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Abstract: Data lineage forms an essential aspect of today’s enterprise environ-
ment. MANTA Flow is a data lineage analysis platform that works based on
extracting and analyzing customers’ source files. However, often the customer
wants to update the data lineage graph because of a slight change in provided
source files. However, all of the input source files are currently reanalyzed, and
most of the time is wasted analyzing unchanged files. In the thesis, we presented
how the data lineage analyzer can be improved using incremental updates to an-
alyze only a fraction of all input files while still producing the same correct data
lineage.

We changed how the whole analysis is done by changing the granularity of the
analysis to much smaller pieces. We also improved the merge algorithm to rec-
ognize when an unchanged file could generate a different data lineage using new
concepts like source segments, node removal, or node creation. The new MANTA
client algorithm now analyzes only changed files and a few unchanged files that
could generate a different lineage compared to the last analysis. We also im-
plemented a prototype for the MANTA Oracle scanner that contains these new
ideas. It was tested for both the correctness and the performance.
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1. Introduction

Every organization uses data to stay relevant and competitive while undergo-
ing a constant digital transformation. Nowadays, the amount of data is too huge
for many organizations to inspect manually. MANTA Flow [1] is a platform that
generates and automatically updates data lineage information, which shows the
origin of data and its journey through all the data-processing systems. The re-
sult is a data lineage graph that is understandable for company developers and its
other stakeholders. The platform eliminates human error and provides accurate
lineage information based on hard facts rather than guesses and assumptions.

Tracking data lineage inside client systems is especially important for audits
and legal reasons. For example, it is necessary to have complete information
about the flow of all client’s data throughout the system. Then, whenever the
client asks the system to delete all information about themselves, the system
should remove all the traces of their existence.

MANTA Flow generates data lineage graphs based on extracting and analyz-
ing source files provided by clients as input. However, in the current version of
MANTA Flow, if a client wants to update the data lineage graph because of a
slight change in provided source files, all input source files are reanalyzed, which
can take many hours. Most of this time is unnecessarily spent analyzing un-
changed files that generate the same data lineage graph as the previous analysis
run.

This thesis project aims to speed up the data lineage analysis with the in-
cremental update. The main idea of incremental update in MANTA Flow is to
reanalyze only a fraction of all the input files that are sufficient to obtain the
same data lineage graph as if a client would run a full analysis analyzing all the
input files.

1.1 Goals

The first goal of this thesis is to analyze the current version of the MANTA
Flow platform and identify all the technical challenges related to the design and
implementation of incremental updates, including the effects on the current data
lineage analysis. Then, based on this analysis, the second goal of this thesis is
to design an efficient and precise algorithm for the incremental update of data
lineage graphs. The third goal is to implement this algorithm and create a working
prototype of the incremental analysis for the Oracle database technology within
the MANTA Flow. Lastly, the fourth goal is to evaluate the created prototype
using extensive testing, validation, and performance evaluation.
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1.2 Related works

Jan Sýkora has already partly examined this topic in his thesis Incremental
update of data lineage storage in a graph database [2]. He introduced the concept
of minor revisions, and this thesis will use this concept and further improve its
usability for customers. As written in the thesis, the current state is as follows.
“Anyway, users will be allowed to perform incremental update at their own risk,
but they need to be either sure their change is independent on the other objects
so no inconsistency may occur or they accept the risk of bringing inconsistency
to the database in the exchange for a fast update.” There is currently only one
customer using incremental updates because it has minimal usage, and it is also
very complex to use correctly. In case of incorrect usage, generated dataflow is
wrong, and the customer does not know about that. We want to reduce these
limitations as much as possible by improving underlying algorithms while still
maintaining a significant speedup.

1.3 Outline

Chapter 1 introduces the problematics containing a basic overview of the prob-
lem and the project goals. Chapter 2 describes both the basics of the MANTA
Flow platform and some of its more advanced parts needed to design incremental
updates. In chapter 3, we define the solution’s key concepts and state the require-
ments for the solution. Chapter 4 describes the design of incremental updates and
how the new merge algorithm was created. Chapter 5 describes the implementa-
tion of incremental updates for Oracle database technology within the MANTA
Flow application. Chapter 6 evaluates the solution by describing performed tests
for both correctness and performance and by discussing solution limitations and
possible future extensions. Lastly, chapter 8 concludes the thesis.
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2. MANTA Flow platform

This chapter describes parts of the MANTA Flow platform [1], which are
essential in the context of this thesis. First, this chapter contains several general
topics. Then, starting from Section 2.9, there are a few more specific topics,
which can be either read in order or skipped and returned to whenever future
chapters reference them.

2.1 Architecture

MANTA is a client-server application. Client and server communicate via a
specified interface using TCP/IP protocol.

Client workflow has several steps. First, it extracts all available metadata
using connections to the user’s systems provided by them. This means extracting
source code files, database dictionaries, ETL jobs, and (business intelligence)
reports. Then, the client analyzes these metadata and generates parts of the
dataflow graph. Usually, each extracted entity (e.g., every source code file or
data dictionary) generates one graph, which contains the data lineage of this
entity. Finally, the client sends these graphs to the server one by one.

The server has one primary responsibility: taking care of the complete data
lineage graph. As the client sends only parts of this graph at the time, the server
stores the first part. Each additional part sent by the client is then merged with
the stored graph. After the client sends all parts, the server contains a graph
with a complete data lineage of the user’s environment.

The last remaining thing is to display this resulting graph to the user. The
most common approach is to use MANTA Viewer, which shows this graph in
the browser. We can see an elementary visualization example in Figure 2.1,
which shows on the left the Oracle database ORCL with the table SOURCETABLE
containing the column named STRING. Arrow represents a data flow from the
Oracle database column to the Power BI data model column String column
on the right. From the String column there, the data flow continues to the
aggregation column Count of String column, which computes the number
of rows in the String column.

Figure 2.1: Visualization example
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2.2 Scenarios

Client work is specific for each technology, divided into several scenarios.
Therefore, each technology has a set of scenarios, which are run sequentially.
These scenarios are divided into extraction scenarios (which extract and save
user’s metadata) and analysis scenarios (which create data flow based on ex-
tracted metadata).

Let us look at the concrete Oracle scenarios essential for our prototype. Oracle
has these scenarios:

• Oracle dictionary mapping master scenario. This scenario connects to each
configured Oracle database and stores important server metadata (e.g.,
global database name).

• Oracle extractor master scenario. This scenario connects to each configured
Oracle database and extracts the data dictionary and DDL scripts.

• Oracle dictionary dataflow master scenario. This scenario analyzes meta-
data from the extracted Oracle data dictionaries and stores the resulting
flow graph on the server.

• Oracle DDL dataflow master scenario. This scenario analyzes metadata
from the extracted Oracle DDL scripts and stores the resulting flow graph
on the server.

• Oracle PL/SQL dataflow master scenario. This scenario analyzes metadata
from the provided PL/SQL scripts and stores the resulting flow graph on
the server.

2.3 Graph databases

MANTA Flow platform used Titan database [3] for storing, accessing, and
transforming the data flow graph. However, for many reasons, it has been re-
placed by Neo4j database [4]. This process of replacing happened during the
implementation of this thesis.

Using the Titan database while creating the prototype for this thesis would not
make sense because it would need a considerable rework as soon as the database
changed. Therefore our implementation uses the Neo4j database.

2.4 Data model

In Section 2.1, we mentioned that the server contains the data lineage graph
created based on the client’s metadata. Let us now look at what are vertices and
edges of this graph.
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2.4.1 Vertices

Each vertex has precisely one vertex type. There are currently nine different
vertex types in MANTA. Let us describe them one by one.

The super root is the first vertex type. Vertex with this type is the root of
the whole data flow graph. There always exists precisely one vertex of this type.

The asset node represents an object in the data flow graph. Every asset has
a specified node type, which denotes what the asset node represents. Node type
can, for example, be a database, procedure, schema, table, column, or even a file.

An attribute represents additional information about an asset. An asset
representing a database column can for example contain an attribute with infor-
mation about column’s data type or if it is a nullable column.

The resource node specifies the technology of its descendant asset nodes.
Resource can be, for example, MSSQL, Oracle, Power BI, C#, or Filesystem.
Every asset node belongs to a specific resource.

A layer represents a logical level of stored metadata. The purpose of the
layer is to distinguish between different views of the modeled reality. However,
the exact meaning of this node is not important. We only need to know that it
exists.

The revision root is the root of a separate revision tree graph, which de-
scribes all the existing revisions. Revisions serve as a version control system for
the generated data flow graph. One revision represents the actual state of the
whole data flow graph at one specific time point. There always exists precisely
one vertex of this type.

The revision node represents one specific revision.

The source root is the root of a separate tree graph, which describes all the
source code files extracted from the client. There always exists exactly one vertex
of this type.

The source node represents a path to one specific extracted source code file
stored on the server.

2.4.2 Edges

Each edge has exactly one edge type. There are currently nine different edge
types in MANTA. Let us describe them one by one.

Direct flow edge represents a direct data flow from its source node to its
target node. These data may be transformed (e.g., filtered or sorted) on their
way to the target node. This edge type can only connect leaves of the data flow
graph.

Filter flow edge represents an indirect data flow from its source node to its
target node. Unlike the direct data flow, the source node only indirectly affects
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what data flows to the target node. For example, filter flow edges are used for
nodes representing conditions of IF statements because they decide whether some
other data will flow to the target node. This edge type can also only connect leaves
of the data flow graph.

InLayer edge connects a resource node with a layer node. This edge specifies
for the resource node to which layer belong all its assets.

MapsTo edge represents a relationship between nodes from different layers.

HasParent edge connects a child asset node with its parent asset node.

HasAttribute edge connects an asset node with its attribute(s).

HasResource edge connects a node with its resource node.

HasRevision edge connects a revision node with a revision root node.

HasSource edge connects a source node with a source root node.

2.5 Graph structure

Now that we know all the types of nodes and edges, let us look at how they’re
connected into graphs. There are three different graphs, and we will look at all
of them.

2.5.1 Data flow graph

The most important graph is the data flow graph. Its abstract example is
shown in Figure 2.2. We can see that the super root node is the root of the whole
graph and has several resource nodes as children, each representing a different
technology. Each resource node also belongs to exactly one layer represented by a
layer node. Each resource node usually has many asset nodes as its descendants.
Every asset node can have one or more attributes.

We can also see in Figure 2.2 that there are DirectFlow, FilterFlow and Map-
sTo edges only between the asset nodes on the lowest level (i.e., between asset
nodes without any child nodes). Dashed arrows visualize these edges. Note that
if we remove all these dashed edges, the resulting subgraph is a tree graph. This
is a critical property of a data flow graph.

We can see a concrete example of a data flow graph in Figure 2.3. This
example shows a data flow graph for an Oracle technology, represented by a green
Oracle resource node. This technology contains a database named ORCL with a
single dbo schema. There is a table named records in this schema, which contains
one id column. We can see that all these four database objects have their blue
asset nodes connected with a blue HasParent edges according to their hierarchy
in the database. Note that the column also has two yellow attributes nodes
connected by HasAttribute edges, which provide additional information about
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Figure 2.2: Data flow graph example

this column. In reality, there would be many more attributes in this graph, but
they are not crucial for this example.

Figure 2.3: Data flow concrete graph example

2.5.2 Source file graph

A source file graph contains pointers to all extracted source code files. Because
these files aren’t stored in the graph database, source nodes contain references to
the physical locations of these files. The source file graph structure is shown in
Figure 2.4, where we can see that it contains one source root and multiple source
nodes. All source nodes are connected to the source root with a HasSource edge.
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Figure 2.4: Source file graph example

2.5.3 Revision graph

A revision graph contains the list of all revisions. Its structure is shown in
Figure 2.5 and is very similar to the source file graph. We can see that this graph
contains one revision root, which is connected to revision nodes with HasRevision
edge. Each revision node represents one MANTA revision.

Figure 2.5: Revision graph example

2.6 Revisions

Before describing specific algorithms, we need to dive deeper into revisions.
First, we find out how revisions were implemented historically. Then, we will
look at the changes invented and implemented in the previous thesis (referenced
in Section 1.2), which created the foundation for incremental updates.

2.6.1 Closed revision

First, let us look at how revisions were implemented historically. An integer
represented each revision. The first revision had the number 0, the next one
had the number 1, and so on. Every edge had two attributes TranStart and
TranEnd. TranStart is the number of the revision in which the edge was created,
and TranEnd is the number of the latest revision in which the object still existed.
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Nodes do not have these attributes. Their validity is derived from the edge to
their parent. Note that every node apart from the root node has exactly one
parent, the root node is implicitly valid in all revisions. This type of end revision
is called a closed end revision because every object has specified its end revision
at all times.

Let us look at Figure 2.6, where we can see on the left a data flow graph with
current revision 3 and nodes A-F. Each edge has a label with two numbers, the
first one is TranStart and the second one is TranEnd. All nodes and edges in the
left half have label 1,3, which means that they were created in revision 1, and are
still valid in current revision 3. In the next revision 4, the node E was removed
and the node 1 was added, which is denoted by their colors.

On the right side of Figure 2.6, we can see what the graph looks like in revision
4 after the previously mentioned changes. Graph objects that need an update in
revision 4 because of these changes are denoted by an orange color. It is not only
the new node 1 that’s updated but (parent edges of) all unchanged nodes B, C,
D, F as well. The reason is that their TranEnd must be updated to 4, otherwise,
they would not be valid in the new revision 4. On the other hand, deleted nodes
do not need any update, as we can see on the example of the node E.

Figure 2.6: Closed revision example

Let us summarize the advantages and disadvantages of the closed revision.
The most significant disadvantage is that it is necessary to update revisions of
all the nodes and edges which weren’t changed in the new revision. On the other
hand, the most significant advantage of the closed revision is that revisions of all
deleted nodes and edges do not need any updates.

2.6.2 Open revision

Let us look at a different approach called an open revision. In this approach,
TranEnd is by default set to ∞. And only after removing a node or an edge from
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the current revision then their TranEnd is set to the number of the last revision
this object was valid in.

Let us look at the example in Figure 2.7, which is the same graph like the
last time, but this time it will be changed using an open revision approach. The
only change in the left part is that existing nodes have revisions 1,∞ as they were
added in revision 1 and they’re indefinite.

However, there are many changes on the right side of Figure 2.7. First, Tra-
nEnd of the node E must be changed to the revision 3. Otherwise, it would still
be valid in the new revision 4. Second, none of the unchanged nodes or edges need
any update because their still valid in the new revision thanks to their TranEnd
being set to ∞. Lastly, the new node 1 is added with label 4,∞ so it’s valid only
from revision 4.

Figure 2.7: Open revision example

Let us again look at the advantages and disadvantages of the open revision.
This time, the advantage is that revisions of all unchanged nodes and edges do
not need any update. However, revisions of all deleted nodes need an update.

2.6.3 Two-level revision

Let us now compare closed and open revisions. Newly added nodes and edges
need an update in both approaches. Deleted nodes and edges need an update only
when using the open revision. Furthermore, unchanged nodes and edges need to
be updated only when using the closed revision. Therefore both approaches can
be useful; it depends on the ratio of deleted and unchanged nodes and edges.

Because both closed and open revision can be useful, the previous thesis [2]
decided to combine both of these into a new two-level revision approach. This
combined approach benefits from the advantages of both of them.

Instead of only two revision parameters, TranStart and TranEnd, there are
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now four new revision parameters MajorStart, MajorEnd, MinorStart, and Mi-
norEnd. Parameters MajorStart and MajorEnd represent major revisions, which
keep the system of the closed revisions. Parameters MinorStart and MinorEnd
represent minor revisions, which use the new open end revision. We interpret
major revisions as integers and minor revisions as their decimal part. Therefore,
the new two-level revision can be, for example, revisions 1.0, 1.1, 1.2, 2.0, 2.1,
etc. For each node, we will call the number MajorEnd.MinorEnd end revision
of a node and the number MajorStart.MinorStart start revision of a node.

Whenever updating the data flow graph, it is possible to choose between full
and incremental updates. The full update increases the major part of the current
revision by one and sets the minor part to zero, for example from a revision 1.5
to a revision 2.0. On the other hand, the incremental update is increases the
minor revision of the current revision by one and does not change the major
revision, for example from a revision 1.5 to a revision 1.6.

2.7 Full update

Now that we have discussed revisions in detail let us look at the full update.
Whenever a customer wants to see a data lineage, they run by default the full
update. Full update first creates a new major revision and changes the current
revision to it, which is done by calling newRevisionScenario. Then, it runs
extraction and analysis scenarios for every user’s technology. These scenarios run
on the client and send parts of the resulting data flow graph to the server (as
discussed earlier in Section 2.1). The server merges these parts and creates the
resulting data flow graph. After all that, the full update ends with marking the
current revision as committed so it cannot be changed anymore, which is done
by calling commitRevisionScenario.

Let us examine how merging works, which is illustrated in Figure 2.8. At
the bottom, we can see a merge input that was sent from the client. Whenever
the client sends a node to the server for merging, it must send it with all its
predecessors. We can see that this condition is satisfied in the example below,
as the client is sending not only the two blue asset nodes for merging but also
their predecessors, Resource and Super root. There is, in fact, an optimization
that omits to send the Super root (as it is always in every merge input), but for
simplicity, we will assume in this thesis that it is always sent.

On the left of Figure 2.8 we can see how the data flow graph looked on
the server in revision 1.0 before the merging started. This merging is a part
of a full update changing the current revision from 1.0 to 2.0. Merging always
starts from the super root of the merge input and then continues recursively
for all its children. Whenever merging a node this way, if there is the same
node in the last revision, then the full update only changes its end revision to
newMajorRevision.∞, which is 2.∞ in our example, which makes this node valid
in the new revision as well. We can see that this happened in the example for
nodes Resource, Layer, and Asset 1. On the other hand, if the currently merged
node was not in the data flow graph before, it is added to the graph with start
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Figure 2.8: Full update example

revision newMajorRevision.0 and end revision newMajorRevision.∞, which is 2.0
and 2.∞ respectively in the example. This happened for the node Asset 3.

One last notable thing in Figure 2.8 is what happened with nodes Asset 2
and Resource 2. Because these nodes were not part of the merge input, their
revisions were not updated, and they are no longer part of the new revision 2.0.
They were deleted. This is a critical property of the full update. It deletes all the
nodes that are not in any of its merge inputs. Therefore client needs to send all
the nodes in the data flow graph in every revision again and again, even if they
stay unchanged.

2.8 Incremental update

An incremental update is an alternative to the full update. It is different in
two ways. First, it creates a new minor revision (e.g., from revision 1.0, it creates
revision 1.1), which is an open revision instead of a major close revision as in
the full update. This is done by calling newMinorRevisionScenario. The
second difference is the usage of a modified merge algorithm.

Let us describe the modified merge algorithm. It starts like the full update
by merging the merge input from the source root node by node. The difference
is that the merge input is modified, so it contains specially marked nodes, which
indicate that a change has been performed somewhere in the subgraph starting
with this marked node. When such a marked node is reached during merging,
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the whole subgraph (starting from this marked node) is removed. The removal is
performed simply by setting the minor part of the end revision of all nodes and
edges to the number of the latest minor revision. For example, when creating
revision 1.1, end revisions are set to 1.0. These objects are no longer valid in the
new revision 1.1, and they are deleted (in the new revision).

Once the subgraph is removed from the main graph, the merging process
continues from this marked node in the same way as the full update would. This
means that the new version of this removed subgraph is merged into the main
graph. If the removed node or edge is absent in the merge input, it will remain
removed from the data flow graph. However, if the removed node or edge is
present in the merge input, it is merged back by setting a minor part of its end
revision back to the .∞.

Let us look at the example of an incremental update in Figure 2.9, which
shows the same situation as the previous example of the full update. However,
the incremental update will be performed instead of the full update this time.
Let us first discuss the only difference in inputs, which is that the Resource node
in the merge input is marked. As already mentioned, it is marked because the
client recognized there could be a change in the subgraph of the Resource node.
And indeed, there’s a change in its subgraph as it now contains the node Asset 3
instead of the node Asset 2.

Figure 2.9: Incremental update example

In Figure 2.9, the current revision before the merge was 1.0. Therefore the
new revision will be 1.1. Merging the merge input starts with merging the super
root, which is the same as in the full update. Then the Resource node should be
merged, but it is marked.
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This means that its subgraph needs to be removed by setting the max revision
of all its descendants to 1.0, which makes them not valid in the new revision 1.1.
Then, the merge continues in the same fashion as the full update would by merging
Asset 1 with the same node from the previous revision and adding the new Asset
3 node. Note that Asset 2 was deleted because it was not part of the new merge
input. Its validity ends in revision 1.0, but the current revision is already 1.1.

On the left of Figure 2.9 is the data flow graph after the merge, which is
somewhat similar to the one created by the full update. The vital difference is
the node Resource 2, which was deleted by the full update but was not deleted by
the incremental update. This is the most significant advantage of the incremental
update that other nodes are not implicitly deleted just because they are not part
of the merge input. Therefore, it is unnecessary to send every node in every
revision again and again, but it is sufficient to send only those nodes that have
changed since the last revision.

2.8.1 Merge input

Every merge input contains changed nodes, but it also contains lots of un-
changed nodes. The first reason is that whenever merge input contains a changed
node, it must contain all its predecessors. It is needed so that the server knows
where to merge changed nodes. The second reason is that the merge input often
contains data flow edges to other (often unchanged) parts of a data flow graph.
For example, when one database procedure calls another one. In such a case,
the merge input contains the data flow edge, one or more nodes of the called
procedure, and of course, all their predecessors as well.

Consequently, the client needs to mark which nodes from the merge input are
changed. And it is currently impossible to mark only changed nodes. The reason
for that is that when a line changes in a database script, all the client can do is
analyze the whole script again to create a new graph. Nevertheless, this graph
does not contain any details about which edges and vertices are new, and the old
version is stored only on the server merged into the whole data flow graph. The
solution is to mark a root node of a subgraph in the merge input, which definitely
contains all changed vertices and edges.

Currently, incremental updates support only changes in database scripts. The
user manually selects changed database scripts, which should be part of the in-
cremental update. Then, for each of these chosen scripts, the client analyzes the
database script, which generates a data flow graph, and marks the BODY node of
that script in the generated graph. Finally, all these graphs are sent to the server
one by one, which merges them using the incremental update merge algorithm
(described earlier in Section 2.8).
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2.8.2 Example

Let us now look at an example of a merge input. We can see in Figure 2.10
a simple procedure with a newly added logging line of a code. A full update
previously analyzed this procedure, but the user wants to perform an incremental
update after this small change.

Procedure P(IN I, OUT O) {
O = I;
INSERT INTO LOG(Message) VALUES(I); // Newly added line

}

Figure 2.10: Changed procedure

Incremental update analysis for this changed procedure generates the merge
input shown in Figure 2.11. We can see that the merge input contains whole pro-
cedure P, the smallest unit that can be analyzed independently. In the example,
we can also see that for each node, the merge input also contains all its prede-
cessors up to the super root. Another notable thing is that the graph contains
procedure P nodes and the LOG table node, and the Message column node, even
though these nodes are unchanged. Finally, the Body node is marked, which
indicates changes in a subgraph with the Body node as its root node.

Figure 2.11: Merge input example
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You might wonder why the client marked the Body node and not the procedure
P node. The reason is that incremental updates currently do not support changes
in procedure interfaces. If the client would mark the procedure P node, then the
merge algorithm might delete edges created by other procedures. This would
mean that the resulting data flow graph would be incorrect. Therefore, it is
currently possible only to change a procedure’s body using an incremental update.

2.8.3 Summary

The current design and implementation of incremental updates have a few
significant limitations. First, it is currently possible to analyze only database pro-
cedures and not any other inputs, including changes in database tables, columns,
or non-database source code. Second, when analyzing database procedures, there
can be changes only in a procedure body, and its interface must remain the same.
Third, if any of the previous limitations are not met, the user doesn’t know about
that and is instead presented with an incorrect data flow graph. Fourth, users
must manually input changed database procedures, as they’re not automatically
detected.

As we can see, the current design has many limitations and is not useful for
users. However, it is an excellent foundation with two key ideas of two-level
revisions and an updated merge algorithm. Therefore, this thesis will use these
ideas, build on them and remove or reduce their limitations.

2.9 Source code upload

Source code upload is an already existing feature that will be both used and
modified by incremental updates. The client does not send only parts of the
data flow graph to the server, but it also uploads all relevant source code files.
Whenever uploading a new version of a source code file, the server creates a new
Source node in the Source file graph (described in Section 2.5.2). Source code
files are then sent asynchronously and stored on the server.

Each source node contains several properties. First, it contains a path to
the source code file. This path is only relevant on the server (as files might be
renamed on the server). Second, it contains a global (source code file) id. Path to
the file on the client is sent when uploading the file, but it’s not currently stored
on the server.

This feature is currently used so that every stored procedure node has a refer-
ence to a relevant source code file. This reference is then used during visualization
to show the procedure’s source code. However, source code files are not uploaded
to the server for many technologies. For these technologies, nodes in the Source
file graph are still created for every source code file.
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2.10 Post processing

After the server creates a data flow graph by merging all parts sent from the
client, the server runs a post processing. It performs the following several changes
in the whole data flow graph:

• For each edge type that should connect only leaves, check if all edges of that
type in the data flow graph satisfy that condition. Fix edges connected to
an inner node by changing the edge so it is instead connected to a leaf node
that is a descendant of that inner node. If there is more than one such leaf
node, then create a copy of that edge for each such leaf node.

• Create a reverse edge from the table node to the view node for each existing
edge from the table node to the view node. This is not limited to views and
not limited to the Oracle database.

• Few customers use some other post processing, but most do not. We will
not consider them in this analysis.

2.11 Data dictionary description

A data dictionary is a read-only set of tables that provides metadata about
a database. It contains a list of all objects in the database, such as all schemas,
tables, columns, and relationships between them.

As already mentioned in Section 2.2, during a full update, data dictionaries
are both extracted and analyzed. Each data dictionary is extracted into an H2
[5] database file, where each row represents one object from a data dictionary.
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3. Requirements and analysis

The main focus of this chapter is to describe the solution’s requirements, based
on which we will later design the solution. However, before we get to the require-
ments, we need to analyze the problem and think about how we want to improve
the current full update. Then this will then help us create the requirements and
think about them much easier.

3.1 Problem overview

The currently used full update is already described in Section 2.7. It is sum-
marized here in Figure 3.1, which describes the whole process of the full update.
On the left, we can see lots of input files (e.g., customer’s source code, configu-
ration files). In the middle, we can see several scenarios, each of them processes
multiple inputs and generates parts of the result dataflow graph. These parts are
then merged into the single resulting data flow graph.

Figure 3.1: Full analysis explanation

After changing even a single input, a full update analyzes all the scenarios to
create the updated flow graph. This means that the full update reanalyzes all
the inputs, often taking many hours. The main goal of the incremental update is
to analyze only a tiny fraction of these inputs while generating the same graph
as the full update would.

The first issue is that the scenarios are too big, and there is no way to run only
a part of a scenario. Analysis of any technology consists of only 1 to 4 scenarios.
For example, a single scenario analyzes all the DDL scripts when analyzing an
Oracle database. If we want to analyze a single DDL script, we need to analyze
all the DDL scripts in the database.

The second issue is that the full update always deletes the whole flow graph
created by the previous full update and then builds the new flow graph from
scratch. We need not delete the previous flow graph because we want to reuse
the unchanged parts of the flow graph from the last update. However, we still
need to delete the obsolete parts of the flow graph locally. This is not currently
possible, and we need to create a new way to do this.
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3.2 Segments

The incremental update solves the first issue from Section 3.1 by dividing
every scenario into multiple much smaller pieces; we call them segments. Every
segment represents part of the scenario’s work that can be analyzed indepen-
dently. This helps to analyze only what is needed by creating the possibility to
analyze small chunks of data. Every segment has to fulfill these two requirements:

• The segment can be analyzed on its own. (Requirement 1)

• We must (easily) recognize if any of the corresponding inputs have changed
since the last analysis. (Requirement 2)

Segments allow performing incremental analysis differently from the full anal-
ysis. As we can see in Figure 3.2, the incremental analysis starts again with
the inputs. First, it finds all the changed inputs. Based on them, it finds all
the segments in which inputs are changed, which is possible due to the segment
requirement 2. Then incremental analysis analyzes only these segments, which is
possible due to the segment requirement 1. Finally, for each analyzed segment,
it merges the newly generated flow graph into the resulting graph. However, be-
fore merging, the incremental analysis must first delete all the vertices and edges
created by this segment in the last update. This deleting is partly covered in Jan
Sýkora’s thesis [2], but it still needs many changes to work correctly in our case.

Figure 3.2: Incremental analysis explanation

Let us briefly mention what can be a segment and what cannot. The most
helpful example of a segment is analyzing a single source code file. We can
analyze a single source code file independently, and we can easily recognize if it
has changed since the last analysis. This is our default choice for segments going
forward. Another helpful example of a segment is analyzing a few source code
files together. The last example we mention is a segment containing the analysis
of all the inputs together. In this case, our incremental analysis would become
the same as the current full update analysis. One negative example is one line of
a source code file. It cannot be a segment because we cannot analyze it without
the rest of the file.
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3.2.1 Dependencies between segments

However, reanalyzing only the changed segments is insufficient because this
simple approach would lead to many dataflow inconsistencies. One such example
is a segment containing a database procedure with a “Select * from X” statement.
Although this segment is unchanged, its analysis generates output different from
the analysis in the last update. That’s because of a change in another segment,
which contains the definition of the table X, which has a newly added column in
the new version. Therefore we need to find out all the unchanged segments, which
would generate different dataflow based on the changes in changed segments. Let
us call this process impact analysis. Then we need also to reanalyze all these
segments found by the impact analysis.

The goal of the impact analysis is to find transitive dependencies between
segments. There are two types of dependencies:

1. Dependencies between whole segments. Dependency between whole seg-
ments X and Y means that if segment X changed, we also need to analyze
segment Y because segment Y might yield a different result flow graph than
in the last update. As soon as we know which segments have changed in
the current update, we can use these dependencies to find all the segments
which must be reanalyzed. Let us call these L1 dependencies (L1 stands
for level 1). Note that this relationship has many-to-many cardinality.

2. Dependencies between segment parts - sometimes dependencies between
whole segments are insufficient and need to be more specific. If we have
L1 dependency between segments X and Y, only some changes of X mean
that Y needs to be really reanalyzed. Only if a specific part of segment
X was changed, then we need to reanalyze segment Y. This is precisely
the meaning of L2 dependencies. L2 dependencies are between a part of
segment X and the whole segment Y.
Let us specify what part of a segment X means in this context. For ex-
ample, it could be a line number in a specified source file, but it would
be needed to parse every source file and track how these lines moved and
changed whenever the file changes. Instead, let us utilize what the MANTA
is best at and use a node in the generated flow graph as a source for L2 de-
pendency. For example, we can have L2 dependency between a parameter
of one database procedure x and some other procedure y. Then, procedure
y will be reanalyzed whenever this parameter is changed or deleted. As we
can see, this approach is much more accurate compared to L1 dependencies.
Note that only knowing which segments changed is insufficient to use L2
dependency. We also need to know how the segments changed.

Note that we need to have all the dependencies precomputed from the last
update. The reason is that if we have an unchanged segment, then we need
to know all its dependencies without actually analyzing it. Otherwise, we would
need to reanalyze all the segments during every incremental update. We can have
dependencies between segments of the same technology or between segments of
different technologies.
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3.3 Use cases

There are two different use cases for incremental updates:

• One-technology incremental update - guarantees the correctness of all the
nodes and edges in one specified technology, while it does not guarantee
anything about other technologies. This is expected to be used mainly
while setting up MANTA. We want to minimize analysis time because users
often run analysis multiple times during a short time period to set up things
properly.

• All-technologies incremental update - guarantees the correctness of all the
nodes and edges in the graph. This is expected to be used in production.

3.4 General requirements

This section summarizes all requirements that incremental updates should meet:

1. Performing incremental update should leave CLI and Server in the same
state as after running a full update.

(a) This also means that the incremental update should generate the same
data flow as a full update.

(b) It is possible and expected that we would need to make exceptions to
this rule in some cases.

(c) The incremental update should also generate the same mapsTo and
perspective edges as the full update.

2. This project should define theoretical conditions that are necessary (and
also sufficient) to perform an incremental update according to the first re-
quirement.

3. The system should recognize what changes have been made since the last
update. This includes input files and all other inputs of full analysis.

(a) This includes, for example, extracted data, manually provided data,
manual dictionary mappings, scanner-specific mappings (Informatica
parameters, Talend custom variables, StreamSets runtime values, Cog-
nos search path mapping), etc.

4. The incremental update should analyze only changed segments and seg-
ments found by impact analysis.

5. Incremental update can be executed by running workflow run-(technology)-
incremental for every supported technology, e.g., run-oracle-incremental.

(a) These workflows will contain all the scenarios from the extraction and
analysis phase of their technologies.
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(b) These scenarios will newly contain a switch to choose between full and
incremental update.

(c) Each scenario can run an update for one connection. Process manager
allows users to choose multiple connections and run a workflow for all
of them at once.

6. This project will not deal with incremental data extraction.

(a) Extraction phase of the full update will be used instead.
(b) Incremental update feature will have no impact on the extraction

phase.

3.5 Impact analysis requirements

The impact analysis should meet these requirements:

1. Incremental update should execute impact analysis to find transitive de-
pendencies.

(a) The impact analysis should find all unchanged segments generating
data flow different from the last analysis.

(b) Impact analysis is allowed to find some false positives (i.e., unchanged
segment in which data flow is the same in the new update).

2. Reporting technologies should use L1 dependencies.

3. Database technologies should use L2 dependencies.

4. L1 dependencies will be stored on the client, most likely in a relational
database.

5. L2 dependencies will be represented by graph edges and stored on the server.

(a) They will be stored either in the dataflow graph or in a separate graph.

6. We need to ensure 1:1 mapping of segments between client and server.

3.6 Prototype requirements

This project should implement a prototype following these requirements:

1. Prototype should support incremental updates for Oracle database technol-
ogy.

(a) This also means creating workflow run-oracle-incremental.
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2. Prototype should be able to handle both changes in implementation and
interfaces.

3. Prototype should handle all 3 Oracle analysis scenarios (mentioned in Sec-
tion 2.2).

4. Prototype should run in a development environment.

5. Prototype should only support the one-technology use case.

6. Prototype will not implement parallelization of its merge algorithm.

3.7 Non-functional requirements

This project should also meet the following non-functional requirements:

1. Both design and implementation should focus on the performance of incre-
mental updates (i.e., time of execution).

(a) Analysis should come up with a suite of tests to measure the perfor-
mance.

2. Focus on performance also means focus on the possibility of parallelization
of the analysis. This includes:

(a) interscenario parallelization - multiple incremental scenarios running
in parallel for different connections or technologies,

(b) intrascenario parallelization - multiple inputs analyzed at once from
the same connection,

(c) merge algorithm parallelization - design merge algorithm in synchro-
nization with Tomáš Polačok’s thesis [6] for parallelization of full up-
date’s merge algorithm.

3. The project should include both technical and user documentation.

4. The project should use minor updates (and other fitting ideas) from Jan
Sýkora’s thesis [2].
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4. Design

This chapter describes the design of the new solution. First, we explore the
flaws of the previous merge algorithm and design an improvement for all of them
one by one. Then, we analyze other aspects of the new merge algorithm and
design a solution for them. After that follows a summarized description of the new
merge algorithm with a detailed example. The chapter ends with a description
of a client algorithm that calls and orchestrates a previously designed merge
algorithm.

4.1 Simplified client algorithm

Before designing the new merge algorithm, which runs mainly on the MANTA
server, we need to describe how the MANTA client orchestrates the whole incre-
mental update. It is done by performing a client algorithm, and for now, we
will describe only its simplified version. The reason for that is that although we
need this client algorithm to understand the description of the merge algorithm
better, the full version of the client algorithm described later in Section 4.8 needs
knowledge of the new merge algorithm, which has not been described yet.

The client algorithm starts with a user using MANTA graphical interface.
Users can choose which technologies should be analyzed and if they should be
analyzed using a full or an incremental update. Let us for now assume only the
One-technology use-case mentioned in Section 3.3, which means that the user has
changes only in one technology. In case the user chooses the incremental update,
the client will newly perform these steps, comments are in grey:

1. Run extraction phase scenarios for the changed technology. This step is the
same in full update, as incremental updates should use the same extraction.

2. Start an incremental update by calling newMinorRevisionScenario. This is
an already existing scenario that correctly initializes graph database struc-
tures for an incremental update.

3. Find all changed segments and add them to a queue Q. Changed segments
are segments with a changed input (described in Section 3.2).

4. Use L1 dependencies to find unchanged segments that generate different
output because of changed segments and add them to the queue Q.

5. While the queue Q is not empty:

(a) Pop segment S from the queue Q, analyze the segment, and send
created data flow graph to the server to merge it.

(b) Receive from server a list L of segments that need to be reanalyzed
because of changes in segment S and push them to the queue Q. Server
uses L2 dependencies to find segments in the list L.
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(c) Use L1 dependencies to find all unchanged segments that generate
different output because of changed segments in the list L and add
them to the queue Q.

6. Commit the incremental update by calling commitRevisionScenario. This
is an already existing scenario that commits all the changes.

Note that we can use L2 dependencies only while merging the result data flow
graph. That is the only moment when we reliably know which parts of merged
segments have changed since the last update, which is the information needed to
know which L2 dependencies should be used.

4.2 Merge algorithm improvements

This section describes changes and improvements for the merge algorithm used
by incremental updates. First, we recapitulate the previous version of this merge
algorithm. Then we go one by one through all of its issues. We introduce each
issue with an example code snippet and a figure depicting an incorrect merge.
After that, we present a solution to this issue and a figure showing a correct
merge.

4.2.1 Previous algorithm

The previous merge algorithm for an incremental update is described in Sec-
tion 2.8. Let us summarize it into individual steps, so we can easily refer to
them:

1. Client - analyze all changed source code files and mark a body node of every
changed procedure. For each analyzed procedure, send its generated data
flow graph separately to the server to merge.

2. Server - for each graph sent from the client, merge it node by node with
the data flow graph stored on the server. Additionally, whenever merging
a marked node:

(a) Remove the marked node’s previous subtree from the data flow graph
(all the vertices and adjacent edges).

(b) Merge vertices from its new subtree with the data flow graph.
(c) Merge edges from its new subtree with the data flow graph.

4.2.2 New merge algorithm

The main idea of the new merge algorithm is to improve the previous one by
using as much already existing information in the data flow graph as we can.
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We want this to save both time and space of running an incremental update and
also to save implementation time. Otherwise, there would be too much to code
for every technology that would like to use incremental updates.

This means that we use information from dataflow edges to capture dependen-
cies between segments. Whenever analysis of segment X created a dataflow edge
adjacent to a vertex created by another segment Y , this edge tells us that segment
X is dependent on Y . Technically speaking, we can treat such a dataflow edge
as an L2 dependency edge from its source node in the segment Y to the segment
X.

Sometimes information from dataflow edges will not be sufficient. We will
create new L2 dependency edges describing these dependencies in such cases.

Aside from dataflow edges, we need one more thing from the analysis. We
need to know for every vertex and edge which segment created them; let us call
it a source segment. For now, let us assume that every vertex and edge has a
method getSourceSegment, which returns the source segment. We’ll discuss
its implementation later in Section 4.4.

The merge algorithm is merging a new reanalyzed version of a segment. We
want to create as many edges correctly as possible based on data from the cur-
rently merged segment. However, there will often be some edges about which we
cannot decide based only on data from the currently merged segment (e.g., if an
edge created by another segment should be in the new version). For these edges,
we will return their source segments to the client, where they are added to the
reanalyzation queue. This causes that these segments will be later reanalyzed
as well. That is when we will have enough information to decide about those
edges correctly. We’ve already seen this in step 5b of simplified client algorithm
in Section 4.1.

4.2.3 Segment root node

Analysis of every segment creates a graph that is sent to the server and merged
into the data flow graph. This graph is called a merge input, and we have already
discussed it in Section 2.8.1. Merge input contains both nodes and vertices with
a source segment equal to the currently analyzed segment and some other nodes
and vertices (e.g., predecessors of that nodes). The following invariant is true
for every merge input created by analyzing a segment S, “If a node has a source
segment S, then all its children have the same source segment S.”

Let us now look at the example of the same merge input as in Figure 2.11.
Figure 4.1 depicts a merge input of a segment P containing a procedure P . This
merge input contains blue vertices and edges with a source segment P . It also
contains grey vertices and edges without a source segment. We can see in the
example that the invariant about blue vertices holds.

As a consequence of the previous invariant, all blue nodes in Figure 4.1 create
together one blue subtree (i.e., a subgraph that is a tree). The subtree has a blue
root node, which we will call a segment root node, denoted by the red line in
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Figure 4.1: Source segment example

the example. In general, every merge input has 0-n blue subtrees and the same
number of root nodes, most typically just one.

Figure 4.1 also contains grey nodes without a source segment. These nodes
will be discussed later in Section 4.3. Until then, all examples will omit these
nodes without a source segment for a simplification.

Now let us incrementally update the previous merge algorithm described in
Section 4.2.1. Next sections (from Section 4.2.4 to Section 4.2.9) describe issues
of the previous merge algorithm one by one. Each such section first contains
an issue description with an example. Then, it contains a solution to this issue,
again with an example. Lastly, there is also sometimes a discussion about the
implementation of the solution.

4.2.4 Changing the marked node

Issue: The previous merge algorithm (mentioned in Section 4.2.1) in step
1 marks body node of a database procedure when that procedure is changed.
As previously discussed, this means that incremental updates work incorrectly
whenever there is a change in a procedure interface. Let us examine this behavior
on an example in Figure 4.2. This example contains a database procedure P ,
which had a single argument I in the old revision, but it was changed, so it
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currently has no arguments in the new revision. And user wants to propagate
this change to the data flow graph using an incremental update.

// Old revision
Procedure P(IN I) { ... }
// New revision
Procedure P() { ... }

Figure 4.2: Changing the marked node code example

On the left side of Figure 4.3 we can see how the data flow graph looked in the
old revision. It contained the procedure P node with two children nodes Param I
and Body. At the bottom of the example is a merge input created by the client,
which contains a marked Body node. It does not contain the Param I node as it
is deleted in the new revision. We can see the data flow graph after the merge on
the right side, which incorrectly contains the Param I node. That’s because the
previous merge algorithm marks the Body node, which leads to the server deleting
the Body node and its whole subgraph during the merge. However, the Param I
node is never deleted as it is not a part of the deleted Body node subgraph.

Figure 4.3: Changing the marked node example issue

Solution: Solution to this issue is to change which node client marks. Newly,
when merging a segment S, the client marks all segment root nodes of segment
S (defined in Section 4.2.3). And because every node with a source segment S is
either a segment root node of segment S or its descendant, the merge algorithm
will surely delete all nodes with a source segment S.

Figure 4.4 contains the same example as previously shown in Figure 4.3, but
with a fixed merge input. This time, the Procedure P node is marked instead
of the Body node. Note that the Procedure P node is a segment root node.
Therefore, the Procedure P node and its descendants are removed during the
merge. And after merging the merge input back, the Param I node is not in the
resulting data flow graph because it is not in the merge input. So this change
successfully fixed the issue when the Param I node stayed incorrectly in the graph.
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Figure 4.4: Changing the marked node example solution

4.2.5 Edge restoration

Issue: Imagine merging some segment P. Then all the edges with source
segment different from P that are adjacent to any vertex V with source segment
P are removed in the step 2a of the previous merge algorithm. However, for every
such removed edge, if its source segment is unchanged and vertex V was not
removed, then all these removed edges should be in the new revision. Therefore
their deletion creates a data inconsistency.

Let’s describe this on an example from Figure 4.5. We can see a stored
procedure P and some other procedure S, which calls the procedure P. Procedure
S is unchanged in the new revision and procedure P has some changes in its body.
For our example, it is not important what exactly these changes are.

// Old revision
Procedure P(IN I, OUT O) {}
Procedure S() { ... P(I, O) ... }
// New revision
Procedure P(IN I, OUT O) { ... } // Changed
Procedure S() { ... P(I, O) ... } // Unchanged

Figure 4.5: Edge restoration code example

To continue with the example from Figure 4.5, we can see on the left of
Figure 4.6 the important part of the flow graph stored on the server before merging
the new revision. We can see that the analysis of procedure S created two dataflow
edges to nodes in the P subtree. Note that these edges are red in the example
because their source segment is procedure S, as they were created during an
analysis of the segment S. On the bottom of Figure 4.5 is a merge input, which
contains a new version of segment P because only this segment changed in the
new revision. The Procedure P node is marked. For simplicity, this example
omits a body of the Procedure P, which would be changed in the merge input.
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Figure 4.6: Edge restoration example issue

On the right of Figure 4.6 we can see (the important part of) the flow graph
stored on the server after merging the new revision. When merging the merge
input using the previous merge algorithm, it removes all nodes and edges in the
subtree of P (in step 2a). This includes both red direct flow edges in the example
created by the procedure S, which are removed. Because S is unchanged, S is not
reanalyzed, and these edges are not created again. Therefore they are not in the
new data flow graph, although they should be.

Solution: After merging any vertex (in the step 2b of the previous merge
algorithm), the new merge algorithm will restore all edges adjacent to this vertex.
Restoring an edge means changing its state back to valid in the current revision by
changing its end revision. However, the algorithm will restore only those edges
that were removed in step item 2a of the previous merge algorithm. There is
an exception for edges with a source segment equal to the one currently being
merged, which is discussed later in Section 4.2.6.

Let us get back to our example, which has the same graph before the merge
and the same merge input as the previous example in Figure 4.6. A difference
is in the used merge algorithm, which now uses edge restoration. We can see in
Figure 4.7 on the right side how the flow graph on the server will look like using
edge restoration. When merging the new version of the procedure P, during
merging nodes Param O and Param I, both red direct flow edges created by
the procedure S are restored. This change fixes the issue presented earlier.

Implementation: To implement this feature correctly, we need to remember
all the edges created by other segments that were removed in step 2a. For any
removed edge e between nodes u and v while merging a segment X, we add these

32



Figure 4.7: Edge restoration example solution

edges into a hash map H. The hash key will be node u or v, whichever has source
segment X, and the hashed value will be the edge e. This map can have multiple
values with the same key. We need this hash map because we could not otherwise
tell the difference between an edge removed from the data flow graph because of
our current merging and an edge removed from the graph by some other changes
in the last revision.

Whenever the algorithm merges any vertex, it uses this vertex as a key into
the map H and finds all edges adjacent to this vertex. If there are any such
edges, the new merge algorithm restores all of them. This is also why this data
structure is a map, to find all these adjacent edges quickly.

4.2.6 Edge restoration 2

Issue: Now we know that when merging a node, the new merge algorithm
needs to restore removed edges. However, it should not restore all edges. If it
would, it would create a data inconsistency. Let us examine it on an example in
Figure 4.8, which contains two procedures, P and Q, that are the same in both
old and new revisions. The example also contains the procedure S, that called
the procedure P in the last revision, but now it calls the procedure Q in the new
revision.

For this example, we can see how the data flow graph looked in the old revision
on the left side of Figure 4.9. Most importantly, it contained a data flow edge
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// Old revision
Procedure P(IN I) { ... }
Procedure Q(IN I) { ... }
Procedure S() { P(I) }
// New revision
Procedure P(IN I) { ... } // Unchanged
Procedure Q(IN I) { ... } // Unchanged
Procedure S() { Q(I) } // Changed

Figure 4.8: Edge deletion code example

between parameters of procedures S and P because the procedure S called the
procedure P. At the bottom of the example, we can also see the new merge input.
It newly contains a data flow edge between parameters of procedures S and Q.
If the merge algorithm would restore all created edges, then the edge between
procedures S and P would be restored. We can see that on the right side of
Figure 4.9. This is, of course incorrect, because the procedure S does not call the
procedure P anymore.

Figure 4.9: Edge restoration 2 example issue

Solution: Whenever merging a merge input created by an analysis of a seg-
ment X, we should restore only edges created by other segments. Edges created
by the segment X do not need to be restored because if we delete an edge created
by the segment X which should be in the new revision, it will be merged back
anyways in the step item 2c of the previous merge algorithm. That is because
edges with source segment X will always be part of a merge input created by
analyzing the segment X.
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In our example, we can see the solution in Figure 4.10. It contains the same
data flow graph before the merge and the same input as the previous example
in Figure 4.9. However, after not restoring edges created by the merged segment
S, we can see on the right side that the resulting data flow does not contain the
data flow edge between procedures S and P anymore. This fixes the issue, and
the resulting data flow graph is correct.

Figure 4.10: Edge restoration 2 example solution

4.2.7 Node removal

Issue: During merging of any segment X, there is only one situation that
leads to deleting an edge created by some other segment. This happens when we
delete a node adjacent to some edge e created by a segment other than X. By
deleting the node, we mean that it existed in the last revision and it does not
exist in the current revision (i.e., it was removed in the step 2a of the previous
merge algorithm and not added back in the step 2b). The reason to delete the
edge e is that we deleted one of its adjacent nodes, and we do not know if we
should replace this node with another node or delete the edge. We do not know
it because we do not know anything about the segment that created that edge at
the moment. The only way to know would be to reanalyze the source segment of
the removed edge e.

However, if we would delete the edge e and would not do anything else, it could
create data inconsistencies in the graph. This is exactly what the previous merge
algorithm does. We can see an example in Figure 4.11, which has a procedure P
with a single parameter. The only change in the new revision is the renaming of
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the parameter from I to J . Then the example has a procedure S that calls the
procedure P .

// Old revision
Procedure P(IN I) { ... }
Procedure S() { ... P(K) }
// New revision
Procedure P(IN J) { ... } // Changed
Procedure S() { ... P(K) } // Unchanged

Figure 4.11: Node removal code example

On the left side of Figure 4.12 we can see that before the merge graph con-
tained a data flow edge between parameters of procedures S and P created by
analysis of the procedure S. Because only the procedure P changed in the new
revision, the merge input on the bottom contains a graph of the procedure P
with the new Param J node. However, the Param I node was deleted during the
merge, and the data flow edge was deleted with it. And because the merge input
does not know anything about the procedure S, that data flow edge is not merged
back, so it stays deleted. We can see this on the right side of the example, which
is incorrect.

Figure 4.12: Node removal example issue

Solution: To fix this issue, whenever the new merge algorithm deletes an edge
created by some other segment Y during a merge, then it sends this segment to the
client after the merge is completed. Afterward, the client adds all these segments
to the reanalyzation queue (in step 5b of the simplified merge algorithm). Thus
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later in the same revision, segment Y will also be reanalyzed, which will recreate
deleted edges if needed.

This means that after the merge of the segment P in the previous example
(in Figure 4.12), the server sends back to the client the segment S. The client
then reanalyzes the segment S in the same revision and sends its merge input to
the server. We can see this merge input on the bottom of Figure 4.13. We can
see that it contains the marked Procedure S node as well as the data flow edge.
This edge is missing in the data flow graph before the merge, as we can see on the
left of the example. However, merging this merge input will recreate this edge
between the two procedures, as we can see on the right side of the example. This
fixes the issue in the same revision, so the user will not notice that the edge was
missing for some time.

Figure 4.13: Node removal example solution

This approach will generate some false positives, reanalyzations of some seg-
ments that do not need to be reanalyzed. That is because these segments will
create the same graph as there already is. The good thing is that one false positive
cannot generate another one because it will not change anything in the graph.

Implementation: The last question is how to implement this feature. We
need to find all the edges that were removed in this revision. The easiest way
is to use the hash map H, which was introduced earlier in Section 4.2.5. This
map contains all edges created by other segments that were removed by step 2a
of the previous algorithm. During the edge restoration, many of these edges are
restored (i.e., added back into the graph). Whenever we restore an edge, we also
delete this edge from the map H. This does not create any issue for the edge
restoration algorithm because that algorithm restores every edge at most once
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anyways.

After merging a segment X ends, what is left in the map H is exactly what
we need. That is all the edges with source segment different from the X removed
by this revision. The last step is to use these edges to find their source segments
and send them back to the client for reanalyzation.

4.2.8 Node creation

Issue: The next question is what to do after the merge algorithm creates a
new node. There could be some other segment X that would create an edge to
this node in this revision. However, this edge does not exist because that node
did not exist when the segment X was analyzed. And if the segment X did not
change in the current revision, this edge will be incorrectly missing in the data
flow graph.

One such example is in Figure 4.14, where we have an unchanged procedure P
that selects all columns from a table Persons. The table Persons is changed in the
new revision, and it newly has an additional column Y . However, the procedure
P is unchanged in the new revision.

// Old revision
CREATE TABLE Persons (X int); // Old revision
Procedure P() { // Unchanged

DECLARE V Persons%ROWTYPE;
Select * Into V FROM Persons;

}
// New revision
CREATE TABLE Persons (X int, Y int); // Changed
Procedure P() { // Unchanged

DECLARE V Persons%ROWTYPE;
Select * Into V FROM Persons;

}

Figure 4.14: Node creation code example

We can see how a data flow graph looks for this example before the merge on
the left of Figure 4.15. It contains one table column X, and the variable V also
has one child X. The merge input on the bottom of that example contains a new
version of the table Persons with two columns.

The previous merge algorithm does not perform any particular action after a
node is created, which creates a data inconsistency, as we can see on the right
side of Figure 4.15. In the new revision, table Persons changed, and therefore it
was reanalyzed and has a new column Y . However, procedure P is not reanalyzed
in the revision (because it is not changed), and therefore its variable V has only
one column, which is incorrect.

Solution: There is no easy solution to fix this problem. This is the situation
where it is tough to find out dependencies between segments only from dataflow
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Figure 4.15: Node creation example issue

edges. It is generally impossible to know which segment would create an edge
connected to a newly created node, if any.

We cannot find out all dependencies only from dataflow edges. Therefore we
create a new type of edge called dependency edge. This edge leads from a
segment X into a node Y. There are multiple subtypes of the dependency edge,
each with a slightly different meaning:

• Subtype ReanalyzeOnChildCreate - reanalyze the segment X whenever a
child of the node Y is created.

• There could be more types based on later discovered issues.

The issue that was mentioned earlier in Figure 4.15 can be solved by adding a
dependency edge of type ReanalyzeOnChildCreate. All we need to do is whenever
we have a “Select * From T” statement in a procedure P is to create this edge
between the segment of the procedure P and a node representing the table T .

This is shown in Figure 4.16 below, where the dotted edge represents the new
dependency edge. In this example, first will be reanalyzed segment of table Per-
sons because this table changed. During that, when the node Y is merged, the
new merge algorithm will check its parent for the presence of the ReanalyzeOn-
ChildCreate edge. After it’s discovered, the source segment of this edge will be
sent to the client as a segment to reanalyze. This means that a segment with
the procedure P will be reanalyzed later during the same revision. Furthermore,
during its analysis, the node Y will be correctly created, as we can see on the
right side of Figure 4.16.
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Figure 4.16: Node creation example solution

4.2.9 Shared segments

Issue: We’ve so far assumed that there is only one source segment for every
edge and node. This is true for edges, but it is not always true for nodes. One
such example is in Figure 4.17, which contains two files. The code in the first file
createMyType creates a type with a single attribute. The code in the second file
alterMyType adds a second attribute to that type.

// File createMyType
CREATE OR REPLACE TYPE my type IS OBJECT (

field1 int,
);
// File alterMyType
ALTER TYPE my type ADD ATTRIBUTE field2 int;

Figure 4.17: Shared segment code example

In a new revision user changed the file alterMyType, we can see its new content
in Figure 4.18. The user renamed the attribute field2 to field3.

// File alterMyType
ALTER TYPE my type ADD ATTRIBUTE field3 int; // Changed

Figure 4.18: Shared segment code example - new revision
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Figure 4.19 shows on the left the data flow graph in the old revision before
changing the file. We can see that it correctly contains both attributes, field1, and
field2. It also contains the my type node, which was created by both analyzed
files, and so it has two source segments. On the bottom is a merge input created
based on an analysis of the changed file alterMyType. It correctly contains the
renamed field field2.

Figure 4.19 shows on the right the data flow graph in the new revision after
the merge. It correctly contains the attribute field3 from the merge input, but it
incorrectly misses the field1 attribute. It is missing because the previous merge
algorithm in step 2a deleted the whole subtree under the my type node. How-
ever, if the server would not delete that subtree, the new data flow graph would
incorrectly contain the field2 attribute.

Figure 4.19: Shared segments example issue

Solution: If a node has multiple source segments, then also all its predeces-
sors up to a segment root node have all these source segments. Therefore, if a
segment root node has only a single source segment, all its successors also have a
single source segment. And because the new merge algorithm always marks only
segment root nodes (as described in Section 4.2.4), we can use this observation.

The new merge algorithm deletes its whole subtree when it merges a marked
segment root node. Newly, if this segment root node has more than one source
segment, the algorithm sends all these source segments (except the currently
merged one) to the client for the reanalyzation. The client reanalyzes all these
segments and sends their merge inputs back to the server. When merging these
merge inputs, the server does not again delete the subtree of their marked nodes,
and it does not again send other source segments back for the renalayzation.

In our example from Figure 4.19, everything happens in the same way. The
only difference is that the server additionally sends back to the client request for
reanalyzing the createMyType file. The client then reanalyzes this file and sends
back to the server the merge input depicted on the bottom of Figure 4.20 which,
of course, contains the field1 attribute. On the left of Figure 4.20 we can see that
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the data flow graph looks before this merge the same as how it looked after the
first merge in Figure 4.19.

Finally, the server merges this new merge input to the data flow graph, but
it does not delete anything this time. After that, as we can see on the right side
of Figure 4.20, the data flow graph contains correctly both attributes field1 and
field3.

Figure 4.20: Shared segments example solution

To summarize, whenever multiple segments overlap in nodes they create, they
are practically joined together. This means that if one of them changes, all nodes
created by all these segments in previous revisions are deleted together at once.
Later during the same revision all of these segments are reanalyzed (even if they
didn’t change) and all their nodes are merged back to the graph.

4.3 Data dictionary

A data dictionary is a read-only set of tables that provides metadata about
a database (described in Section 2.11). It is analyzed in its own scenario, which
means it can be analyzed before all other source files, after them, or not at all
(depending on the user’s settings). Analysis of the data dictionary creates a graph
on the client, which is sent to the server to merge. The merge algorithm should
merge it similarly to other merge inputs from the client. However, there are some
significant differences in this case, which request changes in the merge algorithm.

4.3.1 Differences

Let us start with thinking about the differences between merge inputs created
by analyzing a data dictionary and a merge input created by an analysis of a
regular source code file.
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The first difference is that any merge input created by analyzing a data dic-
tionary is not sent to the server at once, unlike the regular source files that we
have met so far. For performance reasons, graph G created by an analysis of a
data dictionary is divided by the client into smaller subgraphs sent separately.
Every node from G is sent at least once. However, because again with every sent
node must be also sent all its predecessors, any node from G can also be sent to
the client multiple times.

The second difference is that data dictionary nodes do not fulfill the condition
from Section 4.2.3 that “If any node has a source segment, then all its children
have this same source segment”. We can see an example of that in Figure 4.21,
which contains a whole data flow graph. In the example, only yellow nodes were
created by analyzing the data dictionary, so they have their source segment data
dictionary. We can see that some yellow nodes have non-yellow children.

Figure 4.21: Data dictionary difference example

The third difference is that some nodes are created both by a data dictionary
analysis and a source code file analysis. We can see examples in Figure 4.21,
where nodes Procedure P and Parameter Output are both created by a data
dictionary analysis and a procedure P source code file analysis.

The fourth and final difference is that the data dictionary merge input contains
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no actual edges. It can contain only hasParent and hasAttribute edges, but they
are both represented as properties of nodes and not as edges. In some cases, this
can help us because we do not need to worry about edges in the merge input. We
can see an example of this also in Figure 4.21, where all data flow edges are in
red because they were created by an analysis of the procedure P . An analysis of
a data dictionary creates zero yellow data flow edges.

4.3.2 Possible solutions

Based on the previously mentioned differences, here is what needs to be done
when the server merges a merge input from a data dictionary:

1. Server needs to delete all nodes created by data dictionary analyses in pre-
vious revisions that are not in the new revision.

2. Server should not delete nodes not created by a data dictionary analysis,
even if that node is a child of a node created by a data dictionary analysis.

(a) If the server deletes them, they would be reanalyzed and recreated.
However, because almost every node in a graph is a descendant of a
data dictionary node, the server would analyze almost every node in
a graph, which is precisely what incremental updates try to avoid.

There are two different categories of possible solutions:

1. First solution is the full update of data dictionaries. The client will send all
the extracted data to the server. We will change the merge algorithm only
slightly so it can properly delete old nodes. The advantage of this solution
is that it is easier to implement. The disadvantage is that incremental
updates will always process all nodes in the data dictionary, slowing them
down.

2. Second solution is a proper incremental update of data dictionaries. The
client will analyze what changed in the input data dictionary and send only
changed parts to the server. The advantage of this solution is its better
time complexity. The disadvantage is that client needs to know what parts
of the input data dictionary were changed.

The second solution would be much easier to implement using an incremental
extraction. However, the incremental extraction is not a part of this thesis, and
it might be analyzed and implemented later. Implementing the second solution
without an incremental extraction would cost us a lot of implementation time.
And later, after implementing the incremental extraction, all this work would
be discarded. Therefore we have decided to implement the first solution, even
though it’s slower.
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4.3.3 Rejected solutions

Because we have decided to use a full update for data dictionaries, the first
obvious solution is to consider using the same data dictionary merge algorithm
currently used by the full update. However, that solution is of no use for us
because it expects the data flow graph to be deleted between every two revisions.
Because of that, it does not support deleting nodes, which is what we need (as
discussed in Section 4.3.2).

The second obvious solution would be to use the same data dictionary merge
algorithm, which is used by incremental updates for a regular source code file
and was created in Section 4.2.2. This also does not work because it marks a
node and deletes all its descendants. If it would mark a data dictionary node
and delete all its descendants the same way, it would delete many nodes created
by many other segments. And as mentioned in Section 4.3.2, this would lead to
unacceptable time complexity.

There is not a simple way of fixing any of these two algorithms. Therefore, we
need to create a different algorithm for merging merge inputs created by a data
dictionary analysis.

4.3.4 Accepted solution

Before discussing the data dictionary merge algorithm, let us mention two
things. First, we will assume for now that a data dictionary is analyzed in every
revision. What happens if that is not the case will be mentioned later in Sec-
tion 4.3.6. Second, all nodes created by a data dictionary analysis have the data
dictionary as their source segment.

The idea of the data dictionary merge algorithm is to perform deleting and
merging together. Consequently, whenever the server merges a child of a node N ,
then the server needs to have complete information about all children of N at that
time. Otherwise, it would not know which children of N created by the previous
revision should be deleted. Therefore we need to change how the client divides
the whole data dictionary graph into the separate merge inputs, independently
sent to the server. We need every merge input sent from the client to meet the
following condition:

• Whenever a merge input contains a (direct) child of a node N for the first
time in a revision, the merge input also contains all other children of the
node N .

The server then uses this information to delete all children of the node N that
are no longer in the new revision and add all the new children that previously
were not in the data flow graph. Without this condition, the server could not
delete a child of N in the data flow graph and not in the merge input because
it could still be a part of the following data dictionary merge input for the same
revision. The client marks all such nodes because it is hard for the server to
recognize which nodes satisfy the condition in a merge input.
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We can see example of the new data dictionary merge input in Figure 4.22.
The whole data dictionary graph was divided into two merge inputs. The first
merge input is on the left, and the second one is on the right. All the red nodes
were sent for the first time in the first merge input, and all the blue ones were
sent for the first time in the second merge input. We can see that the Oracle
node and the dbo node are marked in the first merge input because they are sent
with all their children for the first time. Other nodes are marked in the second
merge input. Note that every node is marked exactly once. Also, because this
is a small example, the second merge input contains all nodes from the first one,
which is not always true for bigger graphs.

Figure 4.22: Data dictionary merge inputs example

Implementation

Now, let us discuss how the client divides the data dictionary graph into
individual merge inputs. The client uses a DFS to traverse the data dictionary
graph and adds all visited nodes into a merge input. Whenever there are precisely
4096 nodes in the merge input, the client sends the merge input to the server,
deletes it, and continues with the DFS. We need to change this algorithm.

The first needed change is changing the algorithm from a DFS to BFS because
DFS simply does not work with our condition. The second needed change is when
the client sends the merge input. The new condition is that the merge input has
at least 4096 nodes, and our condition is met. This slightly increases the volume
of the graphs, but it should not increase it by much.
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Shared nodes

Our data dictionary merge algorithm already covers the first two differences
mentioned in Section 4.3.1. However, there is still one difference remaining. The
third difference is that some nodes are created both by a data dictionary analysis
and a source code file analysis. We want to prioritize information from the source
code file when this happens. Therefore, the server does not merge this node when
a data dictionary merge input contains a node that is already in the data flow
graph with a different source segment. This means that the node will stay with
a single source segment, which is not a data dictionary.

4.3.5 Algorithm

Let us summarize all this into an algorithm. This algorithm also uses some
merge algorithm ideas that were previously discussed in Section 4.2. All these
parts have a reference to the corresponding idea.

Input: Client analyzed a data dictionary and created a data dictionary graph
G′′, which was divided into multiple merge inputs. Now client sends one of the
merge inputs G′ to the server, which merges it with the flow graph G. The merge
input G′ meets the following condition “Whenever G′ contains a direct child of
a node N for the first time in a revision, the merge input also contains all the
other children of the node N ′′. Every node satisfying this condition is marked.

Steps of the algorithm:

1. Go through the merge input G′ and for each marked node N :

(a) If N exists in the data flow graph G and has a source segment different
from a data dictionary, do not do anything with N and skip all the
following steps for it.

(b) Remove from G all children of N that aren’t in G′, together with all
their descendants and any adjacent edges or attributes.

i. Perform node deletion from Section 4.2.7. This means that when-
ever this step deletes an edge with a source segment S that’s not a
data dictionary, add S into a list L of segments to reanalyzation.

(c) Merge all the children of N from the merge input G′ into the data flow
graph G. Set their source segments to the data dictionary.

i. Perform node creation from Section 4.2.8. Whenever the server
adds a new child of N , check if N has any OnChildCreate edges.
If yes, add source segments of all these edges into the list L of
segments for reanalyzation.

Output: List L of segments which should be reanalyzed later in this revision,
server sends this list back to the client.
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4.3.6 Limitations

We have so far assumed that a data dictionary is analyzed in every revision.
However, the user can decide for every revision if it should analyze a data dictio-
nary or not. So, what should incremental updates do when a data dictionary is
not analyzed?

An easy situation was running an incremental update without a data dictio-
nary when the data dictionary was not analyzed in the previous revision. In such
a case, whenever the server deletes a segment root node, it also deletes its parent
if it has no other child, and the server does this recursively for a parent of this
parent and so on. This way, the data flow graph contains the same nodes as it
would after a full update.

The complicated situation was running an incremental update without a data
dictionary when the previous revision analyzed the data dictionary. There are
data dictionary nodes in the data flow graph, and the server does not know which
should stay in the graph and which should be deleted because the data dictionary
was not analyzed. Incremental updates will not support this situation.

It might look like the user needs to choose once and for all if a data dictionary
analysis will be performed or not, which seems very limiting. However, there
is an easy way to change this decision by running a single full update. And
because a full update recreates the whole data flow graph, it also resets this
decision. Therefore, the limitation is that after running a full update with a
data dictionary analysis, all the following incremental updates must also analyze
the data dictionary. And vice versa, after running a full update without a data
dictionary analysis, all the following incremental updates should not analyze the
data dictionary as well. This way, the limitations are minor, and it is not worth
creating a complicated algorithm to solve them.

4.4 Segment mapping

We need to represent each segment in the flow graph somehow, and we also
need an id for each segment. However, we cannot use segment root nodes for this
purpose as there can be more that one for a single segment.

Because most segments correspond to a user source code file, we decided to
represent each segment with a source node of the corresponding source code file
(introduced in Section 2.9). Let’s call this source node the segment id node.
For every segment without a source code file, a “fake” empty file is created,
so every segment has exactly one source node which represents that segment.
Because every source node has a globally unique id, we can use this id to reference
that segment. Let us call it the segment id.

We also need to slightly change the source code upload feature (mentioned
in Section 2.9). For every source code file, we newly need to save its client file
path (as an attribute of the segment id node). We need this in the step 5b of the
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simplified client algorithm in order to find the corresponding file on the client.

Implementation of getSourceSegment method

When we started improving the merge algorithm, we assumed in Section 4.2.2
that every node and edge has a getSourceSegment method. This method
returns the source segment for that node or edge. Let us now discuss how this
method functions for both edges and nodes.

Edge’s source segment can differ from the source segments of both its source
node and its target. So we need to save the edge’s source segment inside every
edge. It is newly stored as an edge attribute, the value of the attribute is the
segment id of its source segment.

Nodes source segment could be saved for every node, but it is unnecessary.
Instead, let us use the rule from Section 4.2.3 which says that “If a node has a
source segment S, then all its children have the same source segment S.” Using
this rule, it is enough to save the source segment only for segment root nodes.
Every other node has implicitly the same source segment as its parent node. A
dependency edge newly connects every segment root node to a segment id node
of its source segment.

We introduced the concept of data dictionaries in Section 4.3. Their analysis
creates nodes that should have a data dictionary as their source segment. The
easiest way to implement this is to say that every node that does not have any
source segment using the previous methods has the data dictionary as its source
segment. This approach might not be detailed enough in the future, but it is
sufficient for now.

Example

Let us look at how source segments look in the flow graph with these changes
in Figure 4.23. On the right, we can see the source file graph described in
Section 2.5.2. Apart from the Source root node, it contains File with
procedure P code node representing the source code file with the procedure
P . This source node has a generated segment id 1. We can also see that all direct
flow edges have this id as their attribute, which denotes that their source segment
is the procedure P .

In the Figure 4.23, we can also see there that the analysis of the procedure P
created a segment root node Procedure P that is connected to the segment id
node File with procedure P code with a dependency edge. This means
that the Procedure P and all its descendants have the same source segment P .
All other nodes are not connected to any segment id node, so their source segment
is implicitly the data dictionary. The only exception is the source root which
is always present in the graph and has no sources segment.
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Figure 4.23: Segment mapping example

4.5 Post processing

We have discussed the purpose and previous implementation of post process-
ing in Section 2.10. Post processing visited the whole graph, which is unacceptable
for incremental updates because the whole point of incremental updates is only
to visit parts of the graph affected by the current changes. Because of this, we
need to change how post processing works.

In order to not visit the whole graph, we need to find all the segments where
something either changed or could change. Then post processing can visit only
parts of the flow graph that corresponds to these segments instead of going
through the whole graph. This way post processing makes the same changes
but does not visit the whole flow graph. However, how to find these segments?

Changing (inserting, updating, or deleting) a node with a source segment X
can happen only during the analysis of the segment X. Thus whenever analyzing
a segment X, it is enough to mark segment X as changed and later run post
processing only for its subgraph (i.e., for the segment root node of the segment
X and all its children).
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However, it is different for edges. Analysis of a segment X can create an edge
between nodes with different source segments Y and Z. Therefore marking only
segment X as a changed segment and then later running post processing only on
its subgraph is not enough. The reason is that the created edge is between nodes
not in X’s subgraph, so such a search would not find it. We need to mark either
segment Y or Z (or both) as changed segments to find this new edge during post
processing.

How to mark either of these segments? Let us realize that whenever we create
or update (not delete) an edge adjacent to a vertex V with a source segment
different from the one that’s currently being merged, let us say segment Y , there
will definitely be a segment root node of segment Y in merge graph sent to
the server. The reason is that vertex V is either a segment root node or has a
predecessor that’s a segment root node. And merge graph contains with every
node all its predecessors (as explained in Section 4.2.3), so it must include a
segment root node of the segment Y as well. We can use this segment root node
to mark segment Y as potentially changed, ensuring that post processing will find
all the changed edges. Note that there can as well be no change in the source
segment Y itself, so it might not be even reanalyzed in the current revision, which
is why we need to do this in the first place.

And how to mark a segment as changed? It is best to use the segment id
node (defined in Section 4.4) because there is exactly one for every segment. For
every segment id node, there will be a new attribute containing the last updated
revision of the corresponding segment.

Algorithm

The merge algorithm finds all the segment root nodes in the subgraph that’s
being merged. For every such segment root node, merge algorithm visits cor-
responding segment id node and sets its last updated revision attribute to the
current revision.

Post processing then visits all the segments id nodes. For each one that was
changed in the current revision, post processing visits its segment root node and
all its descendants performing the same post processing algorithm it would for
the full update.

Note that we cannot only mark the node as changed, but we need to save the
current revision into its attribute containing the last updated revision. That is
because post processing has multiple phases which can run in parallel. Therefore,
there is no good place to set segments back into an unchanged state. This way
(with the last updated revision attribute), there is no need to set anything back.

Source segment of created edges

Post processing creates new edges, so there is a question of what should be
their source segment. Let us realize by looking at both supported post processing
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use cases in Section 2.10 that whenever post processing creates an edge, there is
another edge that caused it. So the best solution is to copy the source segment
X from the edge that caused the creation of the new edge.

This way, it’s guaranteed that whenever the segment X is reanalyzed, all these
edges created by the post processing because of some edge from the segment X
will be deleted (because of edge deletion from Section 4.2.6). But also, because the
segment X was changed, these edges will be recreated during the post processing
if they’re still needed.

This also means that whenever such edge is deleted by some other segment,
segment X will be reanalyzed (because of node removal from Section 4.2.7). This
will trigger post processing for the segment X, which will recreate the deleted
edge if needed.

Issues

There is an issue with deleting edges not triggering post processing. Let’s
assume an analysis of a segment X, which contained an edge to another segment
Y in the last revision. After deleting this edge in the new version, if there is no
node from segment Y in the merged subgraph, the segment Y will not be marked
as changed.

Consequently, the segment Y will not be visited by the post processing, al-
though it should be as it has changed. However, this behavior does not break
anything because post processing currently does something only when new edges
or nodes are created, and it is not affected by the deleting.

Example

Let us look at an example of post processing. In Figure 4.24 below, we can
see an unchanged procedure P with a single parameter and a second procedure S
that calls the procedure P . The procedure S contains some insignificant change.
In our example, the variable J was renamed to K.

Procedure P(IN I) { ... } // Unchanged in the new version
Procedure S() { ... P(J) } // Old version
Procedure S() { ... P(K) } // New version

Figure 4.24: Post processing code example

We can see the corresponding data flow graph in Figure 4.25. On the left is
the flow graph before the merge. It contains two segment id nodes (denoted by
violet circles), both were changed in the last revision, and so they have the Last
updated revision attribute set to 1.0.

On the bottom of Figure 4.25 is the merge input for the revision 1.1 created
based on the previously described changes of the procedure S. The merge input
contains marked node Procedure S.
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Figure 4.25: Post processing example solution

We can see the flow graph after the merge on the right of Figure 4.25. Segment
id nodes for both procedure S and P have the Last updated revision set
to 1.1. The reason is that the merge input contained segment root nodes of
both these segments. Consequently, post processing will in the revision 1.1 visit
subtress of both segments S and P .

4.6 New merge algorithm description

After analyzing issues of the previous algorithm and its new improvements
one by one, let us put them together and see what the resulting algorithm looks
like. Before we look at the algorithm itself, let us examine its data structures and
their purpose.

The first data structure is the list L. This list starts empty, and whenever the
merge algorithm founds a segment that could generate a different graph compared
to the last revision, it adds it to the L. This list is sent back to the client at the
end of the merge algorithm. The client reanalyzes every segment from this list
later during the same revision if this segment was not already analyzed in this
revision.

The second data structure is the hash map H. During the merge of a segment
S, this map contains all edges removed by the merge algorithm with the source
segment different from S. Edges from this map are first used for edge restoration
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(see Section 4.2.5), and they are deleted after restoring. At the end of the merge
algorithm, all remaining edges are used for node removal (see Section 4.2.7).

Each edge e between some nodes u and v is in the hash map H twice, once
with the node u as its hash key and once with the node v as its hash key. The
hashed value in both cases is the edge e. This map can have multiple values
with the same key. H[N ] represents (contains) all edges removed by the merge
algorithm adjacent to the node N , which is exactly what the merge algorithm
needs to know.

Algorithm

Now that we know the main data structures let us look at the new merge
algorithm. Steps of the algorithm are written in black color, comments in grey.

Input: The whole data flow graph G stored on the server and the graph G′

which was created by an analysis of a segment S and should be merged with G.
Graph G′ has marked by an attribute all the segment root nodes in the graph
which have source segment equal to S. This indicates that a change has been
performed somewhere in the subgraph, starting with this marked node.

Steps of the algorithm:

1. Create the empty list L and the empty hash map H.

2. Delete all edges created by the merged segment S in previous revisions.

(a) Skip this step if S is a shared segment and its segment root node was
already changed in the current revision. This step is explained in the
Shared segments analysis in Section 4.2.9.

(b) Technical details of this steps are described later in Section 5.4.

3. Merge graphs G and G′ node by node until a specially marked segment root
node in G′ is reached.

(a) Whenever the segment root node is reached, find the corresponding
segment id node and mark it as changed by setting its last updated
revision attribute to the current revision. This step is explained in the
post processing analysis in Section 4.5.

4. For every marked node in G′:

(a) Remove its subtree from G by setting the minor end revision property
to the latest revision. This means removing the marked node, all its
descendants, all adjacent edges, and all adjacent attributes.

i. Skip this step if S is a shared segment and its segment root node
was already changed in the current revision. This step is explained
in the Shared segments analysis in Section 4.2.9.
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ii. If S is a shared segment, find all other shared segments connected
to the same segment root node and put them into the list L. This
step is explained in the Shared segments analysis in Section 4.2.9.

iii. Save all edges with source segment different from S removed this
way into the hash map H.

(b) Continue merging descendants of the marked node. For every node N
from G′ merged this way:

i. If the same node N was found in G in the latest revision:
A. Add the node N back to graph G by setting its minor end

revision back to maximum.
B. Add every edge from H[N ] back to G (in the same way as

the node N). Remove all these edges from H. This step is
explained in the Edge restoration analysis in Section 4.2.5.

ii. If the same node N was not found in G in the latest revision:
A. Add the node N to G as a new node.
B. If there is a dependent edge of type OnChildCreate from

any node X to the parent of the node N , then add the source
segment of the node X to the list L of segments to reanalyza-
tion. This step is explained in the Node creation analysis in
Section 4.2.8.

(c) Merge all edges from the subtree of the marked node. Note that all
these edges have S as their source segment. For every edge E from G′

merged this way:
i. If the same edge E was found in G in the latest revision, then

add the edge E back to G by setting its minor version back to the
maximum.

ii. If the same edge E was not found in G in the latest revision, then
add the edge E to G as a new edge.

(d) For every edge that remained in the hash map H add its source segment
to the list L of segments for reanalyzation. This step is explained in
the Node removal analysis in Section 4.2.7.

Output (sent to the client): List L containing segments that need to be
reanalyzed as well.

This algorithm works not only for data flow edges, but also for mapsTo and
perspective edges. We need to set source segments correctly for these edges
to reanalyzation work properly.

4.6.1 Algorithm for segment deletion

We have so far assumed that segments are only updated. The previously
mentioned algorithm works correctly when updating existing segments and when
creating new segments. However, the algorithm does not work when a segment
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is deleted. In such a case, there is no merge input for the deleted segment,
so the deleted segment stays unchanged in the flow graph and is not deleted.
Consequently, whenever deleting a segment, the client needs to tell the server
that the segment was deleted.

Let us say that a segment is deleted in the new revision. The client first finds
which segments were deleted, then finds all their segment root nodes and sends
them to the server. After that, the server finds all these nodes in the flow graph
and deletes them and all their successors. The server also deletes all the edges
created by these deleted segments in previous revisions.

Algorithm

Inputs: List of segment root nodes sent by the client. The data flow graph
G stored on the server.

Steps of the algorithm:

1. Create the empty list L. Same as the list L in the main merge algorithm,
contains segments that are sent to the client and will be reanalyzed in the
same revision.

2. For every node N in the list of deleted segment root nodes:

(a) Find the node N in the graph G and delete it and all its successors.
i. Also, delete all adjacent edges and attributes.
ii. Whenever an edge is deleted this way, add its source segment to

the list L if the source segment is different from S. This step is
explained in the Node removal analysis in Section 4.2.7.

iii. Find and delete all edges created by the segment S. This step is
same as the step 2 in the main merge algorithm.

Ouput (sent to the client): List L containing segments that need to be
reanalyzed in the same revision.

4.7 New merge algorithm example

Let us examine the new merge algorithm step by step in an example with
four procedures that we can see in Figure 4.26. Most important for us is the
procedure P with a single argument. In the old version, this procedure stored
its input value into the variable X and called another procedure Q. However, in
the new revision, someone found out that the variable was useless, removed it,
and changed the called procedure to another procedure R. Then there is also the
unchanged procedure A, which calls the procedure P .

First, let us look at the flow graph G on the server before the incremental
update started, which is in the first revision 1.0 in Figure 4.27. We can see that
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Procedure dbo.Q(IN I) { ... } // Unchanged in the new version
Procedure dbo.R(IN I) { ... } // Unchanged in the new version
Procedure dbo.P(IN J) { VAR X = J; Q(X) } // Old version
Procedure dbo.P(IN J) { R(J) } // New version
Procedure sch.A() { ... P(K) } // Unchanged in the new version

Figure 4.26: Algorithm example code

each of the four procedures creates its segment, and each is shown in a different
color. Each segment also has its segment root node with a black border color
connected to a segment id node with a violet border color.

The graph also contains data flow edges. We can see data lineage that starts
in the Param K node of the procedure A, goes through nodes of the procedure
P , and ends in the Param I node of the procedure Q.

Figure 4.27: Algorithm example - graph before update

Input

The incremental analysis starts on the client and follows the client algorithm
described in Section 4.1. In the first step, the client extracts source code files of
all four SQL procedures introduced earlier in Figure 4.26. The client starts the
incremental update in the second step by creating a new minor revision 1.1. In
the third step, the server adds the segment P into the queue Q as it is the only
one with the changed input (as the procedure P is the only input that changed).
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The fourth step is skipped because L1 dependencies are not used for database
technologies.

The fifth step analyzes segments from the queue Q while it is not empty.
It currently contains only the segment P , which the client reanalyzes, creates
a merge input graph G’, and sends this graph to the server. We can see this
merge input in Figure 4.28. It reflects the changes made in the new version of
the procedure P as it no longer contains the Variable X node. We can also
see two segment root nodes in the merge input. One of them is marked because
its source segment matches the currently merged segment.

Figure 4.28: Algorithm example - graph to merge

Let us now describe how the server merges this input into the whole data flow
graph described earlier. The server uses the new merge algorithm described in
Section 4.6. We will examine it step by step.

Steps 1 and 2

Step 1 only creates empty data structures (the list L and the hash map H).

Step 2a deletes all edges created by the currently merged segment P from the
flow graph G. The updated graph G is in Figure 4.29. We can see that all red
data flow edges are half-transparent, representing that they are not valid in the
current revision. They are still part of the data flow graph, but only as parts of
the previous revisions.
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Figure 4.29: Algorithm example - graph after steps 1 and 2

Step 3

Step 3 starts in the super root and merges the merge input graph G′ node
by node into the flow graph G. It merges super root, Oracle and dbo
nodes first, not creating any changes, because these nodes were already present
in the graph G. Then the merge algorithm can arbitrarily decide between nodes
Procedure R and Procedure P. The order does not matter, for our example,
let us say that the algorithm chose the Procedure R as the first one. This
means that nodes Procedure R and Param I are merged into G as well, not
creating any changes. Then algorithm gets to the node Procedure P, which is
the marked node. This means that the step 3 ends here.

Step 3a during this merging also checks if every merged node was a segment
root node. This was true for the nodes Procedure R and Procedure P.
Therefore, their segment id node was found using dependency edges, and its last
updated revision was set to 1.1, which is the number of the current revision.

We can see these changes in Figure 4.30. Nodes from the merge input G’ that
has been already merged are marked with a dashed border. We can also see that
the last updated revisions for the segment id nodes for segments R and P have
changed to 1.1.
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Figure 4.30: Algorithm example - graphs after step 3

Step 4a

Step 4a finds and removes from the current revision the whole subtree of the
marked node Procedure P, we can see the results in the Figure 4.31. The edge
from the Param K node to the Column K node is also removed because this
step also removes all the adjacent edges and attributes. This removed edge is in
step 4a-iii saved into the hash map H.

Step 4b

Step 4b continues merging the merge input G′ starting from the Procedure
P node and continuing with all its descendants. All nodes that are merged this
way and were previously removed in the step 4a are added back to the current
revision in the step 4b-i-A. This includes Procedure P, Column J, Body and
PROC CALL nodes. After merging each of these nodes, in the step 4b-i-B, the
hash map H is checked for any adjacent edges to this node. One is found when
merging the Column J node, and that edge from the Param K node to the
Column J is added back to the graph G as well and deleted from H.

The only remaining node Param J is merged differently because it did not
exist in the last revision. It is created as a new node in the step 4b-ii-B. We can
see the resulting flow graph in Figure 4.32. Note that nodes Variable X and
Param X were not added back to the current revision in G because they are not
part of the merge input G’. So these nodes are deleted in the new revision.
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Figure 4.31: Algorithm example - graphs after step 4a

Figure 4.32: Algorithm example - graphs after step 4b

Steps 4c and 4d

Step 4c merges all the edges from the graph G′ into the graph G. In the last
revision, these merged edges did not exist, meaning they are newly created in the
flow graph G in the step 4c-ii. We can see the new flow graph in Figure 4.33. Note
that all other red edges created by the segment P are removed in the revision.

Step 4d should add all the segments from the map H into the list L for later
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reanalyzation by the client. But in our example, the hash map H is empty. An
example of this situation was described earlier in Section 4.2.7.

Figure 4.33: Algorithm example - graphs after step 4d

Output

In this example, the list L containing segments that need to be reanalyzed is
empty. This means that this empty list is returned to the client. And because
the queue Q of segments that need to be analyzed is empty, the client algorithm
ends.

Let us look one last time at the graph from this example in Figure 4.34. We
can see the new flow graph without the deleted objects from the last revision.
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Figure 4.34: Algorithm example - resulting graph

4.8 Full client algorithm

The client algorithm calls the merge algorithm and orchestrates the whole pro-
cess. We have already seen its simplified version in Section 4.1. Now that we are
familiar with all the details of the new merge algorithm, we can finally introduce
the full version of the client algorithm. It contains a few new steps compared to
the previous simplified version. Each of these steps contains a comment stating
this fact.

The situation is that a user made some changes in their files and wants to
update their data flow graph. At least one full update has already been performed
(note that there is no reason for the first update not to be a full update), which
created the data flow graph G on the server. User chooses which technology (e.g.,
Oracle) should be updated. The client algorithm then does these steps to update
the chosen technology incrementally:

1. Run extraction phase scenarios for the changed technology. This step is the
same in full update, as incremental updates should use the same extraction.

2. Start an incremental update by calling newMinorRevisionScenario. This is
an already existing scenario that correctly initializes graph database struc-
tures for an incremental update.
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3. Find all changed segments and add them to a queue Q. Changed segments
are segments with a changed input (described in Section 3.2).

4. Use L1 dependencies to find unchanged segments that generate different
output because of changed segments and add them to the queue Q.

5. Find all deleted segments. Analyze them, find all their segment root nodes,
and send these segment root nodes to the server. This is a new step needed
for the segment deletion algorithm introduced in Section 4.6.1.

(a) Server returns the list of segments L that need to be reanalyzed. Add
these segments into the queue Q.

6. While the queue Q is not empty:

(a) Pop segment S from the queue Q. If S has already been analyzed in
this revision, discard S and go to the beginning of step 6.

(b) Analyze the segment S and send created data flow graph to the server
to merge it.

i. In the created data flow graph, mark all segment root nodes and
set correct source segments for all edges. This new step contains
requirements discovered during our merge algorithm analysis.

(c) Receive from server a list L of segments that need to be reanalyzed
because of changes in segment S and push them to the queue Q. Server
uses L2 dependencies to find segments in the list L.

(d) Use L1 dependencies to find all unchanged segments that generate
different output because of changed segments in the list L and add
them to the queue Q.

7. Perform post processing calling updated repositoryPostprocessingScenario.
This is a new step explained in Section 4.5.

8. Commit the incremental update by calling commitRevisionScenario. This
is an already existing scenario that commits all the changes.

Use cases

Requirements contain two different use cases in Section 3.3. The client algo-
rithm we have just described focuses only on the first one-technology use case
because that is the one that is supported in the implemented prototype (see Sec-
tion 3.6). The second all-technology use case was also analyzed, and it is possible
to implement it. The merge algorithm remains the same, but the client algo-
rithm needs some changes. Also, a few underlying MANTA concepts need major
changes (e.g., how scenarios interact with each other). The analysis of the second
use case is not included because it would need a detailed explanation of some
other MANTA concepts and because it is not essential for the implementation
part of this thesis.
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Parallelization

Changes in this thesis maintain both interscenario and intrascenario paral-
lelization. The parallelizaton of the merge algorithm is being solved by another
thesis. We have considered concepts from that thesis, but the analysis itself
belongs to the other thesis.
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5. Implementation

Based on the requirements, analysis, and design from previous chapters, a pro-
totype was implemented that supports incremental updates for Oracle database
technology. This chapter describes both the new and the changed code that was
implemented. All source files created or updated during the implementation of
this thesis are included in the online attachment of this thesis and the structure
of the attachment is described in Appendix A.

Because the code was developed using almost exclusively test-driven develop-
ment, there are tests for every change made. However, as they are not crucial for
this chapter, we will not mention them when describing individual classes and
changes. They are part of an attachment of this thesis and described later in
Section 6.1.

5.1 Overview

Before describing the new implementation changes, let us look at a few al-
ready existing key implementation concepts and classes. We will need them to
understand better the new code presented in this chapter.

Let us first look at the communication between the client and the server.
Whenever the client sends a flow graph to the server to merge (as described in
Section 2.1), the client uses the MergerWriter class to serialize the graph.
We can see an example of a serialized graph in Figure 5.1, each nonempty line
represents either a node or an edge in the flow graph. There are two important
things to notice. First, all serialized objects are ordered by their type, and the
order is always the same. In the example, all layers are sent together, then all
resources, then all nodes, and so on. The second important thing is that if a row
in the file references another row, then the referenced one is always in the file
earlier. In the example, the node Schema references the node Database, and
so the Databse node is in the file before the Schema node.

"layer","0","Physical","Physical"
"resource","1","Oracle","Oracle","Oracle Database","0"

"node","1","","ORCL","Database","1"
"node","2","1","BSL","Schema","1"
"node","3","2","IS TABLE EXIST","Function","1"
"node attribute","3","CONNECTION","manta"

"edge","1","7","8","DIRECT","2","1"

Figure 5.1: Csv input example

Server merges this csv file using the StandardMergerProcessor class,
which merges the graph line by line. Each object is merged independently, which
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is possible thanks to their ordering in the file. Whenever merging an input csv file,
a new instance of the AbstractProcessorContext class is created, and it is
accessible when merging all objects from that file. It is used whenever knowledge
about previously merged objects from the same csv file is needed.

5.2 Model

The first significant model change was to modify edges so each edge stores a
reference to its source segment. This was implemented on the client by adding
sourceSegmentId property to every edge in the Edge class. Together with
this change, we have also needed to update the merging and serialization of edges
in GraphCsvSerializationHelper class to work with this new property
correctly. Another related change was in AbstractSourceFileTask so it
correctly sets the new sourceSegmentId to all edges before sending them to
the server.

We also needed to cover these changes on the server, so it correctly handles
edge’s new sourceSegmentId property sent from the client. On the server,
the source segment id is loaded from the input csv file sent by the client and
stored as an edge attribute in the data flow graph. We have already discussed
the reasons for this approach in Section 4.4.

We need to store source segment references not only for edges but also for
nodes. To do that, we created a new edge type HAS DEPENDENCY in class
DatabaseStructure that connects segment root nodes with their segment id
nodes as described in Section 4.4. These edges are created by the merge algorithm
in StandardMergerProcessor class whenever it merges a segment root node.

The last thing to mention is changes in RevisionRootHandler class, which
can now create not only revisions for major full updates but also revisions for
minor incremental updates.

5.3 Merge algorithm improvements

This section describes the implementation of the new merge algorithm that
was designed in Section 4.2. It goes through all its improvements and describes
where and how they were implemented.

5.3.1 Changing the marked node

The first change was to mark procedure nodes instead of body nodes whenever
performing an incremental update. We’ve discussed this topic in Section 4.2.4
and it’s implemented in the NodeFlagTask class. In addition to marking the
procedure node, this class can now mark other node types, which will be later
used for many other node types, including script nodes.
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5.3.2 Edge restoration

We’ve described edge restorations in Section 4.2.5 and Section 4.2.6. To sum-
marize, whenever merging a segment, all deleted edges created by other segments
are newly restored when either of their adjacent nodes is restored.

We first need to find and save all deleted edges created by other segments
to implement this. The GraphOperation class is responsible for deleting
edges. Whenever it deletes an edge created by another segment, it adds it into
AbstractProcessorContext class. This class stores edges in a map grouped
by the ids of their adjacent nodes. Each edge is in the map twice, each time with
a different key (once with a source node, once with a target node).

Whenever a node is merged, all adjacent edges are picked up from this map and
sent to GraphOperation’s function restoreEdges. This function restores
these edges if both their adjacent nodes are still valid in the new revision.

5.3.3 Node removal

We’ve discussed node removal in Section 4.2.7. To summarize, whenever re-
moving a node causes the removal of an edge and this edge is not restored in the
same revision, then the source segment of this edge needs to be reanalyzed in the
same revision.

Class AbstractProcessorContext already stores all deleted edges be-
cause of the edge restoration. It needed only one update to work correctly for
node removal as well. This update was that whenever an edge is restored, class
StandardMergerProcessor removes this edge from the list of the deleted
edges. This means that after the whole segment is merged, this list contains
exactly all the deleted edges.

After merging all nodes and edges from the client input, ClientMerger class
uses this prepared list of all the deleted and not restored edges to find all their
source segments. These source segments are added into ProcessingResult
and MergerOutput classes. These segments are also sent to the client, and they
are analyzed in the same revision.

5.4 Edge deletion

Whenever merging a segment, all edges created by this segment in previous
revisions must be deleted. However, there is an issue with this approach and
the Neo4j database. Neo4j cannot index attributes on the edges, so we cannot
efficiently scan the flow graph for edges created by one specific segment. This
feature should be implemented in the future, but we need to create a workaround
for now. It is enough to create this workaround for edges that have their source
segment different from both its adjacent nodes. All other edges are deleted when
deleting their adjacent node with the same source segment.
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Because it is possible to index nodes, we can mark one of its adjacent nodes
whenever creating an edge. Later, when we need to find the edges to delete,
we can instead find all marked nodes and then find the correct edges to delete
by going through all of their adjacent edges and choosing those with the correct
source segment. Let us now describe this workaround in more detail.

We first need to have a list of all nodes created by the currently merged
segment. Whenever StandardMergerProcessor class merges a marked node,
it adds this node into the list of nodes created by the current segment. This list
can be found in AbstractProcessorContext class. Also, whenever merging
a node, if its parent is in the list, the merged node is added to this list. This way,
the list contains all nodes created by the merged segment.

Whenever StandardMergerProcessor class creates a new edge, using
the previously created list, the merge algorithm can decide if the edge is adjacent
to a node from its source segment. If not, when creating this edge, the merge
algorithm adds an EdgeDeleteFlag attribute to the edge’s source node. The
value of this attribute is the id of the currently merged segment.

Whenever merging a segment, GraphOperation class should delete all edges
created by the merged segment. Using the new attribute, it just searches all nodes
with this attribute that have the attribute value equal to the id of the merged
segment. Then, it deletes all their adjacent edges with the same source segment
as the merged segment.

5.5 Data dictionary generator

The data dictionary algorithm was described earlier in Section 4.3. To sum-
marize, its main idea is to send a graph from the client in multiple parts, and
in each part, mark nodes that satisfy a specific condition for the first time. The
server then receives this graph and behaves differently for these marked nodes.
We created a new attribute Replace which is used by this algorithm to mark
nodes. It’s a part of the DataflowObjectFormats class.

Client

The DictionaryDataflowGeneratorReader class is used to create the
data flow graph sent to the server after analyzing data dictionaries. We refac-
torized this class so it could be subclassed. It newly contains two protected
methods addStepForFutureProcessing and shouldContinue that can
be changed by a subclass.

The new class IncrementalDictionaryDataflowGeneratorReader
is the subclass that implements the solution from Section 4.3.4. Both previously
mentioned protected methods are changed. First, this new subclass changes the
algorithm from the DFS to the BFS by using a queue instead of a stack in the
addStepForFutureProcessing. Second, this new subclass sends a part of
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the created graph to the server only if the condition from Section 4.3.4 is satisfied
by changing the shouldContinue method.

The last change in this new subclass is that whenever any node is for the first
time sent to the server with all its children, this node is marked with the new
Replace attribute.

Server

On the server, the merging is handled by the StandardMergerProcessor
class. Whenever this class merges a node with the Replace attribute, it should
delete all its children that are not in the new revision. However, when merg-
ing the node, this class does not know which of these children are in the new
revision and which are not because they have not been merged yet. Therefore,
this class stores all these children in the nodesToDelete map, and whenever
a node from the new revision is merged, it is removed from this map. Conse-
quently, after all the nodes are merged, this map contains all children of nodes
marked with a replace flag that aren’t in the new revision anymore. Then the
StandardMergerProcessor class deletes all these children in its new method
finishMerge, which takes place after everything is merged.

5.6 Analyze only changed files

Every incremental update should start by analyzing changed files. However,
because there is currently no incremental extraction, both changed, and un-
changed files are extracted. Consequently, incremental updates need to recognize
which files have changed since the last update and which did not.

The DdlBundle class is responsible for extracting Oracle scripts. It newly
has the shouldCreateHashes flag. If on, this class uses the newly created
FileHashes class to create and save a hash for every extracted Oracle script.
There are another two new classes, HashFileLine class that represents all
information about a single file and HashFileParser that loads saved hash
information from a file.

Before the extraction, the DdlBundle class loads hashes of all files extracted
in previous updates. This class creates a hash for every extracted file during the
extraction and finds if it is a changed file (i.e., either a new file or a file with a
changed hash). After the extraction, this class saves all information about every
extracted file to a text file. This includes file name, file hash, and a changed flag.
This saved text file is used at the beginning of the next extraction to load hashes.
Note that this process must happen not only for every incremental update but
also for every full update.

Later during an incremental update analysis, the analysis should analyze only
changed files. This is done using a ChangedFilesFilter class, which stops
all unchanged files from being analyzed. To do that, this filter class internally
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loads and uses the saved text file with hashes.

5.7 Analyze files returned by the server

The full update analyzes all extracted files. However, during an incremental
update, analysis of a segment can return a segment ids of other segments. The
incremental update needs to analyze the source files of these segments as well.
This is quite a different behavior that had to be implemented.

The FileReader class is responsible for choosing which files are analyzed
by providing all extracted files. We implemented the new ReaderWithQueue
class that not only provides extracted files using an inner FileReader, but it
also has a queue and provides files from this queue.

This queue is filled by the MergerWriter class that parses responses from
the server. And if a response contains a request to analyze a segment, then this
class adds the source file of that segment to the queue in ReaderWithQueue.
This means that later the reader provides this file for analysis.

The server can request a file to be analyzed multiple times, but it is enough to
analyze each file only once. We have created the NonDuplicateFileFilter
class which stops a file from being analyzed if the file was already analyzed in the
same revision. The ReaderWithQueue uses this filter, so every file is analyzed
at most once. This reader also uses the ChangedFilesFilter class we have
mentioned previously so that only unchanged files are analyzed.
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6. Evaluation

This chapter describes the evaluation of results for the whole thesis, including
both the analysis and the implementation. The first part of this chapter describes
all automated tests to show that the implemented solution works correctly. The
second part introduces performance testing, its test data, and test results to show
the performance benefits of the implemented solution. This chapter ends with
the limitations of the presented incremental update solution and a discussion of
possible future extensions.

6.1 Tests

Because the code was developed using almost exclusively test-driven develop-
ment, there are unit tests for every change made. All unit tests are created using
JUnit testing framework [7], all Java classes containing them have suffix Test
and can be found in the attachment of this thesis. Almost all unit tests follow the
same nameOfTestedUnit stateUnderTest expectedBehaviour name
convention. This way, we can easily know what each test is testing just from
its name.

Server unit tests

First group of unit tests are server tests, they can be found in attachment in
the package manta-dataflow-repository-extensions-neo4j and they
all share the common parent class IncrementalUpdateBaseTest. This class
creates a new minor revision for each server test. Then the test merges one or
more merge input files. There are 18 different testing merge inputs in the server
folder resources. After merging, tests usually check if the generated flow graph
contains expected nodes and edges.

First server test class is ModelChangesTest which tests model changes
described in Section 5.2. Second server test class is EdgeRestorationTest
testing edge restoration implementation from Section 5.3.2. Third test class is
NodeRemovalTest that tests node removal implementation from Section 5.3.3.
And the last server test is EdgeDeletionTest class which tests edge deletion
changes described in Section 5.4.

Client unit tests

The second group of unit tests is client tests that share the common parent
class AnalyzeFileTest. Using this class, these tests read a source code file as
their input, analyze the file using the client and save the created merge input in
the file instead of sending it to the server. In the end, these tests check the saved
merge input file and assert that its content is correct.
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First client test class is AbstractSourceFileTaskTest that tests the
implementation of model changes described in Section 5.2. Other client test
classes are NodeFlagTaskTest and DictionaryDataflowTest, both of
them testing implementation of changing the marked node from Section 5.3.1.

Third group of unit tests are client tests testing newly created client filters
and reader described in Section 5.7 and Section 5.6. These tests are stored in
classes ChangedFilesFilterTest, NonDuplicateFileFilterTest and
ReaderWithQueueTestdirectly. They directly test the correct behaviour
of methods of tested filter and reader classes.

There are two other new test classes. OracleCreateHashesTest is the
first one, it covers creation of hash file with hashes for every extracted file in
Section 5.6. IncrementalDictionaryDataflowGeneratorReaderTest
is the second one, it covers changes in the creation of the data dictionary merge
input explained in Section 5.5. These tests have a data dictionary file content as
their input, they analyze it, then assert that the generated merge input is correct.

End to end tests

End-to-end tests were performed manually both on the test data for perfor-
mance testing and other inputs. We originally wanted to automatically compare
the generated graph by the newly implemented incremental updates with the gen-
erated graph by the current unchanged version of MANTA. However, this turned
out to be much harder to implement because of all the objects that incremental
updates add to the flow graph (e.g., dependency edges or source segment data).
Based on this, it was decided not to automate this process.

6.2 Performance testing

The implemented prototype was tested by performance tests to compare the
effectiveness of incremental updates compared to the original full update imple-
mentation. On top of that, we also tested speed differences between the original
full update and the current full update that computes a few additional things
needed for the correctness of later incremental updates.

Testing was performed on the following configuration:

• Operation system - Windows 10 Pro (64 bit)

• Processor - 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz 1.80 GHz

• RAM - 16 GB

• Manta Flow version - 36.0.0 (updated with incremental updates code)
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Test cases

All the cases use the same test scenario:

1. Empty the whole database.

2. Perform full update on Oracle test data (revision 0).

3. Change X% of test data.

4. Perform incremental/full update (revision 1.1/2).

In test cases 1 and 2 is performed a full update on all scripts. Then, 1% of
scripts is changed, and the full update is performed again. It does not matter
how many scripts are changed as the full update analyzes all the scripts anyways.
In the first test case, the old unmodified full update is used. In the second test
case, the slightly modified full update from this thesis is used, so it computes a
few necessary things, so the following incremental updates work correctly.

In test cases 3 to 6 is at the beginning again performed a full update on all
scripts, and then 1%, 3%, 10%, or 100% of input scripts is changed. After the
change, the incremental update is performed.

All test cases use the same test data. It is a collection of 500 Oracle procedures.

Test results

In all test cases, we measured the time spent updating the graph database
on the server. We did not measure the times necessary for extraction, data
flow analysis, input creation, sending input to the server, and other processes
connected with the whole update. This is because updating the graph database
on the server is the current bottleneck for processing large inputs.

Measuring of each test case was performed five times. In Table 6.1 we can see
the summarized average merge times of the second update (second revision) for
every test case. We can also see the same data visualized differently in the graph
in Figure 6.1.

Test case number 1 2 3 4 5 6
Time [s] 10.415 11.074 0.278 0.628 1.629 16.856

Table 6.1: Performance test results

Let us first compare data from the first two test cases. We can see that the
full update with the new changes from this thesis is about 6% slower. This is an
expected slowdown because a full update has to newly process a few additional
things like source segments for every edge and node or create dependency edges
described in Section 4.2.8.

If we look at the last four test cases, we can see that the time of the incremental
updates depends on the number of changed inputs as expected. There is some
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Figure 6.1: Performance test results

expected overhead compared to the full update running only for the changed
inputs. This overhead depends on the number of changed scripts and is between
50% (for the higher amount of changed scripts) and 170% (for the lower amount of
changed scripts). The size of this overhead is a good result because, for example,
in the test case 3 (and 4) that are close to the expected real-world use cases, the
incremental update is 37 (and 17) times faster than the full update.

Comparing the results of test cases 2 and 6 shows that the incremental update
is about 50% slower than the full update when every input is changed. Although
the incremental update is not recommended in such a case, it is still possible to
use it.

6.3 Limitations

Some situations are not handled correctly when performing an incremental
update, and they most likely cannot be fixed. The reason is that some dependen-
cies between segments are too complex to be captured. These situations are edge
cases, but they will happen. We need later to decide how severe these situations
are and how much of an issue is that they will sometimes happen. This largely
depends on expected use cases for incremental updates.

In the following text, we present two issues we have discovered so far. There
can be, of course, more similar issues. We will need to test incremental updates
on complex test cases and compare the resulting flow graph to the full update
result to find if they exist. However, we can do that only when all the missing
features of incremental updates are implemented.
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Ambiguity resolution

This first issue relates to the fact that a reference in SQL does not always
need to be unambiguous. Consider two segments in Figure 6.2. The first segment
contains the script creating the table t1. The second segment contains the script
creating the table t2 and a select. The select is valid (even though it might
not make much sense semantically), y in its subquery is resolved to t2.y. Note
that t1.a is never referenced in the second segment, so there are no edges at all
between the nodes in the two segments.

// Segment 1:
create table t1 (a int);

// Segment 2:
create table t2 (x int, y int);
select x from t2

where exists (select 1 from t1 where y = 0);

Figure 6.2: Ambiguity resolution example - before changes

Now imagine the first segment is changed in a new revision as shown in Fig-
ure 6.3, it now has a second column y. This changes the way y in the second
segment should be resolved - the new column created an ambiguity with t2.y in
the select, and this ambiguity is resolved in this case to t1.y (the rule of a closer
scope - t1 is in the inner scope of the subquery). So the select should now create
an edge from t1.y, but the second segment did not change, and there are no
edges between the two segments that could be used to trigger the analysis of the
second segment. The second segment will not be analyzed in the new revision,
and the lineage will be incorrect.

// Segment 1:
create table t1 (a int, y int);

Figure 6.3: Ambiguity resolution example - after changes

Deduction miss

The second issue is called deduction miss. Whenever resolving an unknown
reference, the analysis deduces an entity. However, there are often more possibil-
ities of what the referenced object could be. In such a case, the analysis chooses
one of the possible alternatives. This is done by assigning priorities to different
alternatives based on some heuristics. For example, let us imagine a segment
with a simple select, as we can see in Figure 6.4.

SELECT a FROM foo;

Figure 6.4: Deduction miss example
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The analysis cannot resolve foo to any known entity, so it can either guess it
to be a table or a view. It decides to deduce it as a table (the heuristic being that
tables are more frequent in databases than views). However, if an incremental
update later adds a definition of a view foo, it will not trigger a reanalysis of the
segment from the example because there is no connection between the example
segment and the new segment.

This could be theoretically solved by adding a dependency edge to parents of
all entities the reference could be resolved to, but that could be tens of edges per
every deduced entity. This is rather an unrealistic implementation, and there is
probably no better way to solve this issue.

6.4 Future work

As the topic of incremental updates is a huge one, many improvements can be
made in the future. The first group of improvements is what is already analyzed in
this thesis but not yet implemented. This group contains mostly of node creation
from Section 4.2.8, shared segments from Section 4.2.9 and post processing from
Section 4.5. The second group of improvements is what has not been analyzed in
this thesis. We are introducing the most interesting ones in the following text.

Incremental extraction

One of the requirements of this thesis is the same extraction as the full update.
This means that both changed and unchanged data are extracted. However, it
is unnecessary to extract all these files again, but we could extract only changed
files. The first challenge of incremental extraction is to find what has changed and
extract it. We need support from the scanned technologies to successfully do this,
but many technologies already provide an API to find or extract only changed
files. The second challenge is needing access to some unchanged files from the
last revision when using incremental extraction. This is not currently possible
because extracted data are not persistently saved, and they can be deleted at
any time. Our graph database is the only persistent storage, which is not a great
solution for saving vast amounts of text files.

Incremental updates for reporting technologies

The main focus of this thesis was on performing incremental updates for a
database technology (which was an Oracle database). However, only half of
MANTA scanners are for database technologies. The second half is for reporting
technologies (e.g., PowerBI or Cognos). In general, this topic should be more
straightforward for two reasons. First, there is usually no central data element
like a data dictionary in databases. Second because boundaries between segments
are usually very strictly regulated and defined.

We have created a concept of L1 dependencies for reporting technologies in
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Section 3.2.1 and how to use them by the client algorithm in Section 4.8. But
there is much analyzing, designing, and implementing yet to be done.

All-technology use case

The all-technology use case, which allows incremental updates to update mul-
tiple technologies together, is already mentioned in Section 4.8. A big part of
this topic was already analyzed, and it should be possible, but some design and
the whole implementation are yet to be done. In the full update, analysis of
different technologies is independent. The biggest challenge of the all-technology
use case is changing this paradigm because it is no longer true with incremental
updates. That is because a change in one technology can trigger a reanalysis of
an unchanged segment from another technology. Another interesting part of this
use case is integrating it in the GUI and how the user can configure it.

Deduction

Another topic that was partly analyzed is deduction. It was mentioned in
Section 6.3. Whenever a reference is not found, a new deduced object is created
in its place. The first big challenge is that the created deduced object can have
many different types (e.g., a procedure parameter, a whole table, only one table
column, etc.) and can be in many different places in the flow graph. The second
challenge is that multiple segments can generate the same deduction nodes. And
the last one is that one segment can, for example, create a deduced table, and a
second segment can create only a deduced column in this deduced table. This is
similar to shared segments but more complex because there is no single shared
root node.
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7. Conclusion

This thesis presented how the data lineage analyzer can be improved using
incremental updates to analyze only a fraction of all input files while still pro-
ducing correct results. We changed how the whole analysis is done by changing
the granularity of the analysis to much smaller pieces from scenarios to segments.
This allows the analysis to much more precisely pick which inputs it analyzes and
which not. We also introduced new terms like source segment, the segment root
node, and segment id node to have a shared vocabulary for incremental updates.

We designed a new automatic detection of which segments changed since the
last update, and we improved the merge algorithm so it can handle any input
changes. The new merge algorithm recognizes when an unchanged file could
generate a different data lineage using new concepts like node removal and node
creation. This is possible thanks to the addition of the new source segment
concept that tracks for every node and edge which segment created them. Using
the new client algorithm for incremental updates, MANTA now can analyze only
changed segments and a few unchanged segments instead of wasting time by
analyzing inputs that would generate the same data lineage.

This topic was not analyzed in a vacuum but as a part of an already existing
and complex environment. Consequently, we needed to update other existing
concepts like data dictionary updates or post processing and make them incre-
mental. We needed to consider the details of the current implementation, for
example, by introducing shared segments.

We also implemented a prototype for the MANTA Oracle scanner that con-
tains most of the new ideas introduced in this thesis. It was tested for both
the correctness and the performance. As incremental updates are a huge topic,
we plan to continue improving the prototype and later add it to the MANTA
production environment.
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A. Attachment structure

The attachment of this thesis contains mostly source files created or updated
during implementation of the Oracle prototype for this thesis. The sources files
are in the sources folder. The sources folder contains 9 additional folders,
each representing a single module with one or more source files. The modules
are further divided into the src folder with the actual code and the test folder
with unit tests. The test folder also optionally contains the resource folder
with test resources, for example maven test configurations or test inputs.

Apart from the source files, the attachment contains a copy of this thesis and
the README file describing the attachment structure.
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