principal curvatures at (x, n), θ is an angle between u
and the principal direction b1, β is an angle between n and a normal to the plane
F and nor(F )(X ∩ F ) := nor(X ∩ F ) ∩ (F × S1).

Proof. From Theorem 9 we infer

(x, n) ∈ norX ⇔ (x,ΠL(n)) ∈ nor(F )(X ∩ F ). (2.6)

If (u, v) ∈ Tan(norX, (x, n)) then from the definition of the tangent cone
there exist (xi, ni) ∈ norX, xi ∈ X ∩ F and αi > 0, xi → x, ni → n such
that αi((xi, ni) − (x, n)) → (u, v). Note that such u lies in P1(Tan(nor(F )(X ∩
F ), (x, n))), where P1 is a projection on the first coordinate.

From Theorem 11 we conclude

(u, v) = δ

⎛⎝ 1√︂
1 + κ2

1

b1,
κ1√︂

1 + κ2
1

b1

⎞⎠+ ϵ

⎛⎝ 1√︂
1 + κ2

2

b2,
κ2√︂

1 + κ2
2

b2

⎞⎠
=
⎛⎝ δ√︂

1 + κ2
1

b1 + ϵ√︂
1 + κ2

2

b2,
δκ1√︂
1 + κ2

1

b1 + ϵκ2√︂
1 + κ2

2

b2

⎞⎠ ,
for some δ, ϵ ∈ R. Thus αi(xi−x) → u = δb1√

1+κ2
1
+ ϵb2√

1+κ2
2

∈ L and αi(ni−n) → v =
δκ1b1√

1+κ2
1

+ ϵκ2b2√
1+κ2

2
. Since |b1| = |b2| = |u| = 1, we see that δ√

1+κ2
1

= cos θ, ϵ√
1+κ2

2
=

sin θ, where θ is an angle between b1 and u.
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Now we want to describe v relatively in nor(F )(X ∩ F ). It holds for
(xi,ΠL(ni)), (x,ΠL(n)) ∈ nor(F )(X ∩ F ) that

αi(ΠL(ni) − ΠL(n))) = αi

(︄
PL(ni)
|PL(ni)|

− PL(n)
|PL(n)|

)︄

= αi

(︄
PL(ni − n)

|PL(n)| + PL(ni)(|PL(n)| − |PL(ni)|)
|PL(ni)| |PL(n)|

)︄

→ PL(v)
|PL(n)| + 0 = PL (cos θκ1b1 + sin θκ2b2)

|PL(n)| ,

since PL(ni) → PL(n) and thus the second fraction in the second equality go to
the zero. Thus by 2.6 and the definition of tangent vectors(︄

u,
PL(v)

|PL(n)|

)︄
∈ Tan(nor(F )(X ∩ F ), (x,ΠL(n))).

Finally we describe PL(v). Since a unit normal vector is perpendicular to its
derivation and because we operate in the plane, then the unit normal vector is a
multiple of a tangent vector. Thus PL(v) = ⟨u, v⟩u, where ⟨·, ·⟩ denotes the dot
product and since u ∈ L. Thus

PL(v) = PL (cos θκ1b1 + sin θκ2b2) = (cos θκ1⟨u, b1⟩ + sin θκ2⟨u, b2⟩)u
=
(︂
κ1 cos2 θ + κ2 sin2 θ

)︂
u.

Lastly let β be an angle as it is in the lemma statement, then |PL(n)| = sin β.

We can now conclude, from Theorem 11 and the previous lemma, a general-
ization of the normal curvature of a point in some direction.
Corollary. If (x,ΠL(n)) is a regular point of nor(F )(X ∩ F ), then we describe a
(generalized) normal curvature in direction u of x as κu := κ1 cos2 θ+κ2 sin2 θ

sin β
.

Note that κ1, κ2 could be ∞.
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