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Introduction
We are surrounded by complex systems, including a society that requires coop-
eration between billions of individuals, intracellular protein interactions, a power
grid that supplies energy for virtually all modern technology, or interactions of
neurons in the human brain. It is nearly impossible to derive a collective behav-
ior of a complex system just from the knowledge of its components. However,
there are complex networks behind all these complex systems that encode the
interactions between their components. [1]

Community is a cohesive group within a complex network. Roughly speaking,
it is a part of the complex network in which nodes are more likely connected to
each other than to nodes from other communities in the same network. Detection
of communities helps us to understand the structure and dynamics of a complex
network and, therefore, the underlying phenomenon.

There are plenty of community detection algorithms. They differ in result-
ing communities, running time, or ability to handle networks with weighted or
directed edges. This work focuses on two of them, the Louvain algorithm and
the label propagation algorithm. They are both among the fastest community
detection algorithms, and they are used in practice. In the first chapter, we first
introduce modularity, a network measure crucial for community detection. After
that, we describe the algorithms and explain possible modifications. The second
chapter is devoted to the comparison of the algorithms. We show some common
properties and differences in the outputs of the algorithms.

An important field of network science is network neuroscience. Human brain
can be represented as a complex network and studied from the perspective of
graph theory. The third chapter reviews current knowledge about community
structure and modularity changes in the functional network, which is used to
investigate the neurophysiological dynamics of the brain. It also explains how to
obtain the functional network using functional magnetic resonance imaging.

We applied the algorithms to real functional networks of patients with multiple
sclerosis. Multiple sclerosis is an inflammatory disease attacking the brain. Pre-
vious studies reported changes in community structure and modularity caused
by the disease. The second part of chapter three describes the course of the
disease and summarizes the current knowledge about community structure and
modularity in MS patients’ functional networks.

The last chapter is devoted to experiments on human brain functional net-
works of patients diagnosed with multiple sclerosis. In the beginning, we intro-
duce the dataset and network construction. Then we compare the results of the
algorithms on the dataset. Afterwards, we use the algorithms to investigate the
dataset itself, the difference between groups of patients regarding modularity, and
the effect of neurorehabilitation therapy on modularity.
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1. Community Detection
There is no universal definition of a community. However, there were some at-
tempts to formally specify what a community is. The following two of them were
provided by Radicchi et al. [2].

Definition 1 (Community in a Strong Sense). For an unweighted and undirected
network, a subgraph of the network is a community in a strong sense if each node
has more connections within the community than with the rest of the graph.

Definition 2 (Community in a Weak Sense). For an unweighted and undirected
network, a subgraph of the network is a weak community if the sum of all degrees
within the subgraph is larger than the sum of all degrees toward the rest of the
network.

The notion of a community can be generalized to weighted networks. However,
we must consider the meaning of weights in a particular network. Weights that
indicate the strength of the connection, proximity, or similarity between vertices
can give useful information about communities. On the other hand, there can
also be other kinds of weights on edges that express the distance between vertices,
i.e. the vertices are closer if the weight is smaller, or do not indicate any close
relationship between the vertices. For example, if we use the traveling cost as an
edge weight in a graph representing a transport system, it does not necessarily
express the distance of route endpoints. Assuming that the weights express a
proximity of vertices, the vertices connected with an edge with greater weight are
more likely to be in the same community. Therefore we can consider the sum of
weights of edges instead of the count of edges that is in Radicchi’s definitions.

There are many approaches to the community detection problem. One can
minimize cuts, maximize internal density, maximize the ratio between internal
and external connections, etc. [3]. We will focus on two of them – maximization
of modularity, a measure defined by Girvan and Newman in 2004 [4], and local
optimization of the ratio between internal and external links. Specifically, we
will focus on the multilayer modularity maximization Louvain algorithm and the
label propagation algorithm.

1.1 Modularity
Modularity Q measures the density of connections within partitions in comparison
to the density of connections between partitions. It is used to compare the quality
of a partition of a network. It is defined as

Q = 1
2m

∑︂
i,j

[︄
Ai,j −

kikj

2m

]︄
δ(ci, cj). (1.1)

Here, Ai,j denotes the weight of the edge eij and Ai,i is two times the weight of a
self-loop eii. Note that for an undirected graph Ai,j = Aj,i. We denote the sum of
the weights of the edges incident with vertex i as ki = ∑︁

y Ai,y and m = 1
2
∑︁

i,j Ai,j

is the sum of weights of all edges in the graph. Kronecker delta function δ(ci, cj)
is defined as 1 if ci = cj and 0 otherwise, where ci is the community of vertex i.
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The sum iterates through vertices, but it will be useful to express modu-
larity using a sum iterating through communities. We denote ki,inC

the sum
of weights of the edges incident to vertex i going to other vertices in C, so
ki,inC

= ∑︁
y,i̸=y Ai,yδ(C, cy). We denote ΣinC

the sum of weights of edges incident
to vertices in community C going to vertices inside C. This can be expressed as

ΣinC
=
∑︂

i

(ki,inC
δ(C, ci) + Ai,i) =

∑︂
i,j

Ai,jδ(C, ci)δ(C, cj). (1.2)

The sum of weights of the edges incident with vertices in a community C is
denoted by ΣtotC

= ∑︁
i kiδ(C, ci). Then, the modularity can also be formulated as

Q = 1
2m

∑︂
C

⎡⎣∑︂
i,j

[︄
Ai,j −

kikj

2m

]︄
δ(C, ci)δ(C, cj)

⎤⎦
= 1

2m

∑︂
C

⎡⎣∑︂
i,j

Ai,jδ(C, ci)δ(C, cj)−
1

2m

∑︂
i,j

kikjδ(C, ci)δ(C, cj)
⎤⎦

= 1
2m

∑︂
C

⎡⎣ΣinC
− 1

2m

∑︂
i

kiδ(C, ci)
∑︂

j

kjδ(C, cj)
⎤⎦

= 1
2m

∑︂
C

[︃
ΣinC

− 1
2m

(ΣtotC
) (ΣtotC

)
]︃

= 1
2m

∑︂
C

[︃
ΣinC

− 1
2m

(ΣtotC
)2
]︃
.

(1.3)

1.1.1 Modularity Calculation – Example
Let us show an example of modularity calculation on a simple graph 1.1. Let us

1

2

3

4 5

Figure 1.1: Graph G with communities K = {1, 2, 3} and L = {4, 5}

assume that all its edges have weight 1. The modularity of partition of G into
communities K and L is

Q = 1
2m

∑︂
C

[︃
ΣinC

− 1
2m

(ΣtotC
)2
]︃

= 1
2m

[︃(︃
ΣinK

− 1
2m

(ΣtotK
)2
)︃

+
(︃

ΣinL
− 1

2m
(ΣtotL

)2
)︃]︃

= 1
14

[︃(︃
(2 + 2 + 2)− 1

14(2 + 3 + 3)2
)︃

+
(︃

(1 + 3)− 1
14(3 + 3)2

)︃]︃
= 10

49

(1.4)

Note that the loop is counted twice because each edge is counted once for each end.
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1.1.2 Properties of Modularity
The modularity value stays the same if we multiply all edge weights by a constant.

Qk = 1∑︁
i,j kAi,j

∑︂
C

⎡⎣∑︂
i,j

[︄
kAi,j −

∑︁
y kAi,y

∑︁
y kAj,y∑︁

i,j kAi,j

]︄
δ(C, ci)δ(C, cj)

⎤⎦
= 1

k
∑︁

i,j Ai,j

∑︂
C

⎡⎣∑︂
i,j

[︄
kAi,j −

k2∑︁
y Ai,y

∑︁
y Aj,y

k
∑︁

i,j Ai,j

]︄
δ(C, ci)δ(C, cj)

⎤⎦
= k

k
∑︁

i,j Ai,j

∑︂
C

⎡⎣∑︂
i,j

[︄
Ai,j −

∑︁
y Ai,y

∑︁
y Aj,y∑︁

i,j Ai,j

]︄
δ(C, ci)δ(C, cj)

⎤⎦
= 1∑︁

i,j Ai,j

∑︂
C

⎡⎣∑︂
i,j

[︄
Ai,j −

∑︁
y Ai,y

∑︁
y Aj,y∑︁

i,j Ai,j

]︄
δ(C, ci)δ(C, cj)

⎤⎦ = Q

(1.5)

If there is only one community containing all vertices, the modularity value is
0 because ΣinC

= ΣtotC
= 2m.

Q =
∑︁

C ΣinC

2m
−
∑︁

C (ΣtotC
)2

(2m)2 = 2m

2m
− (2m)2

(2m)2 = 0 (1.6)

A single-vertex community without a loop, which is not an isolated vertex,
always contributes with a negative value to modularity in a connected graph
because ΣinC

is 0 and ΣtotC
is positive.

According to Brandes et al. [5], −1/2 ≤ Q < 1 for unweighted and undirected
networks. It also holds for weighted graphs; the proof follows the same structure.

Brandes et al. [5] also proved some interesting properties of maximum mod-
ularity:

• Clustering with maximum modularity has no cluster that consists of a single
node with degree one.

• There always exists a clustering with maximum modularity, in which each
cluster consists of a connected subgraph.

• Clustering of maximum modularity for clique of size n consists of a single
cluster. For cycle of size n, the clustering of maximum modularity consists
of approximately

√
n clusters of size

√
n each.

1.1.3 Limits of Modularity
Modularity optimization is an important technique in community detection, but
we must be aware of some of its limitations.

Modularity Value

The modularity value of a partition does not carry much information because it
may have very high values even for random graphs due to fluctuations. It is more
interepretable when compared with the corresponding modularity expected for a
random graph of the same size. [6]
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The Resolution Limit

The resolution limit was described in detail by Fortunato and Barthélemy [7] for
unweighted undirected networks and generalized by Berry et al. [8] for weighted
networks. They claimed that the partition with the highest modularity does not
necessarily capture the underlying community structure of the network because
it merges small communities into larger ones.

Let us have two communities C and D. The gain in modularity if we merge
C and D together is

∆Q = 1
2m

(︃
ΣinC

+ 2eCD + ΣinD
− 1

2m

(︂
(ΣtotC

)2 + 2ΣtotC
ΣtotD

+ (ΣtotD
)2
)︂)︃

− 1
2m

(︃[︃
ΣinC

− 1
2m

(ΣtotC
)2
]︃

+
[︃
ΣinD

− 1
2m

(ΣtotD
)2
]︃)︃

= 1
2m

(︃
2eCD −

1
2m

2ΣtotC
ΣtotD

)︃
= 1

m
(eCD −

ΣtotC
ΣtotD

2m
)

(1.7)

where eCD is a sum of weights of edges interconnecting C and D. We consider
only the local change, the modularity of the rest of the network remains the same.

The gain should not be positive if C and D are two distinct communities
because if it is positive and we maximize modularity, we should merge them.
The problem is that it is positive in some cases.

The modularity change ∆Q is positive when eCD > ΣtotC
ΣtotD

/2m. Assuming
ΣtotC

≈ ΣtotD
= Σtot we can derive the resolution limit Σtot >

√
2m · eCD. For un-

weighted network, eCD ≥ 1, thus Σtot >
√

2m. Therefore if Σtot ≤
√

2m · eCD,
then modularity increases by merging C and D even if they are clearly distinct
communities (e. g. cliques interconnected by one edge). [1]

Kn

Kn

KnKn

Kn

Kn

Kn

Kn Kn

Kn

(a) An unweighted network made out of
identical cliques on n nodes, which are con-
nected by single links. If the number of
cliques is larger than about

√
2m, modu-

larity is higher for partition consisting of
pairs of cliques represented by dotted lines.

Kn Kn

Kp

Kp

(b) An unweighted network with four pair-
wise identical cliques with n and p nodes,
p < n, connected by single links. If n
is large enough with respect to p (e.g.,
n = 20, p = 5), modularity is higher with
the two smallest modules merged into one.

Figure 1.2: Resolution limit example by Fortunato and Barthélemy [7]
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1.1.4 Mixing Parameter
Modularity is not the only network characteristic related to a community struc-
ture. Mixing parameter µ is another one, measuring how ”clear” is the community
structure in a specific network. It is defined as

µ =
∑︁

i ki,out∑︁
i ki

(1.8)

where ki,out stands for the sum of weights of edges from a vertex i going to other
communities than its own.

The intuition behind the definition is that if the mixing parameter is higher,
the fraction of edges connecting communities is greater. Therefore the community
structure is less clear and harder to detect.

Let us remind the Definition 1 of community in a strong sense. We see that
for µ > 1/2, communities in the strong sense tend to disappear. [9]

1.2 Louvain Method
There are many modularity maximization community detection methods. Lou-
vain method was introduced by Blondel et al. in 2008 [10]. It is a hierarchical
heuristic method based on a local maximization of modularity. The essential
concepts of the method are fast evaluation of the change of modularity while
moving a vertex from one community to another and contraction of communi-
ties. That are also the reason why it outperforms other modularity maximization
algorithms.

1.2.1 Changes of Modularity
Let us show how to compute the gain in modularity obtained by moving a vertex
from one community to another using the formulation of modularity (1.3). The
loss in modularity ∆Qi,C→i obtained by moving a vertex i out of community C
so it becomes an isolated vertex can be computed by (1.9). We subtract the
modularity of the community C containing the vertex i from the modularity of
C without i and an isolated vertex i. Let us remind that Ai,i denotes two times
the weight of a self-loop of the vertex i.

∆Qi,C→i = 1
2m

[︄
ΣinC

− 2ki,inC
− Ai,i −

(ΣtotC
− ki)2

2m
+ Ai,i −

k2
i

2m

]︄

− 1
2m

[︄
ΣinC

− (ΣtotC
)2

2m

]︄

= 1
2m

[︄
−2ki,inC

− (ΣtotC
− ki)2

2m
− k2

i

2m
+ (ΣtotC

)2

2m

]︄

= 1
2m

[︄
−2ki,inC

− (ΣtotC
)2 − 2ΣtotC

ki + k2
i + k2

i − (ΣtotC
)2

2m

]︄

= 1
2m

[︄(︄
ki

m

)︄
(ΣtotC

− ki)− 2ki,inC

]︄

(1.9)

7



The gain in modularity ∆Qi,i→D obtained by moving an isolated vertex i
to a community D can be computed similarly. We subtract the modularity of
the community D and the vertex i from the modularity of the community D
including i.

∆Qi,i→D = 1
2m

[︄
ΣinD

+ Ai,i + 2ki,inD
− (ΣtotD

+ ki)2

2m

]︄

− 1
2m

[︄
ΣinD

− (ΣtotD
)2

2m
+ Ai,i −

k2
i

2m

]︄

= 1
2m

[︄
2ki,inD

− (ΣtotD
+ ki)2

2m
+ (ΣtotD

)2

2m
+ k2

i

2m

]︄

= 1
2m

[︄
2ki,inD

− (ΣtotD
)2 + 2ΣtotD

ki + k2
i − (ΣtotD

)2 − k2
i

2m

]︄

= 1
2m

[︄
2ki,inD

−
(︄

ki

m

)︄
ΣtotD

]︄

(1.10)

This gives the formula (1.11) for computing the modularity change of moving
vertex i from a community C to a community D.

∆Qi,C→D = ∆Qi,C→i + ∆Qi,i→D

= 1
2m

[︄(︄
ki

m

)︄
(ΣtotC

− ki)− 2ki,inC

]︄
+ 1

2m

[︄
2ki,inD

−
(︄

ki

m

)︄
ΣtotD

]︄

= 1
2m

[︄(︄
ki

m

)︄
(ΣtotC

− ki)− 2ki,inC
+ 2ki,inD

−
(︄

ki

m

)︄
ΣtotD

]︄

= 1
2m

[︄(︄
ki

m

)︄
(ΣtotC

− ΣtotD
− ki)− 2(ki,inC

− ki,inD
)
]︄

(1.11)

Changes of Modularity – Example

Here we show on graph G from Figure 1.1 how modularity changes when we move
vertex 4 from community L to community K. The first step is to move the vertex
out of community L as in Figure 1.3.

1

2

3

4 5

Figure 1.3: Graph G with communities K = {1, 2, 3}, L = {5} and M = {4}

∆Q4,L→M = 1
2m

[︄(︄
ki

m

)︄
(ΣtotL

− ki)− 2ki,inL

]︄
= 1

14

[︃(︃3
7

)︃
(6− 3)− 2

]︃
= − 5

98
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The modularity of a graph G from Figure 1.3 with communities K, L, M is
15/98 which corresponds to

Q + ∆Q4,L→4 = 10
49 −

5
98 = 15

98
where Q is the modularity (1.4) of the original graf G.

1

2

3

4 5

Figure 1.4: Graph G with communities K = {1, 2, 3, 4} and L = {5}

The second step is to move the vertex 4 into community K as shown in
Figure 1.4. The change of modularity is calculated as

∆Q4,M→K = 1
2m

[︄
2ki,inK

−
(︄

ki

m

)︄
ΣtotK

]︄
= 1

14

[︃
2 · 2−

(︃3
7

)︃
8
]︃

= 2
49 .

The overall change of modularity while moving vertex 4 from community L
to community K is calculated using (1.11) as follows:

∆Q4,L→K = 1
2m

[︄(︄
ki

m

)︄
(ΣtotL

− ΣtotK
− ki)− 2(ki,inL

− ki,inK
)
]︄

= 1
14

[︃(︃3
7

)︃
(6− 8− 3)− 2(1− 2)

]︃
= − 1

98
= − 5

98 + 1
49 = ∆Q4,L→M + ∆Q4,M→K

The modularity of G with the new communities from Figure 1.4 is
10
49 −

1
98 = 19

98
.

Now, let us also move vertex 5 from community L to community K:

∆Q5,L→K = 1
2m

[︄(︄
ki

m

)︄
(ΣtotL

− ΣtotK
− ki)− 2(ki,inL

− ki,inK
)
]︄

= 1
14

[︃(︃3
7

)︃
(3− 11− 3)− 2(0− 1)

]︃
= −19

98
If we calculate the modularity of G with only one community containing all

vertices, it is 0. It corresponds to the change of modularity while moving vertex
5 to community K because

19
98 −

19
98 = 0

.
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1.2.2 Louvain Algorithm
The algorithm proceeds as follows: Initially, every node forms its own community.
The algorithm consists of two phases repeated iteratively. It is shown in a pseudo-
code of Algorithm 1. We write ∑︁{i, j} instead of ∑︁i,j and k{v} (k{v, inC})
instead of kv (kv,inC

) for readability.

Algorithm 1 Louvain algorithm – main function
1: function louvain(weighted graph G = (V, E))
2: m← 1

2
∑︁{i, j}Ai,j

3: for all v ∈ V do
4: v.comm← v ▷ initially each node in its own community
5: tot[v.comm] ← ∑︁{i} evi.weight ▷ evi.weight is a weight of edge evi

6: end for
7: Q← (1/2m)∑︁{v ∈ V } (evv.weight− (1/2m)(tot[v.comm])2)
8: ▷ initial modularity
9: while modularity is increasing do

10: Q← maximize-modularity(G, Q, m)
11: G← communities-to-graph(G)
12: end while
13: end function

During the first phase, we obtain a local maximum of the modularity by
moving the individual vertices to the communities of their neighbors. See a
pseudo-code of Algorithm 2. For each vertex i, we compute the gain in modularity
∆Qi,C→D coming from moving i from its community C to the community D of
its neighbor j. We pick the community with the largest positive ∆Q with ties
broken uniformly randomly. The community assignment is updated immediately.
If no positive gain in modularity is possible, i remains in its own community C.

When no individual move can improve the modularity, we build a new network
whose nodes are now the communities found during the first phase. There is
one node created for each community. The weight of a self-loop of a vertex
corresponding to a community C is ΣinC

where C is the community – the sum
of weights of self-loops of all vertices in C plus two times the weight of all edges
interconnecting vertices in C. The weight of an edge between two new nodes
(communities in the old graph) is the sum of the weights of edges between these
two communities. [10] Algorithm 3 shows pseudo-code for this step.

It was proven by Brandes et al. [11] that modularity maximization for an
unweighted undirected graph is an NP-complete problem. It follows that it is
also NP-complete for a weighted undirected graph. However, the algorithm is
fast for real networks; its running time is linear on typical and sparse data. The
computation of ∆Q is fast due to the formula (1.11), and the number of nodes in
the meta-graph decreases at each iteration, so most of the computing time is spent
on the first iterations. We can also decrease the overall running time by stopping
the first phase when ∆Q does not exceed some threshold. This modification was
used in the original paper [10] to obtain all their numerical results.

10



Algorithm 2 Louvain algorithm – modularity maximization
14: function maximize-modularity(weighted graph G = (V, E), modular-

ity Q, the sum of weights of all edges m)
15: for all v ∈ V do
16: k{v} ← ∑︁{i} evi.weight
17: end for
18: while modularity is increasing do
19: for all v ∈ V do
20: k{v, inv.comm} ←

∑︁{i, i ̸= v, i.comm = v.comm} evi.weight
21: ∆Qbest ← 0
22: cbest ← v.comm
23: for all n ∈ v.neighbors do
24: k{v, inn.comm} ←

∑︁{i, i ̸= v, i.comm = n.comm} evi.weight
25: ∆Q← 1/2m · ((k{v}/m)(tot[v.comm]−tot[n.comm]− k{v})
26: −2(k{v, inv.comm} − k{v, inn.comm}))
27: if ∆Q > ∆Qbest then
28: ∆Qbest ← ∆Q
29: cbest ← n.comm
30: end if
31: end for
32: if ∆Qbest > 0 then
33: Q← Q + ∆Qbest

34: tot[v.comm]←tot[v.comm]− k{v}
35: tot[cbest]←tot[cbest] + k{v}
36: v.comm← cbest

37: end if
38: end for
39: end while
40: return Q
41: end function

1.2.3 Modifications of the Louvain Algorithm
There have been many attempts to improve the Louvain algorithm. Some of them
are mentioned in this section.

Campigotto et al. [12] provided a generalized method for community detec-
tion based on the Louvain algorithm. Modularity is the most popular function
for evaluating the quality of a partition, but there are many others. The au-
thors claim that any linear quality function can be implemented efficiently in the
generalized Louvain algorithm.

Traag et al. [13] came up with a modification called the Leiden algorithm,
which guarantees well-connected communities. If there is a node that acts as a
bridge between different parts of its community, it may be moved to a different
community by the classical Louvain algorithm. Removing such a node from
its community disconnects the community. However, the other nodes in the
community may still be sufficiently strongly connected inside their parts, so they
stay in the community, and the community stays disconnected until the end
of the algorithm. The Leiden algorithm adds one more step between the local

11



Algorithm 3 Louvain algorithm – communities contraction
42: function communities-to-graph(weighted graph G = (V, E))
43: Vnew ← one vertex per community comm in the graph
44: ▷ its community comm is the community comm of the original vertices
45: Enew ← ∅
46: for all u ∈ Vnew do
47: for all v ∈ Vnew do
48: if u = v then
49: euv.weight← ∑︁{i, j ∈ V, i ̸= j, i.comm = u.comm,
50: j.comm = u.comm} eij.weight · 2
51: +∑︁{i ∈ V, i.comm = u.comm} eii.weight
52: else
53: euv.weight← ∑︁{i, j ∈ V, i ̸= j, i.comm = u.comm,
54: j.comm = v.comm} eij.weight
55: end if
56: Enew ← Enew ∪ euv

57: end for
58: end for
59: return (Vnew, Enew) ▷ contracted graph Gnew

60: end function

modularity maximization and the network contraction. The communities found in
the first step are refined, so one community could be represented by more than one
node in the aggregated network. Each node in the new network represents a well-
connected part of a community. Although the Leiden algorithm is considerably
more complex than the Louvain algorithm, the authors showed that for larger
networks and higher mixing parameter the Leiden algorithm is much faster than
the Louvain algorithm and it finds better partitions for higher mixing parameter.

Another improved version of the Louvain algorithm was introduced recently
by Zhang et al [14]. The authors reported slightly higher average modularity
than obtained with the classical Louvain algorithm for the same graphs in a
significantly shorter time. They did two main modifications. Firstly, they handle
local tree structures separately. The local tree structure consists of leaf nodes with
only one neighbor and other nodes, which become leaf nodes if we repeatedly
remove the current leaves. The authors remove all local tree structures in the
network before the modularity maximization iteration, partition the remaining
network, and finally add the tree structures to the partition result. Secondly,
they did not check the gain in the modularity of node movement between two
communities if the communities did not change until the last check. This saves
computation time while the result remains the same.

1.3 Label Propagation
The label propagation algorithm (LPA) was introduced by Raghavan et al. [15]
in 2007. The idea is straightforward. Every node is initialized with a unique
label. We iterate through all nodes in random order. Each node adopts the label
which can be found on the majority of its neighbors. If more than one label has
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the maximum frequency, one is chosen uniformly at random. When every node
has the label that the maximal number of their neighbors have, densely connected
groups of nodes form communities with the same labels. By construction, the
number of neighbors of each vertex in its community is greater than in any other
community. Although the definition is stricter because each vertex must have
more neighbors in its community than in the rest of the network, it resembles
Definition 1, the strong definition of community. [16] A pseudo-code for the label
propagation algorithm is given in Algorithm 4.

Algorithm 4 Label propagation algorithm
1: function label-propagation(graph G = (V, E))
2: for all v ∈ V do
3: v.label← v ▷ initially each node in its own community
4: end for
5: while labels are changing do
6: for all v ∈ V in random order do ▷ synchronous or asynchronous
7: v.label← arg max{l ∈ labels}∑︁{u ∈ v.neighbors, v.label = l} 1
8: ▷ edge weight instead of 1 for weighted variation
9: end for

10: end while
11: end function

The label updating process can be executed synchronously or asynchronously.
In a synchronous setting, the new label of a node is determined based on the old
labels of the neighbors, and then all the nodes are updated. In an asynchronous
variation, when a label of node i is updated and then neighbor j of i is processed,
the new label of i is already considered. The authors of the original paper used
asynchronous updating because the synchronous approach leads to oscillations
for bipartite or nearly bipartite structures in networks. [15]

The running time of the label propagation algorithm is near-linear. Each
iteration takes linear time in the number of edges. The authors claim that their
experiments show that irrespective of the number of nodes, 95% of the nodes or
more have a label that the maximum of its neighbors has by the end of iteration 5.

1.3.1 Modifications of the LPA
Similar to the Louvain algorithm, many modifications of the label propagation
algorithm have been suggested.

First, an easy alternation allows the algorithm to use weights. The only
change is mentioned in the pseudo-code of Algorithm 4 in a comment on line 8.
We consider the sum of weights of edges instead of their count.

Result of the LPA is highly affected by the randomness in breaking ties and
in the ordering of nodes which is known as label propagation strategy. Non-
random orderings have been designed, usually in combination with modified up-
date rules. [3]

We can use smarter initialization than just assigning a unique label to each
vertex. If we have prior knowledge about the communities, we can initially assign
labels accordingly. We can also search for a particular structure in the network

13



(like some specific seed nodes or small subgraphs) and use it for the initialization.
Another option is to assign particular labels manually; variants of this strategy
are known as semi-supervised. [3]

The original LPA formulation is essentially local. However, there are modi-
fications focusing on a definition of neighborhood, taking into account not only
the directly adjacent nodes. These modifications can find better results but at
the cost of increasing time complexity.

1.3.2 Limits of LPA
Monster Community

The LPA often results in a partition consisting of a single community. Such a
dominant community is called a monster community.

Sometimes it indicates that the network is indivisible because its edges are so
dense that there is no community structure. A complete graph is an example of
a single community network, and a monster community obtained by the LPA is
meaningful in this case. [17]

However, in some cases the trivial solution means that the detection process
failed. There is a community structure in the network, but the LPA cannot find it.
See a simple example of monster community occurrence in the LPA in Figure 1.5.

1

5 6

2

34

(a) Initially, each vertex
has a different label

1

5 6

2

34

(b) Node 1 randomly
adopts label of node 6

1

5 6

2

34

(c) Node 2 randomly
adopts label of node 1

1

5 6

2

34

(d) Node 3 randomly
adopts label of node 2

1

5 6

2

34

(e) Node 4 adopts label of
nodes 2 and 3

1

5 6

2

34

(f) Node 5 adopts label of
nodes 1 and 6

Figure 1.5: Monster community example. White color denotes that the node
has its own initial label. Initial label of node 6 is marked with purple and it is
propagated through the network.
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1.4 Igraph
For all the experiments later, implementations of both Louvain and the label prop-
agation algorithm from Igraph library https://igraph.org/ were used. Igraph
is free and open source network analysis tool with backend written in C. It can be
installed as a Python package using pip. The algorithms are implemented there
in both the unweighted and weighted versions.

I found an issue in the LPA implementation in Igraph 0.9.6. The iterative
process of the LPA shloud be performed until every node in the network has a
label to which the maximum number of its neighbors belongs. The problem was,
that this implementation sometimes finished earlier because the goal condition
was checked in the same iteration as the labels were changed.

If at least one label was changed from non-dominant to dominant neighbor-
ing label, it suggested that another iteration is needed. Otherwise, the program
finished. That caused the problem, because even if a node fulfiled the goal condi-
tion when it was processed, the dominant neighboring label could have changed
later, if its neighbor had more dominant neighboring labels, and one was chosen
randomly. Figure 1.6 shows an example of such unwanted behavior.

1 2

3

(a) New iteration starts, two nodes
have the same label

1 2

3

(b) Node 1 randomly adopts label
of node 2

1 2

3

(c) Node 2 randomly adopts label
of node 3

1 2

3

(d) Node 3 randomly adopts label
of node 2

Figure 1.6: Igraph bug example. After this iteration, the program finished, be-
cause the labels never changed from non-dominant to dominant. However, the
goal condition is violated, node 1 does not have the same label as the majority
of its neighbors.

I fixed the bug by separating the relabeling and the goal checking process.
The patch was already merged, so the algorithm works correctly in Igraph 0.9.7
and newer.
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2. Comparison of Community
Detection Algorithms
There is no universal method for comparing the output quality of community
detection algorithms. There are several reasons for that. There is no generally
accepted definition of a community, and it can depend on the meaning of nodes
and edges in a specific network. Therefore the communities resulting from differ-
ent algorithms could be meaningful for different interpretations of the network,
even if its topology is still the same. We want to estimate a community structure
of a network, but the underlying community structure has not been clearly de-
fined, so we do not have any ground truth, a reference solution to compare with.
The algorithms can also be compared in terms of a running time in a typical
situation. Both the Louvain and the label propagation algorithms are considered
to be near-linear.

Community detection algorithms can also be compared experimentally on
various real-world or computer-generated networks (see Section 2.2 for details),
although again the ground truth concerning the correct community definition is
not necessarily obvious, albeit in some systems it can be substituted by domain
expert evaluation.

2.1 Theory
This section contains a theoretical comparison of the Louvain and the label prop-
agation algorithm. We start by showing some differences and then we are dis-
cussing common properties of the algorithms.

2.1.1 Differences
In this section, we discuss what distinguishes the algorithms from each other. It
is evident that the label propagation algorithm does not contract communities as
the multilevel Louvain algorithm does. However, even if we consider only the first
modularity-maximization phase of the Louvain algorithm, the algorithms could
make opposite decisions in certain situations, as shown below. It is caused by the
difference in the update rule changing the community assignment for each vertex.

The label propagation algorithm considers only direct neighbors of each node,
neglecting the size or structure of the neighboring communities. On the other
hand, the Louvain algorithm consideres the whole structure of the neighboring
communities, and the sum of weights of all edges also plays a role in the modu-
larity gain formula (1.11). That is caused by the fact that the Louvain algorithm
maximizes modularity and the label propagation algorithm localy maximizes only
the first term in the modularity definition (1.1).
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Opposite Decisions

Let us show an example of where the algorithms make opposite decisions. We
have a graph G consisting of two cliques K4 and K5 with one shared vertex v.
The graph has two intuitive divisions to communities varying in an assignment
of the shared vertex v to K4 or K5.

The Louvain algorithm can not end up with v assigned to community K5
(Figure 2.1). The modularity of this partition is ≈ 0.217, while the modularity of
a partition with v assigned to the community of K4 (Figure 2.2) is 0.25. The end
condition of the Louvain algorithm is not met in the former case because we can
achieve a positive gain in modularity moving v to the other community.

v

Figure 2.1: Graph G with two communities, modularity ≈ 0.217

On the other hand, the label propagation algorithm can not end up with v
assigned to K4. There are obviously more edges from v to K5 than to K4.

v

Figure 2.2: Graph G with two communities, modularity 0.25

It is possible to generalize the counterexample to all unweighted graphs con-
sisting of two cliques of different sizes sharing one vertex v.

Proposition 1. Let us have an unweighted graph consisting of two cliques of
different sizes sharing one vertex v. Each of the cliques forms a community. In
this situation, the Louvain algorithm and the label propagation algorithm assign
the shared vertex v to different community.

Proof. Let us denote the smaller community S and the greater one G. They have
s and g nodes, 2 < s < g. The label propagation algorithm always places the
shared vertex to the community of the greater clique, because there are more
edges from v to the greater clique than to the smaller one. However, the Louvain
algorithm does the opposite.

Assume for contradiction that the shared vertex is a part of the larger clique
community and the Louvain algorithm finishes, so it is not possible to obtain
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higher modularity by moving the shared vertex to the smaller clique community.

∆Qv,G→S = 1
2m

[︄(︄
kv

m

)︄
(ΣtotG

− ΣtotS
− kv)− 2(kv,inG

− kv,inS
)
]︄

< 0

kv (ΣtotG
− ΣtotS

− kv) < 2m(kv,inG
− kv,inS

)
(2.1)

Let us express the individual terms of the equation using s and g.

2m = s(s− 1) + g(g − 1)
ΣtotG

= g(g − 1) + (s− 1)
ΣtotS

= s(s− 1)− (s− 1)
kv = kv,inS

+ kv,inG
= (s− 1) + (g − 1)

We plug it in the inequality (2.1).[︂
(s− 1) + (g − 1)

]︂(︃[︂
g(g − 1) + (s− 1)

]︂
−
[︂
s(s− 1)− (s− 1)

]︂
−
[︂
(s− 1) + (g − 1)

]︂)︃
<
[︂
s(s− 1) + g(g − 1)

]︂[︂
(g − 1)− (s− 1)

]︂
We can simplify the inequality as follows.[︂

(s− 1) + (g − 1)
]︂[︂

g(g − 1)− s(s− 1) + s− g
]︂

<
[︂
s(s− 1) + g(g − 1)

]︂[︂
g − s

]︂
[︂
g(g − 1)(s− 1)− s(s− 1)(g − 1) + g(g − 1)2 − s(s− 1)2 + s(s− 1)

− g(s− 1) + s(g − 1)− g(g − 1)
]︂

<
[︂
gs(s− 1) + g2(g − 1)− s2(s− 1)− sg(g − 1)

]︂
[︂
(g − s)(g − 1)(s− 1) + g(g − 1)2 − s(s− 1)2 + (s− g)(s− 1) + (s− g)(g − 1)

]︂
<
[︂
gs(s− g) + g2(g − 1)− s2(s− 1)

]︂
[︂
(g − s)(g − 1)(s− 1) + g(g − 1)2 − s(s− 1)2 + (s− g)(s + g − 2)

]︂
<
[︂
gs(s− g) + g2(g − 1)− s2(s− 1)

]︂
Let us rearrange the left and right sides of the inequality.

(g − s)(g − 1)(s− 1) + (s− g)(s + g − 2)− gs(s− g)
< g2(g − 1)− g(g − 1)2 − s2(s− 1) + s(s− 1)2

(g − s)(g − 1)(s− 1) + (s− g)(s + g − 2− gs)
< g(g − 1)

[︂
g − (g − 1)

]︂
+ s(s− 1)

[︂
(s− 1)− s

]︂
(g − s)

[︂
(g − 1)(s− 1) + (gs− s− g + 2)

]︂
< g(g − 1)− s(s− 1)
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In the following steps, we expand the brackets.

(g − s)
[︂
(g − 1)(s− 1) + (gs− s− g + 2)

]︂
− g(g − 1) + s(s− 1) < 0

(g − s)
[︂
2gs− 2s− 2g + 3

]︂
− g2 + g + s2 − s < 0

2g2s− 2sg − 2g2 + 3g − 2gs2 + 2s2 + 2gs− 3s− g2 + g + s2 − s < 0
2g2s− 3g2 + 4g − 2gs2 + 3s2 − 4s < 0
2gs(g − s)− 3(g2 − s2) + 4(g − s) < 0

(g − s)(2gs + 4− 3(g + s)) < 0

We can divide the inequality by (g − s), because g > s, so the term is positive.
Then, we us use the fact that s > 2.

0 > 2gs + 4 + 3s + 3g > 4g + 4 + 6 + 3g = 7g + 10

It is a contradiction, 7g + 10 > 0 because g is positive.

Community with a Negative Contribution to Modularity

The label propagation algorithm can finish with a partition containing a commu-
nity that contributes negatively to the resulting modularity. Figure 2.3 shows an
example, such a community is denoted with purple.

Figure 2.3: Unweighted graph with paritition with a community that contributes
negatively to modularity. The community C with negative contribution to mod-
ularity is marked with purple, the other communities are marked with dashed
ellipses, one ellipsis denotes one community.

The situation in Figure 2.3 is valid result of the label propagation algorithm.
The label propagation process started with the purple label propagation in the
purple community C. Then, the nodes outside of the purple community always
had one neighbor in the purple community and one in other one. All of them
randomly chose the non-purple.

The contribution of the community C to modularity is calculated as

QC = 1
2m

[︃
ΣinC

− 1
2m

(ΣtotC
)2
]︃
.
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Let us plug in the values ΣinC
= 6, ΣtotC

= 18 and 2m = 42, then

QC = 1
42

[︃
6− 1

42182
]︃

= 1
42

[︃256− 324
42

]︃
< 0.

Now we show that the Louvain algorithm can not return a community with a
negative contribution to modularity.

Proposition 2. The Louvain algorithm can not return a community with a neg-
ative contribution to modularity.

Proof. We can prove it by contradiction. We assume that there is a community
with a negative contribution to modularity at the end of the algorithm. Consider
the modularity-maximization phase in the last stage of the algorithm. Each
vertex in the contracted graph represents a different community.

We suppose that the community C represented by a vertex i has negative
modularity, which can be expressed using (1.3) as

eii = ΣinC
<

1
2m

(ΣtotC
)2 = (ki)2

2m
(2.2)

where eii denotes the weight of the self-loop representing the edges which were
inside of the community C (two times the sum of their weights) and ki denotes
the sum of all edges adjacent to vertices in C, so the sum of eii = ΣinC

and the
weights of the edges going out of the community.

The algorithm finished, so it was not possible to merge the vertex i represent-
ing the negative-contribution community with another one and obtain a positive
gain in modularity. It implies that

∆Qi,i→D = 1
2m

[︄
2ki,inD

−
(︄

ki

m

)︄
ΣtotD

]︄
≤ 0 (2.3)

holds for all D ∈ NCi where NCi is the set of communities of neighbors of i.
As a result, for all D ∈ NCi holds the following inequality:

2ki,inD
≤
(︄

ki

m

)︄
ΣtotD

2ki,inD

ki

≤ ΣtotD

m

By summing these terms for all communities of neighbors of vertex i, we get∑︂
D∈NCi

2ki,inD

ki

≤
∑︂

D∈NCi

ΣtotD

m

2
ki

∑︂
D∈NCi

ki,inD
≤

∑︂
D∈NCi

ΣtotD

m

Let use use the fact that ∑︁D∈NCi
ki,inD

= ki − eii. It holds because ki is the sum
of weights of edges going to neighboring vertices plus the self-loop eii

2
ki

(ki − eii) ≤
∑︂

D∈NCi

ΣtotD

m

2m
(︃

1− eii

ki

)︃
≤

∑︂
D∈NCi

ΣtotD
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The expression ∑︁D∈NCi
ΣtotD

sums up weights of all edges adjacent to vertices in
communities neighboring to i. This sum is smaller or equal to 2m, which is the
sum of weights of edges adjacent to all vertices, i.e. two times the sum of weights
of all edges, minus ki, because edges adjacent to i are not part of any D ∈ NCi.
That implies

2m
(︃

1− eii

ki

)︃
≤

∑︂
D∈NCi

ΣtotD
≤ 2m− ki

−2m
(︃

eii

ki

)︃
≤ −ki

eii ≥
(ki)2

2m

Combining this with the inequality (2.2) we obtain a contradiction.

(ki)2

2m
> eii ≥

(ki)2

2m

The proof also confirms that the modularity value obtained using the Louvain
algorithm is always non-negative because none of the communities contributes
with a negative value. However that is not surprising, because the algorithm
maximizes modularity and we know that modularity of a single-community par-
tition is 0.

Number of Communities

In Section 1.3.2, the monster community problem of the label propagation al-
gorithm was mentioned. Because of that, it is fairly common to get just one
community as the output of the LPA. This can cause a difference in the resulting
partition because the Louvain algorithm returns a single community only when
it is not possible to reach any partition with positive modularity.

On the other hand, the Louvain algorithm tends to merge pairs of small
communities because of the resolution limit described in Section 1.1.3. The LPA
does not optimize modularity, so it does not suffer from this limitation. For
example, for a circle of cliques in Figure 1.2a, the Louvain algorithm merges
pairs of cliques, while LPA tends to separate them [7].

2.1.2 Common Properties
We showed differences between the algorithms in the previous section. On the
other hand, thinking about the algorithms, we see some similarities. Especially
label propagation seems similar to the first pass of the modularity maximization
in the Louvain algorithm. The label propagation algorithm assigns each node
to the community where the majority of its neighbors is. That is in fact local
maximization of the first term in modularity definition (1.1). The algorithms also
start in the same way, with single-vertex communities, proceeding one vertex after
another. They iterate through all vertices again and again until convergence. Let
us now show some other the common properties of the algorithms.
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Decreasing Number of Communities

Both algorithms start with the same number of communities as the number of
vertices. The number of communities decreases when the algorithm proceeds. It
happens when a single-node community is incorporated into another community
or, in later phases of the Louvain algorithm, if two communities are merged. The
algorithms share the principle of moving nodes into neighboring communities.
Thus if a community has already disappeared, it can not be restored.

No Single-vertex Communities

None of the algorithms can form a sigle-vertex community consisting of a non-
isolated vertex without a loop.

This is obvious for the LPA. The algorithm terminates when each vertex has
the same label as the majority of its neighbors. Because of that, a vertex can not
have a different label from all its neighbors.

For the Louvain algorithm, this is a specific case of the Proposition 2. As we
mentioned in Section 1.1.2, a single-vertex community without a loop, which is
not an isolated vertex, always contributes with a negative value to modularity in
a connected graph because ΣinC

is 0 and ΣtotC
is positive.

Disconnected Communities

Traag et al. [13] constructed the Leiden algorithm to adress an issue of internally
disconnected communities in the Louvain algorithm. Intuitively, all communities
should be connected. Does the label propagation algorithm suffer from discon-
nected communities as well? Figure 2.4 shows a graph and an ordering of vertices
leading to a disconnected component.

7

6 5

12

34

7

6 5

12

34

7

6 5

12

34

7

6 5

12

34

Figure 2.4: Label propagation resulting into a disconnected community. White
color denotes that the node has its own initial label. Initial label of node 6 is
marked with orange and initial label of node 7 with purple. First, nodes 1 and
2 randomly adopt the purple label of node 7. Then, nodes 3 and 4 adopt the
purple label, because they have only one neighbor, so there is no choice. Node
5 randomly choses orange label of node 6. In the end, node 7 adopts the orange
label as well. Every node has the same label as the majority of its neighbors, so
the LPA finishes. The purple community stays disconnected.
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2.2 Comparison on Artificial Networks
Community detection algorithms are often tested on artificial networks with
known community stucture to determine which ones are faster or reconstruct
the stucture better.

Aldecoa and Maŕın in 2013 [18] compared various community detection al-
gorithms using a closed benchmark. A closed benchmark starts with a network
with a known community structure. Then, edges in the network are rewired.
The rewiring process is guided from the initial network towards a final network.
The topology and community structure of the final network is identical to the ini-
tial one, with the labels of the nodes randomly reassigned. Aldecoa and Maŕın
compared the algorithms based on their performance in reconstructing the initial
or (in later stages of rewiring) the final communities. They used two different
types of networks, called LFR and RC benchmark. The label propagation algo-
rithm was among the best ones in the LFR benchmark, but performed poorly in
the RC benchmark. The Louvain algorithm performed poorly in both of them.

In 2016, Yang et al. [19] conducted a great comparative analysis of the ac-
curacy and computing time of eight different community detection algorithms.
They tested the dependence of the algorithms’ performance on mixing parameter
µ ∈ [0, 0.8] across many different network sizes. Same as Aldecoa and Maŕın [18],
they used the LFR benchmark networks, in which the node degrees and com-
munity sizes follow the power-law distributions. With 200 to 32000 nodes and
a fixed average degree, they changed the structure of networks by using different
values of the mixing parameter. They conclude that taking into account both
accuracy and computing time, the Louvain algorithm outperforms all the others
on the examined networks. It is possible to use it even for 0.5 ⪅ µ ⪅ 0.6, which
is not possible for the label propagation algorithm, because it usually fails and
detects only one community. However, the label propagation algorithm is able to
successfully uncover the structure when µ is small, and it is the fastest one, thus
they recomend it for large networks with µ ⪅ 0.4.1

1Igraph implementations of the algorithms were used for the benchmark, so the results might
be slightly different for the label propagation algorithm after the correction of goal condition
discussed in Section 1.4.
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3. Community Structure of the
Human Brain
The human brain is a highly complex system consisting of hundreds of billions of
interlinked neurons. With the rise of network science came the idea of representing
brain as a complex network [1]. Features of complex networks such as high
clustering or small-world topology (which reflects an optimal balance between
segregation and integration between regions) can be observed in both structural
and functional systems of the human brain [20, 21, 22], although the correct
interpretation of such graph properties is a matter of ongoing controversy [23, 24].

In 2011, Olaf Sporns wrote a review about the human brain as a complex
network [21]. He claims that

”Significant progress has already been made in discovering the net-
work basis of common disorders of the brain, response to and recovery
from brain injury, individual differences, heritability, normal develop-
ment, and aging.” [21, p. 121]

and the field is still developing since that.
This chapter explains what a functional network is and how to obtain it using

magnetic resonance imaging. We discuss the current knowledge about community
structure in human functional networks.

This thesis focuses on modularity and community structure changes in brain
functional networks of multiple sclerosis patients. Therefore the last section of
this chapter is devoted to multiple sclerosis and community detection applications
on functional networks in multiple sclerosis.

3.1 From the Human Brain to a Network
Currently it is not possible to map the whole human brain on a neuron-level.
Therefore comes the question of how to represent the brain as a network. There
are two main types of such networks – structural and functional. Let us note that
the resulting network for both of the approaches highly depends on the definition
of the nodes. Various parcellations of the brain into discrete regions are used to
overcome this issue, but we should be aware of their limitations. [20]

Structural networks represent the anatomical structure of the brain. Brain
regions are represented as nodes linked by physical connections, such as the white
matter tracts that bundle the axonal projections of individual neurons, as edges.
The network can be obtained, for example, using diffusion weighted magnetic
resonance imaging, which uses the tissue-specific restriction in diffusion direction
to map the structure of white matter tracts in the brain. [20, 25]

Functional networks are used to investigate the neurophysiological dynamics
of the brain. There are many methodological approaches based, for example,
on functional magnetic resonance imaging, electroencephalography, magnetoen-
cephalography, or multielectrode array data. Nodes in the functional network
represent brain regions or recording sites. Edges then express synchronization
between time series recordings of neural activity of the nodes. [20, 25]
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Figure 3.1: Schematic representation of brain network construction using fMRI
data. The figure was created by Farahani et al. [26].

3.1.1 Communities in Functional Networks
Recently, much attention has been given to graph theory applications in human
neuroscience. In this section, we mention some of the results obtained so far with
emphasis on the community structure and modularity.

There is strong evidence that functional networks are modular. [22, 25, 27, 28]
There is no agreement on the number of communities, but the majority of func-
tional studies report that there are between three to ten main modules in the
human brain. [29] The network structure, and therefore the number of detected
communities and the specific value of modularity Q, highly depends on method-
ologic preferences such as the number of brain regions (brain parcellation) men-
tioned earlier, but also on neuroimaging pre-processing pipelines, treatment of
connectivity weights and others. [29, 30]

There is some evidence that modularity decreases with aging, but the findings
are ambiguous [26]. In 2008, Meunier et al. [27] observed changes in community
structure, but they claim that there was no significant difference in the modularity
of brain networks of young and older people. On the other hand, more recent
studies indicate a decrease with aging. In 2014, Song et al. [28] observed lower
mean modularity in the older group than in the younger group over a range of
different connection densities. In 2020, Iordan et al. [31] concluded the same and
also observed that modularity decreased when shifting from resting to task mode
in both younger and older adults.

In a systematic review Application of Graph Theory for Identifying Connec-
tivity Patterns in Human Brain Networks from 2019, Farahani et al. [26] discuss
the effect of cognitive loads on the brain modularity. The researchers believe
that functional networks adapt flexibly to the cognitive load while preserving the
modular structure. In 2019, Gallen and D’Esposito [32] even formulated an opin-
ion that modular organization in brain networks is beneficial for performance in
various cognitive domains.
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Community Detection Algorithms

We mentioned several findings about modularity and community structure in
functional networks. However, we have not mentioned any community detection
algorithm in this context. The community detection algorithms are often heuristic
and randomized – both the label propagation and the Louvain algorithm are –
and it could affect the resulting partition. In addition, there is no widely accepted
definition of a community, so the algorithms could have slightly different goals.
Because of that, we should consider the choice of the algorithm.

In 2015, Sporns and Betzel [33] reviewed contemporary approaches to commu-
nity detection in functional networks. They discuss the pros and cons of various
community detection algorithms used in network neuroscience, including the Lou-
vain algorithm. Regarding its disadvantages, they list the resolution limit, but
also the fact that there are usually more partitions with high modularity value
Q, and it is difficult to choose a single representative partition because of that.
However, they do not conclude that any of the algorithms is significantly better,
so it is still reasonable to use the Louvain algorithm with the knowledge of its
limitation. They did not include the label propagation algorithm in the review.

Most of the studies mentioned so far used some type of modularity maxi-
mization. The Louvain algorithm is a popular choice, it was used for example
by Keown et al. (2017) [34] in a study about functional networks in autism, by
Iordan et al. (2020) [31] and Chen et al. (2021) [29] in studies about aging, or
by Servaas et al. (2014) [35] in a study about neuroticism.

Despite the fact that it is one of the fastest community detection algorithms
and it is used in practice in other domains like social networks [36, 37, 38], I did
not find any study using the label propagation algorithm for community detection
or its modifications in functional networks. Therefore it is reasonable to find out
if it might be a suitable choice of community detection algorithm in network
neuroscience.

3.1.2 Functional Magnetic Resonance Imaging – fMRI
This work handles functional networks, specifically networks obtained from mag-
netic resonance imaging data. In this section, the fMRI technology is briefly
introduced.

MRI

The human body, including the brain, is mainly made out of water molecules,
consisting of two hydrogen atoms and one oxygen atom. Protons have a spin
magnetic moment. Because of that, the protons in hydrogen nuclei have their
own magnetic field. [39]

MRI is based on the usage of a strong static magnetic field generated by
powerful magnets. The protons in the water nuclei are usually randomly oriented,
but under the influence of the magnetic field, some of them align parallel with it.
[39, 40]

A radiofrequency (RF) pulse with the same frequency as the spinning protons
is sent through the patient during the imaging process. It stimulates the protons,
so they spin out of equilibrium. The protons absorb the energy from the pulse
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and change their orientation. Therefore they slightly change their magnetic field.
When the RF pulse is over, the protons release the energy that they absorbed
and align back. The MRI sensors detect the energy emitted by this process.
[39, 40, 41]

The MRI process consists of repeated cycles of RF pulses. Protons in differ-
ent tissues and fluids change their magnetization at different extent. Different
intensity of emitted radio frequency signal at a specific “picture-snapping time”
causes different brightness of the resulting image. Because of that, physicians can
distinguish various types of tissues. [40, 41]

fMRI, BOLD fMRI and resting-state BOLD fMRI

The goal of functional MRI is to visualize the movement of blood and fluid.
Several techniques can produce contrast image of blood flow. One of them is a
blood oxygenation level-dependent (BOLD) contrast technique. [41]

Blood brings oxygen to the brain. The BOLD technique uses the fact that
deoxyhemoglobin is paramagnetic, but oxyhemoglobin is not. Because of that,
deoxyhemoglobin is more sensitive to a magnetic field. MRI uses this fact to
determine the sites of higher brain activity because higher brain activity causes
higher oxygen consumption. [41]

BOLD fMRI can measure brain activity when a patient performs some task.
The resulting images show which parts of the brain were the most active dur-
ing the task. When the patient is still, does not perform any activity during
the imaging procedure, and does not think about anything specific, we call it
resting-state MRI. Longer period recording produces time series of spontaneous
fluctuations in the BOLD signal. The result reveals spontaneous brain activity,
which is accompanied by BOLD fluctuations. [41, 42]

3.1.3 From resting-state fMRI to a Network
Correlations of resting-state fMRI time-series of brain regions indicate correla-
tions between its spontaneous neuronal activation patterns. The brain could be
divided into regions using a parcellation scheme. The correlation between resting-
state spontaneous activity time-series of the resulting regions can be calculated.
This operation forms a functional connectivity (FC) matrix, which is showing the
level of functional connectivity between the regions. [42]

The FC matrix can be transformed into an adjacency matrix of a graph with
brain regions as nodes. To do so, we can use a pre-defined cut-off threshold:
two nodes are adjacent if the correlation between them is above the thresh-
old. Another option is to take some percentage of the strongest correlations
as edges and discard the others. [42] Unweighted and weighted version of the
network can be created, the latter using the above-threshold correlations as edge
weights. Both approaches are used in practice, for example Jajcay et al. [43]
in 2022 used unweighted networks to compare modularity between hemispheres,
and Power et al. [30] in 2011 used weighted networks in their study of functional
networks organization.
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3.2 Multiple Sclerosis
Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system.
In this section, we briefly explain how neurons work and then continue to the
principle of the disease.

Billions of neurons in the brain provide a transfer of information. A neuron
consists of a cell body (soma) like other cells, but also of dendrites and a single
axon. The axon is a specialized structure for transferring information over long
distances in the nervous system. On the contrary, dendrites are specialized to
receive information from other neurons. Figure 3.2 shows a schematic illustration
of a neuron. [44, 45]

Figure 3.2: Structure of a neuron.

Within the axon, information is transferred through the movement of an elec-
trical charge (impulse) called an action potential. The axons in the central ner-
vous system are covered by a myelin sheath interrupted periodically at nodes of
Ranvier, short sections where the axonal membrane is exposed (see Figure 3.2).
The myelin sheath insulates the axons, and it allows current to spread faster and
farther, speeding up action potential conduction from node to node. Because
of that, myelin has an important role in the normal functioning of the central
nervous system. [44, 45]

Multiple sclerosis is an autoimmune inflammatory disease causing the damage
of myelin. The damage could be transient; remyelination occurs in such a case.
The myelin degradation damage worsens the ability of the affected nerves to
conduct signals. The symptoms of MS vary according to the affected brain area,
including worsening of gait and postural control, problems with vision, depression,
cognitive decline, impaired speech, and others. [45, 46, 47]

There are three disease phenotypes in multiple sclerosis: relapsing-remitting,
primary progressive, and secondary progressive. Relapsing-remitting is the most
common one. It is characterized by clear episodes of worsening neurological symp-
toms followed by partial or complete recovery periods. Secondary progressive MS
is characterized by an initial relapsing-remitting period followed by persistent
worsening of symptoms. Primary progressive MS is characterized by an accumu-
lation of disability from the onset of symptoms. [48]

The disability in MS can be quantified and monitored over time using the
Expanded Disability Status Scale (EDSS). The EDSS is ranging from 0 (normal
neurologic examination) to 10 (death due to MS) in 0.5 increments. Scoring is
based on a neurological examination.
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3.2.1 Functional Network Structure in MS Patients
In 2019 Fleischer et al. [49] wrote a review of concepts of graph theory appli-
cations on brain networks in multiple sclerosis. They claim that fMRI network
studies provided important insights into brain reorganization processes due to
acute and chronic inflammatory activity. According to their findings, distinct
connectivity patterns have been increasingly linked to specific MS phenotypes
using graph theory. Therefore, the use of graph theory in the study of multiple
sclerosis seems promising.

Regading community structure and modularity in functional networks, Gam-
boa et al. [50] presented a paper Working memory performance of early MS
patients correlates inversely with modularity increases in resting state functional
connectivity networks in 2014. The study included patients with only low dis-
ability status (EDSS < 3). The authors found that network reorganization was
reflected by increased modularity. They suggest that it may be the result of focal
myelin destruction, leading to an adaptive rewiring of previously interconnected
areas. They were further able to differentiate patients from controls with an
accuracy of 75% based on the modularity values. [49]

In 2018, Tahdel et al. [51] reported a decrease of within-network coherence,
resulting in a formation of larger communities. However, they suggest this can
also be explained by a statistical consequence of a decrease of modularity.

In 2020, Welton et al. [52] studied brain network organization in a relation-
ships with cognitive impairment in 37 people with MS and 23 healthy controls.
The MS patients in this study had a relapsing-remmiting or secondary progres-
sive MS. The authors observed more graph theoretic network metrics including
modularity. The result agrees with the study of Gamboa et al. [50] that the
modularity in functional networks in MS is higher than in controls. They con-
clude that summary measures of network organization including modularity may
be valid and reliable markers of cognitive impairment in MS.
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4. Community Detection in MS
Patients’ Functional Networks
We compared the Louvain algorithm and the label propagation algorithm on a
dataset of the resting-state fMRI data of patients with the diagnosis of multiple
sclerosis. They underwent fMRI scanning before and after neurorehabilitation
therapy, and we used the FC matrices obtained from these measuring sessions.

The chapter describes the data used in this work, the process of network
construction, and the detection of communities. Afterward, we discuss the results.

4.1 Data
We used dataset created by Bučková et al. in 2021 and stored in an online
repository https://osf.io/p2kj7/. The authors provided a detailed description
of the dataset in the paper Open Access: The Effect of Neurorehabilitation on
Multiple Sclerosis—Unlocking the Resting-State fMRI Data [46]. This section
briefly summarizes how the patients were chosen and how the data were measured
and preprocessed. For further information, see the above mentioned paper.

4.1.1 Patients
All patients in the dataset have a positive MS diagnosis of one of the three MS
phenotypes – relapsing-remitting, primary progressive, and secondary progressive.
Their EDSS is at most 7.5, and they have a neurologically confirmed stable clinical
status for a minimum of 3 months prior to the study. The study period was
spread over two subsequent projects in 2013-2014 and 2015-2017. Because of
the original project purpose, people with notable spastic paraparesis among the
symptoms and the ability to reach a rehabilitation center regularly were chosen.
Patients with mobility disruption caused by reasons other than those related to
the disease or other orthopedic, cardiovascular, or neurological conditions were
excluded from the study.
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Figure 4.1: Dataset description – quantitative clinical variables
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The resulting dataset consists of fMRI imaging data of 60 MS patients before
(session 1) and after (session 2) two months of neurorehabilitation therapy. They
underwent one of three specific variants of ambulatory “facilitation, inhibition”
physical therapy. For more information concerning the detailed interventions and
its effect on clinical status and white matter characteristics, see a paper written
by Řasová et. al. [53].

There is no healthy or placebo control group in the dataset.

4.1.2 Data Acquisition
BOLD fMRI was performed using a standard MRI scanner Siemens Trio 3T.
As mentioned above, the measurements were done in two consecutive projects.
There were slight differences in the fMRI protocol in the projects, such as different
acquisition times and times to repetition, i.e. time to get one whole-brain 3D
image. Both settings are described in the paper describing the data. [46]

Raw fMRI signals were preprocessed using a minimal preprocessing pipeline
from CONN toolbox [54] consisting of the following steps: functional realignment
and unwarping, slice-timing correction, outlier identification, direct segmentation
and normalization, and functional smoothing. A detailed description is beyond
the scope of this work and it is included in the paper of Bučková et. al. [46] and
also available on a CONN toolbox website https://web.conn-toolbox.org.

Preprocessed fMRI signals were used to calculate FC matrices. First, time
series were extracted from 116 regions of the Automated Anatomical Labeling
(AAL). They were further processed. The final FC matrices were created by
correlating the time series.

The authors also did outlier and motion artifact detection. They estimated
the two most common head motion metrics called DVARS and FD. DVARS mea-
sures changes in signal intensity within the whole brain between two consecutive
volumes. FD tracks head movements between the volumes. [46]

4.1.3 Network Construction
Adjacency matrices were created from the FC matrices. The FC matrices were
thresholded with a fixed desired edge density in graphs across subjects. We used
this appproach to ensure comparability of the modularity value across subjects
because edge density affects modularity. There is no universally used threshold.
Because of that, FC matrices were thresholded by preserving a selected percentage
of the strongest correlations ranging from 15% to 40% in increments of 5%.

Unweighted and weighted networks were created for each FC matrix and de-
sired density. Their adjacency matrices were obtained by converting all below-
threshold correlations to 0, and for the unweighted version, all above-threshold
correlations to 1. The above-threshold correlations were used as weights for the
weighted version. For lower densities, isolated vertices or pairs of vertices some-
times appeared. With the 15% density, it happened significantly more often.
More than half of the graphs were affected, some with more than ten isolated
vertices. Therefore we discarded this density because a high number of isolated
vertices causes an artificially high number of detected communities.
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As mentioned in Section 1.1.3, the modularity value itself is difficult to in-
terpret. Therefore we created a randomized version of each unweighted graph
to compare with by randomly rewiring edges using Igraph rewiring function
G.rewire(n=G.ecount()). The resulting graphs have the same number of nodes
and edges, degree distribution, and edge weights.

In addition, an average FC matrix was created for each session, and average
brain networks were constructed following the same process.

4.2 Experiments
In this section, we denote for brevity the Louvain algorithm as MLM, which
stands for multi-layer modularity optimization algorithm. As mentioned before,
LPA stands for the label propagation algorithm.

For each of the graphs, communities were estimated by both the MLM and
the LPA. Both algorithms are randomized; the tie-breaking and the order of
nodes processing are random (for the LPA it changes after each iteration). Be-
cause of that, the algorithms were always run a hundred times. We obtained the
number of communities, the modularity value, and an assignment of the nodes
to communities for each run.

The run with the best modularity value was chosen for each graph for further
processing. There are two reasons for this step. Firstly, the Louvain algorithm
maximizes modularity, so choosing the result with maximum modularity is rea-
sonable. Secondly, many of the runs of the label propagation algorithm returned
just a single community with zero modularity, especially for lower network den-
sities and unweighted networks. Therefore we wanted to choose a result with
at least some detected structure. See Figure 4.2 showing the distribution of de-
tected communities count in the weighted and unweighted average network for
the first session.

We also tried to run each algorithm one thousand times for the avarage net-
works. There was no significant difference in the resulting best modularity in the
one hundred runs and one thousand runs. Because of that, it is reasonable to run
the algorithms one hundred times.

4.2.1 Average Networks: The Global Picture
Our first observation is that for both algorithms, the detected communities make
sense concerning the current knowledge about functional networks. For the aver-
age graph for the first session, see the detected communities in Figure 4.3.

Both clusterings are right-left symmetric, which is caused by the fact that the
functions are distributed in the brain nearly laterally symetrically. Cerebellum
(green) and thalamus (cyan) are clearly distinguished in both clusterings. The
Louvain algorithm formed one more community consisting of left and right cau-
date nuclei (black). The visual function is localized in the posterior part of the
brain, which corresponds to blue color in the figures. Frontal lobe functionality
is more complex. Thus it is reasonable that more communities are mixed in the
area (red, purple, and yellow).

32



0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

C
ou

nt

MLM

Density in %

20

25

30

35

40

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

C
ou

nt

MLM – weighted

Density in %

20

25

30

35

40

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

C
ou

nt

LPA

Density in %

20

25

30

35

40

0 1 2 3 4 5 6 7 8
Number of communities

0

20

40

60

80

100

C
ou

nt

LPA – weighted

Density in %

20

25

30

35

40

Figure 4.2: Number of communities detected by the LPA and the MLM in the 100
runs in unweighted and weighted average functional network for the first session.
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(a) Louvain algorithm (b) Label propagation algorithm

Figure 4.3: Communities detected in the weighted average functional network
from the first session with 20% density; left, top and back view for each algorithm.
Green part corresponds to cerebellum, cyan to thalamus and blue in the posterior
part of the brain to visual system.
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4.2.2 Unweighted, Weighted, and Randomized Networks
This section compares the modularity value and the number of detected commu-
nities across all densities in unweighted, weighted and randomized networks. The
figures in this section contain results for the first session. In all box plots, the
box extends from the first quartile, i.e. median of the lower half of the dataset, to
the third quartile, i.e. median of the upper half, with a line at the median. The
whiskers extend from the box by 1.5× the inter-quartile range, i.e. the distance
between the upper and lower quartiles. Outlier points are those past the end of
the whiskers.

Modularity

In the Figure 4.4, we see that the modularity value of clusterings detected by
both algorithms in unweighted functional networks is higher than that of cluster-
ings detected in randomized networks. This confirms that the human functional
network is modular.

The label propagation algorithm often returns one-community clustering for
the randomized networks, for which modularity is zero. Since the networks are
randomized, there is no underlying community structure, so this behavior is cor-
rect. On the other hand, the Louvain algorithm maximizes modularity. Therefore
the value keeps in range (0.1, 0.2). That corresponds to the modularity limita-
tions pointed out in Section 1.1.3 because the modularity value is above zero even
if there is no underlying community structure.
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Figure 4.4: Comparison of the modularity with respect to the network density in
unweighted networks and randomized networks with the same degree distribution;
the distribution is across the 60 patients, for each of them the highest modularity
across 100 runs of the algorithms is used. Modularity is clearly higher in the
non-randomized networks for both the MLM (left) and the LPA (right).

For both algorithms, the modularity value is higher for the weighted versions
of the networks; see Figure 4.5. It is probably because the weights, i.e. the
strength of corresponding correlations, keep information about the network and
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its community structure. Therefore, restoring the underlying community struc-
ture is easier.
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Figure 4.5: Comparison of the modularity with respect to the network density
in unweighted and weighted networks. Modularity is higher for the weighted
networks for both the MLM (left) and the LPA (right).

Comparing the algorithms, we see in the Figure 4.6 that the Louvain algorithm
returns higher modularity with far lower variance than the label propagation algo-
rithm. That is not surprising since the Louvain algorithm is based on modularity
maximization. However, the difference in mean modularity for weighted graphs
and lower graph densities is not too large.
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Figure 4.6: Comparison of the modularity with respect to the network density
for the MLM and the LPA in unweighted and weighted networks. Modularity is
higher and less variable for the MLM in both unweighted and weighted networks.
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Number of communities

Besides modularity, let us look at the number of communities detected by the
algorithms. Figures 4.7 and 4.8 show the number of networks out of the total
60 functional networks of the patients in which a certain number of communities
was detected. The number of detected communities is higher with lower network
density for both algorithms.

The algorithms tend to detect more communities in the weighted functional
networks than in the unweighted ones across all network densities. However, they
differ regarding the number of communities detected in the randomized networks.
The Louvain algorithm tends to detect more communities in the randomized net-
works than in the weighted ones. On the other hand, the label propagation algo-
rithm usually returns only one community for the randomized networks, which
agrees with the modularity observations from the previous section.

If we compare the algorithms, the Louvain algorithm usually detects more
communities than the label propagation algorithm. For the non-randomized un-
weighted networks and higher network densities, the label propagation algorithm
often fails to detect any community structure and returns only one cluster. That
does not match the fact that the human brain is modular, and that there prob-
ably is some underlying community structure in the functional network. On the
contrary, the Louvain algorithm always returned at least two communities for
unweighted networks and at least three for the weighted ones.

Network Density

The threshold and corresponding graph density highly affect the resulting number
of communities and modularity of the detected clustering. Figure 4.6 shows that
the modularity value increases with the decreasing graph density for both algo-
rithms in both weighted and unweighted networks. Figures 4.7 and 4.8 show that
the number of communities increases with decreasing density. Let us emphasize
that for higher network density, the label propagation algorithm often detects
only one or two communities, which does not help to unveil the functional net-
work structure. It might be caused by an increase in the mixing parameter, see
2.2.

It seems that it is easier to detect community structure in graphs with lower
density. On the other hand, we should be aware of the rising number of discon-
nected vertices in functional networks with lower density because they can not
be assigned to any community. In practice, we can use more different network
densities, like Welton et al. [52] or Jajcay et al. [43].

4.2.3 Multiple Sclerosis Data
The previous section compares the algorithms’ results for both weighted and
unweighted networks. In this section, we focus on the data itself. We use only
the weighted networks in the whole section because the experiments in previous
section suggest that this approach leads to more relevant results. The modularity
of weighted network clusterings is higher, and the label propagation algorithm
has a lower tendency to detect only one partition.
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Figure 4.7: Number of communities detected using the Louvain algorithm in
unweighted, weighted and randomized networks by network density. An outlier
p028 is excluded for 20% density because the graph has 9 components, so the
number of detected communities is artificially high.
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Figure 4.8: Number of communities detected using the label propagating algo-
rithm in unweighted, weighted and randomized networks by network density. An
outlier p028 is excluded for 20% density because the graph has 9 components, so
the number of detected communities is artificially high.
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Sessions Comparison

The most interesting question about the data is whether there is a difference be-
tween the sessions – whether the neurorehabilitation therapy changed the modu-
larity and community structure of the patients’ functional networks. Figure 4.9
compares modularity of the two sessions and Figure 4.10 compares the number
of detected communities.
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Figure 4.9: Comparison of the functional networks’ modularity before (session 1)
and after (session 2) the neurorehabilitation therapy. There is probably no sig-
nificant difference between the sessions.
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Figure 4.10: Comparison of the functional networks’ number of communities
before (session 1) and after (session 2) the neurorehabilitation therapy. There is
probably no significant difference between the sessions.

We performed paired samples t-tests for each network density for modularity
and number of communities. The null hypothesis is that the average modular-

40



ity/number of communities is identical in both sessions. The alternative hypoth-
esis is that the means of modularity/number of communities observed in func-
tional networks before and after the therapy are unequal. For both algorithms,
all p-values are greater than 0.1, so there is no significant difference between the
sessions.

MS Types Comparison

There are patients with all three MS types in the dataset – 6 primary progressive,
20 secondary progressive, and 34 relapsing-remitting. In this section, we focus on
the MS types separately. Figures 4.11 and 4.12 show the modularity of detected
clustering across all network densities.
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Figure 4.11: Comparison of the functional networks’ modularity detected by the
MLM in the two sessions for the three MS types – primary progressive (PP),
relapsing-remitting (RR), and secondary progressive (SP).

We see that there is probably no systematic difference in the modularity of the
MS types in the first session. However, in the second session, the modularity of
primary progressive MS seems to be higher than the others and higher than in the
first session. Figure 4.13 shows the session comparison for primary progressive
MS in detail.

We performed a paired samples t-test for each MS type and network density.
The null hypothesis is that the average modularity is identical in both sessions,
and the alternative hypothesis is that the average modularity is lower in the first
session than in the second session.

For the Louvain algorithm, p < 0.05 for primary progressive MS for all network
densities except 40% (p ≈ 0.06), and p > 0.1 for all other MS types and network
densities. For the label propagation algorithm, p is higher than 0.1 for all MS
types and network densities. As the sample is not particularly large and the
distribution of modularity may nonnegligibly deviate from Gaussianity, we have
repeated the analysis with the nonparametric Wilcoxon signed rank test, and
obtained equivalent results, p < 0.05 for primary progressive MS for all network
densities except 40%.
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Figure 4.12: Comparison of the functional networks’ modularity detected by the
LPA in the two sessions for the three MS types – primary progressive (PP),
relapsing-remitting (RR), and secondary progressive (SP).
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Figure 4.13: Comparison of the modularity of primary progressive MS patients’
functional networks in first and the second session. Modularity is higher in the
second session for both the MLM (left) and the LPA (right).

The modularity of the clustering detected by the Louvain algorithm in the
functional networks of patients with primary progressive MS increased between
sessions. It might be due to the therapy or due to the progression of the disease.
We do not have a placebo control group, so we can not decide which one is more
likely. Furthermore, there are only six patients with the primary progressive MS
type. Therefore we should be careful to make conclusions from these observations.

We also tested the number of communities for each MS type with the paired
samples t-test to see if there is a difference in number of communities between
the sessions. The observed p-values are smaller than 0.05 for the secondary
progressive MS and 20% density and for the primary progressive MS and 20%
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density for the clusterings detected using the Louvain algorithm. However, it is
not consistent across network densities, MS types, or algorithms, so it is probably
caused by the fact that we performed the t-test many times (multiple testing
problem).

Datasets Comparison

As written in Section 4.1.2, the 60 patients were measured in two projects with
slightly different fMRI protocols. The resulting data could be divided into two
datasets based on the project (28 patients in dataset 1 and 32 patients in dataset
2). Do the datasets differ regarding the resulting modularity? Figures 4.14 and
4.15 show that the modularity might be slightly higher in the second dataset.
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Figure 4.14: Modularity detected by the MLM in first (left) and second (right)
session for the two datasets with different fMRI protocols.
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Figure 4.15: Modularity detected by the LPA in first (left) and second (right)
session for the two datasets with different fMRI protocols.

43



We used independent samples Welch’s t-test to examine if there is a significant
difference. The null hypothesis is that the two datasets have identical average
modularity and the alternative hypothesis is that the first dataset has lower av-
erage modularity than the second dataset.

The resulting p-values are smaller than 0.1 for all network densities except 40%
and both sessions for the Louvain algorithm (≈ 0.1 for 40% density in the second
session). It suggests that there might be a difference in modularity between the
two datasets. However, we must consider that 5 of the 6 primary progressive MS
patients are in the second dataset, which can influence the result. Therefore we
performed the tests again with the primary progressive MS patients filtered out.
The resulting p-values were a bit higher, but for densities 20% to 30% still smaller
than 0.1 for the Louvain algorithm (≈ 0.1 for the network density 35% for both
sessions). It could still indicate a small difference between datasets. In any case,
if there is a difference, the label propagation algorithm cannot detect it.

We also compared the number of detected communities. There is no significant
difference between datasets.

Gender Comparison

There are 37 female and 23 male patients in the data. Same as for the datasets
comparison, we used independent samples Welch’s t-test to examine if there is
a significant difference between genders. The null hypothesis is that male and
female patients’ functional networks have identical average modularity. The al-
ternative hypothesis is that female patients have lower average modularity than
male patients.

The p-value is greater than 0.1 for all settings for the first session. However, it
is lower than 0.05 for both algorithms and all network densities in the second ses-
sion, except for 40% density for the LPA. Figure 4.16 shows the small difference.
We must interpret these results carefully because 5 out of 6 primary progressive
MS patients are male, but p ⪅ 0.05 stays even when the primary progressive
patients are filtered out.

There might be a difference in modularity changes between genders. However,
the genders are also not equally distributed in the two datasets. There are 21
female and 7 male patients in the first one and 16 male and 16 female in the
second one. Therefore the dependencies in the results are not clear. We can not
tell for sure if they are caused by the different imaging protocols, patients’ gender,
or distribution of MS types in patients.

Other Investigations

We also tried to explore other dependencies in the data, albeit being aware that
any statistically significant results might be due to extended multiple testing, and
thus would only constitute exploratory findings warranting further independent
validation. We compared the sessions for different types of therapy using the
paired samples t-test, but there were no statistically significant differences.

We also calculated the Pearson correlation coefficient to determine if there is
a correlation between modularity/number of communities and age, EDSS score,
BMI, or the number of years since diagnosis. We tested each combination of
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Figure 4.16: Modularity detected by the MLM (left) and the LPA (right) for
male (M) nad female (F) patients in the second session.

session, algorithm, and network density. The Pearson’s correlation coefficient is
always in a range [−0.2, 0.2], which indicates no or negligible relationship.

4.3 Discussion
Let us summarize the results of the experiments. We applied the Louvain al-
gorithm and the label propagation algorithm to the unweighted, weighted and
randomized functional networks with densities from 20% to 40%. We always run
the algorithms hundred times and choose the result with the higest modular-
ity because of the algorithms’ randomization and because the label propagation
algorithm often detected only one community in the unweighted networks.

The modularity of detected community structure is significantly higher in
the functional networks than in the randomized networks for both algorithms.
In addition, as illustrated in the Figure 4.3, the detected community structure
corresponds to the modular structure of the human brain for both of them. This
observation confirms the relevance of community detection in functional networks
and both algorithms appear to be relevant for appliction on functional networks.

Both algorithms detect clusterings with more communities and higher mod-
ularity in the weighted networks than in the unweighted ones. This is caused
by the fact that the weights encode information about the community structure,
thus it is easier to distinguish the functional modules in weighted networks.

Comparing the algorithms, both modularity and the number of detected com-
munities were higher accros all the network densities using the Louvain algorithm.
The reason for the higher modularity probably is, that the Louvain algorithm op-
timizes modularity directly and the label propagation algorithm does not. The
higer number of detected communities may be caused by the monster community
problem in the label propagation algorithm discussed in Section 1.3.2.

For higher densities, the label propagation algorithm often fails to detect
any community structure. This is probably caused by the inability of the label
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propagation algorithm to detect community structure in networks with higher
mixing parameter, which was observed by Yang et al. [19] and discussed in
Section 2.2.

Regarding the data itself, the possible differences in modularity discussed
below were always detected by the Louvain algorithm, the label propagation
algorithm did not find any of them.

There is no significant difference between the first and the second session
neither in modularity, nor in the number of detected communities. Therefore we
did not inspect the community structure further, because its change would with
high probability affect the modularity or number of communities.

However, it seems that there is an increase in modularity between the sessions
in the small sample of six patients with primary progressive MS. We do not have
a placebo control group, so we can not decide if it is due to the disease course
or the therapy. There is also an evidence that there might be a difference in
modularity between the two projects, the networks obtained from the second
projects’ data have slightly higher modularity. The last observation is that in the
second session male patients have slightly higher modularity than female patients.
However, the MS types and genders were not distributed equally in the projects
and 5 out of 6 primary progressive patients were men. If we filtered out the
primary progressive patients, the evidence for these differences were even weaker.
Therefore it is neccessary to do more experiments with more MS patients before
deriving a result regarding the influence of MS type, fMRI protocol or gender on
modularity.
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Conclusion
Community detection is an essential part of complex network analysis. This work
focused on two main community detection algorithms, the Louvain algorithm,
and the label propagation algorithm. The goal was to compare the algorithms
theoretically and use them to detect changes in community structure in multiple
sclerosis patients’ functional networks. The first part was devoted to explaining
the algorithms, their limits, and modifications. We also introduced modularity,
a network measure essential for the Louvain algorithm.

In the theoretical part, we proved that the algorithms make opposite deci-
sions in specific situations. We also show that the label propagation algorithm
can result in a paritition containing a community with a negative contribution to
modularity. This is not possible for the Louvain algorithm, and thus the mod-
ularity of a partition detected by the Louvain algorithm can not be negative.
On the other hand, we show that only isolated vertices can form single-vertex
communities in both algorithms, and they can both return a partition containing
a disconnected community. The last section of the second chapter summarizes
previous studies about the algorithms’ performance in benchmarks. It shows that
they are among the fastest community detection algorithms up to date.

The practical part of this thesis focused on the application of the algorithms in
neuroscience, namely community detection in the human brain. Specifically, we
detected communities in multiple sclerosis patients’ functional networks. While
the Louvain algorithm is widely used in network neuroscience, the label propaga-
tion algorithm is neglected in this field. Therefore it was interesting to compare
their results.

We studied the resulting modularity and number of detected communities in
MS patients’ functional networks. We confirmed that the functional networks are
modular, and the algorithms are able to unveil the community structure. The
Louvain algorithm detected overall higher modularity and more communities and
its results were less variable. This is probably caused by the monster community
occurence in the label propagation algorithm and the inability of the label propa-
gation algorithm to handle networks with higer mixing parameter. Therefore the
Louvain algorithm is probably better for community detection in human brain
functional networks and it is reasonable that the label propagation algorithm is
not used in this field. Modularity and number of communities increase for both
algorithms with decreasing network density.

We did not find any significant change in modularity between the two sessions
considering the whole dataset. However, the modularity increased in the func-
tional networks of the six patients with a primary progressive course of multiple
sclerosis. We found that there might be other minor changes with respect to
fMRI protocol or patients gender, but the evidence is weak. In any case, further
experiments would be necessary to confirm these observations.
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[39] J. Bulthé. Of dots and digits. Advanced neuroimaging analyses applied to
the numerical brain. PhD thesis, 2017. URL https://lirias.kuleuven.
be/retrieve/453549.

[40] National Institute of Biomedical Imaging, U.S. Department of Health
Bioengineering, and Human Services. Magnetic resonance imaging (MRI).
https://www.nibib.nih.gov/science-education/science-topics/
magnetic-resonance-imaging-mri.

[41] P. Sprawls. Magnetic Resonance Imaging: Principles, Methods, and Tech-
niques. Medical Physics Publishing Corporation, 2000. ISBN 9780944838976.
URL https://books.google.cz/books?id=igVzPQAACAAJ.

[42] M. P. van den Heuvel and H. E. Hulshoff Pol. Exploring the brain net-
work: A review on resting-state fmri functional connectivity. European
Neuropsychopharmacology, 20(8):519–534, 2010. ISSN 0924-977X. URL
https://doi.org/10.1016/j.euroneuro.2010.03.008.

51

https://doi.org/10.1016/j.tics.2019.01.014
https://doi.org/10.1016/j.tics.2019.01.014
https://doi.org/10.1146/annurev-psych-122414-033634
https://doi.org/10.1146/annurev-psych-122414-033634
https://doi.org/10.1016/j.bpsc.2016.07.008
https://doi.org/10.1038/npp.2014.169
https://ojs.aaai.org/index.php/ICWSM/article/view/14126
https://www.pnas.org/doi/abs/10.1073/pnas.1617052114
https://www.pnas.org/doi/abs/10.1073/pnas.1617052114
https://ieeexplore.ieee.org/abstract/document/6821016
https://ieeexplore.ieee.org/abstract/document/6821016
https://lirias.kuleuven.be/retrieve/453549
https://lirias.kuleuven.be/retrieve/453549
https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
https://books.google.cz/books?id=igVzPQAACAAJ
https://doi.org/10.1016/j.euroneuro.2010.03.008
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List of Abbreviations
• AAL Automated Anatomical Labeling

• BMI Body Mass Index

• EDSS Expanded Disability Status Scale

• FC Functional Connectivity

• LPA Label Propagation Algorithm

• MLM Multi-Layer Modularity – denotes the Louvain algorithm

• MRI Magnetic Resonance Imaging

– fMRI Functional MRI
– BOLD fMRI Blood Oxygenation Level-Dependent fMRI

• MS Multiple Sclerosis

– PP Primary Progressive (type of MS)
– RR Relapsing-Remitting (type of MS)
– SP Secondary Progressive (type of MS)

• RF Radio Frequency
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