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Introduction

The thesis consists of seven research papers. The first two papers deal with
the so-called maximum principles for convex functions. We recall that if X is a
compact convex set in a locally convex space, then a function f : X → R is said
to satisfy the maximum principle if f ≤ 0 on X provided f ≤ 0 on the set ext X
of extreme points of X. The fact that continuous convex functions satisfy the
maximum principle follows immediately from the Krein-Milman theorem. The
maximum principle for semicontinuous affine functions and affine functions of the
first Baire class is a well-known part of the classical Choquet theory, see e. g.
[41, Theorem 3.16, Theorem 3.85 and Corollary 4.23]. In a recent paper [22] it
is shown that the maximum principle is valid for a larger class of affine functions,
that is, the class of fragmented affine functions.

We recall that a function f : X → F, where F stands for R or C, is said to have
the point of continuity property if f |F has a point of continuity for any F ⊂ X
nonempty closed, and the function f is called fragmented if for any ϵ > 0 and
nonempty closed set F ⊂ X there exists a relatively open nonempty set U ⊂ F
such that diam f(U) < ϵ.

By [41, Theorem A.121], a function f : X → F on a locally compact space
X is fragmented if and only if it has the point of continuity property. Any
semicontinuous function f : X → R is fragmented (see [41, Proposition A.122])
and, if X is a completely metrizable, then the function f is fragmented if and
only if f is a classical Baire-one function (see [41, Theorem A.127]).

The main result of the first paper of the thesis extends the result of [22] by
working with convex fragmented functions instead of affine fragmented functions.
It shows that the maximum principle is true not only for fragmented convex func-
tions, but also for bounded monotone limits of sequences of fragmented convex
functions, see [49, Theorem 2.6].

The maximum principles can also be considered for the case of abstract H-
convex functions defined with respect to a function cone H ⊆ C(K), where K
is a compact space. The maximum principle for semicontinuous or Baire H-
convex functions is well-known, see [41, Section 3.9]. The second paper of the
thesis extends the result [49, Theorem 2.6] of the first paper by showing that the
maximum principle holds for bounded monotone limits of sequences of fragmented
H-convex functions, see [52, Theorem 4.2]. The generalization of the result from
the case of compact convex sets to this more abstract setting was not at all
straightforward, as the main geometric idea (see [49, Lemma 2.1]) could not be
easily used here. To be able to use similar geometric ideas, we needed to transfer
this abstract setting to the area of the so-called ordered compact convex sets.

It is natural to ask to which extent is it possible to generalize the previous
results. Intuitively, one might get the feeling that any convex function on a
compact convex set should satisfy the maximum principle, but this is far from
being true. In fact, there is quite a simple example of an affine function of the
second Baire class on a metrizable compact convex set that does not satisfy the
maximum principle, it is even a nonzero function that vanishes on the set of
extreme points, see [41, Proposition 2.63]. Thus in this sense, it might seem that
the known results are very close to being optimal: for affine functions of the first
Baire class the maximum principle holds, for affine functions of the second Baire
class it does not.
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However, it is not that simple, as the question gets much more interesting
when we restrict our attention to the so-called strongly affine functions. We
recall that a function f on a compact convex set X is strongly affine if for each
Radon probability measure µ on X, f is µ-measurable, and

f(r(µ)) =
∫︂

X
fdµ,

where r(µ) stands for the barycenter of the measure µ. Every strongly affine
function is affine, but the converse is not true. In particular, the function from
the example [41, Proposition 2.63] is not strongly affine. It turns out, however,
that even strongly affine functions need not satisfy the maximum principle. The
counterexample is much more involved, and the function constructed in this coun-
terexample does not appear to be Borel (see [55, Theorem 5] or [41, Theorem
12.65]). Thus it is still an interesting open problem whether Borel strongly affine
functions on a compact convex set X satisfy the maximum principle. If X is
metrizable, then the answer is yes, which follows from the fact that in this case
for any x ∈ X there exists a Radon probability measure µ with r(µ) = x and
such that µ is carried by the extreme points of X (see e. g. [2, Corolary I.4.9]).
Thus it may be true that the known results are still quite far from being optimal,
since, of course, there are plenty of Borel functions that are not fragmented.

The remaining papers contained in the thesis partly show an application of
the above theory. In these papers, we obtained results in the spirit of the Banach-
Stone theorem for spaces of continuous functions. In four of these research papers,
the maximum principle for fragmented affine functions plays a crucial role. We
first collect some of the known results in this area. Due to the large number of
results we do not attempt to make this survey complete.

To start with, the well-known Banach-Stone theorem asserts that, given two
(Hausdorff) compact spaces K1, K2, they are homeomorphic if and only if the
spaces C(K1) and C(K2) are isometric, that is, the underlying topological struc-
ture of a compact space K is completely determined by the Banach space struc-
ture of C(K). Holsztynski [36] proved the following theorem, which can be viewed
as a one-sided version of the Banach-Stone theorem: Let K1 and K2 be compact
Hausdorff spaces. Suppose that there exists a linear isometry from C(K1) into
C(K2). Then there is a closed subset L of K2 and a continuous function of L
onto K1. Since then, there has been a vast amount of results in the spirit of these
two results. As it turns out, in most of the results the considered compact spaces
and spaces of continuous functions can be replaced by locally compact spaces and
spaces of continuous functions vanishing at infinity, respectively. Here we focus
on results that could be described as isomorphic versions of the Banach-Stone
theorem.

Roughly speaking, we can divide results in this area into the following two
categories:

(i) Results, where the existence of an isomorphism T from C(K1) onto C(K2)
with the number ∥T∥ ∥T −1∥ being small ensures that the compact Haus-
dorff spaces K1 and K2 are homeomorphic, and similar results for iso-
morphisms, that are not necessarily surjective.

(ii) Results, where the existence of an isomorphism T from C(K1) onto C(K2)
ensures that one of the compact Hausdorff spaces K1 and K2 possesses
a given property if and only if the other one does, and similar results for
isomorphisms, that are not necessarily surjective.
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The first result in the first group is the following improvement of the Banach-
Stone theorem that was given independently by Amir [3] and Cambern [6]. They
showed that compact spaces K1 and K2 are homeomorphic if there exists an
isomorphism T : C(K1,F) → C(K2,F) with ∥T∥ · ∥T −1∥ < 2. Cohen [21] and
Drewnowski [23] gave alternative proofs of this result. Jarosz in [37] proved
an extension of the theorem of Holsztynski by working with into isomorphims
T : C0(K1) → C0(K2) with ∥T∥ ∥T −1∥ < 2 instead of into isometries.

These results can be extended in various ways. To start with, one can consider
spaces of vector-valued functions instead of scalar-valued functions. The first
vector-valued version of the isomorphic Banach-Stone theorem is due to Cambern
[7], who proved that if E is a finite-dimensional Hilbert space and C0(K1, E) is
isomorphic to C0(K2, E) by an isomorphism T satisfying ∥T∥ · ∥T −1∥ <

√
2, then

the locally compact spaces K1 and K2 are homeomorphic.
Later in [8], Cambern proved the first result in the spirit of isomorphic vector-

valued Banach-Stone theorem for infinite-dimensional Banach spaces. He showed
that if K1 and K2 are compact spaces, E is a uniformly convex Banach space and
T : C(K1, E) → C(K2, E) is an isomorphism satisfying ∥T∥·∥T −1∥ < (1−δ(1))−1,
then K1 and K2 are homeomorphic (here δ : [0, 2] → [0, 1] denotes the modulus
of convexity of E).

Since then, there have been improvements in this area proved e.g. in [5], [4]
and [38].

Many of those results were recently unified and strengthened in [19], where it
was showed that if E is a real or complex reflexive Banach space with λ(E) > 1,
then for all locally compact spaces K1, K2, the existence of an isomorphism T :
C0(K1, E) → C0(K2, E) with ∥T∥ · ∥T −1∥ < λ(E) implies that the spaces K1, K2
are homeomorphic. Here

λ(E) = inf{max{∥e1 + λe2∥ : λ ∈ F, |λ| = 1} : e1, e2 ∈ SE}

is a parameter introduced by Jarosz in [38].
It is easy to check that λ(F) = 2, thus this result recovers the theorem of Amir

and Cambern. The authors of [19] also showed that the constant λ(E) = 2
1
p is

the best possible for E = lp, where 2 ≤ p < ∞. In the paper [31] the authors
give a vector-valued extension of the Holsztynski theorem based on the above
constant λ(E).

In [30] it was shown how the constant λ(E) can be improved, if one moreover
assumes that E is a real Banach lattice and T : C0(K1, E) → C0(K2, E) is a
Banach lattice isomorphism. The constant λ(E) may be then replaced by

λ+(E) = inf{max{∥e1 + e2∥ , ∥e1 − e2∥}, e1, e2 ∈ SE, e1, e2 ≥ 0}.

It is easily seen that λ(E) ≤ λ+(E) for each Banach lattice E, and in [30] it is
shown that for E = ℓp, where 1 ≤ p < 2, the inequality is strict. Moreover, the
constant λ+(E) is optimal for E = ℓp, where p ∈ [1, ∞). In the paper [32] the
authors investigate positive isomorphisms between C(K, E) spaces that are not
necessarily surjective.

Another way to extend the Amir-Cambern theorem is directed to replacing
the number 2 by a larger number. After proving the result, Amir conjectured
that the number 2 appearing in the Amir-Cambern theorem may be replaced by
3. Cohen [20] showed that this is not true in general by providing a counterex-
ample. However, in [34], Gordon proved that it is true in the class of countable
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compact spaces: If K1, K2 are nonhomeomorphic countable compact spaces and
T : C(K1) → C(K2) is an isomorphism, then ∥T∥ ∥T −1∥ ≥ 3.

The result of Gordon was extended in [13, Theorem 1.5], where the authors
show that if E is a Banach space having non-trivial cotype, and such that for
every n ∈ N, En contains no subspace isomorphic to En+1, then countable com-
pact spaces K1 and K2 are homeomorphic provided there exists an isomorphism
T : C(K1, E) → C(K2, E) with ∥T∥ ∥T −1∥ < 3. It is clear that every finite-
dimensional Banach space satisfies the above condition, and the authors also show
in [13, Remark 4.1] that there exist many infinite-dimensional Banach spaces that
satisfy it.

Another way of generalization of the Amir-Cambern theorem is obtained by
working with nonlinear mappings instead of linear isomorphisms. A mapping
T : C0(K1,R) → C0(K2,R) is called coarse (M, L)-quasi-isometry if for each
f, g ∈ C0(K1,R) it holds that

1
M

∥f − g∥ − L ≤ ∥T (f) − T (g)∥ ≤ M ∥f − g∥ + L.

E.M. Galego and A.L. Porto da Silva in [25] proved the following extension of the
Amir-Cambern theorem. If T is a function from C0(K1,R) to C0(K2,R), T (0) = 0,
and both T and T −1 are bijective coarse (M, 1)-quasi-isometries with M <

√
2,

then K1 and K2 are homeomorphic. Vector-valued extension of this result was
given in [26]. In the paper [27] the authors prove a more general version of
this result. As an application they obtain results also for the spaces C(1)

0 (K) of
continuously differentiable functions on locally compact subspaces of the real line
without isolated points. The paper [28] deals with nonlinear mappings that are
not bijective.

Now, we turn our attention to results from the second category. Thus we
are interested in the question of what properties of locally compact spaces are
preserved by isomorphisms of the respective spaces of continuous functions. The
first result in this area, also referred to as the weak Banach-Stone theorem, is
due to Cengiz [17], who showed that locally compact Hausdorff spaces K1 and
K2 have the same cardinality provided that the spaces C0(K1,F) and C0(K2,F)
are isomorphic.

In the area of weak vector-valued Banach-Stone type theorems, Candido and
Galego in [16] showed that if K1, K2 are locally compact Hausdorff spaces and E
is a Banach space having nontrivial cotype, such that either E∗ has the Radon-
Nikodym property or E is separable, then either both K1 and K2 are finite or
K1 and K2 have the same cardinality provided that the spaces C0(K1, E) and
C0(K2, E) are isomorphic.

This result was improved by Galego and Rincón-Villamizar in [29], who
showed that the same conclusion holds for Banach spaces not containing an iso-
morphic copy of c0. The way to this improvement was using a classical characteri-
zation of Banach spaces not containing an isomorphic copy of c0, see [43, Theorem
6.7], and a result of Plebanek, see [45, Theorem 3.3], which made it possible to
remove the assumptions of separability and the Radon-Nikodym property.

The next property of locally compact spaces that is closely connected with
isomorphisms between the respective spaces of continuous functions is the scat-
tered structure. Since it is known that a compact space K is scattered if and only
if C(K) is Asplund (see e. g. [24, Theorem 1.1.3]), and it is well-known that the
class of Asplund Banach spaces is closed under isomorphisms, it follows that if
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C(K1) is isomorphic to C(K2) then K1 is scattered if and only if K2 is scattered.
This fact was improved in [10, Theorem 1.4], where the author shows that if E is
a Banach space not containing an isomorphic copy of c0, K2 is a scattered locally
compact space and C0(K1) embeds isomorphically into C0(K2, E), then K1 is also
scattered.

Moreover, there have been proven estimates of the Banach-Mazur distance
of C(K) spaces from C0(Γ, E) spaces, where Γ is a discrete set, and from C(F ),
where F is a compact space of height 2 (in particular for F = [0, ω]), based on the
height of the compact space K. It was proved in [15, Theorem 1.2] that if K is
a compact space with the n-th derivative K(n) nonempty for some n ∈ N, F is a
compact space with F (2) = ∅ and there exists an isomorphism T : C(K) → C(F ),
then ∥T∥ ∥T −1∥ ≥ 2n − 1. Moreover, if

⃓⃓⃓
K(n)

⃓⃓⃓
>

⃓⃓⃓
F (1)

⃓⃓⃓
, then ∥T∥ ∥T −1∥ ≥ 2n + 1.

In [11, Theorem 1.1] it has been showed that if Γ is an infinite discrete space, E is
a Banach space not containing an isomorphic copy of c0 and T : C(K) → C0(Γ, E)
is an into isomorphism, then for each n ∈ N, if K(n) ̸= ∅, then ∥T∥ ∥T −1∥ ≥ 2n+1.
Similar results for isomorphisms with range in C0(Γ, E) spaces were proven before
in [12] and [14].

The papers [42] and [45] provide partial answers to the question of whether
the class of Corson compact spaces is preserved by isomorphisms of the respective
spaces of continuous functions.

In the paper [44] the author shows that positive embeddings of C(K) spaces
produce upper-semicontinuous set-functions with finite values between the under-
lying compact spaces. As a consequence the author proves that if there exists a
positive embedding of C(K1) into C(K2), then some topological properties of the
compact space K2, as countable tightness or Fréchetness, are inherited by K1.

Starting in [18], and continuing in [40], [22], [47] and [50], the theorem of
Amir and Cambern was extended to the context of subspaces. The papers [18],
[40], [22], [47] deal with the spaces of continuous affine functions on compact
convex sets. The paper [18] may be viewed as the first generalization of the Amir-
Cambern theorem to the context of subspaces. The next papers [40] and [22]
successively improved the result of [18] by removing redundant assumptions. The
progress to final result for spaces of real continuous affine functions, contained in
[22], was possible due to the maximum principle for fragmented affine functions.
Now we come to the contribution of the papers contained in the thesis to this
theory. The paper [47], contained in the thesis, extends the result of [22] to the
case of complex continuous affine functions. The next paper of the thesis [50]
futher extends the above results for affine functions on compact convex sets to
general subspaces of C0(K,F) spaces. We recall that if H is a subspace of C0(K,F)
then the Choquet boundary ChH K of K with respect to H is defined as the set of
points x ∈ K such that the evaluation functional defined for h ∈ H as i(x) : h ↦→
h(x) is an extreme point of the compact convex set BH∗ endowed with the w∗

topology. If H is the space of affine continuous functions on a compact convex set
X, then ChH K = ext X, and if H = C0(K,F), then ChH K = K. The final result
in the spirit of the Amir-Cambern theorem for subspaces of scalar functions (see
[50, Theorem 1.1]), reads as follows. For i = 1, 2, let Hi ⊆ C0(Ki,F) be closed
subspaces such that all points in their Choquet boundaries are weak peak points.
If there exists an isomorphism T : H1 → H2 with ∥T∥ ∥T −1∥ < 2, then their
Choquet boundaries ChHi

Ki are homeomorphic (we recall that x ∈ Ki is a weak
peak point (with respect to Hi) if for a given ε ∈ (0, 1) and a neighborhood
U of x there exists a function h ∈ BHi

such that h(x) > 1 − ε and |h| < ε
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on ChHi
Ki \ U). It turns out that this result is in a sense optimal since the

assumption of weak peak points cannot be omitted (see [35]), and the bound
2 is optimal even for C(K) spaces (see [34]). The theorem [50, Theorem 1.2]
gives a one-sided version of [50, Theorem 1.1], and thus provides an extension of
the theorem of Holsztynski to this context. The paper [50] also contains a weak
Banach-Stone theorem for subspaces: If for i = 1, 2, Hi ⊆ C0(Ki,F) are closed
subspaces such that all points in their Choquet boundaries are weak peak points
and there exists an isomorphism T : H1 → H2, then their Choquet boundaries
ChHi

Ki have the same cardinality (see [50, Theorem 1.3]). The remaining papers
of the thesis deal with subspaces of vector-valued functions. The paper [48] gives
vector-valued extensions of [50, Theorem 1.1] and [50, Theorem 1.3] in the spirit
of papers [19] and [16], and the paper [51] provides a generalization of those
results for Banach lattice-valued functions, inspired by [30]. Let us also note that
isomorphic vector-valued Banach-Stone type theorems for subspaces were treated
before by Al-Halees and Fleming in [1], but they were restricted to subspaces of
vector-valued continuous functions, that are closed with respect to multiplication
by scalar functions.

As mentioned above, in all papers [47], [50], [48] and [51], the maximum
principle for fragmented affine functions is a key ingredient.

The last paper of the thesis contains an extension of the results of papers [33]
and [13] to the context of subspaces. It shows that for some class of subspaces,
the constant 2 appearing in the Amir-Cambern theorem may be replaced by 3,
see [46, Theorem 1.2]. Also, it contains an extension of some of the results from
[10] and [15]. We recall that in those papers, the authors obtained estimates of
the Banach-Mazur distance of C(K), where K is a scattered compact space, from
c0 and C(F ), where F is a scattered compact space of height 2. In [46, Theorem
1.3], we proved a more general result for subspaces of continuous functions. As a
consequence of this result, we obtained the estimate of the Banach-Mazur distance
between spaces C(K1) and C(K2), where K1 and K2 are scattered compact spaces
of finite height, see [46, Corollary 1.5]. From this result it also follows that if
C(K1) embeds isomorphically into C(K2) and height of K2 is finite, then also
height of K1 is finite (see again [46, Corollary 1.5]).

The techniques of proofs of the above results for subspaces H of C(K, E)
spaces and their Choquet boundaries ChH K can often imitate the techniques
used for C(K, E) spaces, however, there are some extra difficulties present, apart
from the fact that there is in general much more theory known for the case of
C(K, E) spaces. We list the main difficulties that occurred in the process of trying
to prove the results contained in the papers of the thesis.

• While K is compact, the Choquet boundary ChH K is in general far from
being closed in K, it need not be even Borel.

• The dual space of H is more complicated than the dual space of C(K, E)
(we recall that C(K, E)∗ is isometric to the space M(K, E∗) of E∗-valued
regular Radon measures by the Singer’s theorem, see [54, p. 192]). Ele-
ments of the dual space of H can be extended to measures with preser-
vation of norm, which is a key tool in this theory (see [48, Lemma 2.2]),
but this extension is in general not unique.

• The second dual space of H is more complicated than the second dual
space of C(K, E) (we recall that the second dual space of C(K,F) is
isometric to C(Z,F), where Z is a compact Hausdorff space depending
on K, see [39], and this fact can be extended to vector-valued functions,
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see [9]). Also, in the papers [47], [50], [48] and [51], an analogue of the
concept of characteristic function of a point in the second dual space of
H needed to be found, see e.g. [50, Lemma 2.6].

• Unlike C(K), its subspaces are generally not Banach lattices nor Banach
algebras. This played an important role in the paper [46], since for the
proofs of analogous results in the case of C(K) spaces, both lattice opera-
tions (see e.g [13, Claim 1 of Theorem 2.1]) and pointwise multiplication
of functions (see [13, Proposition 3.1]) were used.

• Urysohn functions are not present in the context of subspaces. Those
have to be replaced by the functions appearing in the definition of weak
peak points. These functions, however, approximate only points of K
(instead of subsets of K), and only up to some given ε > 0. Moreover,
system of these functions is not monotone, if considered as a net.

• Meanwhile operators from C(K, E1) spaces to E2, where E1 and E2 are
Banach spaces, may be represented by Borel measures on K with values
in L(E1, E∗∗

2 ), the space of bounded linear operators from E1 to E∗∗
2 , such

a representation is not available for operators from H1 ⊂ C(K, E1) to E2,
which caused technical problems in the paper [51], see [51, Remark 5.1].

• The Choquet theory of subspaces of vector-valued continuous functions
is not very well established, as many classical concepts and facts of the
scalar Choquet theory have not been studied extensively in the vector-
valued case. In fact, in papers [48], [51] and [46], dealing with vector-
valued functions, both the definitions of Choquet boundary and weak
peak points for subspaces of vector-valued functions are new (a notion of
a Choquet boundary of a vector-valued subspace has been known before,
but it is different from the one that we use, see e.g. [53, page 1154]).
Actually, a slightly different definition of a weak peak point is used in
each of the papers [48], [51] and [46], as for vector-valued spaces, there
are various reasonable ways to define a notion of a weak peak point
that agrees with the definition for scalar subspaces. Those differences,
however, do not seem to be significant, and all of them coincide for a
large number of subspaces, in particular, for spaces of continuous vector-
valued affine functions on compact convex sets.

Working in the context of subspaces, on the other hand, also has its advan-
tages. Apart from the evident fact that the results are overall more general, it also
allows to work efficiently at the same with functions defined on compact spaces
as well as on locally compact spaces, since subspaces of C0(K, E), where K is a
locally compact space and E is a Banach space, may be naturally viewed as sub-
spaces of C(J, E), where J is the one-point compactification of K, see [48, Lemma
2.10]. This is most apparent in the paper [46], where, for example, Theorem 1.3
covers quite naturally results for c0 and C([0, ω]), that were proven separately
before. Also, the results for subspaces make more apparent the exact properties
of C(K, E) spaces that are necessary for the results to hold.

Finally, from the survey of the results for C(K, E) spaces above, it is evident
that there are plenty of results that are not known for subspaces. For some of
those results, it is unclear whether some reasonable generalization to the con-
text of subspaces might hold. There are many other results, however, where all
we know is that the proofs that were used for C(K, E) spaces do not work for
subspaces. For example, in the results dealing with quasi-isometries ([25], [26],
[28] and [27]), the compactness of the underlying spaces is so crucial that is not

8



clear how to try to prove analogous results for spaces, that do not have closed
Choquet boundaries. As another example we can give the results of Plebanek for
positive embeddings [44]. Here the results rely too heavily on the description of
the dual space of C(K), making it impossible to imitate the proof in the context
of subspaces. Still, it is of course possible that these results hold in some way
also for subspaces, just another way of proof needs to be found.
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