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Introduction

Sets with positive reach were introduced in the famous paper Federer [1959]
but also appear in literature as "proximally smooth sets” or ”prox-regular sets”.
Sets with positive reach are generalization of convex sets which have a unique
metric projection on themselves from their positive neighbourhood. They are
also generalization of C? sets. Initially, they were used with connection to the
Curvature Measures in Federer| [1959]. One can see more various applications in
Colombo and Thibault| [2010].

In a major part of this thesis, we collect basic properties of sets with positive
reach as they are in [Federer| [1959] and Rataj and Zahle| [2019], accompanied by
some pictures and expanded proofs. In the last subsection [2.2.1], we describe a
generalization of the well-known Euler’s identity about the normal curvature on
C?-manifold.

In order to get to the curvatures of sets with positive reach, we need to
describe basic properties of sets themselves, which is the goal of Chapter [} In
Rataj and Zahle [2019][Lemma 4.5, Corollary 4.6] a basic characterization of
sets with positive reach is given and it is used to prove more advanced results
throughout the thesis. We define and show duality of Tangent and Normal cones
(see Rockafellar| [2015][Section 16]) and show an equivalent condition for the set
X being the set with positive reach in terms of the distance of a vector in a set
X from the Tangent cone of X.

In Chapter 2, we show a sufficient condition for the intersection of two sets
with positive reach to be the set with positive reach (Federer [1959][Theorem
4.10]). Using a distance function of a point from a set with positive reach X,
we show it is continuously differentiable, compute its gradient and show that
this gradient is Lipschitzian on some r-parallel neighbourhood of X (Lemma
— this property would be used in order to prove some properties of mappings
from or onto the Normal Bundle (Federer [1959][Theorem 4.8(13)]), from which
we infer that the Unit Normal Bundle nor X is actually a (d — 1)-dimensional
submanifold of R? and the r-neighbourhood X, of X is a closed C'-domain with
the Lipschitzian Gauss map.

From these properties of nor X and X,., we define a generalization of the prin-
cipal curvatures for a set with positive reach (Rataj and Zahle [2019][Proposition
4.23]) and we derive the main result of this thesis — generalization of the direc-
tional curvatures in R? as the intersection of a plane and a set with positive reach
(Lemma |13| and its corollary).



1. Geometric Properties

In this chapter we will define sets with positive reach and describe some basic
properties. Later, we define tangent and normal cones, show their duality and
convexity of tangent cones. In Theorem [§ we give an important characterization
of sets with positive reach.

1.1 Basic Definitions and Properties

The metric projection to a nonempty set X C R? is not defined everywhere,
unless X is closed and convex. On a set X with positive reach we can define the
metric projection on some open neighbourhood of X.

Definition. Given a set ) # X C R?, we define its distance function as
dx: x> dist(z, X) =inf{ |z —a| | a € X}.

Unp X denotes the set of all x € RY for which there exists a unique point a € X
nearest to x. We also define the metric projection to X as the mapping

I[Mx: UnpX — X,
then we write a =: I x(x).

Lemma 1. IIx is continuous.

Proof.  Assume for contrary that IIy is not continuous at a point x € Unp X.
So there exist points x; € Unp X, z; — x,inf; [IIx(x;) — lIx(z)| > 0. Let us have
y € X such that lIx(z;) — y. By assumption IIx(z) # y, but |y — z| = dx(z),
which contradicts that z € Unp X.

O

Definition. We define the reach function of X as
reach(X, a) :=sup{r > 0| B(a,r) C Unp X},

where B(a,r) is the open ball with the centre a and the radius v, and the reach
of X is set as

reach X := inf reach(X,a).
aeX

We denote by
X, = {ueR|dx(u,X)<r}

the r-parallel body of the set X for r > 0.
Note that reach ) = oo and any set with positive reach is closed.
FExamples of sets with positive reach:

1. If X is closed and convex then (and only then) reach X = oc.

3
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Figure 1.1: A set X with positive reach, reach X = r. The metric projection Ilx
of a point z. Unp X, where dashed lines do not belong to the Unp X.

2. If X is finite nonempty then reach X = min{3 |z —y| | z,y € X,z # y}.

3. The union of two disjoint compact sets with positive reach has positive
reach.

Recall that a function f: R"™ — R™ is called K-Lipschitz if there exists a
positive real constant K > 0 such that, for all z,y € R”,

|f(x) = fy)] < K|z —y|.
We show some basic differential properties of the distance function.

Lemma 2. Let f: U — R be Lipschitz and U C R? open. Let g: U — R
continuous and 1 < i < d. If

5 f(z) = g(x) whenever f is differentiable at x € U.
T
Then

ailf(x) =g(z) forallzxeU.

Proof. Suppose u € U,r > 0 and B(u,2r) C U. Let ¢; be ith unit vector of the
canonical basis of R?. According to the Rademacher’s theorem f is differentiable
almost everywhere on U and for almost all x within r of u it follows, from the
absolute continuity of f, that

flaotte) — fa) = [

¢
@a f(z 4+ we;) dw = / g(x +we;) dw  whenever [t| < r.
ZT; 0

4



From the continuity of f and g it follows that
t
flu+te;) — f(u) = / g(u+we;)dw  whenever [t| <7,
0

and finally B%i (u) = g(u).

Lemma 3. If the distance function dx is differentiable at some point
x € Unp X\ X then its gradient is

r — x(z)

V) = )

Further, dx is continuously differentiable on int(Unp X\X). d% is continuously
differentiable on int(Unp X) and Vd%(z) = 2(x — Ux(x)) for x € int(Unp X).

Proof. We show that dx is 1-Lipschitz. From the triangle inequality follows
|dx(y) — dx(2)| < |dx(x) + |z —y| = dx(2)| = |z —y|, x,y€R™

Thus, for every x for which dx is differentiable, |Vdx(x)| < 1. For

—1I
x € Unp(X)\X and for u := ’ x()

—_— btai
o = Ty ()] we obtain

dx(x —tu) =dx(x) —t, 0<t<dx(x).

Consequently, Vdx (z) = u whenever x € Unp(X)\X and dx(z) is differentiable
at x.

Since Iy is continuous and because of the previous lemma we get the contin-
uous differentiability of dx on W := int(Unp X\ X).

For x € W, the stated formula for Vd5% (x) follows from the first part of this
lemma. For z € X, d%(z + h) < |h|” for h € R, hence Vd%(z) = 0, and also
IIx(z) = x. Accordingly the formula holds for all € int(Unp X)), and the con-
tinuity of the right side of the formula, from Lemma [T} implies the continuity of
Vd% (z) on int(Unp X).

O

Definition. We define the tangent cone of X C R? at a point a € X as the set
of all vectors u € R? such that either u = 0 or there exists a sequence of points
a; € X\{a} with a; — a and r;(a; — a) = u,i — oo, for r; > 0. We denote this
tangent cone by Tan(X,a). Note that Tan(X, a) is always closed for the general
set X.

Further we define the normal cone of X at a € X as the polar cone of
Tan(X, a), i.e.

Nor(X,a) := Tan(X,a)° ={v | v-u <0 for any u € Tan(X,a)}.

Note that the normal cone is always a closed convex cone.



Lemma 4. Let reach(X,a) =: 7 > 0,a € 90X and n € S¥ . The following
statements are equivalent.

(i) llx(a +tn) = a for somet >0,
(ii) lix(a+tn) =a forall0 <t <r,
(iti) X N B(a+rn,r) =0,

(iv) n € Nor(X,a).

Proof. We show (i) = (i7). Let (i) be true and denote
7 :=sup{t > 0| [Ix(a +tn) = a}.

We know that 7 > 0 by assumption. Clearly llx(a +tn) =afor 0 <t < 7. In
order to show (ii), we have to verify that 7 > r. Assume, for the contrary, that
7 <r. Then z,; := a+ mn € int Unp X (since reach X > 7). Consider differential
equation

g'(s) = Vdx og(s), g(0) = z,. (1.1)

By the Peano existence theorem, there exists 6 > 0 and a differential function
g: (=0,0) — R? such that g from holds for |s| < §. Since Vdy is always a
unit vector, we have |¢'(s)| = 1. Further,

(dx 0g)'(s) =Vdxog(s)-g'(s) =g'(s)-g'(s) =1,

hence, for any —d < s1 < 89 < 0,
so-si= [ lg(s) ds = [ (dx 09)(s)ds
= dx(g(s2)) — dx(g(s1)) < |g(s2) — g(s1)|-

It follows that an image of g must be a straight segment of length 26. By the
definition of g, any point of this segment will have its metric projection onto X
in a, which is a contradiction with the definition of 7.

The implications (i7) = (iii) = (iv) are clear. Now we will show that (iv) =
(). Assume for the contrary that n € Nor(X,a) N S but (i) is not true. We
define the function z(t) := a + tn,t > 0. We know that z(t) ¢ X for sufficiently
small t > 0 (otherwise, n would be a tangent vector to X at x, contradicting the
assumption). Then, a(t) := IIx(z(t)) # a for all sufficiently small ¢ > 0 by our
assumptions. By the continuity of IIx we see that a(t) — a,t — 0. Now we will

show that the unit vectors n(t) := |i8:38| converge to n as t — 0. We have

limsup(a(t) —a)-n <0
t—0

since n € Nor(X,a). Thus

o i — Timin (x(t) —a) -n+(a—alt)) n
hﬂ%rlf”(t) 1 i1 f ) —a)]

t
> liminf ———— >1

B8 at) —a()] =
6



since |x(t) — a(t)] < |z(t) —a|] = t for all t. Hence n(t) — n,t — 0. By the
already proven implication (i) = (iii) applied to a(t) and n(t), the open balls
B(a(t) 4+ tn(t),r) do not intersect X. But we have

B(a+rn,r) C U B(a(t) + rn(t),r),

t>0

hence B(a + rn,r) N X = (. We have thus shown (i7i) which clearly implies (7),
a contradiction.

]
Corollary. If reach X > 0,a,b € X and v € Nor(X, a) then
ja — b [v]
-b) < —n7" —. 1.2
(a=b)-vs 2reach X (1.2)

Proof.  Assume that v # 0 and let n := v/ |v|. From the previous lemma we
know that IIx(a +tn) = a for all 0 < ¢ < reach X. For such ¢ we compute

la +tn —bl > dx(a+tn) =t, la —b)” + 2tn - (a — b) + 12 > ¢,
2tn - (a — b) > —|a—b|?, v-(a—0b)>—|a—Db*v| /2t
[
Lemma 5. I[f0<r <g<oo,z,y € X, and
q S reach(X, HX<x))7 q S reach(X, HX (y))v
then q
[Mx(2) — Hx(y)| < [z =yl
q—r
Proof. Let a :=1Ilx(x),b:=IIx(y), one infers from Equation [1.2| that
(¢ —a) (a=b)=—la—b"r/2
and symmetrically
(y—b)-(b—a)>—|b—al*r/2q.
Therefore
[z —al-la—bl = (z—y) (a—0b)
=((a=b)+@—a)+(b-y) (a—b)
> [a— 0" (1 —r/q),
[z =yl = la—bl(g—r)/q
0

Now we combine this lemma, Lemma [l Lemma |3| and conclude following corol-
lary.



nor X

Figure 1.2: A set X with its Unit Normal Bundle nor X.

Corollary. If 0 < s < r < reach X, then Vdx is Lipschitzian on {z | s < dx(z) <
r}, and Vd% is Lipschitzian on X,.

Definition. Given a set X C R? with reach > 0, we define the unit normal
bundle of X (see Figure as

nor X := {(a,n) | a € 0X,n € Nor(X,z) NS4},

Lemma 6. nor X is a closed subset of R??.

Proof. Let (a,n) = lim;_,o0(a;, n;), (a;,n;) € nor X for all i. From Lemma 4| we
have B(a;+rn;,r)NX = () for r = reach X and all 7, hence also B(a+rn,r)NX =
0. Thus (a,n) € nor X, by Lemma [

[

Corollary. Let reach X > 0 and a € X.
(i) If @ € OX then Nor(X,a) # {0}.

(ii) If u € S9! belongs to the topological interior of Tan(X, a) then the segment
[a,a + €eu] is included in X for some € > 0.

Proof. We prove (i). If a € 90X, there exist points z; € R\ X, z; — a. Then the
metric projections IIx(z;) := a; also converge to a and n; := % € Nor(X, a;)
by Lemma We can achieve now that n; — n € S?!. Then (a,n) € nor X since
nor X is closed.

Now we prove (ii). Let such u be given. Assume, for the contrary, that there
exists a sequence ¢; — 0 such that z; :== a + ¢u ¢ X for all i. Now we denote

a; :==Ix(a+ u) = a,n; == 2=% € Nor(X,a;) and we can assume that

la;—;]




n; — n € S9N Nor(X,a). From Equation we see that (a — a;) - n; <
(2r)~" |a; — a|® where 7 := reach X, hence

1< ) - 1( ) - |a; —a|2
’ €; ! = €; ! b= 2T€Z‘

Letting © — oo we get u -n > 0 which, however, contradicts the fact that
n € Nor(X,a) = Tan(X,a)° and u € int Tan(X, a).
O

1.2 Polar Cones and Equivalent Statements for
the Positive Reach

We defined Nor (X, a) as the polar cone to the Tan(X, a), in notation Nor(X, a) :=
Tan(X,a)°. Now we will properly define the polar cone and show some basic
properties. Recall that a cone (with centre at the origin) is a set C' with the
property that if € C' then also tx € C' for any ¢t > 0.

Definition. The polar cone to a set C' C R? is given by
C°:={veR|u-v<0 foralluecC}.

It is clear from the definition that C* is always a closed convex cone.
If C is already a cone then its second polar satisfies

C°° = convC.
If C,D C R? are closed convex cones then
(CnD)yY=C°+D°, (C+D)=C°nDb". (1.3)
The proof of this statement could be find in |Rockafellar| [2015][section 16].

Lemma 7. If reach X > 0 and a € 0X then Tan(X,a) = Nor(X,a)°, hence
Tan(X, a) is conve.

Proof. First note that
Nor(X, a)® = Tan(X, a)® D Tan(X, a).
Hence it is enough to show that
Nor(X,a)® C Tan(X, a).

Let v ¢ Tan(X,a),|u| = 1 be a vector. Then, by the definition of tangent
vectors, there exist €,y > 0 such that the cone

Vi={v|(v—a) -u>|v—alcosv}

does not intersect X N B(a, €). We can assume that ¢ < reach X. Denote z(t) :=
a+ tu,a(t) :=xx(t),n(t) := ‘28 28‘ 0<t<e




B(z(t),tsin)

Figure 1.3: The set X, the vector u, the cone V' and following points from Lemma

@

We can see from Figure that the open cone V' contains the open ball
B(z(t),tsinvy). We can see that |z(t) — a(t)] < t, and since a(t) € X, it must lie
outside V' and we have thus

tsiny < |z(t) —a(t)| <t, 0<t<e.
Further, Equation implies

(a—a(t))-n(t)gm, 0<t<e

Combining this two estimates, we obtain

wen(t) =t ((z(t) — a(t)) — (a —a(t))) - n(t)
=t (|Jz(t) — a(t)| — (a — a(t)) - (1)
e

10



In view of the compactness of the unit sphere, we can find a sequence t; — 0.
such that n(t;) — n € S41. Since also a(t;) — a, we have (a,n) € nor X by
Lemma @, hence, n € Nor(X, z). As

w-n > liminfu - n(t) > 0,
t—0

since ‘“(t)_)“(‘ — 0, we infer that u ¢ Nor(X, z)°.

reach

O

In the proof of the next Theorem we will use the Separation theorem: let
A C R? nonempty closed convex and K C R? nonempty convex and compact,
AN K = (. Then there exists a hyperplane E strictly separating A from K, i.e.,
A and K are in the opposite open half-planes with a boundary F.

We now conclude equivalent statement for reach X > r.

Theorem 8. Given a closed set X C R? and r > 0, the following statements are
equivalent:

(i) reach X > r,

(ii) for any a,b € X, dran(x,qa)(b — a) < lb;:|2'

Remark. Note that condition (ii) is equivalent to the following statement:
If a,b € X with 0 < |b— a|] < 2r then there exists a tangent vector 0 # u to X
at a with 8 := Z(b — a,u) < arcsin £¢ =: a.

2
2
We can see that equivalency as followed. We infer that % = cosvy|b— al,

for v =5 —a, and |(b — a) — u| = sin § |b — a| (see Figure . Thus

m
sin b —a| <cosvy|b—al < sinf < cosy = cos <2—a) =sina < [ <a,

hence we see the equivalency we wanted.

Proof. ~ We prove that (i) = (i¢i). Assume that reach X > r and a,b € X.
If a = bor |b—a|l > 2r then condition (ii) is satisfied with 0 € Tan(X,a),

since [(b—a) — 0] < |b— al |b;a|. Assume thus that 0 < |b — a| < 2r and denote

2
. b—a o - b=l
Ug i= gy Y P aresin and

C:={u|u-uy> |ulcosvy}.

We have to show that Tan(X,a) has nontrivial intersection with C'. Assume,
for contrary, that the intersection is trivial. Since both are closed convex cones,
there must be a hyperplane strictly separating them. Thus there exists a unit
vector w such that v-w < 0 if v € Tan(X,a) and v - w > 0 if w € C. Note that
such w lies in Nor(X,a). Consider the vector wy := uy — (siny)w. The angle
formed by up and wy is less or equal to v (see Figure , hence, wy € C.

Further, we have

w b—a . |b—al
|b—q N

which is in contradiction with Equation [1.2]

11



Figure 1.4: Remark after the Theorem

Now we show (i) = (i). Assume that (i7) holds but reach X < r. Then
there exists a point z with s := dx(z) < r which has at least two different points

a,b € X NIB(z,s). Since X does not intersect B(z, s), any tangent vector to X

at a must form an angle with b — a of size at least arcsin %, which contradicts
the property (ii).

O
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Nor(X,a)
w
C
<\
a /& g R
—wsin~y l \ v
S w
sin vy

Tan(X,a)

Figure 1.5: Visualization of C' and other cones from Theorem [§ A cone W is a
set of all w such that v-w < 0if v € Tan(X,a) and u-w > 0 if u € C.
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2. Reach of Intersection

In this chapter we will describe when an intersection of two sets with positive
reach is a set with positive reach. As an example take the intersection of x-axis
with the graph of the function f(z) = 2*sin 1 for z € [-1,0)N(0,1] and f(0) =0,
then this intersection has reach 0.

Then, we will show some properties of mappings from or onto the Normal
Bundle which gives us important properties of X, and nor X about its differen-
tiability, from which we infer existence of (generalized) principal curvatures of an
set with positive reach, as it is in |[Rataj and Zahle [2019]. Lastly we describe the
curvature of an intersection of a set with positive reach and a plane in R3.

Theorem 9. Let reach X, reachY > r > 0. Given a € (X NY), denote

lu + v
lu| + |v]

n(a) = inf {

u € Nor(X,a),v € Nor(Y,a), |u| + |v| > 0} :

Set n = inf,coxnyyn(a). Assume that n > 0. Then for alla € 0(X NY),
(i) Tan(X NY,a) = Tan(X, a) N Tan(Y, a),
(i) Nor(X NY,a) = Nor(X,a) + Nor(Y, a),

(7ii) reach(X NY) > rn.

Proof. First note, that (i) and (i7) are equivalent by Equation We will show
(17).

Assume that reach X, reachY > r and let a € XNY be given. If a ¢ 0XNJY
then (i¢) is obvious. If a € 0X N 9Y and m € Nor(X,a),n € Nor(Y,a) are unit
vectors, then B(a+rn,r)NX = B(a+rn,r)NY = () by Lemma [4] (iii). Hence,

(B(a+rn,r)UB(a+rn,r))N(XNY)=10.

This implies that m,n belong to Nor(X U Y,a), and if m,n are linearly inde-
pendent, then for any point z from the line segment [rm,rn], the open ball
B(z,|z — al) is contained in B(a+rm,r)UB(a+rn,r). Thus B(z, |z — al) is dis-
joint with X NY", which implies that z—a € Nor(X NY,a), since Tan(XNY,a) C
Tan(RNB(z, |z — a|),a) = {u | u- (2 — a) < 0}. We have shown inclusion

Nor(X,a) + Nor(Y,a) C Nor(X NY,a).

For the opposite inclusion, take a vector u ¢ Nor(X,a) + Nor(Y,a), let H
be a hyperplane separating u and the convex cone Nor(X, a) + Nor(Y,a) and
let v be a vector perpendicular to H and forming an acute angle with u. Then
u € int Tan(X, a)Nint Tan(Y, a), hence, there exists € > 0 such that a4+ev € XNY
by the corollary of Lemma [6] Thus v € Tan(X NY,a) and u ¢ Nor(X NY,a).
Thus (i¢) is verified.

In order to show (i), we will use Theorem [8 Let a,b € X NY be given. We
will show that

b —a* ||

—a)-w<
(b—a) w< o0

w € Nor(X NY,a). (2.1)

)

14



Figure 2.1: Two sets X, Y, their intersection and n(a) from Theorem [9

For w = 0 the inequality is clear. If w # 0 we can represent w = u + v with some
u € Nor(X,a),v € Nor(Y,a) by (ii), where at least one of u,v is nonzero. From

Equation [1.2{ we have (b—a)-u < w and (b—a)-v < w Hence

2 2
o= aP(ul+ o) _ b —af futo

(b—a) (u+v) < o < o

Y

proving [2.1]

We know already from (i) and (i¢) that Tan(X NY,a) is a convex cone and
Nor(XNY,a) = Tan(X NY, a)°. Denote u = Hran(xny,a)(b—a) and w = b—a—w.
We have u-w = 0, since Tan(X NY, a) is a cone, hence, |w| = |b — a| cos cr, where
« is the angle formed by w and b — a. Also w € Nor(X NY,a) and we infer from

2
that cosa < ‘I;_‘I', hence |v] < =9 Thus it holds that
nr 2nr

b —af*
d an a b_ S )
Tan(XnYa) (0 — @) 20

which implies (#ii) by Theorem [§|
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2.1 Unit Normal Bundle

Now we show some properties of the Unit Normal Bundle in order to show that X,
is a closed C'!'-domain and nor X is a (d — 1)-dimensional Lipschitz submanifold
of R?? if 0 < r < reach X.

Lemma 10. Let X C R4, If

N :={(a,v) |a € X,v € Nor(X,a)},

o: N — R o(a,v) :==a+v for (a,v) € N,

Y: Unp(X) — R? x RY 4(z) := (Ix(z), 2 — Hx(z)) for x € Unp(X),
then

o 1s Lipschitzian,

Y(Unp(X)) C N, ) is a homeomorphism, " = otp(Unp(X)).
If furthermore

K C X,0 <r <gq,reach(X,a) > q fora € K,
W :=Unp(X)N{z | lx(x) € K,z € X,},

then

v(W)=Nn{(a,v) |a€ K, ] <r},
Y|W is Lipschitzian,

in case K is compact and 0 <t < oo, then

Nn{(a,v) |a € K, |v| <t} is compact.

Proof. From Lemma one can see that if v € R a € X and dx(z) = |r — al,
then
r—a € Nor(X,a), (a,z—a)eN, o(a,xr—a)=uz.

In case x € Unp(X), then a = IIx(z),¢¥(z) = (a,z — a),0((x)) = x. This
implies the first part of this lemma. The second part follows from Lemmas
and [7| with its proof. In case K is compact, then W, (WW) are also compact and

the image of 1 (W) under the transformation mapping (a, v) onto (a,tr—'v).
[

Corollary. If r > 0 and X, is r-parallel body of X, then

dx,(x) = dx(x) — r whenever dy(x) >,
x(Ilx, (z)) = Hx(z) whenever dx(z) < reach(X),
reach(X,) > reach(X) — 7.

Furthermore, if 0 < r < reach(X) and X/ := {z | dx(x) > r}, then

dx:(x) =r — dx(x) whenever 0 < dx(z) <,
x(x; (x)) = ILx(x) whenever 0 < dx(z) <,
reach(X)) > r.
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Proof. The formula for dy, follows from the definitions, and the formula for dx/
may be obtained with the aid of Lemma[d Then the statement concerning reach
and IT can be obtained from Lemma [3] applied to X, X,, X/.

O

Recall that for a set X with C?-boundary X, the Gauss map of X is defined
as the mapping
Vx: 0X — Sd_l,

where vx(z) denotes the outer unit normal at © € 0X. The differential Dvx(z)
exists everywhere on 0X and it is a self-adjoint linear map from Tan(X,z) =
vx(z)t to Tan(S? ! vx(z)) = vx(x)*. The eigenvalues

K1(x), ... kag_1(x) >0

of Dv(x) are called principal curvatures of X at x and the associated eigenvectors
bi(x),...,bs_1(x) we called principal directions. Note that

(bi(z), ..., bg_1(x),v(x))

is a positively oriented basis of R,

Corollary. If 0 < r < reach X then X, is a closed C'-domain (i.e., a d-dimensional
C'-submanifold with boundary) with the Lipschitzian Gauss map = — vy, (z).
Further, nor X is a (d — 1)-dimensional Lipschitz submanifold of R??.

Proof. From Lemma [3 since dx is C* on int(Unp X \ X), we see that X, is

z—Ilx (x)
|z—IIx ()]
on 0X, is Lipschitzian. From the second part of the previous lemma choose

K = X, then ¢|W is Lipschitzian on X,, thus nor X is a Lipschitz submanifold
of R??,

a C''-submanifold. From Lemmas we infer that the Gauss map = —

O

2.2 Principal Curvatures and Directions

Let X C RYreachX > r > 0 and let (z,n) € nor X be given. For such r it
holds that = + rn € 0X, and the Gauss map v, on X, satisfies v,.(z 4+ rn) = n.
Thus, if 0 < t < t + s < reach X, then the mapping y — y + sy (y) is a bi-
Lipschitzian homeomorphism between 0X; and 90X, 4, and its inverse is z
z — svp45(2), because of Lemma [10] and its two corollaries. As the consequence,
vy is differentiable at y if and only if 14, is differentiable at y + sn.

Since v, is Lipschitzian on the C*-submanifold 90X, it is differentiable almost
everywhere on 0.X,., according to the Rademacher’s theorem. Thus for almost all
points (x,n) € nor X, v, is differentiable at x + rn. We call points (z,n) € nor X
with this property regular.

Theorem 11. Ifreach X > 0 and (z,n) € nor X is reqular then
Tan(nor X, (z,n)) is a (d — 1)-dimensional subspace and there exist vectors
bi(z,n),...,bg_1(z,n) in R? and numbers

17



ri(x,n),...,ke—1(x,n) € [—reach X, 00| such that (by(z,n),...,ba_1(xz,n),n)
form a positively oriented orthonormal basis of R? and the vectors

i=1,...,d—1,

1 K:i<x7n)
——0;(x,n), ———=—=0bi(7,n) |,
( 1+ k2(z,n) (@) 1+ k3 (z,n) | ))

form an orthonormal basis of Tan(nor X, (z,n)). (We set ﬁ =0 and
Vi = 1)

Proof. Let a regular point (x,n) € nor X be fixed and 0 < r < reach X. Recall
that v,.(y) = n at o + rn, the Weintgarten mapping —Duv,.(y) exists and, conse-
quently, there exist principal values (curvatures) x!(y) and principal directions
bl (y) € Tan(0X,,y). We could assume that the vectors b} (y),...,b05_;(y),n form
a positively oriented orthonormal basis of R?. We will show that

1

————— <K (y) <

b =1.....d—1. 2.2
reach X — r » * Y (2:2)

=S| =

This is a consequence of the fact that all directional derivatives of v, at y lie
within the given bounds which follow from

—_

1 g”@%ﬂ“w-z_yg—,zyeaxn
reach X —r |z — v lz—y| = r

Left-hand side of the inequality follows from as: since reach X, > reach X —r

ly—2|*

(corollary of Lemma we get (z —y) - 1p(2) < Treach X7

(y — 2) - 1(y) < %7 and by subtracting them we are done. For the

right-hand inequality, note that

v(z)—wly) z—y 1((z-lxz) - (y-Txy)-(z-y)
2=yl lz—yl v 2 =y

1 (Mxz—lxy)-(2—y)\ _1

‘r(l E— )ST’

since we have shown in the proof of Lemma [5| that (IIxz — IIxy) - (# —y) > 0.
Thus, is proved.

The vectors b} (y),i = 1,...,d — 1, form a basis of Tan(0X,,y). Note that for
o from Lemma [10| we can have slightly modified map ¢”: nor X — R,
o"(a,n) = a + rn which is also Lipschitzian, and its inverse map can be written

(0") () = (v — rvp(y), v (y))

hence, it is differentiable as well, with differential

D(o")"!(y) = (I = rDv,(y), Dvr(y)),
mapping Tan(0X,,y) onto Tan(nor X, (z,n)). Thus, the vectors

D(a") (y)bi(y) = (1 — );, K5BY), i=1,...,d—1,

i /Y TV e
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form a basis of Tan(nor X, (z,n)). Setting b;(x,n) := bl (y) and

A : r

i it kjr <1,

ki(z,n) = 1=ri(y)r _ i=1,...,d—1,
00 it kjr =1,

we get the assertion.
m

Lemma 12. The values k;(z,n) from Theorem are uniquely determined at any
reqular point (x,n) € nor X, up to the order. Furthermore, for any 1 <i <d-—1,
the subspace

Lin{b;(z,n) | kj(z,n) = ki(z,n)}

is uniquely determined.

Proof.  Throughout the proof, we shall omit the argument (z,n) at x; and b;.
Assume that

d—1,

1 Rj ‘ F_
\/1_‘_}{7'2[)“ \/1+H?bz), ] 1,...7

and

(i)
VIF D21 (w2 )

are two orthonormal bases of Tan(nor X, (z,n)), where {b;},{b;} are two or-
thonormal bases of n'. Then there exist coefficients ¢;j such that

1 1
W =Y, b,
1+ (K))? z]: RVE

K K
S R V. -~
J1+ (=) 2 T

We fix some 1 < i < d—1 and assume that x; < co. Multiplying [2.3| with x} and
comparing it with [2.4] we get

(2.3)

(2.4)

Kj K
Cij — = O
](\/14—1‘4,? \/1+/<;§)
for all j. Consequently, we have r; < co and ¢;jx; = ¢;;k; for all j. Thus
cij =0or K, = K; (2.5)

for any j.

Now assume that x; = co. Then we have zero on the left-hand side of
which implies that ¢;;/(/1 + /{? = 0 or xk; = oo for all j. Thus holds for
all j. It follows from that the sets of numbers {x; | 1 < i < d — 1} and
{k} |1 <4 <d-—1} coincide and that any b is a linear combination of those b;
belonging to the same x;.

]
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Corollary. Let (z,n) € nor X be a regular point and 0 < < reach X. Then the
principal curvatures x] of X, at x4+ rn and the (generalized) principal curvatures
ri(z,n) of X at (x,n) are related by

R(atrn) e !
—t——— if k(v +rn) <=,
/{i(l‘a TL) _ ) 1-r&l(z+rn) ( ) 11" i=1,... ,d 1,
00 if 5 (v +rn) =,
after an eventual change of order. Consequently,
lim ] (x +rn) = ki(z,n), i=1,...,d—1.

’I‘HOJr

The (generalized) principal directions b;(z,n),i = 1,...,d — 1 are the principal
directions b} (x + rn) of 0X, at x + rn for all r < reach X.

2.2.1 Generalized Curvature of a Planar Section

Now we describe generalized curvatures of the intersection of a set with positive
reach and a plane.

Lemma 13. Let X C R® reach X > 0 and F C R? be a plane. Forx € XN F
and for a regular point (z,n) € nor X let reach(X N F,z) > 0. Let us denote L

a linear subspace such that F = x + L. We define the perpendicular projection
Pp: Nor(X,z) — L and 11 (n) := &0

()l

Then for (u,v) € Tan(nor X, (z,n)) holds that

k1 cos? 0 + ko sin? 0
U :
’ sin /3
where K1, ko are generalized principal curvatures at (x,n), 0 is an angle between u

and the principal direction by, B is an angle between n and a normal to the plane
F and nor™) (X N F) :=nor(X N F)N (F x SY).

u) € Tan(nor™ (X N F), (z, I (n))),

Proof. From Theorem [0 we infer
(z,n) € nor X < (z,T5(n)) € nor™ (X N F). (2.6)

If (u,v) € Tan(nor X, (z,n)) then from the definition of the tangent cone
there exist (x;,n;) € nor X, z; € XN F and oy > 0, z; — x, n; — n such
that o;((z;,n;) — (z,n)) — (u,v). Note that such u lies in P;(Tan(nor™ (X N
F),(x,n))), where Pj is a projection on the first coordinate.

From Theorem [I1] we conclude

1 K1 1 R2
('LL, /U) = (5 b1> bl + € b27 b2
Vi+rl 148 J1+kE 1+ K2
) € 0K )
= by + by, by + by |,
(wl—i—ﬁ \/1—1—/% \/1—1—11% 1+ K3 )

for some 6, e € R. Thus a;(x;—x) = u = ﬁ%—ﬁ € Land a;(n;—n) — v

drk1b1 erobo

VI+e3 /1452

sin #, where 6 is an angle between b; and w.

€

S = cosé,

. Since |b1| = |b2| = |’U,’ = 1, we see that 1+’€§ - 1—&-53
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Now we want to describe v relatively in nor¥)(X N F). It holds for
(25, 11(n;)), (z,15(n)) € nor™ (X N F) that

PL<nz) PL(n)
a; (I (n;) —p(n))) = «; <’PL<TL1)‘ N |PL(n)\>

— 0, <PL(m‘ —n)  Pu(n)(Pr(n)| - IPL(m)!)>

Po(n) [Po(ni)] [ Po(m)
Pr(v) P (cosOk1by + sin Okoby)
()] T Po(n) ’

since Pp(n;) — Pp(n) and thus the second fraction in the second equality go to
the zero. Thus by and the definition of tangent vectors

u PL (U> an HOT(F) T n
(1 P2 ) € Tan(ucn X 0 ), o 00,

Finally we describe Pp(v). Since a unit normal vector is perpendicular to its
derivation and because we operate in the plane, then the unit normal vector is a
multiple of a tangent vector. Thus Pp(v) = (u,v)u, where (-,-) denotes the dot
product and since u € L. Thus

Pr(v) = Pp (cos 0k1by + sin Okabs) = (cos Ok {u, by) + sin Oko(u, b)) u
= (m cos? 6 + k4 sin? 9) u.

Lastly let 3 be an angle as it is in the lemma statement, then | Py (n)| = sin .
O]

We can now conclude, from Theorem |11} and the previous lemma, a general-
ization of the normal curvature of a point in some direction.

Corollary. 1f (z,111(n)) is a reqular point of nor™ (X N F), then we describe a

. . . . 2 12
(generalized) normal curvature in direction u of x as k, := %*g"’sme.

Note that k1, ko could be oo.
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