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Institute: Institute of Particle and Nuclear Physics

Supervisor: prof. RNDr. Pavel Cejnar, Dr., DSc., Institute of Particle and Nuclear
Physics

Abstract: We present theoretical methods for studying quantum mechanical sys-
tems subjected to fast periodic driving and apply them to model systems with
long-range interaction. We provide a comparison between the methods and in-
sight facilitated by these methods. The methods recently occurred in scientific
papers, which supports the need for a scrutinized exposition of the theory. One
of the main objects of the theory is a so-called Floquet Hamiltonian—an artificial
stationary Hamiltonian describing important features of a quantum system. The
methods construct Floquet Hamiltonians in the form of series in the powers of
the time period. We present the spectra of Floquet Hamiltonians—the so-called
quasienergy spectra—computed by the methods and computed numerically (with
higher precision). The quasienergy spectra were computed using various approx-
imations of Floquet Hamiltonians and compared. We discuss an interesting topic
of the classical limit of an artificial stationary system. We also mention the kicked
rotor system and its connection with the kicked top system—one of our model
systems. In summary, the method characterized by simultaneous construction
of a Floquet Hamiltonian and a so-called kick operator (operator capturing fast
changes of the system) was found universal and accurate. The thesis presents an
elaborated theoretical background for future study of the systems in more specific
areas of physics and manifests the strengths and weaknesses of the methods.
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Introduction
In quantum mechanics, the dynamical problem of systems with a time-dependent
Hamiltonian is hard to solve. Besides a few analytically solvable problems (e.g.
the problem in section 1.2), a solution is usually reached via some perturbation
approaches. This thesis studies a particular group of time-dependent systems—
the periodically driven systems. A quite efficient theory, called Floquet theory, is
suitable for handling these problems. In addition, we study these systems in the
regime of a short time period in which we can describe the problem by non-trivial
series in the powers of the time period.

The history of the Floquet theory goes back to mathematician G. Floquet and
his work on differential equations with periodic coefficients [1] released in 1883.
This theory was applied to time periodic quantum systems, e.g. in [2]. Providing
a self-consistent description of the theory from the quantum mechanical point of
view is one of the goals of this thesis.

Like any other physical model, the time-periodic systems described here can be
subjected to experimental tests. One of the examples is described in [3], where the
evolution of a quantum mechanical state is presented and a comparison between
numerical and experimental results is provided.

A central object of the Floquet theory is a so-called Floquet Hamiltonian. It
transforms (at least partly) the dynamical problem with a time-dependent peri-
odic Hamiltonian into a problem with an artificial stationary Hamiltonian. And
it is this object that we put under scrutiny in this thesis. A Floquet Hamiltonian
provides a so-called quasienergy spectrum that enables further physical insight
into the behaviour of periodically driven systems.

Periodically driven systems are still the focus of active research [4, 5, 6]. Pa-
pers [7, 8] discuss periodically driven systems in connection with analogues of
quantum phase transitions in excited spectra—the so-called exited-state quan-
tum phase transitions [9, 10, 11]. One of the goals of this thesis is to learn
enough information about periodically driven quantum systems as a prepara-
tion for studying signatures of exited-state quantum phase transitions in these
systems.

The structure of this work is the following: The first chapter presents two
examples of simple periodically driven systems and explains some rudiments of the
sophisticated approach discussed later. This chapter is intended as an elementary
introduction to the topic of periodic driving in quantum mechanics.

The second chapter is a detailed description of the theory that describes pe-
riodically driven systems. Methods for constructing Floquet Hamiltonians by
series in powers of the time period are also presented. Various versions of the
famous Baker–Campbell–Hausdorff (BCH) formula are used. This chapter repre-
sents a synthesis of approaches described in various papers, but it also contains
a non-trivial amount of our own insight and calculations.

The last chapter describes several examples of many-body periodically driven
systems with long-range interaction and studies the capability of the theory to
accurately describe the systems, i.e. the convergence of the series for Floquet
Hamiltonians in the regime of a short time period. In several parts of the third
chapter, we digress in order to present physically interesting related topics, i.e.
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classical limits, the chaotic regime of the systems and the non-uniqueness of
quantization of the kicked rotor system. All numerical calculations in this chap-
ter represent our own results. Besides verifying older results presented in the
literature, we performed some new calculations (like the exact and effective clas-
sical dynamics and the evolution of the Wigner distributions of the kicked top
system). Also, the derivation of some Floquet Hamiltonians for harmonic driving
is new in this work.

Unless otherwise stated, throughout this thesis we use such units that ℏ = 1.
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1. Effective description of simple
systems
Before we proceed to examine systems with many spins, we will examine a single-
spin-1

2 system. This will enable us to grasp the concept of the effective description
of periodically driven systems. We will use the spin-1

2 operator ˆ︁S⃗ = ˆ︁σ⃗/2, whereˆ︁σ⃗ is the vector of Pauli matrices.

1.1 Delta-driven single-spin system
Here we present a simplistic model of one delta-driven spin. The Hamiltonian of
the system reads1

ˆ︂H(t) = κˆ︁I + pT ˆ︁σx +∞∑︂
n=−∞

δ(t− n · T ), (1.1)

where ˆ︁I is an identity operator, p and κ are parameters of the system and T is
a period of the driving. The summands δ(t−n ·T ) are delta functions and present
some impulsive driving of the system, e.g. homogeneous magnetic field switched
on for an infinitesimal duration.

The term multiplying the sum of the delta functions commutes with the time-
independent term of the Hamiltonian2

[︂
pˆ︁σx, κˆ︁I]︂ = 0, (1.2)

which makes the time evolution exceptionally simple.
The evolution operator reads

ˆ︁U(t+, 0+) def= lim
ϵ→0+

ˆ︁U(t+ ϵ, 0 + ϵ) (1.3)

= lim
ϵ→0+

e
[︃
−i
∫︂ t+ϵ

0+ϵ
ˆ︂H(t′)dt ′

]︃
. (1.4)

If t = n · T, n ∈ Z, the sign t+ means that we consider the time just after
the realisation of the delta function. In other times the superscript + could be
omitted. Mathematically, we ensure the fact that we mean the time just after
the realisation of the delta function by doing a limit approaching the time t from
the right.

1Although the part κˆ︁I of the Hamiltonian (1.1) is trivial, it allows us to show the formalism
we will construct in the next chapter. Also the term κˆ︁I could be seen as a multiple of the z
projection of the total spin operator squared that is in the case of spin- 1

2 particle equal to 1
4
ˆ︁I.

2If we replace the delta functions by some approximate form (e.g. Cauchy form δ∆(x) =
π−1∆/(∆2 + x2), ∆ ≪ 1), the Hamiltonian at different times commutes

[︂ ˆ︁H(t), ˆ︁H(t′)
]︂

= 0,
∀t, t′ ∈ R.
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Figure 1.1: The quasienergies mapped to the first Brillouin zone ε1 and ε2 for the
system described by the Hamiltonian (1.1) with the period T = 1 and parameter
p = 0.5. Dependence on the parameter κ.

We evaluate the integral of the sum of the delta functions separately

lim
ϵ→0+

+∞∑︂
n=−∞

∫︂ t+ϵ

0+ϵ
δ(t′ − n · T )dt ′ =

+∞∑︂
n=1

θ(t− n · T ), t ≥ 0

= ⌊t/T ⌋,
(1.5)

where we used the Heaviside step function defined the following way

θ(x) =

⎧⎨⎩0 if x < 0,
1 if x ≥ 0

(1.6)

and we also used the floor function defined by

⌊x⌋ = m if x ∈ [m,m+ 1),m ∈ Z. (1.7)

The evolution operator reads

ˆ︁U(t+, 0+) = e−i
(︂
pT ⌊t/T ⌋ˆ︁σx + ˆ︁Iκt)︂

= e−iκte−ipT ⌊t/T ⌋ˆ︁σx . (1.8)

Using the known expansion of exponential function

e−ipT ⌊t/T ⌋ˆ︁σx =
∞∑︂
n=0

(−ipT ⌊t/T ⌋ˆ︁σx)n
n! , (1.9)

we find another expression for the evolution operator
ˆ︁U(t+, 0+) = e−iκt · [cos (pT ⌊t/T ⌋) − i sin (pT ⌊t/T ⌋) ˆ︁σx] . (1.10)

For periodically driven systems, the evolution operator evolving the system for
the duration of one period ˆ︁U(T+, 0+) is of special importance. Another important
class of operators are operators called Floquet Hamiltonians. In this case, one
member of the class of Floquet Hamiltonians is some operator ˆ︁Gs that satisfies

ˆ︁U(T+, 0+) = e−iˆ︁GsT . (1.11)
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Since the system is exceptionally simple, we easily find

ˆ︁Gs = 1
T

∫︂ T+

0+
ˆ︂H(t)dt = pˆ︁σx + ˆ︁Iκ. (1.12)

In matrix form
(︂ ˆ︁Gs

)︂
=
(︄
κ p
p κ

)︄
. (1.13)

The eigenvalues of the matrix (1.13) are especially important. The eigenvalues
are

ε̃1,2 = κ± p. (1.14)

Note that the eigenvectors of ˆ︁Gs

|x±⟩ = 1√
2

(︄
1

±1

)︄
(1.15)

diagonalize also the operator ˆ︁U(T+, 0+) with eigenvalues e∓iε̃1,2T . From equa-
tion (1.11), we see that for another Floquet Hamiltonian3 its eigenvalues could
differ from ε̃1,2. Generally

εα = ε̃1 +mα · 2π
T
,mα ∈ Z,

εβ = ε̃2 +mβ · 2π
T
,mβ ∈ Z,

(1.16)

is another pair of possible eigenvalues of a Floquet Hamiltonian of our system.
The eigenvalues of a Floquet Hamiltonian are made unique by adding the multi-
ples of 2π/T to them so they fit into the interval (−π/T, π/T ]. The eigenvalues
of a Floquet Hamiltonian adapted to the interval (−π/T, π/T ] ∋ ε1, ε2 are called
quasienergies in the first Brillouin zone. The quasienergies in the first Brillouin
zone for the period T = 1 and parameter p = 0.5 are depicted in figure 1.1.

1.2 Harmonically-driven single-spin system
An intriguing example of a periodically driven system described in [12] captures
the physics of nuclear magnetic resonance (NMR). It describes a particle with
a magnetic moment placed in a combined stationary (homogeneous) and variable
(rotating) magnetic field. The system is described by the Hamiltonian45

ˆ︂H(t) = −ω0
ˆ︁Sz − ωr

(︂ ˆ︁Sx cos(ωt) + ˆ︁Sy sin(ωt)
)︂
. (1.17)

3The proper definition of the Floquet Hamiltonian is given in the next chapter by (2.15).
4The constants ω0 and ωr describe the magnitudes of the applied magnetic fields the fol-

lowing way ω0 = γB0 and ωr = γ|B⃗r|, where B0 and B⃗r are elucidated in figure 1.2 and γ is a
gyromagnetic ratio. The gyromagnetic ratio for an electron is γe ≈ −1.761 ·1011 s−1 T−1, γeℏ ≈
−1.159 · 10−4 eV T−1 and for a proton γp ≈ 2.675 · 108 s−1 T−1, γpℏ ≈ 1.761 · 10−7 eV T−1.

5Considering the NMR, a spin precession is launched by setting ω = −ω0 and switching on
the rotating part of the magnetic field in short pulses.
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Figure 1.2: The rotating B⃗r(t) = ωrγ
−1(cos(ωt), sin(ωt), 0)T and homogeneous

B⃗0 = (0, 0, ω0γ
−1)T magnetic field from the NMR example. The constant γ is

the gyromagnetic ratio.

The stationary and rotating magnetic field are visualized in figure 1.2.
Since the Hamiltonian at different times does not commute, i.e.[︂ˆ︂H(t),ˆ︂H(t′)

]︂
= iω0ωr [sin(ωt) − sin(ωt′)] ˆ︁Sx
+ iω0ωr [cos(ωt′) − cos(ωt)] ˆ︁Sy
+ iω2

r sin [ω(t′ − t)] ˆ︁Sz,
(1.18)

the construction of the time evolution is not trivial.
We notice, using the well known formula6

e
ˆ︁A ˆ︁Be−ˆ︁A = ˆ︁B +

∞∑︂
k=1

1
k!
[︂ ˆ︁A, [︂ ˆ︁A, ... [︂ ˆ︁A, ˆ︁B]︂]︂ ...]︂

k⏞ ⏟⏟ ⏞
k commutators

, (1.19)

that the time dependence of the Hamiltonian could be eliminated by similarity
transformation. The following relations hold

eiαˆ︁Sz ˆ︁Sxe−iαˆ︁Sz

= ˆ︁Sx + 1
1! (iα)1

[︂ ˆ︁Sz, ˆ︁Sx]︂+ 1
2! (iα)2

[︂ ˆ︁Sz, i ˆ︁Sy]︂+ 1
3! (iα)3

[︂ ˆ︁Sz, ˆ︁Sx]︂+ ...

= ˆ︁Sx − α

1!
ˆ︁Sy − α2

2!
ˆ︁Sx + α3

3!
ˆ︁Sy + α4

4!
ˆ︁Sx − α5

5!
ˆ︁Sy + ... (1.20)

=
(︄

1 − α2

2! + α4

4! − ...

)︄ ˆ︁Sx −
(︄
α

1! − α3

3! + ...

)︄ ˆ︁Sy (1.21)

= (cosα) ˆ︁Sx − (sinα) ˆ︁Sy. (1.22)

We write again the Hamiltonian using the aforementioned similarity transfor-
mation

ˆ︂H(t) = e−iωtˆ︁Sz

(︂
−ω0

ˆ︁Sz − ωr ˆ︁Sx)︂ eiωtˆ︁Sz , (1.23)

6The identity (1.19) follows from (A.9) in appendix A.
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where we used (1.22) with the substitution α = −ωt.
We try to translate the time-dependent problem into a time-independent prob-

lem, i.e. the time-independent Schrödinger equation, with some new Hamiltonian.
We define the new state vector

|ϕ(t)⟩ def= eiωt
ˆ︁Sz |ψ(t)⟩ (1.24)

and try to find the evolution equation for that state.
We express the following term (the left-hand side of the Schrödinger equation)

i
d
dt |ϕ(t)⟩ = i

d
dt

[︃
eiωt

ˆ︁Sz |ψ(t)⟩
]︃

(1.25)

= −ω ˆ︁Szeiωtˆ︁Sz |ψ(t)⟩ + eiωt
ˆ︁Szˆ︂H(t) |ψ(t)⟩ (1.26)

= −ω |ϕ(t)⟩ + eiωt
ˆ︁Szˆ︂H(t)e−iωtˆ︁Szeiωt

ˆ︁Sz |ψ(t)⟩ . (1.27)

Using (1.23) we reach

i
d
dt |ϕ(t)⟩ =

[︂
(−ω − ω0) ˆ︁Sz − ωr ˆ︁Sx]︂ |ϕ(t)⟩ . (1.28)

Equation (1.28) is the Schrödinger equation i∂t |ϕ(t)⟩ = ˆ︂Hr |ϕ(t)⟩ with the
new time-independent Hamiltonian

ˆ︂Hr = (−ω − ω0) ˆ︁Sz − ωr ˆ︁Sx. (1.29)

It is easy to realise that the evolution operator for the original states,

|ψ(t2)⟩ = ˆ︁U(t2, t1) |ψ(t1)⟩ , (1.30)

factorizes the following way

ˆ︁U(t2, t1) = e−iωt2
ˆ︁Sze−iˆ︂Hr(t2 − t1)eiωt1

ˆ︁Sz . (1.31)

The factorization of the evolution operator ˆ︁U(t2, t1) in equation (1.31) is es-
sentially a transformation to a rotating reference frame then an evolution of
a time-independent system and then a transformation back to the laboratory ref-
erence frame. The operator e−iωtˆ︁Sz represents a counterclockwise rotation around
the z-axis by the angle ωt. In the next chapters, we will see that a generalized
version of this procedure applies to all time-periodic problems.
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2. Effective Hamiltonian
In this chapter we outline some methods for constructing a Floquet Hamiltonian.
A Floquet Hamiltonian is loosely speaking a time-independent Hamiltonian, cap-
turing characteristics of a system with a time-dependent periodic Hamiltonian. In
this work the term effective Hamiltonian means an approximate form of a Floquet
Hamiltonian—the first few terms of a series expansion of a Floquet Hamiltonian.

The Hamiltonian ˆ︂H(t) of the system is supposed to be periodic in time with
the period T . Thus

ˆ︂H(t+ T ) = ˆ︂H(t). (2.1)

We will consider the Hamiltonian of the system in the form of the Fourier expan-
sion

ˆ︂H(t) = ˆ︂H0 + ˆ︁V0 +
+∞∑︂
n=1

(︂ ˆ︁Vne+inωt + ˆ︁V−ne
−inωt

)︂
, (2.2)

where ˆ︂H0 and ˆ︁V0 are time-independent. The Hermicity of ˆ︂H(t) implies ˆ︁V †
n = ˆ︁V−n.

In the following, we will suppose that the frequency of the driving 2π/T is
high compared to the typical energy scale. It means that the system itself—its
state vector—is evolving slowly compared to the “speed” of the driving.1 More
precisely, there will always be some “fast motion” part of the evolution of the
state of the system but this fast motion part is becoming increasingly small when
the period T goes to infinity. For the time being, we estimate the typical energy
scale by an operator norm of the constant term in the Hamiltonian ||ˆ︂H0 + ˆ︁V0||,
i.e. T ≪ 1/||ˆ︂H0 + ˆ︁V0||. A more precise discussion of the smallness of T will follow.
Generally, we will obtain some approximate formulas for a Floquet Hamiltonian
working well for a short time period T .

2.1 Introduction
When dealing with time-independent systems (Hamiltonians), we utilize the con-
cept of stationary states. In adiabatic systems, the concept of stationary states
could be in some sense preserved. In this thesis we neither deal with time-
independent systems nor with adiabatic systems. A new formalism shall con-
sequently be adopted. In this chapter we will define the states called Floquet
modes. In some sense, we could consider the Floquet modes to be the generalized
stationary states for our problem. In this section we try to motivate the reader
and show the important properties of the time-periodic systems which justify
the chosen (Floquet) formalism.

Firstly, we show that considering the full evolution of the system—prescribed
by the evolution operator ˆ︁U(t, 0)—to any final time t ∈ R, only the operatorˆ︁U(t, 0) for t ∈ (0, T ] is needed. This tremendously simplifies the description and
could be considered a consequence of the discrete symmetry in time of the system.

1We are close to the sudden approximation or diabatic limit, discussed e.g. in [13].
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Figure 2.1: The important times facilitating factorization of the evolution op-
erator, using equation (2.3), are depicted on the time axes. The action of the
operators ˆ︁U †(∆t1, 0) (red),

[︂ ˆ︁U(T, 0)
]︂m2−m1 (green) and ˆ︁U(∆t2, 0) (blue) is illus-

trated by coloured arrows.

From the Schrödinger equation for the evolution operator ∂t ˆ︁U(t, t′) = ˆ︂H(t) ˆ︁U(t, t′)
and time periodicity of the Hamiltonian we get2

ˆ︁U(nT + t2, nT + t1) = ˆ︁U(t2, t1), n ∈ Z. (2.3)

For any t1, t2 ∈ R we find ∆t1,2 ∈ [0, T ), m1,2 ∈ Z such that t1 = m1T + ∆t1
and t2 = m2T + ∆t2. Then using (2.3), we transcribe the evolution operator
the following way

ˆ︁U(t2, t1) = ˆ︁U(∆t2, 0)
[︂ ˆ︁U(T, 0)

]︂m2−m1 ˆ︁U †(∆t1, 0). (2.4)

The factorization is illustrated in figure 2.1. From equation (2.4) we see that only
the evolution operator from zero to t ∈ (0, T ] is needed.

In many cases we restrict ourselves only to the evolution operator evolving
the system for the duration of one period ˆ︁U(T + ts, ts) called Floquet operator
and we are only interested in the states at the stroboscopic times ts+nT, n ∈ N0.

The systems in which we identify two significant operators ˆ︁A and ˆ︁B so that
we can factorize the Floquet operator the following way

ˆ︁U(T + ts, ts) = e−iˆ︁Ae−iˆ︁B (2.5)

are of special importance since we can use the standard BCH formula for some
further analysis. Systems having the property (2.5) are discussed in section 2.4.

Among others we study the properties of delta-driven systems. Delta-driven
systems belong to archetypal systems used for studying chaos. Consequently,
much effort has been dedicated to them. Delta-driven systems have also the fac-
torizing property (2.5). Delta-driven systems are characterized as having the
“driving” part of the Hamiltonian in the form

ˆ︁V (t) = ˆ︂H(t) − ˆ︂H0 = ˆ︁VP · T
+∞∑︂

n=−∞
δ (t− nT ) , (2.6)

where ˆ︁VP is time-independent. As we have seen in our simplistic example in sec-
tion 1.1, when considering the delta-driven systems, during the time period there
are two significant moments which attract our attention. One of these moments
is immediately before the realisation of the delta function and one is right after

2A verbose proof is given on the page 19.
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the realisation of the delta function. These moments are connected with discon-
tinuity in the formal objects of the theory (confer with the discontinuities of the
floor function in section 1.1) and the appropriate objects should be constructed
using the limits either from the left or from the right. Both of these moments are
connected with the times nT, n ∈ Z so we should indicate whether we are taking
the limit from the left or right (objects immediately before and right after the
realisation of the delta function respectively). The Floquet operator ˆ︁U(T + ts, ts)
with ts = 0 of a delta-driven system has the factorizing property (2.5). As we
have seen in section 1.1 we need to choose whether we consider the time ts = 0
before the realisation of the delta function or after the realisation of the delta
function.

The central theorem of the Floquet formalism is Floquet’s theorem. Floquet’s
theorem says that the evolving states of the system could be expressed as linear
combinations of the Floquet states

|ψα(t)⟩ = e−iεαt |uα(t)⟩ , (2.7)

where the coefficients in the linear combinations are time-independent and each
(Floquet mode) |uα(t)⟩ is time-periodic with the period T . Floquet’s theorem is
closely connected with Bloch’s theorem for periodic crystals, where the periodic-
ity in space is considered. The values εα ∈ R are eigenvalues of a so-called Floquet
Hamiltonian. There is an ambiguity in the definition of the values εα—we can
add integral multiples of ω = 2π/T to them. Also, the Floquet Hamiltonian is not
uniquely defined, though the Floquet Hamiltonians have many universal proper-
ties. In finite-dimensional Hilbert space, the Floquet states (2.7) corresponding
to all the eigenvalues of a Floquet Hamiltonian form a basis.

The Fourier transform form of the Hamiltonian (2.2)

ˆ︂H(t) = ˆ︂H0 + ˆ︁V0 +
+∞∑︂
n=1

(︂ ˆ︁Vne+inωt + ˆ︁V−ne
−inωt

)︂

is particularly expedient. In this thesis we consider harmonic driving, in which
case only ˆ︁V1 = ˆ︁V †

−1 and ˆ︂H0 are non-zero and the other terms ˆ︁Vn, n ̸= ±1 are
equal to zero. Another extreme—all the terms ˆ︁Vn are non-zero—presents a delta-
driven system. Considering a delta-driven system, all the terms ˆ︁Vn are the sameˆ︁Vn = ˆ︁VP ,∀n ∈ Z and we get the time-periodic part of the Hamiltonian given by
equation (2.6). Note that when considering (2.6) none of the ˆ︁Vn depends on the
time period T . We will see that the independence of ˆ︁Vn on the time period T is
a good requirement when expanding the formal objects of the theory (e.g. the
Floquet Hamiltonian) in the powers of T .

We conclude this section by noting that the one-period average value of an
observable ˆ︁A in the Floquet state (2.7) has a meaningful definition, i.e.

Aα
def= 1

T

∫︂ T

0
⟨ψα(t)| ˆ︁A |ψα(t)⟩ (2.8)

= 1
T

∫︂ T

0
⟨uα(t)| eiεαt ˆ︁Ae−iεαt |uα(t)⟩ (2.9)

= 1
T

∫︂ T

0
⟨uα(t)| ˆ︁A |uα(t)⟩ . (2.10)
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2.2 Floquet theory
Here by the Floquet theory we mean the theory which stems from the work of
the mathematician Gaston Floquet (1847–1920) on linear differential equations
with periodic coefficients [1, 14] and which is appropriate for the description of
time-periodic quantum mechanical systems. We synthesize reviews of this theory
from various sources. Since one of our goals is to compare various ways how to
construct the building blocks of the Floquet theory, e.g. a Floquet Hamiltonian,
we need to really do the synthesis rather than rely on one source. The main
sources we use in this section (in the order of relevance to this text) are [14], [15],
[16], [17] and [18].

2.2.1 Essentials
Bloch’s theorem

A useful tool of solid state physics is Bloch’s theorem:
The eigenstates ψ of the one-electron Hamiltonian ˆ︂H = −ℏ2∇2/(2m) +U(ˆ︁r⃗),

where U(ˆ︁r⃗ + R⃗) = U(ˆ︁r⃗) for all R⃗ in a Bravais lattice, can be chosen to have
the form of a plane wave times a function with the periodicity of the Bravais
lattice:

ψnk⃗ = eik⃗·r⃗unk⃗(r⃗), (2.11)

where unk⃗(r⃗ + R⃗) = unk⃗(r⃗) for all R⃗ in the Bravais lattice.3
The vector k⃗ in Bloch’s theorem is called wave vector or quasimomentum.

Bloch’s theorem was earlier proved by Floquet in a one-dimensional case, where it
is sometimes called Floquet’s theorem [19]. But here the term Floquet’s theorem
will be referring to the one utilizing the time translational symmetries.

Considering the aforementioned, the discrete time translational symmetries
suggest contriving a Bloch’s theorem analogue in time. Indeed such a theorem
exists. It should be noted that the proof of the theorem addressing the time
translation, found in [14] and in section 2.2.2 for a finite-dimensional Hilbert
space, is slightly more intricate than the proof of Bloch’s theorem (in space),
found in [19]. This is simply the consequence of time and position not being
treated on an equal footing in standard quantum mechanics.

Floquet’s theorem

Floquet’s theorem in time, hereafter called Floquet’s theorem, states: Suppose
a Hamiltonian ˆ︂H(t) is periodic in time with the period T (2.1). And suppose
the appropriate Hilbert space for the system is finite.4 Then the solutions to the
Schrödinger equation

i
∂

∂t
|ψ(t)⟩ = ˆ︂H(t) |ψ(t)⟩ (2.12)

3A (three-dimensional) Bravais lattice consists of all points with position vectors R⃗ of
the form R⃗ = n1a⃗1 + n2a⃗2 + n3a⃗3, where a⃗1, a⃗2, and a⃗3 are fixed vectors not all in the same
plane and n1, n2, n3 ∈ Z.

4There exist variants of Floquet’s theorem in time for infinite Hilbert spaces. In this thesis
only the variant of Floquet’s theorem for finite Hilbert spaces is needed.
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are linear combinations of vectors of the form (2.7)

|ψα(t)⟩ = e−iεαt |uα(t)⟩ ,

where |uα(t)⟩ is periodic in time t with the period T = 2π/ω. The coefficients in
the linear combinations are time-independent.

The states |uα(t)⟩ are called Floquet modes and the values εα ∈ R are called
quasienergies [14]. The states |ψα(t)⟩ are called Floquet states [17].

Note that the states |uα(0)⟩ evolved in time are the states |ψα(t)⟩. Generally
speaking, |uα(t)⟩ is a state parametrized by the parameter t, but not the evolution
of the state |uα(0)⟩ in time (except for Floquet states belonging to εα = 0).

First Brillouin zone

The quasienergies εα are unique up to an addition of constants nω, n ∈ Z. Clearly,
if the pair (|uα(t)⟩ , εα) is the pair of Floquet mode and its quasienergy, the pair

(|uα′(t)⟩ = einωt |uα(t)⟩ , εα′ = εα + nω), n ∈ Z (2.13)

also defines a solution to the Schrödinger equation (2.12). The solution defined
by (|uα′(t)⟩ , εα′) (2.13) is identical to the solution (|uα(t)⟩ , εα). Thus, we can
consider only the quasienergies in the first Brillouin zone defined by −ω/2 <
εα ≤ ω/2.

Floquet operator

It is expedient to denote

ˆ︁F [ts] def= ˆ︁U(T + ts, ts) , (2.14)

the evolution operator evolving a system for the duration of one period T from
the time ts. The operator ˆ︁F [ts] is called the Floquet operator [7]. The starting
time could be indicated next to the Floquet operator ˆ︁F in square brackets [ts].

Floquet Hamiltonian

A Hermitian operator ˆ︁G is said to be Floquet Hamiltonian if there exists ts ∈
[0, T ) and a Hermitian operator ˆ︂K such that

ˆ︁F [ts] = e−iˆ︁Ke−iˆ︁GT eiˆ︁K , (2.15)

where the operator ˆ︁F [ts] is the Floquet operator.
Generally, for any t ∈ [0, T ) the following relations hold

ˆ︁U(T + t, t) |ψα(t)⟩ = |ψα(t+ T )⟩ = e−iεαT e−iεαt |uα(t)⟩ , (2.16)ˆ︁F [t] |ψα(t)⟩ = e−iεαT |ψα(t)⟩ (2.17)

so we easily see that eigenvalues of a Floquet Hamiltonian ˆ︁G are quasienergies εα.
Considering the first Brillouin zone only, we must add multiples of ω to eigenvalues
of a Floquet Hamiltonian to yield the quasienergies in the first Brillouin zone.
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In this thesis, we occasionally use the convention that the quasienergies εα
with α = 1, 2, ..., d are the quasienergies mapped to the First Brillouin zone
and εα with α = d + 1, d + 2, ... are general quasienergies (the dimension of the
appropriate Hilbert space is d). If {εα}2d

α=d+1 are the eigenvalues of a Floquet
Hamiltonian, then there exist {mα}2d

α=d+1,mα ∈ Z such that {εα + mα · ω}2d
α=d+1

are the quasienergies in the First Brillouin zone.5

Stroboscopic versus full description

Time-periodic systems are usually described in a stroboscopic way. It means that
only the states at stroboscopic times t = ts + n · T, n ∈ N0 are of our interest.
The starting time ts is some fixed time we choose.

The full description of the time evolution is also possible and Floquet’s theo-
rem and a Floquet Hamiltonian are still important parts of the full description.
But the description of the evolution for all times is more difficult than a mere
stroboscopic description. More information regarding the full description is in
subsection 2.2.3.

2.2.2 Proof of Floquet’s theorem
We define the operator ˆ︁G[0] in the following way

ˆ︁U(T, 0) = e−iˆ︁G[0]T . (2.18)

The meaning of the square brackets [0] in ˆ︁G[0] will be elucidated in the next
subsection and here is not important. The operator ˆ︁G[0] is not defined uniquely
and it suffices to consider just one of the operators satisfying equation (2.18).

We transcribe

[︂ ˆ︁U(T, 0)
]︂m2−m1 =

ˆ︁I⏟ ⏞⏞ ⏟
e+iˆ︁G[0]∆t2 e−iˆ︁G[0]∆t2e−iˆ︁G[0]T (m2−m1)

ˆ︁I⏟ ⏞⏞ ⏟
e+iˆ︁G[0]∆t1⏞ ⏟⏟ ⏞

e−iˆ︁G[0](t2−t1)

e−iˆ︁G[0]∆t1

(2.19)

and from (2.4) we get
ˆ︁U(t2, t1) = ˆ︁U(∆t2, 0)e+iˆ︁G[0]∆t2e−iˆ︁G[0](t2−t1)e−iˆ︁G[0]∆t1 ˆ︁U †(∆t1). (2.20)

We define ˆ︁P (t) def= ˆ︁U(t, 0)e+iˆ︁G[0]t. (fast motion operator) (2.21)

The operator ˆ︁P (t) has the properties

ˆ︁P (t+ T ) = ˆ︁U(T + t, T )⏞ ⏟⏟ ⏞ˆ︁U(t,0)

ˆ︁U(T, 0)

ˆ︁U†(T,0)⏟ ⏞⏞ ⏟
e+iˆ︁G[0]T⏞ ⏟⏟ ⏞ˆ︁I

e+iˆ︁G[0]t (2.22)

= ˆ︁P (t), (2.23)ˆ︁P (t1,2) = ˆ︁P (∆t1,2). (2.24)
5This must be true since the eigenvectors of the Floquet operator must yield a complete

basis in the d-dimensional Hilbert space.
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Substituting (2.21) into (2.20) and using (2.24) we get

ˆ︁U(t2, t1) = ˆ︁P (t2)e−iˆ︁G[0](t2−t1) ˆ︁P †(t1). (2.25)

We suppose the appropriate Hilbert space to be finite, of the dimension d.
The operator ˆ︁G[0] is Hermitian since ˆ︁U(T, 0) is unitary. The operator ˆ︁G[0] has
eigenvalues6 {εα}2d

α=d+1

ˆ︁G[0] |wα⟩ = εα |wα⟩ . (2.26)

We define

|uα(t)⟩ def= ˆ︁P (t) |wα⟩ , α = d+ 1, ..., 2d. (Floquet mode) (2.27)

And we also define

|ψα(t)⟩ def= e−iεαt |uα(t)⟩ , α = d+ 1, ..., 2d. (Floquet state) (2.28)

The following relations hold

ˆ︁U(t2, t1) |ψα(t1)⟩ = e−iεαt1 ˆ︁U(t2, t1) |uα(t1)⟩ (2.29)
(2.27)= e−iεαt1 ˆ︁U(t2, t1) ˆ︁P (t1) |wα⟩ . (2.30)
(2.25)= e−iεαt1 ˆ︁P (t2)e−iˆ︁G[0](t2−t1) |wα⟩ (2.31)
(2.26)= e−iεαt1 ˆ︁P (t2)e−iεα(t2−t1) |wα⟩ (2.32)

(2.27, 2.28)= |ψα(t2)⟩ . (2.33)

From (2.33) it follows that a general state |ψ(t)⟩ has the form7

|ψ(t)⟩ =
2d∑︂

α=d+1
βαe

−iεαt |uα(t)⟩ ,∀t ∈ R, (2.34)

|uα(t+ T )⟩ (2.27, 2.23)= |uα(t)⟩ ,∀t ∈ R, (2.35)

where the coefficients βα ∈ C, εα ∈ R are time-independent, which is the content
of Floquet’s theorem. The proof was inspired by [18, 16, 14].

2.2.3 Another form of Floquet’s theorem
Here we transform a time-dependent problem with periodic Hamiltonian into
a time-independent problem with a new time-independent Hamiltonian using
a specific form of similarity transformation. At the end we identify the result as
another form of Floquet’s theorem.

Instead of finding a differential equation for usual quantum states |ψ(t)⟩, we
demand the differential equation for new states defined by

|ϕ(t)⟩ def= ei
ˆ︁K(t) |ψ(t)⟩ , (2.36)

6We use the indexes α = d + 1, d + 2, ..., 2d. The indexes α = 1, ..., d we reserve for εα

napped to the interval (−ω/2, ω/2].
7Since ˆ︁P (t) is unitary, {|uα(t)⟩}2d

α=d+1 spans the whole Hilbert space.

16



where we require the periodicity of the new operator ˆ︂K(t), i.e.

ˆ︂K(t) = ˆ︂K(t+ T ). (2.37)

We also require the operator ˆ︂K(t) to be Hermitian. The operator ˆ︂K(t) is called
a kick operator. Using (2.36), we can easily transform between |ϕ(t)⟩ and |ψ(t)⟩.

We apply eiˆ︁K(t) to both sides of the Schrödinger equation (2.12) and add
the term i

(︂
∂
∂t
eiˆ︁K(t)

)︂
|ψ(t)⟩ to its both sides and get

i
∂

∂t

(︃
ei
ˆ︁K(t) |ψ(t)⟩

)︃
= ei

ˆ︁K(t)ˆ︂H(t) |ψ(t)⟩ + i

(︄
∂

∂t
ei
ˆ︁K(t)

)︄
|ψ(t)⟩ (2.38)

= ei
ˆ︁K(t)ˆ︂H(t)e−iˆ︁K(t)ei

ˆ︁K(t) |ψ(t)⟩

+i
(︄
∂

∂t
ei
ˆ︁K(t)

)︄
e−iˆ︁K(t)ei

ˆ︁K(t) |ψ(t)⟩ ,

i
∂

∂t
|ϕ(t)⟩ =

[︄
ei
ˆ︁K(t)ˆ︂H(t)e−iˆ︁K(t) + i

(︄
∂

∂t
ei
ˆ︁K(t)

)︄
e−iˆ︁K(t)

]︄
|ϕ(t)⟩ .

(2.39)

We define a new Hamiltonian

ˆ︁G def= ei
ˆ︁K(t)ˆ︂H(t)e−iˆ︁K(t) + i

⎛⎝∂eiˆ︁K(t)

∂t

⎞⎠ e−iˆ︁K(t). (2.40)

Equation (2.39) reads

i
∂

∂t
|ϕ(t)⟩ = ˆ︁G |ϕ(t)⟩ . (2.41)

In view of the previous explanation (see equation (2.25)) we require that there ex-
ists such an operator ˆ︂K(t) that makes the new Hamiltonian ˆ︁G time-independent.
Nevertheless, it is important to note here that there is an ambiguity in the choice
of a kick operator ˆ︂K(t), and consequently the fast motion operator ˆ︁P (t) and the
operator e−iˆ︁K(t) are not necessarily equal. From now on we suppose that the new
Hamiltonian ˆ︁G is time-independent. Then equation (2.41) dictates the evolution
of |ϕ(t)⟩ in the form of a linear combination of

|ϕα(t)⟩ = e−iεαt |vα⟩ , (2.42)

where |vα⟩ are the eigenvectors of ˆ︁G. Transforming the solutions (2.42) back we
find the solutions to the Schrödinger equation with the original Hamiltonian ˆ︂H(t)

|ψα(t)⟩ = e−iˆ︁K(t) |ϕα(t)⟩ = e−iεαte−iˆ︁K(t) |vα⟩ . (2.43)

Comparing equation (2.7) with equation (2.43), we get Floquet modes

|uα(t)⟩ = e−iˆ︁K(t) |vα⟩ , (2.44)

which must be time periodic since we require the time periodicity ˆ︂K(t) = ˆ︂K(t+T )
of the kick operator ˆ︂K(t).
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Under the assumption that ˆ︁G is time-independent, we identify the result above
as the already mentioned Floquet’s theorem.8 In section 2.2.2 we proved that at
least one time-independent Hamiltonian ˆ︁G exists. But the Hamiltonian discussed
here can differ from the one constructed in section 2.2.2. Particularly equation
(2.18) is not a necessary property of the new Hamiltonian ˆ︁G and a redefinition
of the initial time does not necessarily restore a similar statement about ˆ︁G. We
also show how to construct such a Floquet Hamiltonian in section 2.3.

The evolution operator can be constructed as the transformation eiˆ︁K(t1), evo-
lution by ˆ︁G and the transformation back by e−iˆ︁K(t2) [15]. The evolution operator
reads

ˆ︁U(t2, t1) = e−iˆ︁K(t2)e−i(t2−t1)ˆ︁Geiˆ︁K(t1) . (2.45)

Be careful when comparing the fast motion operator ˆ︁P (t) with e−iˆ︁K(t). For non-
stroboscopic Floquet Hamiltonians (defined on page 20), they are not the same.
In this thesis, we defined the fast motion operator only for stroboscopic Floquet
Hamiltonians, but a sensible relation for non-stroboscopic Floquet Hamiltonians
would be ˆ︁P (t) = e−iˆ︁K(t)e+iˆ︁K(0) [16].9

From the above discussion, it is clear that (2.45) is another form of Floquet’s
theorem. We also identify the new time-independent Hamiltonian ˆ︁G from equa-
tion (2.45) as the Floquet Hamiltonian ˆ︁G already defined by equation (2.15).

We formulate the second form of Floquet’s theorem: For the system described
by a time-periodic Hamiltonian with the period T and for the system whose
Hilbert space is finite, the evolution operator ˆ︁U(t2, t1) has the form (2.45), whereˆ︁G is Hermitian and time independent and where ˆ︂K(t) is Hermitian and time-
periodic with the period T [16].

At this place, we would like to point out the ambiguity in Floquet Hamiltoni-
ans and the dependence between the operators ˆ︁G and ˆ︂K(t). Having an arbitrary
unitary operator ˆ︁S we rewrite equation (2.45) the following way

ˆ︁U(t2, t1) = e−iˆ︁K(t2) ˆ︁S ˆ︁S†e−i(t2−t1)ˆ︁G ˆ︁S ˆ︁S†ei
ˆ︁K(t1) (2.46)

= e−iˆ︁K′(t2)e−i(t2−t1)ˆ︁G′
ei
ˆ︁K′(t1), (2.47)

e−iˆ︁K′(t) = e−iˆ︁K(t2) ˆ︁S unitary =⇒ ˆ︂K ′(t) is Hermitian, (2.48)ˆ︁G′ def= ˆ︁S† ˆ︁G ˆ︁S. (2.49)

From the above equations, we see that the Floquet Hamiltonian is not uniquely
defined and there is a great ambiguity in the definition. The above equations as
well show that the operators ˆ︂K(t) and ˆ︁G are not defined independently.

8It is assumed that eiˆ︁K (and e−iˆ︁K) map the domain of ˆ︁H(t) into the domain of ˆ︁G and vice
versa. This may not be true in general and should be further mathematically analysed. This
problem vanishes in finite Hilbert spaces.

9Let us have a general Floquet Hamiltonian ˆ︁G for which the equation (2.45) holds and
the (stroboscopic) Floquet Hamiltonian from section 2.2.2 ˆ︁G[0]. Considering the equationˆ︁U(T, 0) = e−iˆ︁K(0)e−iˆ︁GT e+iˆ︁K(0) = e−iˆ︁G[0]T , we see that we can refine the definition ofˆ︁G[0] to ˆ︁G[0] def= e−iˆ︁K(0) ˆ︁Ge+iˆ︁K(0). According to equation (2.21) ˆ︁P (t) def= ˆ︁U(t, 0)e+iˆ︁G[0]t =
e−iˆ︁K(t)e+iˆ︁Gte+iˆ︁K(0)e−iˆ︁K(0)e−iˆ︁Gte+iˆ︁K(0) = e−iˆ︁K(t)e+iˆ︁K(0).
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In the above discussion, we considered an arbitrary time-independent unitary
operator ˆ︁S. More general transformation with ˆ︁S(t) dependent on time

ˆ︁U(t2, t1) = e−iˆ︁K(t2) ˆ︁S(t2) ˆ︁S†(t2)e−i(t2−t1)ˆ︁G ˆ︁S(t1) ˆ︁S†(t1)eiˆ︁K(t1), (2.50)
e−iˆ︁K′′(t) = e−iˆ︁K(t2) ˆ︁S(t) (2.51)

is also possible, but then the new Floquet Hamiltonian

ˆ︁G′′ def= i

t2 − t1
ln
[︃ ˆ︁S†(t2)e−i(t2−t1)ˆ︁G ˆ︁S(t1)

]︃
(2.52)

must be independent on t1 and t2. Also, the new kick operator ˆ︂K ′′(t) must be
time-periodic with the period T . A similar transformation we will see in equation
(2.104).

2.2.4 More on formalism
Here we present some theorems and some mathematical objects, which could
prove useful for an analysis of time-periodic systems. In this subsection, we
suppose that the appropriate Hilbert space of the system that we describe is
finite. The time period of the system (and of its Hamiltonian) is denoted by T .

Time translation invariance of evolution operator

The Schrödinger equation for the evolution operator

i
∂

∂t2
ˆ︁U(t2, t1) = ˆ︂H(t2) ˆ︁U(t2, t1) (2.53)

with the condition

ˆ︁U(t1, t1) = ˆ︁I (2.54)

defines the evolution operator ˆ︁U(t2, t1).
Defining the operator

ˆ︁L(t2, t1) def= ˆ︁U(t2 + nT, t1 + nT ), (2.55)

we have

i
∂

∂t2
ˆ︁U(t2 + nT, t1 + nT ) = ˆ︂H(t2 + nT ) ˆ︁U(t2 + nT, t1 + nT ) (2.56)

= ˆ︂H(t2) ˆ︁U(t2 + nT, t1 + nT ) (2.57)

i
∂

∂t2
ˆ︁L(t2, t1) = ˆ︂H(t2)ˆ︁L(t2, t1) (2.58)

ˆ︁L(t1, t1) = ˆ︁I. (2.59)

Since ˆ︁L(t2, t1) and ˆ︁U(t2, t1) are the solutions to the same differential equation
with the same initial condition, we get

ˆ︁U(t2 + nT, t1 + nT ) = ˆ︁U(t2, t1),∀n ∈ Z. (2.60)
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Evidently, the evolution operator is not an operator depending only on a difference
of initial and final time, but a weaker version of this time translational symmetry
(2.60) holds.

It could be easily derived that the evolution operator factorizes as followsˆ︁U(t+ T, 0) = ˆ︁U(t, 0) ˆ︁U(T, 0). (2.61)

Thus, from the knowledge of the operator ˆ︁U(t′, 0) for t′ ∈ [0, T ], we easily con-
struct ˆ︁U(t, 0) for any t ∈ R [18, 14].

Fast motion operator

We choose any operator ˆ︂M such that
ˆ︁U(T, 0) = e−i ˆ︁MT , (2.62)

where ˆ︂M is Hermitian and ˆ︂M is also a Floquet Hamiltonian in the sense of our
definition (2.15). Then we construct a useful operator

ˆ︁P (t) def= ˆ︁U(t, 0)e+i ˆ︁Mt, (2.63)

which is periodic in time ˆ︁P (t+ T ) = ˆ︁P (t). (2.64)

The operator ˆ︁P (t) is called a fast motion operator.
In finite Hilbert spaces the operator ˆ︁U(T, 0) possesses a complete set of eigen-

vectors {|wα⟩}2d
α=d+1. Then the states

|uα(t)⟩ = ˆ︁P (t) |wα⟩ (2.65)

are Floquet modes from equation (2.7) [14].

Stroboscopic Floquet Hamiltonian

In review [16] stroboscopic and non-stroboscopic Floquet Hamiltonians are dis-
tinguished. A Floquet Hamiltonian ˆ︁G (from equation (2.15)) is stroboscopic if
and only if there exists a time ts ∈ [0, T ) such that

ˆ︁U(ts + T, ts) = e−i
ˆ︁G[ts]T . (2.66)

This means that the operator eiˆ︁K(ts) from equation (2.45) commutes with the
operator e−iˆ︁GT . Otherwise the Floquet Hamiltonian ˆ︁G is non-stroboscopic. For
stroboscopic Floquet Hamiltonians, we indicate that they are tied to the time
ts by the square brackets [ts] next to a stroboscopic Floquet Hamiltonian. It
is obvious that the operator ˆ︂M = ˆ︁G′[0] from equation (2.62) is a stroboscopic
Floquet Hamiltonian with ts = 0. Stroboscopic Floquet Hamiltonians can be
transformed using [16] ˆ︁G[ts] = ˆ︁P (ts) ˆ︁G[0] ˆ︁P †(ts), (2.67)

where ˆ︁G[0] is a stroboscopic Floquet Hamiltonian tied to the starting time ts = 0,
not necessarily the same as another operator of this kind ˆ︂M = ˆ︁G′[0] that is used
in the definition of a fast motion operator ˆ︁P (t).
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2.2.5 Time independent problem for Floquet modes
This is just a small digression in order to present an interesting concept. We
construct an artificial system with an artificial Hamiltonian that facilitates work
with Floquet modes |uα(t)⟩ and quasienergies εα.

Basic formalism

By substituting |ψα(t)⟩ = e−iεαt |uα(t)⟩ (2.7) into the Schrödinger equation (2.12)
we find that the Floquet modes |uα(t′)⟩ are the eigenvectors of the Hermitian
operator10

ˆ︂H def= −i ∂
∂t′

+ ˆ︂H(t′). (2.68)

This concept is touched upon in [15] and elaborated in [17]. Let us find out
the more precise formulation of the aforementioned statement.

Since we just want to illustrate the formalism, we suppose the appropriate
Hilbert space for the system is Cd. For the operator ˆ︂H the standard Hilbert
space needs to be expanded. We present the new Hilbert space Cd⊗T ′, where T ′

is the Hilbert space of periodic functions with the period T = 2π/ω. The basis
in T ′ is

ϕm(t′) def= (t′|m) = eimωt
′
,m ∈ Z. (2.69)

The scalar product in the Hilbert space T ′ reads

(ϕa|ϕb) = 1
T

∫︂ T

0
ϕa(t′)ϕb(t′)dt′ (2.70)

It is easy to find that the basis {|m)}+∞
m=−∞ of the Hilbert space T ′ is orthonormal

and complete.
Now, identifying the standard procedure of composing systems and conse-

quently their Hilbert spaces, we rewrite the operator ˆ︂H in a verbose manner

ˆ︂H = ˆ︁ICd ⊗
(︄

−i ∂
∂t′

)︄
+ ˆ︂H0 ⊗ ˆ︁IT ′ + ˆ︁V(t′), (2.71)

where ˆ︁ICd is the identity operator in the Hilbert space Cd and ˆ︁IT ′ is the identity
operator in the Hilbert space T ′. The periodic part of the Hamiltonian ˆ︂H(t) =ˆ︂H0(t) + ˆ︁V (t)

ˆ︁V(t′) def= ˆ︁V (ˆ︁t′) (2.72)

now couples11 the Hilbert spaces Cd and T ′.
We see that in the new Hilbert space T ′ the new observables ˆ︁t′ and ˆ︁pt′ can be

defined the following way
ˆ︁t′ϕ(t′) = t′ϕ(t′), (2.73)

ˆ︁pt′ϕ(t′) = −i ∂
∂t′
ϕ(t′), (2.74)

10the operator ˆ︁H is in [15] called Floquet Hamiltonian. In review [16] and in this thesis
the term Floquet Hamiltonian has different meaning.

11Usually V(t′) = g(ˆ︁t′) ⊗ ˆ︂W , where g(t′) is a periodic function of t′ with the period T andˆ︂W is an operator in Cd.
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which implies [︂ˆ︁t′, ˆ︁pt′]︂ = iˆ︁IT ′ . (2.75)

The scalar product in Cd we denote by ⟨ψ1|ψ2⟩. The scalar product in the com-
posite Hilbert space Cd ⊗ T ′ reads

⟨⟨Φ1|Φ2⟩⟩ = 1
T

∫︂ T

0
⟨Φ1(t′)|Φ2(t′)⟩ dt′. (2.76)

Let α ∈ {1, ..., d} numbers the Floquet modes {|uα(t)⟩}dα=1 corresponding to
the quasienergies in the first Brillouin zone εα ∈ (−ω/2, ω/2]. Then all the eigen-
vectors of ˆ︂H are

|Φα,m⟩⟩ = eimωt
′ |uα(t′)⟩ ,m ∈ Z, α ∈ {1, ..., d}. (2.77)

The fact that the states (2.77) are the eigenstates of ˆ︂H could be easily proved
using Floquet’s theorem (page 13). The fact that equation (2.77) describes all
the eigenstates of ˆ︂H is a consequence of the completeness relation

d∑︂
α=1

+∞∑︂
m=−∞

e−imωt′1 |uα(t′1)⟩ ⟨uα(t′2)| eimωt
′
2 = ˆ︁ICn ⊗ T · δ(t′1 − t′2)

= ˆ︁ICd ⊗ ˆ︁IT ′ .

(2.78)

We used the known expression for the delta function tray
+∞∑︂

m=−∞
δ
(︃
x−m · 2π

ω

)︃
= ω

2π

+∞∑︂
m=−∞

eimωx (2.79)

and that

t′1, t
′
2 ∈ [0, T ) =⇒ t′1 − t′2 ∈

(︃
−2π
ω
,
2π
ω

)︃
. (2.80)

This approach is expedient because we are working with a time-independent
problem characterized by the time-independent Schrödinger equationˆ︂H |Φα,m⟩⟩ = εα,m |Φα,m⟩⟩ (2.81)

= (εα +mω) |Φα,m⟩⟩,
εα,0 = εα, α ∈ {1, ..., d}. (2.82)

Various theorems from quantum mechanics are thus available to use.

Example—use of Hellmann-Feynman theorem

We illustrate the discussed formalism on an example from [17]. Let us for
a while come back to the simple Hilbert space Cd. Here |ψα(t)⟩ is a state in
Cd from Floquet’s theorem (Floquet state) and its time evolution is prescribed
by |ψα(t)⟩ = e−iεαt |uα(t)⟩ (2.7). Let us define a one-period averaged energy of
the Floquet state |ψα(t)⟩ the following way

H α
def= 1

T

∫︂ T

0
⟨ψα(t)|ˆ︂H(t)|ψα(t)⟩ dt (2.83)

= 1
T

∫︂ T

0
⟨uα(t)| e+iεαtˆ︂H(t)e−iεαt |uα(t)⟩ dt

= 1
T

∫︂ T

0
⟨uα(t)| ˆ︂H(t) |uα(t)⟩ dt. (2.84)
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Now we can safely return to the composite Hilbert space Cd⊗T ′ and interpret
the expression (2.84) as a mean value of the observable ˆ︂H+i∂t′ = ˆ︂H(ˆ︁t′) in the state
|Φα,0⟩⟩. Thus

H α = ⟨⟨Φα,0| ˆ︂H + i
∂

∂t′
|Φα,0⟩⟩ (2.85)

= εα + i⟨⟨Φα,0|
∂

∂t′
|Φα,0⟩⟩. (2.86)

Now we set

τ ′ = ωt′. (2.87)

Thus

ˆ︂H(τ ′) = ˆ︂H(τ ′) ⊗ ˆ︁IT ′′ − i

(︄
∂τ ′

∂t′

)︄ ˆ︁ICd ⊗ ∂

∂τ ′

= ˆ︂H(τ ′) ⊗ ˆ︁IT ′′ − iω ˆ︁ICd ⊗ ∂

∂τ ′ . (2.88)

And we also get the operator equation

∂ˆ︂H(ω, τ ′)
∂ω

= −iˆ︁ICd ⊗ ∂

∂τ ′ (2.89)

= −i 1
ω
ˆ︁ICd ⊗ ∂

∂t′
. (2.90)

Thus

⟨⟨Φα,0|
∂

∂t′
|Φα,0⟩⟩ = iω⟨⟨Φα,0|

∂ˆ︂H(ω, τ ′)
∂ω

|Φα,0⟩⟩. (2.91)

Now we invoke the Hellmann-Feynman theorem [20]:
Let ˆ︂H(λ) be a Hermitian operator which depends on a real parameter λ, and

|Φλ⟩⟩ a normalized eigenvector of ˆ︂H(λ) of eigenvalue E(λ):
ˆ︂H(λ) |Φλ⟩⟩ = E(λ) |Φλ⟩⟩ (2.92)

⟨⟨Φλ | Φλ⟩⟩ = 1 (2.93)

The Hellmann-Feynman theorem then says

dE(λ)
dλ = ⟨⟨Φλ|

(︄
d

dλ
ˆ︂H(λ)

)︄
|Φλ⟩⟩. (2.94)

From (2.94) we see that

⟨⟨Φα,0|
∂ˆ︂H(ω, τ ′)

∂ω
|Φα,0⟩⟩ = dεα,0

dω . (2.95)

Thus, from (2.86, 2.91, 2.95) we get12

H α = εα − ω
∂εα
∂ω

(2.96)

12We signify by the partial derivation that all the other parameters on which the Hamiltonianˆ︁H(t) depends are kept constant, i.e. we cancel their possible dependence on ω. From another
point of view, we demand that ˆ︁H(τ ′) does not depend on ω.
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Figure 2.2: The quasienergies in the first Brillouin zone ε1,2 (blue and green solid
lines) for the system that is described by the Hamiltonian (1.1) with the parame-
ters κ = 1, p = 0.5. The dependence on the length of the period. The dashed lines
in the left plot represent the one-period averaged energiesH 1,2 = κ±p of the Flo-
quet states. The eigenenergies of the Floquet Hamiltonian (quasienergies before
mapping into the first Brillouin zone) are ε̃1,2 = κ± p (1.14), i.e. not dependent
on the time period T . The black lines in the left plot represent the boundaries of
the first Brillouin zone ±π/T .

It is easy to realise that for the eigenvalues

εα,m
def= εα +mω, (2.97)

we get the equation similar to equation (2.96) and using ω = 2π/T we get

H α = εα,m + T
∂εα,m
∂T

. (2.98)

In figure 2.2 we show the dependence of the one-period average Floquet state
energies H α and quasienergies in the first Brillouin zone εα on the length of
the time period T for the simplistic example from section 1.1.

Time-dependent Schrödinger equation in composite Hilbert space

The stationary states of the time-independent Schrödinger equation ˆ︂H |Φα,m⟩⟩ =
εα,m |Ψα,m⟩⟩ could be evolved in the standard manner

|Φα,m(t)⟩⟩ = e−iεα,mt |Φα,m(0)⟩⟩ (2.99)
⟨t′ | Φα,m(t)⟩⟩ = e−i(εα+mω)teimωt

′ |uα(t′)⟩ . (2.100)

We see that by setting t′ = t,

⟨t′ | Φα,m(t)⟩⟩|t′=t = e−iεαt |uα(t)⟩ , (2.101)
= |ψα(t)⟩ , (2.102)

we get the Floquet states (2.7). From (2.100) we see again that the restriction to
the quasienergies in the first Brillouin zone is justified.
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2.2.6 Single-spin harmonically-driven system revisited
Now, having the knowledge of the Floquet theory, we are ready to return to
the single-spin-1

2 harmonically-driven example (section 1.2) and to identify the
elements of the theory in this example. This subsection is inspired by [16].

We already found out the form of the evolution operator (1.31). Although
equation (1.31) resembles the second form of the Floquet theorem (2.45), the
Hamiltonian ˆ︂Hr (1.29) is not a Floquet Hamiltonian of the system with the pe-
riod T since the unitary operator, providing the similarity transformation to the
rotating basis,

e−iωtˆ︁Sz = ˆ︁I cos ωt2 − iˆ︁σz sin ωt2 (2.103)

is not T -periodic (but 2T -periodic).

First Floquet Hamiltonian

We get an appropriate Floquet Hamiltonian, kick operator pair ( ˆ︁GI[0], ˆ︂KI(t)) by
simple mathematical trick—we transcribe equation (1.31) the following way

ˆ︁U(t2, t1) = e−iωt2ˆ︁Sze−iωt2
2 e+iωt2

2 e−iˆ︁Hr(t2−t1)e−iωt1
2 e+iωt1

2 eiωt1
ˆ︁Sz

= e−iωt2(ˆ︁Sz+ 1
2)e−i(ˆ︁Hr− ω

2 )(t2−t1)eiωt1(ˆ︁Sz+ 1
2).

(2.104)

From equation (2.104), we easily identify the Floquet Hamiltonian, kick op-
erator pair

ˆ︁GI[0] = ˆ︂Hr − ω

2
ˆ︁I, (2.105)

ˆ︂KI(t) = ωt
(︃ ˆ︁Sz + 1

2
ˆ︁I)︃ , t ∈ [0, T ). (2.106)

From the equation

e−iωt(ˆ︁Sz+ 1
2) = 1

2
(︂
e−iωt − 1

)︂ ˆ︁σz + 1
2
(︂
e−iωt + 1

)︂ ˆ︁I, t ∈ R, (2.107)

we easily see that we could define the kick operator ˆ︂KI(t), which is time-periodic
with the time period T , by periodically extending its functional dependence on t
in the interval [0, T ) (equation (2.106)). The Floquet Hamiltonian, kick operator
pair ( ˆ︁GI[0], ˆ︂KI(t)) constructed above has all the necessary properties that a pair of
(stroboscopic) Floquet Hamiltonian and kick operator should have. Since for the
starting time ts = 0 the kick operator is equal to zero, the Floquet Hamiltonian
is stroboscopic.

The eigenvalues of the rotational Hamiltonian ˆ︂Hr are ±ϵr, where we defined

ϵr
def= 1

2
√︂

(ω0 + ω)2 + ω2
r . (2.108)

Consequently, the eigenvalues of the Floquet Hamiltonian ˆ︁GI[0], i.e. the
quasienergies, are

εI
± = −ω

2 ± ϵr, (2.109)
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which follows from equation (2.105).
The choice of a Floquet Hamiltonian, kick operator pair is not unique and

it could be expedient to choose the pair differently in order to yield some more
convenient form of the operators constituting the pair. For the sake of education,
we present two other such pairs. Before we do that, we note that the high-
frequency limit of the eigenvalue εI

− diverges

lim
ω→+∞

εI
− = −∞, lim

ω→+∞
εI

+ = ω0

2 . (2.110)

We get rid of the divergence we mentioned by another choice of a Floquet Hamil-
tonian, kick operator pair.

Second Floquet Hamiltonian

The following two Floquet Hamiltonians were discussed in [16] and we introduce
them without proof. Nevertheless, using equation (2.40), we could prove the
validity of the Hamiltonians (we provide the appropriate exponentials of the kick
operators). The proof is mechanical and could be facilitated by a computer, e.g.
using the programming language Mathematica.

The single-spin harmonically-driven system (section 1.2) could be equivalently
described by Floquet Hamiltonian

ˆ︁GII[0] =
⎛⎝1 − ω√︂

(ω0 + ω)2 + ω2
r

⎞⎠ ˆ︂Hr. (2.111)

We do not provide the exact form of the kick operator ˆ︂KII(t) paired to the
Floquet Hamiltonian ˆ︁GII[0] but we provide its exponential that is used for the
similarity transformation in (2.45)

e−iˆ︁KII(t) = ˆ︁I − 2
(︃

cos2 α

2

)︃(︃
sin2 ωt

2

)︃ ˆ︁I − i
1
2 (sinα) (sinωt) ˆ︁σx

−i (sinα)
(︃

sin2 ωt

2

)︃ ˆ︁σy − i
(︃

cos2 α

2

)︃
(sinωt) ˆ︁σz, (2.112)

where we define the new parameter α the following way

sinα = − ωr√︂
(ω0 + ω)2 + ω2

r

, cosα = − ω0 + ω√︂
(ω0 + ω)2 + ω2

r

. (2.113)

Note that expressions (2.113) define the parameter α unambiguously.
Also note that since sin2 x = (1 − cos 2x)/2 and cos2 x = (1 + cos 2x)/2,

the operator ˆ︂KII(t) is T -periodic. For t = 0 the similarity transformation (2.112)
reduces to an identity matrix, thus the Floquet Hamiltonian ˆ︁GII[0] is stroboscopic.
The form of the exponential e−iˆ︁KII(t) in equation (2.112) suggests the computation
of the kick operator using the series

ln(ˆ︁I − ˆ︂X) = −
+∞∑︂
n=1

1
n
ˆ︂Xn. (2.114)

Rather complicated expressions could be computed, e.g. using the programming
language Mathematica.
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The eigenvalues of the Floquet Hamiltonian ˆ︁GII[0] are

εII
± = ±

(︃
ϵr − ω

2

)︃
= ±εI

+ (2.115)

and it is trivial to show that both eigenvalues (quasienergies) do not diverge since

lim
ω→+∞

εII
± = ±ω0

2 . (2.116)

Third Floquet Hamiltonian

The third Floquet Hamiltonian we present is characterized by

εIII
↑ = ω

2 − ϵr = εII
− (2.117)

εIII
↓ = −εIII

↑ = −ω

2 + ϵr = εII
+ (2.118)

ˆ︁GIII =
(︃
ω

2 − ϵr

)︃ ˆ︁σz = εIII
↑ ˆ︁σz (2.119)

ˆ︂KIII(t) = α− π

2 (−ˆ︁σx sinωt+ ˆ︁σy cosωt) (2.120)

e−iˆ︁KIII(t) = ˆ︁I sin α2 − i (−ˆ︁σx sinωt+ ˆ︁σy cosωt) cos α2 , (2.121)

where the parameter α is defined by equation (2.113).
The third Floquet Hamiltonian has the same eigenvalues as the second one,

but we conventionally present them in reversed order since it is more natural to
present the 11 matrix element of the third Floquet Hamiltonian (2.119) first and
the ± signs refer to the signs before ϵr. We also note that the form of the third
Floquet Hamiltonian is exceptionally simple (2.119) and the eigenvectors are the
well known z-direction spin-1

2 up and down states. Note also that the third
Floquet Hamiltonian is non-stroboscopic since there is no t such that e−iˆ︁KIII(t)

commutes with eˆ︁GIIIT .

Average energy in Floquet state

The one-period average energy in a Floquet state is defined by (2.83). We derived
expression (2.98) that connects the quasienergies with the values of the one-period
average energy in the respective Floquet state. From (2.98) (and ω = 2π/T ) we
get

H I
± = εI

± − ω
∂εI

±
∂ω

(2.122)

= ±1
2
ωω0 + ω2

0 + ω2
r√︂

(ω0 + ω)2 + ω2
r

. (2.123)

Clearly, the one-period average energy in the Floquet state could be computed
using the pair of quasienergies (εI

+, ε
I
−) or the pair of quasienergies (εII

+ = εIII
↓ , εII

− =
εIII

↑ ), i.e. we get

H I
+ =H II

+ =H III
↓ , H I

− =H II
− =H III

↑ . (2.124)
For the high-frequency limit we get the following values of the one-period

average energies in the Floquet states

lim
ω→+∞

H I
± = lim

ω→+∞
H II

± = lim
ω→+∞

H III
↓↑ = ±ω0

2 . (2.125)
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Figure 2.3: The dependencies of values εI
− (red), εII

+ (green), εII
− (blue),H I

± (purple
and brown) on ω for the parameters ωr, ω0 satisfying ωr/ω0 = 0.46. The black
solid lines represent the boundaries of the first Brillouin zone.

Summary

We have seen that various Floquet Hamiltonians could be constructed. The first
Hamiltonian was easily constructed, but its high-frequency limit is divergent. The
second Floquet Hamiltonian has a good high-frequency limit and is stroboscopic.
The third Floquet Hamiltonian has a good high-frequency limit and simple form
but is non-stroboscopic. Although each Floquet Hamiltonian constructed here
differs from the other ones, the one-period average energy in the Floquet state is
not affected by the ambiguity in the definition of the Floquet Hamiltonian.

The topology of the problem—see figure 1.2—does not change if we change
simultaneously the sign of ω and ω0

ω

ω0

}︄
→
{︄

−ω
−ω0 .

(2.126)

Note that the one-period average energy in a Floquet state (2.123) respects the
symmetry (2.126) whereas the quasienergies εI

±, ε
II
±, ε

III
↑↓ do not respect that sym-

metry. The first pair of quasienergies transforms the following way εI
± → −εI

∓.
From the form of the quasienergies or from the equivalence of the problems when
doing the symmetry transform (2.126) and the uniqueness of the quasienergies
mapped to the first Brillouin zone (here we consider them as a set of real numbers
with no order) we see that the quasienergies mapped to the first Brillouin zone
respect the symmetry transform (2.126). The dependencies of values εI

−, ε
II
+, ε

II
−

and H I
± on ω are plotted in figure 2.3.
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2.3 Floquet Hamiltonian and kick operator
expansion

Here we present the method for finding series for a Floquet Hamiltonian ˆ︁G and
a kick operator ˆ︂K(t) described in [15]. This section is a continuation of the discus-
sion in subsection 2.2.3. We divided the discussion into two parts since subsection
2.2.3 is much more general than the discussion in this section.

We will outline a procedure for finding the operators ˆ︁G and ˆ︂K(t) from equation
(2.45) in the form of an expansion in powers of 1/ω. The pair ( ˆ︁G, ˆ︂K(t)) we will
construct here is one of the infinitely many different pairs ( ˆ︁G, ˆ︂K(t)) satisfying
equation (2.45).

We consider a Hamiltonian of a system which we describe in the form (2.2)

ˆ︂H(t) = ˆ︂H0 + ˆ︁V0 +
+∞∑︂
n=1

(︂ ˆ︁Vne+inωt + ˆ︁V−ne
−inωt

)︂
,

where ˆ︁V †
n = ˆ︁V−n because of Hermicity of ˆ︂H(t).

It is convenient to transcribe equation (2.40),

ˆ︁G def= ei
ˆ︁K(t)ˆ︂H(t)e−iˆ︁K(t) + i

⎛⎝∂eiˆ︁K(t)

∂t

⎞⎠ e−iˆ︁K(t),

with τ
def= ωt. Then we have

ˆ︁G = ei
ˆ︁K(τ)ˆ︂H(τ)e−iˆ︁K(τ) + iω

⎛⎝∂eiˆ︁K(τ)

∂τ

⎞⎠ e−iˆ︁K(τ). (2.127)

We consider the following expansions for ˆ︁G and ˆ︂K
ˆ︁G =

∞∑︂
n=0

1
ωn

ˆ︁Gn, (2.128)

ˆ︂K(τ) =
∞∑︂
n=1

1
ωn
ˆ︂Kn(τ). (2.129)

Note that the sum for ˆ︂K(τ) begins with n = 1. If we do not denote the dependence
of ˆ︂K(τ) on τ , we mean that ˆ︂K or ˆ︂Kn is evaluated at the rescaled time τ .

We will expand the first term on the right hand side of equation (2.127) using
the expansion (1.19)

ei
ˆ︁Kˆ︂He−iˆ︁K = ˆ︂H + i

[︂ˆ︂K,ˆ︂H]︂− 1
2!
[︂ˆ︂K, [︂ˆ︂K,ˆ︂H]︂]︂− i

3!
[︂ˆ︂K, [︂ˆ︂K, [︂ˆ︂K,ˆ︂H]︂]︂]︂+ . . . ,(2.130)

and the second term using the expansion⎛⎝∂eiˆ︁K
∂τ

⎞⎠ e−iˆ︁K = i
∂ˆ︂K
∂τ

− 1
2!

[︄ˆ︂K, ∂ˆ︂K
∂τ

]︄
− i

3!

[︄ˆ︂K, [︄ˆ︂K, ∂ˆ︂K
∂τ

]︄]︄
+ . . . , (2.131)

which follows from (A.17) in appendix A.
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The method consists of computing ˆ︁Gn in terms of ˆ︂K1, . . . , ˆ︂Kn+1 and then
setting ˆ︂Kn+1 so that ˆ︁Gn is time independent.

Equating the terms directly proportional to ω0, we get

ˆ︁G0 = ˆ︂H0 + ˆ︁V0 +
∞∑︂
n=1

(︂ ˆ︁Vneinτ + ˆ︁V−ne
−inτ

)︂
− ∂ˆ︂K1

∂τ
. (2.132)

In order to cancel a time dependence of ˆ︁G0, we set

ˆ︂K1 =
∞∑︂
n=1

1
in

(︂ ˆ︁Vneinτ − ˆ︁V−ne
−inτ

)︂
(2.133)

and thus

ˆ︁G0 = ˆ︂H0 + ˆ︁V0 . (2.134)

Equating the terms directly proportional to ω1, we get

ˆ︁G1 = i
[︂ˆ︂K1,ˆ︂H]︂− ∂ˆ︂K2

∂τ
− i

2

[︄ˆ︂K1,
∂ˆ︂K1

∂τ

]︄
. (2.135)

Substituting (2.133) into (2.135), we get the time independent part of (2.135)ˆ︁G1 ≡ ˆ︁G1

ˆ︁G1 =
∞∑︂
n=1

1
n

[︂ ˆ︁Vn, ˆ︁V−n
]︂

(2.136)

and the time dependent part of (2.135)

0 =
∞∑︂
n=1

1
n

(︂[︂ ˆ︁Vn,ˆ︂H0 + ˆ︁V0
]︂
einτ + H.c.

)︂

+ 1
2

∞∑︂
m,n=1
m̸=n

1
n

(︂[︂ ˆ︁Vn, ˆ︁Vm]︂ ei(n+m)τ +
[︂ ˆ︁Vn, ˆ︁V−m

]︂
ei(n−m)τ + H.c.

)︂
− ∂ˆ︂K2

∂τ
.

(2.137)

We choose ˆ︂K2 the following way

ˆ︂K2 =
∞∑︂
n=1

1
in2

[︂ ˆ︁Vn,ˆ︂H0 + ˆ︁V0
]︂
einτ + 1

2

∞∑︂
m,n=1
m ̸=n

1
in(n+m)

[︂ ˆ︁Vn, ˆ︁Vm]︂ ei(n+m)τ

+1
2

∞∑︂
m,n=1
m ̸=n

1
in(n−m)

[︂ ˆ︁Vn, ˆ︁V−m
]︂
ei(n−m)τ + H.c.

(2.138)

Equating the terms directly proportional to ω2, we get

ˆ︁G2 = i
[︂ˆ︂K2,ˆ︂H]︂− 1

2
[︂ˆ︂K1,

[︂ˆ︂K1,ˆ︂H]︂]︂
− ∂ˆ︂K3

∂τ
− i

2

[︄ˆ︂K1,
∂ˆ︂K2

∂τ

]︄
− i

2

[︄ˆ︂K2,
∂ˆ︂K1

∂τ

]︄
+ 1

6

[︄ˆ︂K1,

[︄ˆ︂K1,
∂ˆ︂K1

∂τ

]︄]︄
.

(2.139)
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By similar arguments as above, we get

ˆ︁G2 =1
2

∞∑︂
n=1

1
n2

[︂[︂ ˆ︁Vn,ˆ︂H0 + ˆ︁V0
]︂
, ˆ︁V−n

]︂
− 1

3

∞∑︂
m,n=1
m̸=n

1
mn

[︂ ˆ︁Vm, [︂ ˆ︁V−n, ˆ︁Vn−m
]︂]︂

+ 1
3

∞∑︂
m,n=1

1
mn

[︂ ˆ︁Vm, [︂ ˆ︁Vn, ˆ︁V−m−n
]︂]︂

+ H.c.
(2.140)

In the aforementioned, it is shown that for high frequencies ˆ︂K(t) could be
chosen small, of the order of 1/ω. Then matrix elements of an observable ˆ︁O could
be calculated using the eigenvalues and eigenvectors of the Floquet Hamiltonianˆ︁G

⟨ψα(t)| ˆ︁O |ψβ(t)⟩ = ⟨ϕα(t)| eiˆ︁K(t) ˆ︁Oe−iˆ︁K(t) |ϕβ(t)⟩ (2.141)
= ⟨ϕα(t)| ˆ︁O |ϕβ(t)⟩ + i ⟨ϕα(t)|

[︂ˆ︂K(t), ˆ︁O]︂ |ϕβ(t)⟩

− 1
2 ⟨ϕα(t)|

[︂ˆ︂K(t),
[︂ˆ︂K(t), ˆ︁O]︂]︂ |ϕβ(t)⟩ + . . . , (2.142)

where the states

|ϕα(t)⟩ = e+iˆ︁K(t) |ψα(t)⟩ (2.143)

are the eigenstates of the Floquet Hamiltonian ˆ︁G. The above equalities follow
from (2.130) and (2.36).

2.4 Systems factorizing Floquet operator
Here we describe the method which derives an approximate form of a Floquet
Hamiltonian using the Baker–Campbell–Hausdorff (BCH) formula. Generally
speaking, when the Floquet operator, i.e. an evolution operator evolving a system
for the duration of one period, could be expressed in the form of a product of
exponentials, with known exponents, the BCH formula is expedient.

In this section we investigate the properties of stroboscopic Floquet Hamilto-
nians ˆ︁G[ts], their definition (2.66) is

ˆ︁U(ts + T, ts) = e−i
ˆ︁G[ts]T .

2.4.1 General example of delta-driven system
For simplicity, we consider the delta-driven Hamiltonian

ˆ︂H(t) = ˆ︁VPT ∞∑︂
n=−∞

δ(t− nT ) + ˆ︂H0, (2.144)

which describes a system driven by delta pulses. The Floquet operator for
the Hamiltonian (2.144) could be written as

ˆ︁F [0] = e−iˆ︁VPT e−iˆ︁H0T . (2.145)
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From equation (2.145), we see that we describe the one-period evolution which be-
gins just after the realisation of the delta function. At first, we evolve the system
by the operator

e−iˆ︁H0T . (2.146)

And then we evolve the system by the operator

e−iˆ︁VPT , (2.147)

which demonstrates the fact that the part of the Hamiltonian represented by
the operator ˆ︂H0 is negligible during an infinitesimal time interval which includes
the realisation of a delta function.

The desired Floquet Hamiltonian ˆ︁G can be constructed by satisfying the con-
dition

ˆ︁F [0] = e−iˆ︁GT . (2.148)

In order to yield the Floquet Hamiltonian ˆ︁G, the standard BCH formula

ln(e ˆ︁Xeˆ︁Y ) = ˆ︂X + ˆ︁Y + 1
2
[︂ˆ︂X, ˆ︁Y ]︂+ 1

12
[︂ˆ︂X − ˆ︁Y , [︂ˆ︂X, ˆ︁Y ]︂]︂+ . . . (2.149)

could be used.

2.4.2 Special form of Baker–Campbell–Hausdorff formula
In a special case when ˆ︁VP depends linearly on the parameter p, i.e. the operatorˆ︁VP could be made small by lowering the parameter p, we apply the special form
of the BCH formula (A.39) devised in appendix A

− ln
(︃
e−pˆ︁Be−ˆ︁A)︃ = ˆ︁A− p

adˆ︁A
e

(︂
−adˆ︁A)︂ − 1

ˆ︁B +O(p2) , (2.150)

where adˆ︁X ˆ︁Y def=
[︂ ˆ︁X, ˆ︁Y]︂. The operator ˆ︁A has to be small as well (which is a part

of the requirements for the formula (A.39) to work).
We define the function of adˆ︁A by the Taylor series for the function f(x)

f(x) =
∞∑︂
n=0

fn
xn

n! . (2.151)

The function f of the argument adˆ︁A is defined by

f
(︂
adˆ︁A)︂ def=

∞∑︂
n=0

fn
1
n!
(︂
adˆ︁A)︂n . (2.152)

The effect of the action of the nth power of adˆ︁A on an operator ˆ︁B is straightfor-
ward, i.e. (︂

adˆ︁A)︂n ˆ︁B =
[︂ ˆ︁A, [︂ ˆ︁A, ... [︂ ˆ︁A, ˆ︁B]︂]︂ ...]︂

n⏞ ⏟⏟ ⏞
n commutators

(2.153)

and
(︂
adˆ︁A)︂0

is defined to be an identity operator ˆ︁I.
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2.4.3 Discussion about initial time choice
There is an ambiguity in the form of a Floquet Hamiltonian. We describe the am-
biguity connected with the choice of a starting time regarding stroboscopic Flo-
quet Hamiltonians. Stroboscopic Floquet Hamiltonians, for various initial times
ts, could be constructed using equations (2.67, 2.63)

ˆ︁G[ts] = ˆ︁P (ts) ˆ︁G[0] ˆ︁P †(ts),ˆ︁P (t) def= ˆ︁U(t, 0)e+iˆ︁G′[0]t, (2.154)

where ˆ︁G[0] and ˆ︁G′[0] are two, not necessarily the same, stroboscopic Floquet
Hamiltonians tied to the starting time ts = 0.

We stress that the ambiguity connected with the initial time choice is not
the only ambiguity regarding stroboscopic Floquet Hamiltonians. Even a strobo-
scopic Floquet Hamiltonian tied to a starting time ts is not uniquely defined. For
example in our simplistic example from section 1.1 all the stroboscopic Floquet
Hamiltonians in the matrix form(︂ ˆ︁G(m,n)

s [0]
)︂

=
(︄
κ+ m+n

T
π p+ m−n

T
π

p+ m−n
T
π κ+ m+n

T
π

)︄
,∀m,n ∈ Z (2.155)

are possible stroboscopic Floquet Hamiltonians tied to the starting time ts = 0.
Here we demonstrate the ambiguity connected with an initial time choice on

a simple example from [4]. Consider the following Hamiltonian

ˆ︂H(t) =

⎧⎨⎩ˆ︂H0 + ˆ︁V if t ∈ [n · T, T/2 + n · T ), n ∈ Zˆ︂H0 − ˆ︁V if t ∈ [T/2 + n · T, T + n · T ), n ∈ Z.
(2.156)

The Floquet operator tied to the starting time ts = 0 factorizes the following way

F [0] def= ˆ︁U(T, 0) = e
−i
(︂ˆ︂H0 − ˆ︁V )︂ T

2 e
−i
(︂ˆ︂H0 + ˆ︁V )︂ T

2 . (2.157)

Using the definition of a stroboscopic Floquet Hamiltonian (2.66) and the stan-
dard BCH formula (2.149), we get the stroboscopic Floquet Hamiltonian

ˆ︁G[0]T =
(︂ˆ︂H0 + ˆ︁V )︂ T2 +

(︂ˆ︂H0 − ˆ︁V )︂ T2 − i
T 2

8
[︂ˆ︂H0 − ˆ︁V ,ˆ︂H0 + ˆ︁V ]︂+O(T 3),

ˆ︁G[0] = ˆ︂H0 − i
T

4
[︂ˆ︂H0, ˆ︁V ]︂+O(T 2). (2.158)

Another stroboscopic Floquet Hamiltonian can be easily constructed by starting
at the initial time ts = T/2

ˆ︁U(ts + T, ts) = e−iˆ︁G[T/2]T , (2.159)
ˆ︁G[T/2] = ˆ︂H0 + i

T

4
[︂ˆ︂H0, ˆ︁V ]︂+O(T 2). (2.160)

The whole term linear in T in equations (2.158, 2.160) could be eliminated by
similarity transformation using equation (1.19)

ˆ︁G[0] = ˆ︁S†ˆ︂H0
ˆ︁S +O(T 2), ˆ︁S = e−i

T
4
ˆ︁V . (2.161)
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Using the definition of a fast motion operator ˆ︁P (t) (2.154) and the standard BCH
formula (2.149), we calculate

ˆ︁P (︃T4
)︃

def= ˆ︁U (︃T4 , 0
)︃
e+i

ˆ︁G[0]T4 (2.162)

= e
−i
(︂ˆ︂H0 + ˆ︁V )︂ T

4 e+i
ˆ︁G[0]T4 (2.163)

= e−i
T
4
ˆ︁V + T 2

32 [H0, V ] +O(T 3). (2.164)

From equations (2.161, 2.164) and equation (2.67) it is clear that

ˆ︁G [︃T4
]︃

= ˆ︂H0 +O
(︂
T 2
)︂
. (2.165)

Thus, we demonstrated that by choosing a particularly suitable starting time ts,
we could make the form of a stroboscopic Floquet Hamiltonian simpler.

2.5 Discussion about limit of small time period

In the previous parts of the thesis, we presented some methods for constructing
an effective Hamiltonian—a series for a Floquet Hamiltonian. In most cases
the series consist of the powers of the time period T . In subsection 2.4.1 we
presented a Floquet operator (2.145)

ˆ︁F [0] = e−iˆ︁VPT e−iˆ︁H0T .

for systems described by the particular type of Hamiltonian (2.144). From the
above form of the factorization of the Floquet operator, we see that if || ˆ︁VPT || ≪ 1
and ||ˆ︂H0T || ≪ 1, then the expansion using the standard BCH formula (2.149)
converges. The discussion regarding the series for the kick operator ˆ︂K(t) and
the Floquet Hamiltonian ˆ︁G constructed in section 2.3 is similar.

From the expansions (2.128, 2.129) and the forms of the terms ˆ︁Gn and ˆ︂Kn

we see that it is natural to require the frequency to be high in comparison to allˆ︁Vn, n ∈ Z and ˆ︂H0, i.e.

T ≪ 1
|| ˆ︁Vn||

, n ∈ Z (2.166)

T ≪ 1
||ˆ︂H0||

. (2.167)

Let us define

δ
def= max

(︂{︂
|| ˆ︁Vn||T, n ∈ Z

}︂
∪
{︂
||ˆ︂H0||T

}︂)︂
. (2.168)

The new parameter δ is a dimensionless quantity. The requirements (2.166, 2.167)
tell us that δ ≪ 1. From the forms of the terms ˆ︁Gn and ˆ︂Kn(t) and their con-
struction, we suppose that ˆ︁GnT

n = O(δn) and ˆ︂Kn(t)T n = O(δn) and we get the
converging series (2.128, 2.129).
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It is now interesting to look at how the fast motion operator—exhibiting fast
changes of the wave function—behaves. The fast motion operator (2.21) scales
the following way13

ˆ︁P (t) def= ˆ︁U(t, 0)e+iˆ︁G[0]t (2.23)= ˆ︁P (t+ T )
= ˆ︁I +O(δ). (2.169)

The result above shows that in the limit (2.166, 2.167) the fast changes of the
wavefunction14 (2.27, 2.28, 2.34)

|ψ(t)⟩ =
d∑︂

α=1
βαe

−iεαt ˆ︁P (t) |wα⟩ (2.170)

decrease as we decrease the length of the period T . For the times comparable to
the time period T , i.e. | − iεαt| ≪ 1, the evolution operator approaches identity.
Note that the exponent −iεαt can significantly deviate from the zero value by
simply increasing the time t whereas equation (2.169) holds for all t since the
operator ˆ︁P (t) is T periodic.

Let us define Eα def= εα + O(δl/T ), where Eα represent eigenvalues of some
effective Hamiltonian. From equation (2.170) we also see that we need to know
the values εαT = O(δ) with a discrepancy better than O(δ) since we do not
consider the term O(δt/T ) = | − iεαt| negligible, i.e. l > 1. Let us find the times
when evolution is dominantly dictated by an effective Hamiltonian. Let us study
the following corrections

e−iEαt = e−i[εαT+O(δl)]t/T = eO(δlt/T )e−iεαt

= (ˆ︁I +O(δlt/T ))e−iεαt (2.171)
= ˆ︁I +O(δt/T ) +O(δlt/T ) +O(δl+1t2/T 2), (2.172)

e−iEαt ˆ︁P (t) = ˆ︁I +O(δ) +O(δt/T ) +O(δlt/T ) +O(δl+1t2/T 2). (2.173)

If we want to get a non-negligible evolution, the following must hold

δ ≪ δt/T, (2.174)
t/T ≫ 1. (2.175)

The upper bound for the times considered could be inferred from equation (2.171)
by considering δlt/T ≪ 1. We conclude that the evolution is dominantly dictated
by an effective Hamiltonian for the times satisfying15

1 ≪ t/T ≪ 1/δl. (2.176)

13Note that ˆ︁U(t, 0) = e−iˆ︁K(t)e−iˆ︁Gte+iˆ︁K(0) where ˆ︁K(t) = O(δ), ˆ︁K(0) = O(δ) and ˆ︁Gt =
O(δt/T ). Thus, ˆ︁U(t) = ˆ︁I +O(δ) for t ∈ [0, T ].

14We consider the stroboscopic Floquet Hamiltonian ˆ︁G[0] whose eigenvalues lie in the first
Brillouin zone. The transition from a general stroboscopic Floquet Hamiltonian to the one with
eigenvalues in the first Brillouin zone (by spectral decomposition and shifting the eigenvalues)
preserves the required property (2.18).

15Since the perturbation connected with an uncertainty in εα represented by O(δlt/T ) in
equation (2.173) must by significantly lower than the correction to the time evolution O(δt/T ),
we must require l > 1 (as we have already mentioned above).
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We do not say that the times t/T ≈ 1 are for our theory inaccessible. We can
describe the short times by employing the action of the exponential of the kick
operator e−iˆ︁K(t). What we essentially say here is that the evolution of a quantum
mechanical state is captured by an effective Hamiltonian with the uncertainty
O(δ) in the time regime given by equation (2.176). The only possible fast changes
in the state vector are of the order O(δ). The mathematics does not exclude a fast
and minute trembling of the state vector.

Considering the above discussion, we see that in the high-frequency regime
the Floquet Hamiltonian describes the most important features of the evolution
and the fast changes in the state of the system become small. Generally speaking,
the mathematical structure of the outlined expansions indicates that doing the
expansions in the powers of the time period T in a wide range of problems yields
sensible results.
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3. Many-body qubit systems
In the previous chapter, we focused on the general theory describing quantum
mechanical systems with a time-periodic Hamiltonian and the high-frequency
limit of a wide range of these systems. In this chapter, we apply the theory
and methods from the previous chapter to concrete models—delta-driven and
harmonically-driven Lipkin–Meshkov–Glick model.

Throughout this chapter we measure time in the dimensionless units such that
the period T is equal to one, i.e. T = 1. The expressions containing the variable
T can be reached through dimensional analysis.

3.1 Lipkin–Meshkov–Glick model
The simple toy model called the Lipkin–Meshkov–Glick model (the Lipkin model
for brevity), described in [21, 22, 23], serves as a playground for testing various
hypotheses of theoretical physics. Here we briefly sketch its properties before we
proceed to work with this model. The model is described by the Hamiltonian

ˆ︂H = p ˆ︁Jx + κ

2j
ˆ︁J2
z , (3.1)

where p and κ are the parameters of the model. The total spin operator (or
quasispin operator) ˆ︁Jk—the total spin of the composition of N individual spin-1

2
systems—is defined by

ˆ︁Jk = 1
2

N∑︂
i=1

ˆ︁σ(i)
k , (3.2)

where i denotes the individual spin sites and k ∈ {x, y, z}. The operators ˆ︁σ(i)
k

have the straightforward definition

ˆ︁σ(i)
k = ˆ︁I ⊗ ...⊗ ˆ︁I⏞ ⏟⏟ ⏞

i−1 identity operators

⊗ ˆ︁σk ⊗ ˆ︁I ⊗ ...⊗ ˆ︁I⏞ ⏟⏟ ⏞
N−i identity operators

, (3.3)

where the direct product composes the individual spin sites. The operator ˆ︁σk/2
is the well known spin-1

2 angular momentum operator, where ˆ︁σk is commonly
represented by Pauli matrices.

Note that since

ˆ︁J2
z = 1

4

N∑︂
i1,i2=1

ˆ︁σ(i1)
z ˆ︁σ(i2)

z , (3.4)

the term κ
2j
ˆ︁J2
z could be considered to be the term representing an interaction

between the individual spin sites.

Restriction to Hilbert space of maximum ˆ︁J2 eigenvectors

Firstly [︂ ˆ︁J2,ˆ︂H]︂ = 0, (3.5)
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thus the evolution of the system described by the Hamiltonian (3.1) conserves
the quantum number j—the eigenvalues of ˆ︁J2 are j(j + 1). We can consequently
restrict ourselves to the Hilbert space of eigenvectors of ˆ︁J2 with some fixed quan-
tum number j. From the form of the Hamiltonian (3.1) we see that the only
quantum numbers we are interested in are the quantum numbers j and m, whose
definition we know from the general angular momentum problem [12]

ˆ︁J2 |j,m, {s}⟩ = j(j + 1) |j,m, {s}⟩ , j = 0, 1
2 , 1,

3
2 , 2,

5
2 , ...,

N

2 (3.6)
ˆ︁Jz |j,m, {s}⟩ = m |j,m, {s}⟩ , m = −j,−j + 1, ..., j − 1, j. (3.7)

The symbol {s} characterizes other quantum numbers we are not interested in.
The operators ˆ︁J⃗ = ( ˆ︁Jx, ˆ︁Jy, ˆ︁Jz)T have really the properties of angular momentum
operators since we are just adding the angular momentum states and operators.

But now we are not restricting ourselves to the angular momentum interpreta-
tion and describe the toy model that is rather general. The states and operators
do not necessarily have the meaning of angular momentum, though the mathe-
matical properties are the same. We are talking about a quasispin.

The minimum dimension of subspace preserving the quantum number j is
2j + 1. Consequently, the minimum dimension of the full Hilbert space HFull is

N/2∑︂
j=N/2−⌊N/2⌋

(2j + 1), (3.8)

i.e. grows quadratically with N . We know the dimension of the full Hilbert
space HFull distinguishing each spin, it is 2N , i.e. grows exponentially. The
structure of the full Hilbert space HFull is such that the eigenspaces with fixed
j and with basis numbered by eigenvalues of ˆ︁Jz, i.e. with dimension 2j + 1,
are used repeatedly in the construction of the full Hilbert space [22, 23]. Each
such eigenspace with dimension 2j + 1 has some multiplicity—the number of its
copies used when constricting HFull. The subspace of HFull with maximal j, i.e.
j = N/2, has multiplicity one, i.e. the dimension of the subspace is 2j + 1. It
is the consequence of the eigenstate

⃓⃓⃓
j = m = N

2

⟩︂
having only one representation

in the full Hilbert space of dimension 2N—the vector representing the state in
which all spins are possessing the state spin up |↑ ... ↑⟩ ≡ |j = m = 1

2⟩. As in
other treatises considering the Lipkin model, we will restrict ourselves to the
subspace of HFull with the highest quantum number j possible, i.e. j = N/2.

For those who want a clear proof that the eigenspace with j = N/2 has the
same dimension whether we consider the subspace of the full Hilbert space HFull
distinguishing each spin or whether we look at the space as the space with fixed
j = N/2 and variable m = −j,−j+1, ..., j−1,+j, we try to clarify it. We define
the well known ladder operators [12]

ˆ︁J±
def= ˆ︁Jx ± i ˆ︁Jy. (3.9)

We also define the space

Sjmax

def= span
{︃(︂ ˆ︁J−

)︂k
|↑ ... ↑⟩

}︃N
k=0

. (3.10)
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We state the following

∀ |ψ⟩ ∈ HFull : ˆ︁J⃗2
|ψ⟩ = N

2

(︃
N

2 + 1
)︃

|ψ⟩ ⇒ |ψ⟩ ∈ Sjmax . (3.11)

We prove the statement by contradiction—we suppose that

∃ |ψ′′⟩ ∈ HFull : ˆ︁J⃗2
|ψ′′⟩ = N

2

(︃
N

2 + 1
)︃

|ψ′′⟩ & |ψ′′⟩ /∈ Sjmax .

The above mathematical statement is equivalent to the statement

∃ |ψ′⟩ ∈ HFull : ˆ︁J⃗2
|ψ′⟩ = N

2

(︃
N

2 + 1
)︃

|ψ′⟩ & ∀ |ψ⟩ ∈ Sjmax : ⟨ψ|ψ′⟩ = 0.

From the theory behind the angular momentum quantum systems, we know
that

|ψ′⟩ =
+j∑︂

m=−j

∑︂
{s}

c(m, {s}) |j,m, {s}⟩ , c(m, {s}) ∈ C. (3.12)

From equality (3.12), we infer that there exist some k0 ∈ {0, ..., N} such that1

(︂ ˆ︁J+
)︂k0 |ψ′⟩ = c |↑ ... ↑⟩ , (3.13)

where c is some non-zero complex number (c ∈ C, c ̸= 0). Let us choose

|ψ0⟩
def=
(︂ ˆ︁J−

)︂k0 |↑ ... ↑⟩ ∈ Sjmax .

Then

⟨ψ0|ψ′⟩ =
(︃(︂ ˆ︁J−

)︂k0 |↑ ... ↑⟩ , |ψ′⟩
)︃

(3.14)

= ⟨↑ ... ↑|
(︂ ˆ︁J+

)︂k0 |ψ′⟩
(3.13)= c ⟨↑ ... ↑ | ↑ ... ↑⟩ = c ̸= 0,

i.e. we get the contradiction. The notation (•, •) in (3.14) means an ordinary
scalar product.

Note that in equation (3.12) we considered a sum ∑︁
{s}. Having proved the

statement (3.11) we know that the sum ∑︁
{s} could be omitted. Apart from j and

m, we do not need any additional quantum numbers {s} in the case j = N/2.
From the structure of the space Sjmax (3.10) and the operator ˆ︁J− (3.9, 3.2)

ˆ︁J− =
N∑︂
n=1

ˆ︁I ⊗ ...⊗ ˆ︁I⏞ ⏟⏟ ⏞
n−1

⊗
(︃ ˆ︁σx

2 − i
ˆ︁σy
2

)︃
⊗ ˆ︁I ⊗ ...⊗ ˆ︁I⏞ ⏟⏟ ⏞

N−n

,

we infer that the space Sjmax is the fully symmetrized part of HFull. It means
that every permutation of the spin sites leaves a state of the system invariant if
and only if the state belongs to Sjmax .

1Note that ˆ︁J∓ ˆ︁J± = ˆ︁J2 − ˆ︁J2
z ∓ ˆ︁Jz. For |ψ′

m⟩ def=
∑︁

{s} c(m, {s}) |j,m, {s}⟩ we get
⟨ψ′

m| ˆ︁J∓ ˆ︁J±|ψ′
m⟩ = [j(j + 1) −m(m± 1)]·|| |ψ′

m⟩ ||2. If || |ψ′
m⟩ ||2 ̸= 0 : ˆ︁J+ |ψ′

m⟩ = 0 ⇐⇒ m = j.
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3.2 Delta-driven Lipkin model—kicked top
system

The kicked top system is an archetypal system manifesting parametrically depen-
dent chaos [24]. Best characterized by its Hamiltonian

ˆ︂H(t) = κ

2j
ˆ︁J2
z + p ˆ︁JxT +∞∑︂

n=−∞
δ(t− n · T ) (3.15)

with the parameters κ and p it is simple enough for treatment and complex
enough for investigating chaos. The operators ˆ︁Jx, ˆ︁Jz are the quasispin operators
discussed in section 3.1. From equation (3.1) we see that we could conceive of the
kicked top model as a “delta-driven Lipkin model”. As in the case of the Lipkin
model we restrict ourselves to the case with the fixed quantum number j equal
to its maximal value j = N/2. The dimension of the appropriate Hilbert space
is 2j + 1, which is a result of arguments similar to those in section 3.1.

Let us now invoke equation (2.2)

ˆ︂H(t) = ˆ︂H0 + ˆ︁V0 +
+∞∑︂
n=1

(︂ ˆ︁Vne+inωt + ˆ︁V−ne
−inωt

)︂
and identify

ˆ︂H0 = κ

2j
ˆ︁J2
z ,

ˆ︁V0 = p ˆ︁Jx,ˆ︁Vn = p ˆ︁Jx, n ∈ Z.

(3.16)

We used (2.79)

+∞∑︂
n=−∞

δ
(︃
x− n · 2π

ω

)︃
= ω

2π

+∞∑︂
n=−∞

einωx.

Conceiving the simplest effective description we can get, a heuristic estimate
could be

ˆ︂HS = 1
T

lim
ε→0+

∫︂ T+ε

0+ε
ˆ︂H(t)dt = κ

2j
ˆ︁J2
z + p ˆ︁Jx = ˆ︂H0 + ˆ︁V0, (3.17)

essentially the Lipkin Hamiltonian (3.1). But knowing the methodology from
section 2.3 (equation (2.134)), we say that the Hamiltonian ˆ︂HS is a zero order
expansion of the Floquet Hamiltonian. Thus ˆ︂HS = ˆ︁G0.

We remind that we use the units in which the period T is equal to one

T = 2π
ω

= 1. (3.18)

We formulated the above equations using the letter T for the time period. Since
in our units T = 1, in the following we will omit the use of the letter T , knowing
it could be retrieved by dimensional analysis.
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For sufficiently small parameters (κ, p) the simple approximation yields a good
approximation of quasienergy levels, i.e. the plots depicted in figure 3.1. The
effective description (red dots) is compared with precise numerical results for
periodically driven Hamiltonian (3.15) (black lines).

Since the operators needed are the (2j + 1) × (2j + 1) matrices, the precise
quasienergies are easily yielded by finding the eigenvalues of the operator

e−iκˆ︁J2
z /(2j)e−ipˆ︁Jx = e−i(Some stroboscopic Floquet Hamiltonian). (3.19)

We get the precise quasienergies if we take the complex phases of the eigenvalues
of (3.19) and multiply the phases by the factor minus one. The reason for such
a procedure is that the expression (3.19) is equal to an exponential of −i times
some stroboscopic Floquet Hamiltonian. Eigenvalues of Floquet Hamiltonians are
quasienergies. The computation of eigenvalues of (3.19) is facilitated by using the
matrix expressions for the operators and replacing the operator exponentials with
matrix exponentials.

3.2.1 Use of special form of BCH formula
Here we present the approach described in paper [7]. We continue the reasoning
discussed in section 2.4. We repeat (2.150)

− ln
(︃
e−pˆ︁Be−ˆ︁A)︃ = ˆ︁A− p

adˆ︁A
e(−adˆ︁A) − 1

ˆ︁B +O(p2)

and assign

ˆ︁A = i
κ

2j
ˆ︁J2
z , (3.20)

ˆ︁B = i ˆ︁Jx. (3.21)

Bear in mind that T = 1.
It is required that

− ln
(︃
e−pˆ︁Be−ˆ︁A)︃ = i ˆ︁GSBCH[0+], (3.22)

where ˆ︁GSBCH[0+] is the Floquet Hamiltonian we seek. For our choice of ˆ︁A andˆ︁B, we get (see section A.3 in appendix A)

adˆ︁A
e(adˆ︁A) − 1

ˆ︁B = −1
2
ˆ︁J+

κ
2j (2 ˆ︁Jz + 1)

e

[︂
−i κ2j (2 ˆ︁Jz + 1)

]︂
− 1

+1
2

κ
2j (2 ˆ︁Jz + 1)

e

[︂
i κ2j (2 ˆ︁Jz + 1)

]︂
− 1

ˆ︁J−.

(3.23)

Thus

ˆ︁GSBCH[0+] ≈ κ

2j
ˆ︁J2
z + p

2

⎧⎪⎨⎪⎩−i ˆ︁J+

κ
2j (2 ˆ︁Jz + 1)

e
[︂
−i κ2j (2 ˆ︁Jz + 1)

]︂
− 1

+ H.c.

⎫⎪⎬⎪⎭ , (3.24)
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Figure 3.1: The eigenenergies of the effective Hamiltonian (3.17)—“average
Hamiltonian”—mapped on the first Brillouin zone are plotted as red dots. For
the comparison, the precise quasienergies for the kicked top system (3.15) are
plotted as black solid lines. In this figure j = 5.
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where [0+] signifies that ˆ︁GSBCH[0+] is a stroboscopic Floquet Hamiltonian tied
to the initial time right after a kick—realisation of the time delta function. The
quasienergies mapped to the first Brillouin zone are not affected by the choice of
the time to which a stroboscopic Floquet Hamiltonian is tied.

The effective Hamiltonian is in the right hand side of relation (3.24). The
eigenvalues of the effective Hamiltonian (3.24), approximating quasienergies, for
various combinations of parameters (κ, p) are depicted in figure 3.2 and compared
with precise numerical values of quasienergies.

We see that the effective description gives a good agreement for some range
of parameters. For some range of parameters, e.g. κ > 6, p = 0.1, the effective
description is insufficient. It is interesting that the complicated method presented
here gives less satisfactory results than the simple method in the previous section
approximating the Floquet Hamiltonian by ˆ︂HS = ˆ︁G0 (3.17), see figure 3.1.

3.2.2 Use of Floquet Hamiltonian and kick operator ex-
pansion

Next, and as far as we know the most successful method, seeks both the Floquet
Hamiltonian and the kick operator and expresses them in the form of a series. We
present the second-order expansion of the Floquet Hamiltonian and kick operator.
We use the theory presented in section 2.3. This method is used for the kicked
top model in paper [5]. As already mentioned

ˆ︁G0 = κ

2j
ˆ︁J2
z + p ˆ︁Jx, (3.25)

where we used (3.16, 2.134, 2.133).
From (2.133) we see that

ˆ︂K1(t) = 2p ˆ︁Jx ∞∑︂
n=1

sin (2πnt)
n

(3.26)

and from (2.136)
ˆ︁G1 = ˆ︁0. (3.27)

We repeat that T = 1 and the definition τ
def= ωt = 2πt. There is a caveat when

using the formula (3.26): for x ∈ (0, 1) it holds
∞∑︂
n=1

sin (2πnx)
n

= π

2 − π · x (3.28)

and for general x we can periodically extend the right hand side of equation
(3.28). Thus

lim
x→0−

∞∑︂
n=1

sin (2πnx)
n

= −π

2 , lim
x→0+

∞∑︂
n=1

sin (2πnx)
n

= π

2 . (3.29)

From (2.138), we get

ˆ︂K2 =
∞∑︂
n=1

1
in2

[︂ ˆ︁Vn,ˆ︂H0 + ˆ︁V0
]︂ (︂
einτ + e−inτ

)︂
. (3.30)
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Figure 3.2: The eigenenergies of the effective Hamiltonian constructed using the
special form of the BCH formula (3.24) mapped on the first Brillouin zone are
plotted as red dots. For the comparison, the precise quasienergies for the kicked
top system (3.15) are plotted as black solid lines. In this figure j = 5.
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By computing the commutator[︂ ˆ︁Vn,ˆ︂H0 + ˆ︁V0
]︂

=
[︂ ˆ︁Vn,ˆ︂H0

]︂
(3.31)

= κp

2j
[︂ ˆ︁Jx, ˆ︁J2

z

]︂
(3.32)

= −iκp2j
(︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy)︂ , (3.33)

we get

ˆ︂K2 = −κp

j

(︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy)︂ ·
∞∑︂
n=1

cos (2πnt)
n2 . (3.34)

For x ∈ (0, 1) it holds2

+∞∑︂
k=−∞

cos (2πkx)
k2 = π2

(︃
x− 1

2

)︃2
− π2

12 (3.35)

and for general x ∈ R we can periodically extend the right hand side of (3.35).
We see that the sum on the left hand side of equation (3.35) is continuous for all
x ∈ R.

From equation (2.140), we write

ˆ︁G2 =
∞∑︂
n=1

1
n2

[︂[︂ ˆ︁Vn,ˆ︂H0 + ˆ︁V0
]︂
, ˆ︁V−n

]︂
. (3.36)

Using equations (3.31, 3.33), we get

ˆ︁G2 = −iκp2j

∞∑︂
n=1

1
n2

[︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy, ˆ︁V−n
]︂

(3.37)

= −iκp
2

2j

∞∑︂
n=1

1
n2

[︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy, ˆ︁Jx]︂ . (3.38)

We compute the commutator separately[︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy, ˆ︁Jx]︂ =
[︂ ˆ︁Jy ˆ︁Jz, ˆ︁Jx]︂+

[︂ ˆ︁Jz ˆ︁Jy, ˆ︁Jx]︂
= ˆ︁Jy [︂ ˆ︁Jz, ˆ︁Jx]︂+

[︂ ˆ︁Jy, ˆ︁Jx]︂ ˆ︁Jz + ˆ︁Jz [︂ ˆ︁Jy, ˆ︁Jx]︂+
[︂ ˆ︁Jz, ˆ︁Jx]︂ ˆ︁Jy

= 2i ˆ︁J2
y − 2i ˆ︁J2

z . (3.39)

We use the known sum
∞∑︂
n=1

1
n2 = π2

6 (3.40)

and get

ˆ︁G2 = π2κp2

6j
(︂ ˆ︁J2

y − ˆ︁J2
z

)︂
. (3.41)

2The according relations for the Fourier transform are ak =
∫︁ 1

0 g(x)e−2πikxdx, g(x) =∑︁
ake

2πikx, k ∈ Z.
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Using (3.26,3.34, 2.129), we get the second-order expansion of the kick oper-
ator

ˆ︂KE2(t) = p ˆ︁Jx
π

∞∑︂
n=1

sin (2πnt)
n

− κp

4π2j

(︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy)︂ ·
∞∑︂
n=1

cos (2πnt)
n2 . (3.42)

Setting the initial and final time right before the “kick”—participation of delta
function—and using (3.29, 3.40), we get

ˆ︂KE2(0−) = lim
t→0−

ˆ︂KE2(t). (3.43)

The second-order expansion of the kick operator (tied to the starting time “ts =
0−”) reads

ˆ︂KE2(0−) = −p ˆ︁Jx
2 − κp

24j
(︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy)︂ . (3.44)

When using (3.29), we have taken the limit approaching the time t = 0 from the
left since we are describing the moment right before the kick.

Using (3.25, 3.27, 3.41, 2.128), we get the second-order expansion of the Flo-
quet Hamiltonian

ˆ︁GE2 = κ

2j
ˆ︁J2
z + p ˆ︁Jx + κp2

24j
(︂ ˆ︁J2

y − ˆ︁J2
z

)︂
. (3.45)

In figure 3.3 quasienergy spectrum for relevant parameters is computed using
second-order effective Floquet Hamiltonian (3.45) (dotted red). For the compar-
ison, the precise quasienergy spectrum is also plotted (black lines).

Figures 3.1, 3.2 and 3.3 present how faithfully the various methods approxi-
mate the quasienergies and consequently the Floquet Hamiltonians. The method
presented in this section gives the most satisfactory results for the parameters
considered.

3.2.3 Classical limit
The kicked top system was also studied in its classical form [24, 25]. We perform
the classical limit for the quantum kicked top Hamiltonian (3.15) in the following
way: We rescale the quantum quasispin operators

ˆ︂X =
ˆ︁Jx
j
, ˆ︁Y =

ˆ︁Jy
j
, ˆ︁Z =

ˆ︁Jz
j

(3.46)

and identify the limits

lim
j→∞

ˆ︁Jx
j

= X, lim
j→∞

ˆ︁Jy
j

= Y, lim
j→∞

ˆ︁Jz
j

= Z, (3.47)

lim
j→∞

ˆ︂H(t)
j

= H(t). (3.48)
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Figure 3.3: The eigenenergies of the second-order effective Hamiltonian (3.45)
mapped on the first Brillouin zone are plotted as red dots. For the comparison,
the precise quasienergies for the kicked top system (3.15) are plotted as black
solid lines. In this figure j = 5.

47



On the right hand side of equations (3.47, 3.48) are the classical variables. The
Hamiltonian for the classical kicked top3 reads

H(t) = κ

2Z
2 + pX

+∞∑︂
n=−∞

δ(t− n) . (3.49)

We keep the period equal to one T = 1.
The evolution from time immediately before the kick—realization of delta

function—to the time immediately before the next kick could be computed by
mapping

X
(︃
n+ 1

2

)︃
= X (n) ,

Y
(︃
n+ 1

2

)︃
= Y (n) cos p− Z (n) sin p,

Z
(︃
n+ 1

2

)︃
= Y (n) sin p+ Z (n) cos p,

(3.50)

X (n+ 1) = X (n) cos
[︃
κZ

(︃
n+ 1

2

)︃]︃
− Y

(︃
n+ 1

2

)︃
sin

[︃
κZ

(︃
n+ 1

2

)︃]︃
,

Y (n+ 1) = X (n) sin
[︃
κZ

(︃
n+ 1

2

)︃]︃
+ Y

(︃
n+ 1

2

)︃
cos

[︃
κZ

(︃
n+ 1

2

)︃]︃
,

Z (n+ 1) = Z
(︃
n+ 1

2

)︃
,

(3.51)

where we define the angular momentum immediately before the nth kick (real-
ization of delta function)

R⃗ (n) def= (X (n) , Y (n) , Z (n))T (3.52)
and the angular momentum immediately after the nth kick

R⃗
(︃
n+ 1

2

)︃
def=
(︃
X
(︃
n+ 1

2

)︃
, Y

(︃
n+ 1

2

)︃
, Z

(︃
n+ 1

2

)︃)︃T
. (3.53)

Derivation of equations (3.50, 3.51) is presented in the appendix B.
From equations (3.50, 3.51) we clearly see that we stay on a sphere |R⃗| =

const. when evolving from an arbitrary state R⃗0. In the following we will always
choose |R⃗| = 1. The conservation of |R⃗| is also a consequence of{︂

|R⃗|2, R⃗
}︂

= 0, (3.54){︂
|R⃗|2, H(t)

}︂
= 0 (3.55)

and known equation (B.7), where {•, •} is the Poisson bracket.
The mapping R⃗(n) → R⃗(n + 1/2) is a precession around the X axis linearly

proportional to the parameter p.
The mapping R⃗(n + 1/2) → R⃗(n + 1) is a nonlinear precession around the

Z axis—i.e. a precession the angular velocity of which depends on the value of
the Z coordinate and on the value of the parameter κ. For its opposite sign on
hemispheres Z > 0 and Z < 0, we sometimes call it “twisting” or “torsion”. An
example of an evolution of the classical kicked top on the Bloch sphere is depicted
in figure 3.4.

3In the literature more complicated formulas for classical kicked top can be found. Generally
speaking, formulas comprised of polynomials of (Jx, Jy, Jz) and familiar tray of delta kicks.
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Figure 3.4: The evolution of the classical kicked top on the Bloch sphere using
the parameters κ = 1.0, p = 0.5.

3.2.4 Classical limit of effective description
Contours of the effective Floquet Hamiltonian

We perform the classical limit of the second-order effective Floquet Hamiltonian
(3.45) in the same way we did the classical limit for the quantum kicked top
Hamiltonian. We rescale the ˆ︁J⃗ in accordance with equations (3.46). The classical
effective Hamiltonian reads HCE2 = limj→∞

ˆ︁GE2/j,

HCE2 = κ

2Z
2 + pX + κp2

24
(︂
Y 2 − Z2

)︂
. (3.56)

If we consider the evolution generated by the Hamiltonian HCE2, we find that
the Hamiltonian HCE2 is itself a constant of motion (which could be proved using
(B.7)). The trajectories governed by HCE2 on the surface of the Bloch sphere are
contours of constant HCE2. Such contours are plotted in figure 3.5. The critical
points (local maxima, minima and saddle points) for function (3.56) are discussed
in appendix C.

For the parameters κ = 1.0, p = 0.5 we get one minimum in

R⃗m = (−1, 0, 0)T , (3.57)
HCE2

(︂
R⃗m

)︂
= −p, (3.58)

one saddle point in

R⃗s = (1, 0, 0)T , (3.59)
HCE2

(︂
R⃗s

)︂
= p (3.60)

and two maxima (case II) b) in appendix C)

R⃗M1,2 =
(︄

24
47 , 0,±

√
1633
47

)︄T
, (3.61)

R⃗M1,2 ≈ (0.511, 0,±0.860)T , (3.62)

HCE2
(︂
R⃗M1,2

)︂
= 2785

4512 ≈ 0.617. (3.63)
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Figure 3.5: Contours forHCE2 = const. as trajectories implied by the Hamiltonian
(3.56). Here we use the parameters κ = 1.0, p = 0.5.

A glance at figures 3.4 and 3.5 tells us that the trajectories governed by (3.56)
are significantly different from the precise results for the classical kicked top
evolution. The main reason for the qualitative difference between figures 3.4 and
3.5 is that we did not include the action of the unitary transformation e+iˆ︁K in
our effective description. Some discrepancy is of course due to only second-order
expansion of the Floquet Hamiltonian.

Trajectories from effective description

The classical effective Hamiltonian (3.56) generates itself some trajectories on the
Bloch sphere. These trajectories are identical to the contours depicted in figure
3.5. Before we remedy these trajectories to closer fit their exact counterparts,
we present the according equations of motion generated by the classical effective
Hamiltonian (3.56)

dX
dt =

(︄
−κ+ κp2

6

)︄
Y Z,

dY
dt = −pZ +

(︄
κ− κp2

12

)︄
XZ,

dZ
dt = pY − κp2

12 XY.

(3.64)

The aforementioned equations of motion could be derived using equation (B.7).
In order to find the classical counterpart of quantum evolution, we return our

focus to equation (2.45). The evolution using equation (2.45) is depicted in figure
3.6. We could conceive the evolution from the time t1 and state |ψ(t1)⟩ to the
time t2 as a series of transformations done by unitary operators as follows

|ψ(t1)⟩ eiˆ︁K
−−→ ei

ˆ︁K |ψ(t1)⟩ e−iˆ︁G(t2−t1)
−−−−−−→ e−iˆ︁G(t2−t1)ei

ˆ︁K |ψ(t1)⟩ e−iˆ︁K
−−−→ |ψ(t2)⟩ . (3.65)

Now we use the trick—the action of the operator eiˆ︁K will be in the classical limit
changed to the evolution according to the classical limit of an auxiliary time-
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Figure 3.6: A schematic description of the evolution of the state of the system
|ψ(t1)⟩ at the time t1 to the state of the system |ψ(t2)⟩ at the time t2 using
equation (2.45). The grey arrow underneath represents a generic way of evolution
using time ordering operator T and exponential of time integral of time-dependent
Hamiltonian.

independent Hamiltonian for the transformation at the time t. The quantum
time independent auxiliary Hamiltonian tied to the time t is

ˆ︂HA[t] def= −ˆ︂K(t) (3.66)

and its classical limit is

HA[t] def= lim
j→∞

ˆ︂HA[t]
j

. (3.67)

From equation (3.44) and performing the limit (3.67) with substitutions (3.46)
we get

HA[0−] = pX

2 + κp

12Y Z . (3.68)

Having the Hamiltonians HA and HCE2 (3.68, 3.56), we replace the performance
of the time-dependent Hamiltonian (3.49)

R⃗(t1)
H(t)−−→ R⃗(t2) (3.69)

with the three evolutions implied by the time-independent Hamiltonians

R⃗(t1)
HA[t1]−−−→
∆t=1

R⃗A1
HCE2−−−−−→

∆t=t2−t1
R⃗A2

−HA[t2]−−−−→
∆t=1

R⃗(t2). (3.70)

Since we need only the vectors R⃗(t) at the times

t = n · T, n ∈ Z, (3.71)

it suffices to know the auxiliary Hamiltonian only at the time t = 0−. Note that
the auxiliary HamiltonianHA[t] is periodic in t with the period4 T . Note that even

4We use the variable T for instructiveness but we still conceive T = 1.
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though the auxiliary Hamiltonian HA[t] is a function of time, once it is considered
a Hamiltonian, it represents a time-independent Hamiltonian. Evolution dictated
by the auxiliary Hamiltonian HA[0−] (3.68) is determined by the equations

dX
dt = κp

12
(︂
−Y 2 + Z2

)︂
,

dY
dt = −p

2Z + κp

12XY,
dZ
dt = p

2Y − κp

12XZ

(3.72)

easily derived by relation (B.7). The equations of evolution for the Hamiltonian
−HA[T ] = −HA[0−] are equations (3.72) with the right hand sides multiplied by
the factor (−1).

Having equations (3.64, 3.72), we could perform the evolution of the initial
state R⃗0 by scheme (3.70). The according evolutions using effective description
just described and precise evolutions (by equations (3.50, 3.51)) are depicted
and compared in figures 3.7 and 3.8. For sufficiently small parameters (κ, p) we
get a good agreement between the effective and the precise description. The
integration of equations (3.64, 3.72) was done using the Python function odeint
from the package scipy.integrate.

Similar curves are discussed in paper [5], but the effect of the kick operator
was not taken into account in the paper. The kick operator (3.44) presented in
[5] does not include the term reflecting the discontinuity of (3.42) and instead of
taking the limit (3.29), the discontinuous term is considered to be zero.

3.2.5 Wigner function & classical effective description

The classical effective stroboscopic plots—the red curves in figures 3.7 and 3.8—
have a character of integrable trajectories. This regular character is preserved
even in the areas where the precise classical evolution is chaotic, e.g. in the lower
plots in figure 3.8. We try to show that the effective trajectories can tell us some-
thing in addition to the information yield from the chaotic precise trajectories.

In paper [26] the effect of chaotic structure on the classical, quantum and
semiclassical evolution was discussed. The use of effective trajectories instead
of precise chaotic ones was proved useful in the subsequent paper [27], where
the standard BCH formula was used for the construction of an effective Hamil-
tonian. In the paper [27] the semiclassical evolution based on classical effective
trajectories and the semiclassical evolution based on precise classical trajectories
were compared. The papers [26, 27] use the system in phase space of position
and momentum and the Hamiltonian of the form (2.144), where the constant
term is a free one spinless particle Hamiltonian and the sum of delta functions is
multiplied by purely potential term.

In this subsection, we compare the quantum evolution, the classical precise
evolution and classical effective stroboscopic plots for the kicked top system. We
visualize the quantum states by the angular momentum Wigner distribution de-
scribed in appendix D. The Wigner distribution was computed using the already
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Figure 3.7: A stroboscopic plot of the classical evolution of the kicked top system
for the parameter p = 1 and various parameters κ ∈ {0.2, 1, 6}. The precise
evolution using equations (3.50, 3.51) is in green. The effective evolution using
equations (3.64, 3.72) is in red.
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Figure 3.8: A stroboscopic plot of the classical evolution of the kicked top system
for the parameter p = 0.5 and various parameters κ ∈ {0.2, 1, 6}. The precise
evolution using equations (3.50, 3.51) is in green. The effective evolution using
equations (3.64, 3.72) is in red.
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existing code5 from the package QuantumOptics of the programming language
Julia [29]. We were also inspired by web page [28] where the use of the package
QuantumOptics was discussed in connection with the kicked top system.

Regular case

We begin with an example where the evolution is regular and the effective strobo-
scopic trajectories do not significantly differ from the precise ones. We consider
the example of regular (not chaotic) evolution plotted in the upper plots in figure
3.7, i.e. the kicked top system with the parameters κ = 0.2, p = 0.1. Since the
effective stroboscopic trajectories do not significantly differ from the precise ones,
we compare the evolution of the quantum case with the precise stroboscopic clas-
sical trajectories. We use the quantum system with the quantum number j = 5.
The quantum states are represented by the angular momentum Wigner distribu-
tion described in appendix D, which is suitable for a system with a quasispin.
The Wigner distributions for the initial state and the states propagated in time
are plotted in figures 3.9 and 3.10. The initial state is the coherent spin state
(D.33) centred in the position θ = π

2 rad, ϕ = π
2 rad. The coherent spin states are

described in appendix D. In figures 3.9 and 3.10 we also plot the stroboscopic plot
of the precise classical trajectories, which is placed on the colour contour plots
of Wigner distributions for comparison. The right plots of figures 3.9 and 3.10
depict the precise classical evolution of the 79 355 points initially homogeneously
distributed in the area where the Wigner distribution is greater than half of its
maximum value. This area is characterized by the angular radius ∆θ ≈ 0.378 rad.
As we can see, the classical stroboscopic plot (in black) suggests how the initial
coherent spin state will evolve.

The lower left plot in figure 3.10 resembles the initial state. This effect we
identify as an effect of the Poincaré recurrence [30], the plots representing the
times shortly before the time t = 511 are in figure D.11 in appendix D.

Chaotic case

For the demonstration of the chaotic case, we chose the parameters κ = 3 and
p = 0.7. Figure 3.11 demonstrates that the effective Hamiltonian (3.45) still
accurately approximates the quasienergies. The stroboscopic plot of the classical
effective (in red) and classical precise (in green) evolution is in figure 3.12. The
upper and lower part of the figure represent the same stroboscopic plot but use
different ways of visualization of the plot. The red curves of the stroboscopic plots
in figure 3.12 are used in figures 3.13 and 3.14 where they are plotted as black solid
lines. Figures 3.13 and 3.14 also show the Wigner distribution for the quantum
version of the kicked top system with the quantum number j = 10. The initial
state is the coherent spin state centred in the position θ = π

2 rad, ϕ = 0.9 rad. The
right plots in figures 3.13 and 3.14 represent precise classical evolution (in green)
on the background of the classical effective stroboscopic plot (in black). For the
precise classical evolution (in green) we used 79 847 points initially homogeneously
distributed in the area where the Wigner distribution has its value greater than

5Although we used the code from [28], we checked its validity using our own code in Python
and changed the normalisation of the Wigner function so that it follows the definitions presented
in appendix D.
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Figure 3.9: The evolution of the kicked top system. The stroboscopic plot of
precise classical regular (not chaotic) trajectories is plotted as black solid lines.
The precise classical evolution (3.50, 3.51) of the classical points at times t is
plotted in green in the right column. The angular momentum Wigner function
is plotted as a colour contour plot in the left column. We used the parameters
κ = 0.2, p = 0.1, j = 5.

56



Figure 3.10: A continuation of figure 3.9. At the time t = 511 the system gets
close to the initial state, i.e. we observe the effect of the Poincaré recurrence.
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Figure 3.11: The eigenenergies of the second-order effective Hamiltonian (3.45)
mapped on the first Brillouin zone are plotted as red dots. For the comparison,
the precise quasienergies for the kicked top system (3.15) are plotted as black
solid lines. In this figure p = 0.7, j = 10. The blue line in the figure represents
the value κ = 3 used in figures 3.12 and 3.13.

half of its maximum. The area has a circular shape with the angular radius
∆θ ≈ 0.265 rad.

Note that both the evolution of the quantum state of the system (colour
contours) and the precise classical evolution of the system (in green) at the early
stages of evolution evolve approximately in accordance with the classical effective
trajectories.

From the lower right plot in figure 3.10, it could seem that the spreading of
the classical points in figure 3.10 is similar to the spreading we see in the lower
right plot in figure 3.14 (though much slower). The two instances are different
since in the case of figure 3.10 the points of the precise evolution stay in the
area with borders characterized by black curves. This is illustrated in figure 3.15
where the points for the time t = 3000 are plotted.

3.2.6 Kicked top and kicked rotor

Having worked with the kicked top system, it is worth mentioning another similar
system manifesting chaotic motion—the kicked rotor [31, 25, 24].

Kicked rotor

The kicked rotor system is a simple model widely used for investigating chaos.
We could conceive the kicked rotor as a system of a particle confined to a sin-
gle circular trajectory. The particle thus has the position characterized by an
angle φ ∈ [0, 2π) and the angular momentum p ∈ (−∞,+∞). In addition, we
periodically switch on for infinitesimal duration the homogeneous potential field
antiparallel to the x-axis. Such a system is depicted in figure 3.16.

The main characteristic of the kicked rotor system is its Hamiltonian. Its
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Figure 3.12: A stroboscopic plot of the classical evolution of the kicked top for
the parameters κ = 3, p = 0.7. We show two equivalent visualisations (upper
part versus lower part of the figure) of the stroboscopic evolution on the Bloch
sphere. The precise evolution using equations (3.50, 3.51) is in green. The effec-
tive evolution using equations (3.64, 3.72) is in red.

quantum mechanical form reads

ˆ︂HR(t) =
ˆ︁p2

2I + k cos( ˆ︁φ)
+∞∑︂

n=−∞
δ (t− n) , (3.73)

where (I, k) are the parameters of the system, ˆ︁p represents angular momentum
and ˆ︁φ represents an angle assigned to the particle and measured from the x-axis.
The following commutation relation holds

[ ˆ︁φ, ˆ︁p] = iℏ. (3.74)

Thus p and φ are canonical variables.
The system is best described stroboscopically. In order to yield such a de-

scription let us invoke the Heisenberg picture

|ψH⟩ def= |ψ(t0)⟩ = const., (3.75)ˆ︁AH(t) def= ˆ︁U †(t, t0) ˆ︁A ˆ︁U(t, t0), (3.76)

where ˆ︁A is some observable in the Schrödinger picture and ˆ︁AH is its counterpart
in the Heisenberg picture. Let us denote

( ˆ︁φH (n) , ˆ︁pH (n)) (3.77)
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Figure 3.13: The evolution of the kicked top system. The quantum state at the
time t is represented by the angular momentum Wigner distribution—the colour
contours of the left plot (more about the distribution in appendix D). The green
area in the right plots represents precise evolution using equations (3.50, 3.51).
The black solid lines in the background of every plot represent the stroboscopic
plot of the effective evolution computed by equations (3.64, 3.72), see figure 3.12.
The parameters of the system are κ = 3, p = 0.7, j = 10.
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Figure 3.14: A continuation of figure 3.13.
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Figure 3.15: The precise classical points from figures 3.9 and 3.13 at the time
t = 3000 are plotted in green. The initial points at the time t = 0 are plotted
in blue. The stroboscopic classical precise plot for the case κ = 0.2, p = 0.1 is
plotted in black (left plot). The stroboscopic classical effective plot for the case
κ = 3, p = 0.7 is plotted in red (right plot).

Figure 3.16: Kicked rotor system could be conceived as a particle confined to
a circle and propelled by delta pulses of a homogeneous field antiparallel to the
x-axis. The direction of the field is indicated by the turquoise arrow in the figure.
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the angle and angular momentum operators in the Heisenberg picture right before
the nth “kick”—realization of the time delta function. Then the stroboscopic
equations for evolution read [25]

ˆ︁pH (n+ 1) = ˆ︁pH (n) + k sin ( ˆ︁φH (n)) , (3.78)

ˆ︁φH (n+ 1) = ˆ︁φH (n) +
ˆ︁pH (n+ 1)

I
. (3.79)

Classical limit and Chirikov standard map

The classical kicked rotor system is described by Hamiltonian (3.73), where we
replace the operators with the phase variables without hats. The same process
(omitting the hats) done to the stroboscopic equations (3.78, 3.79) yields classical
stroboscopic equations for classical evolution [25]. By rescaling the momentum
and introducing a new parameter,

P = p

I
, (3.80)

K = k

I
, (3.81)

we get a system described by one parameter K. The map

P (n+ 1) = mod (P (n) +K sin (φ (n)) , 2π) , (3.82)
φ (n+ 1) = mod (φ (n) + P (n+ 1) , 2π) (3.83)

is widely known as the Chirikov standard map [32]. Note that we have taken the
space coordinate and momentum pair (φ, P ) modulo 2π. The Chirikov standard
map is depicted in figure 3.17.

We define the function modulo mod(•, •) : R × R+ → R+
0 the following way

mod(a, c) = z ⇔ a ∈ R, c ∈ R+
0 ∃!z ∈ [0, c) , k ∈ Z : a = k · c+ z. (3.84)

It is easy to realise

mod(a+ b, c) = mod (mod(a, c) + b, c) . (3.85)

And thus the classical stroboscopic map of the kicked rotor (equation (3.82) with-
out modulo function and equation (3.83)) is a periodic extension of the Chirikov
standard map in the p (or P ) phase variable.

Classical kicked rotor as limit of kicked top

The kicked top and kicked rotor systems are two different systems differing in
their properties. Both are useful when studying classical and quantum chaos.
The obvious difference is the topology of the phase spaces. The phase space of
kicked rotor is an infinitely long cylinder with canonical phase variables φ and p.
When it comes to quantum kicked top, introducing new operators ˆ︁ϕ and ˆ︁p in the
following way

ˆ︁Jx =
√︂
j(j + 1) − ˆ︁P2 · cos ˆ︁ϕ, (3.86)ˆ︁Jy =

√︂
j(j + 1) − ˆ︁P2 · sin ˆ︁ϕ, (3.87)ˆ︁Jz = ˆ︁P , (3.88)
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Figure 3.17: The Chirikov standard map for the four parameters K = 0.5—upper
left, K = 1—upper right, K = 2—down left, K = 5—down right.

yields commutation relation [22, 25][︂ ˆ︁ϕ, ˆ︁P]︂ = iˆ︁I, (3.89)

where ˆ︁I is an identity operator. Thus the variables ϕ, P are canonical phase
variables and the phase space of the kicked top has the topology of a sphere.

We already did the classical limit of the kicked top in section 3.2.3. Now we
would like to emphasise that the classical limit in section 3.2.3 is not a unique
way of performing such a limit. But it is the way one would likely prefer. One
reason for such a limit, where the parameters (κ, p) are kept constant, is that the
thresholds for regularity–chaos transition are characterized by the parameters
(κ, p) of the order of one.

In this section, we perform the classical limit of the quantum kicked top system
in such a way that we arrive at the classical kicked rotor system. An intuitive
way of doing it is to restrict the evolution of the kicked top system to a narrow
equatorial waist band of the Bloch sphere. This equatorial waist band is then
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Figure 3.18: The Bloch sphere—the phase space of the kicked top system. The
equatorial waist band considered when taking the classical limit is coloured in
red. When the limit is applied the kicked top transforms into the kicked rotor.

identified with part of the infinitely long cylinder—the phase space of the kicked
rotor system. Figure 3.18 illustrates the idea of the narrow equatorial waist band.

Now we present the technicalities of the limit. As j infinitely grows we rescale
the parameters of the quantum kicked top in the following way

κ = j

I ′ , (3.90)

p = k′

j
, (3.91)

where we introduced the new parameters (I ′, k′) which are kept constant when
performing the limit. And we describe the quantum kicked top Hamiltonian by
the observables ˆ︁ϕ and ˆ︁P , which were introduced by equations (3.86, 3.87, 3.88).
The classical Hamiltonian after the limit is defined by

HCTR = lim
j→∞

ˆ︂H, (3.92)

where ˆ︂H is the kicked top Hamiltonian (3.15). We do not divide the quantum
kicked top Hamiltonian by the quantum number j when doing the limit. The
reason for not doing that is easily checked by transcribing the according equations
with ℏ which is throughout this thesis considered equal to one.

Since

lim
j→∞

κ

2j
ˆ︁J2
z = lim

j→∞

1
2I ′

ˆ︁P2 = 1
2I ′ P

2 (3.93)

and

lim
j→∞

p ˆ︁Jx = lim
j→∞

k′

j
ˆ︁Jx = lim

j→∞
k′

⌜⃓⃓⎷j(j + 1)
j2 −

ˆ︁P2

j2 cos ˆ︁ϕ = k′ cosϕ, (3.94)
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the classical Hamiltonian yielded by the limit is

HCTR = 1
2I ′ P

2 + k′ cosϕ
+∞∑︂

n=−∞
δ(t− n). (3.95)

We get the same classical Hamiltonian as the classical Hamiltonian for the kicked
rotor—equation (3.73) with observables turned into the classical variables by the
omission of heads. After the classical limit of the quantum kicked top, we get the
classical kicked rotor. This illustrates the non-uniqueness of quantization. So in
some sense, we could consider the kicked top to be a quantized classical kicked
rotor. But what we normally call the quantum kick rotor is different from the
quantum kicked top. Note that there is principally no reason for the introduction
of the operator ⌜⃓⃓⎷j(j + 1)

j2 −
ˆ︁P2

j2 (3.96)

that is equal to number one when the classical limit is done.

Quantum kicked rotor as semiclassical limit of kicked top

The quantum kicked rotor is described by its Hamiltonian (3.73) and by the range
of its canonical phase variables, i.e. φ ∈ [0, 2π) and p ∈ (−∞,+∞). Thus, it is
natural to impose the condition for wave functions6 ψ(φ) = ψ(φ+ 2π). And it is
also natural to introduce the following basis

⟨φ|m⟩ = 1√
2π
eiφm,m ∈ Z. (3.97)

The scalar product is

(ψ1, ψ2) =
∫︂ 2π

0
ψ∗

1(φ)ψ2(φ)dφ. (3.98)

It is easy to realise the following equalities hold

ˆ︁p |m⟩ = m |m⟩ ,m ∈ Z, (3.99)ˆ︁φ |φ⟩ = φ |φ⟩ , φ ∈ [0, 2π), (3.100)

|φ⟩ = 1√
2π

+∞∑︂
n=−∞

e−iφn |n⟩ , (3.101)

|m⟩ = 1√
2π

∫︂ 2π

0
dφeiφm |φ⟩ . (3.102)

Now we perform a semiclassical limit of the kicked top and show that we get the
quantum kicked rotor system described above. We follow the procedure presented
in [31].

Since equation (2.61) holds, the only important evolution operators are
ˆ︁U(t, 0−) (3.103)

6If we seek the quantum version of the Chirikov standard map, we may arrive at Hamiltonian
(3.73), but (φ, p) ∈ R2. Then the quantum kicked rotor is characterized by the solutions for
the quantum Chirikov standard map with quasimomentum k = 0 from Bloch’s theorem (2.11).
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for t ∈ (0, 1) ∪ {0+}, where 0− signifies that the initial time is right before the
kick—realisation of the time delta function. The sign 0+ signifies the time right
after the kick.

For the quantum kicked rotor system the evolution operator reads

ˆ︁UR(t, 0−) = e−iˆ︁p2t/(2I)e−ik cos( ˆ︁φ), t ∈ (0, 2π) (3.104)ˆ︁UR(0+, 0−) = e−ik cos( ˆ︁φ), (3.105)ˆ︁UR(0−, 0−) ≡ ˆ︁I, (3.106)

where ˆ︁I is an identity operator.
For the quantum kicked top system the evolution operator, in new variables

(3.90, 3.91), reads

ˆ︁UT (t, 0−) = e−i
ˆ︁P2t/(2I ′)e−ik

′ˆ︂X, t ∈ (0, 2π) (3.107)
ˆ︁UT (0+, 0−) = e−ik

′ˆ︂X, (3.108)ˆ︁UT (0−, 0−) ≡ ˆ︁I. (3.109)

In the semi-classical limit we use rescaled variables

ˆ︂X =
ˆ︁Jx
j
, (3.110)

ˆ︁Y =
ˆ︁Jy
j
, (3.111)

ˆ︁P = ˆ︁Jz. (3.112)

The kicked top system is described by two quantum numbers j and m. It
holds

ˆ︁P |j,m⟩ = m |j,m⟩ ,m ∈ {−j,−j + 1, ..., 0, 1, ..., j − 1, j}. (3.113)

It is easily seen that when we perform the semi-classical limit
m

j
→ 0 (3.114)

the matrix elements of ˆ︁p for the kicked rotor (3.99) and of ˆ︁P for the kicked top
(3.113) become identical. What we want to show now is that the matrix elements
of cos ˆ︁φ and ˆ︂X become identical when we perform the semi-classical limit (3.114).

It is common formalism in quantum mechanics to introduce the operators ˆ︁J±
(3.9). And it is a quite known result that

ˆ︁J± |j,m⟩ =
√︂

(j ∓m)(j ±m+ 1) |j,m± 1⟩ . (3.115)

Since ˆ︁Jx = ( ˆ︁J+ + ˆ︁J−)/2, we get the matrix elements

⟨m|ˆ︂X|n⟩ = 1
2j

[︃√︂
(j − n)(j + n+ 1)δm,n+1 +

√︂
(j + n)(j − n+ 1)δm,n−1

]︃
.

(3.116)
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Now let us find the matrix elements of cos( ˆ︁φ):

⟨m| cos( ˆ︁φ)|n⟩ =
∫︂ 2π

0

∫︂ 2π

0
dφdφ′ ⟨m|φ⟩ ⟨φ| cos( ˆ︁φ)|φ′⟩ ⟨φ′|n⟩ . (3.117)

Expressing

⟨φ| cos( ˆ︁φ)|φ′⟩ = 1
2δ(φ− φ′)

(︂
eiφ + e−iφ

)︂
(3.118)

and using (3.97), we get

2 ⟨m| cos( ˆ︁φ)|n⟩ =
∫︂ 2π

0
dφei(n−m+1)φ +

∫︂ 2π

0
dφei(n−m−1)φ, (3.119)

⟨m| cos( ˆ︁φ)|n⟩ = 1
2 (δm,n+1 + δm,n−1) . (3.120)

Doing the semi-classical limit (3.114) of the kicked top, the right hand sides
of equations (3.116) and (3.120) become identical. Thus this semi-classical limit
of the kicked top yields the quantum kicked rotor.

3.3 Harmonically-driven Lipkin model I
Now we consider the Hamiltonian

ˆ︂H(t) = κ

2j
ˆ︁J2
z cos (2πt) + p ˆ︁Jx . (3.121)

The Hamiltonian above is the Hamiltonian of the Lipkin model (3.1) where we
multiplied the “interaction” term κ

2j
ˆ︁J2
z by the function cos (2πt) so in this sense

we consider a “harmonically-driven Lipkin model”. In the following, we seek
effective Hamiltonians of this model. We present two methods. Both of the
methods successfully approximate quasienergies for low values of the parameters
κ, p and consequently provide effective Hamiltonians that work well for these
parameters.

3.3.1 Numerical integration of Schrödinger equation
In the following subsections, we construct the effective Hamiltonians. Its eigen-
values approximate quasienergies. For comparison, we compute the quasienergies
by numerical integration of the equation

i
∂

∂t
ˆ︁U(t, 0) = ˆ︂H(t) ˆ︁U(t, 0), ˆ︁U(0, 0) = ˆ︁I, (3.122)

which yields the Floquet operator ˆ︁F [0] = ˆ︁U(1, 0).
Having computed the Floquet operator, we get quasienergies from the complex

arguments (multiplied by minus one) of the eigenvalues of the Floquet operatorˆ︁F [0] = ˆ︁U(1, 0). The quasienergies computed this way7 are plotted in figures 3.19
and 3.20.

7For the numerical integration, we used the Python package scipy.integrate and from
there we chose the interface ode in which we chose the integrator ’zvode’ with the parameters
method = ’bdf’, rtol = 10**(-5).
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3.3.2 Use of interaction picture
Here we describe the method that uses the interaction picture and some approx-
imations. This procedure is presented in paper [8].

We define

ˆ︁U0(t) def= e
−iκ sin(2πt)

4πj
ˆ︁J2
z . (3.123)

We also define the operator ˆ︁UI(t). It is such an operator that the following
equation holds ˆ︁U(t, 0) = ˆ︁U0(t) ˆ︁UI(t), (3.124)

where ˆ︁U(t, 0) is the standard evolution operator in the Schrödinger picture.
We express the following term

i
∂ ˆ︁UI(t)
∂t

= −κ cos (2πt)
2j

ˆ︁J2
z
ˆ︁U †

0(t) ˆ︁U(t, 0) + ˆ︁U †
0(t)

(︄
i
∂ ˆ︁U(t, 0)
∂t

)︄
(3.125)

= ˆ︁U †
0(t)

[︄
−κ cos (2πt)

2j
ˆ︁J2
z

]︄ ˆ︁U(t, 0) + ˆ︁U †
0(t)ˆ︂H(t) ˆ︁U(t, 0) (3.126)

(3.121)= ˆ︁U †
0(t)

(︂
p ˆ︁Jx)︂ ˆ︁U0(t) ˆ︁UI(t). (3.127)

The solution to differential equation (3.127) could be found in an analogous
way we solve the ordinary time-dependent Schrödinger equation using the time
ordering operator T, i.e.

ˆ︁UI(t) = Te−ip
∫︁ t

0
ˆ︁U †

0(t) ˆ︁Jx ˆ︁U0(t)dt. (3.128)

From the equalities (A.45, A.47), devised in appendix A, or from known prop-
erties of quasispin operators we getˆ︁J2

z
ˆ︁J+ = ˆ︁J+

(︂ˆ︁I + 2 ˆ︁Jz + ˆ︁J2
z

)︂
, (3.129)ˆ︁J−

ˆ︁J2
z =

(︂ˆ︁I + 2 ˆ︁Jz + ˆ︁J2
z

)︂ ˆ︁J−, (3.130)

ˆ︁U †
0(t) ˆ︁J+

ˆ︁U0(t)
(3.129)= ˆ︁J+e

+iκ sin(2πt)
4πj (ˆ︁I + 2 ˆ︁Jz)e+iκ sin(2πt)

4πj
ˆ︁J2
z ˆ︁U0(t) (3.131)

= ˆ︁J+e
+iκ sin(2πt)

4πj (ˆ︁I + 2 ˆ︁Jz), (3.132)

ˆ︁U †
0(t) ˆ︁J−

ˆ︁U0(t)
(3.130)= ˆ︁U †

0(t)e−i
κ sin(2πt)

4πj
ˆ︁J2
z e

−iκ sin(2πt)
4πj (ˆ︁I + 2 ˆ︁Jz) ˆ︁J− (3.133)

= e
−iκ sin(2πt)

4πj (ˆ︁I + 2 ˆ︁Jz) ˆ︁J−, (3.134)

ˆ︁U †
0(t) ˆ︁Jx ˆ︁U0(t)

(3.9)= 1
2
ˆ︁J+e

+iκ sin(2πt)
4πj (ˆ︁I + 2 ˆ︁Jz) + H.c. (3.135)

Now we express the Floquet operator

ˆ︁F [0] (T=1)= ˆ︁U(1) (3.124)= ˆ︁U0(1) ˆ︁UI(1) (3.123)= ˆ︁UI(1). (3.136)

Let us seek the approximation of the stroboscopic Floquet Hamiltonian tied
to the initial time t = 0. Let us denote the Floquet Hamiltonian ˆ︁G[0]. The
following relations hold

ˆ︁F [0] = e−iˆ︁G[0] ≈ ˆ︁I − i ˆ︁G[0]. (3.137)
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For low p we get

ˆ︁F [0] (3.136)= ˆ︁UI(1)
(3.128)

≈ ˆ︁I − ip
∫︂ 1

0
ˆ︁U †

0(t) ˆ︁Jx ˆ︁U0(t)dt (3.138)
(3.140)

≈ ˆ︁I − ipIE. (3.139)

We define the integral

IE
def=

∫︂ 1

0
ˆ︁U †

0(t) ˆ︁Jx ˆ︁U0(t)dt (3.140)

(3.135)= 1
2
ˆ︁J+

∫︂ 1

0
e
+iκ sin(2πt)

4πj (ˆ︁I + 2 ˆ︁Jz)dt+ H.c. (3.141)

We transcribe the integral using the Jacobi–Anger identity [33]

eiz cos(τ) =
+∞∑︂

n=−∞
ineinτJn(z), (3.142)

eiz cos(τ−π/2) = eiz sin(τ) =
+∞∑︂

n=−∞
einτJn(z), (3.143)

where Jn are the nth-order Bessel functions, i.e.

IE = 1
2
ˆ︁J+J0

[︄
κ

4πj (ˆ︁I + 2 ˆ︁Jz)
]︄

+ H.c. (3.144)

Since

ˆ︁G[0]
(3.137, 3.139)

≈ pIE, (3.145)

we have

ˆ︁G[0] ≈ p

2
ˆ︁J+J0

[︄
κ

4πj (ˆ︁I + 2 ˆ︁Jz)
]︄

+ H.c. , (3.146)

where the right hand side of the equation above is the desired expression for the
effective Hamiltonian.

Figure 3.19 depicts the quasienergies mapped to the first Brillouin zone for
various parameters. In the figure, we compare the quasienergies approximated by
the eigenvalues of the effective Hamiltonian above (3.146) with the quasienergies
computed by the method described in subsection 3.3.1.

3.3.3 Use of Floquet Hamiltonian and kick operator ex-
pansion

Here we apply the method from section 2.3.We transcribe our Hamiltonian (3.121)
into the form

ˆ︂H(t) = p ˆ︁Jx + κ

4j
ˆ︁J2
z

(︂
e2πit + e−2πit

)︂
, (3.147)

70



from which we identify (2.2)

ˆ︂H0 + ˆ︁V0 = p ˆ︁Jx, (3.148)ˆ︁V1 = ˆ︁V−1 = κ

4j
ˆ︁J2
z . (3.149)

From equation ˆ︁G0 = ˆ︂H0 + ˆ︁V0 (2.134) we get

ˆ︁G0 = p ˆ︁Jx (3.150)

and from equation (2.133) and τ
def= ωt = 2πt we get

ˆ︂K1(t) = i
(︂ ˆ︁V−1e

−2πit − ˆ︁V1e
+2πit

)︂
(3.151)

= κ

2j sin (2πt) ˆ︁J2
z . (3.152)

Equation (2.136) immediately gives

ˆ︁G1 = 0. (3.153)

In this case, when ˆ︁V1 = ˆ︁V−1 and the other operators ˆ︁Vn, n > 1 are equal to
zero, equation (2.138) dictates

ˆ︂K2(t) = −i
[︂ ˆ︁V1,ˆ︂H0 + ˆ︁V0

]︂
e2πit + i

[︂ˆ︂H0 + ˆ︁V0, ˆ︁V−1
]︂
e−2πit. (3.154)

We compute [︂ ˆ︁V1,ˆ︂H0 + ˆ︁V0
]︂

= κp

4j
[︂ ˆ︁J2

z ,
ˆ︁Jx]︂ (3.155)

= iκp

4j
(︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy)︂ (3.156)

and by the Hermitian conjugation of (3.156) we get
[︂ˆ︂H0 + ˆ︁V0, ˆ︁V−1

]︂
= −iκp

4j
(︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy)︂ . (3.157)

From equations (3.154, 3.156, 3.157) we get

ˆ︂K2(t) = κp

2j cos (2πt)
(︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy)︂ . (3.158)

Considering ˆ︁V1 = ˆ︁V−1, that the operators ˆ︁Vn, n > 1 are equal to zero and
equation (2.140), we get

ˆ︁G2 = 1
2
[︂[︂ ˆ︁V1,ˆ︂H0 + ˆ︁V0

]︂
, ˆ︁V−1

]︂
+ 1

2
[︂[︂ ˆ︁V−1,ˆ︂H0 + ˆ︁V0

]︂
, ˆ︁V1

]︂
(3.159)

=
[︂[︂ ˆ︁V1,ˆ︂H0 + ˆ︁V0

]︂
, ˆ︁V1

]︂
(3.160)

(3.156)= ipκ2

16j2

[︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy, ˆ︁J2
z

]︂
(3.161)

= − pκ2

16j2

(︂ ˆ︁Jx ˆ︁J2
z + 2 ˆ︁Jz ˆ︁Jx ˆ︁Jz + ˆ︁J2

z
ˆ︁Jx)︂ . (3.162)
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Using equations (2.128, 3.150, 3.153, 3.162), we get the second-order expansion
of the Floquet Hamiltonian

ˆ︁G ≈ p ˆ︁Jx − pκ2

64π2j2

(︂ ˆ︁Jx ˆ︁J2
z + 2 ˆ︁Jz ˆ︁Jx ˆ︁Jz + ˆ︁J2

z
ˆ︁Jx)︂ . (3.163)

Using equations (2.129, 3.152, 3.158), we get the second-order expansion of
the kick operator

ˆ︂K(t) ≈ κ

4πj sin (2πt) ˆ︁J2
z + κp

8π2j
cos (2πt)

(︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy)︂ . (3.164)

The quasienergies approximated by the eigenvalues of the effective Hamilto-
nian (3.163) are plotted in figure 3.20 (after mapping them to the first Brillouin
zone). In the figure, we also include the quasienergies yielded from the numerical
integration of the Schrödinger equation (3.122) as described in subsection 3.3.1.

Comparing figures 3.19 and 3.20, we conclude that (in the chosen ranges of
parameters) the method in section 3.3.2 yields better results than the method
in this section. Note though, that the method in the present section is more
universal, which is supported by its usefulness in finding effective Hamiltonians
for all models in this chapter.

Note that since the effective Hamiltonians (3.163) and (3.146) are simple, the
eigenvalues of the effective Hamiltonians depend linearly on p. The dependencies
of the quasienergies approximated by the effective Hamiltonian on the parameter
κ in the upper and lower plot in figure 3.20 are consequently related by scaling
constant 3. This scaling is obscured by mapping to the first Brillouin zone.
A similar scaling is in figure 3.19. Note though, that the method in subsection
3.3.1 does not show such simple dependence.

3.4 Harmonically-driven Lipkin model II
Another choice of harmonic driving is represented by the Hamiltonian

ˆ︂H(t) = κ

2j
ˆ︁J2
z + p ˆ︁Jx cos (2πt) . (3.165)

We present this model since we want to provide the case where the delta driving,
considered in the kicked top system, is substituted by harmonic driving. Also,
the term p ˆ︁Jx could represent the potential energy of the spins in some external
field, which could be made time-dependent.

Here we construct the effective Hamiltonian by the method yielding a Floquet
Hamiltonian and kick operator expansion, described in section 2.3. Using this
method for the third time we straightforwardly infer the effective Hamiltonian
and the second-order expansion of the kick operator.

From equation (2.2), we get

ˆ︂H0 + ˆ︁V0 = κ

2j
ˆ︁J2
z , (3.166)

ˆ︁V1 = ˆ︁V−1 = p ˆ︁Jx
2 . (3.167)

72



Figure 3.19: The eigenvalues of the effective Hamiltonian (3.146) mapped to
the first Brillouin zone are plotted as red dots. The quasienergies obtained by
numerically integrating the Schrödinger equation (3.122) are plotted as black
lines. In this figure j = 5.
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Figure 3.20: The eigenvalues of the effective Hamiltonian (3.163) mapped to
the first Brillouin zone are plotted as red dots. The quasienergies obtained by
numerically integrating the Schrödinger equation (3.122) are plotted as black
lines. In this figure j = 5.
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The next steps are similar to those in subsection 3.3.3.
ˆ︁G0

(2.134)= κ

2j
ˆ︁J2
z , (3.168)

ˆ︂K1(t)
(2.133)= −ip

ˆ︁Jx
2
(︂
e2πit − e−2πit

)︂
(3.169)

= p ˆ︁Jx sin (2πt) (3.170)ˆ︁G1
(2.136)= 0. (3.171)

We compute the term ˆ︂K2(t), from expansion (2.129), the following way

ˆ︂K2(t)
(2.138)= −i

[︂ ˆ︁V1,ˆ︂H0 + ˆ︁V0
]︂
e2πit − i

[︂ ˆ︁V−1,ˆ︂H0 + ˆ︁V0
]︂
e−2πit (3.172)

= −2i cos (2πt)
[︂ ˆ︁V1,ˆ︂H0 + ˆ︁V0

]︂
(3.173)

(3.166, 3.167)= −iκp

2j cos (2πt)
[︂ ˆ︁Jx, ˆ︁J2

z

]︂
(3.174)

(3.156)= −κp

2j cos (2πt)
(︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy)︂ . (3.175)

Similarly, we compute the term ˆ︁G2, from expansion (2.128), as follows

ˆ︁G2
(2.140)= 1

2
[︂[︂ ˆ︁V1,ˆ︂H0 + ˆ︁V0

]︂
, ˆ︁V−1

]︂
+ 1

2
[︂ ˆ︁V1,

[︂ˆ︂H0 + ˆ︁V0, ˆ︁V−1
]︂]︂

(3.176)

=
[︂[︂ ˆ︁V1,ˆ︂H0 + ˆ︁V0

]︂
, ˆ︁V1

]︂
(3.177)

(3.166, 3.167)= κp

4j

[︄[︂ ˆ︁Jx, ˆ︁J2
z

]︂
,
p ˆ︁Jx
2

]︄
(3.178)

= κp2

4j
(︂ ˆ︁J2

y − ˆ︁J2
z

)︂
. (3.179)

Using equations (2.128, 3.168, 3.171, 3.179), we get the effective Hamiltonian

ˆ︁G ≈ κ

2j
ˆ︁J2
z + κp2

16π2j

(︂ ˆ︁J2
y − ˆ︁J2

z

)︂
. (3.180)

Similarly, from equations (2.129, 3.170, 3.175), we get the second-order ex-
pansion of the kick operator

ˆ︂K(t) ≈ p

2π
ˆ︁Jx sin (2πt) − κp

8π2j
cos (2πt)

(︂ ˆ︁Jy ˆ︁Jz + ˆ︁Jz ˆ︁Jy)︂ . (3.181)

The quasienergies approximated by the eigenvalues of the effective Hamilto-
nian (3.180) are (after mapping to the first Brillouin zone) plotted in figures 3.21
and 3.22. In these figures are also plotted the quasienergies yielded by numeri-
cal integration of equation i∂t ˆ︁U(t, 0) = ˆ︂H(t) ˆ︁U(t, 0) and similar procedure as in
section 3.3.1.

Note that since the effective Hamiltonian (3.180) linearly depends on the
parameter κ, the quasienergies yielded from the effective Hamiltonian in figure
3.21 form straight lines. For the same reason, in figure 3.22 the curves yielded
from the effective Hamiltonian in the upper and lower plot are connected by
scaling factor 5 = 3.5/0.7. This connection is less obvious due to mapping to the
first Brillouin zone. The curves yielded by integrating the Schrödinger equation
(2.53)—the black curves—do not have such simple properties.
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Figure 3.21: The eigenvalues of the effective Hamiltonian (3.180) mapped to
the first Brillouin zone are plotted as red dots. The quasienergies obtained by
numerically integrating the Schrödinger equation (2.53) are plotted as black lines.
In this figure j = 5.

76



Figure 3.22: The eigenvalues of the effective Hamiltonian (3.180) mapped to
the first Brillouin zone are plotted as red dots. The quasienergies obtained by
numerically integrating the Schrödinger equation (2.53) are plotted as black lines.
In this figure j = 5.
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3.5 Comment on small time period
In section 2.5 we described the small time period limit by relations (2.166, 2.167).
From the numerical simulations, particularly the figures of quasienergy spectra
3.1, 3.2, 3.3, 3.11, 3.19, 3.20, 3.21 and 3.22, we see that the effective Hamiltonians
work well for the parameters which do not necessarily satisfy the requirements
of equations (2.166, 2.167). Particularly, in the limiting case of high frequency
ω/(2π) = 1, the borders of the first Brillouin zone ±π are considered to be big
numbers. Nevertheless, the eigenvalues of the effective Hamiltonians, which are
in the limiting case (2.166, 2.167) small numbers, reach the border of the first
Brillouin zone and still approximate accurately the precise quasienergies. But it
is natural when testing physical models to test their limitations, particularly the
ranges of parameters for which the models start to fail.

Considering all the effective Hamiltonians (3.17, 3.24, 3.45, 3.146, 3.163,
3.180) constructed in this thesis, the condition for converging Floquet Hamil-
tonian series is that the parameters κ and p are small.8 We demonstrated this
condition by the comparison between the quasienergies yielded using effective
Hamiltonians and the quasienergies computed by other techniques. In the mod-
els studied the parameters κ and p give converging Floquet Hamiltonians not just
for values9 κ ≪ 1/j and p ≪ 1/j, given by relations (2.166, 2.167), bud also for
values κ ≈ 1, p ≈ 1 and j = 5.

The converging series for Floquet Hamiltonians does not mean that the fast
changes are necessarily negligible. The fast changes are described by the operator
e−iˆ︁K(t) and generally could be significant (but they are not significant in the
limiting case (2.166, 2.167), as was shown in section 2.5). Nevertheless, we saw
that in the particular cases of the kicked top system with parameters κ = 0.2, p =
0.1, j = 5 (figure 3.9) and κ = 3, p = 0.7, j = 10 (figure 3.13) the evolution given
by stroboscopic plots10 told us a lot about the evolution of the systems without
telling us anything about the fast part of the evolution.

8If we measure the parameters κ and p in energy units, then in SI units the values κT/ℏ
and pT/ℏ should be small.

9We estimate the norm of the angular momentum operators to be of the order of j.
10Constructing a stroboscopic plot, only a Floquet Hamiltonian and a kick operator ˆ︁K(ts)

at a specific time ts are needed, i.e. we do not need the full functional dependence of the kick
operator.
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Conclusion
The thesis comprises a pedagogical presentation of the theory and a study of the
specific systems. To make the thesis more educational, we included the first chap-
ter with simplistic examples that help the reader to understand the peculiarities
of the theory. The thesis strives to be self-consistent and in doing so presents a
couple of appendices.

Although appearing in the journals as a tailored method for a specific system,
the Floquet theory is a universal theory describing quantum systems with time-
dependent periodic Hamiltonians. The first part of the second chapter provides
a general introduction to the Floquet theory with all its subtleties. Both forms of
the central Floquet theorem are presented and their interconnection is manifested.
Using simple examples and insight from the formalism described, we present the
ambiguities in the formal objects that can arise. We have learned that the Floquet
Hamiltonian unambiguously describes the quasienergy spectrum, even though
Floquet Hamiltonians can have different sets of eigenvalues. With all the formal
objects and concepts presented, the analysis of the systems is easier as is shown
in the next parts of the thesis.

The second part of the second chapter is a detailed description of the methods
for constructing the series for Floquet Hamiltonians. Apart from assuming that
the systems are finite and subjected to fast driving, we aim to be as general as
possible. Also, we expose the cases of systems whose theoretical treatment can
be simplified and lay out how to handle these systems. At the end of the second
chapter, we describe more precisely the limit of fast driving using the methods
described earlier. We observe the division of the evolution into fast and slow
parts and the scaling of the magnitude of fast changes with the length of the time
period.

In the second chapter, we mostly compiled information from many sources.
There are also a few works that aim at presenting the Floquet theory in a general
way, as we do [16, 18]. Our discussion of formalism focuses on the elemental
objects of the theory and variants and extensions of the formalism found in the
literature. We illustrate the concepts on various examples, which were extracted
from diverse sources.

One of the main outcomes of the thesis is the comparison between various
methods for the construction of an effective Hamiltonian. This was done in the
third chapter. While some of the examples were separately presented in the
recent papers [5, 7, 8], this thesis puts them together, adds some new examples
and compares the accuracy of the various methods. The method characterized
by finding an effective Hamiltonian alongside constructing a kick operator has
proved to be accurate and universal.

An important area of interest, which emerged in the third chapter, was the
classical limit. The classical limit of the effective description is particularly in-
teresting. As far as we know, there was done a little on this construct. The
importance of the classical effective trajectories remains an unanswered question.
Nevertheless, a recent paper presents that these trajectories are beneficial for
quasiclassical evolution [27]. Although there has been some discussion over the
classical limit of the effective Hamiltonian of the kicked top model [5], the classical
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effective trajectories for the kicked top model constructed in this thesis (taking
into account the action of the kick operator) are, to our knowledge, new result.

In connection with the kicked top system, we mentioned another famous sys-
tem, the kicked rotor. Using infinite Hilbert space, the kicked rotor system rep-
resents an extension to the intended scope of the thesis. As was presented in
the literature [24, 25] and in this thesis, these two systems have many common
features and can be made identical by doing special limits. From this part, we
can extend our thesis to address systems with infinite Hilbert spaces.

The first important possible extension of the thesis is, as was mentioned in
the introduction, to study the analogues of quantum phase transitions in excited
spectra based on the theory presented. We provided a good foundation on which
a more specialized theory can be built. After reading this thesis the reader should
be able to understand most of the insights found in the specialized papers, e.g.
in [5, 7, 8]. The second important possible extension is a study of the classical
effective trajectories mentioned above.
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A. Baker–Campbell–Hausdorff
formula
Here several equalities connected with the BCH formula are discussed.

A.1 Integral form of BCH formula
We aim to devise a special form of the BCH formula for the special form of one
of the two operators within the BCH formula. Here we prove the rather general
integral form of the BCH formula from which we get the special form of the
BCH formula as a special case. In our proof, we restrict ourselves to operators
represented by d× d matrices. We will follow the proof presented in [34, 35].

Let A and B be arbitrary d × d complex matrices. We define the operator1

adA the following way

(adA)(B) def= [A,B] = AB − BA. (A.1)

The function of adA is defined using the Taylor series for that function. The
powers of adA have straightforward meaning

(adA)n B = [A, [A, ... [A,B]] ...]n⏞ ⏟⏟ ⏞
n commutators

(A.2)

and (adA)0 is defined to be an identity matrix.
We define the norm of a matrix A:

||A|| = sup
||v⃗||

||Av⃗||
||v⃗||

, (A.3)

where sup is an abbreviation for the supremum.
The integral form of the Baker–Campbell–Hausdorff formula states the fol-

lowing [34]:
For any two d×d matrices A, B with sufficiently small norm (A.3), the matrix

C = ln(eAeB) is uniquely defined and

C = B +
∫︂ 1

0
gBCH

(︃
et adAeadB

)︃
Adt , (A.4)

where

gBCH(z) = ln z
z − 1 . (A.5)

Equation (A.4) is the integral form of the BCH formula to be proven below
Let us define a matrix function Qθ(Many) the following way

Qθ(Many) def= eθAManye
−θA, (A.6)

1By saying that adA is an operator we mean that it takes a matrix and returns a matrix.
It is simple to see that adA is linear.
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where A,Many are some arbitrary matrices.
By doing a derivative, we get

d

dθ
Qθ(Many) = [A,Qθ(Many)] = adA (Qθ(Many)) . (A.7)

What we have is a differential equation. We know that for θ = 0 we get
Qθ=0 = Many, i.e. we know the initial condition for the solution of the differential
equation (A.7). It is easy to check that the solution of the differential equation is

Qθ(Many) = eθadA(Many) (A.8)

= Many + θ [A,Many] + θ2

2! [A, [A,Many]] + ... (A.9)

By choosing θ = 1 and from equalities (A.6, A.8) we get the equation

eAManye
−A = eadAMany. (A.10)

The equation above will be used later during the proof.
We define another auxiliary matrix that is a function of two real arguments

Maux(s, t) def= esC(t) ∂

∂t
e−sC(t), (A.11)

where the t-dependent matrix C(t) will be defined later.
The following relation holds

∂Maux(s, t)
∂s

= [C(t),Maux(s, t)] − ∂C(t)
∂t

= adC(t)Maux(s, t) − ∂C(t)
∂t

. (A.12)

The solution of differential equation (A.12) is [35]

Maux(s, t) = eadC(t)Maux(0, t) −
∫︂ s

0
dre(s− r)adC(t) ∂C(t)

∂t
. (A.13)

We realise that Maux(0, t) = 0, set s = 1 and transcribe equation (A.13) into

eC(t) ∂

∂t
e−C(t) = −faux(adC(t))

∂C(t)
∂t

, (A.14)

where

faux(z) def= ez − 1
z

= 1 + z

2! + z2

3! + z3

4! + z4

5! + z5

6! +O(z6). (A.15)

From the trivial equality

∂

∂τ

(︂
eKe−K

)︂
= 0 =

(︄
∂eK

∂τ

)︄
e−K + eK

(︄
∂e−K

∂τ

)︄
, (A.16)

where K is an arbitrary matrix we get(︄
∂

∂t
eK(t)

)︄
e−K(t) = faux(adK(t))

∂K(t)
∂t

, (A.17)

which is also a useful equation.
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Having devised the important equalities (A.10, A.14), we continue and use
them. We define

C(t) def= ln
(︂
etAeB

)︂
, (A.18)

where the matrices A and B are the matrices from theorem (A.4). We remind
that definition (A.18) works well only if the matrices A and B are sufficiently
small (the norm is given by (A.3)).

The following relation holds

eC(t) ∂

∂t
e−C(t) = −A. (A.19)

Using (A.14) we get

A = faux(adC(t))
∂C(t)
∂t

. (A.20)

For an arbitrary matrix Many, we get

eadC Many = eCManye
−C = etAeBManye

−Be−tA (A.21)
= et adAeBManye

−B (A.22)
= et adAeadBMany, (A.23)

where we repeatedly used equation (A.10). From equation (A.23) we get

eadC = et adAeadB . (A.24)

For sufficiently small A and B, the logarithm of the right hand side of (A.24)
is defined and

adC = ln
(︃
et adAeadB

)︃
. (A.25)

Noting that

faux(ln(z))gBCH(z) = 1, (A.26)

we transcribe (A.25) the following way

faux (adC) = faux

[︃
ln
(︃
et adAeadB

)︃]︃
(A.27)

(A.26)=
[︃
gBCH

(︃
et adAeadB

)︃]︃−1
. (A.28)

Transcribing equation (A.20) using equation (A.28) we get

A =
[︃
gBCH

(︃
et adAeadB

)︃]︃−1 ∂C(t)
∂t

, (A.29)

gBCH

(︃
et adAeadB

)︃
A = ∂C(t)

∂t
. (A.30)

Integrating equation (A.30) from t = 0 to t = 1 and using definition (A.18),
we get ∫︂ 1

0
gBCH

(︃
et adAeadB

)︃
Adt = ln

(︂
eAeB

)︂
− B, (A.31)

which proves the integral form of the BCH formula (A.4).
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A.2 Special form of BCH formula
Replacing

(A,B) → (−B,−A) , (A.32)

we get the alternative form of the BCH formula

− ln
(︂
e−Be−A

)︂
= A +

∫︂ 1

0
gBCH

(︃
e−t adBe−adA

)︃
Bdt. (A.33)

Further replacement

B → pB, (A.34)

where p is considered to be a small parameter, gives

− ln
(︂
e−pBe−A

)︂
= A + p

∫︂ 1

0
gBCH

(︃
e−t adpBe−adA

)︃
Bdt, (A.35)

= A + p
∫︂ 1

0
gBCH

(︃
e−tp adBe−adA

)︃
Bdt, (A.36)

where we used adpB = p adB.
By considering the parameter p to be small and approximating

e−tp adB ≈ I +O(p), (A.37)

where I is an identity matrix, we get

− ln
(︂
e−pBe−A

)︂
= A + p gBCH

(︃
e−adA

)︃
B +O(p2). (A.38)

The special form of the BCH formula reads

− ln
(︂
e−pBe−A

)︂
= A − p

adA

e−adA − 1
B +O(p2) , (A.39)

which in finite Hilbert spaces is equivalent to its operator form (2.150) used in
this thesis. Since we consider finite Hilbert spaces, operators are represented by
matrices. Note that since we used the integral form of the BCH formula (A.4),
we require the matrix A to be sufficiently small.

A.3 Proof of identity (3.23) facilitating use of
special BCH formula

Here we derive the identity (3.23)

adˆ︁A
e(adˆ︁A) − 1

ˆ︁B = −1
2
ˆ︁J+

κ
2j (2 ˆ︁Jz + 1)

e

[︂
−i κ2j (2 ˆ︁Jz + 1)

]︂
− 1

+ 1
2

κ
2j (2 ˆ︁Jz + 1)

e

[︂
i κ2j (2 ˆ︁Jz + 1)

]︂
− 1

ˆ︁J−,
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where (3.20, 3.21)

ˆ︁A = i
κ

2j
ˆ︁J2
z ,

ˆ︁B = i ˆ︁Jx.
First we recall the well known formulas for quasispin operators[︂ ˆ︁Jα, ˆ︁Jβ]︂ = iεαβγ ˆ︁Jγ, (A.40)[︂ ˆ︁Jz, ˆ︁J+

]︂
= ˆ︁J+, (A.41)[︂ ˆ︁Jz, ˆ︁J−

]︂
= − ˆ︁J−. (A.42)

We repeat the definition of the ladder operators (3.9)

ˆ︁J±
def= ˆ︁Jx ± i ˆ︁Jy

and express the operator ˆ︁B using the ladder operators

ˆ︁B = i ˆ︁Jx = i

2( ˆ︁J+ + ˆ︁J−). (A.43)

The following relations hold[︂ ˆ︁J2
z ,
ˆ︁J+
]︂

= ˆ︁Jz [︂ ˆ︁Jz, ˆ︁J+
]︂

+
[︂ ˆ︁Jz, ˆ︁J+

]︂ ˆ︁Jz (A.44)

= ˆ︁Jz ˆ︁J+ + ˆ︁J+
ˆ︁Jz = 2 ˆ︁J+

ˆ︁Jz + ˆ︁J+ = ˆ︁J+(2 ˆ︁Jz + 1), (A.45)[︂ ˆ︁J2
z ,
ˆ︁J−
]︂

= ˆ︁Jz [︂ ˆ︁Jz, ˆ︁J−
]︂

+
[︂ ˆ︁Jz, ˆ︁J−

]︂ ˆ︁Jz (A.46)

= − ˆ︁Jz ˆ︁J− − ˆ︁J−
ˆ︁Jz = −2 ˆ︁Jz ˆ︁J− − ˆ︁J− = −(2 ˆ︁Jz + 1) ˆ︁J−. (A.47)

It is expedient to transcribe the term adˆ︁A ˆ︁B using the ˆ︁J• operators

adˆ︁A ˆ︁B =
[︄
i
κ

2j
ˆ︁J2
z ,
i

2( ˆ︁J+ + ˆ︁J−)
]︄

(A.48)

= −1
2
κ

2j
(︂[︂ ˆ︁J2

z ,
ˆ︁J+
]︂

+
[︂ ˆ︁J2

z ,
ˆ︁J−
]︂)︂

(A.49)

= −1
2
κ

2j
(︂ ˆ︁J+(2 ˆ︁Jz + 1) − (2 ˆ︁Jz + 1) ˆ︁J−

)︂
. (A.50)

We also compute the double application of adˆ︁A on ˆ︁B
adˆ︁A (︂adˆ︁A ˆ︁B)︂ =

[︂ ˆ︁A, adˆ︁A ˆ︁B]︂
=

[︄
i
κ

2j
ˆ︁J2
z ,−

1
2
κ

2j
(︂ ˆ︁J+(2 ˆ︁Jz + 1) − (2 ˆ︁Jz + 1) ˆ︁J−

)︂]︄

= − i

2

(︄
κ

2j

)︄2 (︂[︂ ˆ︁J2
z ,
ˆ︁J+(2 ˆ︁Jz + 1)

]︂
−
[︂ ˆ︁J2

z , (2 ˆ︁Jz + 1) ˆ︁J−
]︂)︂

= − i

2

(︄
κ

2j

)︄2 (︂[︂ ˆ︁J2
z ,
ˆ︁J+
]︂

(2 ˆ︁Jz + 1) − (2 ˆ︁Jz + 1)
[︂ ˆ︁J2

z ,
ˆ︁J−
]︂)︂

= − i

2

(︄
κ

2j

)︄2 (︂ ˆ︁J+(2 ˆ︁Jz + 1)2 + (2 ˆ︁Jz + 1)2 ˆ︁J−
)︂
. (A.51)
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Considering the aforementioned we pose the conjecture
(︂
adˆ︁A)︂n ˆ︁B = −1

2(i)n−1
(︄
κ

2j

)︄n (︂ ˆ︁J+(2 ˆ︁Jz + 1)n + (−1)n(2 ˆ︁Jz + 1)n ˆ︁J−
)︂
. (A.52)

We compute

adˆ︁A (︂(︂adˆ︁A)︂n ˆ︁B)︂ =

=
[︄
i
κ

2j
ˆ︁J2
z ,−

1
2(i)n−1

(︄
κ

2j

)︄n (︂ ˆ︁J+(2 ˆ︁Jz + 1)n + (−1)n(2 ˆ︁Jz + 1)n ˆ︁J−
)︂]︄

= −(i)(n+1)−1

2

(︄
κ

2j

)︄(n+1)(︂[︂ ˆ︁J2
z ,
ˆ︁J+(2 ˆ︁Jz + 1)n

]︂
+ (−1)n

[︂ ˆ︁J2
z , (2 ˆ︁Jz + 1)n ˆ︁J−

]︂)︂

= −(i)(n+1)−1

2

(︄
κ

2j

)︄(n+1)(︂[︂ ˆ︁J2
z ,
ˆ︁J+
]︂

(2 ˆ︁Jz + 1)n + (−1)n(2 ˆ︁Jz + 1)n
[︂ ˆ︁J2

z ,
ˆ︁J−
]︂)︂
.

Now according to equations (A.45) and (A.47) we get

adˆ︁A (︂(︂adˆ︁A)︂n ˆ︁B)︂ =

= −1
2(i)(n+1)−1

(︄
κ

2j

)︄(n+1) (︂ ˆ︁J+(2 ˆ︁Jz + 1)n+1 + (−1)n+1(2 ˆ︁Jz + 1)n+1 ˆ︁J−
)︂
.

Thus the conjecture (A.52) is proven.
Now we use the expansion

z

ez − 1 =
∞∑︂
n=0

Bn
zn

n! = 1 − z

2 + z2

12 − z4

720 + z6

30 240 − z8

1 209 600 +O(z10),(A.53)

where Bn are the Bernoulli numbers [36]. And we transcribe

adˆ︁A
e

(︂
−adˆ︁A)︂ − 1

= −
−adˆ︁A

exp
(︂
−adˆ︁A)︂− 1

(A.54)

= −
∞∑︂
n=0

Bn

(︂
−adˆ︁A)︂n
n! = −

∞∑︂
n=0

Bn
(−1)n
n!

(︂
adˆ︁A)︂n . (A.55)

Using the conjecture (A.52) we write
adˆ︁A

e

(︂
adˆ︁A)︂ − 1

ˆ︁B =

= −
∞∑︂
n=0

Bn
(−1)n
n!

(︃
−1

2

)︃
(i)n−1

(︄
κ

2j

)︄n(︂ ˆ︁J+(2 ˆ︁Jz + 1)n + (−1)n(2 ˆ︁Jz + 1)n ˆ︁J−
)︂

=
(︃

− i

2

)︃ ∞∑︂
n=0

Bn
(−1)n
n! (i)n

(︄
κ

2j

)︄n (︂ ˆ︁J+(2 ˆ︁Jz + 1)n + (−1)n(2 ˆ︁Jz + 1)n ˆ︁J−
)︂

= − i

2
ˆ︁J+

∞∑︂
n=0

Bn
1
n!

(︄
−i κ2j (2 ˆ︁Jz + 1)

)︄n
− i

2

∞∑︂
n=0

Bn
1
n!

(︄
i
κ

2j (2 ˆ︁Jz + 1)
)︄n ˆ︁J−

= −1
2

ˆ︁J+
κ
2j (2 ˆ︁Jz + 1)

exp
(︂
−i κ2j (2 ˆ︁Jz + 1)

)︂
− 1

+ 1
2

κ
2j (2 ˆ︁Jz + 1) ˆ︁J−

exp
(︂
i κ2j (2 ˆ︁Jz + 1)

)︂
− 1

.

So the desired identity is proven.

87



B. Map for classical kicked top

Figure B.1: A one period (T = 1) evolution from the moment immediately before
a delta function performance (a ”kick” or delta pulse) to the moment immediately
before the next delta function performance. The evolution from the time tn to
the time tn+1 is divided into two steps. The first step is the evolution from
immediately before the ”kick” at tn to immediately after the ”kick” at tn+1/2.
The second step is the evolution from tn+1/2 to immediately before the next
”kick” at tn+1.

Here we present the derivation of the classical map for the evolution of the
kicked top system from immediately before an application of the delta function
to immediately before the next application of the delta function.

First, we denote the time moments as follows

tn = n− ∆, n ∈ Z, (B.1)
tn+1/2 = n+ ∆, n ∈ Z. (B.2)

The labels of time moments defined by equations (B.1, B.2) are depicted in figure
B.1. The time interval ∆ is considered small (in comparison with T = 1).

As we know, the system is described by the kicked top Hamiltonian (3.15)

ˆ︂H(t) = κ

2Z
2 + pXT

+∞∑︂
n=−∞

δ(t− n · T ).

We divide the time evolution from the time tn to the time tn+1 into two steps.
First, we evolve the system from the time tn to the time tn+1/2. During such
evolution we consider the delta function part of the Hamiltonian (3.15) to be
dominant. Thus the evolution is in practice governed by the Hamiltonian

H(p) = pX
+∞∑︂

n=−∞
δ(t− n). (B.3)

Since t ∈ (tn, t1+1/2) ≡ (n− ∆, n+ ∆), we have

Hn(p) = pXδ(t− n). (B.4)

In the following, we use the smallness of the auxiliary parameter ∆. We con-
sider the delta function δ(x) to be well approximated by the ”support function”
[1/(4∆)] · (sign(x+ ∆) − sign(x− ∆)). Our approximation of the delta function
is plotted in figure B.2.

The equation (B.4) is thus simplified and we have

Hn(p) = 1
2∆pX. (B.5)
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Figure B.2: An approximation of the delta function δ(t) using the small parameter
∆.

Now we use the known relation for angular momenta (or classical limit for
commutator [û, v̂] → iℏ{u, v})

{X, Y } = Z, {Y, Z} = X, {Z,X} = Y (B.6)

and the known equation from classical mechanics

df
dt = {f,H} + ∂f

∂t
, (B.7)

where {•, •} is the Poisson bracket. The function f is an arbitrary function of
phase space coordinates and time. The function H is a Hamiltonian of a system.
We substitute f = Jk, k ∈ {x, y, z}, H = Hn(p) and we get

dR⃗(t)
dt = 1

2∆

⎛⎜⎝0 0 0
0 0 −p
0 p 0

⎞⎟⎠ R⃗(t). (B.8)

The solution is easy to get and easily verified by substitution. The solution reads

R⃗(t) = exp

⎛⎜⎝
⎛⎜⎝0 0 0

0 0 −p
0 p 0

⎞⎟⎠ t− tn
2∆

⎞⎟⎠ R⃗(tn). (B.9)

Choosing t = ∆ + n ≡ tn+1/2 = tn + 2∆ we get

R⃗
(︂
tn+1/2

)︂
= exp

⎛⎜⎝
⎛⎜⎝0 0 0

0 0 −p
0 p 0

⎞⎟⎠
⎞⎟⎠ R⃗ (tn) =

⎛⎜⎝1 0 0
0 cos p − sin p
0 sin p cos p

⎞⎟⎠ R⃗ (tn) . (B.10)

Now we can formally perform the limit ∆ → 0. We devised equations (3.50).
In the second step, we evolve the system from the time tn+1/2 to the time

tn+1. During this interval, the delta function could be considered zero. Thus the
evolution is governed by the Hamiltonian

H(κ) = κ

2Z
2. (B.11)

89



Using equation (B.7), we get

dX
dt = −κ

2
{︂
X,Z2

}︂
= −κ

2 (Z {X,Z} + {X,Z}Z) (B.12)

= −κY Z, (B.13)
dY
dt = κXZ, (B.14)

dY
dt = 0. (B.15)

Using equation (B.15), we consider Z to be constant during the whole evolu-
tion from the time tn+1/2 to the time tn+1. Consequently, we get

dR⃗(t)
dt =

⎛⎜⎝ 0 −κZ 0
κZ 0 0
0 0 0

⎞⎟⎠ R⃗(t). (B.16)

The solution of the above differential equation reads

R⃗(t) = exp

⎛⎜⎝
⎛⎜⎝ 0 −κZ 0
κZ 0 0
0 0 0

⎞⎟⎠ (t− tn+1/2)

⎞⎟⎠ R⃗ (︂tn+1/2
)︂
. (B.17)

Choosing t = tn+1 = tn+1/2 + 1 − 2∆ and considering the limit ∆ → 0, we get

R⃗ (n+ 1) = exp

⎛⎜⎝
⎛⎜⎝ 0 −κZ 0
κZ 0 0
0 0 0

⎞⎟⎠
⎞⎟⎠ R⃗(︃n+ 1

2

)︃
. (B.18)

Computing the matrix exponential, we get equations (3.51)

R⃗ (n+ 1) =

⎛⎜⎝cos (κZ) − sin (κZ) 0
sin (κZ) cos (κZ) 0

0 0 1

⎞⎟⎠ R⃗(︃1 + 1
2

)︃
. (B.19)
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C. Lagrange multipliers
Here we find the critical points of the function (3.56)

HCE2 = κ

2Z
2 + pX + κp2

24
(︂
Y 2 − Z2

)︂
(C.1)

depending on the parameters (κ, p).
The method of Lagrange multipliers uses the following theorem:
Let U ⊂ Rn is an open set. Let there is a⃗ = (a1, ..., an) ∈ Rn. Let there are

functions f, F1, ..., Fm : U → Rn, where m < n. And let
i)F1(a⃗) = ... = Fm(a⃗),
ii)M def= {x ∈ U : F1(x) = ... = Fm(x) = 0},
iii) the matrix

(︂
∂Fi(a)
∂xj

)︂
ij
, i ∈ {1, ...,m}, j ∈ {1, ..., n} has the rank equal to m,

iv)f, F1, ..., Fm have continuous first derivatives.
If f is thought of as a function on the set M and if f has a critical point (local
minimum, maximum or saddle point) in a⃗, then there exist λ1, ..., λm ∈ R such
that

∇⃗f(a⃗) =
m∑︂
j=1

λj∇⃗Fj(a⃗). (C.2)

In this case, we have m = 1 and f = HCE2. The set M is determined by

F1(X, Y, Z) = 1 −X2 − Y 2 − Z2 = 0. (C.3)

Let us find all the possible critical points of HCE2. Using equation (C.2), we
have

∂ (HCE2 − λ1F1)
∂X

= p− 2Xλ1 = 0. (C.4)

For λ1 ̸= 0 (i.e. p ̸= 0), we get

X = p

2λ1
(C.5)

Next, using equation (C.2), we get

∂ (HCE2 − λ1F1)
∂Y

= κp2

12 Y − 2Y λ1 = 0. (C.6)

There are two options satisfying equation (C.6):
I)

κp2

12 = 2λ1 =⇒ λ1 = κp2

24 , (C.7)

II)

Y = 0. (C.8)
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Next, considering equation (C.2), we get

∂ (HCE2 − λ1F1)
∂Z

= −κp2

12 Z − 2Zλ1 + κZ, (C.9)

= Z ·
(︄
κ− κp2

12

)︄
− 2λ1Z = 0. (C.10)

Thus either

a)

Z = 0 (C.11)

or
b)

λ1 = 1
2

(︄
κ− κp2

12

)︄
. (C.12)

We consider only the case p ̸= 0. Then the following four options are all the
possible critical points:

I) a)

X = 12/ (κp) ,

Y = ±

⌜⃓⃓⎷1 −
(︄

12
κp

)︄2

,

Z = 0,

(C.13)

I) b)

p = ±
√

6,
X = ±2

√
6/κ,

Y 2 + Z2 = 1 − 24
κ2 ,

(C.14)

II) a)

X = ±1,
Y = 0,
Z = 0,

HCE2 = ±p

(C.15)

II) b)

X = p ·
(︂
κ− κp2/12

)︂−1
,

Y = 0,
Z = ±

√
1 −X2,

HCE2 = κ

2 − κp2

24 + 1
2 · p2

κ− κp2/12 .

(C.16)
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D. Angular momentum Wigner
distribution and coherent states
In order to understand the visualisation techniques used in section 3.2.5, we
present fragments of the theory of coherent spin states. The more scrutinized
discussion is in paper [37]. And we also describe the angular momentum Wigner
distribution, described in papers [38, 39]. Many of the statements in this appendix
we present without proof and support for their validity could be found in the
sources cited.

D.1 Coherent states of harmonic oscillator
Coherent spin states are an analogue of coherent states of a one-dimensional
harmonic oscillator [12, 37, 40]

|α⟩ def= e−|α|2/2eαˆ︁a† |E0⟩ , (D.1)

where α is an arbitrary complex number and ˆ︁a† is the creation operator known
from a harmonic oscillator. The ground state of a one-dimensional harmonic
oscillator is |E0⟩.

We remind that

ˆ︁a† |En⟩ =
√
n+ 1 |En+1⟩ , (D.2)ˆ︁a |En⟩ =

√
n |En−1⟩ , (D.3)

where |En⟩ , n ∈ N0 are the energy eigenstates of a one-dimensional harmonic
oscillator and ˆ︁a is a harmonic oscillator annihilation operator.

The operators ˆ︁a and ˆ︁a† satisfy

ˆ︁aˆ︁a† − ˆ︁a†ˆ︁a = ˆ︁I. (D.4)

We recall the position and momentum operators [12]

ˆ︁x =
√︄

1
2mω (ˆ︁a† + ˆ︁a), ˆ︁p = i

√︃
mω

2 (ˆ︁a† − ˆ︁a), (D.5)

where ω is the angular frequency of the oscillator and m is the mass of the particle
associated with the oscillator.

Using equation (D.2), we transcribe equation (D.1) into

|α⟩ =
+∞∑︂
n=0

fn(α) |En⟩ , (D.6)

fn(α) def= e−|α|2/2 α
n

√
n!
. (D.7)

The complex conjugate of f3(α), i.e. the function f ∗
3 (α), is visualized in figure

D.1.
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Figure D.1: The dependence of the scalar product ⟨α|E3⟩ = f ∗
3 (α) on α. The

landscape represents the absolute value | ⟨α|E3⟩ | and the colour represents the
phase arg ⟨α|E3⟩ ∈ (−π, π].

If we attempt to identify the functions fn(α) (D.7) with the states of a two-
dimensional harmonic oscillator with two (rescaled) coordinates x1, x2 ∈ R, we
find that the states ⟨x1, x2|ψ(n)⟩ = fn(α = x1 + ix2)/

√
π form just a proper subset

of the energy and angular momentum eigenstates of a two-dimensional harmonic
oscillator [37].

The states |α⟩ span the whole Hilbert space H1D of a one-dimensional har-
monic oscillator since

1
π

∫︂∫︂
dIm(α)dRe(α) |α⟩ ⟨α| =

+∞∑︂
n=0

|En⟩ ⟨En| = ˆ︁I. (D.8)

The states |α⟩ form an overcomplete set in H1D. It, leisurely speaking, means
that there is too much states indexed by α, i.e. more than is needed. We show the
overcompleteness by the simple but instructive example. If the states |α⟩ form
the basis, i.e. the set that is not overcomplete, then each state |ψ⟩ is uniquely
determined by some function Cψ(α), α ∈ C the following way

|ψ⟩ =
∫︂∫︂

dIm(α)dRe(α)Cψ(α) |α⟩ . (D.9)

We show that the uniqueness of C|ψ⟩ is not a property of the set {|α⟩}. We define

Cρ0,ρ1(α) def=

⎧⎪⎪⎨⎪⎪⎩
0 if |α| < ρ0,

N(ρ0, ρ1) if ρ0 ≤ |α| ≤ ρ1,

0 if ρ1 ≤ |α|.
(D.10)

From the equations∫︂∫︂
dIm(α)dRe(α)Cρ0,ρ1 |α⟩ = N(ρ0)

∫︂ ρ1

ρ0
dρ
∫︂ 2π

0
dφ

+∞∑︂
n=0

e−ρ2/2ρ
n+1einφ√
n!

|En⟩

= 0 + |E0⟩N(ρ0, ρ1)2π
∫︂ ρ1

ρ0
ρe−ρ2/2dρ (D.11)

N(ρ0, ρ1) =
(︃

2π
∫︂ ρ1

ρ0
ρe−ρ2/2dρ

)︃−1
, (D.12)
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Figure D.2: A schematical representation of the function g(α) def= ⟨α|β⟩. We define
β1

def= Re(β), β2
def= Im(β). In this particular example β = 2 + i. The blue circles

represent the Gaussian shape of the landscape |g(α)| = e−|α−β|2/2. The straight
turquoise solid lines represent the points of the same phase arg g(α) = 0, the
distance between these lines is 2π/|β|. The phase of the function g(α) increases
in the direction of the vector (β2,−β1)T .

we see that all the ρ1 > ρ0 ≥ 0, ρ1, ρ0 ∈ R define functions Cρ0,ρ1(α) that define the
same state |E0⟩ = |α = 0⟩, i.e. the state |E0⟩ does not define C|E0⟩(α) uniquely.

The consequence of overcompleteness is that the set {⟨α|}, α ∈ C is not or-
thogonal

⟨α|β⟩ = e−|α−β|2/2eiIm(α∗β). (D.13)

The function g(α) def= ⟨α|β⟩ can be described schematically. Let us define
α1,2, β1,2 ∈ R by α = α1 + iα2 and β = β1 + iβ2. The absolute value |g(α))|
is characterized by a Gaussian shape centred in the position β, i.e. |g(α)| =
e−|α−β|2/2. The phase is equal to zero on the line α2 = α1β2/β1 and increases in
the direction characterized by the vector in the two-dimensional complex plane
(β2,−β1)T , generally the phase is equal to the scalar product (α1, α2)(β2,−β1)T =
Im(α∗β). The contours of the same phase form straight lines parallel to the line
α2 = α1β2/β1 and have distances between each other equal to 2π/|β|. The
function g(α) is schematically described in figure D.2 and visualized in figure
D.3, where we used β = 2 + i.

The harmonic oscillator coherent states |α⟩ are states with the mean values
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Figure D.3: The dependence of the scalar product ⟨α|β = 2 + i⟩ on α. The
landscape represents the absolute value | ⟨α|2 + i⟩ | and the colour represents the
phase arg ⟨α|2 + i⟩ ∈ (−π, π].

of position and momentum determined the following way

⟨α|ˆ︁x|α⟩ =
√︄

2
mω

Reα, (D.14)

⟨α|ˆ︁p|α⟩ =
√

2mωImα. (D.15)

The variations of position and momentum for the coherent states are

⟨α| (ˆ︁x− ⟨α|ˆ︁x|α⟩)2 |α⟩ = 1
2mω, (D.16)

⟨α| (ˆ︁p− ⟨α|ˆ︁p|α⟩)2 |α⟩ = mω

2 . (D.17)

Generally in quantum mechanics for any Hermitian operators ˆ︁A and ˆ︁B the
following inequality relation holds [12]⟨︃

ψ

⃓⃓⃓⃓ (︂ ˆ︁A−
⟨︂
ψ
⃓⃓⃓ ˆ︁A ⃓⃓⃓ψ⟩︂)︂2

⃓⃓⃓⃓
ψ
⟩︃⟨︃

ψ
⃓⃓⃓⃓ (︂ ˆ︁B −

⟨︂
ψ
⃓⃓⃓ ˆ︁B ⃓⃓⃓ψ⟩︂)︂2

⃓⃓⃓⃓
ψ
⟩︃

≥ 1
4
(︂⟨︂
ψ
⃓⃓⃓ ˆ︁C ⃓⃓⃓ψ⟩︂)︂2

,

ˆ︁C def=
[︂ ˆ︁A, ˆ︁B]︂ . (D.18)

The harmonic oscillator coherent states have the property that the product of
variances of position and momentum has its lowest possible value⟨︂

α
⃓⃓⃓
(ˆ︁x− ⟨α | ˆ︁x |α⟩)2

⃓⃓⃓
α
⟩︂ ⟨︂
α
⃓⃓⃓
(ˆ︁p− ⟨α | ˆ︁p |α⟩)2

⃓⃓⃓
α
⟩︂

= 1
4 , ∀α ∈ C, (D.19)

[ˆ︁x, ˆ︁p] = iˆ︁I. (D.20)

The well known representation of a quantum state related to the phase space
of position and momentum is the Wigner distribution function of that state. The
Wigner distribution function (of a one-dimensional problem) is defined by [12]

W (x, p) = 1√
2π

∫︂ +∞

−∞

⟨︄
x+ ξ

2

⃓⃓⃓⃓
⃓ ˆ︁ρ
⃓⃓⃓⃓
⃓x− ξ

2

⟩︄
e+pξdξ, (D.21)
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Figure D.4: The Wigner distribution function of the eigenenergy state |E3⟩ ∈
H1D. The rescaling constants are χ =

√︂
1/(mω), ι =

√
mω. Compare with figure

D.1 knowing ⟨α|(ˆ︁x/χ, ˆ︁p/ι)|α⟩ = (α1
√

2, α2
√

2).

where ˆ︁ρ is the density operator (also called density matrix). For pure states
(characterized by vector |ψ⟩) the density operator reads ˆ︁ρ = |ψ⟩⟨ψ|.

The Wigner distribution function for the state |E3⟩ is in figure D.4 and the
Wigner distribution function for the state |α = 2 + i⟩ is in the figure D.5. In the
following we will construct the harmonic oscillator coherent state analogue for
angular momentum states and also the Wigner distribution function analogue for
angular momentum states. It is our hope that the objects constructed for har-
monic oscillator will provide intuition and justification for the objects constructed
for angular momentum states.

D.2 Coherent spin states

The coherent spin states indexed by µ ∈ C are defined by

|µ⟩ def= 1
(1 + |µ|2)j e

µˆ︁J− |m = +j⟩ (D.22)

= 1
(1 + |µ|2)j

+j∑︂
m=−j

[︄(︄
2j

m+ j

)︄]︄ 1
2

µj−m |m⟩ , (D.23)

where the lowering operator ˆ︁J− is defined by (3.9). We used [12]

ˆ︁J± |m⟩ =
√︂
j(j + 1) −m(m± 1) |m± 1⟩ . (D.24)
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Figure D.5: The Wigner distribution function of the coherent state |α = 2 + i⟩ ∈
H1D. The rescaling constants are χ =

√︂
1/(mω), ι =

√
mω. Compare with figure

D.3 knowing ⟨α|(ˆ︁x/χ, ˆ︁p/ι)|α⟩ = (α1
√

2, α2
√

2).

We remind the definition of the binomial coefficient(︄
n

k

)︄
def= n!

k!(n− k)! ,∀n ∈ N, k ∈ {0, 1, ..., n}, (D.25)(︄
2j

m+ j

)︄
= (2j)!

(m+ j)!(j −m)! . (D.26)

Without proof (though the proof is not very difficult), we note that the fol-
lowing equations hold [37]

⟨µ|λ⟩ = (1 + λ∗µ)2j

(1 + |λ|2)j(1 + |µ|2)j , (D.27)

|⟨µ|λ⟩| =
(︄

1 − |λ− µ|2

(1 + |λ|2)(1 + |µ|2)

)︄2j

(D.28)

2j + 1
π

∫︂∫︂ dIm(µ)dRe(µ)
(1 + |µ|)2 |µ⟩ ⟨µ| =

+j∑︂
m=−j

|m⟩ ⟨m| = ˆ︁I, (D.29)

⟨λ| ˆ︁Jz|µ⟩ = j
1 − λ∗µ

1 + λ∗µ
⟨λ|µ⟩ , (D.30)

⟨λ| ˆ︁J+|µ⟩ = 2jµ
1 + λ∗µ

⟨λ|µ⟩ , (D.31)

where µ, λ ∈ C.
Instead of parametrization by complex number µ ∈ C, we parametrize the

coherent spin states by two angles θ, ϕ (determining a position on the Bloch
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Figure D.6: A geometrical construction of the parametrization of the coherent
spin states prescribed by µ = tan(θ/2)eiϕ. The sphere in the figure has the
radius |SA| = 1/2. Note that the state |θ = 0, ϕ = 0⟩ = |m = +j⟩ is mapped
to the lower pole of the sphere in this figure. The Bloch sphere is equivalent to
the sphere in this figure rotated so that the poles of the spheres are interchanged
(and resized).

sphere) the following way

µ = tan
(︄
θ

2

)︄
eiϕ, 0 ≤ θ < π, 0 ≤ ϕ < 2π. (D.32)

The above parametrization (D.32) is visualized in figure D.6. Using equation
(D.23), we derive that the coherent spin states parametrized by equation (D.32)
are

|θ, ϕ⟩ = eijϕ
+j∑︂

m=−j

[︄(︄
2j

m+ j

)︄]︄ 1
2
(︄

cos θ2

)︄j+m (︄
sin θ2

)︄j−m
e−imϕ |m⟩ . (D.33)

We note again some useful equalities [37]

⟨θ, ϕ|θ′, ϕ′⟩ =
[︄(︄

cos θ2

)︄(︄
cos θ

′

2

)︄
+
(︄

sin θ2

)︄(︄
sin θ

′

2

)︄
ei(ϕ

′−ϕ)
]︄2j

,(D.34)

| ⟨θ, ϕ|θ′, ϕ′⟩ | =
(︄

1 + n⃗(θ, ϕ) · n⃗(θ′, ϕ′)
2

)︄j
, (D.35)

n⃗(θ, ϕ) def= (sin θ cosϕ, sin θ sinϕ, cos θ)T . (D.36)

The important equality, which is analogous to equalities (D.14, D.15), is⟨︃
θ, ϕ

⃓⃓⃓⃓ ˆ︁
J⃗
⃓⃓⃓⃓
θ, ϕ

⟩︃
= jn⃗(θ, ϕ) , (D.37)

where n⃗(θ, ϕ) (D.36) is a unit vector pointing in the direction characterized by
the angles θ and ϕ.

99



Figure D.7: A plot of the scalar product ⟨θ, ϕ|j = 100,m = 70⟩. The
landscape represents the function 1 + | ⟨θ, ϕ|j = 100,m = 70⟩ |. The phase
arg ⟨θ, ϕ|j = 100,m = 70⟩ is distinguished by colour.

Figure D.8: A plot of the scalar product h(θ, ϕ) def= ⟨θ, ϕ|θ′ = π
6 , ϕ

′ = −π
7 ⟩. The

landscape represents the function 1+|h(θ, ϕ)|. The phase arg h(θ, ϕ) is represented
by colour. In this figure j = 100.
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Figure D.9: The left plot represents the scalar product ⟨θ, ϕ|j = 15,m = 9⟩.
The landscape represents the function 1 + | ⟨θ, ϕ|j = 15,m = 9⟩ |. The phase
arg ⟨θ, ϕ|j = 15,m = 9⟩ is distinguished by colour. The right plot represents the
scalar product h15(θ, ϕ) def= ⟨θ, ϕ|θ′ = π

6 , ϕ
′ = −π

7 ⟩. The landscape represents the
function 1 + |h15(θ, ϕ)| and the phase arg h15(θ, ϕ) is represented by colour. In
this figure j = 15.

The completeness relation (D.29), expressed using the new parametrization,
reads

2j + 1
4π

∫︂ π

0

∫︂ 2π

0
dθdϕ sin θ |θ, ϕ⟩ ⟨θ, ϕ| = 2j + 1

4π

∫︂∫︂
dΩ |θ, ϕ⟩ ⟨θ, ϕ| = ˆ︁I,

dΩ def= dθdϕ sin θ. (D.38)

Analogues of figures D.1 and D.3 are figures D.7 and D.8. In figures D.7
and D.8 we present the states with high j = 100 since for high j the shapes are
enhanced. The states for j = 15 are plotted in figure D.9.

D.3 Angular momentum Wigner distribution
We define the multipole operators the following way

ˆ︁Tkq def=
+j∑︂

m=−j

+j∑︂
m′=−j

(−1)j−m
√

2k + 1
(︄
j k j

−m q m′

)︄
|m⟩ ⟨m′| , (D.39)

where
(︄
j k j

−m q m′

)︄
is the standard 3j symbol (its relation to Clebsch–Gordan

coefficients and other properties are e.g. in [12]). The indices k, q has the range
k = 0, ..., 2j and q = −k, ..., k. Some more information regarding the multipole
operators could be found in [41].
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All the angular momentum operators could be expressed in terms of multipole
operators

ˆ︁A =
2j∑︂
k=0

+k∑︂
q=−k

Akq ˆ︁Tkq. (D.40)

The coefficients Akq could be found using

Akq = Tr
(︂ ˆ︁T †

kq
ˆ︁A)︂ , (D.41)

which is a consequence of equality [39]

Tr
(︂ ˆ︁T †

kq
ˆ︁Tlr)︂ = δklδqr. (D.42)

The paper [39] defines various generalized phase-space distributions. By re-
quiring

Tr ˆ︁A =
√︄

2j + 1
4π

∫︂
W (θ, ϕ)dΩ (D.43)

and

Tr
[︂ ˆ︁A(1) ˆ︁A(2)

]︂
=
∫︂
W (1)(θ, ϕ)W (2)(θ, ϕ)dΩ, (D.44)

we choose from the distributions defined in [39] the distribution defined by1

W (θ, ϕ) =
2j∑︂
k=0

+k∑︂
q=−k

Y ∗
kq(θ, ϕ)Akq . (D.45)

In this thesis, we use only the distribution W (θ, ϕ) constructed for the density
operator of the system ˆ︁ρ, i.e. ˆ︁A = ˆ︁ρ.

Figure D.10 supports the use of the angular momentum Wigner distribution
defined by (D.45) (and (D.41, D.39), ˆ︁A = ˆ︁ρ).

The state presented in the right plot in figure D.9 has the angular momentum
Wigner distribution in plot f) in figure D.10. The state presented in the left plot
in figure D.9 has the angular momentum Wigner distribution in plot g) in figure
D.10.

The one-dimensional harmonic oscillator Wigner distribution in figure D.4
should be compared with plots c) and e) in figure D.10. Plot c) in figure D.10 is
a three times shifted state |m = +j⟩ (see equation (D.23)), i.e.

|m = +j⟩ = ˆ︁J3
− |m = +j⟩ /| ˆ︁J3

− |m = +j⟩ |. (D.46)

And similarly, |My = 2, j = 5⟩ (the eigenstate of the operator ˆ︁Jy with the eigen-
value 2) is a three times shifted state |My = 5, j = 5⟩, i.e.

|My = 2, j = 5⟩ =

(︂ ˆ︁Jz − i ˆ︁Jx)︂3
|My = 5, j = 5⟩⃓⃓⃓⃓(︂ ˆ︁Jz − i ˆ︁Jx)︂3
|My = 5, j = 5⟩

⃓⃓⃓⃓ . (D.47)

1The original papers [38, 39] define the distribution ˜︂W (θ, ϕ) def=
∑︁2j

k=0
∑︁+k

q=−k Ykq(θ, ϕ)Akq.
When matching the distribution with the states |m⟩ and |θ, ϕ⟩, we found the definition (D.45)
more convenient. The equalities (D.43, D.44) still hold since Y ∗

kq(θ, ϕ) = Ykq(θ,−ϕ).
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Figure D.10: Examples of various angular momentum Wigner distributions. The
left column presents the states with j = 5 and the right column presents the
states with j = 15. The first row presents coherent spin states. The states |My⟩
are eigenstates of the operator ˆ︁Jy, i.e. ˆ︁Jy |My⟩ = My |My⟩.
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Figure D.11: A closer look into the Poincaré recurrence already identified in figure
3.10. The precise classical regular (not chaotic) trajectories in black compared
with the evolution of the angular momentum Wigner function. We used the
parameters of the kick top system κ = 0.2, p = 0.1, j = 5.
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