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chyna, Ph.D. and to my advisor, doc. RNDr. Ondřej Bojar, Ph.D. for their
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Abstract: Machine Translation Quality Estimation predicts quality scores for
translations produced by Machine Translation systems based on source and out-
put segments. Quality Estimation systems are usually trained in a supervised
manner using training data that contains translation produced by one or more
(other) Machine Translation systems. Therefore, the choice of training data for
Machine Translation has an impact on how well the Quality Estimation system
works.

This thesis studies the relationship between Machine Translation systems and
sentence-level Quality Estimation systems. Using our definitions of Machine
Translation system power and Quality Estimation system power, we conducted
experiments that involve training Machine Translation and Quality Estimation
systems of varying power. We presented Quality Estimation systems evaluation
results on test sets of different domains and translated by Machine Translation
systems of different power. We find that (i) Quality Estimation systems trained
on translations of lower quality outperform Quality Estimation systems trained
on translations of higher quality; (ii) evaluating high-quality Machine Translation
systems is challenging for Quality Estimation systems of all powers; (iii) high-
power Quality Estimation systems work better for out-of-domain distribution
than low-power Quality Estimation systems.
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Introduction
Machine Translation Quality Estimation (MT QE) is the task of predicting how
good the machine translation is without access to a reference translation. Quality
Estimation works on top of Machine Translation. Supplied with a translation
generated by the Machine Translation system and the source segment, the Quality
Estimation model assigns the quality score to the segment. Quality Estimation
can be applied on different levels of granularity when segments could be separate
words and phrases or whole sentences and documents. Segment quality is the
score assigned to the segment by some evaluation procedure. Depending on which
evaluation procedure QE aims to estimate, there are different variations of the
models. For example, models can estimate post-editing effort or direct assessment
scores.

Quality scores predicted by the Quality Estimation system might be the end
product displayed to the user. Machine Translation systems do not always work
smoothly. For some input sentences, translators generate an excellent translation;
in other cases, the translation contains mistakes or is incorrect. Quality scores
can tell the user if the particular translation can be trusted or not.

Quality Estimation system can also help to prepare datasets for Machine
Translation. They can be used to filter out low-quality sentences in datasets.
The Quality Estimation system can preselect the data for manual annotation.
Using Quality Estimation systems, the researchers can choose the data with a
specific quality distribution. For example, when selecting the dataset for post-
edition, they can exclude high-quality translations that do not need post-editing.

Quality estimation is usually done in a supervised manner. The train datasets
consist of the source sentences, translations generated by the Machine Translation
system and target quality scores. Therefore, each Quality Estimation system is
bound to the Machine Translation system that produces translation for training.
It is not clear how exactly the system performs the estimation. It is possible
that the system needs to know how the translation is performed. In this case,
the estimation involves a process that resembles translation. QE learns how to
perform this process from the translation supplied in training. If simple QE with
small capacity is paired with large, high-performing MT, QE should struggle to
extract the translation knowledge because it would not fit into the QE capac-
ity. Moreover, if QE is trained on the low-quality data, it will not have enough
knowledge to grade the higher-quality data. On the other side, there might be
features that are good indicators of translation quality and do not require trans-
lation knowledge. Then small QE that knows these heuristics will perform well
even if it was trained on the data from high-performing MT.

This thesis studies how changes in translation data and QE model capacity
affect QE model performance. We train the MT system on different amounts of
data to get several systems of varying power. We use datasets generated by those
systems to train QE systems. The goal of this thesis is to train QE models on
the data from various MT changing the data capacity and study how the model’s
performance depends on this data. We evaluate QE systems on multiple datasets
to check their behavior under the domain shift.
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Structure
Chapter 1 is dedicated to the Machine Translation. We explain how the modern
Machine Translation system works. We describe approaches to Machine Trans-
lation evaluation and how the power of a Machine Translation system is defined.

Quality estimation is covered in chapter 2. We describe the task of Quality
Estimation and the existing solution to the task. We explain how QE systems
are connected with MT. We describe related finding on the relation between MT
capacity and QE capacity strength.

Datasets and tools are covered in chapter 3. We describe the dataset used in
this work and how we preprocessed them to create QE dataset. Then we talk
about the MT systems used in experiments and how we trained them. We give
details about QE systems and their training.

Chapter 4 presents the experiments. We explain why we conducted the ex-
periments. We present the evaluation results on the test set. We talk about what
conclusion should be made from these results.
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1. Machine translation
This chapter focuses on machine translation task. We start by describing the
task’s history and Statistical Machine Translation and Neural Machine Trans-
lation approaches to the task. We discuss how the modern MT systems work
using Transformer architecture as an example. Then we talk about Machine
Translation evaluation. We explain what we mean under the power of Machine
Translation systems and how data and model capacity contribute to the power
of the MT system.

Machine Translation (MT) is the task of automatically translating text from
one language to another. Machine Translation history is similar to the history of
artificial intelligence as a field: it starts with rule-based systems, then shifts to
classical machine learning, and then to deep learning. We can divide the history
of machine translation into three periods:

• Up to the 1990s. Period of rule-based Machine Translation. The general
idea is to translate sequences in a deterministic way using dictionaries and
rules created using linguistic information about language grammar.

• 1990s - early 2010s. The period when statistical Machine Translation dom-
inated the field.

• From the mid-2010s. The rise of neural Machine Translation.

1.1 Statistical Machine Translation
The idea behind Statistical Machine Translation (SMT) is that computers can
learn how to translate automatically from examples of translations instead of
being programmed by people. That introduces us to the concepts of training
and inference. During training, models are supplied with data and retrieve in-
formation on how to translate. The inference is a process of translation when
already trained models are used to produce a translation. Generally, training a
good model requires many data. The shift to SMT was possible because of the
availability of large parallel datasets.

These methods give us more flexibility because, in principle, we can use the
same model with different languages simply by changing training data. They
give us two basic directions on how we can improve Machine Translation. We can
either work on the model to make it better capture the knowledge from data or
improve the data by increasing data size or data quality.

The term Statistical Machine Translation refers to a variety of methods. Its
basic idea is that we want to get the model that finds the most probable trans-
lation given the source sentence. One of the popular methods is phrase-based
Machine Translation (Koehn et al. [2003]). In its basic form, it consists of a
phrase-based translation model and language model used to translate phrases
and an alignment mechanism to reconstruct the sentence in other languages tak-
ing into account differences in word order.

While SMT is rarely used nowadays, many methods developed at that time
are still used today, for instance, metrics for MT evaluation and approaches for
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manual evaluation. Moreover, the whole Quality Estimation task that is the main
focus of this thesis emerged in the SMT era.

1.2 Neural Machine Translation
Modern MT systems are predominantly neural network-based. They arose in the
mid-2010s when deep learning was gaining popularity. Important milestones in
NMT include development of Seq2seq architecture (Sutskever et al. [2014]) and
Transformer architecture (Vaswani et al. [2017]). Solution based on Seq2seq archi-
tecture was the first neural network-based solution that Google put in production
(Wu et al. [2016]). The Transformer beat Seq2seq in performance, became a new
state of the art, and nowadays is the most popular architecture for NMT tasks.

Seq2seq and Transformer implement the encoder-decoder architecture. These
systems typically operate on the sentence level. Each inference run model pro-
duces a prediction for the next token in the output sentence. The output is
produced token by token. The model consists of two parts: encoder and decoder.
Encoder transforms source sentence into an intermediate representation. The de-
coder consumes that intermediate representation and already produced part of
the translation, and predicts the next token.

The model works with tokenized sentences. The vocabulary should be known
beforehand. Tokenization is handled outside of the model training. Tokenization
can be performed on word, subword, or character level. Word level tokenization
brings the issue of out-of-vocabulary words. Subword tokenization splits rare
words into subwords which helps with the out-of-vocabulary issue. Subword level
tokenization is more efficient than character level. Sentences tokenized into char-
acters create much longer sequences than subword or word tokenization. That
makes training and inference more computation heavy and creates performance
problems.

Byte-pair encoding (Sennrich et al. [2016]) is a widely used tokenization
method that works on the subword level. The vocabulary is formed by merg-
ing operations. At the start, the vocabulary consists only of characters that
appear in the dataset. In each merging operation, the most frequent sequence
of 2 tokens is merged and added to the vocabulary until the necessary size is
reached. The size of the vocabulary is a training hyperparameter. The smaller
the vocabulary is, the closer result is to the character-level tokenization. Big
vocabulary size enlarges the embedding and the output layers, which increases
memory consumption and training time.

Encoder-decoder model produces a probability distribution over the next to-
ken in the sequence. The exact translation is generated from this distribution by
a decoding algorithm. The typical approach is to yield a sentence with maximum
likelihood, which generally is an NP-complete task. The common approximate
algorithm used for this task is the beam search algorithm. By this algorithm, the
model works with top n predictions simultaneously, where n is a hyperparameter
of the algorithm. In each step, the model generates predictions for all n options
and selects a new top n from predictions.
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1.2.1 Transformers
As an encoder-decoder architecture, the Transformer takes the whole source sen-
tence and output prefix, and produces a probability distribution over the next
token in the sequence. The Transformer can be seen as a collection of different
blocks. Output shape of all model’s blocks is the same which allows to stack
blocks one on another and add residual connections. Aside from the input and
output layer, there are two kinds of blocks: encoder and decoder blocks. The
vanilla Transformer consists of 6 encoder blocks and six decoder blocks. Fig-
ure 1.1 shows the transformer scheme that includes a scheme for each block type
and attention mechanism scheme.

The input layer, also called embedding, maps input tokens to the vectors.
The embedding acts like a lookup table, where keys are tokens from vocabulary,
and values are numeric vectors that serve as the numerical representation of their
keys. The embedding is applied to the source sentence before the first encoder
block and to the translated sentence before the first decoder block. The input
to other blocks is a two-dimensional matrix. The first dimension is the sequence
size, and the second dimension is the embedding size.

Figure 1.1: Transformer architecture scheme (Vaswani et al. [2017])
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The Transformer produces a probability distribution over the vocabulary. The
output of the last decoder layer is fed into a fully-connected layer that produces
the output of vocabulary size. Then the softmax is applied to obtain probabilities.
Embedding and output layers are trainable. The number of their parameters is
tied to vocabulary size, which is a training hyperparameter. Since the number of
their parameters depends on the training settings, embedding and output layers
are ignored when displaying the number of trainable parameters in a Transformer.

The encoder block consists of two sub-layers. The first sub-layer is the self-
attention layer. The attention step is the only moment where computation takes
into account other tokens in the sequence. The rest of the steps treat each token
separately from the rest. The Transformer uses multi-head attention. The second
sub-layer is a fully-connected feed-forward layer. After each layer, there is a
residual connection and layer normalization.

The decoder block has an additional step before the feed-forward layer. It is
a layer that computes attention over the output of the last encoder layer. Self-
attention allows the decoder to gather information from the already produced
translation sequence, while encoder-decoder attention brings information from
the tokens in the source sentence. In self-attention, the decoder can only see
tokens left to the current token, which prevents the decoder from looking at the
tokens that are not produced yet.

The attention mechanism does not take into account the position of the tokens.
This information is supplied to the network by positional encoding. The vector
that encodes the sentence’s position is summed with the input embedding. It can
be computed by some function of the position number or learned in the same way
as token embedding.

1.2.2 Attention mechanism
Attention brings context into token representation. Without attention, the final
representation of each token would be calculated in isolation from other tokens
in the sentence. However, when creating a contextual representation of a token,
words in a sentence are not equally important.

Attention computes word representation as a weighted average of all words
in the sentence. Weights are computed dynamically. Weight between 2 words
represents how related the words are. As a result, related words impact word
representation more than unrelated ones.

The attention mechanism consists of 3 elements: Queries, Keys, and Values.
They are computed from input vectors xq, xk, and xv using matrices W q, W k, W v:

Q = xqW
q K = xkW k V = xvW v

Weights are computed with a similarity function between Queries and Keys.
Values are token representations used in weighted average. In self-attention
Queries, Keys and Values are computed from the input vector. In encoder-
decoder attention, Queries are computed from the input vector, Keys and Values
are computed from the encoder output. The resulting attention is computed as:
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Attn(Q, V, K) = softmax(QKt

√
dk

)V

The idea of multi-head attention is to compute attention multiple times using
sets of matrices W q, W k, W v. Heads learn a different set of features independently
from each other. The resulting attentions are concatenated and projected using
matrix W v. The formula can be written as:

MultiHead(Q, V, K) = Concat(Att1(Q, V, K), ..., Attk(Q, V, K))W O

All inputs should be vectors of the same size. If dx - size of the vector and k
- numbers of head then each W q, W k, W v have size (dx × dx/k) and W o has size
(dx × dx). Trainable parameters in attention are matrices W q, W k, W v and W v.

1.3 Machine Translation evaluation
This section is dedicated to the evaluation of Machine Translation. Before dis-
cussing Machine Translation power, we should explain how Machine Translation
systems are evaluated. Moreover, quality estimation is the task of creating a
system that predicts human evaluation scores. To understand the QE task, we
should know what qualities those scores represent.

1.3.1 Manual evaluation
Manual evaluation is the evaluation carried out by humans. Evaluating the trans-
lation is not a straightforward task. Machine Translation systems aim to produce
a translation that sounds fluent to humans and holds the same meaning as the
source text. Whether the translation has those qualities can be decided only by
a human. There is no other objective way how to evaluate a translation. The
ground truth scores for translation are gathered in manual evaluation.

Annotators should generally evaluate translation only into their native lan-
guage. If annotators are proficient in the source language, they evaluate by
comparing translation and source text. Such annotators are not always available
or affordable.

An alternative is a monolingual evaluation, when annotators compare the
translation with one or multiple references instead of the source. For this type
of evaluation, annotators do not need to understand the source language. Hiring
such annotators is much cheaper than hiring bilingual annotators. Monolingual
evaluation however creates a bias towards the reference. A good translation might
get a low score because it is not similar to the reference. If possible, source-based
evaluation should be preferable.

Direct assessment

One of the popular methods used to evaluate Machine Translation systems is
direct assessment (Graham et al. [2015]). It is used in the WMT Translation task.
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WMT Translation task is a competition to create the best translation system held
by Workshop on Machine Translation. The WMT evaluation procedure has been
relying primarily on direct assessment since 2017 (Bojar et al. [2016]).

By direct assessment procedure, the annotators score each sentence on a scale
from 0 to 100 on how fluent and adequate it is. To compute a score for the
system, the scores of each annotator are standardized, and the average is used as
the system score.

Evaluation measuring post-editing effort

Another kind of evaluation procedure measures how much effort takes to post-edit
a translation. Post-editing is a process when a person corrects the translation
made by MT. The effort is usually measured by a metric that compares the trans-
lation with the post-edited translation. We can adapt reference-based automatic
metrics for this purpose by feeding them the post-edited sentence instead of the
reference translation. The widely used metric is HTER (Snover et al. [2006a]).
HTER measures the number of post-editing operations needed to transform a
translation into a post-edited translation divided by sentence length.

1.3.2 Automatic evaluation
While in principle ideal, manual evaluation is expensive and is only used in certain
cases. There are also metrics aimed at automatic estimation of Machine Transla-
tion quality. They score the translation by computing the similarity between the
translation and the reference.

There are two kinds of such metrics: pretrained and string-based metrics.
The string-based metrics work by computing lexical similarity between the MT
output and one or multiple reference translations.

Pretrained metrics (also called neural or embedding-based) are built on em-
bedding produced by neural networks. Pretrained metrics can use semantic infor-
mation to compute similarity, which allows them to show better correlation with
human judgment and make better ranking than string-based metrics (Kocmi et al.
[2021], Freitag et al. [2021]).

There is no clear evidence that some embedding metrics significantly outper-
form others. That makes it difficult for researchers to decide which automatic
metric to choose for their experiments. To achieve better results, it is recom-
mended to use statistical tests and report results of multiple metrics, including
both string-based and pretrained (Kocmi et al. [2021], Marie et al. [2021]).

BLEU (Papineni et al. [2002]) is the most widely used string-based metric.
BLEU counts matching n-grams between candidate and reference translation.
BLEU is sensitive to how the dataset is preprocessed. That may lead to the situa-
tion when results produced by two research teams for the same dataset are incom-
parable because they used different preprocessing. Post [2018] proposed Sacre-
BLEU to solve this problem. SacreBLEU uses standardized language-dependent
preprocessing rules and produces comparable results.

ChrF (Popović [2015]) is string-based metric which consistently works better
than BLEU (Kocmi et al. [2021]) while being less widely used. It counts matching
character n-grams instead of word n-grams.
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COMET (Rei et al. [2020]) is a pretrained metric which is often recommended
(Kocmi et al. [2021], Freitag et al. [2021] ) as a robust metric with wide language
support. COMET is built on top of XLMRoberta (XLM-R) (Conneau et al.
[2019]). It is finetuned to predict human scores given source, target, and reference
sentences.

Among others popular automatic metrics, there are BERTScore(Zhang et al.
[2019]) and YiSi (Lo [2019]) build on top of multilanguage BERT and BLEURT
(Sellam et al. [2020]) built on top of English BERT, and PRISM (Thompson and
Post [2020]) built on top of MT.

1.4 Power of Machine Translation system
It is crucial for our thesis to define the term the power of Machine Translation;
we will also say how “strong” an MT system is, with the same meaning. In
this section, we explain how it is defined. We present related findings about the
relation between model capacity and MT power.

For the purpose of the thesis, the power of an MT system is operationally
defined as the MT quality on some test sets as judged by either human annotators
or an automated metric.

It is common knowledge that for deep learning systems, we can improve the
system performance by simply using more data for training or by using bigger
architecture. Bansal et al. [2022], Gordon et al. [2021] and Ghorbani et al. [2021]
give evidences this also applies to MT systems. These works study how the loss
of the MT model changes with changing data size and model size.

Bansal et al. [2022] study relation between data size and model loss. Their
experiments are completed on English → German translation task. They vary
data size from 500K to 512m sentences and try modifications of Transformer with
the varying number of encoder and decoder blocks. The left graph on Figure 1.2
shows how test log-perplexity changes for each Transformer setting depending
on the number of sentences in the dataset. We can see the clear trend that log-
perplexity falls with increasing the dataset size. This fall however starts to slow
down beyond 107 of sentence pairs. They also studied how the result changes
when adding noise to the data or when using back-translated data and found
that the trend remains the same (see right graph in Figure 1.2).

The log-perplexity is the function used as a loss function in MT training. It
is not the same as model performance because model performance is measured
by metrics covered in the previous section. Figure 1.3 shows the relation between
perplexity and BLEU scores that Bansal et al. [2022] measured in their train
models. We can see that, in general, a lower perplexity value corresponds to a
higher BLEU metric.

Gordon et al. [2021] study effect of model scaling and data scaling. They
vary the dimension of the hidden state and the number of encoding and decoding
layers. Figure 1.4 shows results that they measured for three language pairs on a
model with varying capacity. Again, we can see a clear connection between data
size and cross-entropy.

Ghorbani et al. [2021] only study the effect of model scaling. They work with
much bigger models than Bansal et al. [2022] and Gordon et al. [2021]. They
tested it on two datasets: in one dataset, annotators translated source sentences,
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Figure 1.2: Effect of data size on model loss as measured by Bansal et al. [2022]

Figure 1.3: Relation between log-perpexity and BLEU scores measured by Bansal
et al. [2022]

Figure 1.4: Effect of data size on model loss as measured by Gordon et al. [2021]

and in another backward dataset, annotators translated target sentences. Fig-
ure 1.5 shows how performance change when we scale a number of encoder and
decoder blocks. The relation between loss and model size is similar to the relation
we have seen with data amount.
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Figure 1.5: Effect of model size on model loss (Gordon et al. [2021])

Ghorbani et al. [2021] also measures how the model loss is connected with
model performance. They measure model performance using the BLEU and
BLEURT metrics. Figure 1.6 shows the relation between model loss and BLEU.
That gives us mixed evidence since, for the right graphs, the relation is not
obvious. BLEURT evaluation results mirror BLEU, so the issue is not caused by
metric choice. The authors do not explain what caused the difference between
left graphs and right graphs in Figure 1.6. If we sum up evidence gathered by
Ghorbani et al. [2021] and Bansal et al. [2022], we can say that in most cases,
lower model loss corresponds to higher model performance. Hence, the finding
about the model loss scaling can be extended to the model performance.

Figure 1.6: Relation between log-perpexity and BLEU scores measured by Ghor-
bani et al. [2021]

The studies we presented in this section study how the model size and dataset
size affect the model power in diverse circumstances: they check it in multiple
languages, use both authentic and back-translated data, train the model to trans-
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late backward, review the trend on models with small capacity and large capacity
and with different proportion of encoder blocks to decoder blocks. Under all these
settings, the trend is stable and clearly visible. The existence of this trend al-
lows us to say that we can get the MT models of different power by adjusting
the training data or model sizes. Moreover, we can expect the QE systems will
exhibit the same trend, so we can also vary their power by changing capacity and
training data amount.
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2. Quality estimation
In this chapter, we introduce the concept of quality estimation. We describe
the task, how it is connected with Machine Translation and what are existing
solutions for this task.

Quality estimation (QE) is the task of predicting how good the translation
is given the original and Machine Translation output (Blatz et al. [2004], Specia
et al. [2009]). Quality estimation may work on word, sentence level, or document
level. Quality estimation on word level is typically a classification task: each
word is labeled as GOOD or BAD.

The goal of sentence-level QE is to predict scores assigned to the sentence
by manual evaluation. This work is focused on sentence-level QE. Depending on
which evaluation procedure is used to obtain data, there are different variations
of the task: direct assignment QE, post-editing QE, and critical error QE.

Critical error QE is a classification task. Direct assessment QE and post-
editing QE are regression tasks but have different data distributions. In the DA
setting, the distribution has a mean equal to 0 since the labels of each annotator
are standardized before computing the sentence score. Post-editing scores are
computed by HTER, so scores are numbers between 0 and 1. The HTER itself
might produce scores that are larger than 1 but they are usually clipped to 1.

2.1 Power of Quality Estimation system
We define the power of Quality Estimation system in a similar way as we define
the power of Machine Translation system. The power of QE system depends
on training data volumes and model hyperparameters. The more training data
system consumes during training, the more powerful the system is. Model hy-
perparameters constitute another dimension that affects QE power. QE system
power changes when we change the model capacity by increasing or decreasing
the number of training parameters. Hyperparameters that define the model’s
architecture also contribute to power since some architectures tend to perform
better than others even while having fewer training parameters. Besides that,
using big pretrained masked language models such as Bert, XLM, and XLM-R
also increases the power of the system.

2.2 Quality estimation vs. reference-free MT
evaluation

QE does not have access to reference translation, which makes it different from
MT evaluation which does not have such a restriction. Some MT metrics, mainly
pretrained metrics, can also operate without a reference translation. The research
area of reference-free MT metrics is very close to QE, but QE produces scores for
a text segment, while MT evaluation produces scores for the MT systems. On
the other hand, every QE system may, in principle, work as reference-free MT
evaluation metrics by aggregating sentence scores to get the system score. That
does not mean that a good QE system is as good in MT evaluation and vice
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versa. There is no guarantee that the approach that maximizes the system power
in QE also maximizes its power as an MT metric.

2.3 Existing solutions
In this subsection, we talk about existing approaches to solving the task and
frameworks implementing it. Nowadays, the task is usually solved by NN.

2.3.1 OpenKiwi
OpenKiwi (Kepler et al. [2019]) is a framework that implements QE systems. Cur-
rently it includes implementation of NuQE (Martins et al. [2016]) and Predictor-
estimator (Kim et al. [2017a], Kim et al. [2017b]). OpenKiwi allows for training
a new model from scratch and using model checkpoint to generate prediction and
evaluation.

Predictor-estimator is the most widely used system from OpenKiwi. This ar-
chitecture serves as a baseline system in WMT21 Quality Estimation task (Specia
et al. [2021]) and actually belongs to the leading submissions (Chen et al. [2021],
Zerva et al. [2021]) to this task.

The original model consists of a Predictor pretrained on parallel data and
an Estimator trained together with a Predictor on QE data. The predictor is
pretrained to predict the missing word in the translated sentence while supplied
with the source sentence and the rest of the translated sentence. After the pre-
dictor is pretrained, the estimator and the predictor are trained together on QE
data. The estimator takes word embeddings from the predictor and produces the
prediction.

Using a big pretrained model such as BERT increases the performance of this
architecture. OpenKiwi supports BERT, XLM, and XLM-R for this purpose.
In this setting, the predictor produces sentence embedding of the concatenation
of the source sentence and the translation. Base model of WMT21 and Chen
et al. [2021], Zerva et al. [2021] use such model in their solution with multilingual
XLM-R as a predictor. This approach also makes the model multilingual, which
enables its usage for unseen languages.

2.3.2 Transquest
Transquest (Ranasinghe et al. [2020a]) is another framework that implements
QE architectures. The framework offers two architectures: MonoTransQuest and
SiameseTransQuest. Both architectures use XLM-R pretrained model to generate
sentence embeddings. Ensemble of these architectures was used to create the
submission to WMT2020 QE task (Specia et al. [2020]) by the Transquest team
(Ranasinghe et al. [2020b]).

MonoTransQuest architecture takes as input a source and a translated sen-
tence concatenated by [SEP] token. The input goes through XLM-R to obtain
token-level embeddings. The first token embedding is fed to the softmax layer
to compute the prediction. MonoTransQuest is a part of the leading submission
(Wang et al. [2021]) to the WMT21 QE task.
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In SiameseTransQuest architecture, embeddings for source and translation
sentences are generated separately from two different XLM-R models. The QE
score is assigned by computing the cosine similarity between two sentence em-
beddings.

2.3.3 DeepQuest
DeepQuest contains implementations of BI-RNN and POSTECH architectures.
POSTECH is another implementation of the original Predictor-Estimator ar-
chitecture. BI-RNN is a model that consists of two bidirectional RNNs. The
source sentence goes through the first Bi-RNN, and the translation sentence goes
through the second. The state vectors representing source and translation sen-
tences are concatenated. The resulting score is computed with the application of
the attention mechanism.

2.3.4 Glass-box features for QE
QE systems typically do not access the MT that translated source sentences.
This is called the black box approach since the QE does not use information
about how MT works internally. Fomicheva et al. [2020] proposed to extract
metrics indicating how certain the MT is about the translation and use those
as a quality estimation measure. These metrics are called glass-box metrics as a
term opposing to black-box. Fomicheva et al. [2020] showed that such metrics are
comparable with supervised approaches. Zerva et al. [2021] and Wang et al. [2021]
also showed that combining them with input features boosts the performance of
supervised models.

Fomicheva et al. [2020] use features from the probability distribution of the
softmax prediction layer and the attention weight distribution. It is known that
neural networks are bad in calibration. In other words, the probability that the
model assigns to some words does not correspond to the actual frequency at which
this word will appear in the valid translations. The Monte Carlo dropout (Gal
and Ghahramani [2016]) helps to overcome the issue. The dropout is applied
at inference time to generate multiple predictions. Aggregate metrics on these
prediction catch uncertainty better than a single prediction without dropout.
Wang et al. [2021] also use a similar approach that adds noise to training data
instead of the model.

To give a better understanding of what features we are referring to, we will
cover two of them that achieved the best results according to Fomicheva et al.
[2020]: dropout translation probability and dropout translation similarity.

Translation probability (TP) is the average word log probability of the trans-
lation sequence. Dropout translation probability (D-TP) is an average of TPs
computed with Monte-Carlo dropout:

TP = 1
|y|

|y|∑︂
t=1

log p(yt|yi<t, x, θ)

D-TP = 1
N

N∑︂
n=1

TPθ̂
n
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To compute lexical similarity, a set H of translations is generated by Monte-
Carlo dropout. The Dropout Lexical Similarity (D-Lex-Sim) is computed as the
average similarity score of translations pairwise comparisons. Meteor (Denkowski
and Lavie [2014]) is used as similarity metric.

D-Lex-Sim = 2
|H|(|H| − 1)

|H|∑︂
i=1

|H|∑︂
j=i+1

sim(hi, hj)

2.3.5 PRISM
PRISM (Thompson and Post [2020]) is an MT evaluation metric. PRISM is
trained as a Machine Translation system. The approach is similar to glass-box
features: probability distribution of the softmax layer is used to estimate how
certain the MT is about a prediction. The sentence score is assigned by computing
translation probability, the same metric that was used by Fomicheva et al. [2020].
While Fomicheva et al. [2020] work with MT that generated translation, PRISM
does not produce the translation but only scores translations generated by other
systems.

PRISM exists in reference-based and reference-free versions. It is trained as
a multi-language Machine Translation. The reference-based version makes the
model translate from target language to target language. Here we consider only
the results of a reference-free model as only a reference-free model can be used
as a QE.

PRISM shows good performance in the MT evaluation task even when most
of the models under evaluation are stronger MT than PRISM (Agrawal et al.
[2021]. This can be considered as evidence that strong QE is not required to
evaluate strong MT. We think this evidence is rather weak since the authors
compare the model with other MT metrics, so this only shows that PRISM is
strong against those metrics and not against the MT systems. This evidence
could be stronger if the authors trained multiple PRISMs of varying MT power
and showed that evaluation performance is not significantly higher in PRISMs
of better MT performance. Moreover, this system has a bias towards translation
similar to translation generated by itself. In experiments conducted by Agrawal
et al. [2021], the MTs under evaluation are more similar to each other than to
the PRISM model, so this bias is not observed.

2.4 Related findings on relation between MT
power and QE power

In this section, we will describe related findings from papers featuring QE-related
tasks that contain performance measures on models of different capacities (i.e.
number of trainable parameters) or with different training data sizes. First sub-
section is dedicated to Agrawal et al. [2021] and Thompson and Post [2020] works.
Second subsection is dedicated to Fomicheva et al. [2020] work.
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2.4.1 PRISM
Agrawal et al. [2021] study different modifications of the original PRISM model,
including the addition of new data and varying model sizes. They compare the
original architecture used by Thompson and Post [2020] with two other architec-
tures of different capacities: the Big model and the Massive model. Table 2.1
provides the details of the model configuration and average results on the test set
measured by the Pearson correlation coefficient.

The results show a clear connection between model capacity and model per-
formance. The difference in performance between the Massive model and PRISM
is smaller than between the PRISM and the Big model. However, the order of
parameter difference is almost the same: the PRISM model is roughly two times
larger than the Big model, and the Massive model is two times larger than the
PRISM. That suggests that the performance growth slows down with increasing
the model size.

Name Params Model configuration Pearson
Layers Hidden Heads Model

Big 473M 6 8192 16 1024 0.808
Prism 900M 8 12288 20 1280 0.858

Massive 1.8B 8 16384 32 2048 0.883

Table 2.1: PRISM performance depending on model capacity (Agrawal et al.
[2021])

To measure the effect of data size, Agrawal et al. [2021] extended the training
data with a WMT15 parallel dataset. Original Prism model is trained on Prism-
39 corpus consisting of 99.8M sentence pairs across 39 languages. WMT15 mainly
consists of data featured in the WMT 2019 NewsTranslation Task (270M sentence
pairs unequally distributed across 14 language pairs).

Data Pearson

Prism-39 0.858
WMT-15 0.840

Prism-39 + WMT-15 0.867

Table 2.2: Effect of the training data.

Table 2.2 shows performance measures for each datasets. The performance
gain is present but smaller than from increasing model capacity. For individual
pairs, the relation between increased dataset size and the performance difference
is not visible. The authors claim that it is caused by the data quality since the
data have not been preprocessed. Hence there is not enough evidence to say that
adding more data does not help with the training.

2.4.2 Comparison of unsupervised and supervised models
Fomicheva et al. [2020], as part of their evaluation, study how models behave for
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languages with different volumes of data available. Six language pairs were chosen
for experiments to study models in different resource settings. We can consider
it as studying how the size of the training data affects performance, taking into
account that different languages bring noise to the measurements.

Table 2.3 shows the results. For each language pair, there is a dataset with
parallel data for MT training and a dataset that contains annotated data for QE.
We display the dataset statistics: the MT data size, the QE data size and the
average quality score in QE training data that indicates the translation quality
in test set.

Low-resource Mid-resource High-resource
Si-En Ne-En Et-En Ro-En En-De En-Zh

Size 646K 564K 880K 3.9M 23.7M 22.6M
QE Dataset Size 10K 10K 10K 10K 20K 20K
Average score 51.4 37.7 64.4 68.8 67.0 84.8
D-TP 0.460 0.558 0.642 0.693 0.259 0.321
D-Lex-Sim 0.513 0.600 0.612 0.669 0.172 0.313
PredEst 0.374 0.386 0.477 0.685 0.145 0.190
BERT-BiRNN 0.473 0.546 0.635 0.763 0.273 0.371

Table 2.3: Comparison of unsupervised and supervised methods measured for low-
resource, mid-resource and high-resource language pairs Fomicheva et al. [2020]
The numbers for the four evaluated models (D-TP, etc.) show Pearson correlation
of the QE system and golden manual MT quality scores.

We analyze the results from Fomicheva et al. [2020] for two unsupervised
methods described in the glass-box feature section and for two solutions used for
comparison. We cannot use unsupervised methods to study the relation between
MT power and QE power since those methods use one model for both MT and
QE. However, we can find related findings in the performance of comparison meth-
ods. There are two comparison models: Predictor-Estimator and BERT-BiRNN.
Predictor-Estimator is the model from the OpenKiwi toolkit. BERT-BiRNN is a
BiRNN from the DeepQuest toolkit, which uses token-level representation gener-
ated by Bert.

We can see that all models perform best in mid-resource languages while per-
formance in high-resource drastically falls. As the authors explain, high-resource
MTs provide more smooth translation, leading to lower QE score variance. QE
systems are struggling to capture slight variations in QE quality, leading to low
scores.

PredEst model shows worse performance than the rest of the solutions. Its
Predictor is trained on the same data as unsupervised solutions, and Predictor-
Estimator is finetuned on the QE dataset, so it consumes the same amount of
data as a better model. However, the model capacity is lower since it is an RNN-
based model, which is outperformed by the Transformer. The low capacity is
most likely the explanation for lower performance. Even if this model is worse
on all language pairs, the gap is the biggest in the high resource settings. That
might suggest that QE cannot fully use complex data if its capacity is low.
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BERT Bi-RNN is a stronger model since it uses embedding from a more
powerful BERT. It performs better than other models in the high-resource setting.
In the low-resource setting, it is worse than unsupervised models. Predictor-
Estimator also performs worse in the low-resource setting than in the middle-
resource setting. That might mean that demand for data quality is higher for QE
than for MT. In other words, low-quality data is not sufficient to train a good
QE even if the QE model has a high capacity.

In the high-resource setting, the QE dataset is twice as large but it is difficult
to tell if that affected the result given that high-resource languages have different
data distribution than others.
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3. Datasets and tools
This chapter covers our basic experiments. We describe the datasets we used for
the experiments and how they were preprocessed to be used for the QE task.
Then we describe what experiments we conducted, including details on how we
train the MT and the QE. We present the results and explain what they mean
for us and how they differ from what we expected to see.

We perform experiments to study the relationship between MT and QE. The
goal is to vary QE training settings to find how those parameters affect system
performance. The parameters constitute data size, data quality, and model ca-
pacity. The experiments are run on en → cs language pair. First, MT models
are trained to translate from English to Czech. Those MT models translate the
source sentence in the QE dataset. We get targets from computing the difference
between the translation and reference sentences. In the following sections, we
present this process in more detail.

3.1 Data
In this section, we present data used in the training and evaluation stages. The
code that is used to preprocess datasets is available in Digital Attachment of this
thesis in folder src/data.

3.1.1 Training dataset
The training data comes from CzEng 2.0 (Kocmi et al. [2020]). CzEng 2.0 is
a sentence-parallel Czech-English corpus. CzEng 2.0 has authentic and syn-
thetic (produced automatically by a first-pass MT system) data. In this work,
we only use data from the authentic corpus. The authentic corpus consists of
CzEng 1.6 extended with Europarl, News commentary, Wikititles, Common-
crawl, Paracrawl2, WikiMatrix, and Tilde MODEL Corpus. CzEng 1.6 is the
previous version of the dataset, which, in turn, largely consists of movie subtitles,
European legislation, and fiction. The authors cleaned the dataset by removing
duplicates, noisy data from CzEng 1.6, and the data that very likely was non-
Czech or non-English. The authentic CzEng 2.0 dataset has 61 million sentences.
Since 2.0 is the only used version of CzEng, we skip mentioning the version and
refer to the dataset as CzEng.

CzEng serves both as an MT training dataset and as a QE training dataset.
Overall, we use around 20 million sentence pairs from the whole dataset. We
divide it into two non-overlapping datasets, one for MT and one for QE. Each
dataset, we further divide into train, validation, and test. The dataset statistics,
such as the number of sentences, words, and distinct words, are presented in
Table 3.1. In splitting, we consider document id, so sentences from one document
do not go to different datasets.
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MT dataset

Train Validation Test

English Czech English Czech English Czech

Sentences 10 000 000 10 000 000 4 885 4 885 10 000 10 000
Words 138 928 837 124 148 247 63 341 56 754 139 293 124 481

Distinct words 938 028 1 531 446 9 725 15 270 15 468 26 466

QE dataset

Train Validation Test

English Czech English Czech English Czech

Sentences 10 000 000 10 000 000 5 000 5 000 10 000 10 000
Words 138 991 405 124 209 751 63 924 56 731 137 975 123 047

Distinct words 937 565 1 532 088 9 553 14 942 15 413 26 082

Table 3.1: Number of sentences, words and distinct words for each language in
each dataset.

3.1.2 Test datasets
The test sets from CzEng serve as evaluation datasets for MT and QE models.
In addition, QE models are evaluated on other datasets, such as submissions
to the WTM-2018 News Translation Task and IWSLT-2020 Non-Native Speech
Translation Test Set.

Submissions to WMT18 News Translation Task

WMT18 dataset consists of submissions to WMT18 News Translation Task (Bojar
et al. [2018]). WMT News Translation Task is a translation systems competition.
Each competition participant submits a translation of the test set provided by
competition organizers. The results are available for download on the WMT18
website.1

We use each participant submission as a separate dataset. The source sen-
tences are the same for all datasets in the group. We provide their statistics in
Table 3.2. The WMT18 dataset is more diverse than CzEng. If we compare
the dataset stats with the QE dataset Validation English stats, we can see that
WMT18 has longer sentences and more distinct words (12 548 vs. 9 553) while
being smaller (55 920 vs. 63 924 words).

We named each dataset after the MT that created the submission. ONLINE-
B, ONLINE-G, and ONLINE-A are made by organizers using online translation
systems whose names are anonymized. CUNI-TRANSFORMER is MT submit-
ted by Charles University (Popel [2018]), and UEDIN is MT submitted by the
University of Edinburgh (Haddow et al. [2018]).

1https://www.statmt.org/wmt18/results.html
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English part
of WMT18 test set

Sentences 2983
Words 55 920

Distinct words 12 548

Table 3.2: Number of sentences, words and distinct words in WMT18 test set
(Bojar et al. [2018])

System Rank Ave. % Ave. z

CUNI-Transformer 1 67.2 0.594
UEDIN 2 60.6 0.384

ONLINE-B 3 52.1 0.101
ONLINE-A 4 46.0 -0.115
ONLINE-G 5 42.0 -0.246

Table 3.3: Results of WMT-18 news translation task. Language pair en → cs
(Bojar et al. [2018])

The submissions are evaluated using the DA procedure. The detailed expla-
nation of this procedure is in Section 1.3.1. Table 3.3 shows the ranking of the
systems, their DA scores, and z-normalized DA scores. We use this information
to analyze how QEs perform with translations of varying quality. The higher
quality data should be more challenging for QE, which, in turn, should lead to
less precise predictions.

IWSLT-2020 Non-Native Speech Translation Test Set

The International Conference on Spoken Language Translation (IWSLT) is an
annual scientific conference. Each year, it features competitions on the spoken
language translation tasks that include translation from audio and text sources.
We use the test set of the IWSLT-2020 Non-Native Speech Translation Task
(Ansari et al. [2020]) as it is the only task in the last years that features en → cs
translation. This test set was constructed by the ELITR project and is available
on their GitHub page.2. For all datasets, we only use text transcriptions and
reference translations.

IWSLT dataset consists of three parts: Antrecorp, Khan Academy, and SAO
(auditing domain). Antrecorp and SAO preprocessing include segmentation into
sentences, adding punctuation and casing, and then translation into Czech. We
present dataset statistics in Table 3.4

The Antrecorp (Macháček et al. [2019]) consists of short business presenta-
tions made by students. The students are not native speakers of the English
language, and therefore presentations have many grammatical errors. The per-
sonal information is removed from the dataset. To make the dataset look like
a natural speech, we replace anonymization tags with real random data. For

2https://github.com/ELITR/elitr-testset/tree/master/documents/iwslt2020-nonnative-
slt/testset
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Antrecorp Khan Academy SAO

English Czech English Czech English Czech

Sentences 571 571 538 538 654 654
Words 7893 6505 4470 3466 13158 10818

Distinct words 1532 2104 871 1198 1897 3011

Table 3.4: Number of sentences, words and distinct words in IWSLT test sets

example, we replace a tag <NAME> with a random gender-neutral name, same
for the source and the reference.

Khan Academy is a resource with educational videos. The dataset uses the
subtitles from videos in the math domain. The dataset lacks proper segmentation
into sentences as well as punctuation and casing. Because the dataset has a very
narrow domain, it has 2-3 times fewer distinct words than other IWSLT datasets.
Due to the absence of proper segmentation, the sentence length is also lower, and
many sentences are segmented incorrectly.

SAO dataset is made for the Supreme Audit Office of the Czech Republic. It
consists of presentations by officers of supreme audit institutions (SAI). SAO is
an English dataset with speakers that are not native to English.

According to Table 3.4, the SAO dataset is the most diverse in the group.
It has the longest sentences and the highest number of distinct words. That is
happening because the SAO dataset contains texts made by professionals, while
the Antrecorp consists of student presentations that have less experience in public
speeches and therefore produce less sophisticated texts.

3.2 MT systems
As part of the experiments, we train MT systems. We control how much data is
used to train the systems, so we get systems with varying power. We use those
systems to translate the datasets and get machine translation that serves as input
for a QE system.

When we translate the dataset with multiple MT systems with diverse power,
we get QE datasets of varying quality. In other words, in a dataset generated by
poor quality MT, QE learns to distinguish average translations from poor, while
in a dataset generated by strong MT, QE learns to distinguish good translations
from average. This way, we vary the quality of the data used to train the QE
system. So, we have two ways to change QE input data: we can change the
dataset size, i.e., cut the part of the whole dataset, or vary the dataset quality
by using different MTs.

We train two MT systems. One system is trained on the whole MT dataset
of 10 million sentences, and another is trained on a subset of 1 million sentences.
In the following, we denote these systems as ‘1m’ and ‘10m’.

The trained MT systems are Transformers of base configuration in Marian
implementation (Junczys-Dowmunt et al. [2018]). We use the default setting
for Transformer provided in the Marian package and adjust parameter -w 6500,
which changes the size of the preallocated workspace. We train the systems on
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two GeForce GTX 1080 Ti GPUs. Dataset preprocessing includes normalization,
tokenization, and truecasing by Moses toolkit (Koehn et al. [2007]). Then the
BPE tokenization is applied with 32 000 merge operations. The code that was
used to train the models is available in Digital Attachment of this thesis in folder
src/models/mt marian.

We evaluated the systems using BLEU and chrF metrics to confirm that they
correspond to our expectation of power. The evaluation results are available in
Table 3.5. They show that, indeed, the system trained on 10 million sentences
outperformed the system trained on 1 million sentences.

MT data size BLEU chrF

1m 31.07 0.5346
10m 36.02 0.5785

Table 3.5: Evaluation results of trained MT systems

3.3 QE dataset creation
QE datasets have a different structure than MT. One training sample for QE
consists of a source sentence, a translated sentence, and a quality score which
serves as a target value. We construct our training dataset from CzEng, which
is a parallel corpus. The source sentences are taken from CzEng directly. The
translation sentences are produced by the MT systems described in the previous
section. The ordinary method to get the translation quality scores is to organize
a human evaluation campaign. Given the size of the dataset and our available re-
sources, it is impossible to acquire human annotations, so we create automatically
generated targets.

We assign targets by computing a similarity between the translation and the
reference translation taken from parallel CzEng data. As a similarity metric,
we use TER (Snover et al. [2006b]), the artificial version of the HTER metric.
We use TER since it is the industry standard for post-editing tasks. However,
this metric has shortcomings, such as sensitivity to tokenization, limited range
of possible values for short sentences, and missing ability to capture semantic
information.

This metric computes the editing distance between translation and reference
sentences. It is calculated as the number of edits needed to produce the reference
sentence from the hypothesis divided by the reference length. As edits, TER
considers insertions, deletions, shifts, and substitutions. The metric produces
values between 0.0 and 1.0; if the value is bigger than 1.0, it is clipped to 1.0.
The ideal translation has a score of 0.0 since it requires no edits. Low values
indicate excellent translation.

Given our choice of TER, we are actually training the QE system to predict
post-editing effort.

We apply the same procedure to generate validation and test sets from CzEng.
Each MT generates separate sets. As a result, we have multiple validation and
test sets. When we train a QE model, we pair the train set with the validation set
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Figure 3.1: Targets distribution in CzEng dataset

Figure 3.2: Targets distribution in WMT18 dataset

translated by the same MT system. During the evaluation, we evaluate models on
each test set separately. In addition, we translate the CzEng test set by Google
Translate and LINDAT Translation. Figure 3.2 shows targets distribution in the
CzEng dataset. Each graph on the figure represents a separate MT system.

For WMT18 dataset, we use the translations provided in submissions. We
translate IWSLT dataset with our MT and with Google Translate, and LINDAT
Translation, where we try out sentence-level system (LINDAT Translation SL)
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Figure 3.3: Targets distribution in IWSLT Antrecorp dataset

Figure 3.4: Targets distribution in IWSLT Khan Academy dataset

and document-level system (LINDAT Translation SL). Figures 3.2, 3.3, 3.4, 3.5
show targets distributions of these datasets.

CzEng and Antrecorp datasets have the biggest fraction of translations made
without mistakes. As we mentioned earlier, they are less diverse than others and
hence, less challenging for MT to translate. Moreover, the distributions within
the dataset for different MTs look similar. The reason is that if the reference
translation is short, there are limited options for target values. These values
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Figure 3.5: Targets distribution in IWSLT SAO dataset

create peaks on the graph, the same for all MTs. For example, for a reference of
4 words, the only possible values of the metric are 0, 0.25, 0.5, 0.75, and 1.0.

The Khan Academy dataset has a significant fraction of the data with entirely
wrong translation. That is because the dataset is not properly segmented into
sentences. Many segments have a context-specific translation that MT cannot
capture due to the wrong segmentation, producing a more generic translation
that turns out wrong.

3.4 QE systems
The goal of our experiments is to train multiple models and compare them to
each other. We train the models using Bi-RNN architecture and Predictor-
Estimator architecture. We measure the model performance of our model by
computing the Pearson correlation between the predicted QE values and actual
values for the whole dataset. The code that was used to train the models is
available in Digital Attachment of this thesis in folders src/models/qe deepquest
and src/models/qe openkiwi.

3.4.1 Bi-RNN
Bi-RNN architecture is implemented by DeepQuest. We covered this architecture
in Section 2.3.3. We use this architecture since it allows us to easily change the
model capacity by changing the size of the RNN layer and embedding layer. We
use the config file config-sentQEbRNN.py as a base. We modify the parameters of
the optimizer setting it to Adam with a learning rate of 0.003, and then change
the batch size to 128. We preprocess input data in the same way as for MT
training. We train the models on a single GeForce GTX 1080 GPU. Since our

29



computational resources are limited, we train the models for no longer than two
days. Many models neither reach a plateau nor start overfitting during this time.
To make runs comparable, we limit the number of update steps, so models sharing
similar settings have the same number of update steps.

3.4.2 PredEst
The second architecture is the Predictor-Estimator architecture (PredEst). We
use it in OpenKiwi implementation covered in Section 2.3.1. As a predictor, we
chose the XLM-R model. We selected this architecture since it is more powerful
than OpenKiwi as it is based on pretrained models. Using this model allows us
to compare performance on models of different power.

The training is based on config file config/xlmroberta.yaml. As we only imple-
ment sentence-level QE, we remove word-level related parts of the model from con-
fig. We adjust the learning rate to 5e-6, use 1000 warm-up steps and unfreeze the
model after 2000 steps. We use a batch size of 4 with gradient accumulation steps
equal to 4 to make the data fit into memory. We validate the model every 25 thou-
sand sentences and stop the training if the Pearson correlation does not increase
25 times in a row. We train on the same hardware with the same limitations and
data preprocessing as Bi-RNN model.
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4. Experiments

4.1 Basic experiments
The main idea of our basic experiments is to train many QE systems and compare
them to each other. The systems differ in settings that contribute to QE power.
Among those, we consider model capacity, training data size, and training data
quality. Each parameter could be seen as a separate experiment dimension. We
take multiple points across dimensions and for each point combination, we train
a QE model.

With each dimension we add, the number of possible experiments increases
exponentially. That is why we avoid to check more parameters. We freeze all
parameters that are not connected to system power using the same values for
all our systems, so nothing else affects the results. One of such parameters is
the language pair. Since it doesn’t affect QE power, we’re focusing only on one
language pair, that being en → cs translation.

We consider 3 dimensions with two points in each dimension which results in
8 QE models. The dimensions are:

1. QE training data translation quality, measured by MT training size.

2. QE training data amount.

3. QE model capacity.

• smaller model with hidden size 256 and embedding size 512
• bigger model with hidden size 512 and embedding size 1024

We start by presenting our results on the test set from CzEng. Figure 4.1
shows evaluation results on CzEng translated by our MTs. Rows in the figure
represent MTs used to translate dataset. MT 1m and MT 10m are named after
the MT training data size: MT 1m and MT 10m, meaning 1 million and 10
million train sentence pairs. Common dataset combines data from MT 1m test
set and MT 10m test set.

The columns represent the experiment dimensions. For each QE test dataset
with CzEng source data, we have three graphs:

• On the first, the x-axis is data quality.

• On the second, the x-axis is the data amount.

• On the third, it is model capacity.

For example, the top-left graph in Figure 4.1 shows Pearson correlations of our
QE predictions to the TER of MT output and the reference) when the test set
translation came from both the weak and strong MT systems. The x-axis on graph
represents data quality. On x-axis, point “1m” represents models trained on low-
quality data, i.e. data produced by weak MT trained on 1 million sentence pairs
from MT training dataset.“1m” represents models trained on high-quality data,
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i.e. data produced by strong MT trained on 10 million of sentence pairs. This
graph shows the relationship between data quality and QE model performance.

While x-axis on graphs represent some experiment dimensions, the y-axis
always represent the QE model performance, i.e. Pearson correlation of prediction
produced by QE model and targets. Since the y-axis always represent the same
measurement, y-values in each row are the same.

Figure 4.1: Pearson correlation with targets for CzEng dataset translated by our
trained MTs. The top plots are for the test set that combines weak and strong
MT outputs, the middle plots are for the test set containing the weak MT outputs
(1m) and the bottom plots are for the test set containing the strong MT outputs
(10m).

The points on the graph differ in form. The dot form is used to show the
model setting. It is possible to decode which model the point represents from the
dot shape. The encoding is the same for all points in the graphs. Whether the dot
is filled with color or not corresponds to the model capacity. Circle and triangle
dots indicate that the QE model is trained on 10m and 1m of sentence pairs,
respectively. The data quality is represented by point size. The lines connect
dots with the same configuration in all dimensions except the x-axis dimension.

For example, the top-left dot with a value of 0.5326 in the top-left graph
represents the performance of the QE model trained on 10m sentence pairs from
QE training dataset (the dot has a circle form) of low quality (the dot is smaller
in size), and the model has the lower capacity (the dot is not filled with color). It
is connected with the dot representing the model of the same capacity and data
amount but trained on training data of higher quality.
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Since visual representation varies for all three dimensions, one of the visual
representations duplicates the x-axis. For example, on any left graph, all points
with x=1m are small since the point size represents the data quality, which is
also the x-axis dimension. In the middle graphs, all left points are triangular (low
QE data amount) and all right points are circles (high QE data amount), etc.

Figure 4.2: Pearson correlation with targets for CzEng test set. The top plots
are for the test set translated by Google Translate system, and the bottom test
set translated by LINDAT Translation

4.1.1 Evaluation results on MT 10m and MT 1m datasets
The first column of Figure 4.1 and Figure 4.2 shows relation between data qual-
ity and QE model size. We can see that on all translation systems (rows of
plots) except MT 10m, generally, the models trained on high-quality data (10m)
outperform those trained on low-quality data (1m).

The test sets MT 1m and MT 10m have a specific relation with the data qual-
ity dimension. High-quality QE models train set (right points on Data Quality
graphs) and test set MT 10m (bottom row in Figure 4.1) share the MT that
translated the data. That means that the QE models were trained on data trans-
lated by MT 10m system and test set was translated by the same system. On
the MT 10m test set, high-quality QE models are evaluated on the data from
the train distribution while the low data quality QE models are evaluated on the
data with distribution shift from their trained data. In other words, the high-
quality QE models have a handicap. That explains why the high data quality
QE models outperform the low data quality, while on other datasets, the effect
is the opposite.

The same relation holds for low data quality QE models and MT 1m test set.
On MT 1m dataset, the low data quality models have the same bias. We can see
that the absolute difference between the worst and the best model is higher on
the MT 1m dataset (around 0.02) than on the MT 10m dataset (around 0.008),
which is a direct outcome of this bias.
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4.1.2 Data quality
On CzEng, the high data quality QE models have worse performance than low
data quality QE models. This is an unexpected result. We expected the opposite:
the QE exposed to good quality data should perform better on good quality test
data, or in the worst case, there should be no difference.

This effect might be caused by low model power. The Transformer is a better
translation model than RNN-based models. It is possible that the BiRNN model
can only learn simple heuristics that help distinguish between a good and a bad
translation. Data of low quality have more examples where such simple heuristics
work, so it is easier for models to learn from low-quality data than from high
quality.

The targets distribution also affects the result. The model learns the train
targets distribution and therefore has a bias toward that distribution.

4.1.3 Data amount
There is also a mild effect from data amount (second column on all graphs).
This can be seen in the middle column in all Figures except Khan Academy test
results. The QE models trained on the larger amount of data performs better,
but the difference is relatively small. This effect might be caused not only by the
number of sentence pairs in the train set, but also be caused by longer training.
The high data amount QE models were trained 1,5 times longer in a number of
train steps so they could go through the whole dataset more times.

Given our limitation in computational resources, the only remaining choice is
to train QE models on lower volumes of data. In this case, the QE model will
start to overfit faster, so we can fully train the models within two days.

4.1.4 Model capacity
Increasing the model capacity does not cause any difference in QE model per-
formance. We cannot improve the performance of this architecture by increasing
the model size while keeping other settings the same. We can increase the model
power in different ways; for example, use other architecture or use pretrained
models such as Bert, XLM or XLM-R.

4.1.5 Results on IWSLT and WMT-18
We checked the model performance on IWSLT datasets and WMT18 dataset.
The results are presented in Figures 4.3, 4.4, 4.5, 4.6. Figure 4.7 aggregates
results of all QE models, so we compare performance between datasets. The
Figure includes measurements for all MTs made by all QE models. The resulting
range for a single dataset is wide since the results are also affected by other factors
such as the MT quality or the variance of QE models.

Among IWSLT datasets, Antrecorp is the domain where the QE reaches the
best performance. It contains simpler data than the SAO dataset, making it
easier for the models to assess the quality. The QE is prone to the same mistakes
as MT. For example, if the translation is incorrect due to the segmentation error,
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Figure 4.3: Pearson correlation with targets for test set WMT18 translated by
WMT18 submission MTs

the QE labels it as correct. It explains why Khan Academy’s performance is
worse than Antrecorp’s despite the worse data diversity.

On SAO domain, QE shows the worst results. Longer sentences require a
more high-level understanding of sentence content which might be hard for QE.
As a result, the QE tends to make more errors when working with long sentences.
Moreover, it is more diverse than the other ISWLT group dataset, making the
dataset more challenging for QE models.

On WMT18 domain, QE models shows results that are better than Antrecorp.
WMT18 dataset is the most challenging from the data quality point of view, so
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Figure 4.4: Pearson correlation with targets for test set Antrecorp from IWSLT
translated by MT 1m, MT 10m, LINDAT Translation sentence-level model, LIN-
DAT Translation document-level model and Google Translates

such results are somewhat unexpected. We should note that the WMT18 MTs
are different but do not have lower power than the rest. As a result, the outcome
cannot be attributed to the MT quality.

The WMT18 data domain is the closest to the training data. The sentence
segmentation is correct, and the data do not have grammatical mistakes. We
think that this is the reason for the good performance on WMT18. Given this
result, we can say that the QE models are sensitive to the dataset quality and
domain shift. The same factors that lead to a drop in MT performances also
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Figure 4.5: Pearson correlation with targets for test set Khan-academy from
IWSLT translated by MT 1m, MT 10m, LINDAT Translation sentence-level
model, LINDAT Translation document-level model and Google Translate

cause the QE performance drop.

4.1.6 Quality of translations in test datasets
QE models perform poorly on high-quality translation data. The more powerful
MT translated the test set, the lower the correlation between predictions made by
QE models and targets. We can see this effect on WMT-18 datasets, and when
comparing MT 1m and MT 10m tests set on CzEng, Antrecorp, Khan-Academy
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Figure 4.6: Pearson correlation with targets for test set SAO from IWSLT trans-
lated by MT 1m, MT 10m, LINDAT Translation sentence-level model, LINDAT
Translation document-level model and Google Translate

and SAO.
In Figure 4.3 we have sorted rows according to MT scores assigned by DA

(Table 3.3). The first row represents CUNI-Transformer that performed the best
in WMT-18 News Translation Task. The second row is UEDIN, which took
second place and so on. In Figure 4.3 CUNI-Transformer dataset has the lowest
value of correlation between QE models predictions and targets (look at y-axis
range). The UEDIN dataset has the second worse correlations values and so on.
The trend is clear: lower correlation corresponds to the higher performance of MT.
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Figure 4.7: Range of Pearson correlations depending on the dataset

The only exception is ONLINE-A and ONLINE-G systems as their correlations
highly overlap.

The same trend we observe when we compare results on the test set translated
by our MT 1m and MT 10m. MT 10m test set contains data of higher quality
since they are translated by stronger MT. We have such train sets for Czeng and
IWSLT datasets. For all these datasets, the correlation on MT 1m test set is
higher than on MT 10m test set.

Domain shift

CzEng test set evaluation results are much higher than in other datasets. That
happens because the test data comes from the same distribution as the training
data. Another bias comes from MT. We can compare results from CzEng and
IWSLT to see the effect of these biases. Table 4.1 shows all four combinations
and theirs effect on model performance. By ‘Source bias’ we mean that the test
set source sentences come from the same distribution as sentences on which the
model was trained and by ‘Translation bias’ that the MT model that generated
translation is the same or similar model that generated the QE train set transla-
tion.

We compare the results to the IWSLT data with online MTs translations
with no bias. On CzEng MT 1m and CzEng MT 10m, QE models have the
highest scores due to both source and translation data bias. Even translated by
online MTs, QE models evaluation results on CzEng are much higher than on
other datasets. On the other hand, we see no difference between IWSLT test sets
translated by MT 1m and MT 10m compared to test sets translated by Google
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Dataset MT Source
bias

Translation
bias Effect

CzEng our MTs Yes Yes Yes, large
CzEng online MTs Yes No Yes, medium
IWSLT our MTs No Yes No
IWSLT online MTs No No No

Table 4.1: Source and translation bias impact on model performance

Translate and LINDAT.
Therefore we can say that training on the data from evaluation distribution

greatly impacts the model performance.

Figure 4.8: Pearson correlation with targets for CzEng dataset on models with
varying data amount

4.2 Effect of dataset size
As we noticed in subsection 4.1.3, the models had not started to overfit when
we trained them on 1 and 10 million sentence pairs. We trained the model on
smaller data sizes to check this behavior. We fixed other settings that we vary
in experiments and trained four models on 1e5, 2e5, 5e5, and 1e6 sentence pairs.
We evaluated the model on all datasets.

The training time of the models differs depending on training data volumes.
Models trained on 100 thousand sentence pairs quickly starts overfitting. 200
thousand models start overfitting before 500 thousand.

Figure 4.8 shows the evaluation result in CzEng datasets. We can see a strong
relation between data amount and model performance. With more training data,
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the QE model achieves higher Pearson correlation scores.
QE models trained on 100k sentences quickly start overfitting. That raises

the question of whether researchers in the field are using enough data as in the
field, the datasets typically have a maximum of 20k sentences.

Figure 4.9: Pearson correlation with targets for WMT18 test set measured on
models with training data amount that varies from 100 thousand to 1 million
sentence pairs

Figures 4.9, 4.10, 4.11, 4.12 shows the evaluation on other test sets. It shows
the same trend, but noisier. The model trained on 100 thousand sentence pairs
is an outlier showing better performance than the 200 thousand model on many
datasets. The effect is almost missing in SAO, which is also the dataset where
QE has the worst result in absolute scores.

Even given the domain shift, the effect of the increasing dataset is present. If
we have data from the same domain, we can train a good model on much lower
volumes of data. This illustrates the fact that the 100 thousand sentence pairs
model has higher performance on CzEng better than the 1 million model has on
SAO.

4.3 Effect of dataset size with SOTA QE archi-
tecture

From the results of previous sections, we can see that increasing the model ca-
pacity does not affect the model’s performance. Moreover, we observed that
low-quality data performed better than those trained on high-quality. To inves-
tigate if this issue is caused by the low power of the model, we decided to train
models of a higher power.

We trained the models with Predictor-Estimator architecture, whose imple-
mentation is provided in the OpenKiwi package. As a predictor, we used the base

41



Figure 4.10: Pearson correlation with targets for Antrecorp test set measured on
models with training data amount that varies from 100 thousand to 1 million
sentence pairs

Figure 4.11: Pearson correlation with targets for Khan Academy test set measured
on models with training data amount that varies from 100 thousand to 1 million
sentence pairs

XLM-R model. Models whose Predictor is pretrained XLM-R model have much
higher capacity than BiRNN model.

Since the predictor is a pretrained model, we cannot change its capacity. We
adjust model power by varying the training data. We train the model on subsets
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Figure 4.12: Pearson correlation with targets for SAO test set measured on models
with training data amount that varies from 100 thousand to 1 million sentence
pairs

of 100 thousand, 200 thousand, 500 thousand, and 1 million sentence pairs. We
skip the 10 million sentence pairs dataset due to a long time of training. We vary
the model quality in the same way as previously by using translation from MTs
trained on 1m and 10m of sentence pairs. Figures 4.13, 4.14, 4.15, 4.16, 4.17,
present the results of the experiments in the same manner as we presented the
results of basic experiments.

4.3.1 Comparison of PredEst and BiRNN
Table 4.2 compares results from PredEst model to BiRNN model. We selected QE
models that were trained on one million sentence pairs. We present measurements
made on all test sets for different MT systems. As is expected for models of a
higher power, PredEst models outperform BiRNN models.

On CzEng, the difference between PredEst and BiRNN is the smallest. With
PredEst architecture, the model trained on 100 thousand sentence pairs perform
on the same level as the BiRNN model trained on 1 million sentence pairs. The
biggest difference is in Antrecorp and SAO datasets, which are from the auditing
domain. For all datasets except CzEng, model power has the biggest impact on
model performance from all factors we studied (data quality, data amount, model
power). The PredEst generalizes better on out-of-domain data because PredEst
is based on XLM-R pretrained on different domain data. The smallest difference
is in Khan Academy dataset due to its skewed distribution.

For both model architectures, the highest correlation scores were achieved on
CzEng test set. They also share the phenomenon when QE trained on low-quality
MT data has higher correlation scores, which can be observed on all datasets but
Khan Academy. However, a dataset with the lowest correlation for BiRBB was
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Dataset MT MT 1m MT 10m

PredEst BiRNN PredEst BiRNN

CzEng

Common 0.586 0.531 0.579 0.525
MT 1m 0.615 0.557 0.599 0.544
MT 10m 0.555 0.507 0.560 0.507
Google Translate 0.504 0.429 0.479 0.401
LINDAT Translation 0.467 0.432 0.478 0.428

WMT18

ONLINE-G 0.491 0.361 0.457 0.342
ONLINE-A 0.512 0.374 0.483 0.355
CUNI-Transformer 0.404 0.267 0.377 0.264
ONLINE-B 0.494 0.334 0.464 0.325
UEDIN 0.462 0.331 0.434 0.328

Antrecorp

LINDAT Translation SL 0.390 0.274 0.376 0.248
LINDAT Translation DL 0.397 0.356 0.391 0.344
MT 10m 0.411 0.270 0.386 0.277
Google Translate 0.459 0.302 0.445 0.307
MT 1m 0.456 0.296 0.425 0.301

Khan
Academy

MT 1m 0.413 0.337 0.405 0.329
Google Translate 0.279 0.233 0.302 0.235
MT 10m 0.287 0.286 0.342 0.312
LINDAT Translation DL 0.269 0.273 0.301 0.273
LINDAT Translation SL 0.289 0.276 0.320 0.283

SAO

MT 10m 0.338 0.210 0.305 0.196
MT 1m 0.433 0.278 0.372 0.270
LINDAT Translation DL 0.363 0.222 0.330 0.217
Google Translate 0.366 0.246 0.307 0.221
LINDAT Translation SL 0.384 0.213 0.348 0.214

Table 4.2: Comparison of PredEst and BiRNN models trained on one million of
sentence pairs on datasets of different quality

SAO, while PredEst performs the worst on Khan Academy dataset.

4.3.2 Data quality
We expected different results in the data quality dimension because this type of
models should have enough capacity to learn from data. Nevertheless, even with
stronger PredEst architecture, models trained on low-quality data perform better
than models trained on high-quality data. This effect is the most visible on the
dataset whose domains are close to training data such as CzEng and WMT18,
except for CzEng MT 10m subset due to the models’ bias (see subsection 4.1.1).
This means that the powerful MT is not needed to train good QE model. To
investigate this further, we can train MT models of even lower power to find the
data quality on which QE power has a peak performance.

We can also see that the gap between models of the same data amount differs
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Figure 4.13: earson correlation between predictions generated by PredEst models
with targets for CzEng test set translated by MT 1m, MT 10m, Google Translate
and Lindat Translation sentence level. Common test set combines data from test
set MT 1m and MT 10m

across subsets and datasets, but within one subset, it is mostly constant. For
example, Figure 4.14 shows that on the CUNI-Transformer dataset, the gap be-
tween low-quality and high-quality data is almost absent. In contrast, low data
quality models perform much better on the ONLINE-G dataset. We believe there
is some similarity between datasets, so if datasets are similar, the model trained
on a similar dataset will perform better than models trained on other datasets.
The targets distribution might also cause such an effect.

In Figure 4.14, graphs are sorted according to their competition ranking. The
better the WMT18 MT system, the closer the gap between low data quality
and high data quality models. Better MT produces translations that are more
challenging for QE to assess quality. The high data quality models have seen
more of such data, which affects the result.
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Figure 4.14: Pearson correlation between predictions generated by PredEst mod-
els with targets for WMT18 test set translated by WMT18 submission MTs.

4.3.3 Data amount
The data amount dimension of the model has a much higher variation than the
data quality dimension. The models hugely benefit from adding more data.

This effect is visible on all datasets except for the Khan Academy dataset.
However, on IWSLT datasets, the winning models are trained on 200-500 thou-
sand of sentence pairs. When trained on large data, models tend to overfit to the
dataset distribution. Hence, the ability to generalize to other domains decreases.
This problem can be overcome by using the validation dataset from the testing
distribution.

For the Khan Academy dataset (Figure 4.16), there is no effect of data size.
This dataset has a skewed distribution with many context-dependent sentences.
Giving more data does not make models more exposed to such data, so there is
no performance boost.
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Figure 4.15: Pearson correlation between predictions generated by PredEst mod-
els with targets for test set Antrecorp from IWSLT translated by MT 1m, MT
10m, LINDAT Translation sentence-level model, LINDAT Translation document-
level model and Google Translate
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Figure 4.16: Pearson correlation between predictions generated by PredEst mod-
els with targets for test set Khan Academy from IWSLT translated by MT
1m, MT 10m, LINDAT Translation sentence-level model, LINDAT Translation
document-level model and Google Translate
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Figure 4.17: Pearson correlation between predictions generated by PredEst mod-
els with targets for test set SAO from IWSLT translated by MT 1m, MT 10m,
LINDAT Translation sentence-level model, LINDAT Translation document-level
model and Google Translate
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Conclusion
The goal of the thesis was to study the relationship between MT and QE systems.
We defined the term power of the MT system and explained how it is measured
and what affects it. We surveyed related papers featuring the experiments that
involve interaction between MT and QE of different power. We defined the terms
power of the QE system and reviewed existing QE implementations.

We completed experiments that involved training multiple MT systems with
varying power and multiple QE systems of varying power. We made the evalu-
ation of QE systems on test sets including WMT18 News Translation Task test
set translated by submitted MT systems and IWSLT test sets translated by our
MT systems and online MT systems Google Translate and LINDAT Translation.
We reviewed how different systems’ dimensions that contribute to either MT or
QE power affect evaluation results. From the experiments, we can conclude the
following:

• QE systems perform better when trained on lower quality data, which holds
for both high-power and low-power QE systems.

• QE systems performance is lower when evaluating high quality MT trans-
lations. This holds for both high-power and low-power QE systems.

• When evaluating high quality MT translation, the gap between low data
quality QE systems and high data quality QE system performance is getting
smaller.

• High-power QE systems work better for out-of-domain distribution than
low-power QE systems, which fail to yield good quality estimation.
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Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan
Herbst. Moses: Open source toolkit for statistical machine translation. In

53

https://aclanthology.org/W18-6412
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
https://www.aclweb.org/anthology/P19-3020
https://www.aclweb.org/anthology/P19-3020
https://aclanthology.org/W17-4763
https://aclanthology.org/W17-4763
https://aclanthology.org/2021.wmt-1.57
https://aclanthology.org/N03-1017


Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics Companion Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic, June 2007. Association for Computa-
tional Linguistics. URL https://aclanthology.org/P07-2045.

Chi-kiu Lo. YiSi - a unified semantic MT quality evaluation and estimation
metric for languages with different levels of available resources. In Proceed-
ings of the Fourth Conference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 507–513, Florence, Italy, August 2019. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/W19-5358. URL
https://aclanthology.org/W19-5358.
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