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Dynamical properties of continua

Department of Mathematical Analysis

Supervisor of the master thesis: doc. Mgr. Benjamin Vejnar, Ph.D.
Study programme: Mathematical Structures

Study branch: Mathematical Structures

Prague 2022



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



I thank to my supervisor doc. Mgr. Benjamin Vejnar, Ph.D. for his insightfull
support and patience. It was enriching experience that gave me a lot.

I would like to mention my brother Jakub Karas as well. Many thanks for his
TEX-support.

ii



Title: Dynamical properties of continua

Author: Klára Karasová

Department: Department of Mathematical Analysis

Supervisor: doc. Mgr. Benjamin Vejnar, Ph.D., Department of Mathematical
Analysis
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Introduction
A topological dynamical system is a topological space X and a set F of continuous
self–maps of X. When studying such a space, we are interested in a long–term
topological behaviour of the space when we are repeatedly applying maps in F .
These properties vary depending on both the space X and the set F . In this
thesis we will investigate only dynamical systems where F is finite, and in a part
of this thesis even one–element.

This introduction is based on a book on topological dynamics Brin and Stuck
[2002].
Notation. We denote by I the unit interval [0, 1].

Let us develop the idea of topological dynamics using several examples. Con-
sider the following self–maps of I: id : x ↦→ x, a constant function c : x ↦→ c,
where c ∈ I is arbitrary, f1 : x ↦→ 1 − x, f2 : x ↦→ x2, a contraction f3 : x ↦→ s · x,
where s ∈ (0, 1), and the tent map

f4(x) :=
⎧⎨⎩2x, x ≤ 1/2,

2(1 − x), x ≥ 1/2.

Intuitively, very different things happen when we are repaeatedly applying
different maps of the above list: when applying id literally nothing happens,
while any constant function degenerates the whole space to one point in the first
iteration and other iterations do nothing.

The map f1 keeps tossing the points of I from one side to the other periodically
but does not change the diameter of any set and also maps open sets to open
sets. In contrast, the map f2 does change diameter of almost all subsets of I and
does not evolve periodically although it is a homeomorphism too and thus maps
open sets to open sets, proper subsets of I to proper subsets of I and does not
change the cardinality of sets.

The map f3 gradually pulls everything down to 0, but in a nondegenerative
way: the image of I with respect to any iteration of f3 is homeomorphic to I.
Finally, the tent map f4 is open and enlarge subsets of I in the sense that every
subset of I with nonempty interior is mapped onto I after only finitely many
iterations. We will discuss this in more detail in the second chapter.

On the other hand, there is no essential difference between the behavior of
two constant maps c1 : x ↦→ c1, c2 : x ↦→ c2, c1, c2 ∈ I. Therefore we introduce a
notion of equivalence between dynamical systems to compare and classify them.

Definition 1. A semiconjugacy from (Y, g) := (Y, {g}) to (X, f) (or, briefly,
from g to f) is a surjective map π : Y → X satisfying f ◦ π = π ◦ g. If there is
a semiconjugacy π from g to f , then we say that (X, f) is a factor of (Y, g). A
conjugacy is an invertible semiconjugacy.

Note that conjugacy is an equivalence relation. Also note that for arbitrary
map π : I → I and every x ∈ I we have c1 = c1(π(x)) and π(c2(x)) = π(c2).
Thus for every c1, c2 ∈ I the dynamical system (I, c1) is a factor of (I, c2) since
there always exists an onto map π : I → I satisfying π(c2) = c1. If c1, c2 ∈ {0, 1}
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or c1, c2 ∈ (0, 1), then we can choose such π to be actually a bijection and thus
in these cases the dynamical systems (I, c1), (I, c2) are conjugate.

Let us discuss one more example illustrating what conjugacy and semiconju-
gacy is. Let S1 denote the plane circle {(x, y) ∈ R2, x2 + y2 = 1} and consider
the dynamical system (S1, Rα), where Rα is the rotation of S1 by angle α. Thus
repeated applying Rα to S1 just keeps S1 rotating, always by angle α. Again,
intuitively we feel that the behaviour of the system (S1, kα) is kind of included
in the behaviour of the system (S1, α) for every α ∈ R and k ∈ Z.

Thus there should be a semiconjugacy from (S1, α) to (S1, kα) and this is
indeed true. It is justified by the continuous surjective map π : S1 → S1 that
wraps S1 around itself k times and change the orientation if k < 0. Note that π
is a bijection if and only if k = ±1 and thus in these cases we obtain a conjugacy.
This also fits our intuition since rotation by α and rotation by −α behave the
same way, they are mirror images of each other.

Let us just note without more details that under suitable parametrization it
is possible to represented S1 by [0, 1), the rotation Rα by x ↦→ (x + α) mod 1
and π by x ↦→ (k · x) mod 1. This easily entails the required equality since for
every x ∈ [0, 1) it holds that π(Rα(x)) = k(x + α) mod 1 = kx + kα mod 1 =
Rkα(π(x)).

Conjugacy and semiconjugacy are important tools that allow us to use known
properties of well–behaved dynamical systems when analyzing other dynamical
systems. Of course, analyzing well–behaved, canonical dynamical systems is use-
ful in itself since in this manner we often obtain interesting properties worth
further studying. For this reason we will next introduce probably the most fun-
damental dynamical system, but to do that, we need to recall some notation for
the product of sets, topological spaces and metric spaces, respectively.
Notation. In this thesis we use the set–theoretic notion of natural numbers ω.
That is, for us 0 = ∅ ∈ ω and n + 1 = n ∪ {n} ∈ ω for every n ∈ ω. Thus for
every n ∈ ω also n ⊆ ω. Whenever we do not need the inner structure of natural
numbers, we use the symbol N to denote the set of positive natural numbers and
N0 the set N ∪ {0}.

If S is any set, then by Sω we understand the set of all functions from ω to
S. If we write Sn for n ∈ ω we have in mind the set of functions from n to S,
while if we write rn for r ∈ R and n ∈ N, we mean by it just the result of the
standart arithmetic operation. We denote by | · | the cardinality of a set as well as
an absolute value of a real number, but it should always be clear what we mean
from the context. We denote by S<ω := ⋃︁{Sn, n ∈ ω}.

Now we are prepared to introduce the promised example. Let Λ be a finite set
(with discrete topology) and consider the product space Λω. This is a compact
metric space, usually it is considered either together with the metric

d(x, y) :=
∑︂
n∈ω

e(x(n), y(n))
2−|n| ,

where e is a discrete metric on Λ, or with the product topology given by the basis
containing the sets of the form {x ∈ Λω, x|dom(s) = s}, for some s ∈ S<ω.

This space plays an important role in dynamics, since it is naturally endowed
with a special kind of map called “the shift”, more exactly “the shift to the left”
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and “the shift to the right”. The first one is defined by L(s)(n) := s(n + 1) and
for the second one fix some λ ∈ Λ, then Rλ(s)(n) := s(n − 1) if n ≥ 1 and
Rλ(s)(0) := λ. It is easy to observe that these maps are continuous.

Although these maps are indeed canonical, from the topological point of view
the “left” and “right” version of shift are opposites in the following way: while
applying repeatedly the map L on any set of the basis we described above gives
us the whole space Λω after only finitely many steps, applying on the whole space
any sequence of right shifts gives us a set as small as the applied sequence was
long.

Let us discuss this in more detail. In the case of the left shift, every set with
nonempty interior maps eventually onto the whole space. We can thus interpret
L as a kind of a magnifier. But, we can also interpret this by saying that f is
very chaotic, because arbitrarily close points can end after some time as far from
each other as possible since arbitrary open set eventually maps onto the whole
space. We will study maps with properties similar to these properties of the map
L in more detail in the second chapter.

In the case of the right shifts, note first that they are contractions, and what
is more, not just that since we do not have only inequality but equality:

d(Rλ(x), Rλ(y)) = 1/2 · d(x, y); λ ∈ Λ

Thus every right shift shrinks the whole space but in a every regular way, i.e.
there is no degeneration. Another sign of the fact that no essential information
is lost can be express by

Λω =
⋃︂

λ∈Λ
Rλ(Λω);

that is, we are able to recover the original space from applying the right shifts.
We will study sets of maps with properties similar to the above properties in the
third chapter.

However to discuss the suggested problems we need some advenced theory
of continua. Therefore before we start with the topics above, we first introduce
some preliminary notions, definitions and known results.
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1. Preliminaries
In this chapter we give a summary of some preliminary notions and results, most
of them will be needed in the following chapters. Despite some of the presented
notions and results for metric spaces can be generalised to topological spaces, we
will only work with metric spaces.

In fact, we will restrict us even further and work mostly with continua.

Definition 2. A continuum is a nonempty connected compact metric space.

A singleton is a continuum and any other continuum is of size continuum.
Another examples of continua are the closed interval I, the circle, the square or
the Hilbert cube Iω. There is a great book on the fundamentals of continuum
theory containing also many other examples by S. Nadler, namely Nadler [1992].

Next, let us introduce some notation and state without proof one theorem
from Nadler [1992] that will be used in many proofs throughout the thesis.
Notation. For a metric space X we denote by 2X the set of all nonempty closed
subsets of X.

Definition 3. Let X, Y be metric spaces. We say that a function F : X → 2Y

is usc (upper semi–continuous) provided that for every x ∈ X and every open set
V ⊆ Y such that F (x) ⊆ V there exists an open set U ⊆ X, x ∈ U such that⋃︁{F (z), z ∈ U} ⊆ V .

Theorem 4 (General Mapping Theorem). [Nadler, 1992, Theorem 7.4] Let X, Y
be nonempty compact metric spaces and Fn : X → 2Y , n ∈ N, be usc functions.
Assume that:

1. for all n ∈ N and x ∈ X it holds Fn+1(x) ⊆ Fn(x),

2. for every x ∈ X it holds that lim
n→∞

diam(Fn(x)) = 0,

3. for every n ∈ N it holds that ⋃︁{Fn(x), x ∈ X} = Y .

Then we can define a map f : X → Y by {f(x)} = ⋂︁{Fn(x), n ∈ N}, for every
x ∈ X, and this map f is continuous and onto.

1.1 Connectedness and the Cantor set
Next we will give just a short summary firstly of types of connectedness and
secondly of some properties of the well–known Cantor set.

Let us recall that if X is a metric space, then a path in X is a continuous
map f : I → X, respectively its image, and an arc is a continuous one–to–one
map f : I → X, respectively its image. If f(0) = x and f(1) = y, then we say
that f is path, respectively an arc, from x to y. We say that X (or a subset of
X) is path connected, if for every x, y ∈ X there exists a path in X from x to y;
and that X (or a subset of X) is arcwise connected, if for every x, y ∈ X there
exists an arc in X from x to y.
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Connected sets
Next we will recall some well known facts about maximal connected, path con-
nected and arcwise connected subsets of metric spaces.

Connected components

Let X be a metric space. For every x ∈ X there exists the largest connected set
containing x, namely the union of all connected subsets of X that contains x.
This set is called the connected component of X. Since a closure of a connected
set is connected, connected components are always closed. Further if y ∈ X,
then the connected component of x and the connected component of y are either
equal or disjoint since the union of intersecting connected sets is connected. Thus
connected components form a partition of X. Note that X is connected if and
only if it consists of a single connected component.

Path components

Let X be a metric space. Define on X a relation ∼ by letting x ∼ y, x, y ∈ X,
if and only if there exists a path in X from x to y. It is easy to see that ∼ is an
equivalence. The classes of this equivalence are maximal path connected subsets
of X, we call them path components. Note that if x ∼ y, then the corresponding
path f : I → X from x to y gives us the connected set f(I) ∋ x, y and thus x and
y lie in the same connected component. Therefore every connected component is
a union of path components. X is path connected if and only if it consists of a
single path component.

Arcwise connected components

Let X be a metric space and analogously to the previous case, define on X a
relation ∼′ by letting x ∼′ y, x, y ∈ X, if and only if x = y or there exists an
arc in X from x to y. Then ∼′ is an equivalence, even though the proof of the
transitivity of ∼′ is more challenging than it was in the case of ∼. Moreover since
X is metric, there holds ∼′=∼. Thus the classes of the equivalence ∼′ will be
called path components too,they are exactly the maximal arcwise connected sets.

Note that even if X was not metrizable, x ∼′ y immediately entails that x ∼ y
since every arc is a path. Therefore every path connected component is a union of
arcwise connected components in any topological space. Note that again a metric
space X is arcwise connected if and only if it consists of a single path connected
component.

The Cantor set
In contrast to previous part where we focused on ”very connected” sets, the
Cantor set (2ω, | · |) or for brevity just 2ω, where

|s − t| =
∞∑︂

n=0

||s(n)| − |t(n)||
2n

,

is an example of a ”very disconnected” set. Recall that we understand the ele-
ments of 2ω to be functions from ω to 2 = {0, 1} and thus it makes sense to write
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s(n) for every s ∈ 2ω and n ∈ ω. Moreover, it makes even sense to write s|n since
every n ∈ ω also satisfies n ⊆ ω.

Recall that the set {{t ∈ 2ω, t|n = s}; s ∈ 2n, n ∈ ω} is a basis of the topology
of (2ω, | · |), as in every product of discrete spaces. Note that 2ω \ {t ∈ 2ω, t|n =
s} = ⋃︁{{t ∈ 2ω, t|n = r}; r ∈ 2n \ {s}} and thus the basis above consists of
clopen sets. Thus, in particular, 2ω is not connected and hence not a continuum.

Let x ̸= y ∈ 2ω, then there exists n ∈ ω such that x|n ̸= y|n and thus
x ∈ {t ∈ 2ω, t|n = x|n}, y ∈ {t ∈ 2ω, t|n = y|n} are open disjoint sets. This shows
that the only connected subsets of the Cantor set are the singletons and thus the
singletons are exactly the connected components of 2ω. Note that singletons are
not open in 2ω and thus the connected components do not have to be open in
general. Let us also note that the two conditions, i.e. having a basis consisting
of clopen sets and all connected components being singletons, are for compact
spaces equivalent to having the topological dimension equal to 0.

Define a map φ : 2ω → I by

φ(s) :=
∞∑︂

n=0

2 · |s(n)|
3n+1 .

It is a well known fact that φ is a homeomorphism onto its image. Let us just
note that the proof of this fact is just unfolding the definitions, so we will not
present it here.

1.2 Peano continua
In this section we introduce Peano continua, an important class of continua.
The entire chapter is based on the eight chapter of Nadler [1992]. Although we
cover here most of that chapter, we have reformulated some statements and in
those cases we will not refer to concrete theorems proven in Nadler [1992]. We
also directly restrict ourself to the case of continua although it makes sense to
consider the case of general topological and metric spaces too.

Definition 5. We say that a continuum X is locally connected, if the set of all
connected open subsets of X forms a basis of topology of X. Since X is compact,
this is the case if and only if for every ε > 0 there exists a finite cover of X by
open connected sets with diameter less than ε. A locally connected continuum is
called Peano continuum.

Definition 6. We say that a metric space X has the property S if for every
ε > 0 there exists a finite cover of X by connected sets (or equivalently, by closed
connected sets, since the closure of a connected is connected) with diameter less
than ε.

Definition 7. Let X be a set, a sequence A1, . . . , An of subsets of X is called a
chain if for every 1 ≤ i ≤ n − 1 it holds that Ai ∩ Ai+1 ̸= ∅.

Remark. In fact, what we call here ”a chain” is usually called ”a weak chain”,
and by ”chain” is understood a sequence A1, . . . , An of subsets of X satisfying
that for every 1 ≤ i, j ≤ n it holds that Ai ∩ Aj ̸= ∅ if and only if |i − j| ≤ 1.
Nevertheless, we will not follow this usage since we will never need the notion of
a chain in the whole thesis.
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Theorem 8. Let (X, d) be a metric space. Then the following conditions are
equivalent:

1. X is a Peano continuum,

2. X is a continuum with property S,

3. X is a continuum and for every ε > 0 there exists a finite cover of X by
Peano subcontinua of X with diameter less than ε,

4. for every ε > 0 and x, y ∈ X there exists a chain A1, . . . , An consisting of
Peano subcontinua with diameter less than ε satisfying x ∈ A1, y ∈ An and
A1 ∪ A2 ∪ · · · ∪ An = X,

5. there exists a continuous onto map f : I → X.

Proof. ”1 ⇒ 2” is trivial,
”2 ⇒ 1”: let x ∈ X and ε > 0, then by 2 there exist connected A1, A2, . . . An,

n ∈ N, covering X, each of diameter less then ε/2. Notice that their closures
A1, . . . , An are closed connected sets covering X, each of diameter less then
ε/2. The set ⋃︁{Ai; x ∈ Ai, 1 ≤ i ≤ n} is connected (not necessarily open)
neighbourhood of x since it contains the complement of the closed set ⋃︁{Ai; x /∈
Ai, 1 ≤ i ≤ n} ∋ x and moreover its diameter is less than ε. This proves that
for every x ∈ X and any neighbourhood of x there exists a smaller connected
neighborhood of x.

To prove the claim, let again x ∈ X and ε > 0 be arbitrary and consider C
the connected component of x in B(x, ε). We want to prove that C is open. Let
y ∈ C, then since y ∈ B(x, ε), there exists A ⊆ B(x, ε) a connected neighborhood
of y by the previous part. Then C ∪ A ⊆ B(x, ε) is a connected set containing
x and thus by maximality of C we obtain A ⊆ C, in particular there exists U
open satisfying y ∈ U ⊆ A ⊆ C and thus C is open. Since x ∈ X and ε > 0 were
arbitrary, this shows that connected open sets form a basis of topology of X and
therefore X is a Peano continuum.

”2 ⇒ 3”: this is probably the most technical part of the proof. Let us introduce
some notation. Whenever ε > 0, we say that a chain L1, . . . , Ln, n ∈ N, is a
S(ε)–chain if it is formed by connected sets and it holds that diam(Li) < ε · 2−i

for every 1 ≤ i ≤ n. If moreover x ∈ L1, y ∈ Ln, then we say that L1, . . . , Ln is
an S(ε)–chain from x to y. For any A ⊆ X we define S(A, ε) by

S(A, ε) := {x ∈ X; there exists an S(ε)-chain from some point of A to x}.

Let ε > 0, by 2 there exists F a finite cover of X by connected sets with diameters
less than ε/3 and we may suppose that F does not contain the emptyset. Then
{S(F, ε/3); F ∈ F} is a finite cover of X by nonempty sets since A ⊆ S(A, δ)
for every A ⊆ X and every δ > 0; for arbitrary a ∈ A consider the S(δ)–chain
L1 = {a}.

Let F ∈ F and we will show that S(F, ε/3) is a Peano continuum of diameter
less than ε. Clearly it is closed and thus compact since X is compact. To show
connectedness it suffices to prove that S(F, ε/3) is connected since a closure of
a connected set is connected. Let x, y ∈ S(F, ε/3), then there exists chains
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L1, . . . Ln and K1, . . . , Km such that L1 ∩ F ̸= ∅, K1 ∩ F ̸= ∅, x ∈ Ln, y ∈ Km.
Then

Ln ∪ · · · ∪ L2 ∪ L1 ∪ F ∪ K1 ∪ K2 ∪ · · · ∪ Km

is a connected set containing both x and y. Thus all points of S(F, ε/3) lie in a
single connected component which means that the set is connected. This shows
that S(F, ε/3) is a continuum.

Similarly, to show that diam(S(F, ε/3)) is less than ε it suffices to prove
that diam(S(F, ε/3)) is less than ε. Let x, y ∈ S(F, ε/3), then there exists
S(ε/3)–chains L1, . . . Ln and K1, . . . , Km such that L1 ∩ F ̸= ∅, K1 ∩ F ̸= ∅,
x ∈ Ln, y ∈ Km. For every 2 ≤ i ≤ n and 2 ≤ j ≤ m fix some li ∈ Li−1 ∩ Li and
kj ∈ Kj−1 ∩ Lj. Further, fix some l1 ∈ L1 ∩ F and k1 ∈ K ∩ F . Then

d(x, y) ≤ d(x, ln) +
n−1∑︂
i=1

d(ln+1, ln) + d(l1, k1) +
m−1∑︂
j=1

d(kj, kj+1) + d(km, y) ≤

≤
n∑︂

i=1
diam(Li) + diam(F ) +

m∑︂
j=1

diam(Kj) ≤

≤
n∑︂

i=1
ε/3 · 2−i + ε/3 +

m∑︂
j=1

ε/3 · 2−j ≤ ε/3 + ε/3 + ε/3 = ε.

Thus we proved that diam(S(F, ε/3)) ≤ ε.
To complete the proof that S(F, ε/3) is a Peano continuum, we will show

that S(F, ε/3) has the property S and then the implication 2⇒1 we have already
proved will give us the result. Let δ > 0, we first want to find connected sets
C1, . . . , Cn, each of diameter less than δ, such that S(F, ε/3) = C1 ∪ · · · ∪ Cn.

Fix some k ∈ N satisfying
∞∑︂

i=k

ε/3 · 2−i = ε/3 · 2−k+1 < δ/3

and let K ⊆ (F, ε/3) be the set of those points x ∈ S(F, ε/3) such that there
exists an S(ε/3)–chain from some point of F to x consisting of at most k members.
By 2 there exists H a finite cover of X by connected sets with diameter less than
ε/3 · 2−k−1. Let D1, . . . , Dn be a list of those members of H that intersects K.
Then K ⊆ D1 ∪ · · · ∪ Dn and thus, in particular, ∅ ̸= F ⊆ K ⊆ D1 ∪ · · · ∪ Dn

implies that there is at least one set in H intersecting K.
Fix some 1 ≤ i ≤ n. Then there exists some x ∈ K ∩ Di and thus there is, by

the definiton of K, an S(ε/3)–chain L1, . . . , Lt, t ≤ k, such that L1 ∩ F ̸= ∅ and
x ∈ Lt. Thus, since diam(Di) is less than ε/3 · 2−k−1 ≤ ε/3 · 2−t−1, we obtain an
S(ε/3)–chain L1, . . . , Lt, Di and therefore Di ⊆ S(F, ε/3). Let

Ci := {C ⊆ S(F, ε/3); C ∩ Di ̸= ∅, diam(C) < δ/3, C is connected}

and Ci := ⋃︁
Ci. Note we have already proved that Di ⊆ S(F, ε/3), Di ∩ Di ̸= ∅

since Di intersect K and thus it is nonempty, diam(Di) < ε/3 · 2−k−1 < δ/3 and
Di is connected. Thus Di ∈ Ci and therefore Di ⊆ Ci.

Let x, y ∈ Ci, then there exist connected C, C ′ satisfying x ∈ C, y ∈ C ′,
C ∩ Di ̸= ∅ ≠ C ′ ∩ Di with diameters less δ/3. Then x, y ∈ C ∪ Di ∪ C ′ is
connected since Di is connected and therefore x and y lie in the same connected
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component of Ci. It also follows that d(x, y) ≤ diam(C)+diam(Di)+diam(C ′) <
δ/3 + δ/3 + δ/3 = δ. Since x, y were arbitrary, this entails that diam(Ci) ≤ δ
and further Ci is connected because all points of Ci lie in a single connected
component.

We claim that S(F, ε/3) = C1 ∪ · · · ∪ Cn. The inclusion C1 ∪ · · · ∪ Cn ⊆
S(F, ε/3) follows immediately from the definition of C1, . . . Cn. To prove the
reverse inclusion, first note that we already know that K ⊆ D1 ∪ · · · ∪ Dn ⊆
C1 ∪· · ·∪ Cn. Let x ∈ S(F, ε/3), x /∈ K, and we will show that x ∈ C1 ∪· · ·∪ Cn.

By the definition, there exists an S(ε/3)–chain L1, . . . , Lt from some point
of F to x and since x /∈ K, there must be t > k. By the definition again,
∅ ̸= Lk ⊆ K, and since K ⊆ D1 ∪ · · · ∪ Dn, there exists 1 ≤ i ≤ n such that
Lk ∩ Di ̸= ∅.

We will show that L := Lk ∪ Lk+1 ∪ · · · ∪ Lt ⊆ Ci. Firstly L ⊆ S(F, ε/3) just
by the definition, secondly it is connected by the definition of a chain and thirdly
L ∩ Di ̸= ∅ since Lk ∩ Di ̸= ∅. Fourthly, using an argument analogical to the one
in the proof of diam(S(F, ε/3)) ≤ ε, it follows that

diam(L) ≤ diam(Lk) + diam(Lk+1) + · · · + diam(Lt) ≤
t∑︂

j=k

ε/3 · 2−j < δ/3.

Thus L ∈ Ci, hence L ⊆ Ci and in particular x ∈ Lt ⊆ L ⊆ Ci. This concludes
the proof that C1, . . . , Cn are connected sets, each of diameter less than δ, and
S(F, ε/3) = C1 ∪ · · · ∪ Cn.

Finally, note that C1, . . . , Cn are connected sets with diameter less than δ
too. Moreover

S(F, ε/3) = C1 ∪ · · · ∪ Cn = C1 ∪ · · · ∪ Cn,

thus S(F, ε/3) is indeed a continuum with the property S and thus by 2⇒1
we obtain that S(F, ε/3) is a Peano continuum.

3⇒4: let x, y ∈ X and ε > 0. By 3 there exists F a finite cover of X by Peano
subcontinua of X with diameters less than ε and we may suppose that ∅ /∈ F .
We will find a chain A1, . . . , An satisfying x ∈ A1 and {A1, . . . , An} = F by
induction on |{A1, . . . , An}|. Let A1 ∈ F satisfy x ∈ A1.

Further, suppose we have constructed a chain A1, . . . , Ak for some k ≥ 1
such that x ∈ A1 and A1, . . . , Ak ∈ F . If F \ {A1, . . . , An} ̸= ∅, then ⋃︁(F \
{A1, . . . , An}) and ⋃︁{A1, . . . , An} are nonempty closed subsets whose union is⋃︁

F = X. Since by 3 X is a continuum and thus connected, the sets ⋃︁(F \
{A1, . . . , An}) and ⋃︁{A1, . . . , An} are not disjoint.

Hence there exists 1 ≤ i ≤ k and A2k−i+1 ∈ F \ {A1, . . . , An} such that
Ai ∩ A2k−i+1 ̸= ∅. Then A1, . . . , Ak, Ak+1 := Ak−1, Ak+2 := Ak−2, . . . , A2k−i :=
Ai, A2k−i+1 is a chain satisfying x ∈ A1, A1, . . . , A2k−i+1 ∈ F and moreover
|{A1, . . . , Ak}| < |{A1, . . . , A2k−i+1}|. This proves the existence of a chain
A1, . . . , An satisfying x ∈ A1 and {A1, . . . , An} = F . Analogically there ex-
ists a chain B1, . . . Bm satisfying y ∈ B1 and {B1, . . . , Bm} = F .

In particular, since {B1, . . . , Bm} = F = {A1, . . . , An}, there exists 1 ≤ i ≤
m such that An = Bi. Then the chain

A1, . . . , An−1, An = Bi, Bi−1, Bi−2, . . . , B1

10



has the desired properties.
4⇒5: we will use the General Mapping Theorem 4. By 4 there exists a chain

A1
1, . . . , A1

k1 consisting of Peano subcontinua with diameters less than 1/2 such
that A1

1 ∪ A1
2 ∪ · · · ∪ A1

k1 = X. Let n ∈ N and suppose that we have already found
a chain An

1 , . . . , An
kn

consisting of Peano subcontinua with diameters less than
2−n such that An

1 ∪ An
2 ∪ · · · ∪ An

kn
= X. For every 1 ≤ i ≤ kn − 1 there is some

xi ∈ An
i ∩ An

i+1 by the definition of a chain.
Using the implication 1⇒4 that we have already proved we obtain for each

Peano continuum An
i a chain Bi

1, . . . , Bi
mi

such {Bi
1, . . . , Bi

mi
} = An

i and x1 ∈
B1

m1 , xkn−1 ∈ Bkn
1 and xi−1 ∈ Bi

1, xi ∈ Bi
mi

for every 2 ≤ i ≤ kn − 1. We may
assume that m1 = m2 = · · · = mkn , because we can prolong the shorter chains
by repeating some of its members if necessary.

Define functions Fn, n ∈ N, from I to the space of subcontinua of X as follows:

Fn(x) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
An

1 , x = 0,

An
i , (i − 1)/kn < x < i/kn, i = 1, 2, . . . , kn

An
i ∪ An

i+1, x = i/kn, i = 1, 2, . . . , kn−1

An
kn

, x = 1.

By the construction, for all n ∈ N and x ∈ X it holds Fn+1(x) ⊆ Fn(x), for
every x ∈ X it holds that lim

n→∞
diam(Fn(x)) = 0 (use that diam(An

i ∪ An
i+1) ≤

diam(An
i ) + diam(An

i+1) since these sets always intersect by the definition of a
chain) and for every n ∈ N it holds that ⋃︁{Fn(x), x ∈ X} = Y .

Further, note then for every n ∈ N the function Fn is usc. This is because
for every x ∈ I \ {i/kn, i = 1, 2, . . . , kn−1} the function Fn is constant on some
(relatively) open interval containing x and for every i = 1, 2, . . . , kn−1 it holds
that Fn(y) ⊆ Fn(i/kn) for every y ∈ ((i−1)/kn, (i+1)/kn). Thus the hypotheses
of the General Mapping Theorem 4 are satisfied and we obtain a continuous onto
map f : I → X.

5⇒2: by 5 there exists a continuous onto map f : I → X. Thus since I is
nonempty, connected and compact, its continuous image f(I) = X is nonempty,
connected and compact; that is, a continuum.

Note that since I is compact, the map f is not just continuous but uniformly
continuous. Let ε > 0, then there exists δ > 0 such that for every x, y ∈
I, |x − y| ≤ δ, it holds that d(x, y) ≤ ε. Let I be a finite set of subintervals of I
of length less than δ such that ⋃︁

I = I. Then {f(D), D ∈ I } is a finite cover
of X, since f is onto, and it is formed by sets of diameter less than ε.

In particular, we immediately obtain:

Corollary 9. Every Peano continuum is path–connected.

Proof. By the previous theorem 8 there exists an onto map f : I → X. Let
x, y ∈ X, then there exists s, t ∈ I such that f(s) = x, f(t) = y. We may suppose
that s ≤ t. Let g : I → [s, t] be continuous, onto and satisfying g(0) = s, g(1) = t,
then f ◦ g : I → X is a path from x to y in X.

As we stated in the previous section, path components are already arcwise
connected in metric spaces. However, the hard part of the proof of this fact is

11



to prove that every Peano continuum is arcwise connected. Neverless, Theorem
8 together with the fact that Peano continua are arcwise connected entails easily
that Peano continua are locally arcwise connected. Anyway, we will state this
fact without a proof.

Theorem 10. [Nadler, 1992, Theorem 8.25] Every Peano continuum is locally
arcwise connected, that is, for every Peano contiuum X, every x ∈ X and N a
neighborhood of x there exists M ⊆ N an arcwise connected neighborhooh of x.

Finally using this fact, we may easily show that in Peano continua not just
path components are arcwise connected, but even connected components are
arcwise connected, and what is more, this does not hold only in Peano continua,
but also in all open subsets of Peano continua.

Corollary 11. In every Peano continuum, connected and arcwise connected com-
ponents of open sets coincide.

Proof. Let X be a Peano continuum, U ⊆ X open and C an arcwise connected
component of U and we only need to prove that C is open. Let x ∈ C, by the
previous theorem there exists V ⊆ U an arcwise connected neighborhood of x.
Then V ∪ C ⊆ U is arcwise connected and thus V ⊆ C.

Observation 12. Let (X, d) be a continuum, Y a Peano continuum, a ̸= b ∈ X
and c, d ∈ Y . Then there exists f : X → Y continuous, onto and satisfying
f(a) = c, f(b) = d.

Proof. Define h : X → [0, 2d(a, b)] by

h(x) := min{d(a, b); d(a, x)} + max{0; d(a, b) − d(x, b)}
for x ∈ X. It is easy to observe that h is well–defined, continuous, h(a) = 0
and h(b) = 2d(a, b). Hence, by connectedness of X, the map h is onto. Since Y
is Peano, there exists g : [d(a, b)/2; d(a, b)] → Y continuous and onto. We can
extend this map to a map defined on the whole interval [0; 2d(a, b)] by letting
g|[0, d(a, b)/2] be any arc from c to g(d(a, b)/2) and g|[d(a, b); 2d(a, b)] be any arc from
g(d(a, b)) to d. Then f := g ◦ h : X → Y has the required properties.

Note that we know that Y is arcwise connected, since it is an open subset of
a Peano continuum Y and it is connected.
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2. Transitive maps
After preliminaries, we are prepared to follow up on the Introduction in the study
of dynamical systems. As was mentioned there, in this chapter we will describe
some “inflating” maps, and at the same time we will investigate which properties
should have something called “chaos”.

In the first section we concentrate on unfolding the definitions, while in the
second section we generalize a result of Agronsky and Ceder [1991/92] by showing
that for every Peano continuum there exists a LEO self–map of that Peano space
with dense set of periodic points.

2.1 The features of chaos
Let us present here the most widely known and accepted definition of chaos
introduced in Devaney [1986].

Definition 13 (Devaney’s definition of chaos). Let (X, d) be a metric space. A
function f : X → X is called chaotic if it satisfies the following three conditions:

D1 f is topologically transitive, that is, for any two nonempty open sets U and
V , there exists k such that fk(U) ∩ V ̸= ∅,

D2 The set of periodic points of f is dense. A point x is called periodic if
fk(x) = x for some k ≥ 1.

D3 f has sensitive dependence on initial conditions, that is, there exists δ > 0
such that for any open set U and for any point x ∈ U , there exists a point
y ∈ U such that d(fk(x), fk(y)) > δ for some k. The positive number
δ is called a sensitivity constant, it only depends on the space X and the
function f .

Let us start with the sensitivity condition. It says that regardless how close
are two points to each other, after some number of iteration they will be at least
δ apart. Thus arbitrarily small error results in a non-negligible inaccuracy. This
is certainly a feature of chaos and thus there is no wonder that the notion of
sensitive dependence of initial conditions is understood to be the central idea in
chaos.

In contrast to sensitivity, the other two conditions are not such a typical
feature of chaos by themself. For example, the set of periodic points of the identity
(on any space) is of course dense since in this case all points are periodic, but
the identity is definitely not chaotic. For transitivity, let us recall the plane circle
S1 we have defined in the Introduction. If α ∈ R satisfies that α/π is irrational,
then the rotation of S1 by angle α is transitive, while rotation is definitely not
chaotic map.

Nevertheless, the situation is completely different when we consider the con-
ditions D1 and D2 together.

In Silverman [1992] it was shown that if X is a continuum, then f : X → X
is transitive if and only if there exists a transitive point, i.e. a point x ∈ X such
that the set {x, f(x), f 2(x), . . . } is dense in X. Note that transitive point might
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be understood to be a kind of the opposite of a periodic point as it systematically
travels through and through the space X, while a periodic point only visits a very
small part of X — just finite. Also note that if x is a transitive point, then all
the points f(x), f 2(x), . . . are transitive and therefore the set of transitive points
is dense in X.

Therefore periodic points of a chaotic self–map of a continuum form a dense
subset as well as transitive points of that map form a dense subset. This after all
sounds like real chaos, therefore it maybe will not be so surprising that the first
two conditions imply the third as it was proved in Banks et al. [1992].

When considering self–maps of the interval I, even more is true since it was
proved in Vellekoop and Berglund [1994] that in this very special case, the tran-
sitivity itself implies that the set of periodic points is dense and thus it implies
also the sensitivity condition.

Hence, perhaps surprisingly, transitivity is an important feature of chaos too
and therefore it makes sense to try to strengthen the transitivity condition. Nat-
ural generalization of transitive maps are topological mixing and LEO functions.

We say that a map f : X → X is a topological mixing if for every nonempty
open U, V ⊆ X there exists N ∈ N such that for every n ≥ N the intersection
fn(U) ∩ V is nonempty.

Definition 14. Let X be a topological space. We say that a continuous map
f : X → X is LEO (locally eventually onto), if for every nonempty open U ⊆ X
there exists n ∈ N such that fn(U) = X.

It follows immediately from the definitions that every LEO map is a topo-
logical mixing and every topological mixing is topologically transitive. Also note
that every LEO map has sensitive dependence on initial conditions with sensitiv-
ity constant diam(X)/3 since for any U open and x ∈ U , there exists n ∈ N such
that fn(U) = X. Let z ∈ X be any point such that d(fn(x), z) > diam(X)/3,
then there is y ∈ U such that fn(y) = z.

Recall two maps we defined in the Introduction; the tent map f4 and the left
shift. Both these maps are LEO and both these maps has a dense set of periodic
points. To realize that this is true in the case of the left shift, consider any open
set of the form {x ∈ Λω, x|dom(s) = s}, for some s ∈ S<ω. Applying to this set
the left shift |dom(s)|–times yields the whole space, and if we define x ∈ Λω by
x(m) := s(m mod n), we obtain a periodic point lying inside the above set.

Consider any subset of I with nonempty interior; it must contain some non-
degenerate interval. Note that when applying the tent map to some interval, we
obtain either an interval twice as large or an inerval containing either 0, 1 or
1/2. Since I is bounded, after finitely many steps the second option must occur.
Further interval containing 1/2 maps to an interval containing 1 and that maps
to an interval containing 0.

Thus after finitely many steps we obtain an interval [0, ε] for some ε > 0.
But f4([0, ε]) = [0, min{2ε, 1}]. Thus after another finitely many iterations we
finally obtain the whole space I. Thus also the set of periodic points of he tent
map is dense by Vellekoop and Berglund [1994].
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2.2 Existence of LEO maps on Peano continua
In the previous section we described two LEO maps, both with dense set of
periodic points. Our goal now is to provide such a map in much more general
setting. In Agronsky and Ceder [1991/92] authors constructed a LEO self–map
on general Peano continuum contained in Rn for some n ∈ N. We will generalize
this result to all Peano continua and further we will construct LEO maps with
dense set of periodic points.

Lemma 15. Let X be a nondegenerate Peano continuum. Then there exist finite
coverings Fn, n ∈ N, of X and a continuous map f : X → I satisfying:

1. For every n and every F ∈ Fn, F is a Peano subcontinnum of X of diameter
less than 2−n,

2. For every n ∈ N and every H ∈ Fn, there is some F ⊆ Fn+1 such that
H = ⋃︁

F ,

3. For every n ∈ N and every F ∈ Fn it holds that |f(F )| > 1.

Proof. By Theorem 8 there exists F1 a finite cover of X by Peano subcon-
tinua of diameter less than 1/2. We may assume that every continuum in F1
is nondegenerate since X is nondegenerate. Suppose we have already defined
Fn = {F1, . . . , Fk} for some n ∈ N. Then for every 1 ≤ i ≤ k there exists by
Theorem 8 a finite covering of Fi by Peano continua of diameter less than 2−n−1,
say Fn+1, i. Again, we may assume that all these continua are nondegenerate.
Let Fn+1 := Fn+1, 1 ∪ · · · ∪ Fn+1, k.

It is clear that 1 and 2 are satisfied. It is also clear that the set ⋃︁{Fn, n ∈ N}
is countable, so we may write ⋃︁{Fn, n ∈ N} = {Fi, i ∈ N}.

Next, we will define inductively a uniformly converging sequence of continuous
functions (fi : X → I)i∈N and S1 ⊆ S2 ⊆ . . . finite subsets of X such that for all
i ∈ N it holds that |fi(Si ∩ Fi)| > 1 and fi+1|Si

= fi|Si
.

Since F1 is nondenegenerate, we can find x ̸= y ∈ F1 and an open set G such
that x ∈ G, y /∈ G. Let S1 := {x, y} and f1(z) := d(z, X \ G) where d is a
compatible metric on X. Suppose we have already defined Si, fi for some i ∈ N.
If |fi(Fi+1)| > 1 then we can choose some x, y ∈ Fi+1 such that fi(x) ̸= fi(y) and
set fi+1 := fi, Si+1 := Si ∪ {x, y}.

Assume that |fi(Fi+1)| = 1. Choose some x ∈ Fi+1, then since Fi+1 is nonde-
generate and hence of size continuum, we can find some y ∈ Fi+1, y /∈ Si ∪ {x}.
There exists an open set G such that y ∈ G and G ∩ (Si ∪ {x}) = ∅. Let
Si+1 := Si ∪ {x, y} and fi+1(z) := fi(z) + min{2−i, d(z, X \ G)}.

Now it is clear that the functions fi, i ∈ N, are continuous and uniformly
converge to some function f : X → I. Then f is continuous and for every i ∈ N
we have

|f(Fi)| ≥ |f(Fi ∩ Si)| = |fi(Fi ∩ Si)| > 1.

Observation 16. Let (X, d) be a nondegenerate Peano continuum and let Fn,
n ∈ N, and f : X → I be as in Lemma 15. Then for every open ∅ ̸= U ⊆ X the
set f(U) contains a nondegenerate interval.
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Proof. Let x ∈ X and ϵ > 0 satisfy B(x, ϵ) ⊆ U . Let n ∈ N satisfy 2−n < ϵ.
Then there exists F ∈ Fn such that x ∈ F . Further, F ⊆ B(x, ϵ) ⊆ U , since the
diameter of F is less then 2−n < ϵ. We also know that |f(F )| > 1 and since F is
connected, f(F ) ⊆ f(U) is a nondegenerate interval.

Observation 17. Let (X, d) be a compact metric space. Then there exist (xn, ϵn)
∈ X × (0, 1); n ∈ N, such that any yn, n ∈ N, satisfying d(xn, yn) ≤ ϵn for all
n ∈ N, form a dense subset of X.

Proof. For given n ∈ N, let Dn be a finite 2−n−1–net in X. Let

D :=
⋃︂

n∈N
Dn × {2−n−1}.

Clearly D is a countable subset of X × (0, 1), so we may write

D = {(xn, ϵn); n ∈ N}.

Let yn, n ∈ N, satisfy d(xn, yn) ≤ ϵn for all n ∈ N, we want to show that
{yn, n ∈ N} is dense in X. Let x ∈ X and ϵ > 0. We can find n ∈ N such that
2−n < ϵ and, since Dn is a 2−n−1–net, some c ∈ Dn satisfying d(c, x) < 2−n−1.
Then (c, 2−n−1) = (xk, ϵk) ∈ D for some k ∈ N. Thus we entail d(x, yk) ≤
d(x, xk) + d(xk, yk) < 2−n−1 + 2−n−1 = 2−n < ϵ.

Theorem 18. For every Peano continuum (X, d) there exists a LEO map h :
X → X such that the set of periodic points of h is dense in X. Thus in particular,
the map h is chaotic with respect to Devaney’s definition of chaos.

Proof. If X is a one-point space, then the assertion is clearly true. Suppose that
X is nondegenerate and let Fn, n ∈ N, and f : X → I be as in Lemma 15
and (xn, ϵn) ∈ X × (0, 1), n ∈ N, as in Observation 17. Let F0 := {X}, then
clearly F0 is a covering of X by subcontinua of X and for every F ∈ F1 we
have F ⊆ X ∈ F0. Let δn := min{diam(f(F )), F ∈ Fn} > 0 for every n ∈ N.
We will find by induction sequence yn, n ∈ N and sets Sn ⊆ I, maps Gn, gn and
chains An

1 , . . . , An
kn

, n ∈ N0, such that for every n ∈ N0:

1. kn · δn+1 ≥ 2, {An
1 , . . . , An

kn
} = Fn,

2. for every 1 ≤ j ≤ n there exists l such that kn+1 = kj · l and for every
1 ≤ i ≤ kj: ⋃︂

{An+1
l·(i−1)+1, An+1

l·(i−1)+2, . . . , An+1
l·i } = Aj

i ,

3. Gn : I → 2X and the collection of maps (Gk)k∈N0 satisfy the hypotheses of
the General Mapping Theorem (Theorem 4),

4. the function Gn is given by:

Gn(x) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
An

1 , x = 0,

An
i , (i − 1)/kn < x < i/kn, i = 1, 2, . . . , kn

An
i ∪ An

i+1, x = i/kn, i = 1, 2, . . . , kn−1

An
kn

, x = 1,
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5. the set Sn is a finite subset of irrational numbers and Sn ⊆ Sn+1,

6. gn : Sn → X and gn = gn+1|Sn ,

7. gn(s) ∈ Gn(s) for every s ∈ Sn,

8. if n > 0, then d(xn, yn) ≤ ϵn and (gn ◦f)n(yn) = yn (we also claim that this
is well–defined).

The idea is that the desired function h will be of the form h = g ◦ f . We will
obtain the map g by applying the General Mapping Theorem (Theorem 4) to the
collection of maps (Gn)n∈N and the maps gn will helps us to control behaviour of
the resulting function g on certain subset of I.

Firstly, we let S0 := g0 := ∅. Clearly there is k0 ∈ N such that k0 · δ1 ≥ 2.
Let An

1 := · · · := An
kn

:= X and G0 be a constant X–valued function. Then the
induction hypotheses for n = 0 are satisfied.

Secondly, suppose that we have already defined Sn, Gn, gn and a chain An
1 , . . . ,

An
kn

for some n ∈ N0 and we will construct Sn+1, Gn+1, gn+1, An+1
1 , . . . , An+1

kn+1

and yn+1.
By Observation 16 the set f(B(xn+1, ϵn+1)) contains a nondegenerate interval,

hence there is yn+1 ∈ B(xn+1, ϵn+1) such that f(yn+1) is irrational and does not
lie in the finite set Sn. Since f(yn+1) is irrational, Gn(f(yn+1)) = An

in
for some 1 ≤

in ≤ kn, by definition of Gn. Since An
in

∈ Fn is a continuum and diam(f(An
i )) ≥

δn ≥ 2/kn−1, f(An
i ) is a closed interval that contains [(in−1 − 1)/kn−1, in−1/kn−1]

for some 1 ≤ in−1 ≤ kn−1.
Similarly there exists 1 ≤ in−2 ≤ kn−2 such that

f(An−1
in−1) ⊇ [(in−2 − 1)/kn−2, in−2/kn−2],

since diam(f(An−1
in−1)) ≥ δn−1 ≥ 2/kn−2. In this manner, we can find in ∈

{1, . . . , kn}, in−1 ∈ {1, . . . , kn−1}, . . . , i0 ∈ {1, . . . , k0} such that for every
1 ≤ j < n it holds that f(Aij+1

j+1
) ⊇ [(ij − 1)/kj, ij/kj].

By induction hypotheses(1, 2): A0
i0 ∈ F0 = {X}, there exists l0 such that

kn+1 = k0 · l0 and:⋃︂
{An+1

l0·(i0−1)+1, An+1
l0·(i0−1)+2, . . . , An+1

l0·i0} = A0
i0 = X ∋ yn+1.

Hence there exists 1 ≤ j0 ≤ l0 such that yn+1 ∈ An+1
l0·(i0−1)+j0

. Clearly we can
find t0 ∈ [(l0 · (i0 − 1) + j0 − 1)/kn+1, (l0 · (i0 − 1) + j0)/kn+1] that is irrational
and does not lie in the finite set Sn ∪ {f(yn+1)}. Notice that then Gn(t0) =
An+1

l0·(i0−1)+j0
∋ yn+1. Since f(A1

i1) ⊇ [(i0 − 1)/k0, i0/k0] ⊇ [(l0 · (i0 − 1) + j0 −
1)/kn+1, (l0 · (i0 − 1) + j0)/kn+1] ∋ t0, there is z1 ∈ A1

i1 such that f(z1) = t0.
Using induction hypotheses (2) again we obtain l1 such that kn+1 = k1 · l1 and:⋃︂

{An+1
l1·(i1−1)+1, An+1

l1·(i1−1)+2, . . . , An+1
l1·i1} = A1

i1 ∋ z1,

hence there exists 1 ≤ j1 ≤ l1 such that z1 ∈ An+1
l1·(i1−1)+j1

. Similarly to what
was done above, we can find t1 ∈ [(l1 ·(i1 −1)+j1 −1)/kn+1, (l1 ·(i1 −1)+j1)/kn+1]
that is irrational and does not lie in the finite set Sn ∪ {f(yn+1), f(z1) = Sn ∪
{f(yn+1), t0} and show that t1 ∈ f(A2

i2). Thus there is z2 ∈ A2
i2 such that
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f(z2) = t1. Notice that this again implies Gn(t1) = An+1
l1·(i1−1)+j1

∋ z1. In this
manner we can find mutually distinct t0, t1, . . . , tn ∈ I that does not lie in Sn

and zm ∈ Am
im

, 1 ≤ m ≤ n, such that for every 1 ≤ m ≤ n we have f(zm) = tm−1
and zm ∈ Gn(tm).

Let Sn+1 := Sn ∪ {t0, t1, . . . , tn} and define gn+1|Sn := gn, gn+1(tm) := zm for
1 ≤ m ≤ n and gn+1(t0) := yn+1. It is easy to find An+1

1 , . . . , An+1
kn+1 and Gn+1

satisfying the induction hypotheses.
Hence by General Mapping Theorem (Theorem 4) the function g : I → X

defined by {g(x)} = ⋂︁{Gn(x), n ∈ N} is well–defined, continuous and onto. The
theorem gives even more. Let m ∈ N ∪ {0} and 1 ≤ i ≤ km. Consider the
functions G′

n from [(i − 1)/km, i/km] to the space of subcontinua of Am
i given by

G′
n((i − 1)/km) := Gn((i − 1)/km + 1/(2kn)), G′

n(i/km) := Gn(i/km − 1/(2kn)),
G′

n(x) := Gn(x) for all x ∈ ((i − 1)/km, i/km) and n ≥ m. It follows from 2 that
then

⋃︂
{G′

n(x), x ∈ [(i − 1)/km, i/km]} = Am
i

for all n ≥ m and hence the functions G′
n, n ≥ m, also satisfy hypotheses

of the General Mapping Theorem. Further, it is easy to see that {g(x)} =⋂︁{G′
n(x), n ≥ m} for x ∈ [(i − 1)/km, i/km]. Hence, by the General Mapping

Theorem, g([(i − 1)/km, i/km]) = Am
i for every m ∈ N ∪ {0} and 1 ≤ i ≤ km.

Finally, we want to show that h := g ◦ f : X → X is LEO and the set of
its periodic points is dense in X. In order to show that h is LEO we need the
following claim: for any n ∈ N and 1 ≤ i ≤ kn, it holds that h(An

i ) ⊇ F for some
F ∈ Fn−1. This is true because for any such n and i it follows just by definitions
that diam(f(An

i )) ≥ δn ≥ 2/kn−1. Since An
i is a continuum, f(An

i ) is a closed
interval. Therefore f(An

i ) ⊇ [(j − 1)/kn−1, j/kn−1] for some 1 ≤ j ≤ kn−1. Thus
h(An

i ) = gf(An
i ) ⊇ g([(j − 1)/kn−1, j/kn−1]) = An−1

j ∈ Fn−1. This proves the
claim.

Let U ⊆ X be open and nonempty. Then there exists n ∈ N and Fn ∈ Fn

such that Fn ⊆ U . Then by preceding claim there exists Fn−1 ∈ Fn−1, such that
Fn−1 ⊆ h(Fn) ⊆ h(U). Using the claim n−1 more times, we get that there exists
F0 ∈ F0 = {X} such that X = F0 ⊆ h(F1) ⊆ hn(Fn) ⊆ hn(U).

To ensure that the the set of periodic points of h is dense, first observe that
g(s) = gn(s) for every s ∈ Sn since for every m ≥ n we have gn(s) = gm(s) ∈
Gm(s). Hence for every n ∈ N it holds that hn(yn) = (g◦f)n(yn) = (gn◦f)n(yn) =
yn, in other words, for every n ∈ N the point yn is a periodic point of h. By
Observation 17 and 8 the set {yn, n ∈ N} is dense in X and therefore the set of
periodic points of h is also dense in X.
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3. Topological fractals
In the previous chapter we dealt with those selfmaps of some space that magnify
every part of it so that every open set is eventually mapped onto the whole space.
Now we are interested in an opposite kind of maps: we will work with maps that
eventually sends the whole space to an arbitrily small piece of it. This leads to
the study of self–similar sets and topological fractals.

In the first section we introduce the basic notions and present some funda-
mental results that determined the direction of the research of topological fractals
the most. The second chapter is focused on one of the main results of this thesis,
a sufficient condition for a Peano continuum to be a topological fractal. The last
section is dedicated to regenerating fractals which were invented to give another
sufficient condition for a Peano continuum to be a topological fractal. We apply
our result to partially answer a problem posed in Nowak [2021] introductiong the
notion of regenerating fractals.

3.1 Origins
Let X be a metric space. As was mentioned in the beginning of this chapter,
we are now interested in selfmaps of X that eventually sends the whole space
to an arbitrily small piece of it. Basic functions satisfying this are, for example
constant functions or contractions. However, we of course do not want to study
trivial maps like constant functions, we want the images of the studied maps to
still carry some information about X. Since we can no more require our maps
to be surjective, we instead consider more than one function such that the union
of their images is the whole space X. This way we ensure that no essential
information about the space is lost. At the same, a difficulty occurs; when we are
dealing with more than one map, we do not only want each of them to send the
whole space to an arbitrily small piece, but we want any sequence of our maps to
send the whole space to an arbitrily small piece, if the sequence is long enough.
Note that this is something a finite number of contradictions still do satisfy.

The origin of topological fractals are attractors of iterated function systems.
Suppose that X is a subset of Rd for some d ∈ N and f1, f2, . . . , fn : X → X
are similarities, each with ratio (strictly) less than 1. It was proven in Edgar
[1990] that there exists unique nonempty and compact K ⊆ X satisfying K =
f1(K) ∪ · · · ∪ fn(K).

Intuitively, when we say that some space X is “a self–similar set” or “a fractal”,
we want to express that X consists of its own copies, just smaller. If this is the
case, then of course all of these copies consists of its own copies (which are also
copies of the whole space X), and so do all these even smaller copies etc. “Roughly
speaking, a fractal set is a set that is more “irregular” than the sets considered in
classical geometry. No matter how much the set is magnified, smaller and smaller
irregularities become visible,” explains Gerald A. Edgar in his book Measure,
topology, and fractal geometry Edgar [1990].

This leads us to the following definition: we say that a closed set X ⊆ Rd,
d ∈ N, is a self–similar set if there exists similarities f1, f2, . . . , fn : X → X,
each with ratio (strictly) less than 1. The set of the functions {f1, f2, . . . , fn} is
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usually called an iterated function system (IFS) and X an attractor of this IFS.
The following sets are typical examples of self–similar sets.

Example 19. The most basic examples are the trivial space (a point) and the
interval I. The point is already small enough so there is no need to further
decompose it, it is thus (the only) attractor for the IFS consisting of just one
map, namely the identity. The case of the interval is simple too. It should be
obvious that the interval can be decomposed in a finite number of its own arbitrily
small copies. It is an attractor for the IFS {x ↦→ x/2; x ↦→ (x + 1)/2}.

Example 20 (Cantor set). Another example of a self–similar set is the Cantor
set 2ω introduced in the first chapter. It holds that 2ω = R0(2ω) ∪ R1(2ω), where
R0, R1 are right shifts defined in the Introduction.

However, despite that the notion of similarity map ilustrates the idea very well
and is sufficient for many examples, it is not quite suitable for a general metric
space. The natural generalization is not to require the maps of the correspoding
IFS to be similarities, but just to be contractions. It was proven in Edgar [1990]
that for every complete metric space X and contractions f1, f2, . . . , fn : X → X
there exists a unique nonempty and compact K ⊆ X satisfying K = f1(K) ∪
· · · ∪ fn(K), and moreover, if A0 is any compact subset of X, then the sequence
(Ak)k∈N converges to K in the Hausdorff metric, where Ak+1, k > 1 is defined
inductively to be Ak+1 := ⋃︁

1≤i≤n fi(An). This is a reason why such K is called
an attractor of the IFS {f1, f2, . . . , fn} and connects the theory of fractal with
the theory of topological dynamics. Edgar proved also that every metric fractal
is of a finite topological dimension and thus there are continua that are not
metric fractals. Let us note that the argument is through topological dynamics
and uses semiconjugacy with the right shifts. These notions were defined in the
Introduction.

It was observed by Hata in Hata [1985] that every connected metric fractal
has the property S and thus it is a Peano continuum. At the same time he asked
whether every finite–dimensional Peano continuum or at least every compact
subset of Rd for every d ∈ N is a metric fractal. This question was answered
negativaly later since in Banakh and Nowak [2013] it was proven that there exists
a plane 1–dimensional Peano continuum that is not homeomorphic to any IFS
attractor.

Therefore it is reasonable to consider further generalizations. This leads us
to the notion of a weak IFS attractor where we do not even require the maps
of the IFS to be contradiction, but only so–called weak contraditions. We say
that a map f : X → X is a weak contradiction if d(f(x), d(y)) < d(x, y) for
every x ̸= y ∈ X. It was showed in Banakh et al. [2015a] that metrizable weak
attractors are exactly topological fractals:
Notation. Let X be a set and F be a set of functions from X to X. For any
n ∈ N0, we denote by F n the set of maps {f1 ◦ · · · ◦ fn; fi ∈ F for 1 ≤ i ≤ n}.

Definition 21. Let X be a metric space. We say that X is a topological fractal
if there exists n ∈ N and functions f1, . . . , fn : X → X satisfying f1(X) ∪ · · · ∪
fn(X) = X such that for every ε > 0 there exists k ∈ N such that for every
g ∈ {f1, . . . , fn}k the diameter of g(X) is less then ε.
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An argument analogical to the one above confirms that every connected topo-
logical fractal is a Peano continuum. Thus among continua, only Peano continua
might happen to be topological fractals. However the question, whether every
Peano continuum is a topological fractal is still open since 1985 when Hata posted
it in Hata [1985]. We will pay more attention to this problem in the last section
of this this chapter.

Nevertheless, some partial results were establisted since 1985. Among zero–
dimensional spaces even complete characterization was provided in Banakh et al.
[2015b]. Further, some sufficient conditions where a Peano continuum is a topo-
logical fractal, namely so–called free arc or self–regenerating subcontinuum with
a nonempty interior, are known and in the forthcoming section we present a new
one. The precise formulations are postponed to the following sections to the
places where we work with these notions more so the context is most clear.

3.2 A partial solution to Hata’s hypothesis
Let us start with the following useful observation. A similar result was proved
indepently in Nowak [2021].

Observation 22. Let X be a compact metric space and f1, . . . fn, g1, . . . , gm :
X → X be continuous functions such that

f1(X) ∪ · · · ∪ fn(X) ∪ g1(X) ∪ · · · ∪ gm(X) = X

and for every ε > 0 there exists k ∈ N such that for every f ∈ {f1, . . . , fn}k

the diameter of f(X) is less then ε. Suppose that for every f ∈ ⋃︁∞
i=0{f1, . . . , fn}i

and 1 ≤ i, j ≤ m we have that gi ◦ f ◦ gj is a constant function.
Then X is a topological fractal.

Proof. Let ε > 0. Then there exists k1 ∈ N such that for every f ∈ {f1, . . . , fn}k1

the diameter of f(X) is less then ε. We can find δ > 0 such that for every
f ∈ ⋃︁k1−1

i=0 {f1, . . . , fn}i, for every 1 ≤ j ≤ m and every x ∈ X the diameter of
f ◦ gj(B(x, δ)) is less than ε. By assumption, there exists k2 ∈ N such that for
every f ∈ {f1, . . . , fn}k2 the diameter of f(X) is less then δ.

Let k := k1 + k2 and h = h1 ◦ · · · ◦ hk ∈ {f1, . . . fn, g1, . . . , gm}k. If there are
i ̸= j such that hi, hj ∈ {g1, . . . , gm}, then h must be by assumption a constant
function and hence h(X) has diameter 0 < ε.

Suppose that hi ∈ {g1, . . . , gm} for at most one 1 ≤ i ≤ k. If h1, . . . , hk1 ∈
{f1, . . . fn}, then diam(h(X)) ≤ ε since h(X) = h1 ◦· · ·◦hk(X) ⊆ h1 ◦· · ·◦hk1(X)
and h1 ◦ · · · ◦ hk1 ∈ {f1, . . . , fn}k1 . Otherwise hi ∈ {g1, . . . , gm} for exactly one
1 ≤ i ≤ k1 and hi+1, . . . , hk ∈ {f1, . . . fn}. Then diam(hi+1 ◦ · · · ◦ hk(X)) ≤ δ
since k − i ≥ k − k1 = k2.

Thus by the definition of δ, diam(h(X)) ≤ ε.

Definition 23. Let X be a (connected) topological space. A point x ∈ X is called
a cut point if X \ {x} is not connected.

Let us introduce some more notation connected to products of sets.
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Definition 24. Let s = (s1, . . . , sn), t = (t1, . . . , tk) ∈ 2<ω and r = (r1, r2, . . . )
∈ 2ω. We define the concatenation by s⌒t := (s1, . . . , sn, t1, . . . , tk) ∈ 2<ω,
respectively s⌒r := (s1, . . . , sn, r1, r2, . . . ) ∈ 2ω. Clearly concatenation is asso-
ciative, so we will omit brackets when applying cancatenation iteratively.

Further, define sop := (1 − s1, . . . , 1 − sn), respectively rop := (1 − r1, 1 −
r2, . . . ).

In what follows, we will denote by 0̄ := (0, 0, . . . ), 1̄ := (1, 1, . . . ) ∈ 2ω and
by E the subset of 2ω given by E := {s⌒0̄, s ∈ 2<ω} ∪ {s⌒1̄, s ∈ 2<ω}.

With this notation, we can introduce “a free Cantor set” — our most impor-
tant tool in partial answering Hata’ question.

Definition 25. Let X be a Peano continuum. We say that φ : E → X is a free
Cantor set (in X) if it is one–to–one and if there exist XL

s , Xs, XR
s , s ∈ 2<ω,

Peano subcontinua of X such that X = XL
∅ ∪ X∅ ∪ XR

∅ , for every s ∈ 2<ω:

1. φ(s⌒0̄) ∈ XL
s and φ(s⌒1̄) ∈ XR

s ,

2. XL
s ∩ Xs = {φ(s⌒0⌒1̄)}, XR

s ∩ Xs = {φ(s⌒1⌒0̄)}, XL
s ∩ XR

s = ∅,

3. XL
s = XL

s⌒0 ∪ Xs⌒0 ∪ XR
s⌒0, XR

s = XL
s⌒1 ∪ Xs⌒1 ∪ XR

s⌒1,

and lim
|s|→∞

diam(XL
s ) = 0, lim

|s|→∞
diam(XR

s ) = 0, that is, for every ε > 0 there

exists n0 ∈ N such that for every s ∈ 2<ω satisfying |s| ≥ n0 the diameters of XL
s

and XR
s are less than ε.

This definition might be confusing at the first sight, because what we call a
free Cantor set does not seem to be complete since it correspond only to a part
of the Cantor set. However, the following Lemma unsures us that the rest of it
is actually exactly where it should be.

Lemma 26. Let (Y, d) be a Peano continuum. Suppose that there are XL, X, XR

Peano subcontinua of Y such that X contains a free Cantor set φ : E → X.
Suppose further that Y = XL ∪ X ∪ XR, XL ∩ X = {φ({0}ω)}, X ∩ XR =
{φ({1}ω)} and XL ∩ XR = ∅.

Then φ can be uniquely extended to be a continuous function defined on the
whole Cantor set 2ω, this extension is one–to–one and all points in φ(2ω \ {0̄, 1̄})
are cutpoints of X.

Proof. Fix arbitrary s ∈ 2ω. For any n ∈ ω let Ss
n := XL

s|n if s(n) = 0 and
Ss

n := XR
s|n if s(n) = 1. Then it follows immediately from the definitions that

Ss
n+1 ⊆ Ss

n for every n ∈ ω and lim
n→∞

diam(Ss
n) = 0. Thus, by compactness of Y ,⋂︁

n∈ω Ss
n is a one–element set.

Notice that if s ∈ E, then φ(s) ∈ Ss
n for every n ∈ ω: suppose for example

that s = t⌒0̄, but this by definition implies that for every n > |t| it holds both
Ss

n = XL
t⌒{0}n−|t|−1 and φ(t⌒0̄) = φ(t⌒{0}m−n⌒0̄) ∈ XL

t⌒{0}m−n . This allows us
to let {φ(s)} = ⋂︁

n∈ω Ss
n for every s ∈ 2ω to obtain a well–defined extension

φ : 2ω → Y .
To show that this extension is continuous let s ∈ 2ω and ε > 0. By as-

sumptions there exists n ∈ N such that for every t ∈ 2<ω satisfying |t| ≥ n
the diameters of XL

t and XR
t are less than ε. In particular, diam(Ss

n) ≤ ε.
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Let U := {t ∈ 2ω; t|n+1 = s|n+1}, then clearly s ∈ U , U is open in 2ω and
φ(U) ⊆ Ss

n ⊆ B(φ(s); ε). Thus φ : 2ω → Y is continuous and obviously there
can not be any other continuous extension since E is dense in 2ω.

Let s ̸= t ∈ 2ω. Let n ∈ ω satisfy s|n = t|n but s(n) ̸= t(n). By symmetry,
we may assume that s(n) = 0 and t(n) = 1. Then φ(s) ∈ Ss

n = XL
s|n , φ(t) ∈

St
n = XR

t|n = XR
s|n and XL

s|n ∩ XR
s|n = ∅ by assumption. Hence φ(s) ̸= φ(t) and

therefore φ is one–to–one. Notice that this actually shows that φ : 2ω → Y is
a homeomorphism onto its image, since 2ω is compact and Y is metrizable, in
particular Hausdorff.

It remains to show that all points in φ(2ω \ {0̄, 1̄}) are cut points of Y . This
is straightforward for points in φ(E \ {0̄, 1̄}) and moreover, φ(0̄) and φ(1̄) lie in
different connected components of Y \x for every x ∈ φ(E \{0̄, 1̄}). For example,

φ(0̄) ∈ XL ⊆ XL ∪ (XL
∅ \ {φ(0⌒1̄)}) = Y \ (X∅ ∪ XR

∅ ∪ XR),
φ(1̄) ∈ XR ⊆ XR ∪ XR

∅ ∪ (X∅ \ {φ(0⌒1̄)}) = Y \ (XL
∅ ∪ XL)

and the sets Y \ (X∅ ∪ XR
∅ ∪ XR), Y \ (XL

∅ ∪ XL) ⊆ Y \ {φ(0⌒1̄)} are open in
Y (and thus also in Y \ {φ(0⌒1̄)}) since we suppose that XL, XL

∅ , X∅, XR
∅ , XR

are (Peano) subcontinua of Y and hence they must be closed. This shows that
φ(0⌒1̄) is a cut point of Y and φ(0̄), φ(1̄) lie in different connected components
of Y \ {φ(0⌒1̄)}.

Let s ∈ 2ω\E and suppose for contradiction that Y \{φ(s)} is connected. Then
it is also path connected, since in Peano continua path components of open sets
are open and hence are equal to connected components. Therefore there is an arc
a : I → Y \{φ(s)} satisfying a(0) = φ(0̄), a(1) = φ(1̄). For ε := d(φ(s), a(I)) > 0
we can find n ∈ ω such that diam(Ss

n) < ε. Let t ∈ E \ {0̄, 1̄} be such that
φ(t) ∈ Ss

n, this is possible since φ(r⌒0⌒1̄) ∈ XL
r and φ(r⌒1⌒0̄) ∈ XR

r for every
r ∈ 2<ω. But then a(I) ⊆ Y \ {φ(t)} and therefore φ(0̄), φ(1̄) lie in the same
connected component of Y \ {φ(t)}. This is a contradiction since it was proven
above that φ(0̄) and φ(1̄) lie in different connected components of Y \ x for every
x ∈ φ(E \ {0̄, 1̄}).

Example 27. It is not true in general that if X is a Peano continuum, xn ∈
X, n ∈ N, are cut points of X and lim

n→∞
xn = x ∈ X, then x also must be a cut

point of X. Consider the following example: let

X := [0, 1] × [−1, 0] ∪
⋃︂

n∈N
{1/n} × [0, 1/n] ⊆ R2.

Then X is a Peano continuum, xn := (1/n, 0) are cut points of X for every
n ∈ N, but (0, 0) = lim

n→∞
xn is not a cut point of X.

But it is true that if X is a Peano continuum, xn ∈ X, n ∈ N, are cut points
of X such that lim

n→∞
xn = x ∈ X and for every n ∈ N there are An ̸= Bn connected

components of X \ {xn} such that ⋂︁
n∈N An \ {x} ≠ ∅, ⋂︁

n∈N Bn \ {x} ≠ ∅, then
x is a cut point of X. This is exactly the reason why the preceding observation
holds.

In particular, the preceding Lemma immediately gives us the following:
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Corollary 28. Let X be a Peano continuum. Suppose that there are Y L, Y, Y R

Peano subcontinua of X such that Y contains a free Cantor set φ. Suppose
further that X = Y L ∪ Y ∪ Y R, Y L ∩ Y = {φ({0}ω)}, Y ∩ Y R = {φ({1}ω)} and
Y L ∩ Y R = ∅. Then the set of all cutpoints of X is uncountable.

Perhaps suprisingly, the converse holds too. However before we can prove it,
we need to prove in preparation two observations.

Observation 29. Let A be an arc and fix some homeomorphism h : I → A. Let
D be an uncountable subset of A. Then the following is true:

1. there exists x ∈ (0, 1) such that D ∩h([0, x]), D ∩h([x, 1]) are uncountable,

2. there exists y ∈ (0, 1) such that for every 0 < ε ≤ 1−y the set D∩h([y, y +
ε]) is uncountable,

3. there exists y ∈ (0, 1) such that for every 0 < ε ≤ y the set D ∩h([y −ε, y])
is uncountable.

Proof. For simplicity of notation we will suppose that A = I and h = id, the
general case follows immediately.

1 Let J := {x ∈ [0, 1]; D ∩ [0, x] is uncountable}, S := {x ∈ [0, 1]; D ∩
[x, 1] is uncountable}, i := inf J and s := sup S. It is sufficient to prove that
i < s. Suppose for contradiction that s ≤ i and let xn, n ∈ N, be a stricly in-
creasing sequence converging to s and yn, n ∈ N, be a stricly decreasing sequence
converging to s. Then for every n ∈ N :

• D ∩ [yn, 1] is at most countable, since s < yn implies yn /∈ S,

• D ∩ [0, xn] is at most countable, since xn < s ≤ i implies xn /∈ J .

Clearly
D ⊆

⋃︂
n∈N

(D ∩ [0, xn]) ∪
⋃︂

n∈N
(D ∩ [yn, 1]) ∪ {s},

but the right side is a countable union of at most countable sets and hence an at
most countable set, a contradiction.

Thus there exists x ∈ [0, 1] such that D ∩ h([0, x]), D ∩ h([x, 1]) are uncount-
able, in particular x ̸= 0, 1.

2 By 1 there exists x0 ∈ (0, 1) such that D∩[0, x0], D∩[x0, 1] are uncountable.
Using 1 for the interval [x0, 1] and uncountable set D ∩ [x0, 1] yields x1 ∈ (x0, 1)
such that D ∩ [x0, x1], D ∩ [x1, 1] are uncountable. Similarly if xn is defined for
some n ∈ N, we can find xn+1 ∈ (x0, xn) such that D ∩ [x0, xn+1], D ∩ [xn+1, xn]
are uncountable.

This gives us a strictly decreasing sequence (xn)n∈N of points greater then
x0. Let 0 < x0 ≤ x := lim

n→∞
xn < 1 be its limit and let 0 < ε ≤ 1 − x. There

exists n ∈ N such that xn < x + ε. Then [xn+1, xn] ⊆ [x, x + ε] and hence
D ∩ [x, x + ε] ⊇ D ∩ [xn+1, xn] is uncountable.

3 is analogical to 2.

Observation 30. Let X be a Peano continuum and U ⊆ X an open connected
set with finite boundary. Then the closure of U is a Peano subcontinuum of X.
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Proof. Clearly U is closed, connected and hence a subcontinuum of X, so we only
need to show that it is locally connected. Let x ∈ U and V be an open set in U
containing x. If x ∈ U , then U ∩ V is an open set in X containing x and hence
there exists W ⊆ U ∩ V connected and open in X and thus also in U contaning
x.

Suppose that x lies in the boundary of U . Let W be an open neighborhood
of x in X that contains no point of the boundary of U except for x. Let V ′ be
open in X such that V = V ′ ∩ U . Since X is Peano, there exists P ′ ⊆ W ∩ V ′

connected and open in X contaning x. Then P := P ′∩U is an open neighborhood
of x in U . Suppose for contradiction that it is not connected, then there exists a
(nonempty) proper F ⊆ P clopen in P . We may suppose that x /∈ F , otherwise
we would consider P \ F instead of F .

Clearly F is a (nonempty) proper subset of P ′. Moreover, F is closed in P ′

since it is closed in P and P is closed in P ′ because P = P ′∩U . Similarly F is open
in P and thus also in P \{x} since x /∈ F . Further P \{x} = (P ′∩U)\{x} = P ′∩U
since P ′ ⊆ W and thus x is the only point lying both in P ′ and boundary of U .
Finally, this implies that F is open in P ′, therefore F is a (nonempty) clopen
proper subset of P ′ which contradicts the connectedness of P ′.

Let us proceed with the promised converse of Corollary 28.

Lemma 31. Let X be a Peano continuum with uncountably many cut points.
Then there are Y L, Y, Y R Peano subcontinua of X, Y containing a free Cantor
set φ, such that X = Y L ∪ Y ∪ Y R, Y L ∩ Y = {φ({0}ω)}, Y ∩ Y R = {φ({1}ω)}
and Y L ∩ Y R = ∅.

Proof. Let U be a countable base of open sets in X formed by nonempty con-
nected sets. For U, V ∈ U let D(U, V ) ⊆ X be the set of cut points of X such
that there exist A, B ⊆ X disjoint, open and satisfying X \ {x} = A ∪ B, U ⊆
A, V ⊆ B. In other words, D(U, V ) is the set of those cut points of X that
separates U and V .

Notice that for every cut point x of X there exists nonempty disjoint open
sets A, B ⊆ X such that X \ {x} = A ∪ B, and hence also U, V ∈ U such that
U ⊆ A, V ⊆ B. Thus ⋃︁{D(U, V ), U, V ∈ U } is the set of all cut points of X
and hence uncountable by assumption. Since U × U is only countable, there
exist U, V ∈ U such that D(U, V ) is uncountable.

Fix arbitrary u ∈ U , v ∈ V . Let x ∈ X \ D(U, V ), if x ∈ U ∪ V then U ∪ V is
an open subset of X \D(U, V ) containing x. Otherwise the connected component
of X \ {x} containing U contains also V . Since conneted and path components
of open sets coincide in Peano continua, there exists an arc a : I → X \ {x} such
that a(0) = u, a(1) = v. Let ε := d(a(I), x) > 0, then B(x, ε) ⊆ X \ D(U, V )
since for every y ∈ B(x, ε) either y ∈ U ∪ V or the set U ∪ a(I) ∪ V ⊆ X \ {y} is
connected. Thus D(U, V ) is closed.

Fix some arc h : I → X such that h(0) = u, h(1) = v. Then the set
U ∪ h(I) ∪ V is connected and contains both U, V and thus, by definiton, it can
not be a subset of X \ {x} for any x ∈ D(U, V ). But for every x ∈ D(U, V )
we have U, V ⊆ X \ {x} and therefore, by the above, x ∈ h(I). Hence D(U, V )
is an uncountable and closed subset of h(I). In what follows, we will denote
D := D(U, V ) for brevity.
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By Observation 29, items 2 and 3, there exists a < b ∈ (0, 1) such that for ev-
ery 0 < ε ≤ min{1−a, b} the sets D∩h([a, a+ε]), D∩h([b−ε, b]) are uncountable.
Using Observation 29, items 2 and 3 again, there exists a′ < b′ ∈ (a, b) such that
for every 0 < ε ≤ min{a′ − a, b − b′} the sets D ∩ h([a′ − ε, a′]), D ∩ h([b′, b′ + ε])
are uncountable. Let φ(0̄) := h(a), φ(1̄) := h(b), φ(0⌒1̄) := h(a′), φ(1⌒0̄) :=
h(b′) ∈ h(I), then moreover φ(0̄), φ(1̄), φ(0⌒1̄), φ(1⌒0̄) ∈ D since D is closed.

Let Y L be the complement (in X) of the connected component of X \ {φ(0̄)}
that contains φ(1̄), Y R be the complement of the connected component of X \
(Y L ∪ {φ(1̄)}) that contains h((a, b)) and Y := (X \ (Y L ∪ Y R)) ∪ {φ(0̄), φ(1̄)}.
Further let Y L

∅ be the closure of the connected component of Y \ {φ(0⌒1̄)} that
contains φ(0̄), Y R

∅ be the closure of the connected component of Y \ {φ(1⌒0̄)}
that contains φ(1̄) and Y∅ := (Y \ (Y L

∅ ∪ Y R
∅ )) ∪ {φ(0⌒1̄), φ(1⌒0̄)}.

Since components of open sets are open in Peano continua, it follows by Ob-
servation 30 that Y L, Y R, Y, Y L

∅ , Y∅, Y R
∅ are Peano subcontinua of X.

Let s ∈ 2<ω and suppose that we have already defined Y L
s a Peano sub-

continuum of X and φ|F for some s⌒0̄, s⌒0⌒1̄ ∈ F ⊆ E finite such that
as := h−1(φ(s⌒0̄)), bs := h−1(φ(s⌒0⌒1̄)) satisfy as < bs and D ∩ h([as, as +
ε]), D ∩ h([bs − ε, bs]) are uncountable for every 0 < ε ≤ bs − as. We will define
Y L

s⌒0, Ys⌒0, Y R
s⌒0 and φ(s⌒00⌒1̄), φ(s⌒01⌒0̄) having similar properties.

Let an ∈ (as, bs) ∩ h−1(D), n ∈ N, be a strictly decreasing sequence converg-
ing to as and bn ∈ (as, bs) ∩ h−1(D), n ∈ N, be a strictly increasing sequence
converging to bs. Suppose for contradiction that for every n ∈ N there exists xn

lying in the connected component of X \ {h(as), h(an)} containing h((as, an))
that does not lie in B(h(as), 2−|s|). By compactness of X we may suppose that
the sequence (xn)n∈N converges to some x ∈ X.

Clearly x /∈ B(h(as), 2−|s|), in particular x ̸= h(as). Let P, Q be disjoint
connected neighborhoods of x and h(as), respectively. Let n1 ∈ N satisfy that
h((as, an1)) ⊆ Q and xn ∈ P for every n ≥ n1. Since xn1 lies in the connected
component of X \{h(as), h(an1)} containing h((as, an1)) and connected and path
components of open sets concide in Peano continua, there exists an arc g1 : I →
X \ {h(as), h(an1) satisfying g1(0) = xn1 , g1(1) ∈ h((as, an1)).

Let n2 ∈ N be such that h(an2) /∈ g1(I). Since xn2 lies in the connected
component of X \{h(as), h(an2)} containing h((as, an2)) and connected and path
components of open sets concide in Peano continua, there exists an arc g2 : I →
X \ {h(as), h(an2) satisfying g2(0) = xn2 , g2(1) ∈ h((as, an2)). Then n2 > n1
because g1(1) ∈ h((as, an1)) and thus g1(0) = xn1 , g2(0) = xn2 ∈ P . Therefore

U ∪ [u, g2(1)] ∪ g2(I) ∪ P ∪ g1(I) ∪ [g1(1), v] ∪ V

is connected. Moreover, it is a subset of X\{h(an2)} since h(an2) ∈ h((as, an1)) ⊆
Q, which finally contradicts the fact that an2 ∈ D. Thus there exists n ∈ N such
that the connected component of X \ {h(as), h(an)} containing h((as, an)) is a
subset of B(h(as), 2−|s|). Analogically we can show that there exists m ∈ N such
that the connected component of X \ {h(bs), h(bm)} containing h((bm, bs)) is a
subset of B(h(bs), 2−|s|). Let k ≥ m, n satisfy h((as, ak) ∪ (bk, bs)) ∩ F = ∅.

By Observation 29, items 2, 3, there exist a′
s ∈ (as, ak) and b′

s ∈ (bk, bs) such
that for every 0 < ε ≤ min{a′

s − as, bs − b′
s} the sets D ∩ h([a′

s − ε, a′
s]), D ∩

h([b′
s, b′

s + ε]) are uncountable. Let φ(s⌒00⌒1̄) := h(a′
s), φ(s⌒01⌒0̄) := h(b′

s) ∈
h(I), then moreover φ(s⌒00⌒1̄), φ(s⌒01⌒0̄) ∈ D since D is closed.
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Let Y L
s⌒0 be the complement in Y L

s of the connected component of Y L
s \

{φ(s⌒00⌒1̄)} that contains φ(s⌒01⌒0̄), Y R
s⌒0 be the complement of the con-

nected component of Y L
s \ (Y L

s⌒0 ∪ {φ(s⌒01⌒0̄)}) that contains h((a′
s, b′

s)) and
Ys⌒0 := (Y L

s \ (Y L
s⌒0 ∪ Y R

s⌒0)) ∪ {φ(s⌒00⌒1̄), φ(s⌒01⌒0̄)}. Since components of
open sets are open in Peano continua and Y L

s is a Peano continuum by induc-
tion hypotheses, it follows by Observation 30 that Y L

s⌒0, Y R
s⌒0, Ys⌒0 are Peano

subcontinua of X.
Analogically if we have already defined for some s ∈ 2<ω a Peano con-

tinuum Y R
s and φ|F for some s⌒1̄, s⌒1⌒0̄ ∈ F ⊆ E finite such that as :=

h−1(φ(s⌒1⌒0̄)), bs := h−1(φ(s⌒1̄)) satisfy as < bs and D ∩ h([as, as + ε]), D ∩
h([bs − ε, bs]) are uncountable for every 0 < ε ≤ bs − as, we can find Y L

s⌒1, Ys⌒1,
Y R

s⌒1 and φ(s⌒11⌒0̄), φ(s⌒10⌒1̄) having similar properties.
This finishes the induction step. The resulting function φ : E → X is a free

Cantor set by construction.

Thus we have a characterization of continua that can be equipped with the
structure described in Corollary 28 and Lemma 31, namely these are exactly
continua with uncountably many cut points. Now we will show how this structure
naturally entails a structure of the topological fractal.

Lemma 32. Let X be a Peano continuum. Suppose that there are Y L, Y, Y R

Peano subcontinua of X such that Y contains a free Cantor set φ. Suppose
further that X = Y L ∪ Y ∪ Y R, Y L ∩ Y = {φ({0}ω)}, Y ∩ Y R = {φ({1}ω)} and
Y L ∩ Y R = ∅. Then X is a topological fractal.

Proof. We aim to use the Observation 22 with n = 2 and m = 1. Thus we need
to construct three functions with certain properties. All three constructions will
be based on the General Mapping Theorem 4.

However before we start, let us observe that all the sets listed below are open:

• Y L \ {φ(0̄)},

• Y \ {φ(0̄), φ(1̄)},

• Y R \ {φ(1̄)},

• Y L ∪ (Y \ {φ(1̄)}),

• Y R ∪ (Y \ {φ(0̄)})

and for every s ∈ 2<ω:

• Y L
s \ {φ(s⌒0̄), φ(s⌒0⌒1̄)},

• Ys \ {φ(s⌒0⌒1̄), φ(s⌒1⌒0̄)},

• Y R
s \ {φ(s⌒1⌒0̄), φ(s⌒1̄)},

• Y L
s ∪ (Ys \ {φ(s⌒0̄), φ(s⌒1⌒0̄)})

• Y R
s ∪ (Ys \ {φ(s⌒0⌒1̄), φ(s⌒1̄)}).

27



This observation makes the verification of upper–continuity trivial in what
follows. Checking that all the listed sets are indeed open in X is straightforward
by induction and by cases, for example

Y \ {φ(0̄), φ(1̄)} = X \ (Y L ∪ Y R),

Y L
∅ \ {φ(0̄), φ(0⌒1̄)} = (Y \ {φ(0̄), φ(1̄)}) \ (Y∅ ∪ Y R

∅ )
and for every s ∈ 2<ω:

Y L
s⌒0 \ {φ(s⌒0̄), φ(s⌒00⌒1̄)} = (Y L

s \ {φ(s⌒0̄), φ(s⌒0⌒1̄)}) \ (Ys⌒0 ∪ Y R
s⌒0).

Let us start with the construction. Firstly we will define a sequence (Cn)n∈N
of maps from X to the space of subintervals of I. For any m ∈ N define cm :=
1
2 + ∑︁m−1

i=0 (−1)s(i)+1 · 1
22+i . For n ∈ N let

Cn(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0}; x ∈ Y L \ {φ(0̄)},

{1}; x ∈ Y R \ {φ(1̄)},

{cm}; x ∈ Ys \ {φ(s⌒0⌒1̄), φ(s⌒1⌒0̄)}, s ∈ 2m, m ≤ n,

[cm − 1
21+m ; cm]; x ∈ Y L

s , s ∈ 2n,

[cm; cm + 1
21+m ]; x ∈ Y R

s , s ∈ 2n.

The sequence (Cn)n∈N satisfies the hypotheses of the General Mapping Theo-
rem 4, namely for every n ∈ N the function Cn is upper–continuous and satisfies⋃︁{Fn(x), x ∈ X} = I, while for every x ∈ X the sequence (Fn(x))n∈N is a decreas-
ing sequence formed by continua with diameters converging to zero. Hence the
function c : X → I given by c(x) := ⋂︁

n∈N Cn(x) is well–defined, continuous and
onto I. Let h : I → Y R be a surjective continuous map and let g(= g1) := h ◦ c.

Secondly we will define by induction a sequence (F 0
n)n∈N of maps from X to

the space of (Peano) subcontinua of Y L ∪ Y L
∅ ∪ Y∅. By Observation 12 there exist

continuous onto maps h3 : Y R → Y L, h2 : Y L → Y∅ such that h3(φ(1̄)) = φ(0̄),
h2(φ(0̄)) = φ(0⌒1̄). Define F 0

1 by:

F 0
1 (x) :=

⎧⎪⎪⎨⎪⎪⎩
{h3(x)}; x ∈ Y R \ {φ(1̄)},

{h2(x)}; x ∈ Y L \ {φ(0̄)},

Y L
∅ ; x ∈ Y.

Suppose that we have already found F 0
n for some n ∈ N and we will define

F 0
n+1. For every s ∈ 2<ω, |s| = n − 2, there exists a continuous surjective map

h0
s : Ys → Y0⌒sop such that h0

s(φ(s⌒0⌒1̄)) = φ(0⌒sop⌒1⌒0̄), h0
s(φ(s⌒1⌒0̄)) =

φ(0⌒sop⌒0⌒1̄). Let

F 0
n+1(x) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{h0

s(x)}; x ∈ Ys \ {φ(s⌒0⌒1̄), φ(s⌒1⌒0̄)}, s ∈ 2<ω, |s| = n − 2,

Y R
0⌒sop ; x ∈ Y L

s , s ∈ 2<ω, |s| = n − 2,

Y L
0⌒sop ; x ∈ Y R

s , s ∈ 2<ω, |s| = n − 2,

F 0
n(x); otherwise.

Thirdly we will define by induction a sequence (F 1
n)n∈N of maps from X to

the space of (Peano) subcontinua of Y R
∅ . Let
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F 1
1 (x) :=

⎧⎪⎪⎨⎪⎪⎩
{φ(1̄)}; x ∈ Y R \ {φ(1̄)},

{φ(1⌒0̄)}; x ∈ Y L \ {φ(0̄)},

Y R
∅ ; x ∈ Y.

Suppose that we have already find F 1
n for some n ∈ N and we will define F 1

n+1.
For every s ∈ 2<ω, |s| = n − 2, there exists a continuous surjective map h1

s : Ys →
Y1⌒s such that h1

s(φ(s⌒0⌒1̄)) = φ(1⌒s⌒0⌒1̄), h1
s(φ(s⌒1⌒0̄)) = φ(1⌒s⌒1⌒0̄).

Let

F 1
n+1(x) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{h1

s(x)}; x ∈ Ys \ {φ(s⌒0⌒1̄), φ(s⌒1⌒0̄)}, s ∈ 2<ω, |s| = n − 2,

Y L
1⌒s; x ∈ Y L

s , s ∈ 2<ω, |s| = n − 2,

Y R
1⌒s; x ∈ Y R

s , s ∈ 2<ω, |s| = n − 2,

F 1
n(x); otherwise.

Again, both sequences (F 0
n)n∈N, (F 1

n)n∈N satisfy the hypotheses of the General
Mapping Theorem 4, hence the functions f0 : X → Y L ∪ Y L

∅ ∪ Y∅, f1 : X → Y R
∅

given by f0(x) := ⋂︁
n∈N F 0

n(x), f1 := ⋂︁
n∈N F 1

n(x) are well–defined, continuous and
onto. Thus we immediately obtain X = f0(X) ∪ f1(X) ∪ g(X).

Notice that g is constant on Y ′ for every Y ′ ∈ {Y L, Y R} ∪ {Ys, s ∈ 2<ω},
f1 is constant on Y L and on Y R, f1|Ys = h1

s and f0|Ys = h0
s for every s ∈ 2<ω

and f0|Y L = h2, f0|Y R = h3. Thus in particular f0(Y L) = Y∅, f0(Y R) = Y L and
f0(Ys) = Y0⌒sop , f1(Ys) = Y1⌒s for every s ∈ 2<ω. This immediately gives us that
for every f ∈ ⋃︁∞

i=0{f0, f1}i the function g ◦ f ◦ g is constant since g(X) = Y R.
Notice that from the definition of the functions f0, f1 follows that f1(X) =

Y R
∅ ⊆ Y , f0(Y ) = Y L

∅ ⊆ Y , (f0)3(X) ⊆ (f0)2(Y L ∪ Y ) ⊆ f0(Y L
∅ ∪ Y∅) ⊆ f0(Y ) ⊆

Y L
∅ . Thus f(X) is a subset of Y L

∅ or of Y R
∅ for every f ∈ {f0, f1}3.

Finally, notice that f0(Y M
s ) ⊆ Y N

t for every s ∈ 2<ω and M ∈ {L, R}, where
t ∈ 2<ω satisfies |t| = |s| + 1 and N ∈ {L, R} \ {M}. Similarly f1(Y M

s ) = Y M
t

for every s ∈ 2<ω and M ∈ {L, R}, where t ∈ 2<ω satisfies |t| = |s| + 1. Let
ε > 0, then there exists k ∈ N such that for every s ∈ 2<ω satisfying |s| ≥ k the
diameters of XL

s and XR
s are less than ε. Let f ∈ {f1, . . . , fn}k+3, then we obtain

by induction from the preceding that f(X) ⊆ Y M
s for some s ∈ 2<ω, |s| = k.

Therefore the diameter of f(X) is less then ε, thus all hypotheses of Observation
22 are satisfied and hence X is a topological fractal.

Remark. Strictly speaking, we do not need the General Mapping Theorem to
find the functions c, f0, f1. Alternatively we can define directly their restrictions
to the subset Y L ∪ Y R ∪ ⋃︁{Y L

s ∪ Y R
s , s ∈ 2<ω}, which is a dense subset of X.

Moreover, the functions f0, f1 can be quite easily defined directly on the whole
space X.

The reason why we use General Mapping Theorem is thus not the construction
itself, but the (proof of the) continuity of the resulting functions. In more detail,
if we chose to construct the functions c, f0, f1 directly, we would then have to
prove they are continuous, respectively their restrictions to the subset Y L ∪ Y R ∪⋃︁{Y L

s ∪ Y R
s , s ∈ 2<ω} are uniformly continuous so we can extend them to be

continuous maps defined on the whole space X. But it turns out that there is
probably no comfortable such proof. In fact, the straightforward proof is likely
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to be the most easiest one, while it is technical and in principle it just copies the
proof of the General Mapping Theroem.

Let us summarize what we have proved so far.

Theorem 33. Every Peano continuum with uncountably many cut points is a
topological fractal.

Proof. The assertion folows immediately from Lemmata 31 and 32.

Theorem 33 strengthens significantly the result of Dumitru who proved in
Dumitru [2011] that every continuum of the form X ∪ A, where |X ∩ A| = 1
and A is an arc, is a topological fractal. The fractal structure built by Dumitru
consists of three maps just like the structure we built up in the proof of Lemma
32.

Next we will further generalize Theorem 33 to so–called local cut points.

Definition 34. Let X be a topological space. We say that x ∈ X is a local cut
point of X if there exists U a connected neighborhood of x such that U \ {x} is
not connected.

It is easy to observe, that every local cut point of any connected space is also
a local cut point of that space, but the converse is not true.

Lemma 35. Let (X, d) be a Peano continuum with uncountably many local cut
points. Then there either exist Y L, Y, Y R Peano subcontinua of X, Y containing
a free Cantor set φ, such that X = Y L ∪Y ∪Y R, Y L ∩Y = {φ({0}ω)}, Y ∩Y R =
{φ({1}ω)} and Y L ∩ Y R = ∅, or there are Y, Z Peano subcontinua of X, Y
containing a free Cantor set φ, such that X = Y ∪ Z, Y ∩ Z = {φ(0̄), φ(1̄)}.

Proof. If the set of all cut points of X is uncountable Lemma 31 applies, so we may
suppose that there are at most countably many cut points. Let U be a countable
base of open sets in X formed by nonempty connected sets. For P, U, V ∈ U let
D(P, U, V ) ⊆ X be the set of those points x ∈ X such that there exist A, B ⊆ P
disjoint, open and satisfying P \ {x} = A ∪ B, U ⊆ A, V ⊆ B. In other words,
D(P, U, V ) is the set of those local cut points of X that separates U and V in P .

We will prove that ⋃︁{D(P, U, V ); P, U, V ∈ U } is the set of all local cut
points of X. Let x ∈ X be a local cut point of X, let P ′ ⊆ X connected
neighborhood of x such that P ′ \ {x} is not connected and P ∈ U such that
x ∈ P ⊆ P ′. Suppose for contradiction that P \ {x} is connected. Let A, B ⊆
P ′ \{x} be disjoint, open and satisfying A∪B = P ′ \{x}, then either P \{x} ⊆ A
or P \ {x} ⊆ B since it is connected. We may suppose that P \ {x} ⊆ A. Thus
P ∩ B = ∅, but then P ′ = (A ∪ {x}) ∪ B = (A ∪ P ) ∪ B where A ∪ P, B are open
and disjoint, which contradicts the connectedness of P ′.

Therefore there are A, B ⊆ P \ {x} disjoint, open and satisfying A ∪ B =
P \ {x}, and hence also U, V ∈ U such that U ⊆ A, V ⊆ B. Thus indeed⋃︁{D(P, U, V ); P, U, V ∈ U } is the set of all local cut points of X and hence it
is uncountable by assumption. Since U × U × U is only countable, there exist
P, U, V ∈ U such that D(P, U, V ) is uncountable.

Since connected and path components coincide in Peano continua and P is an
open connected set, it is a path connected. Fix arbitrary u ∈ U , v ∈ V and some
arc h : I → P such that h(0) = u, h(1) = v. Then the set U ∪ h(I) ∪ V ⊆ P is
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connected and contains both U, V and thus, by definiton, it can not be a subset
of X \ {x} for any x ∈ D(P, U, V ). But for every x ∈ D(P, U, V ) we have
U, V ⊆ P \ {x} and therefore, by the above, x ∈ h(I). Hence D(P, U, V ) is a
subset of h(I).

Let x ∈ h(I) \ D(P, U, V ), if x ∈ U ∪ V then U ∪ V is an open subset
of P \ D(U, V ) containing x. Otherwise the connected component of P \ {x}
containing U contains also V . Since conneted and path components of open
sets coincide in Peano continua, there exists an arc a : I → P \ {x} such that
a(0) = u, a(1) = v. Let ε := d(a(I), x) > 0, then B(x, ε) ∩ P ⊆ P \ D(U, V )
since for every y ∈ B(x, ε)∩P either y ∈ U ∪V or the set U ∪a(I)∪V ⊆ P \{y}
is connected. Thus D(P, U, V ) is an uncountable closed subset of h(I). In what
follows, we will denote D := D(P, U, V ) for brevity.

By Observation 29, items 2 and 3, there exists a < b ∈ (0, 1) such that for
every 0 < ε ≤ min{1 − a, b} the sets D ∩ h([a, a + ε]), D ∩ h([b − ε, b]) are
uncountable. Let φ(0̄) := h(a), φ(1̄) := h(b) ∈ h(I), then moreover φ(0̄), φ(1̄) ∈
D since D is closed.

Let Y be the connected component of X \{φ(0̄), φ(1̄)} that contains h((a, b))
united with {φ(0̄), φ(1̄)}. Let Z := (X \ Y ) ∪ {φ(0̄), φ(1̄)}, then Z is connected
since if it was not, all points in the uncountable D would be cut points of X
and we suppose that there are at most countably many cut points of X. By
Observation 30 Y and Z are Peano subcontinua of X.

It remains to find a free Cantor set in Y and that process is completely
analogical to the one in the proof of Lemma 31 so we omit it here.

Lemma 36. Let X be a Peano continuum and suppose that there are Y, Z Peano
subcontinua of X, Y containing a free Cantor set φ, such that X = Y ∪ Z,
Y ∩ Z = {φ(0̄), φ(1̄)}. Then X is a topological fractal.

Proof. Similarly to the proof of Lemma 32, we aim to use Observation 22, but this
time with n = 4 and m = 1. We will denote the desired functions f00, f01, f10, f11
and g. The constructions themself are straightforward but technical and moreover
analogical to those in Lemma 32, hence we will omit technical details leading to
General Mapping Theorem here and just ilustrate the idea in pictures.

Theorem 37. Any Peano continuum with uncountably many local cut points is
a topological fractal.

The last theorem finally strengthens significantly even the result of M. Nowak
who proved in Nowak and Fernández-Mart́ınez [2016] that every continuum con-
taining an arc with nonempty interior or equivalently, every continuum of the
form X ∪ A, where |X ∩ A| ≤ 2 and A is an arc, is a topological fractal. The
fractal structure built by Nowak consists of five maps just like the structure we
built up in the proof of Lemma 32.

3.3 Regenerating fractals
The notion of a regenerating fractal was introduced in Nowak [2021]. Here are
the definition and the main result from that article.
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Definition 38. A Hausdorff topological space A is called the regenerating fractal
if for every nonempty, open set U ⊂ A there exists a family F of continuous
selfmaps on A, constant outside U , such that (A; F ) is a topological fractal.
Theorem 39. For every Peano continuum X which has A ⊂ X regenerating
fractal with nonempty interior, X is an underlying space for some topological
fractal.

Beside this result, the article Nowak [2021] contains some examples of regen-
erating fractals. Note that, since in particular an arc is a regenerating fractal,
this results generalizes the fact that every Peano continuum with a free arc is a
topological fractal. Yet this generalization is independent of ours.

With this result in mind, M. Nowak posed in her article the following two
questions related to the old Hata’s question whether every Peano continuum is a
topological fractal.

Nowak [2021, Problem 4.9]: Has every Peano continuum which is underly-
ing space for some topological fractal, a regenerating fractal as a subset with
nonempty interior?

Nowak [2021, Problem 4.10] Is there a nontrivial Peano continuum without a
regenerating fractal as a subset with nonempty interior?

The first question askes whether the converse of the above therorem is true
or not, while the negative answer to the second question together with the above
theorem would give us immediately positive answer to Hata’s question. Using the
main result proven in the previous section, we can show that these two questios
of M. Nowak are actually equivalent. In fact, it should be clear that the second
question is stronger than the first, so we are only left to justify the converse.
Lemma 40. Let Y be a topological space, Y = YL ∪ A ∪ YR where YL, A, YR

are closed subsets of Y such that YL ∩ A = {aL}, A ∩ YR = {aR}, YL ∩ YR = ∅
and X ⊆ Y a regenerating fractal. Denote by B the intersection of {aL, aR} and
the set of all isolated points of X ∩ A. Then X ′ := (A ∩ X) \ B is empty or a
regenerating fractal too.
Proof. Suppose that X ′ is nonempty and let U ⊆ X ′ be an arbitrary nonempty
open set in X ′, then there exists U ′ ⊆ Y open such that U = U ′ ∩ X ′. Then
U ∩ int(A) = U ′ ∩ ((A ∩ X) \ B) ∩ int(A) = (U ′ ∩ int(A)) ∩ X is open in X.
Moreover it is nonempty since X ′ \ int(A) is finite with no isolated points of X ′

and therefore nowhere dense in X ′.
Thus there exists F a set of continuous self–maps of X constant outside

U ∩ int(A) such that (X; F ) is a topological fractal. Then F ′ := {f |X′ ; f ∈ F}
satisfies that for every ε > 0 there exists k ∈ N such that for every g ∈ F ′k the
diameter of g(X ′) is less then ε. It also satisfies |X \ ⋃︁{f(X ′); f ∈ F ′}| ≤ 1,
but we may assume that X = ⋃︁{f(X ′); f ∈ F ′} since otherwise we would just
add one (constant) function to F ′ and it is straightforward to check that this
enriched set of maps would still satisfy the previous condition.

Fix arbitrary z ∈ X ′ and for any f ∈ F ′ define f ′ : X ′ → X ′ by

f ′(x) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f(x); f(x) ∈ int(A),
aL; f(x) ∈ YL and aL ∈ X ′,

aR; f(x) ∈ YR and aR ∈ X ′,

z; otherwise.
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Let F ′′ := {f ′; f ∈ F ′}, then F ′′ consists of continuous self–maps of X ′, for
every ε > 0 there exists k ∈ N such that for every g ∈ F ′′k the diameter of g(X ′)
is less then ε and also X ′ = ⋃︁{f(X ′); f ∈ F ′′}. Thus (X ′; F ′′) is a topological
fractal.

Remark. The space X ′ we have constructed satisfies that if A and X were con-
nected, then X ′ is connected too, if further X was closed then X ′ is a continuum
and thus a Peano continuum.

Theorem 41. If every Peano continuum which is underlying space for some
topological fractal contains a regenerating fractal as a subset with nonempty inte-
rior, then every Peano continuum contains a regenerating fractal as a subset with
nonempty interior. In particular, if every Peano continuum which is underlying
space for some topological fractal contains a regenerating fractal as a subset with
nonempty interior, then every Peano continuum is a topological fractal.

Proof. Suppose that every Peano continuum which is underlying space for some
topological fractal contains a regenerating fractal as a subset with nonempty
interior. Let (X, d) be an arbitrary nontrivial Peano continuum, we may assume
that it contains no point of 2ω. Let us recall that the Cantor set 2ω which is
homeomorphic to the set C = {∑︁

n∈ω
s(n)
3n+1 ; s ∈ 2ω} ⊆ I via the map φ : s ↦→∑︁

n∈ω
s(n)
3n+1 . The idea of what we are going to do is, roughly speaking, to attach

one copy of X in between every pair of consetive points of C, the ”smaller” copy
the closer the points are, and in this way we will obtain a connected topological
fractal.

Fix some a, b ∈ X such that d(a, b) = diam(X) and for any s ∈ 2<ω denote
(Xs, ds) := (X ×{s}, 1

3|s|+1·diam(X)d), as := (a, s), bs := (b, s) ∈ Xs. Let Y be the
set 2ω ∪ ⋃︁

s∈2<ω Xs quotient by the smallest equivalence ∼ satisfying as ∼ s⌒0⌒1̄
and bs ∼ s⌒1⌒0̄ for every s ∈ 2<ω.

We define a metric e on Y by e(x, y) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds(x, y); x, y ∈ Xs,

|x − y|; x, y ∈ 2ω,

ds(x, as) + |as − y|; y ∈ 2ω, x ∈ Xs, s ∈ 2<ω, |as − y| < |bs − y|,
ds(x, bs) + |bs − y|; y ∈ 2ω, x ∈ Xs, s ∈ 2<ω, |bs − y| < |as − y|,
ds(y, as) + |as − x|; x ∈ 2ω, y ∈ Xs, s ∈ 2<ω, |as − x| < |bs − x|,
ds(x, bs) + |bs − y|; x ∈ 2ω, y ∈ Xs, s ∈ 2<ω, |bs − x| < |as − x|,
ds(x, as) + |as − bt| + dt(bt, y); x ∈ Xs, y ∈ Xt, s ̸= t, |as − bt| < |bs − at|,
ds(x, bs) + |bs − at| + dt(at, y); x ∈ Xs, y ∈ Xt, s ̸= t, |bs − at| < |as − bt|,

Notice that e is well–defined since |bs − as| = ds(as, bs) for every s ∈ 2<ω.
Clearly e is symmetric and satisfies that e(x, y) = 0 if and only if x = y, so we
only need to prove the triangle unequality. Let x, y, z ∈ Y and we may assume
that they are pairwise different since otherwise the unequality holds trivially. If
there exists s ∈ 2<ω such that x, y, z ∈ Xs or x, y, z ∈ C, then the unequality
holds just because ds and | · | are metrics.

Suppose that x, y ∈ Xs and z ∈ C or y ∈ Xt for some s ̸= t. Suppose that
|as − z| < |bs − z|, respectively |as − bt| < |bs − at|; the other case is analogous.
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Then there exists ε ≥ 0 such that e(x, z) = ds(x, as) + ε, e(y, z) = ds(y, as) + ε.
Thus

e(x, y) = ds(x, y) ≤ ds(x, as) + ds(y, as) + 2ε = e(x, z) + e(y, z),

e(x, z) = ds(x, as) + ε ≤ ds(x, y) + d(y, as) + ε = e(x, y) + e(y, z),
e(y, z) = ds(y, as) + ε ≤ ds(x, y) + d(x, as) + ε = e(x, y) + e(x, z).

Finally, suppose that |Xs ∩ {x, y, z}| ≤ 1 for every s ∈ 2<ω. Let aw :=
as, bw := bs, dw := ds if w ∈ Xs \ C and aw := bw := w, dw(w, w) := 0 if w ∈ C
for every w ∈ {x, y, z}. We may assume that bx < ay ≤ by < az since no point
of c ∈ C satisfies ax < c < bx, ay < c < by or az < c < bz and moreover the sests
{ax, bx}, {ay, by}, {az, bz} are pairwise disjoint. Thus

e(x, z) = dx(x, bx) + |bx − az| + dz(az, z) ≤
≤ dx(x, bx) + |bx − ay| + |ay − by| + |by − az| + dz(az, z) =
= dx(x, bx) + |bx − ay| + dy(ay, by) + |by − az| + dz(az, z) ≤
≤ dx(x, bx) + |bx − ay| + dy(ay, y) + dy(y, by) + |by − az| + dz(az, z) =
= e(x, y) + e(y, z).

Further

e(x, y) = dx(x, bx) + |bx − ay| + dy(ay, y) ≤ dx(x, bx) + |bx − ay| + dy(ay, by) =
= dx(x, bx) + |bx − ay| + |ay − by| = dx(x, bx) + |bx − by| ≤
≤ dx(x, bx) + |bx − az| ≤ e(x, z)

and similarly e(y, z) ≤ e(x, z). This concludes the proof that e is a metric.
To prove that (Y, e) is a Peano continuum, we will describe a continuous

onto map f : I → Y . Let f |C := φ−1 and for every s ∈ 2<ω let f |[s⌒0⌒1̄, s⌒1⌒0̄]
be a surjective map onto Ys satisfying f(φ(s⌒0⌒1̄)) = s⌒0⌒1̄, f(φ(s⌒1⌒0̄)) =
s⌒1⌒0̄, there exists some by Observation 12. It is immediate that f is well–
defined and surjective.

Let s ∈ 2<ω and x, y ∈ f([s⌒0̄, s⌒0⌒1̄]). Let ax := x if x ∈ 2ω and otherwise
there exists r ∈ 2<ω such that x ∈ Xr. Notice that in both cases ax ∈ 2ω ∩
f([s⌒0̄, s⌒0⌒1̄]) = {t ∈ 2ω; t|s|+1 = s⌒0} and thus in particular in the latter
case |r| ≥ |s| because s⌒0̄ ≤ r⌒0⌒1̄ ≤ s⌒0⌒1̄. Therefore e(x, ax) = dr(x, ax) ≤
diamdr(Xr) = 1/(3|r|+1) ≤ 1/(3|s|+1). Similarly we find ay ∈ 2ω∩f([s⌒0̄, s⌒0⌒1̄])
such that e(y, ay) ≤ 1/(3|s|+1). This gives us e(x, y) ≤ e(x, ax) + e(ax, ay) +
e(ay, y) = e(x, ax)+|ax−ay|+e(ay, y) ≤ 1/(3|s|+1)+|s⌒0̄−s⌒0⌒1̄|+1/(3|s|+1) =
2/(3|s|+1) + ∑︁∞

i=|s|+2 = 3/(3|s|+1) = 1/(3|s|). Thus diam(f([s⌒0̄, s⌒0⌒1̄])) ≤
1/(3|s|) and hence diam(f([s⌒0̄, s⌒0⌒1̄])) converges to 0 as |s| tends to infinity.
This implies that f is continuous since we already know from the construction
that it is continuous on [s⌒0⌒1̄, s⌒1⌒0̄] for every s ∈ 2<ω.

Finally, for every s ∈ 2ω the sets f([0̄, s]), f([s, 1̄]) are closed, hence the
sets f([0̄, s)), f((s, 1̄]) are open and moreover by construction they are disjoint.
Therefore every point of 2ω ⊆ Y is a cutpoint of Y and thus by Corollary Y is a
topological fractal. Thus by our assumption, there exists R ⊆ Y a regenerating
fractal with nonempty interior.
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Notice that 2ω is nowhere dense in Y ; it is closed since it is an image of
compact Cantor set and it is a closure of a nowhere dense set E. Thus there
exists s ∈ 2<ω such that int(R) ∩ Xs is nonempty. Since Y = f([0̄, s⌒0⌒1̄]) ∪
Xs ∪ f([s⌒1⌒0̄]), f([0̄, s⌒0⌒1̄]) ∩ Xs = {s⌒0⌒1̄}, Xs ∩ f([s⌒1⌒0̄]) = {s⌒1⌒0̄},
f([0̄, s⌒0⌒1̄]) ∩ f([s⌒1⌒0̄]) = ∅, by Lemma 40 R′ = (R ∩ Xs) \ B is a topological
fractal or the emptyset, where B ⊆ Xs, |B| ≤ 2. In particular, (int(R) ∩ Xs) \ B
is still nonempty and open in Xs. Thus R′ ⊆ Xs is a regenerating fractal with
nonempty interior in Xs. Finally Xs is homeomorphic to X, thus the same holds
for X and this concludes the proof.
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