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List of Notation

β Stone-Čech compactification as a functor
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Fσ F-sigma set

Fσδ F-sigma-delta set

F Z-filter
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K(X) Hyperspace of X (equivalently denoted 2X)
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N Natural numbers (equivalently denoted ω)
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P 1) Irrational numbers 2) Partially ordered set
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Q Rational numbers
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QX Lattice of all compactifications of X

R Real numbers

RX Set of all functions from X in to R

Sn n-dimensional sphere

Top Category of topological spaces

Tπ Category of Tychonoff topological spaces
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X1 Class of all zero-dimensional absolute Fσδ-spaces

which are nowhere σ-complete and of first category

Z Integers

αX Alexandroff one-point compactification of X

βX Stone-Čech compactification of X

γX Arbitrary compactification of X

∆0
α Class of sets that is both in Σ0

α and Π0
α

Π0
α Class of sets whose complement is in Σ0

α

ρH Hausdorff metric

Σ0
α Class of sets closed under countable unions and finite

intersections

ω1 Set of all countable ordinals

[0, 1](0,1) Tychonoff cube

{0, 1}X or 2X Cantor cube

{0, 1}N Set of infinite sequences consisting of 0s and 1s

∞ Point at infinity

2ω Cantor space
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Introduction and Preliminaries
Let us start the thesis by recalling some basic facts from general topology and

mathematical analysis that will make it easier to provide some intuition behind
the notion of H-compactifications and its importance.

Definition 1. A topological space X is Hausdorff if and only if for every two
distinct points x and y, there exist disjoint open sets U and V with x ∈ U and
y ∈ V .

Hausdorff spaces represent a nice world for proving theorems. They formal-
ize the idea of separating points from each other, they allow limits of sequences to
be unique, they have many more of the properties one would intuitively associate
with a space.

Metric spaces (such as real numbers), manifolds and many other objects of interest
are Hausdorff spaces and in many mathematical texts, all spaces are automati-
cally assumed Hausdorff.

Hausdorff spaces that are compact are even more favorable to work with.

Definition 2. A compact space is a space in which every open covering of X
has a finite subcovering, in other words, if for any collection {Uα}α∈A of open
sets with X ⊂ ∪α∈AUα there exists a finite set of indices {α1, ...αn} such that
X ⊂ Uα1 ∪ ... ∪ Uαn.

In layman terms,

“If a city is compact, it can be guarded by a finite number of arbitrarily
near-sighted policemen.”

This paraphrase of the finite subcover definition of compactness is attributed
to Hermann Weyl. However, compact spaces can be also described using other
properties, for example the following statements define compactness for metric
spaces:

1. All continuous functions are bounded,

2. All continuous functions attain a maximum,

3. Every sequence has a convergent subsequence.

Note that all these characteristics are deducible from each other. However, with-
out more specific assumptions, only the first and most general definition via open
covers can be used in all cases.

Proposition 3. Compactness is a topological property.

Proof. Let X be a compact space. The claim follows from the fact that if a
function f : X → Y is continuous, then f(X) is compact, which is proven in the
part (iii) of the following theorem. Note that this is implied by the definition of
homeomorphism (open sets are preserved).
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Theorem 4. (Chandler, 1976, Theorem 1.11)

(i) Closed subsets of compact spaces are compact.

(ii) Compact subsets of Hausdorff spaces are closed.

(iii) If f : X → Y is continuous and X is compact, then f(X) is compact.

(iv) If f : X → Y is one-to-one and continuous, X is compact, and Y is Haus-
dorff then f is a homeomorphism onto f(X).

Proof. (i) Choose a compact space X and its closed subset F . Let {Uα | α ∈ A}
be an open covering of F . We take the open covering {Uα | α ∈ A} and add it to
the set X \F which is open. {Uα | α ∈ A}∪{X \F} is still an open covering of F ,
in fact, it is also an open covering of X, since (X\F )∪⋃︁

α∈A Uα ⊃ (X\F )∪F = X.
In conclusion, there exists a finite subcovering of X and it already contains the
finite subcovering of the set F as well.

(ii) For a fixed point x ∈ X \ F and each point y of F select disjoint open
sets Uy, Vy containing x, y. {Vy | y ∈ F} is an open covering of F . Take a finite
subcovering (which we can do by assupmtion) and so the intersection of the cor-
responding U ′s will be a neighborhood of x in X \ F .

(iii) Let X be a compact space and let f : X → Y be a continuous function. If
{Uα | α ∈ A} is an open cover of f(X), then {f−1(Uα) | α ∈ A} is an open cover
of X, since the inverse image of an open set is open. By the assumption, X is
compact, so it has a finite subcover {f−1(Uαi

) | i = 1, 2, 3, ...n, n ∈ N}. Then
{Uαi

| i = 1, 2, 3, ...n, n ∈ N} makes a finite subcover of f(X), which proves that
f(X) is compact.

(iv) For an open set U ⊂ X we have X \U is closed. Then, of course, it has to be
compact, from which f(X \ U) is also compact. Hence f(X \ U) is closed; hence
f(U) is open. Thus, f : X → f(X) ⊂ Y is an open mapping .

Theorem 5 (Tychonoff). The product topological space (endowed with product
topology) of an arbitrary set of compact topological spaces is also compact.

This theorem, originally from Čech (1937), has several ways of proving this
very famous theorem available across the literature, three of them given by a
relatively new Matheron´s paper (see Matheron (2020)). Tychonoff’s proof from
1930 used the concept of a complete accumulation point, the Cartan’s proof using
ultrafilters or Chernoff’s proof using nets. The theorem also comes as a corollary
of the Alexander subbase theorem saying that if (X, τ) is a topological space and
X has a subbasis S such that every cover of X by elements from S has a finite
subcover, then X is compact.

Example 5.1. [0, 1]N is compact, being a product of closed intervals [0, 1].

Compact spaces indeed carry many advantageous properties; however, com-
pactness is not hereditary (unlike other properties like metrizability, Hausdorff-
ness, regularity etc.) This is actually the reason why "putting a non-compact
space into something compact" can broaden our knowledge about that space-
which brings us to the concept of compactifications.
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Remark. We say that a topological space X embeds into a compact Hausdorff
topological space Y if X is homeomorphic to a subspace of Y . If we take a clo-
sure of the embedding, the name for this process, or equivalently for the resulting
compact Hausdorff space, is compactification.

Definition 6. A (Hausdorff) compactification γX of a topological space X is a
compact (Hausdorff) space γX together with an embedding

γ : X → γX

so that γ(X) is dense in γX.

Some authors instead use a pair (X, γ) as a notation for a compactification,
where X is a topological space γ is the embedding described in the definition.
The term Hausdorff compactification is often abbreviated to compactification and
further on, we always mean Hausdorff compactifications, if not stated otherwise.

Definition 7. A topological space X is called completely regular if given any
point x ∈ X and any closed S ⊂ X such that x ̸∈ S, there is a continuous map
f : X → [0, 1] such f(x) = 0 and f(S) = 1.

Loosely speaking, points of a complete regular space can be separated from
closed sets via (bounded) continuous real-valued functions.

Definition 8. A topological space X is called a Tychonoff space (alternatively a
T3 1

2
space) if it is a completely regular Hausdorff space.

Proposition 9. A topological space has a Hausdorff compactification if and only
if it is Tychonoff.

Proof. It is a known fact (shown by Tychonoff) that every compact Hausdorff
space is automatically a Tychonoff space. Since every subspace of a Tychonoff
space is Tychonoff, we conclude that any space possessing a Hausdorff compact-
ification must be a Tychonoff space. The converse, i.e. that every Tychonoff
space has a Hausdorff compactification was proved in the famous Tychonoff´s
1930 article (see Tychonoff (1930)).

Remark. Every Tychonoff space embeds into a product of type [0, 1]I , whence it
always admit a compactification (take the closure of the embedded copy of X).

Regarding the facts above, all of the topological spaces that we will work
with across the text will be considered Hausdorff spaces, if not stated otherwise.

Introducing H-compactifications
It is useful to introduce a special type of compactifications - such that they

do not depend on a specific "representation" of a given space, but exclusively on
its topological properties.

Definition 10. Let h : X → Y be a continuous mapping and γX a compactifi-
cation on X. We say that h has an extension to γX if there exists a continuous
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mapping γh : γX → Y such that γh ◦ γ = h. In other words, the following
diagram commutes.

X γX

Y

γ

h
γh

Alternatively, γh ↾X= h.
Definition 11. Given a topological space X, a compactification γX of X is
said to be an H-compactification if each automorphism of X can be continuously
extended to an automorphism (a mapping of γX into γX).
Remark. For a space X, if an automorphism

f : X → X

extends continuously to
γf : γX → γX,

then also γf−1 exists. Therefore, γf is an automorphism of γX too.
Because the inverses of automorphisms are automorphisms and we always

count the identity morphism as an automorphism, this is a hint that all auto-
morphisms on a given space naturally form a group. Moreover, if the group of
automorphisms admits a topology, we get a topological group.

Many common topological spaces like R,Q, the set of irrational numbers
or the Cantor set, carry "rich" automorphism groups, which manifests that a
lot of their points behave topologically the same. Spaces with large number of
automorphisms have their special name - homogeneous spaces.
Definition 12. The above-mentioned notion of a homogeneous space is defined
as follows. Let H(X) be the group of all automorphisms of a space X. We say
that a continuous mapping f : X → Y is homogeneous if for every h ∈ H(X)
there exists g ∈ H(X) such that

f ◦ h = g ◦ f .
In some literature, a homogeneous space X is also defined as a space X such

that for every x, y ∈ X there is an automorphism of X that maps x to y. It is
intuitive that more automorphisms a space admits, less H-compactifications of
that space exist.
Example 12.1. Rigid space is a space on which the only homeomorphisms are
the trivial ones (i.e. the identity homeomorphisms). It is not difficult to observe
that all compactifications of rigid spaces are automatically H-compactifications.

Ordering of H-compactifications
It has been shown that H-compactifications certainly form a mathematical

structure, for instance they have been analyzed from lattice-theoretic perspective
by Lubben (1941), Chandler (1976) or Vejnar (2011).

First, we introduce a reasonable ordering, which, for H-compactifications is
inherited from the natural ordering of compactifications.

7



Definition 13. We say that, given a topological space X, a H-compactification
γ1 is finer than a H-compactification γ2 if for the embeddings

γ1 : X → γ1X and γ2 : X → γ2X

there exists a continuous map f : γ1X → γ2X such that the diagram

X γ1X

γ2X

γ1

γ2
f

commutes.

Further on, we will use the notation γ2X ≤ γ1X for the fact that γ1X is finer
than γ2X. The complementary notion is a coarser H-compactification.

An equivalent definition states that γ2X ≤ γ1X if there exists a continuous
f : γ1X → γ2X that fixes all points of X, which means the points stay unaffected
by applying f .

The f is a morphism and if it exists, it is automatically surjective and unique.
Recall that in the definition of Hausdorff compactifications, γi(X) is dense in
γiX.

Definition 14. Recall that a lattice L is a partially ordered set where any pair of
its elements has both a greatest lower bound (called meet and denoted ∧) and a
least upper bound (called join and denoted ∨) in L (which, by induction, implies
this for all finite subsets).

Definition 15. A complete lattice L is a lattice where all subsets have a greatest
lower bound and a least upper bound in L.

Definition 16. A complete sub-lattice L of a (complete) lattice M is a lattice
where the meet and join operations in L agree with the meet and join operations
in M .

Definition 17. An upper semi-lattice L is a partially ordered set that has a join
operation ∨ for any nonempty finite subset. Analogously, a lower semi-lattice has
∧ operation defined for each such subset.

The ordering of H-compactifications brings for each topological space X a
partially ordered set (shortly called poset) PX endowed with a binary relation
which is precisely the above defined ordering ≤. We will preserve the notation
PX for such poset (or, with more properties, even a lattice or semi-lattice).

Definition 18. Given a Hausdorff topological space X, a partially ordered set of
all H-compactifications of X is defined as

PX = {γX, ≤ | γX is a H-compactification of X},

where ≤ is the natural ordering of H-compactifications.
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Indeed, the structure of H-compactifications depends on the nature of the
space X. Therefore, we will look separately at properties of PX in the case when
X is locally compact and then in the general case.

Theorem 19. (Chandler, 1976, Theorem 2.19), based on Lubben (1941) The set
of all compactifications of X forms a complete lattice if and only if X is a locally
compact topological space.

Proof. We provide an idea and main steps for proving the theorem, detailed proof
is conducted for example in (Chandler, 1976, Chapter 2). Denote the set of all
compactifications of X by K(X).
(i) First, we show by contradiction that if K(X) (as a lattice) is complete, then
X is locally compact. Suppose X is chosen such that it is not locally compact.
Then for any γX ∈ K(X), γX \ X consists of more than one point. If X is open
in γX, then ∀x ∈ X, there is a continuous map h : γX → [0, 1] such that

h(x) = 0
h(γX \ X) = {1}.

Now, we shrink the [0, 1] to [0, 1
2 ]. Then, h−1([0, 1

2 ]) is a closed neighborhood of x
which is still contained in X and the closedness implies compactness of h−1([0, 1

2 ]).
We then proceed by determining for each compactification γX ∈ K(X)

another element γ′X of K(X) such that γX > γ′X and hence conclude that
K(X) has no greatest lower bound, hence it cannot be complete. This way the
contradiction is reached.
(ii) Conversely, let X be locally compact and define

C = {f ∈ C⋆(X) | ∀ϵ > 0 ∃ a compact Kϵ ⊂ X and |f(x)| < ϵ ∀x ∈ X \ Kϵ}.
Chandler proceeds in the proof with observing that C separates points from
closed sets and C ⊂ Cγ for any γX ∈ K(X). From that, we conclude that for
any γX ∈ K(X), C ⊂ ∩i∈ICγi

for an arbitrary subset {γiX}i∈I ⊂ K(X). Finally,
we will use the fact from (Chandler, 1976, Theorem 2.18) stating that the greatest
lower bound of any set of compactifications {aiX}i∈I ⊂ K(X) exists if and only if
∩i∈ICαi

separates points and separates points from closed sets. From this, K(X)
is complete.

The following proposition describes H-compactifications of a locally compact
space in terms of lattices and sublattices.

Proposition 20. The set of all H-compactifications of a locally compact space X
is a complete sub-lattice of the (complete) lattice of all compactifications of X.

Proof. Let X be locally compact and denote by H(X) the group of all automor-
phisms of X.
For a given family of H-compactifications Ki = {γiX | i ∈ I} denote by Ci the
set of all continuous functions from C⋆(X) that admit an extension over Ki. Let
C = ⋂︁

i∈I Ki. The greatest lower bound of the elements of Ki is given by γ(X)
where γ is a map

γ : X → RC

f(x)e = e(x).
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We now choose any f ∈ C⋆(X) such that it is continuously extendable over γX
and an arbitrary h ∈ H(X). We will verify that f ◦ h can be continuously ex-
tended over γX, which is equivalent with γX being H-compactification, following
(Vejnar, 2011, Proposition 5) which is used in the same paper for proving this
proposition. Let h ∈ H(X) and let f ∈ C⋆(X) be continuously extendable over
γ(X). Then f ∈ C. Consequently, f ◦ h ∈ Ki for every i ∈ I since γiX is an
H-compactification. Since f ◦h is in each Ki, it follows that f ◦h ∈ ⋂︁ Ki = C can
be continuously extended over γX. We have shown that Ki is closed under the
join operation, which is enough to observe that the set of all H-compactifications
as a lattice is complete.

In the general case when X is not required to be locally compact, it still
possesses a semi-lattice structure. Assume for the following two proposition that
X is not necessarilly locally compact.

Proposition 21. Lubben (1941) The set of all compactifications of a space X
with natural order is a complete upper semi-lattice.

Proof. Let X be a topological space and let K(X) be the set of all compactifica-
tions of X. For a subset {γiX | i ∈ I} of K(X), denote for each i ∈ I by γi the
map X → γiX. Define a map e such that

e : X → ∏︁
i∈I γiX

e(x)(i) = γi(x).
and denote by πi the projections for each i ∈ I. The e can be understood as a
function evaluating the functions γi and is determined by {γiX | i ∈ I}, hence
from (Chandler, 1976, Theorem 1.24), since each γi is a homeomorphism, e is
also a homeomorphism. This means that eX = e(X) is a compactification of X.
For each i ∈ I, fi : eX → γiX is the projection map restricted to eX. Then
(fi ◦ e)(x) = e(x)(i) = γiX so that f1 ◦ e = γi which implies eX ≥ γiX ∀i ∈ I.
Now suppose for all i ∈ I e1X ≥ γiX and define gi such that

gi : e1X → γiX
gi ◦ e1 = γi.

Define
f : e1X → ∏︁

i∈I γiX
f(y)(i) = gi(y).

Then πi ◦ f = gi, hence f is continuous and moreover f(e1(x)(i) = gi(e1(x)) =
γi(x) = e(x)(i). In conclusion, f ◦ e1 = e so that f(e1X) = eX and e1X ≥ eX
which implies that eX is the desired least upper bound of {γiX | i ∈ I} with
respect to the binary relation ≥.

Once we have established the properties for a locally compact space, we can
use similar approach in the general case.

Proposition 22. The set of all H-compactifications of a space X is a complete
(upper) sub-semi-lattice of the complete (upper) semi-lattice of all compactifica-
tions of X.

10



Proof. Let Ki = {γiX | i ∈ I} be a set of H-compactifications of X. For each
i ∈ I denote the corresponding inclusion mapping by γi : X → γiX. Define
a diagonal mapping ∆γi by ∆γi(x) = ∏︁

i∈I γiX. Observe that the least upper
bound of Ki is given by γ(X) where γ = ∆γi.
The final step is to show that γ(X) is also a H-compactification, whence a part of
Ki. This is proven as a part of (Vejnar, 2011, Proposition 4) by showing that for
any autohomeomorphism h of X there exists an autohomeomorphism g of γ(X)
such that γ ◦ h = g ◦ γ. Analogously we can find such h and g for γ. Two lemmas
are used, saying that if this property holds for a mapping X → Yi, i ∈ I, then it
can be extended to mappings X → ∏︁

i∈I Yi and X → f(X).

11



1. Stone-Čech and Alexandroff
Compactification

The most common H-compactifications one comes across are the Stone-Čech
compactification and the Alexandroff one-point compactification. The former is
the "most general, the latter is the "smallest". In the language of the ordering
defined earlier, we say that the Stone-Čech compactification is the finest com-
pactification of a given space and the Alexandroff compactification (provided it
exists) is the coarsest.

1.1 The Stone-Čech Compactification
Embedding a (general) topological space into a compactification that contin-

uously extends all its automorphisms is not always that straightforward. However,
for a Tychonoff space X, the most famous H-compactification of any space βX
called the Stone-Čech compactification always exists.
Definition 23. The Stone–Čech compactification of the topological space X is a
compact Hausdorff space βX together with a continuous map β with the universal
property, which means that any continuous map k : X → K, where K is a
compact Hausdorff space, extends uniquely to a continuous map βf : βX → K,
i.e. βf ◦ β = k.

X βX

K

β

k
βf

The universal property, expressed by the commutative diagram, will get more
attention in the last chapter of this thesis, where functorial properties of βX are
studied.

βX is the most "general" compactification in the sense that it is character-
ized by the universal property. Any continuous function from X to a compact
Hausdorff space K can be extended to a continuous function from βX to K in a
unique way.
Definition 24. For any topological space X and the cartesian product X × X of
X with itself, a map ∆ : X → X × X, defined by ∆(x) = (x, x)∀x ∈ X is called
the diagonal mapping.

We can extend the definition of diagonal mapping to ∆ : X → ∏︁
s∈S Xs,

defined by ∆(x) = (x, ...x)∀x ∈ X where each Xs denotes one copy of X.
Definition 25. Given a topological space X and a family {Ys}s∈S of topological
spaces and a family F = {fs}s∈S of continuous mappings fs : X → Ys, we say
that the family F separates points if for any two distinct points x, y ∈ X, we can
find a mapping fs ∈ F such that fs(x) ̸= fs(y).

Moreover, we say that the family F separates points and closed sets if for
every closed set V ∈ X and every point x ∈ X, x /∈ V there exists a mapping
fs ∈ F such that fs(x) /∈ fs(V ).

12



Theorem 26. (Engelking, 1989, 2.3.20 - the Diagonal Theorem) If F = {fs}s∈S

is a family of continuous mappings where for each s ∈ S the fs : X → Ys

separates points, then the diagonal mapping ∆s∈Sfs : X → ∏︁
s∈S Ys is a one-to-

one mapping. Moreover, if F separates points and closed sets, then ∆s∈Sfs is a
homeomorphic embedding.

Proof. Let F = {fs}s∈S, fs : X → Ys be a family of continuous mappings that
separates points. We have to show that the mapping ∆s∈Sfs never assigns the
same value in ∏︁

s∈S Ys to two distinct elements from X. Choose a pair (x, y) ∈ X
such that x ̸= y. There exists a s ∈ S such that fs(x) ̸= fs(y). Therefore, we
have for the diagonal mapping ∆s∈Sfs(x) ̸= ∆s∈Sfs(y), hence ∆s∈Sfs is injective.

Finally, we apply a lemma from (Engelking, 1989, Lemma 2.3.19) saying that
for a continuous, one-to-one mapping f : X → Y and the one-element family
{f} that separates points and closed sets, the mapping f is a homeomorphic
embedding.

Suppose F separates points and closed sets and let V = V be a subset of X
and let ps : ∏︁

s∈S γsX → γsX be a projection for each s ∈ S.
Then if ∆s∈Sfs(x) ∈ ∆s∈Sfs(V ), then for every s ∈ S, fs(x) = psf(x) ∈

ps(∆s∈Sfs(V )) ⊂ ps(∆s∈Sfs(V )) ⊂ fs(V ). This yields that the family {∆s∈Sfs}
also separates points and closed sets. But this is exactly the one-element family
{f} from the lemma, which implies that ∆s∈Sfs is a homeomorphic embedding,
as we wanted to show.

The proof of the following theorem was originally conducted by Čech.

Theorem 27. Čech (1937) Let X be a Tychonoff space. Then its Stone-Čech
compactification exists and it is unique (up to homeomorphism, being an identity
on X).

Proof. For uniqueness, we first prove that if a compactification of a Tychonoff
space X satisfying the given universal property exists, then it is unique up to
equivalence. Suppose we have two compactifications of X satisfying the property,
namely γ1 : X → γ1X and γ2 : X → γ2X. Then γ1 and γ2 have to be continuous
functions from X into compact Hausdorff spaces, and so by the universal property
we can find other continuous functions f : γ1X → γ2X and g : γ2X → γ1X such
that γ2 = f ◦γ1 and γ1 = g ◦γ2. From this it immediately follows that g ◦f is the
identity map on γ1X, and that f ◦ g is the identity map on γ2X. Therefore f is
a continuous function with a continuous inverse, making it the homeomorphism
we require.

Now we show that for any continuous mapping f : X → K where K is a
compact space, we can find an extension to a continuous mapping βf : βX →
K, that is, we show the universal property of the Stone-Čech compactification.
Denote by γ the embedding of X in its arbitrary compactification γX and identify
X with the subspace γ(X) of γX. We can use the Diagonal theorem: For a
family {fs}s∈S of continuous mappings, where fs : X → Ys separates points for
each s ∈ S, then the diagonal ∆s∈Sfs : X → ∏︁

s∈S Ys is a one-to-one mapping.
Moreover, if the said family separates points and closed sets, then ∆s∈Sfs is a
homeomorphic embedding. This theorem implies that β∆f : X → βX × K is a
homeomorphic embedding. Hence, γ(X) ⊂ βX × K is a compactification of X

13



and by the maximality of βX, we can find a continuous mapping g : βX → γX
such that gβ = γ.

Now, let p : γX → K be the restriction of the projection of βX × K onto
K to γX. Then the mapping p ◦ g : βX → K is the desired extension of f , since
p ◦ gβ = p ◦ γ = f .

For existence, we will show that for every Tychonoff space has a largest
element in the family of all compactifications of X with respect to the ordering
≤ as defined in the introductory part. This is corollary of the fact that every
non-empty subfamily of the family of all compactifications of X has a least upper
bound with respect to the order ≤ in the family of all compactifications. (see
Engelking (1989)[Theorem 3.5.9]).

To show that, let K be a non-empty subfamily of the family of all compact-
ifications of X and let ∆s∈S : X → ∏︁

X be a diagonal mapping. Denote by γiX
an arbitrary compactification of X and let ∆s∈Sγs : X → ∏︁

s∈S γsX, where S is a
set of indices and γs : X → γsX is a homeomorphic embedding of X in γsX such
that γs(X) = γsX.

We need to make sure that the ∆s∈Sγs is still a homeomorphic embedding.
That is true from the Diagonal theorem, since each γs : X → γsX separates
points and closed sets.

Now we have to prove that ∆s∈SγsX = ∆s∈Sγs(X) ⊂ ∏︁
s∈S γsX is the least

upper bound of the subfamily K.
Denote the ∆s∈Sγs by f and observe that for each s ∈ S, the projection ps:∏︁

s∈S γsX → γsX commutes with γs:

X
∏︁

s∈S γsX

γsX

f

γs
ps

This, by the definition of ordering of compactifications, is just another way of
saying that γsX ≤ ∆s∈SγsX for every s ∈ S.

Finally, assume that a compactification λX of X satisfies for each s ∈ S
γsX ≤ λX. This means that there are mappings fs : γX → γsX for which
fs ◦ λ = ∆s∈Sγs holds for each s ∈ S. For every s ∈ S ∆s∈Sfs satisfies the
following commutative diagram:

X λX

∏︁
s∈S γsX

λ

∆s∈Sγs
∆s∈Sfs

Then we obtain that ∆s∈SγsX ≤ λX, which shows that the non-empty subfamily
K of the family of all compactifications of X has a least upper bound, as required.

There are several ways to construct the Stone-Čech compactification - some
of them are presented in the Chapter 3 and for at least three different detailed
construction, see (Chandler, 1976, Chapters 2, 3).

Remark. The (Hausdorff) Stone-Čech compactification can be seen as a functor
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β : Tπ → cHaus

where cHaus refers to the category of compact Hausdorff spaces and Tπ refers to
the category of Tychonoff topological spaces (Tπ is sometimes used to denote a
Tychonoff space).

1.2 The Alexandroff Compactification
The other very typical H-compactification is the Alexandroff one-point com-

pactification αX.

Definition 28. For a locally compact X, denote the topology of X by τX and
define the topology ταX on a compact space αX the following way:

ταX := τX ∪ {U ⊆ αX | ∞ ∈ U and X \ U is a compact subset of X}.

A Hausdorff compactification αX of a locally compact (i.e. such that each
point of it has a compact neighborhood), non-compact, Hausdorff space X, ob-
tained by adding a single point ∞ to X and endowed with the topology ταX is
called the Alexandroff one-point compactification.

The extra point ∞ is usually called "a point at infinity".

Remark. In the situation where X is not locally compact, we can still construct
the one-point compactification, however, such compactification is not Hausdorff
(and hence not Tychonoff). Moreover, the neighborhood of the point attached to
X consists of complements of the closed compact sets of X. This general case of
one-point compactification is usually called Alexandroff extension.
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2. Known sets of all
H-compactifications

This chapter synthesizes all that is known about sets of H-compactifications
of more or less common topological spaces. What interests us is description of
the set of all H-compactifications of a given space.

Different sources use a lot of different names for H-compactification, e.g. "G-
compactification", where G is a subgroup of the group of all automorphisms of a
space X, in Groot de, McDowell (1959/60) or "equivariant extension" in Smirnov
(1994). We find the most suitable for this notion the term topological compactifi-
cation" from Douwen van (1979) and "H-compactification" used in Vejnar (2011),
which we will keep throughout this text.

For a space X, the βX usually does not look that nice - on the other hand,
constructing αX is often more convenient. Hence, for some spaces we will look
closely at their one-point compactifications.

2.1 Halfline
Let H be the halfline [0, ∞). Van Douwen's observation about H leads to

the description of H-compactifications of the real line.
Proposition 29. (Douwen van, 1979, Proposition 4) The set of all H-compactifi-
cations of H consists of just two elements: αH and βH.
Proof. Let λH be any H-compactification of H with |λH \ H| > 1 (so it is distinct
from αH). We show that λH = βH by showing that disjoint closed subsets of H
have disjoint closures in λH. (A part of the Chapter 3 is devoted to explaining
how this property characterizes the Stone-Čech compactification). So let F and
G be disjoint closed subsets of H. Without loss of generality, assume that 0 ∈
F . We can define two discrete families. Generally, a discrete family F is a
family of subsets of a topological space such that every point of the space has
a neighbourhood intersecting at most one element of F . In our case, we can
define a discrete family A of closed intervals in H such that every point of H has
a neighborhood intersecting at most one interval from A. Analogously, define
another discrete family B, such that it consists of closed intervals in H such that
every point of H has a neighborhood intersecting at most one interval from B.
One can construct A and B such that

F ⊆ ∪ A,
G ⊆ ∪ B and

(∪ A) ∩ (∪ B) = 0.
Let p and q be any two distinct points of λH\H. Let U and V be neighborhoods
of p and q in λH with 0 ∈ U and U ∩V = ∅. Without difficulty one can construct
an autohomeomorphism h of H such that h(A) ⊆ U for A ∈ A and h(B) ⊆ V for
B ∈ B. If λh is the extension of h then

(λh)(F ) ∩ (λh)(G) ⊆ U ∩ V = ∅,
hence F ∩ G = ∅.
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2.2 Real Line
Proposition 30. (Douwen van, 1979, Proposition 2) αR, the two-point com-
pactification of R and βR are the only three H-compactifications of R.

Proof. Denote by γR an arbitrary H-compactification of R. We will refer to the
halflines [0, ∞), (−∞, 0] as R+,R− respectively. Denote for any space X the set
of remainders of a compactification γX by γRX = γX \X and the intersection of
closures of R+ and R− in γR with γRR by γRR±. (Note that γRR = γRR+∪γRR−.

We will show that any γR is (homeomorphic to) either the one-point com-
pactification αR, the two-point compactification of R, or the Stone-Čech com-
pactification βR.

Choose a H-compactification γR. Observe that for any x ∈ R, there is a map
f : x → −x.

This map is a homeomorphism and by definition of a H-compactification, it can
be continuously extended over γR. Hence, for the corresponding compactifica-
tions γR+, γR− the remainder γRR+ is homeomorphic to γRR−, which implies
that γR+, γR− must be of the same "type" - either both are one-point compacti-
fications, or both are the Stone-Čech compactifications of R+,R+ respectively.

In the former case, γR is either the one-point or the two-point compact-
ification of R. Assume that γR+, γR− are both the Stone-Čech compactifica-
tions. Because γR is a H-compactification by assumption and each automor-
phism f+ : R+ → R+ or f− : R− → R− continuously extends to an automor-
phism f : R → R (say, by the identity of the complement), the R+ ∪ γRR± and
R− ∪ γRR± are H-compactifications. This implies that both γRR± and βRR±
are homeomorphic to the set of remainders of the Stone-Čech compactifications
of R+ and R−. Denote these homeomorphisms by h± : βRR± → γRR±. These
homeomorphisms extend the identity maps R± → R±.

Denote by X ⊔Y the disjoint union of X and Y . Since we assumed that γR+
and γR− are not one-point compactifications, βRR = βRR+ ⊔ βRR− and γRR =
γRR+⊔γRR−. For γR being two-point, this is easily seen. If γR is (homeomorphic
to) the βR, then the remainders γRR+, γRR− cannot be singletons and there exists
a map f : R+ → R+ such that for two distinct points x1, x2 ∈ R+, f(x1) = x2.
Extending this f by the identity to R−, we obtain a homeomorphism R → R
which, by assumption, extends continuously over γR. Denote this extension by
h. If we choose a point y ∈ γRR− ⊂ γR, this point is fixed by the automorphism
h : γR → γR, hence x1 ̸= y, so the desired decomposition to disjoint union holds.

The above implies that the maps h± combine to a bijective continuous map
h : βR → γR extending the identity map R → R. Reversing the roles of βR, γR,
we conclude that h is a homeomorphism. (Alternatively, we could use the fact
that both compactifications are Hausdorff.)

Proposition 31. The one-point compactification of R is homeomorphic to S1.

Proof. The construction can be given explicitly as an inverse stereographic pro-
jection. Consider the map

s : R → S1 given by
x → (1−x2

1+x2 , 2x
1+x2 )
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Then s is a homeomorphism between R and S1 \ {(−1, 0)}. It is because for
any real x, taking f(x) = 2arctan(x) is in the interval (−π, π) and s(x) =
(cos(f(x)), sin(f(x))) is a continuous bijection. The fact that s is an open map
follows from the observation that s maps any bounded open real interval (x, y) to
{(cos(u), sin(u)) : f(x) < u < f(y)}, which is an open set in S1 \ {(−1, 0)}. So,
since S1 \ {(−1, 0)} is dense in S1 and S1 \ (S1 \ {(−1, 0)}) consists of a single
point, S1 is the one-point compactification of R.

2.3 Higher dimensional Euclidean spaces Rn

Obviously, any space Rn, n ≥ 2 is still locally compact, however, the previous
argument using the half-line H-compactifications fails and a more sophisticated
proof is needed.

Proposition 32. (Vejnar, 2011, Corollary 28) For Rn for n ≥ 2, there are
exactly two H-compactifications, namely αR and βR.

We will rephrase the proof of this proposition in the second part of the
chapter which explores compactifications of l2.

Example 32.1. We have already constructed αR, so it is not surprising that for
n ≥ 2, αRn is (homeomorphic to) the n-sphere Sn. What is impressive is that this
allows proving things about Sn by passing to Rn and vice versa. The embedding
of Rn in Sn is the inverse of the stereographic projection.

One example is the fact that Sn is simply connected (it is path-connected and
any loop can be contracted to a point). We can see this if we show that a path in
Sn can be deformed so that it misses one point. From here, removing the missed
point gives a path in Rn, which can be deformed into a constant path using linear
functions.

2.4 N
It is easy to embed N (with the usual discrete topology) into a compact space.

It only admits two H-compactifications - that is the one-point H-compactification
and the Stone-Čech H-compactification. The one-point compactification αN is
homeomorphic to the generic convergent sequence. αN is described for example
in (Escardó, 2013, Parts 5-9). It is obtained from the discrete space N as

αN = {x ∈ {0, 1}N | ∀i ∈ N(xi ≥ xi+1)},

Regarding the construction of βN , one example can be found in a paper by
Tychonoff (1935) where it is built as a closure of a countable set

A = {an(x) : n ∈ N}

of points in the Tychonoff cube [0, 1](0,1). The an(x) refers to a dyadic expansion
of every x ∈ (0, 1) - that is, a representation of each such x with just zeros and
ones. One can also identify βN with the set of ultrafilters on N, with the topology
generated by sets of the form {F : U ∈ F} where U is a subset of N. We define
filters and ultrafilters in the chapter about the space l2.
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Overall, βN is notoriously elusive and highly sensitive to various set-theoretic
axioms - a lot of the research on βN instead concentrates on its remainder -
βN \ N, see for example the chapter Dow, Hart (2003) in the Encyclopedia of
General Topology.

Remark. The set of all H-compactifications of Z is the same as for N (since
these are homeomorphic).

2.5 Q
Proposition 33. (Douwen van, 1979, Proposition 1) The Stone-Čech compact-
ification βQ is the only H-compactification of Q.

Proof. This is an immediate consequence of the following proposition which we
will also find very useful in the following chapter about Qω.

All the assumptions except non-compactness are separately analyzed in the
next chapter about Qω.

Obviously, Q - with a topology inherited from R is non-compact. It is a
known fact that a subset of real numbers is compact if and only if it is closed and
bounded. The set of rational numbers has neither of these properties in R.

The strong zero-dimensionality is proved as a separate proposition in the next
chapter. The proposition in the section 3.1.1 shows that Q is zero-dimensional
and since this is equivalent for all separable, metrizable spaces with strong zero-
dimensionality, this yields the desired result.

The fact that every nonempty clopen subspace U ⊂ Q is homeomorphic to
Q is true because of the Sierpinski's theorem.

Proposition 34. (Douwen van, 1979, Proposition 3) If X is a non-compact
strongly zero-dimensional space in which every nonempty clopen subspace is home-
omorphic to X, then the only H-compactification of X is the Stone-Čech com-
pactification.

Proof. Let γX be an arbitrary H-compactification of X. In order to show that
γX is the same as βX we prove that every clopen subset of X has an open
closure in γX, which will, according to one of the equivalent characteristics of
the Stone-Čech compactification, lead to the desired conclusion. Denote again by
the closure operator in γX.

We will use the strong zero-dimensionality of X which provides that disjoint
zero-sets are separated by clopen sets. Together with the fact that clopen sets in
X have clopen closures in γX, we obtain that disjoint zero-sets (i.e. sets of the
form {x : f(x) = 0} for a continuous function f : X → R) in X have disjoint
closures in γX.

If U is a clopen subset of X, we can assume ∅ ≠ U ̸= X. Then we can
find a nonempty clopen subset V of X such that U ∩ V = ∅. U and V are
indeed homeomorphic. Then there exists an automorphism h of X such that
h(U) = V and h sends any x ̸∈ U ∪ V to itself. By the assumption, γX is a
H-compactification, so we can define an extension of h over γX. Denote such
extension by γh. Since the intersection of closures of U and V is assumed to be
empty and h maps every x ∈ U to y ∈ V , we see that γh satisfies
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U ∩ (γh)(U) = U ∩ V = ∅.
Observe that from our definition of h, γh(x) = x for each x ∈ (X \ (U ∪ V )).
Therefore, we have

U ∩ (X \ U) = (U ∩ (γh)(U)) ∪ (U ∩ (X \ (U ∪ V ))) = ∅.
Now, since U is the complement of X \ U in γX (which is a closed set), the
closure U is open in γX.

2.6 Other spaces
Van Douwen noted that even for many other zero-dimensional spaces, e.g.

irrationals P or Sorgenfrey line, the conclusion about H-compactifications men-
tioned above still works and hence the set of all H-compactifications of each such
space consists only of the Stone-Čech compactification. Some modifications of
these spaces, for instance the product of Q and P , also only admit the Stone-
Čech compactification.

There are other spaces studied by several authors, often as "variations" of al-
ready analyzed spaces. For example Vejnar described 26 H-compactifications
of the space ω × R in (Vejnar, 2011, Theorem 33) and proved that the spaces
ω ×Sn, n > 1 have only three H-compactifications in (Vejnar, 2011, Corollary 32)
and from the same paper, the space ω × S has exactly four H-compactifications.
Recall that spaces that are topologically the same (homeomorphic) have the same
set of H-compactifications. Therefore, we can use topological characterization of
the spaces introduced here to find similar conclusion on other spaces.
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3. H-compactifications of Qω

In this section, we find the set of all H-compactifications of the space Qω -
the set of all rational sequences. Our result will be shown using characteristics
from (Douwen van, 1979, Proposition 3). To achieve that, we have to first analyze
properties of Qω and its nonempty clopen subsets to conclude that the only H-
compactification on Qω is βQω.

Definition 35. Let I be a non-empty index set and for each i ∈ I, let Xi be
a topological space. If ∏︁

i∈I Xi is a Cartesian product and πi : ∏︁
i∈I Xi → Xi

are canonical projections, then the product topology on ∏︁
i∈I Xi is defined as the

coarsest topology (i.e. the topology with the fewest open sets) for which every πi

is continuous. Qω is defined as a set of all rational sequences endowed with the
standard product topology.

Throughout some literature, Qω is denoted as Q∞ or QN which emphasizes
the fact that we can practically interpret Qω as the set of all functions from N
to Q. It is important to have in mind that Qω is built as a countable product
of Q ⊂ R, where we assume that rational numbers have their standard topology
inherited from real numbers (with the standard metric).

Qω is non-compact, metrizable and separable (note that it is a countable product
of Q). Sine the H-compactifications of the space Q have been described in Douwen
van (1979), we now want to study the same problem in the more complicated case
of Qω.

Question 1. What is the set of all H-compactifications of Qω?

3.1 Characterization and properties of Qω

The following sections 3.1.1 - 3.1.4 characterize the space Qω. Among other
properties, strong zero-dimensionality is shown, which is later used for answering
the question about H-compactifications, using the Van Douwen's Proposition 34
from the Chapter 2. For this proposition, we verify in the section 3.1.5 the crucial
assumption that every nonempty clopen subspace of Qω is homeomorphic to Qω.

3.1.1 (Strong) zero-dimensionality
Further on, we will refer to spaces that are open and closed at the same time

as clopen.

Definition 36. A Hausdorff topological space X is zero dimensional if for every
point x of X and every neighborhood U of x in X, there exists a nonempty clopen
subset V of X such that x ∈ V ⊂ U . The clopen basis of any zero-dimensional
space is a collection of clopen sets that is closed under complements and finite
intersections.

Thus, a space is zero dimensional if and only if it has a basis of clopen sets.
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Proposition 37. The space Q endowed with the topology inherited from R is a
zero-dimensional space.

Proof. To show zero dimensionality of Q (regarded as a subspace of R, which
itself is not zero-dimensional), pick q ∈ Q and let V be a neighborhood of q in
Q. Then there exists an open subset U of R such that U ∩ Q = V . We can find
irrational numbers x, y with x < y such that q ∈ (x, y) and (x, y) ⊂ U . Hence,
applying set intersection yields that also q ∈ (x, y) ∩ Q ⊂ U ∩ Q = V . Moreover,
(x, y) ∩Q = [x, y] ∩Q. But that means exactly that (x, y) ∩Q is a clopen subset
of Q.

It is a well-known fact that any product of zero-dimensional spaces is zero-
dimensional, whence Qω has zero-dimensionality guaranteed, being a product of
zero-dimensional spaces Q.

Definition 38. A Tychonoff space X is said to be strongly zero-dimensional if
its Stone-Čech compactification βX is totally disconnected (that is if the only
connected subspaces of βX are singletons).

It is also true that strong zero-dimensionality of X is equivalent to zero-
dimensionality of βX. Trivially, every strongly zero-dimensional space is zero-
dimensional, but conversely, it is not necessarily true.

Proposition 39. Zero-dimensionality and strong zero-dimensionality are equiv-
alent for all separable metrizable spaces.

Proof. A topological space is said to be a Lindelöf space if every open cover
of the space has a countable sub-cover. According to the result in (Engelking,
1989, Theorem 6.2.7), every zero-dimensional Lindelöf space is strongly zero-
dimensional. It follows from the theorem in (Willard, 2004, Theorem 16.11) that
for a (pseudo)metric space, being a Lindelöf space is equivalent to separability
of the space. In conclusion, every separable and metrizable space is Lindelöf and
therefore it is strongly zero-dimensional if and only if it is zero-dimensional.

The proposition guarantees strong zero-dimensionality of Qω which we will
utilize at the end of this chapter. we need to introduce some more concepts.

3.1.2 Borel hierarchy
Let us recall some basic definitions and facts concerning the Borel hierarchy

- a classical and widely studied topic.

Definition 40. Given a set S, a σ-algebra over S is a family of subsets of S
closed under countable union, countable intersection and complement. The Borel
algebra over R is the smallest σ-algebra containing the open sets of R. A Borel
set of real numbers is an element of the Borel algebra over R.

Informally, a Borel set is any set in X that can be formed from open sets
(or, equivalently, from closed sets) through the operations of countable union,
countable intersection, and complement.
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Definition 41. Choose a separable metric space X and α ∈ [1, ω1] where ω1
means the set of all countable ordinals. We will define the Borel classes Σ0

α and
Π0

β. First let Σ0
1 be the class of open sets. For each α > 1 let Σ0

α be the class of
countable unions of elements of

∪{Π0
β | β < α}

where

Π0
β = {X − A | A ∈ Σ0

β}.

We will not deep dive into the Borel sets and hierarchy, so for more informa-
tion, see Miller (1979) or, within the framework of separable metrizable spaces,
Kuratowski (1966) and Hausdorff (1962)).

Definition 42. Each Borel set is assigned a unique countable ordinal number
called the rank of the Borel set. A Borel set is said to have a finite rank if it
belongs in Σ0

α for a finite ordinal α - else it is said to have an infinite rank.

The following theorem summarizes the properties of Borel classes in a more
intuitive manner.

Theorem 43. (Miller, 1995, Theorem 2.1) Σ0
α is closed under countable unions

and finite intersections, Π0
α is closed under countable intersections and finite

unions.

Proof. From the definition of Σ0
α, it is clearly closed under countable unions. Now

denote by An, Bm, n, m ∈ N arbitrary families of sets. Since
( ⋃︁

n∈N
An) ∩ ( ⋃︁

n∈N
Bn) = ⋃︁

m,n∈N
(An ∩ Bm),

Σ0
α is closed under finite intersections. It also follows from the De Morgan’s laws

(A ∪ B)′ = A′ ∩ B′ and
(A ∩ B)′ = A′ ∪ B′ and

that Π0
α is closed under finite unions and countable intersections (for the latter,

take complements).

Definition 44. Some authors add also the ambiguous classes ∆0
α to the definition

of Borel hierarchy. A set is in ∆0
α if and only if it is in both Σ0

α and Π0
α, whence

it is closed under finite intersections, finite unions and complements.

Example 44.1. On R, the first level of Borel hierarchy consists of all open and
closed subsets of R, and upon having defined levels 2, 3, 4, ..., n − 1, level n is
obtained by taking countable unions and intersections of the previous level.

When working on higher levels of Borel hierarchy, the classical notation intro-
duced above comes handy. We will, however, work with just the first two levels,
hence, further on, we will stick to an alternative notation of Borel hierarchy which
uses letters F and G.

Remark. Qω is not a Gδσ-subset in the completely metrizable space Rω. (See
Engelen van (1984)). It is, however, Fσδ, which can be rewritten as ∩n∈N∪m∈NnFm

where each Nn is a countable set and all Fm, m ∈ Nn, n ∈ N are closed.
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Definition 45. A metrizable space X is an absolute Fσδ-set (or an absolute Fσδ-
space) provided that X is an Fσδ-subset in every metrizable space in which X is
embedded.

It follows from Engelen's characterization of Qω in (Engelen van, 1985, Part
2) that it is absolute Fσδ.

3.1.3 Sets of first and second category
For making a conclusion about the H-compactifications of Qω, we have to

demand Qω is of first category (note that this terminology should not be confused
with category theory concepts).

Informally, a set of first category is a set whose elements are not tightly clus-
tered together anywhere in the space.

Definition 46. A subset Y ⊆ X of a topological space X is called nowhere dense
(or rare) in X if its closure has empty interior. Equivalently, Y is nowhere dense
in X if we cannot find any nonempty open subset of X which would be contained
in Y

Definition 47. A subset of a topological space X is said to be of first category
in X if it is a countable union of nowhere dense subsets of X.

The sets of first category are also called meagre sets or meager sets. Infor-
mally, one thinks of a first category subset as a "small" subset of the host space.
A subset that is not of first category in X is said to be of the second category in
X

Proposition 48. Q with the usual topology (as the countable union of one-point
subsets of R) is of first category in itself.

Proof. We need to write Q as a countable union of nowhere dense subsets of Q.
Choose an enumeration {q1}, {q2}, ... of Q. Then Q = ⋃︁

i=1,...{q1} and {qi} is
nowhere dense for each i. Equivalently, each Q − {qi} is an open subset of Q
and observe that ⋂︁

i=1,...(Q − {qi}) = ∅, which means that the empty set can be
expressed as a countable intersection of open dense subsets of Q.

The case of Q is not that difficult to visualize. The question is, however,
whether the same holds for the infinite product of Q.

Throughout this sub-section, we will, for the sake of convenience, assume all
spaces embedded in the Cantor space 2ω.

Definition 49. Define and denote the following:

1. Γ = an arbitrary class of spaces

2. Γ′ = {X | 2ω − X ∈ Γ} (the dual class of Γ).

3. Q0 = {x ∈ 2ω | ∃m : ∀n ≥ m : xn = 0}

4. Q1 = {x ∈ 2ω | ∃m : ∀n ≥ m : xn = 1}
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5. P = 2ω − (Q0 ∪ Q1)

6. Mapping ϕ : P → 2ω by ϕ(x)n = 0 if and only if the nth block of zeros in x
has even length.

Definition 50. Let Γ be a class of topological spaces and everything as defined
above. We say that Γ has a property (⋆) if Γ is continuously closed (meaning
closed under continuous preimage), and for each X ∈ Γ, ϕ−1(X) ∪ Q0 ∈ Γ.

Definition 51. Let Γ be a class of sets. We say that a space X has a property
(⋆⋆) with respect to Γ if for each non-empty clopen subset U of 2ω, U ∩X ∈ Γ\Γ′.

Definition 52. A topological space is called a Baire space if the countable inter-
section of open dense subsets is also dense. Equivalently, it is a space such that a
countable union of closed sets each with empty interior also has empty interior.

Theorem 53. If a class of Borel sets Γ has the property (⋆), and A and B both
have the property (⋆⋆) with respect to Γ, and are either both of first category or
both Baire, then A ≃ B.

For the proof of this theorem, which is rather technical and three pages long,
see (Steel, 1980, Theorem 2). What is of higher interest here is the implication
for Qω.

Corollary 53.1. Qω densely embedded in 2ω is of first category.

Proof. If we set Γ = Π0
3 = Fσδ or Γ = Σ0

3 = Gδσ, then either of them have the
property (⋆). Assume Qω is densely embedded in 2ω. For Γ = Π0

3, Qω has the
property (⋆⋆) and for Γ = Σ0

3, 2ω −Qω has the property (⋆⋆). Then it is concluded
in (Engelen van, 1996, Part 2) that the theorem above implies exactly that Qω is
of first category.

We will further comment the fact that Qω is of first category (in itself) in
the proof of the van Engelen's theorem from 1985.

3.1.4 Characterization of Qω

The notions from the previous sections will be beneficial for describing Qω in
terms of a special class of spaces denoted X , which is inspired by (Engelen van,
1985, Part 3).

Definition 54. A separable metrizable space X is said to be σ-complete if X =
∪∞

i=1Xi where each Xi is complete (i.e. an absolute Gδ space), Equivalently, this
definition says that X is an absolute Gδσ.

Definition 55. A Polish space is a separable completely metrizable topological
space. We say that a subset of a Polish space X is an analytic set if it is a
continuous image of a Polish space.

Notation. Denote by X the class of all zero-dimensional absolute Fσδ-spaces
which are nowhere σ-complete and of first category.
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Prior to the main theorem of this subsection, we provide three lemmas that
lead to the result that Qω ∈ X . Proofs of the lemmas are omitted here and can
be found in Engelen van (1985). Recall that Y is nowhere dense in X if its closure
in X has empty interior.

Lemma 56. If X is an analytic space which is not σ-complete then X contains
a closed nowhere σ-complete subspace Y which is nowhere dense in X.

Definition 57. A topological space is said to be σ-compact if it is the union of
countably many compact sets.

Example 57.1. The set of rational numbers Q with its usual topology is countable
(rational numbers are countable infinite), which implies that Q is σ-compact. In
fact, any countable space is σ-compact.

Lemma 58. Let A be a Borel set in C which is not σ-complete, and let F be a
σ-compact space such that A ⊂ F ⊂ C. Then A contains a closed nowhere dense
subset Y which is nowhere σ-complete and first category, such that the closure Y
in C is a subset of F .

This lemma helps prove the following lemma which is crucial for the char-
acterization of Qω provided in the subsequent theorem. We need more definition
to proceed.

Definition 59. Let Xi be a subset of a metrizable space X. Define the diameter
of Xi as

diam(Xi) = sup{ρ(x1, x2) | x1, x2 ∈ Xi}

where ρ is a metric on X.

Lemma 60. Let X ∈ X , let F be a σ-compact space such that X ⊂ F ⊂ C and
let ϵ > 0. Then there exist closed nowhere dense subsets Xi of X such that

(i) X = ∪∞
i=1Xi

(ii) Xi ∈ X for each i ∈ N

(iii) Xi ⊂ F (the closure is in C)

(iv) diam(Xi) < ϵ.

Theorem 61. (Engelen van, 1985, Theorem 3.4) Up to homeomorphism, Qω is
the only element of X .

Proof. We have already seen that Qω is zero-dimensional. Here we will show the
remaining properties, plus the fact that there is no other element in X .
(i) Qω is an absolute Fσδ:
We can write Q as the union of singletons ⋃︁

q∈Q{q} where each singleton is com-
pact. It is easy to see that Q is σ-compact and Qω is a product of σ-compacta.
Therefore, Qω is an absolute Fσδ.

(ii) Qω is of first category:
Consider the finite sequences of rational numbers (q0, . . . , qn), n ∈ N consisting
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of elements of Qω, i.e. rational sequences where each element is itself a rational
sequence. Formally,

[(q0, . . . , qn)] = {x ∈ Qω : xi = qi, 0 ≤ i ≤ n, n ∈ N}.

Clearly Qω is the countable union of all the sets of the form [(q0, . . . , qn)] and
such sets are closed in Qω and have empty interiors.

(iii) Qω is nowhere σ-complete:
To show that Qω is nowhere σ-complete, we take inspiration in (Engelen van,
1984, Lemma 2.1 (b)). Suppose {Ai | i ∈ N} is a countable family of subsets
of Qω that are complete. Qω is not Baire space, hence A1 ̸= Qω, which implies
there is a basic non-empty open subset U of Qω such that U ∩ A1 = ∅. Recall
the notation of {Xi : i ∈ N} introduced earlier in this section and let n1 ∈ N and
(q1, ..., qn1) ∈ Qn1 be such that

X1 = (q1, ..., qn) × Q × Q × ... ⊂ U .
Observe that trivially, X1 ≃ Qω. Since A2 ∩ X1 is closed in A2, it is com-
plete, and since X1 is not Baire, there exist n1, n2 ∈ N such that n1 < n2 and
(qn1+1, ..., qn2) ∈ Qn2−n1 such that

X2 = (q1, ..., qn2) × Q × Q × ... ⊂ Qω \ (A1 ∪ A2).
Proceeding in this way, we discover a point (qi)i∈N ∈ Qω \ (∪∞

i=1Ai). Hence Qω

is not σ-complete, and because it is strongly homogeneous (see the next part of
this chapter), it is nowhere σ-complete.

(iv) Qω is the only element of X :
Finally, we need to see that there is no other element in X . Further on, denote by
M the set of all finite sequences of natural numbers, including the empty sequence
∅. Take an arbitrary X such that X ∈ X which we embed in the Cantor set C.
Let {Fn | n ∈ N} be a family of σ-compact subsets of C such that X = ∩∞

n=1Fn

and put F0 = C. We will construct closed subspaces Xs of X, for each s ∈ M ,
satisfying the following conditions:

1. X = X∅ and Xs = ∪∞
i=1 for each s ∈ M .

2. For each i ∈ N and each s ∈ M, Xs,i is nowhere dense in Xs.

3. For each s ∈ M , Xs ∈ X .

4. For each s ∈ M , diam(Xs) < (|s| + 1)−1.

5. For each s ∈ M , Xs ⊂ F|s| (the closure is in C).

To construct such Xs, put X∅ = X, and if Xs has been defined for all s ∈ M
with |s| ≤ n, then we obtain the sets Xs,i by applying the Lemma 60 from this
subsection to Xs ⊂ F|s|+1 ⊂ C where ϵ = (|s| + 2)−1. Now, we claim that the sets
Xs satisfy the following condition: If σ ∈ Nω and pn ∈ Xσ|n for each n ∈ N, then
the sequence (pn)n∈N converges. For that, let σ ∈ Nω and since Xσ|1 ⊃ Xσ|2 ⊃ ...
is a decreasing sequence of compacta, ∩∞

n=1Xσ|n = ∅, let x ∈ ∩∞
n=1Xσ|n By the

condition 5, x ∈ ∩∞
n=1Fn = X. Thus, x ∈ ∩∞

n=1Xσ|n and if U is any open
neighborhood of x in X, then by the condition 4, Xσ|k ⊂ U for some k ∈ N .
Hence, if pn ∈ Xσ|n for each n ∈ N, then pn ∈ U for n ≥ k, which implies that
(pn)n. converges to X as we wanted to prove.
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3.1.5 Strong homogeneity
Once we have described all relevant properties of Qω, we will proceed to the

conclusion about the set of all H-compactifications, using the notion of strong
homogeneity.

Definition 62. A space X is homogeneous if for each x, y ∈ X, there exists a
homeomorphism h : X → X such that h(x) = y.

Example. Qω is homogeneous. This is overt, considering the homogeneity of
Q, since any product of homogeneous spaces is homogeneous. This implies Qω,
similarly as Q has a rich group of automorphisms and hence we can come up with
a hypothesis that the set of all H-compactifications would be quite narrow.

Definition 63. A separable metrizable topological space X is strongly homoge-
neous if for each non-empty clopen subset U of X, we have U ≃ X.

We now introduce three statements that will be used to show that Qω is
strongly homogeneous.

Lemma 64. For each sequence s = (Sn)n∈N of clopen subsets of Q, let As be the
subset ∏︁

n∈N Sn of Qω. The complement of any basic clopen As is a finite union
of basic clopens, where by basic clopen we mean a (closed and open) set As such
as Sn = Q for all n except finitely many.

Proof. For each sequence ξ of elements of {−1, 1}, consider the clopen Asξ
, where

sξ is the sequence given by Sn if ξn = 1 or Q \ Sn if ξn = −1. Note that As,ξ

is empty for all ξ except finitely many, and if for some ξ we have that As,ξ

is nonempty, then it is clopen. Moreover, the sets {Asξ
}ξ∈{−1,1}ω are pairwise

disjoint and their union is all Qω. Hence, the complement of As = As(1,1,1,... )

is just the union of the rest of clopens As,ξ, with ξ ̸= (1, 1, 1, . . . ), which are
nonempty.

Corollary 64.1. If A1, . . . , An are basic clopens, then An \ ⋃︁n−1
i=1 Ai is a finite

union of basic clopens.

Proof. An \ ⋃︁n−1
i=1 Ai = ⋂︁n−1

i=1 (An \ Ai). Each set An − Ai is a finite union of basic
clopens, because it is An ∩ (Qω \ Ai). So their intersection is also a finite union
of basic clopens.

Theorem 65. Sierpinski (1920) Any countable metric space (X, d) without iso-
lated points is homeomorphic to Q (considered with the standard topology.)

Lemma 66. (Engelen van, 1984, Lemma 2.1) Qω is strongly homogeneous.

Proof. First, for each sequence s = (Sn)n∈N of clopen sets of Q, let As be the
subset ∏︁

n∈N Sn of Qω. Note that if Sn = Q for all n except finitely many, then As

is clopen and as in the previous lemma, refer to such As as "clopens". As Q has
a basis formed by clopen sets (e.g. intervals with irrational ends), basic clopens
form a basis for the topology of Qω.

Also note that nonempty basic clopens are homeomorphic to Qω. This is a
consequence of the fact that any nonempty clopen of Q is homeomorphic to Q
by the Sierpinski's theorem.
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For any two basic clopens As and At, the clopen As ∩ At is given by Ar,
where r = (Rn)n is given by Rn = Sn ∩ Tn. Hence, it is also a basic clopen. From
the lemma presented earlier in this section, any complement of any basic clopen
is a finite union of basic clopens. As a corollary, if A1, . . . , An are basic clopens,
then An \ ⋃︁n−1

i=1 Ai is a finite union of basic clopens.
Now consider any open subset U of Qω. As Qω is second countable and basic

clopens form a basis for its topology, we can express U = ∪n∈NUn, where the Un

are all basic clopens. Letting Vn = Un \ ⋃︁n−1
i=1 Ui, we also have U = ∪nVn. The

Vn are pairwise disjoint, and each one is a finite union of disjoint clopens. So we
have obtained a form to express U as a union of disjoint clopens.

We also want infinitely many of the clopens to be non-empty: for that, it is
enough to have infinitely many nonempty Vn: this can be achieved by choosing
the cover Un of U in such a way that no finite union of the Un cover U .

To obtain a cover of U by clopens such that no finitely many of them cover
U , we can do the following: let πm : Qω → Q be the mth projection of the product
Qω onto its factors. As U is open, we have πm(U) = Q for some m ∈ N. Now
take an arbitrary open cover Un of U and let Un,k = Un ∩ π−1

m ((−kπ, kπ)). The
cover (Un,k)n,k of U satisfies what we want because for any union X of finitely
many of the Un,k, πm(X) is bounded, so X ̸= U .

So, for any open set U of Qω, we have obtained U as an infinite union of
disjoint basic clopens, which in turn are homeomorphic to Qω. So, U is homeo-
morphic to N × Qω. Note that this also aplies to the open set U ′ = Qω. So Qω

is also homeomorphic to N × Qω, thus U is homeomorphic to Qω.

Remark. A similar, easier proof works to show that any open subset of the Can-
tor set C ⊆ [0, 1] which is not compact is homeomorphic to N × C: we can take a
base of clopen sets of the Cantor set (which are homeomorphic to C by Brouwer's
theorem). Then we can express any open subset U of C as a union of a sequence
An of these clopen sets. Letting Bn = An \ ⋃︁n−1

i=1 Ai, Bn are clopen so they are
either empty or homeomorphic to C. Moreover, as U = ⋃︁

n Bn is not compact,
infinitely many of the Bn have to be nonempty. So U ≃ N × C.

The strong homogeneity of Qω implies the following fact.

3.2 Conclusion
The previous analysis of Qω and its nonempty clopen subsets above allows us

to answer the Question 1. Qω satisfies all the assumptions from the Proposition
34 - it is non-compact, strongly zero-dimensional space whose every nonempty
clopen subspace is homeomorphic to Qω. We have seen that Qω complies with
all assumptions of this theorem and that every non-empty clopen subset of Qω is
homeomorphic to Qω. This answers our question.

Corollary 66.1. The only H-compactification of Qω is precisely the Stone-Čech
compactification βQω.

Remark. Homeomorphic spaces generally have identical sets of compactifications
(and H-compactifications). Many authors studied spaces homeomorphic to Qω.
For instance,
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Y = {(yi)i∈N ∈ Nω : limi→∞yi = ∞} ≃ Qω

(see Engelen van (1985)), or

X × Qω ≃ Qω for every zero-dimensional Fσδ-space X

(see Engelen van (1984)).
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4. H-compactifications of l2

The purpose of this chapter is to speculate about H-compactifications of the
space l2. Our, maybe too ambitious, hypothesis that this set only has one element
- βl2 has been neither successfully proved nor disproved, so the question stays
unanswered.
However, we analyze several topics that could help understanding behaviour of
l2 and its compactifications and motivate future aims in this problem.
Throughout this chapter, l2 will be considered as the Hilbert space of all square
summable real sequences.

Definition 67. ℓ2 is the space of sequences x = (xn)n∈N, xn ∈ R, such that∑︁
n∈N |xn|2 < ∞. The norm on l2 is given by ∥x∥ =

√︂
⟨x, x⟩ and makes it a

Hilbert space.

The space l2 can be regarded as a topological vector space and a topological
group at the same time. It is endowed with the classical norm topology.

Question 2. What H-compactifications does the space l2 admit?

Since l2 possesses rich group of automorphisms, one would expect that it
only admits the most general H-compactification, that is βl2. In the subsequent
section, we present three ways to look at l2 that could help prove this hypothesis
- the first is the characterization of the Stone-Čech compactification and showing
that under certain conditions, any other H-compactification is homeomorphic to
it. The second is a technique for describing the set of all H-compactifications
of Euclidean spaces that have some properties in common with l2. In the final
section, we construct a compactification of a space homeomorphic to l2.

4.1 Characterization of βX

As one of the possible tools to verify the hypothesis above, we will present
one of the interesting characterizations of the Stone-Čech compactification. We
will prove that if an arbitrary H-compactification meets certain criteria, it has
to be homeomorphic to the Stone-Čech compactification. Consequently, if one
succeeds to show that γl2 ≃ βl2 for every H-compactification γl2, that would be
enough to prove that βl2 is the only H-compactification of l2.

Definition 68. Take a completely regular Hausdorff space X, a compact space
K and a mapping h such that h : X → K. Define the Stone extension as the
extension βh of h into K such that βh : βX → K.

Definition 69. For a topological space X, we introduce the following notation
and definitions:

1. Denote by C(X) a ring of all real-valued continuous functions on a topo-
logical space X.

2. Denote by C⋆(X) = subring of C(X) of continuous bounded functions from
X to R.
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3. For a topological space X, C⋆(X) is the ring of bounded continuous functions
on X. A subspace A ⊆ X is said to be C⋆-embedded in X if every f ∈ C⋆(A)
can be extended to some g ∈ C⋆(X).

4. Let f ∈ C(X). A subset Z of X which is of the form Z = {x ∈ X | f(x) =
0} is called the zero-set of f . Clearly, such sets are closed.

5. Denote by Z(X) the family of all zero-sets in X.

The notion of zero sets is useful for introducing z-filters - special cases of
filters that play an important role giving a connection between βX and C(X).

Definition 70. A nonempty subfamily F is called a z-filter on X provided that
F is a part of Z(X)

1. ∅ ̸∈ F

2. if Z1, Z2 ∈ F, then Z1 ∩ Z2 ∈ F and

3. if Z1 ∈ F, Z2 ∈ Z(X), and Z1 ⊂ Z2 then Z2 ∈ F.

Definition 71. We call a z-filter on X a z-ultrafilter on X if it is a maximal
z-filter, i.e., one not contained in any other z-filter. We call a z-filter free if the
intersection of all its members is empty.

Definition 72. The z-filter F is said to converge to the limit p if every neighbor-
hood of p contains a member of F.

The Stone-Čech compactification βX of X can be constructed by adjoining
to X one new point for each free z-ultrafilter and it is essentially unique. For βX,
distinct free z-ultrafilters on X converge to distinct points of βX. These prop-
erties are captured by the following two theorems which demonstrate equivalent
characterizations of βX and methods of construction.

Theorem 73. (Gillman, Jerison, 1960, Theorem 6.4, (III)) Let X be dense in
a compact space γX. Within this theorem, we mean by the symbol the closure
of a space in γX. The following five statements are equivalent.

1. Every continuous mapping γ from X into any compact space K has an
extension to a continuous mapping from γX into K.

2. X is C⋆-embedded in γX.

3. Any two disjoint zero-sets in X have disjoint closures in γX.

4. If we take any two zero-sets Z1 and Z2 in X, their closures in γX satisfy
Z1 ∩ Z2 = Z1 ∩ Z2

5. Every point of γX is the limit of a unique z-ultrafilter on X.

Proof. We will prove the most relevant implications for this chapter, which are
2. =⇒ 3. and 3. =⇒ 4.. The complete proof can be found in (Gillman, Jerison,
1960, Theorem 6.4, (III))
The former is due to the Urysohn's theorem saying that any subspace of X is C⋆-
embedded in X if and only if any two completely separated sets in that subspace
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are completely separated in X. For the latter implication, we will show Z1 ∩ Z2
is contained in Z1 ∩ Z2 (the reverse inclusion is done trivially). Take a point
x ∈ Z1 ∩ Z2. Then if V is an arbitrary zero-set neighborhood (in γX) of x, we
have x ∈ V ∩ Z1 and x ∈ V ∩ Z2. Hence, by 3., V ∩ Z1 intersects V ∩ Z2 i.e.,
V intersects Z1 ∩ Z2 Therefore p ∈ Z1 ∩ Z2 and hence, Z1 ∩ Z2 is contained in
Z1 ∩ Z2.

Theorem 74. (Gillman, Jerison, 1960, Theorem 6.5, (III)) Every (completely
regular and Hausdorff) space X has a unique compactification βX such that any
two disjoint zero-sets in X have disjoint closures in βX. If another compactifi-
cation γX of X satisfies the said condition, then there exists a homeomorphism
of βX onto γX that leaves X point-wise fixed.

The proof follows from the equivalences in the previous theorem. Recall that
in the introductory section, we have defined the Stone-Čech compactification via
its universal property, that is, the first statement in the Gillman and Jerison's
theorem.

4.2 H-compactifications of R2

The goal of this chapter is to describe the set of all H-compactifications of
R2. We will rephrase findings from (Vejnar, 2011, Part 3.3) who proved the same
for the general case Rn, n = 2, 3, 4, ....
With a bit of imagination, we can envision l2 like a generalized version of Eu-
clidean spaces, where each "vector" has infinite number of coordinates. (Here,
the "vectors" are represented by the infinite sequences). Higher dimensional Eu-
clidean spaces are therefore something we can begin with when exploring the
H-compactification of l2.
Recall that Rn, n ≥ 2 only admit βRn and αRn as H-compactifications, the latter
due to local compactness of Rn.

Definition 75. Let U be a collection of subsets of a metric space X. Recall that
diam(X) = sup{ρ(x1, x2) | x1, x2 ∈ X} where ρ is a metric on X and define the
mesh of U such that:

mesh U = sup{diam(U) : U ∈ U} ∈ [0, +∞].

Definition 76. We say that an open subset U of a space X has property (⋆) if
for every E ⊆ U closed in X and for every F ⊆ U which is open and non-empty,
we can find an automorphism h of X such that h(E) ⊆ F and h(x) = x on X \U .

Definition 77. We say that a space X has property (⋆⋆) if there exists a number
N ∈ N such that for arbitrary small ϵ > 0 there is an open covering U which can
be expressed as a union of N discrete sub-collections U ∈ U with mesh less than
ϵ, where each U has property (⋆), i.e. as in the previous definition, we can find
an automorphism h that sends closed subsets of U to open subsets of U and is an
identity on X \ U .

Lemma 78. (Vejnar, 2011, Lemma 22) Let X be a separable locally compact
metric space with property (⋆⋆). Let M = 2N . Then:
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(i) Let F be a closed set contained in an open set U . Then, for F there exist
a closed discrete set C ⊆ F and closed sets F0, ..., FM−1 such that F = ∪Fi

and for every i < M and each open neighborhood G of C, there exists an
automorphism h of X such that h(Fi) ⊆ G and h is the identity on the
complement of U .

(ii) For every pair of closed sets F , F
′ ⊆ X such that F ∩ F

′ = ∅, we can find
closed discrete sets C, C

′ ⊆ X, C ∩ C
′ = ∅ and closed sets F0, ..., FM−1,

F
′
0, ...F

′
M−1 such that

F = ∪Fi,
F

′ = ∪F
′
j

and for any i, j < M and neighborhoods G and G
′ of C and C

′ respectively
there is an automorphism h of X such that h(Fi) ⊆ G and h(F ′

j ) ⊆ G
′.

For will skip the proof of this lemma, which is quite lengthy and technical
and refer to (Vejnar, 2011, Lemma 22). More important for this chapter will be
the Theorem 82 and its corollary about H-compactifications of R2.

Definition 79. A space X is called strongly locally homogeneous if for every
x ∈ X and each neighborhood U of x there exists a neighborhood V of x in U
such that for every y ∈ V we can find a homeomorphism of X which sends x to
y and is the identity on the complement of V .

Proposition 80. (Vejnar, 2011, Proposition 26) Every bijection of closed dis-
crete subsets of R2 can be extended to a homeomorphism of the whole space.

We will also omit conducting a proof this proposition, which, as was remarked
by Vejnar, is more convenient to prove for Euclidean spaces of higher dimension
than 2, else it is rather complicated.

Definition 81. Let X be a topological space and P a collection of subspaces of X.
Then X is called 2-homogeneous with respect to P if for any sets C1, C2, D1, D2 ∈
P such that C1 ≃ D1, C2 ≃ D2 and C1 ∩ C2 = ∅ = D1 ∩ D2 there exists an
automorphism h of X such that h(C1) = D1 and h(C2) = D2.

Theorem 82. (Vejnar, 2011, Theorem 24) Let X be a separable locally compact
but non-compact metric space with property (⋆⋆) and 2-homogeneous with respect
to closed discrete sets. Then αX and βX are the only H-compactifications of X.

Proof. First, let γX be an H-compactification of X such that γX is distinct from
αX. Take F, G ⊂ X such that both F and G are closed and F ∩G = ∅. In metric
spaces, zero sets and closed sets are the same. Our goal is therefore to show that
the closures of F and G in γX, F and G, do not intersect. Then, from findings
in the previous section, we can tell that γX is equivalent to βX.

Clearly, X obeys the assumptions of the Lemma 78, hence, there are two
closed discrete sets C1, C2 and families of closed sets F0, ...FM and G0, ...GM

having the properties mentioned in the lemma. Since F = ∪Fi and G = ∪Gi, if
every pair (Fi, Gj), i, j < M has empty intersection, then also F ∩ G = ∅. Hence,
to conclude that F ∩ G = ∅. we need to prove that ∀i, j < M , Fi ∩ Gj = ∅
(considering the closures being closures in γX).
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We can find two countable infinite closed discrete sets D1 and D2 of X such
that D1 and D2 in γX are disjoint, since γX is not a one-point compactification
by assumption, whence γX \ X contains at least two points. By the Proposition
80, X is 2-homogeneous with respect to closed discrete sets and since γX is an
H-compactification, we infer that C1 ∩ C2 = ∅ in γX. Hence, we are able to
separate them by open sets U1 and U2 in X with disjoint closures in γX.

Since the F and G are closed sets with an empty intersection, by the Lemma
78, we can find an automorphism h of X with h(Fi) ⊆ U1 and h(Gj) ⊆ U2.
Consequently, the closures of h(Fi) and h(Gj) in γX are disjoint and since γX is
an H-compactification, indeed the closures of Fi and Gj are also disjoint, hence,
from F = ∪Fi and G = ∪Gi, F ∩ G = ∅, as we wanted.

Thus we have proved that γX ≃ βX.

The following corollary has already been introduced in the Chapter 2 for
general n ∈ N, n ≥ 2.

Corollary 82.1. (Vejnar, 2011, Corollary 28) The set of all H-compactifications
of R2 has exactly two elements - αR2 and βR2.

Proof. The corollary follows from the previous theorem - to see that, we are going
to play with the premises and outcomes of the lemma preceding this theorem,
together with the proposition about bijections of discrete subsets of R2.

(i) Lemma 78: Consider the maximum metric ρ on R2, defined, for each x, y ∈ R2,
x = (x1, x2), y = (y1, y2) by

ρ(x, y) = max(|x1 − y1| ; |x2 − y2|)
and denote by Bρ(x, r) the open ball with centre x and diameter r. To verify
the property (⋆⋆), choose N ∈ N equal to 4 so it corresponds to the number
of sequences of length 2 formed by zeros and ones. Now we have to find for
arbitrary ϵ > 0 an open covering U for which there exist discrete sub-collections
Ui such that U = ∪iUi and for any pair of closed set Ei ⊂ Ui and non-empty open
Fi ⊂ Ui, there is an automorphism h of Ui such that h(Ei) ⊂ Fi and h(u) = u
on Ui ⊂ R2 \ Ui. In other words, we have to formulate U as in definition of the
property (⋆⋆). Pick an ϵ > 0 and put

Uj = {Bρ( ϵi
3 , ϵ

4) : i ∈ Z2, ik ≡ jk(mod 2)}.

.
Then, define the required open cover U as

U = ∪{Uj | j ∈ 4} of R2.
Observe that the sets Bρ( ϵi

3 , ϵ
4) from the definition of Uj obey the property (⋆)

because every ball Bρ(x, r) in R2 is an open subset of R2 and for an arbitrary
closed subset of Bρ(x, r) and any non-empty open subset of Bρ(x, r), we can
find an automorphism mapping the closed subset to the open subset and the
complement of the in R2 to itself. That is, every ball Bρ(x, r) in R2 has property
(⋆).

In conclusion, since all collections Uj are discrete and made of sets with prop-
erty (⋆), we obtain that R2 has property (⋆⋆).
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(ii) Proposition 80: Let P be a collection of closed discrete subsets of R2. From
the Proposition 80, we know that every bijection of any P ∈ P can be extended to
a homeomorphism of the whole space R2. This implies that R2 is 2-homogeneous
with respect to closed discrete sets, which is the last assumption left to verify for
the Vejnar's theorem.

Remark. The two H-compactifications of R2are distinct from one another. This
is an immediate consequence of the fact that there exists a continuous bounded
function with no limit at infinity.

4.3 Compactifying the space H+([0, 1])
This section provides a different way of investigating the H-compactifications

of l2. We will study the space H+([0, 1]) which is topologically the same as l2 and
hence can provide a new intriguing view on the compactifications of l2. Inspired by
Kennedy (1988), we will construct an example of a compactification of H+([0, 1]),
using a hyperspace.

Definition 83. H+([0, 1]) is the space of increasing homeomorphisms of the
closed interval [0, 1], endowed with the supremum metric. Analogously we could
define the space H−([0, 1]) of decreasing homeomorphisms of [0, 1].

The topology on H+([0, 1]) is the topology of uniform convergence, induced
by the supremum metric. The H+([0, 1]) also possesses a group structure, where
the group multiplication operation is the composition of homeomorphisms.

Perhaps not so intuitively, l2 is homeomorphic to H+([0, 1]).

Theorem 84. (Keesling, 1971, Theorem III.1) H+([0, 1]) ≃ l2.

Proof. In this proof, we consider H+([0, 1]) ≃ l2 as a set of all functions on a unit
interval [0, 1] that are monotone, increasing and onto. We endow H+([0, 1]) with
the compact open topology.

Here, we will just sketch the proof - verifying the details is a routine pro-
cedure. What we will show is that H+([0, 1]) ≃ ∏︁∞

n=0
∏︁2n

i=1(0, 1)n,i. Then, the
homeomorphism H+([0, 1]) ≃ l2, is guaranteed by Anderson, Bing (1968) where
the the authors prove the result that l2 is homeomorphic to the space of all
sequences {xi}i>1 of real numbers (endowed with the product topology.)

Let {xn,i} ∈ ∏︁∞
n=0

∏︁2n
i=1(0, 1)n,i. Define an orientation preserving homeomor-

phism h of [0, 1] associated with {xn,i}. Suppose that we chose an arbitrary n ∈ N
and that we have defined points

An = {0 = αn
0 < αn

1 < ...αn
2n = 1 and

Bn = {0 = βn
0 < βn

1 < ...βn
2n = 1

that we defined h such that h(αn
i ) = βn

i for i = 0, 1, ..., 2n. Now we have to extend
the definition of h to a set of points An+1 ⊃ An onto Bn+1 ⊃ Bn where each An+1
and Bn+1 contain exactly 2n+1 + 1 points. We investigate the two cases of n:

(i) n is odd: Let zi be the midpoint of the interval [αn
i−1, αn

i ] for i = 0, 1, ..., 2n

and let yi = h(zi) = xn,i(βn
i − βn

i−1) + βn
i−1.

(ii) n is even: Let yi be the midpoint of the interval [βn
i−1, βn

i ] and let
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zi = h−1(yi) = xn,i(αn
i − αn

i−1) + αn
i−1.

Then let An+1 = An ∪ {zi}2Ni=1 and βn+1 = βn ∪ {yi}2Ni=1. Then we will obtain
An+1 = {0 = αn+1

0 < ... < αn+1
2n+1 = 1} and {0 = βn+1

0 < ... < βn+1
2n+1 = 1} with

h(αn+1
i ) = βn+1

i . Proceeding in this way and put A = ∪∞
n=1An and B = ∪∞

n=1Bn.
Then A and B will be dense in [0, 1] and h[A] = B will be order preserving. Hence
h admits a continuous extension to an orientation preserving homeomorphism of
[0, 1] onto itself which will be also denoted by h.

Finally, define
F : ∏︁∞

n=0
∏︁2n

i=1(0, 1)n,i → H+([0, 1]) by
F ({xn,i}) = h.

Then F is the desired homeomorphism of ∏︁∞
n=0

∏︁2n
i=1(0, 1)n,i, onto H+([0, 1]).

Definition 85. Let X be a metric topological space equipped with a metric ρ. A
hyperspace K(X) of X is defined as

K(X) := {K ⊆ X, K compact, K ̸= ∅}.

The metric on K(X) is the Hausdorff metric

ρH(K, L) := max{supx∈Kρ(x, L), supy∈Lρ(y, K)}.

The hyperspace is sometimes denoted 2X , which can refer to hyperspace de-
fined with closed, not compact sets. The Hausdorff metric induces the so-called
Vietoris topology. It is a well-known fact that if the space X is compact, then
the hyperspace K(X) is compact as well.

Note that the subsets of the X in the definition of hyperspace have to be com-
pact, while for the whole X, this condition is not necessary. However, when X
happens to be compact too, one interesting fact about the hyperspace arises.

Notation. Denote by d a metric on X, compatible with its topology and by grf
a graph of f .

If X = [0, 1], we can think of any f ∈ H+([0, 1]) as a closed collection of
ordered pairs in [0, 1] × [0, 1] = [0, 1]2. Hence, we can associate any such f with
its graph, grf . Therefore, if we take [0, 1]2, which is compact, then we can use a
hyperspace to construct a nice compactification of H+([0, 1]) ≃ l2.

Proposition 86. (Kennedy, 1988, Observation 1) If X = ([0, 1], d) is a compact
metric space, then the space H([0, 1]) can be embedded in its hyperspace K([0, 1]).

Proof. For any f ∈ H([0, 1]), define its graph as grf = {(x, f(x) | x ∈ [0, 1]}.
Denote G = {grf | f ∈ H([0, 1])} (note that G ⊆ K([0, 1]2)).

Then, define the function
ϕ : H([0, 1]) → G such that

ϕ(f) = grf .
Observe that ϕ is a one-one function from H([0, 1]) onto G. Then, we need to
show that ϕ is a homeomorphism, which is proven in (Kennedy, 1988, Observation
1). Using relationship between metrics on [0, 1] and [0, 1]2, it is shown that ϕ is
continuous and then, by contradiction, that ϕ−1 is continuous as well).
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The statements from Keesling and Kennedy allow us to construct a specific
compactification of the space l2. The implication is that we are able to embed l2

into a compact hyperspace of closed sets on [0, 1].

4.4 Conclusion
There are more ways to go about the analysis of l2. If we stick to the

hypothesis that there is no other H-compactification except βl2, one can find
useful the characterization via disjoint zero-sets or any of the equivalent conditions
in the Theorem 73.
Another possibility is recreating the process that Vejnar used on the case of Rn,
n ≥ 2 and compensate the local compactness used in the Lemma 78 and the
Theorem 82 with different properties.
Finally, there exist spaces homeomorphic to l2, which admit the same set of
H-compactifications and can serve as an intermediary in this problem.

Remark. By the well-known Anderson–Kadec theorem, all separable Banach
spaces of infinite dimension are homeomorphic to Rω - the Cartesian product of
countably many copies of the real line R. The problem therefore mainly concerns
the countable power of the space R.

38



Conclusion
The overall purpose of this thesis is to synthesise all the scattered findings

about H-compactifications into a complex and structured overview. We have
summarized the main findings about H-compactifications of several well-known
spaces and analysed properties of two outstanding types of compactifications -
Alexandroff and Stone-Čech.

We devoted the Chapter 3 to taking a closer look at the space Qω for which
the set of H-compactifications has not been shown before. We have proven that
the only H-compactification of Qω is βQω, which is automatically true for all
spaces homeomorphic to Qω as well.

In the Chapter 4, we have studied the problem of describing the set of all
H-compactifications of l2. The question stays unanswered, but we provide several
ways that can motivate the future aims in solving this problem.
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