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Introduction
Quantum field theory is currently our best description of the microscopic universe.
It finds uses in numerous areas of physics as a powerful quantitative description.
The standard method of calculating physical quantities starts with a Lagrangian,
works out Feynman rules and finally arrives at physically relevant results. De-
spite its tremendous success over the past 70 years there are reasons to doubt
whether this truly is the fundamental approach. From practical point of view the
number of terms needed to be summed suffers from combinatorial explosion. In
addition the starting point and result tend to be very simple expression but this
simplicity is often lost in the intermediate steps. The most famous example of
such simplicity is the Parke-Taylor formula. Which reduces dozens of pages filled
with calculations to just a one line expression.

Many of these issues is what lead up to the conception of modern amplitudes
methods. This program puts S-matrix at its centre point as it seeks to find
new ways of looking at scattering amplitudes. Over the past two decades these
methods have found an extensive use in many parts of particle physics, ranging
from simplifying difficult calculations to finding entirely new objects hidden in
plain sight.

The original methods were only applicable to Yang-Mills theory, but as time
passed they have been extended to many others, including effective field theories.
These extensions have been used in exploring space of all possible theories and
classifying them [1]. Furthermore they have been applied to some physically
relevant theories for example the non-linear σ-model or chiral perturbation theory
[2].

This thesis focuses on the simplest case of constructing amplitudes directly
from a simple set of properties. We follow an existing construction [2], which we
partially redo and partially extend. We further focus on extending our construc-
tion to different dimensions.

We begin the first chapter with an introduction into the arguably most im-
portant part of modern amplitude methods the spinor-helicity formalism. We
introduce the standard 4 dimensional formalism and then focus on extensions to
momentum twistors and to other dimensions. In the second chapter we outline
the ideas that will allow us to calculate amplitudes without having to ever con-
sider Lagrangians or fields. We further describe processes by which it is possible
to reduce degrees of freedom in constructed amplitudes. This is followed by the
calculations of amplitudes in the third chapter. We focus on several different
aspects and observe how all possible interactions behave. The fourth chapter
focuses on an attempt to extend some of the ideas and methods to particles with
mass. Lastly in the fifth chapter we give a short discussion on our results and
mention some further possibilities.
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1. Spinor-helicity formalism
Vital part of any theory is having proper language to express its data. Over the
past two decades it became obvious that such language for massless scattering
processes are spinor-helicity variables. This formalism naturally incorporates spin
and on shell conditions while reducing computational difficulty connected with
more traditional methods of parametrization.

Before constructing the formalism itself we describe several ideas that while
not necessary will lay out some terminology that is going to prove useful in later
sections. The following parts are standard in any quantum field theory textbook
[3, 4] and as such will be presented only briefly.

1.1 Introductory remarks

1.1.1 Helicity and little group
From quantum mechanics we know that the state of a particle |pµ, λ⟩ is not fully
specified by particles momentum but requires additional labels. Analysis of these
labels was first introduced by Wigner [5]. This analysis consist of asking what
Lorentz transformations leave particles momentum unchanged. The group of all
such transformations is called the little group.

For massive particles this additional label is just a spin. Massless particles re-
quire slightly more care. Their label should have 2 parts continuous and discrete.
However the continuous part has not been observed experimentally and such
tends to be considered unphysical. The discrete part is called helicity. Whereas
particles with spin s have 2s+1 possible states, helicity of a massless particle has
only 2 permissible values ±h.

Physically helicity corresponds to projection of spin into momentum. Helicity
operator is usually defined through the spin operators ˆ︁S and momentum vector
p as

ĥ =
ˆ︁S · p

|p|
. (1.1)

Since parity transformation switches the sign of momentum but not of angular
momentum it changes helicity h into −h and vice versa.

During the following sections we will return to little group and helicity be-
cause they are important parts of spinor-helicity formalism. However most of our
interest will lie in massless particles with spin zero. Which means we will not be
taking full advantage of this formalism. Even so this discussion will help us with
technical and foundational parts of spinor-helicity formalism.
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1.1.2 Notation and conventions
Spinor-helicity formalism is very technical when it comes to convention and nota-
tion. Various choices lead to different representations of identical physical results.
In this section we outline some of our general choices, conventions and other odd-
ities that might be encountered in the following chapters.

We will work with mostly minus metric extended to arbitrary dimensions
ηµν = (1, −1, . . . , −1). Corresponding Lorentz indices are denoted by greek letters
µ, ν = 0, . . . , D − 1. Accordingly in this text D is going to stand for spacetime
dimension.

As a rule we choose lower case indices both dotted and undotted to take on
values a, ȧ = 1, 2. In addition they will always start at the beginning of the
alphabet. Capital indices then take on the values A, B = 1, 2, 3, 4. For labels of
momenta or anything else we use i, j, . . . = 1, 2, . . . , n.

Lastly we set c = ℏ = 1 and consider all momenta to be incoming. These
choices will simplify many of our results.

Over the years there have been many introductory texts written with various
entry points. While 4D spinors have received the most attention [6, 7], extensions
to several other dimensions have been found as well. We will be focusing on 3D
and 6D cases which are both discussed at length in [8].

1.2 4 dimensions

1.2.1 Spinors
The starting point of our construction will be the Clifford algebra

{γν , γµ} = 2ηµνI. (1.2)

Where I stands for identity and curly brackets for anticommutation. We consider
the following solution

γ0 =
(︄

0 −1
−1 0

)︄
, γi =

(︄
0 σi

−σi 0

)︄
. (1.3)

With σi being Pauli matrices defined as

σ1 =
(︄

0 1
1 0

)︄
, σ2 =

(︄
0 −i
i 0

)︄
, σ3 =

(︄
1 0
0 −1

)︄
. (1.4)

From here it is possible to construct a four-vector of Pauli matrices as

(σµ)aḃ =
(︂
I, σi

)︂
aḃ

, (σµ)ȧb =
(︂
I, −σi

)︂ȧb
. (1.5)

The indices a, ḃ are referred to as the spinor indices.
Arbitrary four-vector can be contracted with Lorentz indices of Pauli vector

to get bispinors

(pµσµ)aḃ = paḃ =
(︄

p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

)︄
=
(︄

p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)︄
, (1.6)
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and

(pµσ̄µ)aḃ = paḃ =
(︄

p0 − p3 −p1 + ip2
−p1 − ip2 p0 + p3

)︄
=
(︄

p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)︄
. (1.7)

Now we observe that determinant of these 2 × 2 matrices is

det paḃ = det paḃ = p2
0 − p2

1 − p2
2 − p2

3 = pµpµ = m2. (1.8)

Thus if pµ is light-like its corresponding bispinor is a singular matrix. We can
thus decompose it into 2-component variables

paḃ = λaλ̃ḃ. (1.9)

These new variables are called spinors. Spinor indices a, ḃ can be raised and
lowered using Levi-Civita tensors ϵab, ϵȧḃ. We make the choice ϵ12 = −ϵ12 = 1 and
follow the convention for raising indices

λa = ϵabλb. (1.10)

First let us note that the decomposition (1.9) is not unique. This is realized
by rescaling

λa → zλa and λ̃ḃ → 1
z

λ̃ḃ, (1.11)

which does not change the original momentum. This rescaling corresponds to lit-
tle group transformations. Strictly speaking spinors have two indices, one spinor
a and one little group index ±, but since λ+

a is always going to have index +
it is usually omitted.1 As such spinors transform nontrivially under little group
unlike four-momenta.

The parameter z can generally be any non-zero complex number. However
if we want to keep momenta real it is required to enforce λ = ±λ̃

∗. Resulting
in z being just a phase. For practical reasons we will be considering complex
momenta allowing us to work with unrelated spinors.

Because spinor indices can be raised and lowered they can also be contracted.
This allows us to define spinor brackets as

⟨ij⟩ = ϵabλ
a
i λb

j, [ij] = ϵȧḃλ̃iȧλ̃jḃ. (1.12)

Both of these brackets are antisymmetric.
For the following section there are two identities with Pauli matrices that will

prove useful [9]. The first is

2ηµν = (σµ)aḃ (σ̄ν)aḃ . (1.13)

And the second is the Fierz identity

(σµ)aȧ (σµ)bḃ = 2ϵabϵȧḃ. (1.14)
1This index will be omitted in 4D and 3D, but in 6D it will become rather important.
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Using the first identity (1.13) we can construct four-momentum from spinors as
follows

pµ = ηµνpν = 1
2 (σµ)aḃ (σ̄ν)aḃ pν = 1

2 (σµ)aḃ λaλ̃
ḃ
. (1.15)

From here we can construct the simplest Lorentz invariant object using the Fierz
identity (1.14).

sij = (pi + pj)2 = 2pi · pj = 1
2 (σµ)aḃ λa

i λ̃
ḃ

i (σµ)cḋ λc
jλ̃

ḋ

j

= ϵacϵḃḋ λa
i λ̃

ḃ

iλ
c
jλ̃

ḋ

j = ⟨ij⟩ [ji] .

(1.16)

Where we used the notation p ·k = pµkµ and (pi + pj)2 = ηµν

(︂
pµ

i + pµ
j

)︂ (︂
pν

i + pν
j

)︂
.

This relation results in sii = 0 and sij = sji, both of which are expected behaviour
of sij.

As it stands spinor-helicity formalism encodes dimensional and on shell con-
ditions. To get valid kinematics configuration we will require momentum conser-
vation

n∑︂
i=1

pµ
i = 0. (1.17)

For simplicity all momenta were chosen to be incoming. This equation can be
rewritten into several useful equivalent forms

n∑︂
i=1

λiaλ̃iḃ = 0,
n∑︂

i=1
⟨ij⟩ [ik] = 0,

n∑︂
i=1

sij = 0. (1.18)

Where the first equality is simply using definition (1.9), second one follows from
contracting with λa

j and λ̃
ḃ

k while for the last we chose j = k.

Finally it is simple to derive

piaḃλ
a
i = λiaλ̃iḃλ

a
i = ⟨ii⟩λ̃iḃ = 0 (1.19)

and
piaḃλ̃

ḃ

i = λiaλ̃iḃλ̃
ḃ

i = [ii] λia = 0. (1.20)

The equations (1.19) and (1.20) are massless Dirac or Weyl equations in momen-
tum space [8]. They will prove useful later, but we will not be using them directly
in our calculations.

1.2.2 Momentum twistors
For methods used later in this text it is paramount that we can generate valid
momenta configurations. To achieve this we would have to solve momentum
conservation as nontrivial restriction. But on shell and dimensional conditions
can be trivialized by changing variables. In 4D we can go one step further and
arrive at variables that actually satisfy momentum conservation. These new
variables are called momentum twistors.
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Twistors are very difficult subject and describing them in any general form is
well beyond the scope of this text. We thus follow the construction given in [6]
with focus on momentum conservation and relating twistors to spinors.

We start by considering ordered set of n light-like momenta pµ
i satisfying

momentum conservation (1.17). Followed by defining four-vectors yj and an ar-
bitrary four-vector Q by

yµ
j = Qµ +

j∑︂
i=1

pµ
i =⇒ pµ

i = yµ
i − yµ

i−1 and yµ
n = Qµ. (1.21)

First of all the labels are considered to be mod n. Secondly the existence of yµ
j

is only possible if pµ
i satisfy momentum conservation. Equivalently starting with

yµ
j we arrive at momenta pµ

i that satisfy momentum conservation. These new
four-vectors yµ

j are often called dual coordinates.
Now we define the so called incidence relation

µiȧ = yiaȧλa
i = yi−1aȧλa

i . (1.22)

The second equality follows from definition of yµ
j and the massless Weyl equation

(1.19). There are only two constraints on yiaȧ

µiȧ = yiaȧλa
i , µi+1ȧ = yiaȧλa

i+1. (1.23)

Both of them are solved by choosing

yi
aȧ = λi+1

a µi
ȧ − λi

aµi+1
ȧ

⟨ii + 1⟩
. (1.24)

Now we use this relations to return reconstruct momenta pi
aȧ from (1.21), break

them into spinors and contract the result with λai+1. After all these steps we
arrive

λ̃
i

ȧ = ⟨ii + 1⟩µi−1
ȧ + ⟨i + 1i − 1⟩µi

ȧ + ⟨i − 1i⟩µi+1
ȧ

⟨ii + 1⟩⟨ii − 1⟩
. (1.25)

Twistor itself is then defined as a four component vector

Z i =
(︄

λi
a

µi
ȧ

)︄
. (1.26)

So for a given twistor we can derive corresponding spinors from (1.25) and (1.26).
The fact that twistors satisfy momentum conservation should follow from con-
struction, but we also provide direct proof in appendix A.

We now have several ways at our disposal to easily generate valid kinematics
configurations. These configurations can later be used in numerical evaluations
that we will be performing. In 4D twistors are the simpler and for us the preferred
choice of variables. Mainly because they can be generated freely without the need
to solve any constraints. However as they directly build on top of spinor we will
be using both to some capacity.
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1.3 3 dimensions
The first extension we will look at are going to be spinors in three dimensions.
Spinor-helicity formalism in 3D can be build directly from 4D. For this section
we follow construction in [8].

1.3.1 Spinors
Our starting point is once again going to be the Clifford algebra

{γµ, γν} = 2ηµνI. (1.27)

For our purposes it is advantageous to take the 4D solution (1.3) and simply
remove γ2. Afterwards the remaining Pauli matrices are

σ1 =
(︄

0 1
1 0

)︄
, σ2 =

(︄
1 0
0 −1

)︄
. (1.28)

This removes imaginary numbers from bispinors. We once more follow this with
defining Lorentz vector of Pauli matrices as

(σµ)ab =
(︂
I, σi

)︂
ab

, (σµ)ab =
(︂
I, −σi

)︂ab
. (1.29)

Contracting Lorentz indices with arbitrary momentum we get

(pµσµ)ab = pab =
(︄

p0 + p2 p1
p1 p0 − p2

)︄
=
(︄

p0 − p2 −p1

−p1 p0 + p2

)︄
. (1.30)

Which again results in

det pab = p2
0 − p2

1 − p2
2 = m2 = 0. (1.31)

So for light-like momenta bispinor is a singular matrix and can be broken into
two component vectors. However bispinor is also symmetric which means that
can be viewed as a ”square” of a single spinor

pab = λaλb. (1.32)

As such there is no λ̃ this time. Limiting ourselves to real momenta forces λ to
be purely real or imaginary. Furthermore the only ambiguity left in the definition
is just multiplication by sign. Little group this time is discrete Z2.

Since we took Pauli matrices directly from 4D many identities still hold with
the added caveat of undotting indices. Adding the absence of λ̃ directly gives us

pµ = 1
2 (σµ)ab λaλb. (1.33)

And further enforces

⟨ij⟩ = ϵabλ
a
i λb

j =⇒ sij = ⟨ij⟩2. (1.34)

Spinor bracket still transforms nontrivially under little group making sij the sim-
plest Lorentz invariant object.

8



1.3.2 Momentum twistors
Working out momentum twistors in 3D requires quite a bit technical work. We
will outline the derivation and summarize results that have been arrived at in
[10] within our needs.

The starting point will be the dual coordinates and incidence relation as de-
fined in 4D (1.21) and (1.22). Following by the consideration that bispinors in 3D
are symmetric, which means that after we undot indices in yi

ab we can decompose
it into symmetric and antisymmetric parts

yi
ab = (yi

ab + yi
ba)

2 + (yi
ab − yi

ba)
2 . (1.35)

Followed by a simple demand that the second fraction is zero. For this section it
is convenient to introduce the notation[︂

ĩj̃
]︂

= λiaµa
j − λjaµa

i . (1.36)

Where µa is defined through incidence relation in (1.22). This allows us to write
the symmetry conditions as [︂

ĩĩ − 1
]︂

= 0. (1.37)

With steps similar to those in 4D and applying the conditions (1.37) it is possible
to derive the formula

pi
ab =

[︂
ĩ − 1ĩ + 1

]︂
⟨ii − 1⟩⟨ii + 1⟩

λi
aλi

b. (1.38)

Now we can define shifted spinor λ̃ as

λ̃
i

a =

⌜⃓⃓⎷ [︂
ĩ − 1ĩ + 1

]︂
⟨ii − 1⟩⟨ii + 1⟩

λi
a. (1.39)

This translates into
pi

ab = λ̃
i

aλ̃
i

b, (1.40)

which satisfies momentum conservation. Now we can build all relevant variables
from λ̃.

Unfortunately conditions (1.37) aren’t satisfied by (1.40) trivially and we will
have to solve them, removing the main appeal of twistors as an unconstrained
parametrization in our calculations. As such twistor parametrization can be
useful tool for checking results but we will be primarily using spinors in 3D.

1.4 6 dimensions
The 6D spinor-helicity formalism was first introduced in [11]. We once again
outline the main points of the constructions that will be required for our purposes.

The Clifford algebra we focus on this time will to be

σµσ̄ν + σν σ̄µ = 2ηµνI. (1.41)
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The standard choice of Pauli matrices is

σ0 = iσ1 ⊗ σ2 σ̄0 = − iσ1 ⊗ σ2

σ1 = iσ2 ⊗ σ3 σ̄1 = iσ2 ⊗ σ3

σ2 = − σ2 ⊗ σ0 σ̄2 = σ2 ⊗ σ0

σ3 = iσ2 ⊗ σ1 σ̄3 = − iσ2 ⊗ σ1

σ4 = − σ3 ⊗ σ2 σ̄4 = σ3 ⊗ σ2

σ5 = iσ0 ⊗ σ2 σ̄5 = iσ0 ⊗ σ2.

(1.42)

Where the Pauli matrices on both side of tensor products are 4D Pauli matrices
defined in (1.4). This choice has several advantages. Firstly all Pauli matrices
are antisymmetric. Secondly it has clear parallels to 4D formalism. Bispinors are
once again defined as contractions of Lorentz indices

pAB = pµσµ
AB =

⎛⎜⎜⎜⎝
0 p5 + ip4 p1 + ip2 p0 − p3

−p5 − ip4 0 −p0 − p3 −p1 + ip2
−p1 − ip2 p0 + p3 0 p5 − ip4
−p0 + p3 p1 − ip2 −p5 + ip4 0

⎞⎟⎟⎟⎠ (1.43)

and

pAB = pµσ̄µAB =

⎛⎜⎜⎜⎝
0 p5 − ip4 p1 − ip2 −p0 − p3

−p5 + ip4 0 p0 − p3 −p1 − ip2
−p1 + ip2 −p0 + p3 0 p5 + ip4
p0 + p3 p1 + ip2 −p5 − ip4 0

⎞⎟⎟⎟⎠ . (1.44)

It is clear that A, B = 1, 2, 3, 4. These indices cannot be lowered or raised.
Furthermore bispinors are antisymmetric and related by

pAB = 1
2ϵABCDpCD. (1.45)

Where we chose ϵ1234 = ϵ1234 = 1. Both bispinors are still singular matrices. After
imposing condition m2 = 0 their matrix ranks become 2. As such we should be
able to break them into four 4-component vectors or two 4 × 2 spinors.

We thus define

pAB
i = λAa

i λB
ia, piAB = λiAȧλȧ

iB. (1.46)

First of all we do not use λ̃ as we cannot raise indices A, B, making λA and λA

completely separate objects. Secondly indices a, ȧ transform under little group.
They can be raised and lowered using Levi-Civita tensor with ϵ12 = −ϵ12 = 1,
so the final object pAB

i is little group invariant. We can observe that helicity
of a 6D massless particle is given by 2 numbers a, ȧ = 1, 2 and as such has 4
possible states. The leftover freedom in definition of spinors is now much larger
as a result. It is possible to multiply the first spinor by any 2 × 2 matrix with
unit determinant and the second by its inverse matrix.

Again let us note useful identities [11].

Tr (σµσ̄ν) = 4ηµν , (1.47)
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and
σµ

ABσ̄CD
µ = −2

(︂
δC

AδD
B − δD

A δC
B

)︂
. (1.48)

We immediately use them in deriving momenta reconstruction

pµ = ηµνpν = 1
4σµ

ABσ̄νBApν = 1
4σµ

ABλBaλA
a = −1

4σµ
ABλAaλB

a . (1.49)

Followed by

sij = (pi + pj)2 = 2pi · pj = 1
8σµ

ABλAa
i λB

iaσ̄CD
µ λjCȧλȧ

jD

= − 1
4
(︂
δC

AδD
B − δD

A δC
B

)︂
λAa

i λB
iaλjCȧλȧ

jD

(1.50)

Now we return to our convention of raising lower case indices. The difference
between raising first and second index is just a minus sign. Looking at the last
form we see that the expressions inside brackets will be identical. This leads to

sij = 1
2λA

ibλ
B
iaλjBȧλjAḃϵ

abϵȧḃ = det λA
iaλjAȧ. (1.51)

Where the last equality holds by similar argument as in the previous step.

In 6D there are potentially more Lorentz invariant objects, but for our pur-
poses sij will suffice. For more nuanced discussion we refer reader to the original
source [11].

Twistor construction exists in 6D [12], however it strives far from simplifying
our calculations so we will not be mentioning it.
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2. Amplitudes
In this chapter we give an outline how to use previously introduced kinematic
variables to construct scattering amplitudes. We begin by listing properties any
amplitude should satisfy and follow with how to enforce them.

The approach presented here has seen an extensive use. We will focus on
parts and ideas relevant to our purposes while we refer reader interested in more
general discussion to [7, 13] for introductory texts and to [8] for more in depth
exploration.

From this point onward we consider only identical particles with zero mass and
spin. For later use we also define sijk = (pi+pj +pk)2 and sijkl = (pi+pj +pk+pl)2.

2.1 General properties
We start by considering properties that should be satisfied by all possible ampli-
tudes. Because we know how the resulting physics should behave we can demand
quite strict conditions and evaluate all possibilities that satisfy them. Lastly by
amplitude we exclusively understand tree-level amplitude.

More formally amplitude A is defined as

⟨pf , hf | ˆ︁S − ˆ︁I | pi, hi⟩ = i (2π)4 δ (pf − pi) Afi. (2.1)

Where labels i, f correspond to initial and final states of a given interaction.
From this definition it follows that amplitude is a function of four-momenta and
helicity.

Furthermore we demand that any amplitude has the following properties.

1. Lorentz invariance
Our specific constraint employed will be more strict. We demand that
amplitude is a function of Lorentz invariant quantities. For purposes of this
text we specifically mean sij. This can be expressed symbolically as

An ({pi, hi}n
i=1) = An

(︂
{sij}n

i,j=1

)︂
. (2.2)

2. Analytical structure
Specifically we require amplitudes to be rational functions of external mo-
menta. All singularities are going to be simple poles corresponding to prop-
agator going on shell. Residues located at these poles will be equal to
products of lower-point amplitudes.

3. Symmetry
We will be considering amplitudes that are invariant under certain permu-
tations of external particles. The first case will be amplitudes invariant
under arbitrary permutations of particles

An (p1, p2, . . . , pn) = An

(︂
pπ(1), pπ(2), . . . , pπ(n)

)︂
. (2.3)

12



Which holds for all π ∈ Sn. The second case will be amplitudes invariant
under cyclic permutations by which we understand

An (p1, p2, . . . , pn) = An (pn, p1, . . . , pn−1) = · · · = An (p2, p3, . . . , p1) . (2.4)

The first two points lead us to considering that amplitudes should have poly-
nomial and rational parts. The polynomial part will belong to vertices. One such
contribution to 4-point amplitude is shown in (2.5).

1 4

2 3

= iV4(1, 2, 3, 4) = i Polynomial in sij. (2.5)

Since this diagram features no internal lines there cannot be a propagator. With-
out propagator there are no poles in this contribution either.

We can now glue vertices together with a propagator to arrive at possible
rational parts. Example of such contribution to 6-point amplitude is shown in
(2.6).

1

2

3 4

5

6
P

= iV4(1, 2, 3, P ) i

s123
iV4(4, 5, 6, −P ). (2.6)

Where P stands for propagator which is determined by momentum conservation
P = −p1 − p2 − p3 = p4 + p5 + p6. The minus sign in the right vertex is simply
a direction of momentum, which can be chosen arbitrarily, but different on each
side.

Now in order to satisfy given symmetry we need to sum over all relevant
graph permutations. So for example the 4-point amplitude with Bose symmetry
is shown in (2.7) and (2.8).

iA4(1, 2, 3, 4) =

1 4

2 3

+

1

2 3

4

+ permutations. (2.7)

Leading to

A4(1, 2, 3, 4) = V4(1, 2, 3, 4) − V3(1, 2, P )V3(3, 4, −P )
s12

+ permutations. (2.8)

In order to calculate actual amplitudes we have to take care when summing
over symmetries. Naturally we will want to avoid double counting any contri-
butions. Problems arise when gluing identical vertices. Since summing over
symmetry will always double count we will be diving such contributions by 2 in
our numerics. The rest of prefactors will be absorbed into constants in front of

13



amplitudes since for a given number of particles they will be identical. As such
all of our results should be trusted up to two multiplicative constants. One in
front of the polynomial part and the second in front of the rational part.

Finally in this description we obviously do not know any coupling constants,
so there are many free parameters in all vertices. To reduce their numbers it is
possible to impose further restrictions on amplitudes themselves.

2.2 Kinematics
As explained in the last section the main building blocks of amplitudes will be
sij. Altogether for n-point scattering there are n2 choices for sij. However n are
trivially zero by on-shell conditions sii = 0. Further n(n − 1)/2 are related by
symmetry sij = sji. Finally n more are dependent by momentum conservation
(1.18). Leaving us with n(n − 3)/2 variables to consider. From (2.6) we can
observe that it is useful to use momentum conservation to completely remove the
dependence on the last momentum.

The list above does not include dimensional constraints. In D dimensions
any D + 1 momenta have to be linearly dependent. These constraints can be
described in terms of Gram matrix G. The standard definition is Gij = sij. We
demand that this matrix has rank D or that every (D + 1) × (D + 1) minor
is zero. These constraints are clearly highly nonlinear and in this text will be
solved by spinor-helicity formalism. Dimensional constraints are referred to as
Gram conditions.

Lastly if we consider n-point scattering in D dimensions we would expect
that Gram conditions will play role starting at n = D + 1. This however just
implies that the entire Gram matrix is singular which is equivalent to momentum
conservation. As such we expect Gram conditions to appear from n = D + 2.

At 3-point interaction we see that there should be no variables left. This is
reflected by momentum conservation, that gives us s12 = s13 = s23 = 0. The only
possibility left is that 3-point interaction is just a constant, which satisfies all our
previous demands. However for simplicity we consider this constant to be zero.
This simplification will prove very useful for many of our later calculations. In
a similar fashion we could consider constant terms for pretty much any vertex.
But all of them will be turned to zero for simplicity.

2.3 Further relations
In order to reduce the number of free constants in amplitudes we need to impose
additional constrains. These will allow us to both reduce degrees of freedom and
potentially gain control over what theories we might construct. The choices and
methods employed in this text are directly inspired by [2].

First and the most important constraint is going to be Adler zero. We take
arbitrary momentum, shift it to pi → zpi and demand that amplitude vanishes
for z going to 0. This can be written symbolically as

lim
z→0

An(zpi) ∝ zσ. (2.9)
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The procedure of taking limit of single momentum to zero is called soft limit.
While σ is referred to as the soft degree. We will be mostly interested in σ = 1
but will look at higher ones as well. Adler zero has been shown to be very powerful
tool for categorizing effective field theories and can be used in constructing many
theories that satisfy it recursively [1, 14].

Our implementation of Adler zero is going to be very straightforward. In our
numerics we will be putting a factor z in front of the relevant variable and create
momenta configurations with z as a parameter. Afterwards we will be able to
explore behaviour of amplitudes with zpi → 0.

As was stated before, one of our interest lies in cyclically symmetric ampli-
tudes. These amplitudes appear in many theories with additional structures like
colour or flavour. In some important cases the actual tree-level amplitude can be
written as [8]

An = gn−2 ∑︂
π∈Sn/Zn

Tr
(︂
T π(a1) . . . T π(an)

)︂
An

(︂
π
(︂
1h1
)︂

, . . . , π
(︂
nhn

)︂)︂
. (2.10)

Where the momenta were suppressed for their labels pi → i and hi is helicity
of given particle. The first part contains all of the colour information, with T a

being generators of SU(N). The second part, the so called partial amplitude,
contains all of the kinematical information. The sum runs over all permutations
Sn without cyclic Zn to avoid double counting, as traces are cyclic by nature.

This behaviour allows us to calculate partial amplitudes with only kinematical
information. These partial amplitudes satisfy our definition of cyclicity (2.4).

There are still some redundancies in the sum (2.10). They are realized through
additional relations amongst partial amplitudes. First are the Kleiss-Kuijf (KK)
relations [15]. They are given by the equation

An (1, {α} , n, {β}) = (−1)|β| ∑︂
π⊂Sn−2

An (1, {π} , n) . (2.11)

Where α, β are disjoint subsets of momenta 2, . . . , n − 2. While π is subset of
permutations that keeps the ordering of α and reverses β independently. The
number of elements in set β is |β|.

The sum over Sn in (2.10) can be reduced to Sn−1 by cyclicity and to Sn−2 by
KK [16].

To give out explicit example at 4-point the only nontrivial equation reads

A4(1, 2, 4, 3) + A4(1, 2, 3, 4) + A4(1, 3, 2, 4) = 0. (2.12)

For higher points the number of equations grows very quickly, however not all of
them are independent.

Second set of relations are the Bern-Carraso-Johansson (BCJ). They are given
by

n−1∑︂
i=2

⎛⎝ i∑︂
j=1

s2j

⎞⎠An(1, 3, ..., i, 2, i + 1, ..., n) = 0. (2.13)
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These equations are called the fundamental BCJ. Unlike KK these relations are
nonlinear in amplitudes. They were originally derived from observation that
kinematical structure is related to colour structure [17].

To again give an example at 4-point the equation reads

s12A4 (1, 2, 3, 4) + (s12 + s23) A4 (1, 3, 2, 4) = 0. (2.14)

Last idea we will add is the so called chiral anomaly. Its meaning is discussed
for example in [2], but for our purposes it will suffice to demand that at odd-point
interactions all terms should include additional Lorentz invariant object

ϵµνρσpi
µpj

νpk
ρpl

σ ≡ ϵ (ijkl) . (2.15)

In spinor-helicity formalism we can rewrite it as

ϵ (ijkl) = i

(︄
⟨ik⟩⟨jl⟩ [il] [jk] − ⟨il⟩⟨jk⟩ [ik] |jl|

)︄
. (2.16)

Where we directly used the decomposition [9]

ϵµνρλ = iσµaȧσνbḃσρcċσλdḋ

(︄
ϵacϵbdϵȧḋϵḃċ − ϵadϵbcϵȧċϵḃḋ

)︄
. (2.17)

This object is Lorentz invariant as both parts feature λ and λ̃ for all momenta,
so transformation under little group becomes trivial. Secondly this object does
not scale to other dimensions trivially.
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3. Results
Having established formalism and properties we can finally turn to constructing
amplitudes. We will start with a vertex and work out basis of polynomials from
all possible allowed options. Following that we move onto adding restrictions
to reduce the number of free parameters. The calculations will be separated by
power counting, number of interacting particles and dimension.

Because finding linear independence of high degree multivariable polynomials
is a nontrivial task we will use numerical approach. To determine whether m
polynomials are linearly independent is it enough to evaluate them at m points
and then check for determinant or rank of matrix created this way.

Numerical evaluation can be run with 3 possible setups, directly and through
spinors or twistors, where possible. Direct evaluation is done by directly gener-
ating sij with zero mass and momentum conservation, thus not including Gram
conditions.

Spinors and twistors should be equivalent, but we will be using both methods.
Throughout our calculations we will be checking all kinematical restriction to
ensure that they are applied correctly.

The entire procedure can be summarized as follows. Since vertex should be
a polynomial in sij we can simply generate all possible monomials in sij at a
given power. In general for n variables and power m, which translates to sm

ij ,
the number of possible monomials is

(︂
n+m−1

n−1

)︂
. Afterwards we sum over desired

subset of permutations to get polynomials invariant under given symmetry and
construct basis. That can be done by starting with arbitrary polynomial as a
basis. We then go over all the remaining polynomials and check whether they are
independent of the current basis. If a linearly independent one is found, it can
be simply added to the basis. Having constructed basis we can impose further
restriction and see how many elements remain.

At higher points this is accompanied by rational terms that are contributed
by lower point interaction.

Lastly let us introduce notation to clarify results. We define

A
(p)

σ n,s/c (3.1)

to denote amplitude at n-point and power O(pp). This amplitude is either cyclic
c or fully symmetric s and has soft degree σ. If the amplitude satisfies KK or BCJ
the lower c will be replaced by K/B respectively. Let us stress that both KK or
BCJ are only sensible for cyclic amplitudes. Lastly if any of these are omitted
general case is to be considered. As an example 5-point amplitude at O(p2) that
is invariant under arbitrary permutation of particles and has soft degree 1 would
be

A
(2)

1 5,s. (3.2)
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3.1 4-Point
The only contribution to 4-point amplitude is the 4-point vertex alone. Accord-
ingly we will not be making distinction between the two. This thus corresponds
to

iA4 (1, 2, 3, 4) = iV4 (1, 2, 3, 4) =

1 4

2 3

. (3.3)

The 4-point amplitude is by far the simplest case. This can be easily seen by
number of remaining variables, which should be 2. However by using standard
Mandelstam variables s = s12 = s34, t = s13 = s24, u = s14 = s23, it is possible
to simplify symmetry demands.

We begin by observing that polynomial being invariant under arbitrary per-
mutation of momenta is equivalent to it being symmetric under permutations of
s, t, u. This can be checked directly by writing down every possible permutation.
As such it is easy to start writing down all possibilities at given order.

By similar observation we can see that cyclically invariant amplitude has to
be invariant under exchange of s, u, while t remains untouched.

At the end one of the variables can be eliminated by momentum conservation
which now reads s + t + u = 0.

Lastly Gram conditions do not appear here, so there is no need to separate
calculations by dimension.

3.1.1 Fully symmetric

The previous discussion allows us to quickly evaluate all possible amplitudes to
an arbitrary order. Results are summarized in table 3.1. The c-s in the table 3.1
represent arbitrary coefficients.

The length of bases as given in the last column of 3.1 can be directly extended
to O(p2n) as ⌊n+4

4 ⌋ − ⌊n+4
6 ⌋. We have verified this formula up to order O(p100).1

Also following from definition of Mandelstam variables it is clear that all
variables disappear under Adler zero. The behaviour at O(p2n) is thus

lim
z→0

A
(2n)
4,s (zpi) ∝ zn. (3.4)

Now the lowest order amplitude that has soft degree σ = 2 is

A
(4)

2 4,s(1, 2, 3, 4) = c
(4)
4

(︂
s2 + t2 + u2

)︂
, (3.5)

or σ = 3
A

(6)
3 4,s(1, 2, 3, 4) = c

(6)
4

(︂
s3 + t3 + u3

)︂
. (3.6)

1This sequence can be derived analytically from Hilbert series as done in [18].
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Order Independent terms Size

O(p2) c
(2)
4 (s + t + u) = 0 0

O(p4) c
(4)
4 (s2 + t2 + u2) 1

O(p6) c
(6)
4 (s3 + t3 + u3) 1

O(p8) c
(8)
4 (s4 + t4 + u4) 1

O(p10) c
(10)
4 (s5 + t5 + u5) 1

O(p12) c
(12)
41 (s6 + t6 + u6) + c

(12)
42 (stu)2 2

O(p14) c
(14)
4 (s7 + t7 + u7) 1

O(p16) c
(16)
41 (s8 + t8 + u8) + c

(16)
41 (s6t2 + permutations) 2

O(p18) c
(18)
41 (s9 + t9 + u9) + c

(18)
41 (s7t2 + permutations) 2

O(p20) c
(20)
41 (s10 + t10 + u10)+c

(20)
41 (s8t2 + permutations) 2

Table 3.1: 4-point fully symmetric amplitudes

3.1.2 Cyclic
In a similar fashion to fully symmetric case we can quite quickly evaluate all
possible polynomials.

We start at O(p2)

A
(2)
4,c = c

(2)
4 t = c

(2)
4 s13 = −c

(2)
4 (s + u) = −c

(2)
4 (s12 + s23) . (3.7)

The first form is the simplest and the one that we will be using in this text. The
last one is the form usually used while discussing these calculations for example
in [14].
The results are summarized in the table 3.2. The sequence of free constants as
presented in last column of 3.2 can be generated higher with the formula ⌊n/4⌋+1
at O(p2n). We have again verified this up to O(p100).

From previous discussion we see that all amplitudes satisfy Adler zero with
the same soft degree as in the fully symmetric case (3.4).

Main difference from fully symmetric is that interaction at O(p2) becomes
nontrivial and satisfies Adler zero which will cause difference at higher points.
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Order Independent terms Size

O(p2) c
(2)
4 t 1

O(p4) c
(4)
41 (s2 + u2) + c

(4)
42 t2 2

O(p6) c
(4)
41 (s3 + u3) + c

(4)
42 t3 2

O(p8) c
(8)
41 t4 + c

(8)
42 (s4 + u4) + c

(8)
43 st2u 3

O(p10) c
(10)
41 t5 + c

(10)
42 (s5 + u5) + c

(10)
43 st3u 3

O(p12) c
(12)
41 t6 + c

(12)
42 (s6 + u6) + c

(12)
43 st4u + c

(12)
44 s3u3 4

O(p14) c
(14)
41 t7 + c

(14)
42 (s7 + u7) + c

(14)
43 st5u + c

(14)
44 s3tu3 4

O(p16) c
(16)
41 t8 + c

(16)
42 (s8 + u8) + c

(16)
43 st6u + c

(16)
44 s4u4 + c

(16)
45 s3t2u3 5

O(p18) c
(18)
41 t9 + c

(18)
42 (s9 + u9) + c

(18)
43 st7u + c

(18)
44 s4tu4 + c

(18)
45 s3t3u3 5

O(p20) c
(20)
41 t10 + c

(20)
42 (s10 + u10) + c

(20)
43 st8u + c

(20)
44 s4t2u4 +

c
(20)
45 s3t4u3 + c

(20)
46 s5u5

6

Table 3.2: 4-point cyclic amplitudes

KK

We now move to other relations starting with KK. In this section we run cal-
culations up to O(p20). The equations will be applied by orders so explicitly

A
(2n)
4 (1, 2, 4, 3) + A

(2n)
4 (1, 2, 3, 4) + A

(2n)
4 (1, 3, 2, 4) = 0. (3.8)

The simplest case is obviously O(p2) with amplitude (3.7) which can be put into
equation (3.8) directly to arrive at

c
(2)
4 (s14 + s13 + s12) = 0, (3.9)

which holds by momentum conservation and is thus trivial. Resulting in the
amplitude

A
(4)
4,K(1, 2, 3, 4) = c

(2)
4 t. (3.10)

At O(p4) we take the result from 3.2. The equation (3.8) now reads

c
(4)
41

(︂
s2

14 + s2
13 + s2

12

)︂
+ 2c

(4)
42

(︂
s2

12 + s2
13 + s2

14

)︂
= 0. (3.11)

Which gives the condition c
(4)
41 = −2c

(4)
42 . Giving us the full amplitude

A
(4)
4,K = c

(4)
42

(︂
s2 − 2t2 + u2

)︂
(3.12)

This procedure is repeated for higher orders, where it is simpler to run evalu-
ation numerically with sufficiently high number of randomly generated momenta.
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Order Independent terms Size

O(p2) c
(2)
4 t 1

O(p4) c
(4)
42 (s2 − 2t2 + u2) 1

O(p6) c
(6)
42 (s3 − 2t3 + u3) 1

O(p8) c
(8)
42 (s4 − 2t4 + u4) + c

(8)
43 st2u 2

O(p10) c
(10)
42 (s5 − 2t5 + u5) + c

(10)
43

(︂
st3u − 2

5t5
)︂ 2

O(p12) c
(12)
41 (t6 − 3st4u + 2s3u3) + c

(12)
42 (s6 + u6 − 6st4u + 4s3u3) 2

O(p14) c
(14)
41 (t7 − 7s3tu3) + c

(14)
42 (s7 + u7 − 14s3tu3) +

c
(14)
43 (st5u − 2s3tu3)

3

O(p16) c
(16)
41 (t8 − 2s4u4 + 16s3t2u3) +

c
(16)
42 (s8 + u8 − 4s4u4 + 32s3t2u3) + c

(16)
43 (st6u + 5s3t2u3)

3

O(p18)
c

(18)
42 (s9 − 2t9 + u9) + c

(18)
44

(︂
s4tu4 + 3

7t9 − 10
7 st7u

)︂
+

c
(18)
45

(︂
s3t3u3 + 2

7t9 − 9
7st7u

)︂ 3

O(p20)
c

(20)
42 (s10 − 2t10 + u10) + c

(20)
44

(︂
s4t2u4 − 1

7st8u
)︂

+ c
(20)
45 s3t4u3 +

c
(20)
46

(︂
s5u5 + 1

2t10 − 25
14st8u

)︂ 4

Table 3.3: 4-point amplitudes with KK implemented

The solutions for higher orders are given in table 3.3. The choices of remaining
polynomials are rather arbitrary. In our case they were chosen to make results a
bit more compact.

BCJ

BCJ relations are applied in a similar fashion to KK by order. So the relation
now reads

sA
(2n)
4 (1, 2, 3, 4) + (s + u) A

(2n)
4 (1, 3, 2, 4) = 0. (3.13)

To give explicit example we take the O(p2) amplitude from (3.7) and directly
substitute it into equation (3.13) to arrive at

c
(2)
4 s (s + t + u) = 0. (3.14)

This equality is again trivial by momentum conservation.

A
(2)
4,B = c

(2)
4 t (3.15)

At O(p4) this is followed by taking the amplitude from 3.2 which results into

c
(4)
41

(︂
st2 + s3 + s2u

)︂
+ c

(4)
42

(︂
s3 + 2su2 + st2 + t2u + u3

)︂
= 0, (3.16)
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with the only solution being c
(4)
41 = c

(4)
42 = 0 which leads to

A
(4)
4,B = 0. (3.17)

Results are summarized in table 3.4. Comparing our results it is possible to check
that 3.4 is a subcase of 3.3. This means that our results would be the same if we
started with KK compliant amplitude and then imposed BCJ or demanded BCJ
directly.

Order Independent terms Size

O(p2) c
(2)
4 t 1

O(p4) 0 0

O(p6) c
(6)
42 (s3 − 2t3 + u3) 1

O(p8) c
(8)
43 st2u 1

O(p10) c
(10)
43
5 (s5 − 4t5 + 5st3u + u5) 1

O(p12) c
(12)
41 (t6 − s6 − u6 + 3st4u − 2s3u3) 1

O(p14) c
(14)
41 (t7 − 3st5u − s3tu3) + c

(14)
42 (s7 + u7 − 4st5u − 6s3tu3) 2

O(p16) c
(16)
41 (t8 − s8 − u8 + 2st6u + 2s4u4 − 6s3t2u3) 1

O(p18) c
(18)
41 (t9 − 4st7u + s4tu4 + 2s3t3u3) +

c
(18)
42 (s9 + u9 − 5st7u + 8s4tu4 − 5s3t3u3)

2

O(p20) c
(20)
42

(︂
s10 − t10 + u10 − 5

3st8u − 40
3 s4t2u4 + 2s5u5

)︂
+ c

(20)
45 s3t4u3 2

Table 3.4: 4-Point amplitudes with BCJ implemented

This concludes our discussion around 4-point vertex. We will return to these
results when talking about 6 and 7-point interactions as they will include depen-
dence on 4-point scattering.

3.2 5-Point
The only contribution is once again the 5-point vertex itself.

iA5(1, 2, 3, 4, 5) = iV5 (1, 2, 3, 4, 5) =

2

3

45

1
. (3.18)

Whereas at 4-point we were able to recast symmetry demands to permutations
of variables, from now on we will have to rely on permutations of momenta labels.
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Our choice of 5 independent variables is s12, s13, s14, s23, s24. For simplicity or
clarity we might use others, but those can be always expressed as linear combi-
nation of these.

Lastly the dimensional constraints become non-trivial. Specifically 3D splits
while 4D and 6D remain identical to solutions without Gram conditions.

3.2.1 Fully symmetric

Starting at the lowest order we have

A
(2)
5,s = c

(2)
5 (s12 + perms) = 0, (3.19)

which again disappears by momentum conservation. In this section perms will
stand for summing over all permutations of external momenta labels.

We can immediately go to higher powers and arrive at the table 3.5.

Order Independent terms Size

O(p2) c
(2)
5 (s12 + perms) = 0 0

O(p4) c
(4)
5 (s2

12 + perms) 1

O(p6) c
(6)
5 (s3

12 + perms) 1

O(p8) c
(8)
51 (s4

12 + perms) + c
(8)
52 (s2

12s
2
13 + perms) 2

O(p10) c
(10)
51 (s5

12 + perms) + c
(10)
52 (s3

12s13s23 + perms) 2

Table 3.5: 5-point fully symmetric amplitudes up to O(p10)

These results do resemble 4-point rather closely. The first large difference comes
at O(p12). The amplitude now has 5 independent terms as

A
(12)
5,s = c

(12)
51

(︂
s6

12 + perms
)︂

+ c
(12)
52

(︂
s4

12s
2
13 + perms

)︂
+ c

(12)
53

(︂
s3

12s
3
13 + perms

)︂
+ c

(12)
54

(︂
s4

12s13s23 + perms
)︂

+ c
(12)
55

(︂
s2

12s
2
14s

2
23 + perms

)︂
.

(3.20)

The sequence of free parameters is 0, 1, 1, 2, 2, 5, 4, 8, 9, 13, 15 up to O(p22).

The 3D amplitudes start to differ from O(p8), where we get c
(8)
52 = 0. This

means that adding dimensional constraints of 3D makes the polynomials in the
fourth row of 3.5 become multiples of each other. The results further match at
O(p10) and at O(p12) we have c

(12)
55 = 0. This statement again means that the

last polynomial is just sum of the others. This is how dimensional constrains will
always workout and such we will not be mentioning it explicitly further.

The 3D sequence is 0, 1, 1, 1, 2, 4, 3, 6, 7, 8, 11 up to O(p22). We shall return to
why do these conditions appear only at higher powers later.
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If the last two sequences are subtracted we get 0, 0, 0, 1, 0, 1, 1, 2, 2, 5, 4, which
is the result for 5-point symmetric amplitudes 3.1. This seems to be just a coincide
albeit very intriguing one.

Adler zero

Demands for Adler zero become much less trivial at 5-point when compared to
4-point. Unlike 4-point where all variables went to zero, here only 10 out of the
20 possible do. This however means that any amplitude with only 1 free constant
can never satisfy Adler zero. We might thus expect that the first nontrivial results
will appear at O(p8).

This can be checked directly and we truly get

A
(2,4,6)

1 5,s = 0 (3.21)

as the only solution to Adler zero.
For higher orders nontrivial solutions do indeed exist starting at O(p8) with

the condition c
(8)
52 = −3c

(8)
51 , leaving us with

A
(8)

1 5,s = c
(8)
51

(︂
s4

12 − 3s2
12s

2
13 + perms

)︂
. (3.22)

To again give examples at higher powers the amplitude at O(p10) is

A
(10)

1 5,s = c
(10)
51

(︃
s5

12 − 15
4 s3

12s13s23 + perms
)︃

(3.23)

and at O(p12)

A
(12)

1 5,s = c
(12)
51

(︂
s6

12 − 3s4
12s13s23 − 6s2

12s
2
14s

2
23 + perms

)︂
+ c

(12)
52

(︂
s4

12s
2
13 − 2s2

12s
2
14s

2
23 + perms

)︂
+ c

(12)
53

(︃
s3

12s
3
13 − 1

2s4
12s13s23 + 2s2

12s
2
14s

2
23 + perms

)︃
.

(3.24)

The number of free parameters in this case is 0, 0, 0, 1, 1, 3, 3, 6, 7, 11. Interestingly
all of these results automatically have soft degree σ = 2.

For soft degree σ = 3 solutions can be found at O(p16,18,20) with 2, 3, 6 free
constants. While soft degree σ = 4 produces solutions at O(p16,18,20) with 1, 1, 5
free constants. Demanding higher soft degrees yielded no solutions at our search
depth but it would be reasonable to assume that they exist.

The 3D constrains reduce the numbers of free parameters after Adler zero to
0, 1, 2, 2, 4, 5, 6 at O(p8−20) with σ = 2. While σ = 3 leaves us with 1, 2, 3 and
σ = 4 with 0, 0, 2 at powers O(p16,18,20).

In the future sections we will be using these results only to O(p10), the rest
of these amplitudes serve as an illustration how do the dimensional constrains
change the possible interactions.
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3.2.2 Cyclic
We now return to cyclic amplitudes. At the lowest order the amplitude reads

A
(2)
5,c = c

(2)
5 (s12 + s15 + s23 + s34 + s45) = c

(2)
5 (s12 + cyc)

= c
(2)
5 (−s13 − 2s14 + s23 + s24) .

(3.25)

The equalities are just recasting with momentum conservation. For actual cal-
culations it simpler to use the last form, however it is quite unclear that it is
cyclically invariant, so throughout out this text we be using the shortened ver-
sion.

At higher powers the amplitudes are

A
(4)
5,c = c

(4)
51

(︂
s2

12 + cyc
)︂

+ c
(4)
52 (s12s13 + cyc) + c

(4)
53

(︂
s2

13 + cyc
)︂

(3.26)

and

A
(6)
5,c = c

(6)
51

(︂
s3

13 + cyc
)︂

+ c
(6)
52

(︂
s12s

2
13 + cyc

)︂
+ c

(6)
53

(︂
s2

12s13 + cyc
)︂

+ c
(6)
54

(︂
s3

12 + cyc
)︂

+ c
(6)
55

(︂
s13s

2
14 + cyc

)︂
+ c

(6)
56 (s14s23s24 + cyc) + c

(6)
57

(︂
s14s

2
23 + cyc

)︂
.

. (3.27)

The sequence of free parameters is 1, 3, 7, 14, 26, 42, 66, 99, 143, 201 at O(p2−20).
While 3D constraints reduce it to 1, 3, 7, 13, 25, 39, 59, 85, 117, 159 at O(p2−20).

From these results it becomes clear that number of free parameters in this
case explodes rapidly. As such it quickly becomes impractical to list amplitudes
even in simplified forms.

Adler zero

Demanding Adler zero again becomes nontrivial constraint. It turns out that

A
(2,4)

1 5,c = 0. (3.28)

The first nonzero amplitude is thus O(p6) with constraints lowering the number
of free constants in (3.27) from 7 to 3

c
(6)
54 = c

(6)
51 − c

(6)
52
2 + c

(6)
53
2 , c

(6)
55 = 6c

(6)
51 − 3c

(6)
52 , c

(6)
56 = 0, c

(6)
57 = −c

(6)
52
2 + c

(6)
53
2 . (3.29)

The amplitude is thus

A
(6)

1 5,c = c
(6)
51

(︂
s3

13 + s3
12 + 6s13s

2
14 + cyc

)︂
+ c

(6)
52

(︄
s12s

2
13 − s3

12
2 − 3s13s

2
14 − s14s

2
23

2 + cyc
)︄

+ c
(6)
53

(︄
s2

12s13 + s3
12
2 + s13s

2
14 + s14s

2
23

2 + cyc
)︄

.

(3.30)

The sequence of free parameters grows as 0, 0, 3, 9, 20, 35, 58, 90, 133, 190, after
demanding Adler zero.
While restricting ourselves to 3D reduces it to 0, 0, 3, 8, 19, 32, 51, 76, 107, 148.
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KK

The KK relations now give 18 equations. One of which reads

A5(1, 2, 3, 5, 4) + A5(1, 2, 3, 4, 5) + A5(1, 2, 4, 3, 5) + A5(1, 4, 2, 3, 5) = 0, (3.31)

which will again be applied by orders. Not all of these equations are independent,
but rather than finding the basic set of them it is simpler to just solve them all.

First solution appears at O(p6) with the extra conditions on the amplitude
(3.30)

c
(6)
51 = 0, c

(6)
53 = 2c

(6)
52 . (3.32)

Giving us

A
(6)
5,K = c

(6)
52

(︄
s3

12
2 − s13s

2
14 + s12s

2
13 + s14s

2
23

2 + 2s2
12s13 + cyc

)︄
. (3.33)

The number of free parameters changes to 0, 0, 1, 2, 5, 8, 14, 21, 32, 45. In 3D the
sequence is reduced to 0, 0, 1, 2, 5, 8, 13, 19, 27, 37.

BCJ

Formula for BCJ now becomes

s12A5(1, 2, 3, 4, 5) + (s12 + s23)A5(1, 3, 2, 4, 5)
+ (s12 + s23 + s24) A5(1, 3, 4, 2, 5) = 0.

(3.34)

Solving this equation is rather nontrivial. The first solution appears at O(p14)
and is followed at higher powers with the number of free parameters 1, 2, 3, 6.
These results are rather long and will not be written explicitly as we will not
need them later.

Interestingly 3D conditions add solutions this time. With the first appearing
at O(p12) and then the sequence of free parameters grows as 1, 2, 3, 4, 8. This
goes directly against all previous results as 3D should be adding constraints and
reducing degrees of freedom. Possible explanation of the phenomenon might be
nonlinearity of BCJ, where the equations are just much simpler to solve in 3D.

Lastly let us note that results satisfy relation

BCJ ⊂ KK ⊂ Adler zero. (3.35)

Meaning that anything satisfying BCJ automatically satisfy KK and that satisfies
Adler zero.

ϵ - invariant

We now focus on adding the ϵ invariant to our results. We begin with simple
observation

ϵ (1234) = −
5∑︂

i=2
ϵ (i234) = −ϵ (5234) . (3.36)
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The first equality is just momentum conservation and the second follows from
antisymmetry.

The equation (3.36) implies that ϵ (ijkl) goes to zero if we send any momentum
to zero. Amplitude with a single ϵ thus immediately satisfies Adler zero.

It is simple to construct amplitudes from our results in the previous cyclic
section as just the corresponding amplitude multiplied by ϵ(1234). These new
results will always satisfy Adler zero. To explicitly separate these amplitudes we
will be using lower index E.

Amplitudes start at O(p4) with

A
(4)
5,E(1234) = c

(4)
5 ϵ(1234) . (3.37)

Following at higher powers with

A
(6)
5,E(1234) = c

(6)
5 ϵ(1234) (s12 + cyc) ,

A
(8)
5,E(1234) = ϵ(1234)

(︂
c

(8)
51 s2

12 + c
(8)
52 s12s13 + c

(8)
53 s2

13 + cyc
)︂ (3.38)

and so on.

To close this section let us mention that we have found no solutions to either
KK or BCJ with ϵ inserted.

3.3 6-Point
In the previous sections we focused on vertices alone. At 6-point in order to
discuss amplitudes we need to include terms with propagators that will intro-
duce dependence on lower points. For the purposes of this text we give a short
overview of the 6-point vertex with the most of our attention being directed
towards amplitudes and reducing the number of free constants in them.

Lastly we choose independent variables as s12, s13, s14, s15, s23, s24, s25, s34, s35.

Vertex

The process here is identical to those presented in previous sections. However
let us outline few important points. First of all 3D constraints are still in effect
and appear from O(p8). While 4D constraints now become nontrivial, but only
at O(p10), which also acts as an upper limit for calculations. Summary of results
is given in the form of tables 3.6 and 3.7 as most of them are too long to be
presented in their entirety.

It is also possible to solve KK for some powers, but as noted before that
would only matter to us if we lacked 4-point interactions so these results are
mostly presented to illustrate that 4D constrains truly appear at 6-point O(p10).

27



Power Free constants Adler zero
3D 4D 6D 3D 4D 6D

2 0 0 0 0 0 0
4 1 1 1 0 0 0
6 2 2 2 1 1 1
8 3 4 4 2 2 2
10 5 5 6 3 3 4

Table 3.6: Number of free constants at 6-point for fully symmetric vertex

Power Free constants Adler zero
3D 4D 6D 3D 4D 6D

2 2 2 2 0 0 0
4 9 9 9 0 0 0
6 32 32 32 5 5 5
8 86 89 89 27 29 29
10 206 225 226 97 111 112

Table 3.7: Number of free constants at 6-point for cyclic vertex

3.3.1 Fully symmetric
We finally turn to 6-point amplitudes. The relevant contributions are given by
(3.39).

iA
(k)
6,s =

∑︂
π∈S6

⎛⎜⎜⎜⎜⎜⎜⎜⎝
i j

π(1)

π(2)

π(3) π(4)

π(5)

π(6)

+
k

π(1) π(6)

π(3) π(4)

π(2) π(5)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (3.39)

Where i, j, k stand for O(pi) , O(pj) , O
(︂
pk
)︂

and they must satisfy i + j − 2 = k.
For simplicity we will be dropping the momenta labels and all diagrams are going
to be implicitly summed over relevant symmetry. We mention cases where we
have to avoid double counting in results explicitly.

At O(p2) all relevant contributions are

iA
(2)
6,s =

2 2
+

2
= 0. (3.40)

However both 4 and 6-point interactions are zero by momentum conservation so
we move onto higher powers.

The contributions to O(p4) amplitude are

iA
(4)
6,s =

2 4
+

4
. (3.41)
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The interaction becomes nontrivial but only the 6-point vertex is non-zero, so the
amplitude is

A
(4)
6,s = c

(4)
6

(︂
s2

12 + perms
)︂

, (3.42)
which does not satisfy Adler zero so we carry on.

From this point onward we will not be drawing diagrams that are trivially
zero.

At O(p6) the contributions to amplitude are

iA
(6)
6,s =

4 4
+

6
. (3.43)

From previous section we know that the sub-amplitudes in left diagram have
soft degree 2, so a similar behaviour is expected here. Secondly since both vertices
are identical we will divide the left contribution by 2 in numerical results. This
gives the amplitude

A
(6)
6,s = − c

(6)
61

(︄
(s2

12 + s2
13 + s2

23) (s2
45 + s2

46 + s2
56)

s123
+ perms

)︄
+ c

(6)
62

(︂
s3

12 + perms
)︂

+ c
(6)
63 (s12s15s24 + perms) .

(3.44)

With constants being related to lower point as c
(6)
61 = c

(4)
4 ×c

(4)
4 . Demanding Adler

zero leads to
c

(6)
63 = 16c

(6)
61 + 12c

(6)
62 , (3.45)

while demanding soft degree 2 results in

c
(6)
62 = −1

2c
(6)
61 , c

(6)
63 = 10c

(6)
61 , (3.46)

making this amplitude fully determined by lower point interactions with only one
parameter left. Demanding any higher soft degree leads to a trivial result.

At O(p8) the amplitude is

iA
(8)
6,s =

4 6
+

8
. (3.47)

This amplitude has 1 constant given from 4-point and 3/4/4 from 6-point vertex
in 3/4/6D. Demanding Adler zero reduces them to 1 + 2/3/3. Enforcing soft
degree 2 leaves only the 4-point constant undetermined. The final amplitude is

A
(8)

2 6,s = c
(8)
61

(︄
−(s2

12 + s2
13 + s2

23) (s3
45 + s3

46 + s3
56)

s123

+ 5s4
12 + 18s2

16s
2
23 + 312s12s

2
15s24 + 72s2

14s
2
15 + perms

)︄
.

(3.48)

Where c
(8)
61 = c

(4)
4 c

(6)
4 .
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At O(p10) the amplitude is

iA
(10)
6,s =

4 8
+

6 6
+

10
. (3.49)

At the beginning there are 2 constants from 4-point and 5/5/6 from 6-point
in 3/4/6D. Since the middle digram features identical vertices its contribution is
divided by 2 in numerics. Imposing Adler zero reduces the number of independent
terms to 2 + 3/3/4. Soft degree 2 makes the amplitude fully determined by 4-
point, leading to

A
(10)

2 6,s = c
(10)
61

(︄
−(s2

12 + s2
13 + s2

23) (s4
45 + s4

46 + s4
56)

s123
+ 68

5 s2
12 − 160s3

14s
2
23

+ 352s12s
3
14s23 − 336s12s

2
14s

2
23 − 416

3 s3
12s

2
13 + perms

)︄

+ c
(10)
62

(︄
−(s3

12 + s3
13 + s3

23) (s3
45 + s3

46 + s3
56)

s123
+ 216

5 s2
12 − 432s3

14s
2
23

+ 576s12s
3
14s23 − 1152s12s

2
14s

2
23 − 384s3

12s
2
13 + perms

)︄
.

(3.50)

The constants relate to lower points as c
(10)
61 = c

(4)
4 c

(8)
4 and c

(10)
62 = c

(6)
4 c

(6)
4 . Soft

degree 3 can be satisfied as well. Such solution coincides with the previous and
adds the condition c

(10)
61 = 0. This result is again determined by 4-point scattering.

The reduction to soft degree 3 solution seems rather obvious as the 4-point O(p4)
vertex on the left does not have soft degree 3 by itself. This demand gives us
c

(4)
4 = 0, resulting in the leftmost diagram in 3.49 being zero.

As we saw demanding Adler zero can lead to 6-point amplitudes being fully
determined by lower point interactions. We will carry this notion further and
see how we can restrict cyclic amplitudes which feature larger number of free
constants.

3.3.2 Cyclic

From tables 3.6 and 3.7 we see that cyclic amplitudes have much higher number
of free constants then symmetric ones. We might also expect that O(p2) , O(p4)
with Adler zero will be fully determined from lower point amplitudes as there
are no free parameters left in the 6-point vertex. Diagrams in this section are
considered to be summed over all cyclic permutations.

The KK relations now result in 72 equations. Example of which is
A6 (1, 2, 6, 5, 4, 3) + A6 (1, 2, 3, 4, 5, 6) + A6 (1, 3, 2, 4, 5, 6)

+ A6 (1, 3, 4, 2, 5, 6) + A6 (1, 3, 4, 5, 2, 6) = 0.
(3.51)

While BCJ relations are now given by
s12A6 (1, 2, 3, 4, 5, 6) + (s12 + s23) A6 (1, 3, 2, 4, 5, 6)

+ (s12 + s23 + s24) A6 (1, 3, 4, 2, 5, 6)
+ (s12 + s23 + s24 + s25) A6 (1, 3, 4, 5, 2, 6) = 0.

(3.52)
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We again move by power-counting.

At O(p2) the amplitude is made out of the diagrams

iA
(2)
6,c =

2 2
+

2
. (3.53)

We are starting with only 1 constant from 4-point interaction and 3 from 6-point.
Since the left diagram is made out of identical vertices it will be divided by 2
during numerics. Demanding Adler zero makes this amplitude fully determined
by lower point interaction. The result is

A
(2)

1 6,c = c
(2)
6

(︄
− s13s46

s123
− s26s35

s126
− s15s24

s156
+ s13 + s15 + s35

)︄
. (3.54)

This result satisfies Adler zero, but interestingly it also satisfies both KK and
BCJ relations. Lastly the constant relates to 4-point as c

(2)
6 = c

(2)
4 c

(2)
4 .

At O(p4) the contributions are

iA
(4)
6,c =

4 2
+

4
. (3.55)

They result in 2 constants from 4-point and 9 from contact 6-point. Demanding
Adler zero leaves only the 4-point constants not determined, thus this amplitude
is fully given by 4-point scattering. The resulting amplitude reads

A
(4)

1 6,c = c
(4)
61

(︄
− (s2

12 + s2
23) s46

s123
− s2

14 + s15s16 − s13s14 + s2
13

− s12s16 − s12s14 − s16s24 + cyc
)︄

+ c
(4)
62

(︄
− s2

13s46

s123
+ s2

12 + s15s16 − s13s14 + s12s16

+ s12s14 − s16s24 + cyc
)︄

.

(3.56)

Applying KK relations forces c
(4)
62 = −2c

(4)
61 . This is exactly the results from (3.12)

which means if we take the 4-point vertex that satisfies KK, this amplitude will
be fully determined by a single constant. Imposing BCJ demands c

(4)
62 = c

(4)
61 = 0.

Such result coincides with the result from (3.17) which tells us that there is no
4-point O(p4) satisfying BCJ, leading to zero naturally

A
(6)
6,B = 0. (3.57)

Because we will not be giving any further results explicitly we are not going
to be mentioning double counting either as it won’t change results as presented.
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The contributions to amplitude at O(p6) are

iA
(6)
6,c =

6 2
+

4 4
+

6
. (3.58)

They add up to give 5 constants from 4-point scattering and 32 from 6-point
contact terms. Demanding Adler zero leaves us with 5+5 remaining constants.
While KK reduces both the 4 and 6-point contributions to only 2 constants.
Adding BCJ reduces the whole amplitude to just a single constant from 4-point
scattering.

At O(p8) the amplitude is

iA
(8)
6,c =

8 2
+

6 4
+

8
. (3.59)

At the begging there are 7 constants from 4-point and 86/89/89 from 6-point
contact terms in 3/4/6D. Adler zero reduces them to 7 + 27/29/29 and KK
leaves only 3 + 7/8/8 undetermined. After applying BCJ we are once again left
with only a single constant from 4-point.

At O(p10) the contributions are

iA
(10)
6,c =

10 2
+

8 4
+

6 6
+

10
. (3.60)

The amplitude starts with 12 free constants from 4-point and 206/225/226 from
6-point contact terms in 3/4/6D. Demanding Adler zero reduces them further to
12 + 97/111/112 and imposing KK leaves 5 + 23/26/27 free constants. After
applying BCJ there are only 2 constants from 4-point left, making this amplitude
fully determined by them.

We once again saw that adding restrictions to 6-point amplitude can make it
fully determined by lower point scattering.

There are two methods of applying conditions which give the same results.
The physically correct one respects that if we apply condition to amplitude, it
should be satisfied by any point and power. As such after applying any condition
to a 6-point amplitude we should only consider contribution from 4-point that
themselves satisfy given condition.

However we could also take a less rigorous path and just apply these condi-
tions directly, without first reducing the 4-point. Both of these methods produce
identical results. Which means that 6-point amplitude is able to enforce proper
behaviour to lower points. This works only for 4-point vertices as will be shown
in the next section about 7-point amplitude.

This behaviour has been observed in the previous section on fully symmetric
amplitudes where certain parts were forced to become zero, because they did not
have high enough soft degree.

Lastly let us note that 4D constraints appear only at O(p10). We shall return
to these later and discuss them in broader terms.
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3.4 7-Point
Whereas before our exploration was methodical at 7-point we start being compu-
tationally limited. Most of our methods are pretty much brute force techniques,
so the rapid growth in number of terms makes many of our calculations imprac-
tical. This also makes 7-point the highest number of particles we will be looking
into.

Additionally we will not be highlighting the 7-point vertex itself. The rele-
vant results can be found in the following text. Lastly there are 14 independent
variables, which are chosen identically to 6-point with s16, s26, s36, s46, s56 added.

3.4.1 Fully symmetric
We again begin at O(p2), this time with combinations of 4 and 5-points to arrive
at

iA
(2)
7,s =

2 2
+

2
= 0. (3.61)

This amplitude is trivial by momentum conservation.

A
(2)
7,s = 0. (3.62)

At O(p4) the amplitude is

iA
(4)
7,s =

4 2
+

2 4
+

4
. (3.63)

Then only non-zero contribution is the 7-point vertex itself resulting in

A
(4)
7,s = c

(4)
7

(︂
s2

12 + perms7

)︂
. (3.64)

This amplitude clearly does not satisfy Adler zero, so we continue to higher
powers.

We again omit anything that goes to zero trivially.

At O(p6) the contributions are

iA
(6)
7,s =

4 4
+

6
. (3.65)

They result in an amplitude

A
(6)
7,s = c

(6)
71

(︄
−(s2

12 + perms5) (s2
56 + s2

57 + s2
57)

s1234
+ perms7

)︄
+ c

(6)
72

(︂
s3

12 + perms7

)︂
+ c

(6)
73 (s12s14s23 + perms7) .

(3.66)

Where perms5 denotes permutations of the left 4 external legs and the propagator
momentum. While perms7 corresponds to permutations of external legs. Because
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the 5-point vertex does not satisfy Adler zero it is not surprising that neither does
this amplitude, so we move onto higher orders.

At O(p8) the contributions are

iA
(8)
7,s =

6 4
+

4 6
+

8
. (3.67)

The amplitude thus reads

A
(8)
7,s = c

(8)
71

(︄
−(s3

12 + perms5) (s2
56 + s2

57 + s2
58)

s1234
+ perms7

)︄

+ c
(8)
72

(︄
−(s2

12 + perms5) (s3
56 + s3

57 + s3
58)

s1234
+ perms7

)︄
+
(︂
c

(8)
73 s4

12 + c
(8)
74 s2

12s
2
13 + c

(8)
74 s12s

2
14s23 + c

(8)
75 s2

14s
2
23 + perms7

)︂
.

(3.68)

Demanding Adler zero gives the following relations

c
(8)
72 = −1

8c
(8)
71 , c

(8)
73 = 192

5 c
(8)
71 , c

(8)
74 = 288c

(8)
71 ,

c
(8)
75 = 2016c

(8)
71 , c

(8)
76 = 48c

(8)
71 .

(3.69)

We see that in order to satisfy Adler zero this amplitude needs the O(p4) 5-point
vertex to be non-zero. However this vertex cannot satisfy Adler zero by itself,
so in a theory with Adler zero this amplitude has to be zero regardless. Same
argument can be applied to O(p6) 5-point. Higher soft degrees are automatically
zero. The 3D dimensional constraints appear here, but they only reduce the
number of free constants in the 7-point vertex by 1.

At O(p10) the contributions are

iA
(10)
7,s =

4 8
+

6 6
+

8 4
+

10
. (3.70)

They result in an amplitude

A
(10)
7,s = c

(10)
71

(︄
−(s2

12 + perms5) (s4
56 + s4

57 + s4
67)

s1234
+ perms7

)︄

+ c
(10)
72

(︄
−(s3

12 + perms5) (s3
56 + s3

57 + s3
67)

s1234
+ perms7

)︄

+ c
(10)
73

(︄
−(s4

12 + perms5) (s2
56 + s2

57 + s2
67)

s1234
+ perms7

)︄

+ c
(10)
74

(︄
−(s2

12s
2
13 + perms5) (s2

56 + s2
57 + s2

67)
s1234

+ perms7

)︄
+
(︂
c

(10)
75 s5

12 + c
(10)
76 s3

12s
2
13 + c

(10)
77 s12s

3
14s23 + c

(10)
78 s2

12s
2
14s23

+ c
(10)
79 s12s13s

2
14s23 + c

(10)
710 s3

14s
2
23 + c

(10)
711 s12s

2
14s

2
23 + perms7

)︂
.

(3.71)
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While demanding Adler zero only forces c71 = 0, since there is no 5-point O(p6)
vertex satisfying Adler zero we have to set c72 = 0 and continue. This results in

c
(10)
71 = 0, c

(10)
72 = 0, c

(10)
74 = −3c

(10)
73 ,

c
(10)
77 = −464

7 c
(10)
73 + 375

7 c
(10)
75 + 9

7c
(10)
76 ,

c
(10)
78 = −1536

7 c
(10)
73 + 300

7 c
(10)
75 + 24

7 c
(10)
76 ,

c
(10)
79 = −456

7 c
(10)
73 + 375

14 c
(10)
75 + 9

14c
(10)
76 ,

c
(10)
710 = −2448

7 c
(10)
73 − 25

7 c
(10)
75 + 5

7c
(10)
76 ,

c
(10)
711 = −7792

7 c
(10)
73 − 75

7 c
(10)
75 + 15

7 c
(10)
76 .

(3.72)

We see that only 3 constants are left. After demanding soft degree 2 we get the
extra conditions

c
(10)
75 = −2768

225 c
(10)
73 , c

(10)
76 = −3136

9 c
(10)
73 . (3.73)

They reduce the amplitude to a single constant, that is given from lower point
scattering by

c
(10)
73 = c

(8)
51 c

(4)
4 . (3.74)

This is thus the first amplitude that can appear in theory with Adler zero at
7-point.

Lastly these results holds in 4D. The unconstrained version is identical to 6D
and contains an extra term with s2

13s14s23s24 + perms7. This additional term
stops being independent after Adler zero. On the other hand 3D now leads to
only one constants begin left in the 7-point vertex after Adler zero. Higher soft
degrees are zero immediately as in 3D the corresponding 5-point vertices are zero.

3.4.2 Cyclic
Here we will separate two cases, first without ϵ insertion and second with.

Standard

We start at O(p2) with the contributions being

iA
(2)
7,c =

2 2
+

2
. (3.75)

The amplitude thus reads

A
(2)
7 = c

(2)
71

(︄
−(s12 + cyc5) s57

s1234
+ cyc7

)︄
+
(︂
c

(2)
72 s13 + c

(2)
73 s12 + cyc7

)︂
. (3.76)

However as 5-point vertex cannot satisfy Adler zero we have to move higher. In
similar fashion neither KK or BCJ can be solved.
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The contributions at O(p4) are

iA
(4)
7,c =

4 2
+

2 4
+

4
. (3.77)

This amplitude starts with 5 constants from lower point scattering and 15 from
7-point contact terms. Demanding Adler zero makes this amplitude trivially zero.

We thus move onto O(p6) with the contributions

iA
(6)
7,c =

6 2
+

4 4
+

2 6
+

6
. (3.78)

This amplitudes starts with 15 + 80 constants from lower points and contact
terms respectively. After demanding Adler zero we see that the two middle dia-
grams contribute nothing. Afterwards there are only 3 constants left. All of which
originate from the leftmost diagram. This makes amplitude fully determined by
lower point scattering. Lastly we have found no solutions for either KK or BCJ.

ϵ invariant

We now require every term in an amplitude to include an ϵ invariant. Whereas
in the case of 5-point this demand was trivial to meet, here it is not clear how to
insert it. We begin by observing that there are

(︂
7
4

)︂
= 35 choices for 4 momenta

to create ϵ(ijkl), but by momentum conservation only
(︂

6
4

)︂
= 15 are independent.

As such we will simply create all monomials out of sij, multiply them each by
all 15 ϵ(ijkl) and then sum over symmetry. This method is very general, but it
also makes calculations that much more difficult. Propagator terms will include
their own ϵ(ijkl) from 5-point scattering.

Now the lowest amplitude is O(p4) with the contributions

iA
(4)
7,E =

4 2
+

4
. (3.79)

It turns out that after cyclic symmetry only 3 independent ϵ(ijkl) exist. This
gives the amplitude form

A
(4)
7,E = c

(4)
71

(︄
−ϵ(1234)s57

s1234
+ cyc7

)︄
+
(︂
c

(4)
72 ϵ(1234) + c

(4)
73 ϵ(1234) + c

(4)
74 ϵ(1245) + cyc7

)︂
.

(3.80)

Demanding Adler zero gives the following constraints

c
(4)
72 = 2

7c
(4)
71 , c

(4)
73 = −2

7c
(4)
71 , c

(4)
72 = 1

7c
(4)
71 . (3.81)

So the final amplitude reads

A
(4)

1 7 = c
(4)
71
7

(︄
−7ϵ(1234)s57

s1234
+ 2ϵ(1234) − 2ϵ(1235) + ϵ(1245) + cyc7

)︄
. (3.82)
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We have confirmed that this result matches with the one obtained from La-
grangian [2].

At O(p6) the contributions are

iA
(6)
7,E =

4 4
+

6 2
+

6
. (3.83)

The amplitude is starting with 5 terms from lower points and 25 from 7-point
contact terms. Demanding Adler zero makes amplitude fully determined by lower
point scattering. The resulting amplitude has the form

A
(6)

1 7,E =
⎛⎝−

ϵ(1234)
(︂
c

(6)
71 s2

57 + c
(6)
72 [s2

56 + s2
67]
)︂

s1234
+ cyc7

⎞⎠
+ c

(6)
73

(︄
−ϵ(1234) (s12 + cyc5) s57

s1234
+ cyc7

)︄
+ V

(6)
7,E

(3.84)

with all constants in the vertex being determined by the first three.

At O(p8) the contributions to amplitude are

iA
(8)
7,E =

4 6
+

6 4
+

8 2
+

8
. (3.85)

The amplitude begins with 6 terms from lower points and 245 constants from 7-
point contact terms. Demanding Adler zero reduces the number of free constants
in 7-point vertex to 110.

Lastly we have found no solutions to either KK or BCJ with ϵ inserted.
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4. Massive particles
As we have seen in the previous chapters Adler zero is a powerful tool that allowed
us to restrict amplitudes and even make them fully determined by lower points.
But Adler zero and soft limit in general are only sensible for massless particles.
We can try to avoid this problem and define Adler zero for massive particles
through 6 dimensional spinor-helicity formalism. This way we will make Adler
zero a natural demand.

The relation between 4D massive and 6D massless spinor-helicity formalisms
has been worked out in [19]. We give short outline of this formalism and introduce
our own notation in order to solve conditions outlined in previous sections.

We begin by generalizing 4D bispinor decomposition.

paȧ = λaλ̃ȧ + ρ µaµ̃ȧ (4.1)

Where
ρ = κκ̃, κ = m

⟨λµ⟩
, κ̃ = m̃

[µλ] . (4.2)

This notation can be related to 6D spinors as

λA
a =

⎛⎝−κµb λb

λ̃
ḃ

κ̃µ̃ḃ

⎞⎠ =
⎛⎝νb λb

λ̃
ḃ

ν̃ ḃ

⎞⎠ . (4.3)

Where ν is just recasting into more convenient notation. They satisfy the equa-
tions

⟨λν⟩ = −m, [λν] = −m̃. (4.4)

We can use this form and earlier derived formula (1.49) to construct 6D momenta

pµ = −1
4σµ

ABλA
b λBb. (4.5)

By direct calculation we can see that

p4 = m − m̃

2i
, p5 = m + m̃

2 . (4.6)

Further enforcing
M2 = mm̃ =⇒ p2

4 + p2
5 = M2, (4.7)

where M is physical mass. From here we can see that the if the 6D momentum
is massless, the first 4 elements of the six-vector satisfy

p2
6D = p2

4D − M2 = 0. (4.8)

And such we can describe massive 4D momentum, though 6D spinors. Lastly
momentum conservation in 6D for n-point scattering dictates

n∑︂
i=1

mi =
n∑︂

i=1
m̃i = 0. (4.9)
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Now we require a formula for converting variables between 4D and 6D. This
is most easily done with sij. Direct calculation yields

s6D
ij = 4Dsij − (mi + mj) (m̃i + m̃j) . (4.10)

Where we used standard definitions sij = (pi + pj)2. For simplicity we have
assumed that all particles have identical mass M . We can check the validity of
formula (4.10) by starting with

0 = 6Dsii = 4Dsii − 4M2 (4.11)

which is correct form of massive sii in 4D. Following that at n-point momentum
conservation in 6D gives

0 =
n∑︂

i=1

6Dsij =
n∑︂

i=1

4Dsij −
n∑︂

i=1

(︂
2M2 + mim̃j + mjm̃i

)︂
. (4.12)

Momentum conservation (4.9) demands that the last two terms sum to 0 and
using previous equality for s11 it is possible to arrive at

n∑︂
i=1

4Dsij = 2nM2 (4.13)

or
n∑︂

i ̸=j

4Dsij = 2nM2 − 4M2. (4.14)

This results is correct momentum conservation of massive 4D kinematics.

From (4.10) we see that the proposed dimensional reduction is not trivial as
it depends on parametrization of mass through the choice of mi, m̃i. But since
parameters have no direct physical meaning there seems to be no contradiction.
Lastly if we want momenta to be real it is required to enforce mi = m̃∗

i .
We now make assumption that if we calculate 6D amplitude it will be equal

to 4D massive one. In order to fix parametrization we will require that at least
4-point amplitude is given to us. For this we can use result derived in [20], which
gives the massive 4-point amplitude to be

A
(2)
4 = c

(2)
4

(︂
s12 + s14 − 2M2

)︂
. (4.15)

In our formalism this can be achieved by choosing for example

m1 = M, m2 = iM, m3 = −iM, m4 = −M, (4.16)

and taking amplitude from (3.7).

The method presented in [20] is to define soft limit as pi = 0 and p2
i = 0.

By this method is it clear that (4.15) satisfies Adler zero. This method is quite
artificial as it requires to set one mass to zero. From our point of view this
amplitudes satisfies 6D Adler zero and therefore it satisfies 4D massive one as
well.
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We now want to extend this formalism to higher point scattering. Let us
start at 6-point. Since the result is known [20], we can easily build it from gluing
vertices together

A
(2)
6 = c

(2)
6

(︄
(s12 + s23 − 2M2) (s46 + s56 − 2M2)

s123 − M2

(s16 + s56 − 2M2) (s23 + s34 − 2M2)
s156 − M2

(s16 + s12 − 2M2) (s34 + s45 − 2M2)
s126 − M2

)︄
+ V6.

(4.17)

Here we however run into problems. There seems to be no parametrization that
satisfies this form. As it turns our if we want all vertices to have the correct form
we need to have 6Dsijk = 4Dsijk. This leads to contradiction as we know that
propagators are different. On the other hand if we want to have all propagators
correct, our parametrization will not allow us to get correct form of vertices. To
give the most obvious example we can choose

m1 = M, m2 = −M, m3 = M, m4 = −M, m5 = M, m6 = −M. (4.18)

This produces correct propagators, but it also leads to

6Dsii+1 = 4Dsii+1. (4.19)

Which obviously cannot reproduce (4.17). On the other hand demanding for
example

6sii+1 = 4sii+1 − M2, (4.20)
leads to propagators without M2 or with 3M2, neither of which is correct.

We can however go against the better judgment of the article [20] and choose
the 4-point amplitude to be

A
(2)
4 = c

(2)
4

(︂
s13 − M2

)︂
. (4.21)

This is achievable with parametrization

m1 = Mei 2π
3 , m2 = M, m3 = −M, m4 = −Mei 2π

3 . (4.22)

This amplitude again satisfies Adler zero, so we can try to glue 4-point vertices
together, this time resulting in (3.54)

A
(2)
6 = c

(2)
6

(︄
− (s13 − M2) (s46 − M2)

s123 − M2 − (s26 − M2) (s35 − M2)
s126 − M2

− (s15 − M2) (s24 − M2)
s156 − M2 + s13 + s15 + s35 − 3M2

)︄
.

(4.23)

Which is achievable with the parametrization

m1 = −M, m2 = M, m3 = Mei π
3 ,

m4 = Me−i 2π
3 , m5 = Me−i π

3 , m6 = Mei 2π
3 .

(4.24)
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As a side note the phase in front of m2 is actually a free parameter, so it could
be chosen differently, but the result remains identical.

To summarize the procedure, we begin with 6D massless kinematics. Run
standard calculation to determine amplitudes that satisfy Adler zero and then
recast them into 4D massive kinematics by using (4.10). Last step is not given
uniquely so the parametrization has to be determined by known lower point
scattering.

As we have seen this procedure can lead to reasonably looking results. How-
ever the results themselves still depend on choice of non-physical quantities m, m̃.
In addition we rely on the assumption that 6D and 4D amplitudes are identical.
It is clearly not universal as shown in (4.17). This is rather extensive issue as we
cannot reproduce known results.

Overall it seems like an interesting way to implement Adler zero for massive
particles. It is more formally correct than simply choosing one of the masses
to be zero. But since we were unable to reproduce known results it cannot be
considered correct.
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5. Discussion

5.1 Gram conditions
In the previous sections we have observed that Gram conditions become nontrivial
in 3D from 5-point O(p8). While in 4D they appeared from 6-point O(p10). The
4D part has been noticed in [2]. The explanation given there follows from non-
linearity of these conditions. In 4D Gram conditions are linear relations in s5

ij. So
in order to apply them to our linear combinations of polynomials we are forced
to work at O(p10).

We have confirmed that this argument works in 3D. It is thus possible to con-
jecture that for n-point scattering in D dimensions Gram conditions will become
nontrivial starting with n = D + 2 at O

(︂
p2D+2

)︂
.

We now know this to be correct in 3 and 4 dimensions. Based on this conjec-
ture we would expect that in 6D Gram conditions will appear at 8-point O(p14).
Which lies firmly beyond our search depth, so the only confirmation we can pro-
vide is that the 6D results match those without Gram conditions implemented.

5.2 Recursion and validation of results
Recursion

In this text we often encountered cases where higher point amplitudes were fully
determined by their lower point contributions. Natural question would thus be
whether it is possible to construct these results directly. The answer turns out to
be positive in some cases. For our purposes the relevant procedure is called soft
recursion [14]. We will first summarize results relevant to our discussion. Let us
consider n-point amplitude at O(p2m), with soft degree σ and in D dimensions.
Then this amplitude is constructible from lower point scattering by soft recursion
if it satisfies

m

n
< σ, n ≥ D + 2. (5.1)

In 4D this implies that 6-point amplitude should be fully given by 4-point scat-
tering to O(p4) with soft degree σ = 1 and to O(p10) for σ = 2. While 7-point
amplitude should be determined up to O(p6) with σ = 1 and to O(p12) with
σ = 2. All of our results confirm the inequalities (5.1).

Interestingly if we now turn to 3D we see that 5-point should be determined up
to O(p4) with σ = 1 and up to O(p8) with σ = 2. Otherwise it should correspond
to 4D case. Once again our results do confirm this.

On the other hand in 6D the amplitude should be fully determined from 8-
point and O(p6). Such results are beyond our search depth. We have however
found cases where the amplitude was determined earlier. This is most likely
caused by the simple fact that results there match with those from lower dimen-
sions.
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Constructing bases

Our procedure of generating bases has been numerical in nature. There are several
analytical methods that could be employed. For example after constructing all
relevant polynomials it is possible to create minimal Gröbner basis. While basis
in the linear combination sense can be constructed from Gröbner basis quickly.
We ran this procedure for 4 and 5-point vertices. This method starts as a slightly
slower version of our numerical approach, however it scales very poorly to higher
number of polynomials. As such we did not employ it further.

If our goal was not to construct the basis itself but cared only about the
number of free constants we could employ Hilbert series. This was done in [18].
The results presented there match with our own for 4 and 5-point symmetric
amplitudes.

5.3 Odd sector KK/BCJ
Both KK and BCJ relations allowed us to reduce the number of free parameters.
With a single exception the ϵ invariant where we were unable to find anything.
It is however possible to “strip” the ϵ from 5-point amplitude and work with it
further. Since in this form we were able to find nontrivial solution to previous
constrains it could be possible to repeat this procedure at 7-point.

The approach presented in this text does not give us any natural way to strip
the ϵ from 7-point amplitude. As such it is difficult to guess the correct form of
7-point vertex.

Method of sidestepping this issue might be recursion. We notice that KK can
be solved at 5-point O(p6). Afterwards we could add ϵ and have amplitude at
O(p10) and use it as a seed for 7-point soft recursion. Problem that immediately
arises is that in order to have this amplitude fully determined by lower points we
require soft degree 2. This procedure is quite artificial and requires going to very
high powers in order to find nontrivial solutions. So at least for any practical
usage it remains useless.

5.4 Adler zero for massive particles
Throughout this text the main condition that allowed us to construct amplitudes
has been Adler zero. We proposed a method for extending it to massive particles
through 6D spinor-helicity formalism. As we noted before the method is not
universal but can lead to reasonable results. The main problem lies in formula
4.10. Some generalizations have been attempted, but none could recreate all
demanded properties.

To conclude the idea of defining Adler zero through higher dimensions seems
to hold some ground. We attempted to construct it directly with a rather naive
method. This construction did not work, which implies that more sophisticated
methods might be required to realize this connection.
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Conclusion
At the beginning of this thesis we have introduced the spinor-helicity formalism.
We summarized and presented its construction in 3,4 and 6 dimensions. Our
main goal was to arrive at efficient approach of generating momenta for numerical
methods employed later in this text.

In the following sections we gave an outline on how scattering amplitudes can
be constructed from bottom up. Our sole focus have been theories with a single
massless scalar. In this regime we explored all possible interactions allowed by
a simple set of conditions. Lastly by systematically applying some properties,
namely Adler zero, KK and BCJ relations, we were able to reduce the degrees of
freedom in amplitudes. The predictions made by [14] matched our results for how
Adler zero restricts theories. Further imposing BCJ relations resulted in both 6
and 7-point amplitudes being fully determined by their lower point contributions
at our search depth.

Throughout this text we paid attention to how different dimensions change
the possible interactions. As expected the 3 dimensional scattering has been
much more constrained when compared to 4 dimensional. Following that the 6
dimensional scattering matched results without Gram conditions.

Lastly we attempted to extend some of the conditions mentioned above beyond
their natural range. At first we attempted to apply KK and BCJ relations to
physically relevant theories with the ϵ invariant. Afterwards we proposed method
for defining Adler zero for amplitudes with massive particles. None of these
methods succeeded in their goals, but more work would be required to rule them
out entirely.
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A. Proof that twistors satisfy
momentum conservation
We begin by taking (1.25), and writing momentum conservation explicitly

N∑︂
i=1

λi
aλ̃

i

ȧ =
N∑︂

i=1

⟨ii + 1⟩µi−1
ȧ + ⟨i + 1i − 1⟩µi

ȧ + ⟨i − 1i⟩µi+1
ȧ

⟨ii + 1⟩⟨ii − 1⟩
λi

a (A.1)

Now we focus on µj
ȧ, there are going to be 3 terms that give us the sum(︄

1
⟨jj − 1⟩

λj−1
a + 1

⟨j + 1j⟩
λj+1

a + ⟨j + 1j − 1⟩
⟨j + 1j⟩⟨j − 1j⟩

λj
a

)︄
µj

ȧ (A.2)

Now we want to show that this coefficient is zero, which is equivalent to

⟨j − 1j⟩λj+1
a + ⟨jj + 1⟩λj−1

a + ⟨j + 1j − 1⟩λj
a = 0 (A.3)

We now take a sidestep and consider that spinors are two component objects
and thus every three of them are linearly dependent, which means that there
exists a solution to

αλi
a + βλj

a + γλk
a = 0, (A.4)

for some real α, β.γ.
We can sum this equation over all three spinors to get three equations.

β⟨ij⟩ + γ⟨ik⟩ = 0 α⟨ji⟩ + γ⟨jk⟩ = 0 α⟨ki⟩ + β⟨kj⟩ = 0. (A.5)

This set of equations has solution

α = ⟨jk⟩ β = ⟨ki⟩ γ = ⟨ij⟩, (A.6)

so we arrive at

⟨jk⟩λi
a + ⟨ki⟩λj

a + ⟨ij⟩λk
a = 0 (A.7)

which is known as the Schouten identity.
Now by making the choice that

k = j + 1 i = j − 1 (A.8)

we get

⟨j − 1j⟩λj+1
a + ⟨jj + 1⟩λj−1

a + ⟨j + 1j − 1⟩λj
a = 0. (A.9)

Which is exactly equation (A.3) which implies that (A.2) is zero and from
here follows that (A.1) is also zero, so we get

N∑︂
i=1

λi
aλ̃

i

ȧ = 0 (A.10)

if we take the definition (1.25).
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