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Abstract: In this work, we introduce a new method of 3D human motion syn-
thesis conditioned on categorical action labels such as “running“ or “toe touch“.
Motivated by recent results in the text-to-image generation domain, we inves-
tigate the possibility of using discrete latent codes to generate realistic human
animation sequences in contrast to the continuous representation of the current
methods. Compared to the state-of-the-art ACTOR method, ours is not lim-
ited in length while still generating high-fidelity, diverse motions with the added
ability to generate a continuation motion to the starting motion sequence. With
the sliding window autoregressive decoding approach, we retain reasonable gen-
eration speeds. Furthermore, thanks to two-stage training, future models can
be pre-trained on larger unlabeled datasets and then conditioned on possibly
different contexts. We demonstrate the validity of our method on the UESTC
dataset and achieve better quantitative results compared to ACTOR as well as
synthesising high-quality human motions comparable to the original dataset.
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1. Introduction

1.1 Motivation and objectives
Generating 3D realistic human motions is a long-standing challenge, with the
rise of special effects in movies, whole departments of animation experts have
been dedicated to producing high-quality motions by hand for movies or even
more recently in the field of video games. With the invention of motion-capture
technology, the actors could breathe a new life into the animations in addition
to lending characters their voice. It also brought the possibility of creating high-
quality motion datasets [1, 2] and with the expanse of machine learning and
neural networks, considerable research has been invested into putting them to
use [3, 4, 5, 6, 7].

But what makes the problem difficult? If we consider motions like throwing
a ball, picking up a mug, or just simple walking, each of us can imagine doing
these activities but if we actually perform them, likely none of us will do so in
exactly the same way. For example, the majority of people are right-handed
and therefore will likely use their preferred hand to throw the ball. Some people
will naturally walk more slowly or move their legs in a slightly different fashion.
There is certain natural ambiguity when specifying each motion even if we try
to be more rigorous. Another issue is the hidden complexity of input signals
to the muscles, their cooperation to do just something as natural as taking a
step or smiling, thus preventing both simple, exact, and rigorous description of
motions, perhaps in the form of instructions in some new programming language.
The task is made even harder because humans are exceptionally good at spotting
even slight inconsistencies present in human-like artificially-made motions, the
phenomenon referred to in the literature as the uncanny valley [8].

Why is this problem even worth solving? Because an existing solution could
have a wide range of applications. Simplifying the mentioned animation of movie
and game characters by for example generating the simpler or most prominent
part of the motion and leaving it to the animator to fill in the details and man-
nerisms which make the character unique.

Similarly, it is an appealing thought to provide a few key frames or locations
where a game character should be and let the computer fill in the rest automati-
cally [9, 10], even including interactions with the scene[11][12][13].

The objective of this thesis is the synthesis of realistic and diverse human
motions based on categorical labels i.e. motions from a fixed set of possible
categories like stretching or throwing. Crucially, we leverage the advances in the
image-generation [14, 15] domain with the usage of discrete representations [16]
and investigate its potential to improve motion synthesis.

Contributions

• Successful adaptation of discrete architectures for representation of motions
opening new research possibilities for downstream tasks.

• Autoregressive architecture synthesises high-quality conditioned human mo-
tions of potentially unlimited length while preserving their diversity and
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retaining their details.

We validate our ideas on a dataset of categorical human motions and achieve
state of the art results.

1.2 Structure of the thesis
In the next (Chapter 2), we discuss the related work and present the models we
base our work on. Chapter 3 describes our proposed motion generating model in
detail, its variants and how it is trained. In particular, we define two-stage model
consisting of: 1) motion discretization using a motion autoencoder model respon-
sible for converting between a motion and its learned discrete representation. 2)
motion prediction stage with a motion predictor model capable of synthesizing
motions.

After that, Chapter 4 contains the results of experiments and ablations. It
follows the similar structure of Chapter 3 but with the additional description of
the common experimental setup, including the datasets and metrics which we
used.

In Section 4.3, we focus on the autoencoder, through ablations studies we try
to understand its hyper-parameters, which variants are viable, and what are the
properties of generated token datasets for the second phase. We conclude the
section with the summarization of the best autoencoders model we have found as
those will subsequently be used to train the motion predictors.

In Section 4.4, we first present the results of training the motion predictor and
its ablation studies including the effect of different used autoencoders as well as
decoding strategies. After that, we follow by comparing our results to the state-
of-the-art results. Throughout the chapter, we show the outputs in many figures
but due to the nature of our outputs, we want to emphasize the supplemental
videos we have made to better demonstrate our results.

In the end, in Chapter 5, we summarize our work, its achievements, limita-
tions, and potential future directions of research.

To this thesis we attach:

1. Source codes of all our experiments, also available from https://github.
com/janwaltl/master-thesis with the instructions on how to reproduce
the presented results.

2. Supplemental videos, alternatively also available at the same link.
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2. Related Work
In this chapter, we first summarize the existing literature concerning conditioned
motion generation (Section 2.1) and then in Section 2.2 we introduce the previous
works we have based our model on. We focus mostly on text-based conditioning
but there are other interesting options such as generating motions based on music
as done in [6, 17].

2.1 Motion generation
Text2Action: Generative Adversarial Synthesis from Language to Ac-
tion Text2Action[18] is a sequence-to-sequence model capable of generation
upper-body motions from language description of particular actions. The model
is based on GAN[19] adversarial approach, consisting of RNN[20] discriminator,
a generator operating on sequences. An extra encoder for conditioning on the
text using LSTM is employed. The text is encoded to a hidden sequence of fea-
ture vectors h. To generate a motion conditioned on a sentence, the encoder
first processes the input text, the hidden sequence h is then fed together with a
sequence of samples from normal distribution into the RNN generator which auto-
regressively generates the motion. The discriminator (also RNN-based) takes as
input the hidden sequence h and a motion, its goal is to output whether the se-
quence comes from the dataset (real data) or has been generated artificially. Note
that both generator and discriminator also employ the attention[21] mechanism
to attend to the whole hidden sequence.

In order to achieve the best performance, the authors claim to have been forced
to train the model in two stages, first an RNN autoencoder between language
sentence and motion sequence is pre-trained using cyclic loss. The encoding part
then serves as the mentioned encoder in the next stage where both discriminator
and generator are trained using the well-known min-max game loss[19].

One notable part of the paper is training the model on motions automatically
extracted from a large-scale video dataset.

Language2Pose: Natural Language Grounded Pose Forecasting. An-
other model working with language sentences is Language2Pose model[4]. Its
authors chose to train a separate autoencoder for language and motions which
share a joint continuous embedding space, one can thus encode text and decode
a motion and vice versa. The embedding space is of fixed size, regardless of
the lengths of motions or sentences, LSTM[22] architecture is employed for lan-
guage with pre-trained word embeddings while GRU is used for processing the
motions. The models are trained jointly on KIT dataset[1] which consists of
motion-captured motions with short sentences describing them. Overview of this
method is shown in Figure 2.1.

Action2Motion: Conditioned Generation of 3D Human Motions Ac-
tion2Motion is a recent paper[5] introducing a generative action-conditioned model
for motion generation with an emphasis on the multi-modality of generated mo-
tions. Variational autoencoder(VAE) is employed together with a novel approach
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Figure 2.1: Overview of Language2Pose model - This sequence-to-
sequence model[4] takes a motion y1, . . . , y9 and the corresponding text anno-
tation x1, . . . , x6 and passes them through two encoder, each generating a latent
vector of the same dimensions (irrespective of the inputs’ lengths). There is also a
decoder which can reconstruct a motion given a vector from the latent embedding
space. During and after training one can freely choose between which decoder is
used and thus the model has the ability to either reconstruct a motion or generate
a motion solely based on the textual input. The figure is from [4], ©2019 IEEE.

involving the use of Lie Algebra for representing motions instead of the more
traditional joint coordinates.

The autoencoder encodes each frame of a motion, together with an action cat-
egory label, into latent continuous representation constrained by a normal distri-
bution. GRU[23] model is jointly trained on this latent space to auto-regressively
generate a motion on a frame-by-frame basis.

This model is very close to what we use in our model, but there are a few
key distinctions. Our autoencoder is not aware of any categories and therefore
works on unlabeled data. Furthermore, we leverage the recent approaches in both
sequence generation by using Transformer[21] model instead of GRU and discrete
representation instead of a continuous one.

The authors also compiled together a new labelled 3D motion dataset de-
noted Human12 as well as introduced important qualitative metrics serving as
the benchmark for the motion synthesis models. ACTOR[3] and we use these
metrics for comparing our models.

ACTOR: Action-Conditioned 3D Human Motion Synthesis with Trans-
former VAE ACTOR [3] is a Transformer-based[21] model ( in contrast to
previous RNN-based approaches) which differs from other methods described so
far because it is not autoregressive. Instead, a VAE with a Transformer-based
encoder, and decoder is used to obtain sentence-level latent representation. Fur-
thermore, the latent variables are conditioned on the action category, allowing
the conditional generation of motions. The authors show the model achieves the
state of the art results for conditioned motion synthesis. See an overview of the
method in Figure 2.2. Because the model is operating on whole motions, the
generation is fast but also limited in length by the length chosen for training.
Although the authors also try training with variable-length motions, improving
the generalization to other lengths, the model is by its nature fixed-length, it is
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Figure 2.2: Overview of ACTOR model - ACTOR[3] is a transformer-
based variational autoencoder used for encoding and generating motions. Motion
P1, . . . , PT and the corresponding category label c is processed by the encoding
transformer (left side), outputting parameters (µ, Σ) of the latent Gaussian repre-
sentation. The decoder (right side) then takes this sequence-level representation,
samples from the implied distribution plus again the category label and another
transformer decoder reconstructs the original motion. After training, the decoder
serves as a generator with z sampled from the normal distribution. The figure is
from [3], ©2021 IEEE.

not possible to take a starting motion and ”finish” it.
The paper mentions a possible modification to the decoder making it au-

toregressive which the authors have explored, but they report mixed results with
decoding issues. Despite this, we strongly believe the auto-regressiveness is a very
important feature and state of the art models in conditioned language [24, 25]
and image generation [15, 14] rely on it which proves its value.

Therefore we aim to develop a model which does not suffer from this limit and
is both fast at decoding and achieves comparable or better results than ACTOR.
The authors used a new motion dataset from extracted videos in UESTC[26]
which we will also use as we consider this paper closest to ours and the main
competitor.

2.2 Discrete autoencoders and image generation
Recently, discrete autoencoders gained a prominent role in image generation [15,
14] generating state of the art results. The autoencoder model has been first in-
troduced in [16], allowing encoding data into discrete latent variables and training
a second model to learn and generate samples from the prior distribution of to-
kens. This is in contrast with the original VAE [27] using continuous latent space
with samples constrained to normal distribution. The next two papers serve as a
basis for our work, both focusing on using VQ-VAE to generate high-resolution
images conditioned on text, or even other images and masks. Both work auto-
regressively and show very impressive results. Therefore we will adapt the ideas
in them to the motion synthesis domain. It is worth noting that both models
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are fairly large with hundreds of millions of parameters, our models will be much
smaller in comparison.

VQ-VAE In contrast to VAE [27], VQ-VAE [16] model employs discrete latent
space, the output from the encoder consists of feature vectors which are indepen-
dently quantized by being replaced by their nearest neighbour (2-norm metric)
from a trainable fixed-size codebook of vectors. The authors focus on the im-
age generation domain in their experiments and show promising results over a
wide variety of tasks. With the fully trained autoencoder, the images are first
encoded into their discrete representation - a sequence of tokens (indices into the
codebook). Then a second model is used to learn the prior distribution of these
tokens, optionally conditioned on extra inputs, allowing for generating images
based on text, audio, or video frames.

The authors later improve upon their model in [28] and present VQ-VAE-2
with hierarchical multi-scale latent space.

Figure 2.3: Overview of the method from Taming transformers - This
model works in two stages. First, a VQGAN network is trained for the reconstruc-
tion of images, they are passed through convolutional layers, discretized(referred
to as quantized) into tokens zq and subsequently reconstructed by the decoder.
During this an extra codebook with trainable parameters is learned. A GAN-
based[19] training approach is used rather than a simple mean squared error loss
on pixels. Second, a transformer-based generative network is then used to learn
the distribution of the tokens and autoregressively generate them conditioned on
some context information, after which the decoder can decode them back into an
image. The model operates on patches from the images and the transformer uses
a sliding window approach to generate high-resolution images. The figure is from
[14], ©2021 IEEE.

Taming Transformers for High-Resolution Image Synthesis A paper
from 2020[14] focuses on generating high-resolution images. In order to model
long-range dependencies, an attention-based architecture is employed but the
authors note that generating such high-resolution images in a pixel-wise fashion
is not very feasible or at least it is computationally very expensive. Therefore
they employ VQ-VAE to learn rich, discrete, and much smaller representations
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of images and the generator then operates on this latent space, although still in
a sliding-window approach. See overview of this method in Figure 2.3

Authors improve upon the image techniques presented in VQ-VAE and employ
custom GAN-based reconstruction loss, enhancing the compression and the level
of detail of reconstructed images.

DALL-E and DALL-E2 A set of papers [15] and [29] from OpenAI, describe
DALL-E and recently DALL-E 2, the former uses VQ-VAE to generate images
from natural language, achieving state of the art results.

The model itself is very close to the one used in Taming Transformers, but
the authors opt in for gumbel-softmax [30] for obtaining discrete tokens in a
differentiable way compared to the original nearest-neighbour approach. The
conditioning and generation is done using a single transformer encoder model
where the language tokens are prepended to the to-be-generated sequence.

To summarize, in this chapter we described previous work related to motion
synthesis as well as recent architectures in the text-to-image domain which we
adapt for motion generation.

Furthermore, as far as we are aware, all techniques related to generating mo-
tion either from categories or conditioned on language use continuous representa-
tion for pose/motion - using either raw angles, positions, 6D, or some processed
embeddings of those. Our work is thus the first which employs VQ-VAE and
discrete representation for purpose of motion synthesis.
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3. Motion Synthesis Using
Discrete Latent Codes
In this chapter, we describe our model for autoregressive motion synthesis condi-
tioned on category labels. We leverage the success of DALL-E [15] and Taming
Transformers [14] models in image domains and apply them to motion synthesis.
We propose a few alternative architectures for parts of the model which we be-
lieve should be explored, after that, we describe their training procedure and end
the chapter with a short summarization.

Problem formulation

We are given given motion context in the form of a category label c, perhaps
running or left stretch and a starting motion M0 consisting of frames (poses)
{P0, . . . , Pk}. The motion can be a simple one-frame standing pose or any other
motion we should smoothly follow up on, or can even be empty if required.

Our task is to generate a continuation motion MG = {Pk+1, . . . , Pk+n} such
that the generated sequence matches the context c. The task is shown in Fig-
ure 3.1. The canonical format for representing human poses is a kinematic tree
which captures the underlying motion of the human skeleton and its joints. Each
node in this tree represents a joint and its orientation can be given for exam-
ple by a 3x3 rotation matrix. As the representation, we choose to use SMPL
model [31] (its 24-joint variant) as the representation of each pose due to abun-
dance of datasets [26, 2] in this format, specifically we also [3] convert each joint
orientation to 6D representation [32] because it preserves continuity. Thus each
pose becomes Pi ∈ R24×6.

Model

P1 P2 P3P0

M0

P4 P5 P6 P7

category label c

MG

Figure 3.1: Problem formulation - Model synthesises a follow-up motion MG

based on the initial motion M0 and the category label c.

Proposed model

Our proposed model builds upon [14, 15] – to first learn a rich discrete represen-
tation of motions as sequences of tokens; then we train a generative transformer
over these sequences to learn their prior distribution. The learned representation
allows us to then transform any generated sequence back into continuous motion.
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In detail, we separate our model in two standalone modules (Figure 3.2).
(1) motion discretization (Section 3.1) which converts between a continu-
ous motion M and its discrete representation ˆ︃M0 . This stage is accomplished by
training a motion autoencoder. (2) motion prediction (Section 3.2) takes as in-
puts the category label c, starting motion ˆ︃M0, discretized first by the autoencoder,
and generates follow-up motion ˆ︂M in an auto-regressive way. A transformer [21]
encoder model is used for this, we call this model motion predictor.

The practical reasons for separating the model into two separately-trained
modules as opposed to joint training are two-fold:

• Very unstable gradients at the beginning of the training caused by the
latent distribution being essentially random, also experienced by [14] and
[15], making this separation a necessity.

• This approach allows pre-training motion discretization on larger, unlabeled
datasets possibly automatically extracted from large video datasets. The
conditioned generation can then be trained on smaller labelled subsets. An-
other option is the ability to use different motion contexts for conditioning
the tokens.

decode

encode

re-use

Motion Autoencoder

3
7
3
5

2
4
5
0

6
1
3
0

4
6
5
8

3 2 6 4 7 3 54 5 01 3 06 5 8

7 2 4 1

Motion predictor

2 6 4 7 3 54 5 01 3 0

decode

6 5 8

Motion Autoencoder

Motion
Discretization 

Motion Prediction

encode

Motion Autoencoder

category label

Figure 3.2: Proposed architecture separated in two stages - First, we
train an autoencoder to learn a mapping between continuous motions and dis-
crete sequences of tokens - the motion discretization stage. Then, in the motion
prediction, we train a motion predictor(Transformer model) to auto-regressively
generate motions given a motion context in the form of a label c. At last, the
autoencoder from the first stage is used to reconstruct the generated motions
from the new tokens.
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Now we will describe both modules separately in detail, including the possible
alternatives.

3.1 Motion discretization
To leverage Transformer architecture operating on discrete tokens, we have to
be able to transform continuous motions into discrete representations. This is
achieved by training a VQ-VAE [16] autoencoder model using reconstruction
losses on unlabeled data.

VQ-VAE architecture in general consists of three blocks: encoder E, dis-
cretization latent block L, and decoder D, all depicted in Figure 3.3. In our
work, we consider multiple different architectures for each block and now we
briefly describe their general function, the detailed descriptions of various con-
sidered architectures in the listed order are in the following sections.

Encoder E

discretize

Latent L

Decoder D

Frame 1

Frame N

3
7
3
5
7
5
8

2
4
5
0
2
0
1

6
1
3
0
4
5
2

4
6
5
8
1
8
2

Frame 1

Frame N

0
1
2
3
4
5
6
7
8

Codebook C

Frame 1

Frame N

Reconstructed Motion 
M̄

Input Motion M

Tokens M̂

embed

Feature Vectors Mz

Motion Autoencoder

Embedded Tokens M̄z

Figure 3.3: Motion Autoencoder - Model to map between discrete and con-
tinuous motion representation, similarly to [14].

The encoder block’s input is a continuous motion in SMPL format [31], the
output is a latent continuous feature vector. VQGAN[14] works with (up to)
192x192 images and encodes them into 32x32 tokens using convolution layers.
ACTOR [3], on the other hand, uses fixed-sized latent z for the whole sequence
in its VAE. We believe it is important and also practical to preserve the time
dimension of motions, therefore we encode a motion M ∈ Rf×24×6 into a fea-
ture vector Mz ∈ Rf×D for some dimension D, while the number of frames f is
preserved across the whole autoencoder model.

After encoding, the latent block performs discretization of this feature vector
Mz into one-hot discrete tokens ˆ︂M ∈ Zf×s×k

k , again, we only vary parameter s
which we call cuts, frames f are fixed, and k is the size of a hidden codebook
(described shortly). Meaning that each frame of the feature vector Mz should
roughly correspond to s tokens, although that is enforced only implicitly during
training. Zk is defined as set {0, . . . , k − 1} .
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In more detail, discretization is achieved by first reshaping Mz via (f × D) →
(f×s×d), then the d-dimensional sub-vectors are independently discretized by the
latent block into tokens and embedded using a trainable codebook C ∈ Rk×d[16]
to obtain (after recombination of the sub-vectors) Mz ∈ Rf×D. The codebook
C consists k d−dimensional trainable code words corresponding to k possible
tokens.

Decoder block takes the embedded latent representation Mz after discretiza-
tion and tries to reconstruct back the original motion – outputting ˆ︂M . The
process can be summarized as follows:

M M ∈ Rf×24×6, (3.1)
Mz = E(M) Mz ∈ Rf×D, (3.2)ˆ︂M = L(Mz) ˆ︂M ∈ Zf×s×k

k , (3.3)
Mz = ˆ︂M · C C ∈ Rk×d, Mz ∈ Rf×D. (3.4)
M = D(Mz) ˆ︂M ∈ Rf×24×6, (3.5)

Note that ˆ︂M is the output passes to the motion predictor, while Mz is used only
for reconstruction during training and for decoding the generated motions from
the trained predictor.

Now, in the following four sections, we look in more detail at the considered
block variants. In the first two, we describe the two possible variants used for the
encoder and decoder blocks. In the second two, we explore the implementations
for the latent space.

3.1.1 Convolutional autoencoder variant
The first possible architecture for the encoder, decoder blocks for motion dis-
cretization we consider is built from 1D convolutional blocks. It is analogous
to Conv2D used by [14]. A desirable property of CNN networks is the enforced
locality of tokens w.r.t frames because the encoding context is proportional to
and also limited by the depth of the network. That is also a limitation.

In particular, the motion M ∈ Rf×24×6 is reshaped first via (f × 24 × 6) →
(f ×144) and the last dimension is treated as channels. The motion is then passed
through convolutional blocks with kernel size 3 and C channels kept constant.
Wide blocks [33] are used with dropout, batch normalization [34], ReLU [35]. The
blocks are connected with residual connections [36]. See left side of Figure 3.4 for
precise order of layers.

It is worth noting that we use exactly the same architecture for the encoder
and decoder, no deconvolutional layers are used for the decoder. We briefly
considered them but found no performance gain, we believe this is due to not
using the more common pooling approach with decreasing spatial dimensions
compensated with wider channels and the decoder’s need to reverse this process.
The bottleneck of our network is the discretization, see reporting on compression
ratios in cuts ablations in Section 4.3.
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Figure 3.4: Considered encoder and decoder architectures - We consider
convolution neural network (left) which uses wide [33] residual [36] convolutional
blocks. Note the extra 1×1 convolution is used to properly resize the input in case
of channel size mismatch (the case of the first layer). Alternative is attention-
based model (right) for the motion autoencoder which passes the motion through
multiple attention blocks [21].

3.1.2 Attention-based autoencoder variant
We would like to be able to encode as complex motions as possible and by complex
we usually mean exactly those motions where there is non-local non-trivial con-
text involved and therefore we might benefit from an architecture with non-local
connections.

Attention-based models excel at taking into account non-local context (and
we also take advantage of that during the motion generation phase). Therefore
we propose to also use attention-based architecture for motion discretization in
the form of transformer encoder model [21].

To be precise, we take a reshaped motion M ∈ Rf×144, and project it to
embedding dimension d with a help of an ordinary linear dense layer. After that,
we treat it like f already embedded tokens, add positional encoding, and pass it
through multiple attention layers of the Transformer encoder model [21] to obtain
the sought-after feature vector Mz. The process is illustrated in the right portion
of Figure 3.4.

The decoder is exactly the same. Although its input comes from discrete
tokens and therefore we could have learnt a special token embedding, distinct from
the code book, we did not find any further gains doing that for the reconstruction.
We however do investigate the idea of reusing the codebook for embedding the
tokens in the motion predictor model later.

A question we have asked ourselves is whether any frame masking should be
used in either this or the convolutional approach. We believe that is a valid
question because, on one hand, the future context can aid reconstruction, on the
other, our final goal is auto-regressive motion generation in which we have to
generate tokens one step at a time. We would thus have this disparity between
the usage of tokens for reconstruction and generation. Therefore it might be
worthwhile to consider enforcing this property also during discretization.

During our experiments, we have found that the attention model does take the
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ground truth
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Figure 3.5: Future context is important for motions - Attention activation
weights of one head of the last layer in the trained encoder, we can see that to
encode frame 31 (the middle of the motion sequence), the model finds it important
to look at the beginning and end of the actual performed left stretch movement
in the motion. Although most weights in other layers appear to be quite generic,
there are some which tend to begin and end of each performed motion or other
notable actions.

advantage of meaningful future context in certain motions as can be shown in Fig-
ure 3.5, quantitative results are found in the next chapter. Therefore we believe
it is desirable to not mask any future tokens, doing so also leads to subjectively
more discontinuous and choppy reconstructions.

3.1.3 Discretization using nearest-neighbour
The original VQ-VAE work [16] proposes a simple method of discretization by
assigning each feature vector the index of the closest vector from the codebook
and thus embedding is replacing one vector with its closest counterpart in the
codebook. The method is illustrated in Figure 3.3.

In particular, for a given feature sub-vector v ∈ Rd and code words v0, . . . , vk−1,
the corresponding token index is given by

i = argminj∈Zk
∥vj − v∥2

Although this operation is not differentiable, the model can still be trained
with gradient descent as the authors leveraged a simple gradient-copy trick, see
Section 3.3.1.

3.1.4 Discretization using gumbel-softmax
DALL-E [15] considers another approach for discretization in their dVAE au-
toencoder. They first re-scale the feature subvectors to match the size of the
codebook k (not the dimension of the code words) and then treat the values as
logits of the probability distribution for sampling from the codebook. To avoid the
problem with the non-differentiable backward pass, category reparametrization
via gumbel-softmax [30] is used as gumbel-softmax allows differentiable sampling
from discrete distributions with only an extra hyper-parameter τ annealed to
closer to 0 over the course of training.
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This fundamentally changes the autoencoder in multiple ways compared to
the nearest-neighbour approach from [16]:

• Autoencoder is no longer deterministic, instead, sampling is employed and
one motion can have multiple discrete representations to which the decoder
might produce different reconstructions.

• Although the distributions of individual tokens in each frame of the motion
as a whole are correlated – controlled by the encoder – the tokens are
sampled independently of each other, even in the same frame. This has an
impact on the motion prediction model because it results in higher, more
uniform codebook usage than the nearest neighbour approach.

3.2 Motion predictor
The second part of our model is to use the tokens obtained from a trained motion
autoencoder for predicting the follow-up motion based on the supplied motion
context.

Following the model proposed by [14], we train a transformer encoder model [21]
to auto-regressively generate the tokens. The discretized motion is two-dimensional
(not counting one-hot dimension) Mk ∈ Zf×s×k

c , it must therefore be unwrapped
before it can be used in a transformer. We chose to use the natural order by
concatenating the splits of each frame together, model overview is shown in Fig-
ure 3.6. [14] also experimented with other directions for their 2D image input.

Formally, given starting tokens t0, . . . , tn representing the starting motion and
a category label c, the probability of generating motion given by tokens t0, . . . , tm

for m > n is modeled in standard way using chain rule as

p(t0, . . . , tm|c) =
m−1∏︂
i=0

pθ(ti+1|t0 . . . ti, c)

for a transformer parameterized by θ. Auto-regressive decoding repeatedly sam-
ples the last token from the predicted distribution and feeds the sampled token
back to the model for generation of the next token and so on.

When a sufficient length is achieved, the generated motion is obtained by
passing the sampled tokens to the decoder part of the autoencoder. We use our
own specialized positional embedded presented later in its own section. As for
the token embeddings, we have two options - either to train a new embedding for
each token or to re-use the codebook vectors as embeddings for the tokens. We
try both and compare them in our experiments.

For incorporating the motion context into the model, we follow the approach
in [3] and add a learned category embedding to each token, an alternative would
be to use a special SOS (start of the sequence) token, this would also make it
possible to generate motions without any starting motion. We also briefly tested
this variant, see experimental section. We would like to stress that although our
main focus is on using a single categorical label c for conditioning the motion on
its context, the described model can be modified to accommodate other forms of
contexts as was the case for [14, 15, 16] in which the authors successfully con-
ditioned tokens representing images/videos on a whole range of different inputs,
including audio, and even other images serving as content masks.
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SOS-variant

We have defined our model in such a way that it requires non-zero-length starting
motion, this is convenient for a long generation as we will show in Section 3.3.
But if we want to compare our method to ACTOR, to make the testing fair, we
have to be able to generate a motion just based on a category label. To do that,
we modify the model to accept a fixed start of sentence (SOS) token and train
the model in the same way.

Token + positional embedding
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Figure 3.6: Motion predictor - Transformer[21] model is used for predicting
next frames of the starting motion. The generation operates on latent space
obtained from the first stage Section 3.2, in this particular case each pose consists
of 3 tokens (i.e 3 cuts).

3.3 Training
In this section, we describe how to train the presented models, in particular,
we explain the training procedure, define the used losses, and other training
techniques used for both the motion autoencoder and the predictor.

3.3.1 Training motion autoencoder
The goal of the autoencoder is to create a mapping between discrete and continu-
ous representations of a motion. Therefore the training loss consists of two parts
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as is standard in training variational autoencoders[27]: Lrec responsible for recon-
struction and Llat for imposing further desired constraints on the latent (discrete
in our case) space.

Reconstruction Loss

We experiment with the usage of the following reconstruction losses from [3]:

• L6D is a simple L2 (mean squared error loss) loss acting directly on the 6D
representation of motions. The disadvantage of this is an accumulation of
rotation errors across the kinematic chain.

• LJoint - SMPL model can differentiably map between the 6D repr. and
the positions of its joints1. Therefore LJoint is L2 loss on 3D positions of
pose’s joints. Although this does not accumulate rotation errors, it cannot
constrain the rotation of bones. Therefore a third loss can be employed.

• LV ertex is L2 acting directly on the position of vertices of the SMPL mesh.
Although it is the most precise and in some sense the true reconstruction
loss, we did not use it during most of our experiments due to its high com-
putational costs and additional memory requirements compared to others.
SMPL implements model skinning using a weighted sum of joint positions
where the weights are based on distances to the joints (at the default pose).2
Making this loss joint-wise dynamically re-weighted version of the joint loss.

The full reconstruction loss Lrec between original motion M and its recon-
struction ˆ︂M is thus defined as

L6D =
⃦⃦⃦
M − M

⃦⃦⃦
LJoint = ∥JM − JM∥
LV ert = ∥VM − VM∥
Lrec = w6DL6D + wJointLJoint + wV ertLvert

where w are the weights of individual loss terms. JM and VM are joints and mesh
vertices of motion M , respectively. Both are represented as points in 3D space,
reconstruction losses apart from 6D are thus just distances in Euclidean space.
Please note that the norm is applied along the last dimension only, sum over
joints/vertices (and mini-batch) is implicitly assumed.

Motion smoothness

We noticed that our trained autoencoders do not perform any smoothing of the
training data in the temporal dimension. Although this seems logical and one
might expect it, but for the ACTOR[3] model has this property, likely due to
it being a fully-continuous model and employing a VAE which must balance
reconstruction errors vs. KL-loss. Regardless, it might be a desirable property

1We use pytorch3D library[37] for math transformations.
2SMPL also contains shape parameters which can further modify the mesh but we do not

use them.
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to have and even better if we can have some control over it. Meaning that in
some situations to generate smooth motions even if the training dataset is not
smooth might be desirable. For example, this is true in practice with the datasets
extracted from videos and UESTC[26] is one of them. On the other hand, we
can argue that our model can retain finer details in the dataset, while ACTOR
“smooths them away” and does not have the option not to.

To address this, we have a simple proposal in the form of additional recon-
struction loss, very similar to motion smoothing term in [38]. Informally, we define
Lsmooth as minimizing the difference between the directions of velocity vectors for
joints of two adjacent frames. Formally written, for given three adjacent frames
with joints Ji−1, Ji, Ji+1 ∈ R24×3, we define the smoothing loss as

Lsmooth = − Ji − Ji−1

∥Ji − Ji−1∥
· Ji+1 − Ji

∥Ji+1 − Ji∥

Each fraction is an estimation of the direction of movement for each joint (norm is
per-joint), minimizing the negative dot-product thus favouring non-changing di-
rections of movement. Note that this loss goes against the reconstruction one, we
intentionally want to slightly diverge from the non-smooth ground truth, prefer-
ably in a controllable way. Thus finding a balance or trade-off between recon-
structing the details and ignoring the noise in the dataset is required.

Latent loss for gumbel-softmax block

Earlier, in Section 3.1, we introduced two possible but fundamentally different
latent architectures, the latent loss differs accordingly. First, if gumbel-softmax is
employed, the whole model is differentiable and [15] finds the common VAE loss -
Kullback–Leibler divergence[39] between the logits and the uniform distribution
necessary and sufficient.

In our experiments, we found the model is sensitive to the weight of this loss
and does not train at all for too small or too large values. We had some initial
success with using exp(LKL) loss instead to force its values low but in the end, it
is likely more anecdotal, experiments do not suggest one is superior to the other.

LKL = DKL(P∥Q)
Llat = β exp(LKL)

Latent loss for nearest-neighbour block

If we opt-in for discretization with nearest neighbour, [16] uses two losses: Lcommit

and Lcode, both defined individually for a given feature sub-vector v and its closest
codebook neighbour vi as follows:

Lcode = ∥stop grad(v) − vi∥
Lcommit = ∥v − stop grad(vi)∥

The former is training the chosen code words to be close to the encoder’s outputs,
thus keeping the magnitude of code words bounded as argued by [16], and is the
only loss training the codebook. The latter commit loss ensures the outputs tend
do commit to some values.
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The original paper also suggests simply copying the gradient of Mz to Mz since
both have the same dimensions, thus solving the issue of the non-differentiable
backwards pass, we employ the same technique with success. [40] explores in
more detail this training approach and its similarity to K-means clustering.

3.3.2 Training motion predictor
Now, we turn to describe the last piece of the puzzle – how to train the motion
predictor. First, we define the training losses and then additional training and
decoding techniques we use later in our experiments in the hope to achieve better
results.

The training procedure consists of using the trained autoencoder to convert
the motion dataset to a token-based one. Tokens are then flattened as shown in
Figure 3.6. These, together with the corresponding category labels, constitute
the training dataset for the motion predictor.

The model is trained with cross-entropy loss between the ground truth and
distributions predicted by the model. As it is not feasible to train the model by
repeatedly feeding back its inputs as will be done at generation time, the standard
procedure with one-token-ahead predictions is used. In this approach, the model
is fed the ground truth for all time steps, this is called teacher forcing.

The tokens are sampled by applying softmax [41] function:

softmaxi(y) = exp(yi/T )∑︁
j exp(yj/T )

where y ∈ Rk are outputs from the transformer and T is the sampling tempera-
ture, larger values flatten the distribution, we investigate its effect on the quality
of synthesized motions later.

Formally, for given tokens t0, . . . tn from the training dataset in one-hot rep-
resentation (ti ∈ Rk) and ˆ︁ti being normalized (softmax) outputs from the trans-
former, the task is to find θ parameters of the model minimizing

Lce = −
k−1∑︂
j=0

n∑︂
i=0

(ti)j log pθ(ti = j|t0, . . . , ti−1, c) = −
n∑︂

i=0
ti log(ˆ︁ti)

where pθ(ti = j|t0, . . . , ti−1, c) ∈ Rk is the probability of sampling j as the i-th
token from the model. Due to masking and attention mechanism, it is conditioned
on all previous tokens as well as the category label.

Although the papers [14, 15], we base our work on, generating impressive
results, training the model in this way carries certain disadvantages in practice. In
language-related tasks, a disparity between outputs generated during training and
inference has been observed [42], in particular, the trained autoregressive models
sometimes do not generate the desired text and instead decay into generating
repetitive, constant, or straight-up incoherent output [43]. Many explanations
for this have been put forward [43], mainly blaming the model for never seeing
its own inputs, entering a form of error feedback loop during inference.

In our experiments, although generally stable, we too have experienced non-
ideal output occasionally, and in fact, we conjecture that the main quantitative
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limit of our model on UESTC is exactly due to this phenomenon (apart from
the limitations of the recognizer itself). Some categories were more prone to
generating constant motions where the character did not actually perform any
motion. We also believe that our model is more susceptible than the image-based
ones since one or few incorrectly predicted pixels are not very much noticeable
compared to jumpy or physically impossible poses.

We decided to explore some of the recently proposed enhancements - top-k
and top-p (nucleus) [43] sampling as well as parallel scheduled sampling [42], all
are now described in more detail. The first two were also explored by [14].

Parallel scheduled sampling

The goal of this technique [42] is to mitigate the discrepancy between the distri-
bution of inputs fed into the model during training and then during autoregressive
inference. This technique trains the model by unrolling the autoregression for k
steps, where teacher-forcing is a special case for k = 03. In the first step, the full
sequence is passed to the transformer, outputting one-token-ahead predictions
(the case shown in Figure 3.6). Gumbel-softmax can then be used to sample
from these distributions and the predictions are independently replaced with the
ground-truth with probability 1 − p, obtaining a mix of ground-truths (teacher
forcing) and model’s predictions. This mix is then again passed as new inputs
to the transformer. This is repeated for k steps in total and the probability p is
increased during training. The gradient is accumulated across all steps, the loss
is defined between the final outputs and the ground truth (not the inputs from
the last layer). In the beginning, the model trains mostly on ground truths but
progressively often receives its own predictions with the intent of eliminating the
mentioned discrepancy.

Top-k and Nucleus sampling

After the model is trained, there is still a question about how to precisely generate
the output. In theory, the optimal approach is to directly sample from the output
distributions for the tokens, on the other hand, in our experience, such approach
sometimes leads to sub-optimal results as we have explained above.

One option uses the top-k decoding strategy [44] which in each step only
considers k tokens with the highest probabilities and samples just from them
(their distribution is re-normalized). This eliminates very rare tokens that might
confuse the transformer in the next step. An alternative variant is top-p [45]
which is very similar but instead of picking a fixed set of most probable tokens,
it chooses a minimal set of tokens which meets a total probability threshold, for
example, p = 0.95 samples just from the tokens whose total probability is 95%.

Decoding with sliding window

Auto-regressive generation can generate sequences unlimited in length but it can-
not be by its nature computed in parallel, therefore our model is not very fast
at generation, especially compared to ACTOR [3] which operates on whole se-
quences at once. This issue is more prominent for higher values of cuts s (number

3We use k=1.

20



of tokens per frame) since they directly impact the length of token sequences
representing a particular motion with length k requires s · k tokens. Even if
we disregard the generation speed, we are still bounded by quadratic memory
O((s · k)2) requirements due to the attention mechanism. Therefore, in every au-
toregressive decoding step, we limit the past context to a fixed maximum length
– sliding window in the same way as our predecessors [14]. We did not explore
any more advanced architectures approximating the attention mechanism with
linear complexity such as [46, 47], which is one of the valid topics of future work.

There are known implementation tricks [48] to cache the intermediate atten-
tion computations during autoregressive generation relying on the fact that in
each forward step, we only care about the last token. Although this is a very
efficient solution, reducing the decoding complexity from O(n3) 4 to manageable
O(n2) for n output tokens, but in its current form, it does not work with sliding
window approach we decided to use.The problem we face is caching outputs from
attention layers also caches the positional embedding encoded in them, therefore
one must use absolute positions in the to-be-generated sequence. This rules out
the possibility to use trainable embeddings due to their finite amount, chosen
prior training. On the other hand, the standard sinusoidal embeddings[21] are in
practice not limited by any maximum length and can be used with absolute posi-
tions even beyond the size of the window, at least assuming the model learned to
generalize. In our experiments, we have observed heavy degradation even when
trained with variable-length motions.

Initially, we believed we would be able to solve this with a clever usage of this
attention cache and a special positional encoding we devised. We were wrong
and our method does not work, but the positional encoding is still sound and we
had good results with it, therefore we describe it here briefly.

It amounts to a simple tweak to the sinusoidal embeddings. We use sine waves
with periods a fractions of the sliding window and use the absolute positions in the
generated sequence. This creates a repeating standing waves-like pattern instead
of the ”unbound” sinusoidal embeddings. See Figure 3.7 for an illustration of
this pattern. The disadvantage is the transformer is truly limited in this sliding
window, if given a larger sequence as a whole, the positional embeddings will not
be unique, but repeat themselves; but that was exactly the intended point and
such scenario does not happen in our use case. It is worth noting we vary the
starting phase during training so the network is used for any position. It is also
important to have at least one wave with a period twice as long as the sliding
window. This is needed to ensure that no matter the starting phase, the order of
positional embeddings is unique.

PE(i, 2k) = sin(2π
2k + 1

T
+ ϕ0)

PE(i, 2k + 1) = cos(2π
(2k + 1) + 1

T
+ ϕ0)

where PE(i, j) is the j−th component of a d-dimensional vector added to i−th
(absolute) token in the sequence. Note that T is the period set to at least twice

4To generate n tokens, i-th step takes O(i2) due to attention between all token pairs.
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the length of the sliding window. The plus one ensures we do not start from 0.
The starting phase ϕ0 can also be varied during training.
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Figure 3.7: Harmonic waves as positional embedding - Our proposal is to
use even harmonic waves for positional embeddings in the motion predictor and
as well as attention-based motion autoencoder. Above we show the first six even
harmonic waves with period T = 12.

Alternative approaches that would actually allow caching the outputs even in
the presence of sliding window, which we also did not explore, have been sug-
gested by [49] after observing the above problem; that is to use relative positional
embeddings instead which do not suffer from this issue. Yet another solution is
used in Shortformer [50] model whose authors decided to disentangle positional
embeddings from the attention outputs and instead add them on the fly to each
key and query vectors in the attention mechanism, caching only the pure non-
positional outputs.

3.4 Summary
In this chapter, we have described a new model for motion generation leveraging
previous work on discrete autoencoders and adapted it for unlabeled motion la-
tent discrete representation. The generation is achieved using transformed-based
architecture. We have described multiple variants of the new model as well as
training procedures and related techniques for sampling the motions from the
trained models.
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4. Experiments
In this chapter, we experiment with the models presented earlier, these experi-
ments should provide results and justifications for our ideas. Then we compare
the architecture with state of the art models described in Chapter 2

In detail, this chapter is divided into the following sections:

• First, we describe our experimental setup with used datasets and metrics
for evaluation.

• Second, we present our results of the autoencoder model and show and dis-
cuss through ablation studies the impact of the most important parameters
on its performance. After summarizing the best-found autoencoders, we
take the models and use them to generate token datasets. We dedicate
a few paragraphs to exploring the properties of the generated datasets in
hopes of later better explaining the performance and differences between
the trained motion predictors.

• Third, we take the autoencoders and train motion predictor models with
them. Again, in our ablation studies, we explore the effects of various
hyper-parameters, decoding strategies, and other techniques presented ear-
lier, showing their benefits. The section then continues with a comparison
to the state of the art results and a discussion on the quality of the generated
motions.

4.1 Experimental setup
For the experiments, we have chosen to work work with UESTC dataset. We
restrict training of the autoencoder to sequences of 60 frames at maximum, this
is partly done due to training time complexity and partly because our main
comparison is to the ACTOR model which also uses 60 frames.

Now, we describe the used data for training and evaluation.

UESTC Originally, UESTC is a dataset of videos obtained with multiple cam-
eras in a controlled environment. Multiple subjects were filmed performing var-
ious motions grouped into 40 categories, the whole dataset consists of 25600
videos. ACTOR and our model both work with skeleton-based(SMPL) motions,
therefore authors of ACTOR[3] used VIBE model[51] to extract the skeletons
from raw videos. This makes the motions in the dataset not exactly smooth and
slightly ”jumpy”, we explore this peculiarity further down in Section 4.3.

To make the comparison with ACTOR fair, we use the same train and test
splits throughout our experiments with the help of ACTOR’s open source codes.
The splits are made of disjoint sets of subjects to eliminate any possible leaks of
the test data, the splits were made roughly equal in size. During development,
we have used a part of the training split as our validation set.
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UESTC-ACTOR While inspecting our results on the original UESTC dataset,
we have noticed they are much less smooth than that of ACTOR, please refer to
Section 3.3 as we discussed the topic there already.

We want to check and ensure that the non-smoothness of our results is not
due to some hidden limitation of the chosen architecture, for example, due to dis-
cretization, but instead is the consequence of the non-smoothness of the UESTC
dataset in the first place.

To confirm this hypothesis, that our model is just not biased towards smoothly
generated motions and can equally reconstruct smooth and non-smooth data, we
run a few more experiments for which we create a new temporary dataset which
we denote A-UESTC 1. It is just the original UESTC dataset as reconstructed by
a trained ACTOR model which smooths it. Albeit, it is organized slightly differ-
ently because instead of having roughly 12k training long motions from which we
randomly sample 60 frame-long motions during training, it has 65k 60-frame mo-
tions because ACTOR is unable to reconstruct such long motions without degra-
dation. The 65k motions were thus sampled ahead of time and reconstructed.
The number has been chosen in order for the dataset to be comparable in size
with respect to the total number of frames(poses) in both datasets.

4.2 Evaluation criteria
Due to our two-stage approach, we encounter a slight difficulty - training all
combinations of autoencoders and then motion predictors is infeasible for us. So
we have to resort to first finding good hyper-parameters for the autoencoder and
then we only take a couple of well-performing models and turn our focus to the
motion predictor.

To evaluate the autoencoder, we mainly rely on LV ert as the reconstruction
metric because we will not use it for the majority of our experiments due to its
computational costs, opting for a combination of L6D and LJoint instead.

But, we again want to stress that training the autoencoder is just the first
stage of our task, we are mainly interested in how the motion predictor performs
on generating motions. Therefore to better understand the results of even just
autoencoders, we will use the same motion predictor model for all of them, train it
on the generated token dataset and evaluate it with metrics soon to be introduced.
This way, we obtain basic quantitative metrics which can help find the best
parameters for the models or at least report any deficiencies.

Please keep in mind that some architectures - models using nearest neighbours
as their latent block in particular - benefit from additional training techniques we
described in Chapter 3 and explore later in Section 4.4. The results should there-
fore be used merely for comparison and to ensure that the predictor’s performance
is not suspiciously low.

To evaluate the quality of generated motions, we rely on the benchmark used
by ACTOR in [3], shared from [5]. At its centre is an extra convolutional neural
network - a recognizer trained, on the same dataset as the motion predictor,
at the action recognition classification task. In other words, the network takes
a generated motion and predicts its category. We use the pre-trained model

1For the purpose of this work only.
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provided by its ACTOR authors so the results are comparable across papers, it
also simplifies our implementation.

The predictor’s evaluation process consists of taking labels from the test set
and generating motions from them with the tested motion predictor, the obtained
set of generated motions is evaluated with the following metrics using the trained
recognizer.

1. FID stands for Fréchet Inception Distance[52], widely used metrics for com-
paring the quality of generated images. It computes distances between two
Gaussian distributions, in particular, the activation values for the gener-
ated test sets of the last layer before softmax is applied in the recognizer
are used. The lower the distance, the more similar the sets look to the
recognizer.

2. Accuracy Measures simply the accuracy of the action recognition, we note
that the recognizer itself does not achieve 100% accuracy on the test set,
[3] report 98.8% on the whole UESTC dataset. We further noticed that the
recognizer has trouble with distinguishing between particular categories,
more details follow in Section 4.4.1.

3. Diversity is defined as the variance between the feature vectors (same
ones as for FID) across the whole motion set. Thus higher diversity implies
more diverse motions, at least from the point of the recognizer. Because
the model is conditioned on different categories, with very distinct motions,
diversity will not be close to zero unless the motions are heavily flawed.
Importantly, it will also not be zero even if the model generates a single
motion per category, therefore the following fourth metric is employed.

4. Multimodality is simply diversity computed on a per-category basis and
only then averaged over all categories, this alleviates the aforementioned
problem.
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4.3 Evaluating motion discretization
In Chapter 3, we have proposed a novel motion autoencoder model, described its
training, and defined the used losses.

In this section, we present results for the autoencoder model, we first show
baseline results for various combinations of autoencoder blocks presented in the
previous chapter. Then we focus on various hyper-parameters and small tweaks
and observe their impact on the reconstruction.

We chose UESTC as the basis for most of our experiments due to its reasonable
size and presence of clear evaluation metrics from[3].

Our interest is of course to find the best model for generating motions, re-
construction is just a sub-task of that. In order to achieve that, we pay special
attention later in this section to the learned codebook and distributions of its
tokens across the training dataset. We show that even similarly performing au-
toencoders can result in vastly different token datasets which will have an impact
later in the next section.

The results are thoroughly discussed and the final summarization with the
best motion models is presented at the end of this section. Those models are then
used for training and evaluation of the motion predictors in the next section.

Implementation details and reporting results

For the next autoencoder experiments (apart from Table 4.3), we use training loss
weights of 0.5, 1.0, 0.0 for L6D, Ljoint, LV ert respectively. We have found these to
work quite well and because LV ert is zero, it can be used as a rough metric to
assess the overall quality of reconstruction. A codebook of 512 32-dimensional
code words is used. The tabulated results are also accompanied by reconstructed
motions.

Unless explicitly stated, the presented results are measured on UESTC test
set. Do note that the shown 95% confidence intervals for the additional metrics
based on training extra motion predictors are calculated by generating 10 sets of
motions which are then evaluated. The predictor is trained only once with the
first-run autoencoder and evaluated ten times using a single recognizer.2

It is not feasible for us to show all hyper-parameters used for training in each
table, kindly refer to the source code’s README.md for instructions on how to
obtain the precise experiment configurations used for all the results we present.

In reporting all reconstruction losses we omit 10−5 term, for example, the
reported loss of 12.5 is in fact .000125. For addressing the variants of the mod-
els in more manageable and terse way, we use the following shortcuts: gumbel-
softmax(gs), nearest-neighbour(nn), attention-based(attn), convolutional-based
(conv).

2Due to time constraints we did not choose the best autoencoder, although from experiments
we did manage to run for some models and the low deviations in the autoencoder metrics, we
conclude this is would not be highly impactful.
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Auto Latent Cuts L6D ↓ LJoint ↓ LV ert ↓ Acc ↑ FID ↓ Mmod → 14.2
10−5 10−5 10−5

attn gs 4 44.79 18.05 23.62 88.58±0.38 12.1±0.26 16.23±0.06

attn nn 4 51.26 17.34 22.67 85.93±0.48 15.86±0.25 16.81±0.21

attn gs 8 29.91 9.63 12.68 85.89±0.38 11.04±0.48 16.91±0.12

attn nn 8 25.59 6.42 8.57 83.34±0.37 16.6±0.42 17.17±0.12

conv gs 4 57.40 24.99 33.21 87.41±0.34 14.39±0.32 16.11±0.14

conv nn 4 55.78 23.38 30.57 87.47±0.45 12.46±0.53 16.46±0.15

conv gs 8 29.27 11.53 15.33 85.27±0.44 14.25±0.70 16.85±0.13

conv nn 8 22.10 6.62 8.71 84.23±0.42 14.64±0.29 16.96±0.16

Table 4.1: Comparison of autoencoder blocks - Performance of autoencoder
models trained and evaluated on UESTC dataset, with trained baseline motion
predictor. We compare attention-based (attn) to convolutional-based (conv)
encoder, decoder as well as possible latent variants - gumbel-softmax(gs) and
nearest neigbhours(nn).
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ground truth attn nn 4 cuts attn gs 4 cuts

ground truth attn nn 4 cuts attn nn 8 cuts

ground truth conv nn 4 cuts conv gs 4 cuts

ground truth conv nn 4 cuts attn nn 4 cuts

Figure 4.1: Reconstruction Quality of Motion Autoencoders - A running
motion as reconstructed by autoencoders shown in Table 4.1. The stick figures
represent the kinematic tree with joints and bones.
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Ablating architecture design choices

Table 4.1 presents the baseline results for discussed variants of the autoencoder.
We can clearly see overall quantitative improvement in the reconstruction for 8
cuts rather than 4, we investigate that more closely in a moment. It appears that
attention-based models achieve better reconstruction results across the board.
Interestingly, the nearest neighbour latent block appears to outperform gumbel-
softmax noticeably for 8 cuts but only slightly in case of 4, this might suggest
that it does not scale very well in case of higher-compression values (i.e. fewer
cuts).

In Figure 4.1 we show comparisons between the various models. Because all
models generally do a very good job of reconstruction, the differences in side-
by-side plots would not be noticeable, therefore we have grouped some motions
together and used stick figures with joints instead of full meshes to see the dif-
ferences more clearly.

In Figure 4.3 there are more reconstructions across different categories.
Yet more interesting are the numbers from trained and evaluated motion

predictors because it appears the performance of the motion predictor clearly
favours gumbel-softmax(gs) for attention-based models, on the other hand, conv
models are inconclusive at best.

This might be partly caused by two factors: (1) the decoding strategy we
used in this particular evaluation - we auto-regressively generate the motions
using a simple softmax as we described in Chapter 3. It turns out later that
the nearest-neighbour approach benefits further from the use of extra decoding
strategies. This phenomenon is explored in the next section focused on motion
prediction. (2) the different distributions of tokens in codebooks which we noticed
and therefore we dedicate a later part of this section to get a better look at what
exactly is different and how can the results be better understood.

Ablating cuts

Following on the cuts observation made earlier, more extensive results are in
presented in Table 4.2. Here we can confirm that reconstruction benefits from
higher number of cuts because the compression factor is lower, we again see attn
and nn outperforming conv and gs. But, there is a limit to its usefulness for
motion prediction. More cuts lead to longer sequences and higher computational
requirements, the results also suggest this does not always translate into better
generating quantitative results.

[16] reported compression ratios of up to 42 for images. Repeating the calcu-
lation for our case is slightly more ambiguous, we think so because of the uncer-
tainty of how large the input really is in practice. Sure, we use f ×24×6×32bits
to represent the motion but surely 32bit floating-point representation is rather
excessive, also each joint can be unambiguously specified by only 3 angles. If
we for a moment assume 1 deg precision is sufficient, taking up 9bits, similarly
the most common codebook of 512 vectors can be indexed also by 9 bits. For 4
cuts, this leads to a reduction of 24 × 3 × 9

4 × 9 = 18 in bits needed to represent the
motion by our conservative estimates. Or 9 if we use 8 cuts. In both cases, we
deem the reconstruction more than acceptable for our purposes.
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Auto Latent Cuts L6D ↓ LJoint ↓ LV ert ↓ Acc ↑ FID ↓ Mmod → 14.2
10−5 10−5 10−5

attn gs 2 86.25 45.27 59.47 88.70±0.32 14.26±0.31 16.02±0.14

attn gs 4 44.79 18.05 23.62 88.58±0.38 12.10±0.26 16.23±0.06

attn gs 6 35.44 13.08 16.70 86.08±0.24 12.68±0.67 16.65±0.14

attn gs 8 29.91 9.63 12.68 85.89±0.38 11.04±0.48 16.91±0.12

attn gs 10 20.56 6.45 8.51 85.88±0.29 12.22±0.35 16.67±0.11

attn nn 2 59.22 25.22 32.70 89.05±0.43 11.61±0.34 16.25±0.14

attn nn 4 51.26 17.34 22.67 85.93±0.48 15.86±0.25 16.81±0.21

attn nn 6 37.11 10.35 13.88 84.58±0.43 15.14±0.66 17.1±0.21

attn nn 8 25.59 6.42 8.57 83.34±0.37 16.60±0.42 17.17±0.12

attn nn 10 20.89 5.01 6.53 82.71±0.41 16.61±0.81 17.42±0.14

conv gs 2 109.58 59.17 77.65 86.97±0.33 21.12±0.67 15.69±0.11

conv gs 4 57.40 24.99 33.21 87.41±0.34 14.39±0.32 16.11±0.14

conv gs 6 34.83 13.65 18.20 86.01±0.42 14.31±0.40 16.56±0.12

conv gs 8 29.27 11.53 15.33 85.27±0.44 14.25±0.70 16.85±0.13

conv gs 10 22.96 8.47 11.14 82.92±0.40 17.34±0.46 17.01±0.12

conv nn 2 128.42 73.77 94.21 86.55±0.19 17.08±0.50 16.22±0.11

conv nn 4 55.78 23.38 30.57 87.47±0.45 12.46±0.53 16.46±0.15

conv nn 6 30.94 9.76 12.86 85.43±0.41 13.93±0.35 16.89±0.13

conv nn 8 22.10 6.62 8.71 84.23±0.42 14.64±0.29 16.96±0.16

conv nn 10 22.37 6.60 8.70 84.45±0.33 15.28±0.39 17.01±0.15

Table 4.2: Impact of latent code composition for Autoencoder perfor-
mance - Convolutional autoencoder and basic motion predictor trained with
various number of cuts in the latent codebook. Notice the falling performance of
motion prediction using large-cut token representation.

If we did stick to the original representation f×24×6×32bits, the compression
for 4 and 8 cuts is 128 and 64.

Reconstruction losses

In Table 4.3 we consider weighting of different reconstruction losses and its im-
pact. Naturally, the larger the weight is, the smaller the corresponding loss.
As we have noted earlier, 6D loss accumulates errors across the kinematic chain
which can be seen through higher LV ert losses.

We must be careful with these results now because we no longer can use loss
LV ert as a metric as it is used during training as a loss itself. Summing up or
averaging these losses, even weighted (i.e. reporting the training loss) is also not
very meaningful due to the different spaces in which they operate.

Pure vertex loss stands out in the table (as was mentioned during its descrip-
tion) because we use 6D representation involving rotation matrices, the loss leaves
each matrix unconstrained as long as the mesh is valid, at least in theory. Using
only joint loss is not sufficient [3] as it does not constrain rotation of bones along
their axes, therefore we combine it with 6D loss.
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w6D wJoint wV ert wsmooth L6D ↓ LJoint ↓ LV ert

1.0 0.0 0.0 0.0 45.95 57.52 71.60
1.0 0.0 1.0 0.0 58.61 33.08 36.54
0.1 1.0 0.0 0.0 84.51 22.40 29.95
0.2 1.0 0.0 0.0 75.79 24.17 32.10
0.5 1.0 0.0 0.0 52.83 21.30 28.05
1.0 1.0 0.0 0.0 41.76 20.06 25.81
0.0 1.0 0.0 0.0 526054.43 19.04 358.85
0.1 1.0 1.0 0.0 80.49 17.58 20.95
0.0 0.0 1.0 0.0 691476.00 24.52 25.53
0.5 1.0 0.0 10−5 46.84 18.37 23.83

Table 4.3: Impact of weighted losses on motion reconstruction - Con-
volutional autoencoders with 4 cuts and nearest neighbour trained with different
weights of reconstruction losses.

About the smoothing loss, only briefly mentioned here, we can see that adding
it does not degrade any metrics, it even slightly improves them.

In the end, we found that ratios of 1 : 10 to 1 : 1 for L6D : LJoint all work
well for reconstruction, 1 : 1 has the lowest 6D loss which is desirable to get the
rotations along the joint correct.

These experiments also confirm that our combination of L6D and LJoint is
comparable to using LV ert without its computational drawbacks.

The reconstruction of a single motion by differently-weighted models can be
seen in Figure 4.2.

Training stability and latent losses

Training with the nearest neighbour proved quite stable for a wide set of weight
combinations as can be seen in Table 4.5, also keeping commit loss lower appears
to achieve better results. On the other hand, we have noticed that training
using gumbel-softmax is unstable for larger values KL-loss for which it tends to
get stuck at the start. Either the encoder degenerates to a point of predicting a
single code word or the distribution stays random but in neither case, the network
learns. From our investigation we believe the vanishing gradient might be caused
or being stuck in some local optima - see Table 4.4. Varying the training rate did
not always help either.

Overall the model appears to be stable with respect to the batch size and
learning rate. We use Adam optimizer, batch size of 64 and learning rate of
2.10−4, annealed down over the training period.

Codebook parameters

Table 4.6 and Table 4.7 address the effect of different codebooks. As we can
see, reconstruction always benefits from larger codebooks, the second table also
shows that allocating parameters to a higher number of smaller code words is
more beneficial than having fewer but wider code words. One can also observe
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wKL L6D ↓ LJoint ↓ LV ert ↓

10−1 2213.27 1643.45 2413.11
10−2 2212.40 1642.32 2412.00
10−3 194.95 112.83 152.47
10−4 103.47 53.32 71.31
10−5 66.30 29.73 39.36
10−6 56.24 24.50 32.45
10−7 62.18 36.00 27.40
10−8 64.89 38.32 29.30

(a) Linear KL

wKL L6D ↓ LJoint ↓ LV ert ↓

10−1 2212.68 1642.78 2412.64
10−2 2211.88 1642.21 2411.86
10−3 134.70 72.41 96.65
10−4 56.15 24.95 32.96
10−5 58.42 25.60 33.83
10−6 61.78 27.16 35.90
10−7 62.18 27.81 36.63
10−8 70.15 33.25 43.81

(b) Exponential KL

Table 4.4: Different weights for KL latent loss - The impact of KL and
exp(KL) losses on training and performance of a convolutional autoencoder. As
one can see, too-high values lead to very sub-optimal results, very small weights
are only slightly worse.

wcommit wbook L6D ↓ LJoint ↓ LV ert ↓

0.1 1.0 48.53 18.47 24.56
0.2 1.0 50.44 18.18 24.18
0.5 1.0 59.85 24.18 31.82
1.0 1.0 65.95 29.17 37.74
2.0 1.0 70.88 31.08 39.92
2.0 2.0 53.23 20.19 26.37

Table 4.5: Different weights for nearest neighbour latent loss - The
impact of Lcommit and Lbook losses on training and performance of a convolutional
autoencoder.

much better improvement with nearest neighbour latent block compared to use
using gumbel-softmax, this is partly explained by codebook utilization of the
respective models.

Motion Smoothness

In Table 4.8, we show the impact of our smoothing solution on the reconstruction
quality of the trained autoencoders. One can observe that smoothing does not
appear to harm the reconstruction at all and the upside should be on-demand
smooth motions. Please refer to our supplemental videos to see the impact on
reconstruction and later the subsequent generation, here we at least provide nu-
merical justification in Figure 4.4.

In it, we can see the smoothness of UESTC dataset itself and how models can
improve this metric. An important observation is that our attention-based model
can very precisely model the true dataset if required while ACTOR is very far
from it. We believe our approach is thus superior in this regard as it signals a
higher capacity of our network for details. Moreover, we can tweak this loss as
required to find a balance between the reconstruction of details and smoothness of
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(a) Gumbel-softmax latent

Size L6D ↓ LJoint ↓ LV ert ↓

64 73.67 34.99 45.93
128 67.95 31.15 41.12
256 60.32 26.22 34.61
512 53.82 23.37 30.95
1024 53.19 22.70 30.23
2048 48.91 20.31 27.02
4096 49.71 20.85 27.84
8192 51.79 21.62 28.77

(b) Nearest neighbour latent

Size L6D ↓ LJoint ↓ LV ert ↓

64 95.63 48.15 61.97
128 71.22 33.11 43.13
256 55.04 22.65 30.01
512 48.87 18.90 24.93
1024 53.52 21.18 27.16
2048 47.79 17.66 22.99
4096 47.36 18.83 24.31
8192 44.93 16.84 22.09

Table 4.6: Impact of codebook size on reconstruction - Trained a convo-
lutional autoencoder with fixed-width 32-dim codebook with varying number of
code vectors.

Latent Size Dim L6D ↓ LJoint ↓ LV ert ↓ Acc ↑ FID ↓ Mmod → 14.2

gs 512 128 57.60 24.52 32.59 87.98±0.33 14.33±0.39 16.14±0.13

gs 1024 64 49.20 20.78 27.64 88.18±0.4 12.34±0.49 15.98±0.11

gs 2048 32 50.55 21.25 28.44 87.5±0.34 11.82±0.50 16.00±0.13

gs 4096 16 46.43 19.57 26.03 88.86±0.29 10.97±0.39 15.78±0.20

nn 512 128 66.87 30.61 39.81 85.77±0.42 15.84±0.51 16.64±0.17

nn 1024 64 54.43 22.19 28.84 86.35±0.47 12.52±0.55 16.71±0.21

nn 2048 32 47.04 18.12 23.12 86.98±0.25 12.87±0.48 16.43±0.15

nn 4096 16 32.45 11.07 14.36 85.48±0.37 14.03±0.60 16.76±0.12

Table 4.7: Reconstruction quality difference between tall and wide code-
books - Convolutional autoencoder with 4 cuts has been trained with a codebook
containing constant number of total parameters, either allocated to many small
code words or few large ones.

reconstructed (later generated) motions for any future in-the-wild datasets such
as UESTC.

Variable-length training

Since our motion predictor is autoregressive, we are interested in decoding token
sequences which might vary in length. For convolutional autoencoder, the length
should not be very relevant past the certain threshold given by the depth of the
network and sizes of individual kernels.

In contrast, an attention-based autoencoder might be sensitive to the length
of encoded/decoded motion. Therefore, we have performed several experiments
to investigate:

• Trained on fixed 60-frame long motions and decoding longer, shorter se-
quences.

• Trained on variable-length motions and decoding longer, shorter.
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wSmooth L6D ↓ LJoint ↓ LV ert ↓ Acc ↑ FID ↓ Mmod → 14.2

0 57.60 24.52 32.59 87.98±0.33 14.33±0.39 16.14±0.13

5.10−4 62.59 27.29 35.58 85.64±0.71 15.85±0.81 16.59±0.12

2.10−4 53.03 21.76 28.43 85.96±0.49 13.97±0.62 16.44±0.14

1.10−4 48.36 19.02 25.18 86.13±0.31 14.01±0.50 16.61±0.10

5.10−5 57.91 25.14 32.81 87.57±0.33 12.69±0.41 16.38±0.17

2.10−5 52.68 20.78 27.60 86.62±0.24 13.73±0.41 16.56±0.16

1.10−5 46.84 18.37 23.83 86.14±0.38 13.27±0.53 16.56±0.16

5.10−6 47.33 17.90 23.46 86.48±0.35 13.70±0.28 16.50±0.20

2.10−6 47.29 18.34 24.12 86.12±0.33 13.59±0.44 16.58±0.2

Table 4.8: Effect of smoothing loss on reconstruction - Convolutional
autoencoder with 4 cuts trained with differently weighted smooth loss.

Embedding L6D ↓ LJoint ↓ LV ert ↓ Acc ↑ FID ↓ Mmod → 14.2

trainable 55.93 22.64 28.81 86.61±0.39 13.08±0.44 16.67±0.11

sincos 51.26 17.34 22.67 85.33±0.59 16.34±0.57 16.79±0.09

harmonics 41.29 13.84 18.08 87.56±0.53 12.19±0.37 16.55±0.19

+rngphase 38.50 12.30 16.15 86.34±0.39 14.11±0.49 16.63±0.23

Table 4.9: Effect of various positional embeddings on reconstruction -
Attention autoencoder with 4 cuts has been trained with various embeddings
presented in Chapter 3, rngphase denotes our embedding of harmonic waves
with randomly sampled starting phase when training.

In both cases, we use sincos positional embedding. The results can be found
in Figure 4.5, as we can see, there is a significant deterioration in motion recon-
struction on motions of unseen lengths, even if with the expanded training.

Additional parameters for attention-based autoencoders

If we decide to use the attention-based autoencoder, we should at least briefly
consider which positional embedding is appropriate.

We have run a few simple experiments with results tabulated in Table 4.9,
the main take-away from this is harmonics is just as good as the traditional
embeddings using sin and cos. If we vary the starting phase ϕ0, the reconstruction
results improve slightly.

Another issue, we touched upon in Chapter 3 is masking, we run the possible
combinations and as we can see in Table 4.10, it has little impact on the per-
formance, although we see subjectively more choppy, non-smooth reconstructed
motions.
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Encoder Decoder L6D ↓ LJoint ↓ LV ert ↓ Acc ↑ FID ↓ Mmod →
Future Masked

Yes Yes 53.27 19.79 25.69 86.51±0.40 14.86±0.62 16.67±0.12

No Yes 54.92 20.84 26.69 87.15±0.47 13.50±0.48 16.60±0.22

Yes No 55.45 21.62 27.45 86.32±0.41 13.65±0.60 16.67±0.13

No No 51.26 17.34 22.67 85.93±0.48 15.86±0.25 16.81±0.21

Table 4.10: Attention mask effect on reconstruction - Attention-based
autoencoder with 4 cuts and nearest neighbour latent block has been trained
with attending to future tokens in the attention layers either forbidden(Yes) or
allowed(No).

Encoder Decoder Cuts 25% 50% 75% 100%

attn gs 4 50 146 287 500
attn nn 4 32 94 210 491
attn gs 8 65 182 331 512
attn nn 8 40 103 209 480
conv gs 4 61 157 285 512
conv nn 4 36 106 219 510
conv gs 8 67 170 302 512
conv nn 8 38 101 206 498

Table 4.11: Codebook usage of the trained models - The table depicts how
many code vectors are needed to explain 25, 50, 75, 100% of the test set. E.g.
for attention-based, gumbel-softmax, 4-cut model, 50 tokens out of 512 accounts
for 25% of all tokens of discretized motions in the test set.

(a) Gumbel-softmax latent

Size 25% 50% 75% 100%

64 9 22 39 64
128 18 44 75 128
256 32 84 149 256
512 73 172 301 512
1024 118 316 575 1024
2048 255 650 1172 2048
4096 452 1240 2390 4096
8192 1009 2602 4690 8192

(b) Nearest neighbour latent

Size 25% 50% 75% 100%

64 6 16 32 64
128 13 33 62 127
256 18 52 109 253
512 35 105 216 510
1024 53 179 403 1023
2048 75 275 636 1844
4096 68 243 617 1906
8192 91 329 819 2380

Table 4.12: Codebook usage of the trained models with varying book
size - Trained models from Table 4.6 with their codebook utilization.
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ground truth only 6D

ground truth vertex 6D

ground truth joint 6D

ground truth only joint

Figure 4.2: Motion reconstruction as affected by weighted reconstruc-
tion losses - Plots of every 5-th pose from the first 30 reconstructed frames
by autoencoder with training losses (Table 4.3, top-to-bottom): 6D only , 6D +
vertex, 6D + joint, 6D + joint + smooth. Overhead stretch action is depicted.
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Elbow knee crunch
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Left stretch

Punching

Running

Toe touch

Figure 4.3: Motion reconstructions of different categories - Reconstruction
from trained convolutional, nearest-neighbour model with 4 cuts.
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Figure 4.4: Impact of smoothness loss - Per-frame smoothness loss across
test set for trained models and UESTC ground truth. ACTOR UESTC is A-
UESTC(Section 4.1) dataset - i.e. UESTC reconstructed by the ACTOR model.
Lower loss means smaller velocity changes between motions and thus smoother
motions.
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Figure 4.5: Reconstructing variable-length motions - Two attn nn models
trained on UESTC dataset, one on fixed 60-frame motions, the other on 1-frame
to 6-frame motions. As a baseline serves a convolutional autoencoder, also based
on nearest-neighbour latent block.
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Figure 4.6: Discrete token distribution - Effect of latent blocks on token
distribution in a convolutional models with 4 splits, sorted from most frequent
tokens with.
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Figure 4.7: Codebook token per-cut distribution - Distribution of tokens
per cut for gumbel-softmax and nearest-neighbour convolutional autoencoder.
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Token distributions

Now, we focus on the distribution of tokens generated by various autoencoder
models, it is important to keep in mind that each trained autoencoder is creating
a new dataset for the motion predictor to learn from. Throughout our experimen-
tation, we have found that the fundamental differences between gumbel-softmax
and nearest-neighbour, that we have laid out in Chapter 3, also apply in prac-
tice and there are clear differences between the datasets inferred by those latent
blocks.

We can start by looking at the usage of the codebook of the trained models,
we have tabulated it in Table 4.11. Since the codebook size is 512 code words,
we can observe that not all of them are used, although only a few are left unused
for reconstructing the test set.

This is more prominent with larger codebook sizes as shown in Table 4.12.
We can see that likely thanks to the sampling-oriented way of gumbel-softmax
it nearly always utilized the whole codebook, on the other hand, we were un-
able to force higher utilization of networks using nearest-neighbour. Although, if
one compares it with the reconstruction results in Table 4.6, nearest-neighbour
outperforms its alternative even though it uses fewer code words.

The data from the tables are visualized in more fine-grained way in Figure 4.6
and Figure 4.7, we can clearly see more narrow token distribution for nearest-
neighbours and in both cases, very different distributions for each cut.

4.3.1 Evaluation summary
In this section, we have presented the results of our extensive experiments re-
garding the reconstruction performance of motion autoencoder, as well as some
preliminary results on motion generation. We will try to improve those in the
next section. In order to do that, we need to select a few models at maximum to
consider.

Based on the results, we summarize the following

1. All 4 combinations of encoder/decoder and latent blocks appear to be viable
but not exactly the same, therefore we will try them all.

2. 4,8 cuts offer a reasonable trade-off between reconstruction error and pre-
liminary motion generation performance. Furthermore, 4 cuts keep token
sequences shorter therefore we will use them as our go-to model in the next
section.

3. LJoint combined with L6d is a viable substitution for LV ert, we use the ratio
of 1 : 0.5, as we have found that generation with 1 : 1 has in our opinion
more trouble with a global orientation.

4. Smoothing does not appear to harm performance at all and the upside
should be more smooth motions. But the most important take-away from
this is the confirmation that our architecture, the discretization in particu-
lar, is not the cause of non-smooth generated motions.

5. At first glance, from a quantitative standpoint, the motion generation ap-
pears not impacted by the reconstruction performance much, a hopeful sign
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Auto Latent Cuts L6D ↓ LJoint ↓ LV ert ↓

attn gs 4 43.17 16.07 20.74
attn nn 4 41.15 13.66 17.79
conv gs 4 55.54 23.48 31.04
conv nn 4 55.55 21.89 28.59

Table 4.13: Final autoencoders - Reconstruction losses of the final autoen-
coders.

that the predictor is quite robust to the variations in the autoencoders. But
we will see shortly that there are indeed important differences if decoding
strategies are used. Furthermore, from qualitative results in our supplemen-
tal videos we also suspect that the recognizer used to evaluate the predictor
is not particularly sensitive to the quality of motions which might skew the
quantitative metrics.

6. Attention-based models are unable to generalize to different lengths, this is
a considerable disadvantage compared to convolutional alternatives which
perform equally over the tested range(Figure 4.5). It means that to prop-
erly decode the generated tokens longer than what the autoencoder model
was trained on, the straightforward approach is not enough. Nevertheless,
we still investigate the motion prediction capabilities of attention-based
models.

In conclusion, we have trained final autoencoders, their results are shown
in Table 4.13, and we will use them throughout the next section for motion
prediction. Precise setup can be found in the attached source code.
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4.4 Evaluating Motion Prediction
With the autoencoders trained (Table 4.13), we can focus on finding the best
motion generation models. First, we show the baseline results, then we investigate
the effects of the main predictor’s hyper-parameters and more importantly the
decoding strategies presented in Chapter 3. After that, we compare our models
with the state of the art on the UESTC dataset - Table 4.18, showing both
quantitative and qualitative results which we discuss.

Implementation details

Unless explicitly stated, the presented results are measured on the UESTC test
split with the same setup as in Section 4.3 - showing 95% confidence intervals
over ten evaluations.

We use the SOS-variant of our model (Section 3.2), therefore the testing setup
is the same as for ACTOR with input being only a category label and therefore
fairly comparable.

Consult with the attached source code for the necessary steps to reproduce
these results.

We train the models with Adam optimizer, the learning rate of 2.10−4, 10
warm-up steps[53], and batch size of 32 for 250 epochs, on a single NVIDIA V100
the training on the UESTC dataset takes roughly 11 hours.

Baseline results

First, we take the final autoencoders from the last section and train a baseline
motion predictor with 12 layers, embedding dimension of 192, and 2048 neurons in
fully-connected layers. Decoding directly samples from the output distributions,
no special decoding strategies are involved yet. Results of these baseline models
are presented in Table 4.14.

The results of course closely match the ones we have revealed during the
autoencoder evaluation. We can observe that all models perform very similarly,
producing decent results. One can see that our models have slightly lower overall
diversity and higher multimodality than the whole UESTC dataset, there is still
room for improvement on the accuracy and FID fronts.

In Figure 4.8 we show a few generated motions by these models but we will
focus more on the qualitative results later with the final models.
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Auto Latent Splits Acc ↑ FID ↓ Mmod → 14.2 Div → 33.3

Test GT x x 91.73±0.40 0.51±0.02 15.88±0.22 32.37±0.41

attn gs 4 87.29±0.46 14.62±0.40 16.22±0.18 31.61±0.34

attn nn 4 87.65±0.41 12.78±0.37 16.31±0.17 31.83±0.19

conv gs 4 86.91±0.38 13.42±0.45 16.35±0.15 31.23±0.25

conv nn 4 86.25±0.45 15.39±0.36 16.49±0.18 31.42±0.18

Table 4.14: Baseline motion prediction results - Motion predictor trained
and evaluated on UESTC dataset. Uses start-of-sentence(SOS) token only, no
initial pose. We also show the ground truth results for the recognizer.

Figure 4.8: Generated motions from baseline models - From top to bottom:
running by conv nn, toe touch by conv gs, left-stretch by attn gs, and jumping
jacks by attn nn.

Ablating transformer decoder hyper-parameters

In general, we have found the transformer architecture quite robust in training
with respect to the number of layers as shown in Table 4.15. It seems that
the larger the dimension the better the performance as suggested by the results
tabulated in Table 4.16. In retrospect, it looks like we should have used larger
256-dim models as they have slightly better results on the test split, at least for
convolutional autoencoders.
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Auto Latent Layers Acc ↑ FID ↓ Mmod → 14.2 Div → 33.3

attn nn 4 84.43±0.53 15.35±0.44 17.02±0.18 30.92±0.25

attn nn 6 86.01±0.46 13.51±0.53 16.51±0.18 31.14±0.22

attn nn 8 86.92±0.25 13.48±0.45 16.67±0.14 31.21±0.18

attn nn 10 87.24±0.33 13.06±0.48 16.36±0.1 31.4±0.34

attn nn 12 87.52±0.37 12.97±0.64 16.54±0.13 31.44±0.26

conv nn 4 83.24±0.35 17.3±0.63 16.95±0.12 30.54±0.21

conv nn 6 84.54±0.43 15.74±0.45 16.79±0.19 30.86±0.22

conv nn 8 85.46±0.54 15.83±0.6 16.6±0.13 31.02±0.23

conv nn 10 86.1±0.39 15.01±0.68 16.43±0.18 30.95±0.26

conv nn 12 86.26±0.38 15.15±0.55 16.55±0.14 31.15±0.16

Table 4.15: Performance of transformer layers - Trained with 192 embedding
dimension and 2048 neurons in the fully-connected layers.

Auto Latent Dim Acc ↑ FID ↓ Mmod → 14.2 Div → 33.3

conv gs 64 52.78±0.53 55.36±1.21 19.73±0.09 26.36±0.18

conv gs 128 83.93±0.37 15.01±0.33 16.89±0.1 30.35±0.26

conv gs 192 86.91±0.38 13.42±0.45 16.35±0.15 31.23±0.25

conv gs 256 87.74±0.38 13.34±0.62 16.27±0.15 31.69±0.23

conv nn 64 53.85±0.54 53.08±1.64 19.63±0.16 26.37±0.25

conv nn 128 82.22±0.39 17.42±0.64 17.04±0.11 30.29±0.37

conv nn 192 86.25±0.45 15.39±0.36 16.49±0.18 31.42±0.18

conv nn 256 87.13±0.41 14.07±0.57 16.46±0.09 31.39±0.33

Table 4.16: Exploring embedding dimensionality in Transformer - The
table shows the effect o varying size of the embedded token dimension on motion
generation. Trained with 12 layers and 2048 neurons in the fully-connected layers.
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Figure 4.9: Top-k vs temperature sampling survey - Quantitative perfor-
mance of baseline motion predictors from Table 4.14. Note that due to evaluation
costs, these results are from 1 iteration only, interesting values are re-plotted in
Figure 4.10. 47



0 50 100
0

20

40

60

80

100

0 50 100

attn gs attn nn conv gs conv nn

Top-k Top-k

A
cc

ur
ac

y 
± 

st
d

A
cc

ur
ac

y 
± 

st
d

temp =1.0 temp =2.0

0 50 100
0

20

40

60

80

100

0 50 100

attn gs attn nn conv gs conv nn

Top-k Top-k

F
ID

 ±
 s

td
)

F
ID

 ±
 s

td
)

temp =1.0 temp =2.0

Figure 4.10: Effect of top-k on accuracy and FID for motion generation
- Following on sampling survery in Figure 4.9, this time we evaluated the models
5 times with different values of top-k. Top figure shows the effect on accuracy,
the bottom one on FID.
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Figure 4.11: Effect of nucleus sampling on accuracy and FID of generated
motions - Performance of models from Table 4.14 with nucleus sampling as the
chosen decoding strategy with probability threshold p.
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Decoding strategies

In Section 3.2, we have described some of the possible decoding strategies, mainly
used to improve language generation. Therefore we have conducted a series of
experiments to investigate their impact on our models.

First, we look at the impact of top-k sampling combined with varying the
temperature of softmax. For all 4 models and the qualitative metrics3, we have
plotted a series of graphs depicting the performance of the models in Figure 4.9.

Our observations:

• Extreme temperatures heavily degrade performance because they drasti-
cally change the probability distribution, which was expected.

• Multimodality, in general, correlates with higher top-k values which is also
reasonable because the model has more options to choose from, hence more
diverse motions. UESTC test split has a multimodality of 14.2, we can see
that our models can and do overshoot it in some scenarios.

• There is a fundamental difference between the gumbel-softmax and nearest-
neighbour model as to where their optima lie. Regarding FID, for the
former latent block, higher top-k appears to improve the metric, meaning
this technique is not very beneficial for this architecture. On the other
hand, nearest-neighbour strongly benefits from tighter top-k bounds, with
FID optima laying around top-k== 15 and temperature== 2.0. Accuracy
is similar, although we can see the accuracy of attn-gs benefits to some
degree from lower top-k.

Based on these results, we see attn-nn as the most promising candidate with
the option of tunable performance towards higher accuracy and lower FID for the
top-k range [8 − 20] and temperature around 2.0. conv-nn is very comparable
accuracy-wise but has slightly higher FID values. Unfortunately, gumbel-softmax
has trouble breaking 90% accuracy threshold with any settings, with naive set-
tings working the best.

We re-plot the accuracy and FID data again Figure 4.10 for the interesting
temperatures and evaluate the same settings 5 times, it appears the values do
not change very much and therefore our usage of the values from Figure 4.9 for
our argumentation is valid.

Second, we look at how top-p sampling could improve the results. Unfortu-
nately, as it appears from Figure 4.11, it cannot. This is in contrast with [14]
which reports success with top-p sampling as well as the original paper[43] We
are unsure about the exact cause.

The last technique we have described was scheduled sampling, acting as a
way to get the model used to see its own outputs. Therefore we have taken our
trained baseline models and fine-tuned them for another 50 epochs with scheduled
sampling, p annealed over the first 20 epochs 0 → 0.5 . Evaluated results are
shown in Table 4.17, if we compare them to Table 4.14, the only major thing is the
improvement of FID for conv nn architecture. Other than that, the qualitative
results look quite similar or even worse (the case of FID for attn nn), which

3We do not plot diversity due to space constraints as well as because it is mostly covered by
multimodality.
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Auto Latent Splits Acc ↑ FID ↓ Mmod → 14.2 Div → 33.3

attn gs 4 88.34±0.37 14.15±0.61 16.01±0.12 31.97±0.37

attn nn 4 86.94±0.35 13.58±0.55 16.41±0.17 31.59±0.33

conv gs 4 87.78±0.37 13.35±0.43 16.16±0.11 31.21±0.26

conv nn 4 88.43±0.28 12.74±0.48 15.82±0.14 31.42±0.34

Table 4.17: Scheduled motion prediction results - Baseline motion predic-
tors fine-tuned using scheduled sampling technique.

is unfortunate, varying top-k and temperature also do not improve this training
technique as we can see in Figure 4.12.

During our experimentation earlier, when our results were much worse with
FID around 50 and accuracy barely reaching 80%, scheduled sampling appeared
much more favourable to us. It did improve the results noticeably, especially the
generated motions were more stable and less prone to degradation or collapse.
But as we have shown now, there is no longer much difference with the current
models we have managed to train without this technique.
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Figure 4.12: Top-k vs temperature sampling survey - Quantitative perfor-
mance of fine-tuned motion predictors from Table 4.17.
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Model Temp Top-k Acc ↑ FIDtest ↓ FIDtr Mmod → 14.16 Div → 33.34

GT[3] x x 98.80±0.10 2.79±0.29 x 14.16±0.06 33.34±0.32

Test GT x x 91.73±0.40 0.51±0.02 x 15.88±0.22 32.37±0.41

ACTOR[3] x x 91.1±0.30 23.43±2.20 20.49±2.31 14.66±0.03 31.96±0.29

conv gs 1.0 512 87.11±0.31 13.58±0.55 13.52±0.47 16.43±0.15 31.26±0.33

attn gs 1.0 512 87.85±0.25 14.56±0.49 14.27±0.31 16.24±0.11 31.68±0.20

conv nn 2.0 20 94.45±0.36 12.84±0.39 12.88±0.40 13.45±0.11 34.14±0.27

conv nn 1.0 512 86.25±0.45 15.39±0.36 14.44±0.48 16.49±0.18 31.42±0.18

attn nn 2.0 20 92.23±0.26 11.29±0.28 11.02±0.39 14.68±0.14 33.51±0.32

attn nn 1.0 512 87.65±0.41 12.78±0.37 12.82±0.49 16.31±0.17 31.83±0.19

Table 4.18: Comparison with the state of the art - Comparison of our best
models with the state of the art ACTOR on UESTC dataset, ground truth(GT)
is given by evaluating the predictor directly on motions from the test set or on
all motions(UESTC).

Auto Latent Temp Top-k Acc ↑ FID ↓ Mmod → 14.2 Div → 33.3

conv gs 1.0 512 85.04±0.5 17.36±0.43 16.52±0.11 31.1±0.41

attn gs 1.0 512 88.43±0.32 13.3±0.43 15.98±0.11 31.97±0.28

conv nn 2.0 20 90.92±0.39 17.43±0.34 14.65±0.14 33.01±0.19

attn nn 2.0 20 92.17±0.32 12.73±0.26 14.66±0.08 33.4±0.35

Table 4.19: Motion predictors with smoothed autoencoders - Trained
same motion predictors as in Table 4.14 using the same autoencoders except
with added smoothing weight of 10−4.
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Figure 4.13: Jumping jacks generation - Jumping jacks as generated by final
motion predictors, 2 rows(samples) per model, top-to-bottom: conv nn, conv gs,
attn nn, attn gs.
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Figure 4.14: Elbow knee crunches generation - Elbow knee crunches as
generated by final motion predictors, 2 rows(samples) per model, top-to-bottom:
conv nn, conv gs, attn nn, attn gs.
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Figure 4.15: Running motion generation - Running motion as generated by
final motion predictors, 2 rows(samples) per model, top-to-bottom: conv nn, conv
gs, attn nn, attn gs.
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Figure 4.16: Overhead stretching motion generation - Overhead stretching
motion as generated by final motion predictors, 2 rows(samples) per model, top-
to-bottom: conv nn, conv gs, attn nn, attn gs.
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Figure 4.17: Confusion matrices and outliers of motion recognition for
conv nn model - The matrices obtained from the recognizer when evaluating a
motion predictor which uses convolutional, nearest-neighbour autoencoder. Top
figure shows conv nn with ordinary softmax decoding while the bottom one uses
modified top-k, temperature values from Table 4.18.

58



726 22 0 3 0 4 0 5 13 1 0 0 1 5 0 1 0 0 0 0 0 0 2 0 1 1 0 3 0 1 0 6 0 0 2 0 15 17 2 0
2 860 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 0
0 2 771 1 0 0 1 28 1 0 0 0 0 0 0 0 0 0 2 0 0 0 36 0 1 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 817 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 3 0 0
0 0 0 0 843 0 0 0 0 0 5 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 5 861 0 0 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 844 1 4 0 3 0 0 1 0 0 0 2 0 1 0 0 13 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
5 0 2 0 0 0 0 852 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 2 35 0 0 834 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 1 0 1 2 0 0 0 0 0 0 0 0
7 0 0 2 0 0 0 0 0 814 0 0 0 0 0 0 0 0 3 0 0 0 3 3 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 1 688 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 663 0 3 2 0 5 0 5 0 0 0 4 3 0 1 0 0 0 0 0 0 0 0 0 4 0 0 2 0
0 0 0 0 0 2 0 0 0 0 1 0 648 0 2 0 5 1 0 0 3 1 0 13 2 7 0 1 4 0 5 0 0 0 0 0 0 1 4 0
0 0 0 0 0 0 1 0 5 0 0 1 0 674 0 4 0 1 1 16 0 0 4 0 0 0 5 0 0 0 0 0 1 0 0 3 1 1 14 0
3 0 0 1 0 2 0 0 0 0 1 0 1 0 691 2 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 3 1 0
3 0 1 0 0 0 0 0 0 0 0 0 0 54 0 206 0 1 4 360 0 4 1 0 0 4 3 0 0 1 0 1 4 0 0 1 5 2 60 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 823 0 0 0 4 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 6 1 8 0 0 2 0 775 0 0 3 2 1 2 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
2 0 0 1 0 0 0 2 1 0 1 6 0 12 0 0 0 0 795 0 0 0 1 0 0 0 0 3 0 1 0 0 0 0 0 1 0 0 1 0
3 1 0 0 0 1 0 0 0 0 0 0 0 71 0 57 0 2 6 564 0 9 1 0 0 2 2 0 0 0 0 0 1 0 0 0 2 1 63 0
1 0 0 1 0 0 0 3 0 1 0 8 2 0 4 0 32 1 0 0 772 0 0 0 0 2 0 1 0 2 3 0 0 0 0 2 0 1 0 0
2 0 0 0 0 1 0 0 1 0 1 0 0 19 0 78 0 0 0 96 0 441 0 1 0 2 18 0 1 0 0 1 10 0 0 0 5 3 24 0
2 0 0 0 0 0 0 7 0 0 1 1 0 2 0 0 0 0 3 0 0 0 702 0 0 1 0 2 0 1 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 3 0 0 0 0 0 0 2 0 13 0 0 0 0 0 0 0 0 679 0 5 0 0 2 0 2 0 0 0 0 0 0 2 0 0
0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 1 0 642 43 0 5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 2 0 0 0 9 0 0 0 0 0 0 1 10 700 0 5 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0 3 0 1 0 0 2 0 2 0 0 0 13 0 7 1 0 0 0 627 0 2 0 0 1 27 0 0 0 1 2 3 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 691 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 745 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 6 0 0 0 0 1 0 11 0 2 1 1 0 10 0 5 1 1 2 0 0 0 695 5 0 0 0 0 0 0 0 0 0
0 0 0 2 0 1 0 0 3 0 0 2 0 1 7 0 1 0 0 0 8 0 0 3 0 3 0 0 0 12 697 0 0 0 0 1 1 1 0 0
2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 749 0 1 0 1 0 11 8 2
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 2 0 2 0 2 0 0 2 725 0 0 0 2 4 11 0
3 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 81 2 636 0 0 0 3 14 0
0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 710 0 4 2 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 2 2 0 0 0 0 0 0 0 0 586 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 494 80 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 530 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 6 0 0 0 0 0 564 3
5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 4 0 0 0 0 0 0 24 536
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

35

30

25

20

15

10

5

0

Recognizer' prediction

M
ot

io
n 

ca
te

go
ry

Figure 4.18: Confusion matrix of motion recognition for attn nn model
- Attention-based nearest-neighbour model evaluated on UESTC test set with
top-k= 20 and 2.0 temperature.

Figure 4.19: Three similar, problematic categories - The figure depicts three
motions from the UESTC test split - categories 15, 19, and 21 which have proven
troublesome for our models as well as the recognizer itself. We leave it to the
reader to see which are which.
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4.4.1 Comparison to the state of the art ACTOR
Table 4.18 is the table, it compares our best models with the state of the art
ACTOR’s results. ACTOR claims[3] FID to be the main metric for optimization,
our models consistently outperform ACTOR with the possibility for targeting
high-accuracy. As can be seen from multimodality and diversity values, the better
metrics are not at expense of the ability to generate diverse motions. In figures
4.13, 4.14, 4.15, and 4.16 we show qualitative results from our models, for the
nearest-neighbour variants we use the version with top-k= 20 from Table 4.18.
Please also refer to our supplemental videos with direct comparisons.

Tabulating FID for the training set is also very important because it controls
for the overfitting which would likely lead to very high, but meaningless, scores
by the recognizer. We can see that our model does not overfit any more than
ACTOR does.

Based on the figures above, we can see how models based on gumbel-softmax
do not achieve the best results. It is not due to the autoencoder’s quality per
se because that is comparable to its nearest-neighbour alternative and it can-
not be the fault of the transformer architecture because that is also unchanged.
Therefore the lower performance must come directly from the hardness of the
token dataset implied by the autoencoder. Maybe due to the mentioned fact of
independently sampled tokens on a per-frame basis. We do note that our models
are not perfect, sometimes, not often, they have trouble with global orientation
or they do not perform any action or perform it badly. We believe this is mainly
due to its autoregressive nature and admit that ACTOR is superior with respect
to its output stability, at least from our experiments with it. Moreover, not only
from the shown samples, we do no longer consider attn nn the best model de-
spite its metrics exactly due to its tendency to fail at a higher rate than other
models. Despite slightly worse metrics, from a qualitative standpoint, we claim
conv nn to be our best model for motion generation and now look at
its performance more closely.

To better understand the qualitative results and provide something better
than subjective opinions, in Figure 4.17 we show the confusion matrices for action
recognition of motions generated by conv nn. We can see the diagonal of correctly
generated/recognized motions and some incorrect ones. But if we compare these
metrics with the motions shown in Figure 4.18, we see a peculiar fact. Even
though attn nn, top-k=20 has better FID than its convolutional counterpart
(Table 4.18), it has considerably worse confusion matrix. This should explain the
results we saw when generating motions from the models - the higher instability
of the attention-based model. In both tables, there are clear outliers - categories
15,19, and 21. They stand for shoulder-raise, dumbbell-shrugging, head-circling
respectively. If we plotted the confusion matrix for the test set itself, these three
would still stand out, even the recognizer cannot reliably distinguish between
them. We do show samples of them in Figure 4.19 and it should be clear how
similar they are. Our accuracy is mostly limited exactly because the standing-like
motions get miscategorized.

A point we have touched on earlier is how smooth are the motions generated
by the ACTOR model despite the non-smoothness of the dataset. Unfortunately,
as we have seen from motion reconstruction, our model does not have this prop-
erty. We have tried to replicate it with the introduction of smoothing loss into
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Auto Latent Temp Top-k Acc ↑ FID ↓ Mmod → 14.2 Div → 33.3

attn gs 1.0 512 90.31±0.33 26.54±0.44 14.24±0.1 32.32±0.26

attn nn 1.0 512 89.29±0.25 31.52±0.67 14.47±0.19 31.47±0.24

conv gs 1.0 512 90.08±0.15 32.81±0.54 13.98±0.08 30.84±0.22

conv nn 1.0 512 86.32±0.37 23.38±0.62 15.41±0.15 31.79±0.27

Table 4.20: Motion predictors with A-UESTC autoencoders - Trained
the same motion predictors as in Table 4.14 using autoencoders trained on A-
UESTC. The predictor models themselves are evaluated against the original
UESTC dataset.

autoencoder training, therefore we have also trained motion predictors using these
autoencoders. The results analogous to Table 4.18 are shown in Table 4.19, we do
not observe any major degradation nor improvement. It is difficult to show the
effect on paper therefore we have generated a few supplemental videos comparing
smoothed and ordinary motion generation.

Let us, for now, concede the point that even the smoothed versions of our
models are no match for the smoothness of ACTOR, our model is simply unable
to ”repair” the input dataset and instead shows the motions as they are, we do
not consider it a disadvantage. Yet, we do not need to stop here, as the ACTOR
paper’s authors point out, that smoothing datasets is one of the use cases of their
model, let us use it then.

We trained the same final autoencoders but on the new A-UESTC dataset
(Section 4.1) and the corresponding new motion predictors with their results
tabulated in Table 4.20. Few motions are depicted in Figure 4.20 but also refer
to supplemental videos to get the best picture. The videos prove that our model,
if given a smooth dataset is more than capable of generating smooth motions. The
tabulated qualitative results show worse FID numbers, this should be expected as
neither the autoencoder nor the predictor have seen the original UESTC dataset,
therefore they are more supplemental and a check that the generation works. On
the other hand, the accuracy is better than for the generated methods.
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Figure 4.20: Motion generated by conv nn model trained on A-UESTC
dataset - Our models can indeed generate smooth motions if given smooth
dataset. The figure depicts two motions of humans bending to sides. Best viewed
as the supplemental videos.
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5. Conclusion
We introduced a new model for motion generation conditioned on categorical la-
bels. It is based on the two-stage approach of first learning discrete representation
of unlabeled motions and then training a generative, autoregressive model condi-
tioned on the category and possibly the starting motion. Throughout Chapter 4
we did subject the model to extensive testing including the evaluation of the
presented architectural variations and ablations of the main hyper-parameters.
We provided our results, proving that using discrete representation of motions
is a viable technique and it can achieve state of the art qualitative results on
the UESTC dataset as well as being capable of generating high-quality, diverse
motions.

Limitations
Although performing well in our opinion, our model is not without issues as well
as having plenty of potential avenues for improvements we thought of during the
work on this thesis, we now summarize the major ones.

• Attention-based autoencoder are not suited for variable-length motion gen-
eration/decoding. But this should be solvable in practice, albeit it must
involve a more complex approach. Because we could also restrict the au-
toencoder to a similar sliding window as the one employed during the gen-
eration. Alternatively, we can partition the tokens into partly overlapping
fixed-length sequences and decode them independently, likely interpolating
the decoded motion at subsequences’ edges to produce a smooth connection.

• Our prediction model lacks the ability to smooth the input dataset, tech-
nically not a disadvantage in our opinion as we have discussed earlier. We
have tried to fix it with the introduction of the smoothing loss but we have
fallen short of the ACTOR model. Nevertheless, it can be fixed with the
help of some external smoothing pre-processing step(the case of A-UESTC).
Still, we feel the need to mention this here explicitly for fairness as well as
stating the fact that ACTOR’s generation of smooth motions from a non-
smooth dataset is not by choice but through a convenient side-effect of their
architecture.

• We did not fully eliminate the instability of autoregressive generation, some-
times the generated motion is simply not good, but any future advances in
decoding strategies or training of for example language-focused tasks can
lead to downstream improvements even in our model. We believe the abil-
ity to generate longer sequences in a controlled fashion outweighs these
shortcomings.

• It is our opinion through extensive experience with our model that training
requires more data than ACTOR, a possible solution might come from the
two-stage approach and pre-training on a possibly unlabeled dataset, or al-
ternatively borrowing pre-training techniques once again from the language
generation domain.
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Future work
We hope that our introduction of discrete representation to the motion generation
domain can offer a wide set of future avenues of research, the most logical ones
which could follow are:

• Analyze performance on other datasets which we were not able to do mostly
due to time constraints. A very intriguing idea we would have hoped to see
is pre-training the autoencoder on a large-scale dataset like AMASS[2] and
even possibly the motion predictor without conditioning on categories.

• Add the prediction of poses’ global positions, we believe this might help with
the global orientation issues of some of the presented models and of course,
add further applications to the model. Our idea would be to add it as a
special 5th token after each pose if there are 4 cuts. It would not be a token
per se, just a vector with the same dimensions as the embedded tokens,
likely 3D coordinates passed through a linear dense layer. The 5th output
token would then not be considered discrete but instead would represent
the parameters of a Gaussian distribution of the global position from which
we could sample. This would create a sort of hybrid discrete-continuous
generative model but that is worth investigating.

• Exploring more advanced transformer models, perhaps those with linear
attention[46, 47] would allow attending to wider past context and therefore
hopefully allow the model to generate better motions.

• Many-times mentioned [14, 15] papers condition their generations on dif-
ferent inputs, we, in particular, are interested in conditioning on sentences
as few of the related works in Chapter 2 do. For example, [54] presents the
TEMOS model, a follow-up model on ACTOR from its authors, capable
of generating motions based on short sentences (uses the KIT dataset[1])
with reportedly considerably improving the state of the art results. Even in
our case, thanks to the two-stage approach, it might be achieved by simply
employing a proper encoder-decoder transformer architecture[21].

• There have been further developments in the methods we use, VQ-VAE2[28]
adding on an hierarchical approach, DALL-E2[29] focusing more on dif-
fusion models and we found the paper[55] introducing Robust VQ-VAE
dealing with over-representation of outliers in the generated data quite in-
teresting, especially coupled with the fact of non-perfect motion datasets.
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