
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Peter Libič

Integrating Profiler Data

Department of Software Engineering

Supervisor: Doc. Ing. Petr Tůma, Dr.

Study Program: Computer Science, Software Systems

2008

I would like to thank my supervisor, Doc. Ing. Petr T̊uma,Dr., for his help with
elaborating this work, for his time, advices, feedback and great amount of his suffer-
ancy of my unannounced visits that usualy catched him just before deadlines. Next
I would like to thank Ing. Lubomı́r Bulej, Ph.D. for sacrifice of his desktop for tests
of the black magic produced in this work. I am grateful to all my friends for their
help and support in the times when the work used to do nothing but crashing the
computer. I also want to thank my parents and family for their endless support.
Without that this work could never even start.

I declare that I have elaborated this thesis on my own and listed all used references.
I agree with making this thesis publicly available.

Prague, 18th of April, 2008 Peter Libič

ii

Contents

1 Introduction 1

1.1 Structure of the thesis . 1

2 Existing technologies 2

2.1 Profiling . 2

2.1.1 CPU hardware performance monitoring counters 3

2.1.1.1 Intel P6 processors family performance counters . . . 3

2.1.1.2 APIC and performance counter overflow interrupts . 5

2.1.2 OProfile . 5

2.1.2.1 Overview . 7

2.1.2.2 x86 performance counters backend 7

2.1.3 Java vertical profiling . 9

2.1.4 GNU gprof . 9

2.2 Profiling tools . 10

2.2.1 perfctr linux kernel extension 10

2.2.2 PAPI library . 10

2.2.3 JVM tool interface . 11

2.2.3.1 Event callbacks . 12

2.2.3.2 Control and inspection functions 12

2.2.3.3 Usage . 13

2.3 Data integration . 15

2.3.1 Measurement infrastructure 15

iii

2.3.1.1 Infrastructure architecture 15

2.3.1.2 Improvement suggestions 17

2.3.2 DTrace . 17

3 Solution options 19

3.1 Requirements and goals . 19

3.2 Ideas overview . 20

3.3 Code position storing . 21

3.4 PAPI library . 22

3.4.1 Library facilities . 22

3.4.2 Counter Locality Problem . 22

3.5 perfctr Linux kernel extension . 24

3.6 OProfile NMI modification . 24

3.6.1 Intel APIC . 25

3.6.2 Linux kernel interrupt handling 26

3.6.3 Userspace notification options 27

3.6.3.1 Signal with IPI . 27

3.6.3.2 Signal with non-NMI return simulation 28

3.6.3.3 Reschedule to a servicing thread 28

3.7 OProfile with fixed interrupt and signal 29

3.7.1 Linux and OProfile modifications 29

3.7.2 Overhead measurement . 30

3.8 Java code position . 30

3.8.1 Code position inspection . 30

3.8.1.1 Executing thread identification 32

3.8.1.2 Overhead . 32

3.8.2 Signal handler . 33

3.8.3 Stack modification . 33

3.8.4 Thread priority and semaphores 34

iv

3.9 Data storage . 34

4 Solution documentation 36

4.1 General overview . 36

4.2 Kernel patch . 38

4.2.1 Sending signals . 38

4.2.2 Signal configuration . 40

4.2.3 Counter value reading . 40

4.3 Event sources . 41

4.4 Data access . 44

4.4.1 Sensors and timers . 44

4.4.2 Measurement context . 48

4.4.3 Performance data manager . 49

4.5 Event processing . 50

4.5.1 Event data . 52

4.5.2 Performance data measurement and recording 53

4.6 Memory storage . 56

4.6.1 Data recorders . 57

4.6.2 Data store . 59

4.7 External storage . 61

4.8 Infrastructure management . 62

4.9 Java interface and other tools . 63

5 Evaluation 64

5.1 Benchmarks . 64

5.2 Measurements . 65

5.2.1 Fhourstones – Java . 65

5.2.2 Fhourstones – C++ . 66

5.2.3 TestingJavaProgMulti . 67

5.2.4 Sampler . 67

v

5.2.5 Summary . 68

5.3 Comparison . 69

6 Conclusion 70

6.1 Summary . 70

6.2 Future work . 71

A Installation and usage 75

A.1 Installation . 75

A.2 Usage . 76

B Content of enclosed CD-ROM 81

vi

Název práce: Integrováńı profilovaćıch dat
Autor: Peter Libič
Katedra (ústav): Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: Doc. Ing. Petr Tůma, Dr.
e-mail vedoućıho: petr.tuma@dsrg.mff.cuni.cz

Abstrakt: Výkon je jeden z d̊uležitých aspekt̊u softwarových aplikaćı. Vyhledáváńı
problematických oblast́ı kódu se stává stále náročněǰśı, protože složitost r̊uzných
část́ı poč́ıtačových systémů rychle roste. Na usnadněńı tohoto hledáńı existuj́ı
nástroje nazývané profilery. Profiler by měl ideálně poskytovat data ze všech úrovńı
systému - od hardwaru přes virtuálńı stroje interpretovaných nebo částečně kompilo-
vaných jazyk̊u až po samotnou aplikaci. Nástroje pro jazyky, které nejsou kompilo-
vané do nativńıho kódu, jako je Java, bohužel neposkytuj́ı možnosti pro zjǐsťováńı
dat o výkonu z nižš́ıch vrstev. Ćılem této práce je vytvořit profiler schopný měřit
údaje jak z nativńıch tak i z Java aplikaćı s podporou vlastnost́ı moderńıch profiler̊u
nativńıch programů, jako je možnost inicializace źıskáváńı dat na základě konfig-
urovatelných hardwarových udalost́ı.

Kĺıčová slova: profiler, Java, hardwarové události

Title: Integrating Profiler Data
Author: Peter Libič
Department: Department of Software Engineering
Supervisor: Doc. Ing. Petr Tůma, Dr.
Supervisor’s e-mail address: petr.tuma@dsrg.mff.cuni.cz

Abstract: Performance is one of the important aspects of software applications.
With growing complexity of different parts of computer systems, the search for
problematic code areas is getting more and more difficult. To help in this task, tools
called profilers are available. Ideally, a profiler would provide data from all layers
of the system - from hardware through virtual machines of interpreted or partially
compiled languages to the application itself. Unfortunately, profilers for languages
that are not compiled to native code, such as Java, do not provide facilities to read
data from lower levels. The goal of this work is to devise a profiler capable of
profiling both Java and native code that would support modern features of native
profilers such as triggering on configurable hardware events.

Keywords: profiler, Java, hardware events

vii

Chapter 1

Introduction

System performance is an important aspect of many software applications. With the
growing complexity of software, it is becoming increasingly difficult to investigate
performance issues. One of the tools that help investigating performance issues are
profilers. They measure performance data from running applications. They can also
help identify the reason why the code is running slowly. As mentioned in [4], it is
important to have data from all levels of system – from application, virtual machine,
operating system and hardware. Unfortunately, the support for profiling all levels
of a system is often not available when partially interpreted or just in time compiled
environments and virtual machines need to be considered.

The goal of the thesis is to provide a tool that is capable of profiling both interpreted
and native applications (C++, Java), and that would support modern features of
native profilers such as triggering on configurable hardware events.

1.1 Structure of the thesis

We will discuss selected profilers and tools for performance analysis in Chapter 2.
We will also describe some aspects that are not easily available for these technologies.
In the Chapter 3 we will describe our approach to the solution of problems and in
the Chapter 4 we will provide technical details about implementation of tool that
was created as a part of this work. We will measure the overhead of the tool in
the Chapter 5 and summarize the work in the Chapter 6. The appendix provides
installation and usage manual.

1

Chapter 2

Existing technologies

An overview of existing technologies involving performance analysis is introduced
in this chapter. This overview has two goals – to provide outline to the methods
of performance analysis and to summarize our studies of that technologies, because
some information about them are not available. First, we discuss profilers, then
software that can be used to create profiling tools. In the end of the chapter we pu
our mind to the technologies available for data integration.

2.1 Profiling

In performance analysis of applications the most common tools are profilers. Their
name comes from the result of their work - they generate a profile of the application
(or trace of events). It usually contains code position at which occurred observed
events and their count. The developer can determine problematic places in his
application from that data.

The profilers can be separated into two basic groups:

• Statistical sampling profilers – they use some source of regular events and
records data valid in the time the of the event occurrence.

• Event-based profilers – they usually instrument some important areas of ap-
plication to generate events. Then if the event is triggered the tool adds data
to trace.

A brief overview of the existing profiling tools is provided in this section, with techni-
cal details on the profiling mechanisms. We do not provide information about many

2

profilers that are commonly used, for example Intel V-Tune [7], that uses mechanism
similar to OProfile and HPROF [12] that uses the feature provided by JVMTI library
(detailed description is in Section 2.2.3) to profile Java applications. It uses both
statistical sampling and sometimes event-based profiling that uses JVMTI callback
feature.

This section begins with overview of CPU performance counters, since they are used
in the tools described next and we make an extensive use of them. Then we provide
overview of OProfile profiler, with detailed description of some parts of its internals.
Then we describe an available solution to a problem similar to ours and we mention
a representative of profilers using instrumentation – GProf.

2.1.1 CPU hardware performance monitoring counters

All modern microprocessor implementations provide performance measurement sup-
port [6, 1]. This support is implemented using performance monitoring counters.
A processor typically provides a list of many processor events, such as instruction
completion, cache miss, memory access, etc. It also provides few (2-4) registers
where these events can be counted. The counted events can be set to generate in-
terrupt if the counter value overflows. The performance counters are essential for
these work, therefore we will provide overview of the performance counters system
for particular processor family and overview of the APIC part that is involved in
generating counter overflow interrupts here.

2.1.1.1 Intel P6 processors family performance counters

We decided to describe the P6 family of the Intel processors, because they are the
most common nowadays. The processors Pentium Pro, Pentium II, Pentium III,
Core and Core 2 belongs here. The architecture of the performance counters in
AMD processors is very similar.

Intel P6 processors provide 2 counters (4 for AMD). The mechanism is separated
into two parts, controlling machine-specific registers (MSRs), called PerfEvtSel0 and
PerfEvtSel1 and performance counters MSRs (PerfCtr0 and PerfCtr1). These regis-
ters can be read and write by RDMSR and WRMSR instructions. These instructions
are available only in privilege level 0, kernelspace. The performance counters can
be read from userspace by RDPMC instruction. This instruction can be restricted
to the privilege level 0 by clearing PCE bit in CR4 control register.

In the Figure 2.1 the layout of the PerfEvtSel0 and PerfEvtSel1 MSRs is shown.
The description of interesting fields and flags follows:

3

Figure 2.1: Event selection registers, from [6, p. 117 (18-115)]

• Event select field – identification of the event to measure. Events are specified
in processors’ documentation.

• Unit mask field – enables to select which sub-events of the event increments
the counter.

• User mode flag – enables measurement in privilege levels 1, 2 and 3.

• Operating system mode flag – enables measurement in privilege level 0.

• APIC interrupt enable flag – enables the interrupts on counter overflows.

• Enable counters flag – available only in PerfEvtSel0, enables and disables mea-
surement in both counters. The second counter only can be disabled by clear-
ing PerfEvtSel1 MSR.

The performance counters are 40 bits (48 bits on AMD) wide MSRs. The WRMSR
instruction can write any value to the lower-order 32 bits, and the higher order 8 bits
are sign-extended according to the value of bit 31. This means that both positive
and negative values can be written to the performance counter. This is used with
advantage for generating performance traces using overflow interrupt feature. The
driver writes the negative number to the counter and after triggering absolute value
of that number of events, the counter overflows and generates overflow interrupt (if
set).

4

2.1.1.2 APIC and performance counter overflow interrupts

In order to receive interrupts at counter overflows the counters must be configured to
count events and APIC must be set up to send interrupts. The performance counter
overflow interrupt is a local interrupt source. Local interrupt sources have special
registers in APIC (mapped to memory) to configure them. For all local sources,
the structure called Local Vector Table (LVT), is present. It consists of five 32-bit
registers. The table with individual fields is displayed in the Figure 2.2. For the
performance counter interrupt the following fields are available:

• Vector – the number of the interrupt vector that will be generated at the event.

• Delivery mode – the type of the interrupt that will be created – for performance
counter interrupts are meaningfull fixed (000) and NMI (100) modes.

• Delivery status (read only) – indicates if no interrupt activity is present (0),
or the interrupt was sent to processor core, but was not accepted yet (1).

• Mask – enables (0) or inhibits (1) the interrupt. Some processors set the mask
bit after every performance counter interrupt and the bit must be reset by
software.

The writes to the table are executed as memory writes, at specified address that can
be configured. The default value for performance counter interrupt table entry is
0xFEE00340. In the Linux kernel the writes to the APIC registers can be done using
apic write () function. To enable NMI interrupt for performance counter overflows,
following code can be used:

ap i c w r i t e (APIC LVTPC, APIC DM NMI) ;

Full detail about APIC can be found in [5, Chapter 8].

2.1.2 OProfile

OProfile [14] is an open source system-wide profiling tool that runs on Linux sys-
tems. It belongs to the family of statistical sampling profilers. For sampling it uses
hardware timer or CPU performance counters, which generate interrupts. It stores
the actual position in executing code, yielding set of statistical samples on observed
locations in executing program. Important feature of OProfile is the ability to store
position not only in single application, but in the entire executing system. It has
low overhead and it is not intrusive in the sense that it does not require any code
instrumentation. It uses the hardware performance counters as default option on the

5

Figure 2.2: Intel APIC Local Vector Table, from [5, p. 347 (8-17)]

6

systems that support them. In this chapter, we will first provide a basic overview of
the tool. It will be followes with a more detailed description of the machine-specific
part for the x86 architecture, since the OProfile documentation does not provide
detailed information about this component of the system.

2.1.2.1 Overview

The profiler consists of two parts: a kernel driver and a userspace daemon. The ker-
nel driver is responsible for generating and storing performance events, the userspace
daemon is responsible for persistent data storage. The profiler also includes some
post-profiling tools to generate output.

OProfile has two modes of operation. The first is the timer interrupt mode, where
the performance events are generated regularly by the system timer interrupt. In
the second mode, the CPU performance counters are used. In this mode, the per-
formance events are generated from the counter overflows. After interception of the
performance event, the kernel driver recognizes the instruction that was interrupted
(program counter – PC) and stores its address in a special per-processor buffer. In
this buffer, information about task switches is also stored, which means that for
every event, an information on what instruction address it happened and in which
task it was is available. Later, these buffers are processed, and from the absolute
PC and the task, the profiler determines into which binary the instruction belongs.
This uses the fact that binaries are mmap-ed to the memory. Then the offset in the
binary is determined and the pair <binary,offset> is stored to a larger buffer that
can be passed to the userspace. The post-profiling tools may then easily determine
the function where the event was triggered from the binary symbol table (if present)
.

In the result, OProfile is a statistical profiler with very accurate profiles at low
overhead. The overhead is between 1–8%, depending on the event frequency [14].

To use the oprofile, the opcontrol and opreport programs are available. opcontrol
starts and stops profiling, selects performance events to measure and manages the
userspace daemon. The opreport program generates the output for the user. See
section “Docs” in [14] for additional information.

2.1.2.2 x86 performance counters backend

OProfile has very good internals documentation in [10]. However, this does not cover
the machine-specific parts of the kernel driver very thoroughly. Later in this work,
we use and modify this part, so we decided to provide a more detailed description

7

for the x86 architecture backend of the OProfile kernel driver.

OProfile defines structure oprofile operations , that is filled by the architecture-specific
implementation with functions that control the data collection and event generation,
like start, stop, setup and shutdown. In the x86 backend these functions are for the
performance counter events defined in the arch/x86/oprofile/nmi int.c file.

In the x86 systems the OProfile utilizes the non-maskable interrupts (NMI) for
performance counter overflow notification. This has the advantage of producing
more exact traces, because the events can be generated in places where the normal
(fixed) interrupt is masked. Such places are spinlocks in the kernel, for example.
The Linux provides some so called notifier chains, where the driver can register its
callback for the specified event. For NMI, the die chain is available – the callback
can be registered with register die notifier () function. OProfile has registered its own
notifier with profile exceptions notify () callback. This calls the model-specific handler
check ctrs () that has to determine the overflowed counter and add new sample to the
OProfile buffers, if successful.

Since performance counters implementation differs between processor families, OPro-
file has a generic structure, op x86 model spec, that encapsulates the counter opera-
tions as setup the counter, check for overflow, enable and disable the counter. There
are three different implementations for different processors, in the arch/x86/oprofile/
op model ppro.c file the one for Intel processors except Pentium 4 based, in the
arch/x86/oprofile/op model p4.c file for Intel Pentium 4 based chips and arch/x86/
oprofile/op athlon athlon.c for all AMD processors. In the context of this work,
the check ctrs operation is the most important. For all models, it traverses the
enabled events and checks if the counter is overflowed. In that case, it calls the
oprofile add sample() function that creates the trace data and resets the counter to get
ready for next event.

Since the performance counters are implemented as MSRs, the model implementa-
tion must manage the access to these registers. The Linux provides functions rdmsr()
and wrmsr() to read and write to these registers. They require the addresses which
are generated in model operation fill in addresses . Every model implementation also
provides set of macros to read or write counter values and controlling options. They
use the rdmsr() and wrmsr() functions. For the counter reset values, OProfile uses
the unsigned long integers. However, the counter overflow limit can be set only
as the maximum integer value, since the writes to the registers are only 32 bits
wide operations. The counter writing macros (CTR WRITE usually) also manipu-
lates the values to be appropriate for the counter (makes the negative from it). It
also provides CTR READ macros for reading the values.

The Intel Pentium 4 based processors have the performance counter model much

8

more complex and this work does not cover that chips, but the basic principles of
the OProfile model implementation are the same.

2.1.3 Java vertical profiling

In [19] the description how to get the hardware performance monitoring counter
values to the profile of the Java is introduced. The authors use approach that
modifies the Jikes RVM virtual machine [8] in its thread scheduler. There it reads
the values of the processor counters and writes them to the file. A visualisation
tool that can interpret the measured data is also availale. They also described
some performance anomalies and hypothesised the reason for that anomalies. In
[4] they extended the infrastructure for tracing events from the VM and proofed
their hypothesis. This shows that vertical profiling may be helpful in identifying
performance issues.

2.1.4 GNU gprof

The GNU gprof [3] is a profiler developed by GNU as a part of the GNU compiler
suite. We mention it here as a representant of profiler family that uses instrumen-
tation of code. It requires the compiler cooperation, the modules must be compiled
with the -pg and -g options. It is not necessary to compile all modules with -pg

option, but such modules will not have any profiling information, except the num-
ber of calls to that module. In addition, the program can be linked with libc p.a
library by writing -lc_p to the linker, instead of standard -lc, to count calls to the
standard C library. In addition to the -pg option the modules can be compiled with
-a option to count basic-blocks executions. That means if-statement branches, loop
iterations, etc.

Then if the program instrumented by the -pg options runs, it creates the profile
file gmon.out where it stores function (and basic blocks with -a) call count and
statistical profile – every 0.01 second it records the current executing function. The
profile file is generated only on clean exit from the program. After the program
execution the profile can be inspected using the gprof utility.

A significant disadvantage of the tool is that it is intrusive and requires compiler
support. It is very difficult to build an instrumented version of the program if the
Makefile is not ready for that option. This is probably the reason of its minimal
use.

9

2.2 Profiling tools

Since none of the presented profilers (even none that we would know) support Java
in a way described in Chapter 1 and it is obvious that implementing a new profiling
mechanism will be needed, tools that would be useful in such an implementation
– querying system state, querying performance counters, triggering on performance
counters, querying virtual machine state – are presented.

2.2.1 perfctr linux kernel extension

The Linux performance monitoring counters kernel extension, called also perfctr
patch [16] is an extension to the Linux kernel that makes the CPU hardware per-
formance monitoring counters available to the userspace applications. It can be
configured to measure the global values, and per-thread counter values. It can also
send signal at the overflow of the counters.

The patch adds new fields for performance monitoring to the kernel task structure.
If the counters are enabled for the thread, it initializes the data structures and at
every context switch to and from that task it updates the values for the counters
according to the values in the hardware. The user can read the values by system
call, implemented by special files and ioctl function calls. The patch also introduces
the new interrupt handler to the Linux kernel. It is used for performance counter
overflow. In this case it sends the signal to the userspace thread that was interrupted.

The patch has nice features, however it lacks documentation. There is no documen-
tation available for the userspace library, except examples in the distribution. This
make it very difficult to use, anyway some ideas in the kernel part proved to be
useful for this work.

2.2.2 PAPI library

The Performance Application Programming Interface, PAPI for short, is a portable
library that exposes a consistent interface for access to the hardware performance
counters in various processors [15]. It provides two function layers: high level and
low level functions. The high level interface provides simple-to-use functions for
measurement of instructions per cycle (IPC), Mflops/s (floating point operation
rate), Mflips/s (floating point instruction rate) and simple reading and accumulating
of the counters. The low level interface provides more detailed access to the counters
and other features. The most important are the functions to inspect the available
events, set-up a callback for the overflow, create a program counter histogram, make

10

available the multiplexing of the performance counters and system state information.
The counter multiplexing means using one counter for more events, with accuracy
drop. To the state information belongs memory information, executable and library
information, etc.

On the Linux/x86 architecture, the library is implemented with the perfctr patch.
The problem of the library is that it only counts events in the threads that were
registered explicitly with PAPI and were created after initialization of the library.

2.2.3 JVM tool interface

The Java Virtual Machine Tool Interface (JVMTI) is an API provided by JVM to
allow using and creating third party tools for debugging, profiling and monitoring.
The interface provides means for the tool to be notified of events and status changes
in the JVM (callback) and means for inspecting and controlling the virtual machine.
The tools take the form of agents written in native (C/C++) code that can be
attached to the virtual machine from the command line at JVM start-up. The
complete reference to the interface can be found in [9].

An agent is a standalone shared library that exports one required symbol – the
Agent OnLoad() function that is invoked by the execution environment when the
shared library is loaded. The agent may optionally export the Agent OnUnLoad func-
tion that is invoked immediately before the library is removed from memory.

There are 5 execution phases that determine the functions and events available for
the agent:

• OnLoad phase – while in the Agent OnLoad() function

• Primordial phase – after OnLoad phase and before the VM start-up

• Start phase – while in VM start-up and before VM initialisation

• Live phase – while the VM is running a program

• Dead phase – after the program termination or after start-up failure

The interface defines the set of capabilities which must be set to make particular
functions or events available. This must be done during the OnLoad phase. Besides
this, the Agent OnLoad() function is suitable for only minimal initialisation, because
very few functions are available in the OnLoad phase – only capabilities setting,
parameter parsing, event notification setup and JVMTI environment creation is
usually done here.

11

Since JVMTI is the only method of getting relevant information on program state
from JVM, we make an extensive use of it. We will therefore describe the event
callbacks mechanism, important functions and basic agent usage in this chapter.

2.2.3.1 Event callbacks

The agent can be notified of many events. This is the mean to get informed about
actions that are important for the agent. To enable an event notification, the agent
must fill the set of callbacks to the jvmtiEventCallbacks structure and pass it to the
SetEventCallbacks() function. By default, all events are disabled. To enable them, or
to disable the already enabled events, the agent calls the SetEventNotificationMode()
function.

When the VM encounters an action that matches a selected event, it calls the
callback function. There is no event queuing so the callback functions should be
re-entrant. To some events, parameters that are the references to the JVM objects,
are passed. They are local references and they are not valid after the return from
the callback.

The events are delivered on the thread that caused them. The events do not change
the execution status of the thread. Every event has specified phases in which it can
be triggered. If the code runs to a point where the event would be generated, but
the VM is in a phase where the event is not allowed, it is ignored.

The most important events for this work are the Method Entry and Method Exit
events that are triggered on every method entry and exit, Thread Start and Thread
End that notifies about thread creation and termination and VM Init and VM Death
that are triggered at the Java program start-up or termination. Other interesting
events are Fields Access, Exception, Monitor Wait and Monitor Waited.

2.2.3.2 Control and inspection functions

Along with event notification, JVMTI provides a set of functions that can inspect
the VM state or alter it. In the context of this work, the thread management and in-
spection functions, the stack frame information functions and the method functions
are interesting. Thread functions allow to get the information about the thread, such
as its name and execution status, to monitor information and change the status by
actions such as thread suspension and resume. A function that starts a daemon
thread also belongs to this group of functions.. The agent should use this function
to start its threads. The stack frame functions allow to inspect the position of the
Java code currently running in the VM. The method functions provide information

12

about a method such as its name, arguments, local variables and modifiers.

Other functions in JVMTI allow to inspect and alter the local variables, enforce
garbage collection and get information about it, classes information, bytecode ma-
nipulation, heap status etc.

2.2.3.3 Usage

A comprehensive introduction to writing JVMTI agents can be found in [17]. Here,
we will describe the very basics of agent programming and instructions how to run
Java program with the agent attached.

To run the program with the agent, the user adds the -agentlib:<library_name>

or -agentpath:<path_to_library> command line parameter to the java com-
mand. With the -agentlib argument, the agent is searched for in the system
library search path, and the system library naming conventions are used. This
means that on Linux, the -agentlib:example argument searches for shared library
named libexample.so in the directories specified by the LD_LIBRARY_PATH environ-
ment variable. The -agentpath argument searches for the filename specified. In
this case, -agentpath:libexample.so will use the agent named libexample.so from
the current directory.

On the Linux system an agent is a standard shared object that must have the
Agent OnLoad() function exported. In this function, the JVMTI environment should
be created. In the C++ language, this is done by the following code:

jvmtiEnv ∗ new jvmti = 0 ;
j i n t r e s = jvm−>GetEnv ((void ∗∗)&new jvmti , JVMTI VERSION 1 0) ;

Since multiple agents can be active, every one has its own JVMTI environment.
After environment initialization, the required capabilities must be set:

stat ic j vmt iCapab i l i t i e s c a p a b i l i t i e s ;
memset (&c a p a b i l i t i e s , 0 , s izeof (j vmt iCapab i l i t i e s)) ;
c a p a b i l i t i e s . c an s i gna l t h r e ad = 1 ;
c a p a b i l i t i e s . c an t a g ob j e c t s = 1 ;
c a p a b i l i t i e s . can suspend = 1 ;
e r r o r = new jvmti−>AddCapabi l i t i e s (& c a p a b i l i t i e s) ;

And finally the event callbacks can be set up:

jvmtiEventCal lbacks c a l l b a c k s ;
(void)memset(&ca l l back s , 0 , s izeof (c a l l b a c k s)) ;
c a l l b a c k s . VMInit = &cal lbackVMInit ; /∗ JVMTI EVENT VM INIT ∗/
c a l l b a c k s .VMDeath = &callbackVMDeath ; /∗ JVMTI EVENT VM DEATH ∗/

13

e r r o r = new jvmti−>SetEventCal lbacks(&ca l l back s , (j i n t) s izeof (c a l l b a c k s
)) ;

c h e ck j vmt i e r r o r (new jvmti , e r ro r , ”Cannot s e t jvmti c a l l b a c k s ”) ;

e r r o r = new jvmti−>SetEventNot i f i cat ionMode (
JVMTI ENABLE, JVMTI EVENT VM INIT, (j th r ead)NULL) ;

e r r o r = new jvmti−>SetEventNot i f i cat ionMode (
JVMTI ENABLE, JVMTI EVENT VM DEATH, (j th r ead)NULL) ;

The function returns the value JNI OK at success. The callbacks can be set anywhere
in the agent, the capabilities must be set in the Agent OnLoad() function.

When the agent needs to use its own threads, they should be created as daemon
threads by the RunAgentThread() function from JVMTI. It requires the instance of
the java.lang.Thread (or descendant) class as argument. This must be created using
JNI as follows:

j c l a s s t h r e ad c l a s s ;
jmethodID c id ;
j th r ead newthr ;

t h r e ad c l a s s = Thread : : j n i−>FindClass (JAVA THREAD CLASS) ;
i f (t h r e a d c l a s s == NULL) { e r r o r () }

//Get the method ID fo r the cons t ruc t o r
c id = Thread : : j n i−>GetMethodID(th r e ad c l a s s , ”< i n i t >” , ” ()V”) ;
i f (c id == NULL) { e r r o r () }

//Construct a java . lang . Thread o b j e c t
newthr = Thread : : j n i−>NewObject (th r e ad c l a s s , c id) ;

//Free l o c a l r e f e r enc e s
Thread : : j n i−>DeleteLoca lRef (t h r e ad c l a s s) ;

jvmt iError e r r o r ;
e r r o r = Thread : : jvmti−>RunAgentThread (
newthr , thread entry , this , JVMTI THREAD NORM PRIORITY) ;

ch e ck e r r o r (e r r o r) ;

This code snippet starts a new thread with thread entry() function as the entry point.
The standard threads (pthreads) cannot be used in agent because the JVM doesn’t
stops until all non-daemon threads are finished. It means that if the agent would
use normal thread, the Java program would never exit, and the user would need to
terminate it manually.

14

2.3 Data integration

In performance analysis of the applications a plain profile containing information
about executing code positions may not be sufficient. This profile measures the
utilisation of only one resource in computer system – processor (in general). But the
performance of application is also affected by other resources and their availability.
For example, if system lacks free memory, the application will probably run much
slower. To observe phenomena like this data integration is usefull. Here we provide
brief description of two technologies available.

2.3.1 Measurement infrastructure

In [2] an infrastructure for performance data measurement is proposed. We use
the concepts of this infrastructure later in this work, so we will provide a brief
description in the following section. The infrastructure was designed with Java
language in mind This has some drawbacks when using it in C++. we offer some
improvement suggestions in the next section.

2.3.1.1 Infrastructure architecture

The infrastructure is based on idea that the execution of a computer program is a
sequence of many events. Events can be like method entry, memory access, write
to a file or instruction execution. The infrastructure allows to define a set of events
that are important for the user. For every event, a set of performance data that
should be measured at all event occurrences can be specified. Here we will provide
description of the infrastructure’s architecture (its major components).

As shown in Figure 2.3, six components (or subsystems) are defined: Event Sources,
Performance Data Access, Event Processing, Data Storage, Infrastructure Manage-
ment and Data Delivery. The first four are meant to run in the context of tested
application, the latter two can be separated. Now we will provide the description of
these six components.

Event Sources: The objects that belong to the Event Sources are responsible for
emitting performance events, that trigger the collection of the performance data.
The component gets timing information from the Performance Data Access compo-
nent and the Event Processing component is used to notify the infrastructure about
the event.

15

Figure 2.3: Infrastructure overview, from [2, p. 56]

Performance Data Access: The component provides unified access to different
sources of performance data. It creates and manages measurement contexts, which
are the selections of performance data associated with particular performance event.
These contexts are used by the Event Processing component to collect data.

Event Processing: The component is responsible for processing performance
events generated by the Event Sources. It includes collecting data and recording
them (along with event data) to the memory using the Data Storage component.

Data Delivery: The subsystem is responsible for delivering the recorded data to
the consumer. It may be writing files with traces, sending data over the network,
etc. It reads data from the Data Storage. It may poll the storage for new data or
read the data at user requests only.

Infrastructure Management: This part controls all other components, config-
ures and coordinates them. One of other functions is the registration of event
sources.

16

2.3.1.2 Improvement suggestions

Here, we will provide two suggestions that could improve the design of the infras-
tructure. First, the sensors that measure data, cannot be configured to accept
parameters from events that triggered the data sampling. The example could be
the sensor, that should measure the performance counter values from CPU on which
the event occurred. In the design of infrastructure, this could be only solved by cre-
ating a separate measurement context for every CPU and add logic to the event
processors that would select the correct context. We think, that the sensors should
have option to read information from event data (or some other means) to configure
the actual measurement.

Other suggestion involves the processing and recording of events. The infrastructure
defines interfaces, that requires the definition of separate processor and recorders
for all event types. Sometimes, this means duplicating code, if the event types
require same or almost same handling. In this work, this case is represented by
performance counter overflow events for Java and for native code. Their handling
differs only in the need to inspect Java code position for Java events. In the original
infrastructure interfaces, this would require two recorders and two processors for
data measurement, even if the only difference in handler would be in the parameter
that informs about event type passed to data storage. We think event data should
be extended by the parameter representing the event type that triggered the event
or pass event parameters to all methods in event handling procedure.

2.3.2 DTrace

A new subsystem for system-wide profiling support, called the Solaris Dynamic
Tracing Framework (DTrace for short), was introduced in the Solaris 10 operat-
ing system [11]. It consists of dynamic instrumentation support and special script
language (the “D” language) with its interpreter.

Many (tens of thousands) probes are in the operating system, including entry and
exit points of almost every kernel function, function entry and return point in ap-
plication, entry and return from the syscalls, etc. All of them are disabled when
the DTrace is not running and the probes have no effect on the performance of the
system or the applications. The DTrace subsystem can enable selected probes as
necessary using the DTrace scripts - when a DTrace script is started, the system
dynamically instruments the kernel or the applications at the places that correspond
to the probes specified by the script.

The D language scripts are generally sets of callbacks associated with sets of probes.
When the instruction flow passes a probe from the set, the specified action in the

17

script is executed. In the callback the script may gather data of interest. The script
can aggregate data from many probes and provide complex information about the
running system and applications.

For example, the following script measures the time spent on CPU by the threads
of the specific user:

#!/usr/sbin/dtrace -s

sched:::on-cpu
/uid == 1001/
{
self->ts = timestamp;
}

sched:::off-cpu
/self->ts/
{
@time[execname] = sum(timestamp - self->ts);
self->ts = 0;
}

After running the script, the result can look like this:

./sched.d
dtrace: script ’./sched.d’ matched 6 probes
^C

pt_chmod 517438
gnome-pty-helper 855193
utmp_update 1342610
awk 1545419
ls 1707776
basename 2202486
sshd 2912672
iiimd 4564425
run-mozilla.sh 7782820
... ...
nautilus 1095535707
gnome-netstatus- 1329197887
java 3084636258
gnome-terminal 5804337603
firefox-bin 65677521752
Xorg 77324524853

18

Chapter 3

Solution options

Our ideas and techniques that lead us to the solution of the problems proposed in
Chapter 1 are discussed here. First, we provide detailed analysis of requirements
and goals, then we describe our ideas briefly as we were experimenting with them.
The major part of this chapter provides detailed description of ideas and techniques.

3.1 Requirements and goals

Our goal is to develop a profiler based on infrastructure [2]. It must work with the
JVM from Sun and C++ code as two examples of commonly used environments.

Pursuing the advantage of constant overhead associated with the sampling profilers,
our profiler should be based on sampling and should not use instrumentation of
code (except where the programmer decides to create sampling points manually).
For the choice of events associated with sampling, our profiler should be able to use
the common source of events that is the overflow of processor performance counters.

Since our profiler has to deal with Java, statistical sampling must be able to read
the code position in Java from the interrupt handler that delivers the event. This
brings problems with re-entrancy because the interrupt handler can be invoked at a
time when the virtual machine is not ready for code position inspection.

Next requirement is that the profiler can measure performance data from hardware
or operating system during event processing. In this case, we must be careful again,
because some data may not be available from every caller context or at every mo-
ment.

The last goal is to propose universal data format capable of storing various events
and performance data. The format must support fast seeking in the data and be

19

ready for small and large data associated with events.

In following sections, we provide our solution possibilities. We think all of them
could lead to successfull result, but in many cases technical problems prevent them
to be used.

3.2 Ideas overview

As mentioned before, two major problems are to be solved: notification about CPU
performance counter overflow and inspection of code position in Java. One elegant
solution that would solve both problems at once is a solution that would allow
querying current position of the executing Java code from pretty much anywhere
is storing the current position in a globally accessible variable within the executing
Java process. This option is discussed in the Section 3.3: Code position storing. It
turned out to have too big overhead.

After failure of the option that would solve both problems, we addressed them
separately. First, we discuss the options that allow us to notify userspace about
a performance counter overflow. In the Section 3.4: PAPI library we deal with
options that provides the library. We found out that it does not provide facilities we
need. The perfctr patch option is discussed in the Section 3.5: perfctr Linux kernel
extension. It almost suits our requirements, but it has no documentation and the
required modifications would be too difficult. In the Linux kernel one subsystem
that deals with CPU performance counters is already included – OProfile. Natural
experiment is a modification of its processing of NMI interrupt handler it uses. In
the Section 3.6: OProfile NMI modification we address this option and show that
it brings many obstacles, of which some we could not overcome. And finally, in the
Sextion 3.7: OProfile with fixed interrupt and signal we discuss option that modifies
OProfile more than slightly. This option proved to be successfull.

After we have achieved the notification of userspace, the next problem is the inspec-
tion of code position in Java. The Section 3.8: Java code position section address
this problem. Since the notification from kernel comes in form of signal, it cannot
be solved by direct call to the GetStackTrace() function from JVMTI.

The last and probably the least difficult problem is the format of data that will be
stored to the disk. The Section 3.9: Data storage proposes the solution.

20

3.3 Code position storing

For the Java language, the runtime environment provides facilities for storing the
position of the code by using callback at method entry and exit. This position then
could be read at the moment of the performance event (even from the kernel). The
overhead of the position storing agent is too high, however.

Method entry and exit events Two events are availabne in the JVMTI li-
brary: JVMTI EVENT METHOD ENTRY and JVMTI EVENT METHOD EXIT. They are
available after setting can generate method entry events capability. They are called with
every Java method entry and exit. The thread and method references are provided
as parameters.

Agent implementation To test the feature, we created an agent that responded
to the JVMTI EVENT METHOD ENTRY and JVMTI EVENT METHOD EXIT events and
measured the overhead. The agent is simple, it only sets the capabilities and
registers callbacks to the events in Agent OnLoad() function, enables the events in
JVMTI EVENT VM INIT event and has empty method entry and exit callback. This
agent is available in enclosed CD.

Overhead measurement We measured the overhead of the implemented agent
using two benchmarks described in Chapter 5 – Fhourstone and TestingJavaProg-
Multi. We used version of these programs that do not run as long as their normal
versions, but we think these results are obvious:

Benchmark
Fhourstone TestingJavaProgMulti

Configuration Kpos/s time (s)
Without agent 1303.23 6.04

With agent 45.13 92.13
Overhead 2888% 1523%

This result were created as arithmetic mean from several runs of benchmarks. We
think it is obvious that the overhead makes this option not usable.

The next possibility could be the one using dynamic bytecode manipulation, but we
would like to avoid it, since the instrumentation is not good option if we want to
use statistical sampling.

21

3.4 PAPI library

One of the options how to notify the userspace about CPU performance counter
overflows is PAPI library’s (brief description is in Section 2.2.2) feature, that allows
programmer to define a callback for the overflows. However, this proved to be
problematic for profiling native code.

3.4.1 Library facilities

The library provides following function:

int PAPI overflow
(int EventSet , int EventCode , int thresho ld , int f l a g s ,

PAPI over f low handler t handler) ;

It sets up the specific event (determined by EventCode parameter) from the EventSet
(EventSets are PAPI encapsulation of configured performance counters and events)
to generate overflow events, if the counter value reaches threshold. At that moment
the handler callback is called. The library can exploit hardware counters overlow
feature, or simulate it by the software. If available, PAPI prefers hardware overflows.
The software events can be enforced by using flags parameter.

The hardware counter overflow is implemented with perfctr Linux kernel patch (see
Section 2.2.1) on the Linux x86 systems, which is generating signals that PAPI
intercepts and passes the control to the user’s callback.

3.4.2 Counter Locality Problem

We tried to use the PAPI to generate the performance counter overflow events for
the native code, first. This turned out to be problematic. Even if the perfctr
patch provides interfaces for signals from every CPU performance event in system
(global counters) the PAPI uses only virtual per-task counters, which need to be
turned on explicitly by the every task that they are associated with. This is an
insurmountable obstacle for sampling profilers of native code, which cannot easily
invoke PAPI functions on behalf of other tasks. The problem is illustrated on a
sample code in the Listing 3.1.

#include <papi . h>
#include <s t d i o . h>
#include <pthread . h>
#include <s t d l i b . h>

22

#define THRESHOLD 10000000
#define hand l e e r r o r (x) do { p r i n t f (” e r r o r \n”) ; e x i t (x) ; } while (

0) ;

int t o t a l = 0 ; /∗ t o t a l o v e r f l ows ∗/

void handler (int EventSet , void ∗ address , l ong l ong ove r f l ow vec to r ,
void ∗ context) {

f p r i n t f (s tde r r , ” handler(%d) Overflow at %p ! vec to r=0x%l l x \n” ,
EventSet , address , ov e r f l ow ve c t o r) ;

t o t a l++;
}

void∗ t h r e ad f (void ∗p) {
long long x = 0 ;
while (1) x++;
return (void ∗) x ;

}

int main ()
{

int r e tva l , EventSet = PAPI NULL ;

/∗ I n i t i a l i z e the PAPI l i b r a r y ∗/
r e t v a l = PAPI l i b r a ry i n i t (PAPI VER CURRENT) ;
i f (r e t v a l != PAPI VER CURRENT) hand l e e r r o r (1) ;

/∗ Create the EventSet ∗/
i f (PAPI create eventse t (&EventSet) != PAPI OK) hand l e e r r o r (1)

;
i f (PAPI thread in i t (p t h r e a d s e l f) != PAPI OK) hand l e e r r o r (1)

;

/∗ Add Tota l I n s t r u c t i o n s Executed to our EventSet ∗/
i f (PAPI add event (EventSet , PAPI TOT INS) != PAPI OK)

hand l e e r r o r (1) ;

/∗ Ca l l hand ler every THRESHOLD in s t r u c t i o n s ∗/
r e t v a l = PAPI overflow (EventSet , PAPI TOT INS , THRESHOLD, 0 ,

handler) ;
i f (r e t v a l != PAPI OK) hand l e e r r o r (1) ;

/∗ S ta r t count ing ∗/
i f (PAPI start (EventSet) != PAPI OK) hand l e e r r o r (1) ;

/∗ Create new thread ∗/
p th r e ad a t t r t de tached at t r ;
p t h r e a d a t t r i n i t (&de tached at t r) ;
p t h r e ad a t t r s e t d e t a ch s t a t e (&detached at t r ,

23

PTHREAD CREATE DETACHED) ;
pthread t t i d ;
int t i d = pthread c r ea t e (&t id , &detached at t r , th read f , 0) ;
i f (t i d != 0) { f p r i n t f (s tde r r , ” pthread e r r \n”) ; }
}

s l e e p (15) ;

return 0 ;
}

Listing 3.1: PAPI overflow testing

The testing program initializes PAPI, sets some events to count on hardware counters
and sets handler for counter overflows. After that it starts new thread that does
some computation and the main thread sleeps for some time. Even if the processor
is fully occupied, no overflow notification arrive to the application during the sleep.
This can be circumvented by calling PAPI register thread() function at the thread start.

3.5 perfctr Linux kernel extension

Another option to notify userspace about CPU counters overflow is to use perfctr
Linux kernel extension (for overview see Section 2.2.1). The extension provides a way
to configure the kernel to send the signal to the process at counter overflows. There
are 2 options - global and virtual counters. While virtual counters count events per-
task, global counters count for all system. Virtual counters have the same problems
as PAPI library. The global counters would be usefull. However, absolutely no
documentation is available for extension. This makes the usage of it very difficult.
The extension is configured by set of ioctl functions at file /dev/perfctr. We did not
manage to determine the proper commands and their parameters, unfortunately.

3.6 OProfile NMI modification

In the Linux kernel another component that works with CPU performance counters
is already integrated - OProfile (brief description is in Section 2.1.2). We decided
to try the possibility that modifies OProfile’s counter overflow handling. Since the
counter overflow event is interrupt, we will describe the hardware mechanism of
interrupt generation and their handling, then we will describe how the Linux kernel
handles the interrupts (both for x86 architecture). We will discuss the possibilities
of notification of the userspace from the kernel. After that we will describe our

24

attempts to modify the OProfile NMI interrupt handling to our needs. We found out
that NMI interrupts have too many obstacles that we did not manage to overcome.

3.6.1 Intel APIC

Here we will provide a short description of the interrupt management hardware,
the Advanced Programmable Interrupt Controller (APIC). We will cover only topics
with relation to this work, see [5, Chapter 5 and 8] for full detail.

If referring to APIC, two of them exist: local APIC and I/O APIC. While the first
one is integrated with the processor and controls the interrupts to that processor (or
core), the second is external (part of the chip set) and its task is to control interrupts
from external devices and relay them to the local APIC. I/O APIC is not important
in context of this work. The interrupts handled by local APIC divide to following
categories (or interrupt sources):

• Locally connected I/O devices – interrupts asserted on LINT0 and LINT1
processor’s pins.

• APIC timer generated interrupts – APIC has a timer that can generate inter-
rupts at local processor when set count is reached.

• Performance monitoring counter interrupts – at performance counter overflows
the interrupt can be sent to local processor.

• Thermal Sensor interrupts – can send interrupt when the internal thermal
sensor has been tripped.

• APIC internal error interrupts – at error in local APIC programming, the
APIC can be configured to send the interrupt to the processor.

These interrupt categories are referred to as local interrupt sources. Also following
categories are available:

• Externally connected I/O devices – interrupts from external I/O APIC, sent
as messages to the local APIC.

• Inter-processor interrupts – interrupts from other processor in multiprocessor
system, or programmed self-interrupt

The local interrupt sources can be configured by the Local Vector Table (LVT),
which is set of APIC registers. See Figure 2.2 for its layout and meaning of the reg-
ister fields. Another important register is the Interrupt Command Register (ICR).

25

By writing to this register the IPIs are sent to the specified processors. IPIs are
distributed to other processors through processor system bus (XEON processors)
or by special APIC bus (P6 family processors). The self-interrupt can be sent or
directly to the local processor, or by message to the bus that returns with delay
to the processor. If the interrupt message arrives and the APIC has not free slot
for it, it sets the error status to retry and discards the interrupt. If free slot is
available, APIC stores it there and waits while processor is ready for next interrupt
(interrupts cannot be interrupted, not even by NMI). This description is valid for
normal (fixed) interrupts, NMI and other special interrupts are handled specifically.
They are delivered directly to the processor core for handling.

3.6.2 Linux kernel interrupt handling

In this section we will discuss the mechanism that uses the Linux kernel to handle
the interrupts. This includes the interrupt entry points, processing of the interrupts
(passing control to the handlers) and return to the userspace. We will not follow
IRQ handling. Then we will name the functions to control interrupt handlers and
interprocessor interrupts (IPIs).

The interrupt and CPU exception entry points are in the arch/x86/kernel/entry 32.S
(entry 64.S) file for 32-bit (64-bit) version of x86 architecture. It contains entry
points for processor exceptions, interrupts, syscall and IRQs. Every CPU exception
and architectural interrupt has one entry point defined, Linux system interrupts has
the entry points, too. Every handler has the same basic structure:

1. Save registers to stack.

2. Call handler in C language.

3. Restore registers from stack.

4. Return from interrupt/exception (IRET instruction).

Specific exceptions (page fault, debug exception, etc.) have more complex handling,
but this basic structure is still same. For NMI this procedure is extended in the
beginning – it checks the stack, because the NMI can happen in syscall handling.
All Linux system interrupts and syscall have more complex structure, after the C
handler can be executed additional handling. The interrupt procedure checks if
the task that is going to be resumed has no signals pending. If so, the control is
returned not to the original code position, but to the signal handler. It also checks
if the reschedule flag is set and if so, it calls the scheduler that can do its work.

26

3.6.3 Userspace notification options

After interception of the CPU counter overflow by the interrupt handler, we need
to notify userspace about the event from that handler. This has two basic reasons:

1. The position in Java code can be determined by userspace library call only.

2. The measurement of data should be done in userspace – interrupt handlers
must be as fast (and safe) as possible.

We determined two basic mechanisms: sending signal to the userspace thread or
reschedule to prepared thread. As mentioned in Section 3.6.2, if signal was created
in NMI, it will not be delivered at return from the interrupt. To circumvent this, we
thought about following option - send IPI to self, to trigger consequent interrupt,
or modification of return from the NMI to simulate the actions done in return from
common interrupt.

3.6.3.1 Signal with IPI

One of important requirements is that the userspace is notified about the event
(CPU counter overflow) immediately, or at least after delay, that is independent on
the running code. The signals are not handled in return from NMI interrupt. This
means, that signal created in the NMI handler will be delivered at the first following
switch from kernelspace to the process with signal pending. This can be at syscall,
or if the application is currently running code without syscalls, at next reschedule
of the task. This behaviour would be inappropriate. One idea that could solve
this problem would be sending IPI to the same CPU. As described in Section 3.6.1,
the IPI to the local CPU is delivered or immediately, or after returning the issued
message from the bus. In the first case, the next interrupt is created immediately
after return from NMI, in the second case the interrupt will occur at some time,
that is affected by hardware implementation only and is not dependant on userspace
code. This interrupt will be normal, fixed interrupt and in handler of that the signal
handling is already active. We used the reschedule interrupt, that is available in
Linux. It has empty handler, since everything expected of that is done in default
interrupt return (reschedule if needed).

We implemented the kernel patch as described above. We measured the delay of
the next interrupt, and learned that on Athlon XP 2600+ processor it is less then
10000 clock ticks. This would be nice result, however the problem appeared always
after some time. The system running the mentioned mechanism wasn’t stable, after
few thousands of events it hanged the system regularly. It seamed like a deadlock in

27

some locking mechanism in the kernel. Later we determined that the function that
sends the signal was causing this. We tried to re-implement all required subroutines
to use locking, that cencels the event if some lock was not available. This was not
successfull. After some time we had to reject this option. The probable problem
is that NMI can happen in very wrong conditions, such a returning from signal
handler syscall, mutex locking, etc. Since many actions in kernel are synchronised
using some form of locking, it is impossible to change all of them to fail if the lock
is not available.

3.6.3.2 Signal with non-NMI return simulation

Another option we were thinking about is an attempt to change the return path
from NMI interrupt to incorporate actions done in normal interrupt return, sig-
nal handling primarily. This would mean to change the NMI normal return path,
restore_nocheck_notrace code segment in the arch/x86/entry 32.S file that only
restores registers and executes IRET instruction, to something that checks the sig-
nals.

Unfortunately, this could have unpredictable consequences, from same reasons as in
previous section, and here it would be even more complicated, because the event
can happen in spinlock at syscall handling, which means that the kernel is not in
consistent state when in NMI handler.

From these reasons and because the deadlock problem mentioned in previous section
was caused by functions notifying the kernel that it should create and deliver signal
(send sig info () function). This means that even if we were successfull in delivering
signal from NMI, the deadlock would occur eventually.

3.6.3.3 Reschedule to a servicing thread

The next option we were interested in is the possibility to have prepared thread
for handling counter overflows, that is in sleeping state by default. The idea is to
wake this thread and make the scheduler to plan this thread to run directly after
the return from interrupt handler.

This has some drawbacks, the most important are the complexity of the scheduler
and the fact that NMI can happen in time when scheduler is not in consistent
state. A scheduler is probably the part of the Linux kernel that overcomes dramatic
changes most often. It is also very complex and every change can have unforeseen
consequences. This makes very difficult any modifications. The other, even worse
problem, is the fact that NMI can happen virtually everywhere, including the fork()

28

syscall, for example. There is created new process, which means that the internal
scheduler structures must change, and any external action can be lethal. From these
reasons we had to give up this option.

3.7 OProfile with fixed interrupt and signal

After failure of all previous options, which were or without modifications of under-
lying technology (PAPI, perfctr extension, position storing) or without modification
of sampling mechanism (OProfile’s NMI) we had following possibilities:

• Modify PAPI to use global counters.

• Study perfctr extension to the detail and modify the signal data.

• Modify the OProfile to use normal (fixed) interrupt instead of NMI and send
a signal to userspace process.

We decided to focus on OProfile modification, because it is very well documented
(as opposed to perfctr extension), based on simple ideas and it has the advantage
that we can still collect the samples as OProfile usually does along with our tool
sampling.

This approach proved to be successful. Here we will describe what had to be done for
userspace notification and show that the overhead of sending a signal is acceptable.

3.7.1 Linux and OProfile modifications

The required modifications can be separated into two parts:

• Create interrupt handler for the overflow interrupt.

• Modify OProfile to use the created interrupt handler and send signals from it
to the userspace.

For the interrupt handler entry point we used the code from perfctr kernel extension.
It defines new section (symbol) in the entry 32.S or entry 64.S files. This symbol
is later in C declared as asmlinkage. A call to the symbol that can be defined in C
and declared asmlinkage is also there. The body of a handler is in C language. The
routine gets structure with stored registers as parameter. During initialization, the
handler is registered by set intr gate () function call, that associates the handler with

29

specified interrupt vector. We do not need to care of interrupt tables and other
processor structures ourselves, the kernel handles it automatically.

Then we moved OProfile’s counter overflow handling to our newly created handler
(arch/x89/oprofile/nmi int.c). After this, we modified architecture-specific overflow
handlers to send signals using send sig info () function if the process requested this.
Since this is normal (fixed) interrupt, the signals are delivered at return to the
interrupted thread. In signal data we provide program counter where the thread
was interrupted, the number of CPU that generated the interrupt and what event
trigerred the interrupt.

3.7.2 Overhead measurement

After we implemented the options mentioned here, we measured the overhead caused
by signal sending and receiving. We created simple C program, that only counted
number of signals in signal handler and we measured how the sending of signals
will slow down the program. After running the program several times, we got the
average slow down of less then 0.5%. The OProfile was configured to send signal
after completion of every 500000 instructions. In case without signals, the OProfile
was disabled, so the overhead includes the overhead of OProfile, too.

3.8 Java code position

After successfully entering signal handler in userspace, the requirements for native
(C) code are almost accomplished - the program counter could be used to identify
the source line of the application. We do not do this, but we will suggest a way that
could lead to effective way of getting this information. This is not true for Java,
we need to determine the position in the Java code. In following sections we will
discuss JVM and JVMTI facilities for this, and options how it can be done from
signal handler.

3.8.1 Code position inspection

The facilities to inspect code position provides JVMTI (see Section 2.2.3 for de-
scription). It defines two functions: GetStackTrace() and GetAllStackTraces(). The first
one gets the call stack of one specified thread (or current thread, if no specified), the
second gets stacks from all Java threads running. In following listing the declaration
of the GetStackTrace() function is displayed.

30

jvmt iError
GetStackTrace (jvmtiEnv∗ env ,

j th r ead thread ,
j i n t s ta r t depth ,
j i n t max frame count ,
jvmtiFrameInfo ∗ f r ame buf f e r ,
j i n t ∗ count ptr)

Listing 3.2: GetStackTrace function

It gets stack trace of thread, to maximum depth of max frame count frames. The result
is stored to the array specified by frame buffer pointer and the number of stored frames
is in memory specified by count ptr.

The GetAllStackTraces() function gets the stack frames of all Java threads, to the maxi-
mum depth of max frame count frames, and stores it to special structure, that the func-
tion allocates itself. The user provides only stack info ptr pointer, and thread count ptr
where the number of threads is stored.

jvmt iError
GetAl lStackTraces (jvmtiEnv∗ env ,

j i n t max frame count ,
jvmt iStack In fo ∗∗ s t a c k i n f o p t r ,
j i n t ∗ th r ead count pt r)

Listing 3.3: GetAllStackTraces function

In the Listing 3.4 an example of GetStackTrace() function usage is shown. See Sec-
tion [9] for full detail.

jvmtiFrameInfo frames [5] ;
j i n t count ;
jvmt iError e r r ;

e r r = (∗ jvmti)−>GetStackTrace (jvmti , aThread , 0 , 5 , &frames , &count) ;
i f (e r r == JVMTI ERROR NONE && count >= 1) {

char ∗methodName ;
e r r = (∗ jvmti)−>GetMethodName(jvmti , frames [0] . method , &methodName ,

NULL) ;
i f (e r r == JVMTI ERROR NONE) {

p r i n t f (”Executing method : %s ” , methodName) ;
}

}

Listing 3.4: GetStackTrace example

The problem is that no function that would determine the current executing thread
is available. This is problem if trying to make profile from external thread, that gets

31

regular samples, for example. It must use GetAllStackTraces() function and the profile
will not be accurate, or profile only one thread. For this work is important to solve
this problem.

3.8.1.1 Executing thread identification

For correct sampling, samples must be generated from the thread that generated
the event. In our case, we must determine where the Java code was executing in the
moment of the counter overflow in the currently running thread. JVMTI does not
provide this information and we did not find any other mean that would. In some
cases, using the GetStackTrace() function can help, because if no thread specified, it
gets the position of code in the Java thread from which context the function was
called. It means that, for example, in JVMTI callbacks, the function returns the
values from thread that generated the event. The proposed tool cannot get the
position in code from callbacks – the events are independent on the JVM.

We have found one simple solution, but it is subtle and relies on assumption that is
not guaranteed by virtual machine vendors. This assumption is that the Java threads
are mapped to POSIX threads 1:1. This is true for JVM from Sun on Linux systems.
If this assumption is valid, we can create a data structure, that holds associations
between Java threads and POSIX threads. We use associative array for this. Single
associations are inserted to the data structure at the time of thread creation, JVMTI
provides JVMTI EVENT THREAD START event. In handler the association is created
(using pthread self () routine to get POSIX thread identification). When the thread
ends, the event JVMTI EVENT THREAD END is generated and the association deleted
from the data structure.

We think, that JVMTI or JVM should provide information that identifies the cur-
rently running Java threads on native threads. If the thread mapping is 1:1 this
involves no overhead, for other mappings only storing one value in scheduler is
needed.

3.8.1.2 Overhead

The pair of GetStackTrace() and GetAllStackTraces() functions is the only mean how
to get the information where the running code is executing, except rejected instru-
mentation and method entry and exit callbacks. Unfortunately, it has significant
overhead. To measure approximate overhead, we created a simple Java profiler, that
has one sampling thread, that regularly called the GetAllStackTraces() function. We
measured the average time spent in that function using RDTSC instruction. On ma-
chine with AMD Athlon XP 2600+ processor we get the average of approximately

32

27 millions of ticks for Java application with one thread (plus 2 servicing threads).
This is really high, but we can do nothing with that if we do not want to modify
JVM.

3.8.2 Signal handler

Now, we have solved the problem how to notify userspace about the CPU counter
overflow event. In the userspace we have to handle the signal sent from kernel and
find a way to determine the code position in Java, that means to call GetStackTrace().
The straightforward idea is to call this function directly from the signal handler.
This does not work, the function returns empty stack. We also tried to call the
handler on alternate signal stack. In this case the function returned error. This
made us to look into JDK sources available as opensource [13]. Here we found out
that this function searches the stack for prepared variable stored at the stack, that
holds information needed for stack trace. This is the reason why direct call to the
GetStackTrace() function fails. The signal handling procedure stores data on the stack
and it becomes inconsistent in the meaning that backtrace is interrupted.

3.8.3 Stack modification

One workaround for the stack problem described in the Section 3.8.2 could be the
following procedure:

1. Send a value of stack pointer (SP) register of interrupted code from kernel in
signal data.

2. In signal handler:

(a) Copy part of the stack, from received SP to the top of the stack to some
place in memory along with SP.

(b) Reset SP to the value before CPU counter overflow event.

(c) Call the GetStackTrace() function, this should simulate the behaviour out-
side of a signal.

(d) Store the results to some place in memory.

(e) Copy the original top of stack to original location.

(f) Restore original SP value.

33

We had to reject this mainly because the signal data are not big enough to hold
all required information. The size of the structure is 128B, however the kernel or
userspace libraries copies only the size of the biggest data defined for specific sources,
and they are only one pointer and one integer long in union part of the structure.
We need 2 pointers – stack pointer and program counter. They are too large on
64bit machines, where pointers are 8 bytes and integers are 4 bytes long. Another
probable problem is that the stack may be in undefined state – if the code was just
creating new stack frame, the stack would be inconsistent as well as in normal signal.

3.8.4 Thread priority and semaphores

The attempts to handle the problem in signal handler showed that this approach
is too difficult. We had to try something else. An effective way could be to let
the task to determine the position in Java code to another thread. The problem is
how to give the control to that thread when needed, and how ensure that the code
position will be determined as close as possible to the position where the event has
happened.

We found out that nature of semaphores and the scheduler along with thread pri-
orities makes it possible. We can have prepared thread with high priority that is
determined to detect the code position. It is sleeping on some semaphore. When
the event in the form of signal arrives, we can raise the semaphore. In this moment
the control is passed to the position detecting thread. This control passing works
even if the threads have same priority.

We implemented a simple implementation using described approach. The tool had a
very high overhead (same as measurements described in Chapter 5). We clearly iden-
tified the GetStackTrace() function as the reason of that overhead. If we commented
out its call, the overhead dropped to insignificant values.

3.9 Data storage

After the events are received, the code position determined, we can measure a set
of data associated with that event. The natural requirement is a way to store that
data. The requirements are that the storage cannot use much more space than
necessary and makes seeking in the data possible. The data can be very large, and
can consist of very frequent events with little data or not too many events but much
data collected at the events.

We proposed a data structure which consists of 3 components:

34

Index Full data

Metadata

Figure 3.1: Storage structure

• Metadata – provides information about data collected for separate event types.

• Index – common event data, along with positions in full data are stored as set
of equally-sized structures to make seek possible.

• Full data – the measured data, stored one by one in flat structures of variable
length.

It is implemented using three files, the metadata file is in the XML format, index
file is binary file of structures and full data file is a stream of records of variable
length. In the index file positions in data file of the beginning of the data for one
event are stored, along with length of that data. The the values from data file can
be read by using data from metadata, that defines the order and type of data fields.
The scheme of the storage is in the Figure 3.1.

35

Chapter 4

Solution documentation

We created a profiling tool in accordance with discussion in the Chapter 3. Here we
provide a programmer’s documentation of the solution. The description of the basic
structures and principles in reasonable detail is provided. We provide a set of UML
diagrams. Their intention is to show the basic relations between classes and the most
important methods, not to be a complete reference of the classes. The detailed
documentation of the classes can be found in doxygen-generated documentation
provided as an attachment of this work.

4.1 General overview

The tool needs to have two parts – one for generating performance counter events
and the other that receives events and measures performance data. The first part is
implemented in Linux kernel. It takes form of a kernel patch. We modify OProfile’s
CPU performance counter overflow handling to suit our needs. It can generate
signals at overflows and provides interface for reading counter values.

In the userspace, the signal handling is required, along with measurement of the
performance data that can be associated with the events and storing the data to the
file. Also an interface for use in native (C++) code is needed and JVMTI agent for
Java profiling. The userspace part of implementation tries to use the interfaces and
principles described in [2].

The simple overview of operation is following procedure:

1. Event generation – the condition that generates event occured somewhere in
the system. It can be the performance counter interrupt or the application
code runs into a trigger prepared by programmer.

36

2. Reception of event – the events are intercepted by entities defined in the Event
Sources component. They provide unified interface for common configuration
tasks. The goal of all entities in this component is to provide information about
what happened and notify the measurement infrastructure about the event
using its associated Event Delegate from the Event Processing component.

3. Performance data measurement – the Event Processing component measures
performance data that it was configured to collect on the particular event using
Data Access component.

4. Storing of data – the measured data are stored to the memory using the
Memory Storage component to provide quick storage with relatively small
overhead. Here ends the event processing.

5. Exporting data to external storage – when the memory storage is filled up to
certain limit, the data is exported using the External Storage component.

Since the performance counter overflow events are received using signals, some lim-
itations must be applied what can be executed in the handler. For this reason we
divided the performance data into two groups – signal-safe and synchronous. The
first can be sampled within signal handler, the other must be delayed while the
tool is outside the signal handler. We use same mechanism as for determining Java
code position here. The signal handler has one other consequence – we must be
extremely cautious when using synchronisation mechanism (mainly spinlocks). If
we lock the spinlock in some thread, and that thread is then interrupted by signal,
we must ensure we do not wait for that lock, because it will be never released. From
this reason, we use the locks in non-waiting mode from signal handlers, and if lock
cannot be acquired, we must cancel the event. This does not happen too often,
however (in average, 1 event of 20000 is cancelled in our tests).

Other problem that can happen – in the case of incorrect configuration mainly – is
that next event arrives while the previous one is still being processed. In that case,
we do not measure performance data and Java code position again, but we store the
event with copy of data that will be measured by first event. For this reason every
performance counter overflow event tries to acquire a lock at start of processing,
that is released when the event is recorded or canceled of some reason.

In the following text, we provide detailed documentation of mentioned components.
In addition, we have created a management component, that helps using the tool
and Java agent interface that defines entry point and communication with JVM
using JVMTI.

37

4.2 Kernel patch

The kernel patch provides configuration and delivery of the signals at the perfor-
mance counter overflows and interface for reading the performance counter values.
For configuration we use files in the /dev/oprofile filesystem. The signals are sent
from OProfile’s modified interrupt handler and the counter values are read using the
ioctl syscalls. For sending the signals we use solution described in the Section 3.7.
The patch was created for version 2.6.24 of the Linux kernel.

4.2.1 Sending signals

To be able to send the signals from the overflow handlers, two tasks are required to
fullfill:

1. Modification of interrupt configuration – OProfile uses NMI, we must change
this to use a fixed interrupt.

2. Modification of counter-checking routine – in OProfile, NMI handler calls a
function that checks counters for overflow. We need to modify this function
to send signals if it is configured.

In order to use a fixed interrupt, we needed to define a new entry point. This
code is present in the arch/x86/kernel/entry 32.S (entry 64.S for 64-bit version)
file. We used the entry point from perfctr patch (described in the Section 2.2.1).
These entry points are displayed in the listings 4.1 and 4.2. The 32-bit version
is more complex, but it does the same – stores the registers, calls the C handler
(the smp oprofctr interrupt function) and executes actions like signal handling and
reschedule if needed before IRET. As it is clear from example, we use the interrupt
vector with number 0xf9.

#define LOCAL OPROFCTR VECTOR 0 xf9
ENTRY(op r o f c t r i n t e r r u p t)

RING0 INT FRAME
pushl $ ˜(LOCAL OPROFCTR VECTOR)
CFI ADJUST CFA OFFSET 4
SAVE ALL
TRACE IRQS OFF
pushl %esp
CFI ADJUST CFA OFFSET 4
c a l l smp op ro f c t r i n t e r rup t
addl $4 , %esp
CFI ADJUST CFA OFFSET −4
jmp r e t f r om i n t r

38

CFI ENDPROC
ENDPROC(op r o f c t r i n t e r r u p t)

Listing 4.1: 32-bit interrupt entry point

#define LOCAL OPROFCTR VECTOR 0 xf9
ENTRY(op r o f c t r i n t e r r u p t)

ap i c i n t e r r up t LOCAL OPROFCTR VECTOR, smp op ro f c t r i n t e r rup t
END(op r o f c t r i n t e r r u p t)

Listing 4.2: 32-bit interrupt entry point

To use this interrupt, we must declare the entry point in C language and define
a handler function. Entry point is declared asmlinkage void oprofctr interrupt(void);
and the handler’s declaration is asmlinkage void smp oprofctr interrupt(struct pt regs ∗

regs). The only parameter respresents the structure with register values stored in
the entry point. We created these handlers in arch/x86/oprofile/nmi int.c. This is
main OProfile’s file for handling x86 performance counter overflow events, so we will
do most of our changes in this file.

Then we needed to change OProfile to use our newly declared interrupt instead of
NMI. This can be done in the nmi setup() function by replacing register die notifier ()
function call by call to set intr gate () with paremeter set to the requested interrupt
vector number (0xf9) and declared interrupt entry point (oprofctr interrupt). This as-
sociates the the interrupt gate with our handler. Next is needed to configure APIC
to use our interrupt instead of NMI. This is done in the nmi cpu setup() function
by replacing the original call to the apic write () function by apic write(APIC LVTPC,
APIC DM FIXED | PERFCOUNTER VECTOR);. Now the interrupt is ready. The han-
dler only calls the machine-specific function that checks the performance counters.

For the signal delivery, we created a new model-specific function declared in the
struct op x86 model spec defined in the arch/x86/oprofile/op x86 model.h file. We
added the check ctrs signal function that is called from handler, if signal sending
is turned on. The implementations in the arch/x86/oprofile/op model ppro.c and
arch/x86/oprofile/op model athlon.c files are identical as implementation of the
check ctrs model-specific operation, but if overflow is positively identified we check, if
the interrupted process (from its PID stored in the current−>tgid field of task struc-
ture) wants to be notified by signal (we will describe this checking later). If the check
is positive, we prepare structure with signal parameters (we fill in program counter,
processor number and CPU event) and send the signal by call to the send sig info ()
function.

39

4.2.2 Signal configuration

It is not possible to send signal to every process that is interrupted. This would
cause the processes to terminate in most occasions. So we need to ensure only the
processes that are prepared for these signals will receive them. We cannot use any
complex data structures, because we must be able to use them in the interrupt
handlers without locking. One of the options would be to add a special field to task
structure that would tell if the task wants the signals. But it is unclear what to
do if the task is duplicated (fork, clone syscalls). So we decided to create only a
static array of fixed length where will be the process IDs (as seen from userspace –
not thread IDs) of the processes that wants to receive the signals stored. PIDs are
stored from first array field one by one, the list is terminated by 0. For changing
the array, we use the locks, but for reading in the interrupt it is not needed since
access for reading these values is atomic. Then in the interrupt handler, we traverse
the arrray until we find the PID of the interrupted task or 0.

For setting up the signal delivery we created the /dev/oprofile/signal file using the
tools provided by OProfile. It has defined read and write operations. The read
operation returns string that contains all PIDs configured to receive signals. The
write operation can modify the array - the userspace has to write one ASCII number
that is interpreted as follows:

• “0” – disable the delivery of signals to the process that wrote the value.

• “1” (or any other positive number) – enable the delivery of signals to the
process that wrote the value.

• “-1” (or any other negative number) – if executed by process with root priv-
iledges, cancels delivery of signals to all processes, error otherwise.

This behaviour is defined in the read signal tgid () and write signal tgid () functions.

4.2.3 Counter value reading

For effective reading of performance counter values we provide an ioctl operation
on the /dev/oprofile/read value file. It uses OProfile mechanism for creating files,
again. The ioctl handler is in the counter value ioctl function. The supported com-
mand is defined with the #define READ COUNTER CMD 129 macro. The parameter
is the following structure:

struct p e r f c t r c o un t e r v a l u e a r g s {
int cpu ; // in param − cpu number or −1 f o r curren t

40

int counter ; // in param − counter number
unsigned long ∗ value ; // out param

} ;

The function stores the value from defined counter (currently on executing CPU
only) to memory specified by the value pointer. The reading is done by another
extension of struct op x86 model spec. We added the read ctr operation. In the model-
specific implementations it uses CTR READ macros defined by OProfile. It return
the value as the number of CPU events that occurred since last overflow (that means
threshold value+current value, since counters are counting from negative numbers
towards 0). we have implemented another option for reading counter values, that
use text files in /dev/oprofile. This serves for debugging purposes only, because it
has significant overhead.

4.3 Event sources

The Event Sources part of the implementation is responsible for generation and
reception of the events. The generation is used in manually triggered event types
(Atomic events), reception in automatic events (performance counters). All event
sources are descendant classes of EventSource abstract class (interface). To create
event source objects for performance counter classes, creators are available. Global
overview of the event sources component is in the Figure 4.1. Timer and delegates
are members of different components and are described later.

Every event source may consist of many events. They are defined by their name
and type and have fixed indices within one event source. The EventSource class with
its implementations in our work is displayed in the Figure 4.2. The interface defines
the getEventNames() and getEventTypes() methods that provides information about
supported events. They return vectors with types or names, they have fixed order
and the index of every event in these vectors can be later used to set event delegate
or enable/disable the single event.

Next method is defined to set the timer counter (setTimerCounter()) that is used at
every event to point out the time of the event. The setEventDelegate() method sets
the event delegate, that is used to notify the infrastructure about the event and
process the event (see Section 4.5 for details). Methods enable() and disable () can
enable or disable event reception for all events from the event source, while methods
enableEvent() and disableEvent() do the respective action only for a single specified
event.

The task of the event sources is to receive an event, create event data object (de-

41

EventSource

AtomicEventTrigger

<<enumerat ion>>
EventType

AtomicEventDelegate

TimerCounter

PerfCtrEventSource

PerfCtrEventDelegate

PerfCtrEventCreator

PerfCtrNativeEventCreator

PerfCtrJavaEventSource

PerfCtrJavaEventCreator

1

1

1..*

1

1..*

1

1..*
1

<<create>>

<<create>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.1: Event Sources

42

+setTimerCounter() : void
+setEventDelegate() : void
+enable() : void
+disable() : void
+getEventNames() : vector<string>&
+getEventTypes() : vector<EventType>&

EventSource

+setSourceId() : void
+trigger() : void

AtomicEventTrigger

-ATOMIC
-PERFCTR
-PERFCTRJAVA

<<enumerat ion>>
EventType

-signalHandler() : void
#fillEventData() : void

PerfCtrEventSource

-signalHandler() : void

PerfCtrJavaEventSource

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.2: Event Sources class diagram

scribed in Section 4.5), fill it in and notify the infrastructure about event by using
associated event delegate. This task does the trigger () method for atomic event and
signalHandler() method for performance counters events. The atomic events are trig-
gered manually from code. As it is clear from the name, for performance counters
the events are processed from signal handlers. All events use single signal handler
and the actual event is determined from signal data.

The event data that event source fills consists of time stamp, that is read from
associated timer counter, event ID, which is a unique number, assigned in sequence
from 1 and other fields from signal handler or source ID for atomic events.

Other classes in this component are responsible for creation of event sources for
CPU performance counter overflows. They are implementations of abstract class
PerfCtrEventCreator. This class defines the getEventSource() method that returns a
reference to the event source created and held in the descendants classes.

We use two implementations – PerfCtrNativeEventCreator for native code profiling and
PerfCtrJavaEventCreator for Java profiling. They are different only in the class type
they create, so we decided to use a template mechanism to create these classes.
This template is called PerfCtrEventCreatorTemplate and implements the event source
generation. This is done in constructor that has list of requested CPU performance
events with their overflow values specified. List of the PerfCtrEventSpec structures is
used for that. Since we use OProfile for CPU performance events management, the
communication with it is here. The procedure of event creation can be described in

43

following points:

1. Initialisation of OProfile (#opcontrol --init command in a suid wrapper).

2. Determine the CPU type by reading from the /dev/oprofile/cpu_type file.

3. Read events from the /usr/share/oprofile/{CPU_TYPE}/events file and
parse it.

4. Check if requested events are available in OProfile.

5. Create sensors for requested events to be able to read values of counters.

6. Create event source with specified events.

4.4 Data access

The Data Access subsystem is responsible for measurement of the data associated
with the events. It consists of sensors, which are the entities that measure data,
timers, descriptors that provides information about sensors and timers, measurement
context that is a set of sensors and management part. In the Figure 4.3 the diagram
of the whole component is displayed. We realize it is too complex – we placed it for
demonstration only here. We will describe the component part by part.

4.4.1 Sensors and timers

Sensors are means that provide access to performance data. In this work we use
very simple implementation without many features described in [2]. The sensors are
required to provide generic interface to measure required data simply. To be able to
do that, generic structures for values are needed. The ValueHandle interface provides
this. In the Figure 4.4 diagram with the interface and its descendants is displayed.

The enum ValueType defines data types that the sensors can return. The ValueHandle
interface defines an inspection method for every possible type, method that gets
the actual type stored and method that returns the memory size needed to store
the data type represented by the object. The descendant class EmptyValueHandle is
an error-checking class. It implements all methods from the ValueHandle interface,
but every method generates error. Then the leaf classes for actual data types re-
implements the methods that return their data type, memory size and value type.
This along with the EmptyValueHandle parent class ensures that only correct methods
can be called for the object implementing concrete data type.

44

GenericDescriptor

SensorDescriptor

TimeSourceDescriptor

RDTSCTimeSourceDescriptor

ValueHandleEmptyValueHandle

IntValueHandle

LongValueHandle

FloatValueHandle

DoubleValueHandle

TimerCounter

RDTSCTimerCounter

SensorReading

DefaultSensorReading

Sensor

<<enumerat ion>>
SensorSafety

<<enumerat ion>>
SamplingResult

RandomSensor

RandomSensorDescriptor

PerfCtrSensor

PerfCtrSensorDescriptor

MeasurementContext

DefaultMeasurementContext

PerformanceDataManager

DefaultPerformanceDataManager

0..*

1

1..*

1

1..*

1

0..*

1

<<create>>

<<create>>

<<create>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.3: Data Access component diagram

45

+getValueType() : ValueType
+getIntValue() : int
+getLongValue() : long long
+getFloatValue() : float
+getDoubleValue() : double
+getMemorySize() : int

ValueHandle

EmptyValueHandle

IntValueHandle

LongValueHandle

FloatValueHandle

DoubleValueHandle

-ERROR
-INT
-LONG
-FLOAT
-DOUBLE

<<enumerat ion>>
ValueType

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.4: ValueHandle class hierarchy

Next part includes descriptors (diagram is in the Figure 4.5). They are classes that
provide information about sensors and timers to user and creates sensors or provides
references to timers. The GenericDescriptor interface provides information about sen-
sor in strings - ID, name and longer description. Its descendants – SensorDescriptor
and TimeSourceDescriptor provides information specific for sensors and timers. The
first has getSensorSafety() method that tells if the sensor can be sampled within signal
handler and getValueType() method that returns what type of values will the sensor
provide. Next it declares the createSensor() method, that is responsible for creating
new objects of the sensor class. All descendants of SensorDescriptor should return
new instance of the sensor class that the descriptor describes. The caller is responsi-
ble for destruction of returned objects. TimeSourceDescriptor declares getTimercounter()
method that returns a pointer to existing timer object. The implementations holds
the counter object as private member and returns a pointer to it. Since all descriptors
(except one for CPU performance counter reading) are almost identical – they differ
only in the returned strings and type of created sensor, we use a preprocessor macro
CREATE SENSOR DESCRIPTOR to create the classes. The PerfCtrSensorDescriptor class
holds the CPU event number in addition to other sensors, that is used to create
sensor.

Timers are implementations of the TimerCounter interface. This interface defines
the getTime() method that return the time (methods getPrecision() and getResolution
() are also defined as in [2], but we do not use these methods). We implement

46

+getId() : string
+getName() : string
+getDescription() : string

GenericDescriptor

+getValueType() : ValueType
+getSafety() : SensorSafety
+createSensor() : Sensor *

SensorDescriptor
+getTimerCounter() : TimerCounter *

TimeSourceDescriptor

RDTSCTimeSourceDescriptorRandomSensorDescriptor

PerfCtrSensorDescriptor

<<enumerat ion>>
ValueType

-SIGNAL_SAFE
-SYNCHRONOUS

<<enumerat ion>>
SensorSafety

Sensor

TimerCounter

ProgTotalMemorySensor

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.5: Descriptors class hierarchy

one time source in the RDTSCTimerCounter class, that reads the processor’s times-
tamp counter using RDTSC instruction. It has corresponding descriptor – the
RDTSCTimeSourceDescriptor class.

Sensors (diagram in the Figure 4.6) are responsible for data sampling. The Sensor
interface defines methods that handles the data sampling and data storing, along
with informational methods. The getSafety() method informs if the sensor can be
sampled in signal handler. Next three methods handles sampling:

• prepare() – action that can be done prior to sampling (allocations, opening files,
etc.)

• sample() – reads the data. Returns status: SUCCESS, FAILURE and ANOMALY
if the data were sampled, but some unforeseen condition happened (like unex-
pected allocation) that makes the sample less valuable.

• decode() – parses the sampled data to an internal structure.

For external entity to be able to read the sampled data, it must call sensor’s
allocateSensorReading() method that returns new instance of object in that it can
store values (the SensorReading interface, described later). Then the storeData method

47

SensorDescriptor

SensorReading

+getSafety() : SensorSafety
+prepare() : void
+sample() : SamplingResult
+decode() : void
+allocateSensorReading() : SensorReading *
+storeData() : void
+getSensorDescriptor() : SensorDescriptor *

Sensor

<<enumerat ion>>
SensorSafety

-SUCCESS
-FAILURE
-ANOMALY

<<enumerat ion>>
SamplingResult

RandomSensor

RandomSensorDescriptor

PerfCtrSensor

PerfCtrSensorDescriptor

<<create>><<create>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.6: Sensors

stores the data to the object provided in parameter, that must be obtained from
allocateSensorReading() call. Sensors can also return references to descriptor that cre-
ated them.

As mentioned, data passing from sensors to other entities is implemented by the
SensorReading interface. It has the getValueType() method that returns the type of the
stored data, getSensorValue() that returns the value encapsulated in the ValueHandle
object and the getSensorDescriptor() method that provides the descriptor of the sensor
that created the object. All our sensors use inherited class DefaultSensorReading, that
has one additional method – setValue() used by sensors to set value.

4.4.2 Measurement context

Measurement context is a container of sensors that handles sampling of data that
sensors provide. As shown in diagram in the Figure 4.7, the context is defined as
the MeasurementContext interface. Every context has assigned a unique identification
number, the getId() method gets the number. The getSensors() method returns all
sensors that are included int the context and it has the getSensorReadings() method.
This method should acquire readings from all included sensors and pass them back
to caller. Methods prepare(), sample() and decode() calls the identically named methods
of all included sensors. The update() method is a convenience method that calls all
three previous methods in sequence. Other methods have identical name, but have

48

SensorReading

DefaultSensorReading

Sensor

<<enumerat ion>>
SensorSafety

<<enumerat ion>>
SamplingResult+prepare() : void

+sample() : SamplingResult
+decode() : void
+update() : void
+prepareSynchronous() : void
+sampleSynchronous() : SamplingResult
+decodeSynchronous() : void
+updateSynchronous() : void
+prepareLate() : void
+sampleLate() : SamplingResult
+decodeLate() : void
+updateLate() : void
+getSensorReadings() : vector<SensorReading*> &
+getSensors() : vector<Sensor*> &
+getId() : int

MeasurementContext

DefaultMeasurementContext

1..*

1

1..*1

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.7: Measurement context

Synchronous or Late suffix. The first are for sensors, that can work in signal handler
(they are sampled synchronously), the second are for sensors that must be sampled
in safe place (they are sampled later after event). We implemented this interface
in the DefaultMeasurementcontext class, which has internally two lists of sensors - one
for synchronous sampling and another for late sampling. The sensors that will be
included in the context are specified in the constructor.

4.4.3 Performance data manager

Task of the performance data manager is to create the measurement contexts,
timer and sensor registration, providing descriptors of registered sensors and timers
and provide timers for usage. The PerformanceDataManager interface (see diagram
in the Figure 4.8) provides registering methods (registerSensor () and registerTimer()
), unregistering methods (same, with un- prefix), methods that provide descrip-
tors of registered sensors and timers – one pair for all of them returned in vec-
tor (getSensorDescriptors() and getTimeSourceDescriptors()) and one pair to get one con-
crete descriptor by its name (getSensorDescriptor() and getTimeSourceDescriptor()). It
also provides references to timer counters, and provides two methods. One for de-
fault timer (getDefaultTimerCounter()) and one for specific counter specified by name

49

SensorDescriptor TimeSourceDescriptor

MeasurementContext

+getSensorDescriptors() : vector<SensorDescriptor*> &
+getSensorDescriptor() : SensorDescriptor &
+getTimeSourceDescriptors() : vector<TimeSourceDescriptor*> &
+getTimeSourceDescriptor() : TimeSourceDescriptor &
+getDefaultTimerCounter() : TimerCounter &
+createMeasurementContext() : MeasurementContext *
+registerSensor() : bool
+unregisterSensor() : void
+registerTimer() : bool
+unregisterTimer() : void

PerformanceDataManager

DefaultPerformanceDataManager

0..*

1

0..*

1

<<create>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.8: Performance data manager

(getTimerCounter()). The main task of performance data manager is creation of mea-
surement context. Two methods with same name – createMeasurementcontex() – are
available for this task. They differ in parameters, one takes a vector of sensor de-
scriptor and the other a vector of sensor names.

Our implementation is in the DefaultPerformanceDataManager class. Its implementation
is straightforward, with the sensor and timer descriptors stored internally as vectors.
The context IDs are assigned from private member without any synchronisation
mechanism – this means that contexts should be created at initialisation time and
later do not change.

4.5 Event processing

The Event Processing component is the part responsible for receiving events from
event sources, measurement of performance data associated with that events and
recording the measured data and event data to the memory using the Memory
Storage component (Section 4.6). Class diagram of the component is available in
the Figure 4.9.

The basic idea is that an event notifies the infrastructure, it measures the perfor-

50

EventDelegateEventData

PerfCtrEventData

PerfCtrJavaEventData

AtomicEventDelegate PerfCtrEventDelegate

EventProcessor

BaseEventProcessor

MeasurementContext

EventDataRecorder

BaseAtomicEventProcessor

BasePerfCtrEventProcessor

LateThreadPool

PerfCtrThreadPool PerfCtrJavaThreadPool

PerfCtrLateDataThread

PerfCtrJavaLateDataThread

Thread

1..*

1

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.9: Event processing classes

51

+sourceId : int
+eventTime : long long
-next : EventData*

+getId() : long long
+allocate() : EventData *
+deallocate() : void
+getNext() : EventData *&
+getEventType() : EventType

EventData
+pc : void*
+thread : pthread_t
+cpu : int
+kernelspace : bool
+event : unsigned long
+copy : bool
-context : MeasurementContext*
-recorder : PerfCtrEventDataRecorder*
-finishLock : SpinLock*

+allocate() : PerfCtrEventData *
+deallocate() : void
+getContext() : MeasurementContext *
+getRecorder() : PerfCtrEventDataRecorder *
+getFinishLock() : SpinLock *
+setDelegateData() : void

PerfCtrEventData

+method : char*
+java_thread : char*

+allocate() : PerfCtrJavaEventData *
+deallocate() : void

PerfCtrJavaEventData

SpinLock

<<enumerat ion>>
EventType

MeasurementContext

PerfCtrEventDataRecorder

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.10: Event data classes

mance data using the prepared measurement context and stores the event data and
the measured data to memory using some recorder. For atomic events, the proce-
dure is this straightforward, but for events generated in signals – CPU performance
counter overflows – not all data can be measured in the moment of event reception
from the signal handler. We use same idea as for inspection of Java code position
(Section 3.8.4). The description of component follows: we will describe event data,
sampling threads and mechanism that records data.

4.5.1 Event data

Event data is a set of simple structures that are filled by event source with infor-
mation about it. These information are time stamp and event source identification
for all events. This is extended for the performance counters event by the pro-
gram counter (at which was the performance counter overflow triggered), interrupted
thread identification, CPU number on that the event occurred, information if the
interrupted code was currently executing in kernelspace and identification of actual
performance event. For events in Java language, two additional fields are available
– Java method name and Java thread name. Few additional fields are defined, but
they are not related to events directly and will be explained later. Class diagram is
available in the Figure 4.10.

52

The problem with the event data is that the objects must be created and filled
directly in the event. This implies need for allocation. Standard allocation from
heap is not very good option, however, because it has some overhead and can change
measured data. For performance counters overflow events it is also dangerous, since
allocation from signal handler can damage the allocation mechanism. Because of
these reasons we implemented an allocator of the event data from a pre-allocated
memory pool. Every class has its own pool, that is sized as multiple of structure
memory size. The multiple is defined by the EVENT DATA PREALLOC SIZE constant.
In this pool the linked list is created, linking memory areas as large as the classes.
Then all classes have redefined operator new and operator delete. They are private
operations, to disallow direct call of them because these operators cannot be virtual
and we need to call allways the appropriate one. To be able to allocate objects,
we defined static method allocate () that calls the operator new. This ensures that
call to correct class’ operator is made. For deallocation, we define virtual method
deallocate () that calls correct operator delete.

We often needed to put event data into linked list. To make this simple, we added
support for this directly to the EventData class. It has private member next, that can
be accessed from the getNext() method.

4.5.2 Performance data measurement and recording

For performance data measurement the event delegates and processors are respon-
sible. Event delegates are classes that are available for events and events call their
notification methods at event occurrence. Event processors are classes that do the
data measurement and recording. As displayed in the Figure 4.11, we use one class
for both delegates and processors using multiple inheritance.

The EventDelegate interface is empty, and its only purpose is to provide common
ancestor for delegates. We have created two derived interfaces, AtomicEventDelegate
and PerfCtrEventDelegate that provide methods that must be called by event source
at event occurrence – notify () for atomic events and notifyPerfCtrOverflow() for perfor-
mance counter events. These methods implementation should initialise performance
data measurement and recording using event processors.

Event processors are implementation of the EventProcessor interface. It defines meth-
ods that identify the type of event that the class can process (getEventType()). Next
it defines two pairs of methods, with set- and discard- prefixes. The first pair
(setMeasurementContext() and discardMeasurementContext()) sets and cancels the mea-
surement context, that represents the data that will be sampled at events. This is
the way of associating events and performance data. The second pair involves data
recorders (described in the Section 4.6), methods ends with −EventaDataRecorder().

53

EventDelegate

+notify() : void

AtomicEventDelegate

+notifyPerfCtrOverflow() : void

PerfCtrEventDelegate

+getEventType() : EventType
+setMeasurementContext() : void
+setEventDataRecorder() : void
+discardMeasurementContext() : void
+discardEventDataRecorder() : void

EventProcessor

BaseEventProcessor

BaseAtomicEventProcessor

BasePerfCtrEventProcessor

<<enumerat ion>>
EventType

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.11: Event delegates and processors

It sets or cancels the data recorder – the object that is responsible for storing mea-
sured data and event data to the memory. These four methods are implemented in
abstract class – BaseEventProcessor. It holds pointers to set context or delegate and
destroys them in its destructor.

The BaseAtomicEventProcessor is defined as descendant of the AtomicEventDelegate and
BaseEventProcessor classes. It implements the getEventType() method and notify ()
method. Since we use one class for delegate and processor, this method measures
and records data directly. For atomic events that cannot be triggered in signals this
is simple – it just calls the prepare(), sample() and decode() methods from context and
the record() method from data recorder.

For the performance counter overflow events we defined the BasePerfCtrEventProcessor
class. It is descendant of the PerfCtrEventDelegate and BaseEventProcessor classes. It
implements the getEventType() method and the notifyPerfCtrOverflow() method. Since
these events originate in signal handler, the handling is more complex than for atomic
events. As mentioned before, we use the principle described in the Section3.8.4.

The implementation consists of several threads, one for every processor in the system
(class diagram for threads is in the Figure 4.12). To provide easy access to these
threads, we defined abstract class – LateThreadPool – it has the getThread() method
that returns thread for specified processor number. We use two implementations, one
for native application profiling – the PerfCtrThreadPool class and one for Java profiling
– the PerfCtrJavaThreadPool class. These classes differ only in type of the threads they
encapsulate, so we used a template class (PerfCtrThreadPoolTemplate) to create them.
The native code uses the PerfCtrLateDataThread class as thread implementation and
for Java code we have the PerfCtrJavaLateDataThread class. The thread class for Java

54

PerfCtrEventData

+getThread(cpu : int) : PerfCtrLateDataThread *

LateThreadPool

PerfCtrThreadPool

PerfCtrJavaThreadPool
-eventList : PerfCtrEventData
-listEnd : PerfCtrEventData
-semaphore : int

+run() : void *
+interrupt() : void
+newEvent() : bool
#beforeMeasurement() : bool

PerfCtrLateDataThread

#beforeMeasurement() : bool

PerfCtrJavaLateDataThread

Thread

1..*

1

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.12: Measurement threads

is descendant of native class.

The thread class defines method newEvent() that notifies the thread that the next
event is available for processing. It adds the event represented by its event data (the
PerfCtrEventData class) to linked list (defined by the eventList field) and executes the
up operation on the semaphore.

The run() method in thread classes is the thread routine. For our measurement
threads it does the following procedure in the infinite loop:

1. Execute the down operation on semaphore – this makes the thread to sleep
until the newEvent() method is called. As explained in theSection 3.8.4, this
ensures immediate task switch to the measurement thread.

2. Retrieve event data from linked list. The event data contains pointers to
measurement context and event recorder.

3. Execute pre-measurement action defined in the beforeMeasurement() method.

4. Measure the data from synchronous sensors, using prepareLate(), sampleLate()
and decodeLate() methods of measurement context.

5. Record the measured data with the recordLateData() method of the recorder.

6. Make the event available again by unlocking finish lock.

55

The mentioned beforeMeasurement() method is empty for native threads, but for Java
threads it gets the Java code position using the GetStackTrace() function. The threads’
interrupt() method ends the infinite loop by destroying the semaphore what the run()
method evaluates as request for exit.

Now we have explained the work of measurement threads so we can describe the
operation of event processor for performance counter events. As for atomic events,
delegate and processor are together in one class (BasePerfCtrEventProcessor). It is
used both for native and Java profiling, since the difference is only one – the Java
event must inspect the position of code. This difference is implemented by using
different thread classes. They are passed as parameters to the constructor of the
BasePerfCtrEventProcessor class, encapsulated in appropriate thread pool object.

The event source calls the notifyPerfCtrOverflow() method from signal handler. Its
implementation is following procedure:

1. Prepare data recorder.

2. Try to lock the inProgress spinlock, what ensures that only one event of single
type can be measured at once. If the spinlock is already locked, use the
recorder and store the event as a copy only using the recordCopy() method of
the recorder and return from method.

3. Store the context, recorder and inProgress spinlock pointers to event data (used
in measurement threads).

4. Measure data from signal-safe sensors, using the −Synchronous methods from
measurement context.

5. Record these data with recorder using its recordSynchronous() method.

6. Notify the measurement thread for the CPU on that the event was generated
(stored in event data) about new event by its newEvent() method.

4.6 Memory storage

When the event data are sampled they must be stored in some common storage in
memory to be ready for delivery to disk. Data could be stored to the disk directly,
but it would cost overhead that can change measured data. Therefore it is better
to store data to the memory, with almost no overhead and later save them to a file.
Data storage component serves this purpose. Its class diagram is displayed in the
Figure 4.13. The component consists of the −Recorder classes, that are means for

56

EventDataRecorder

PerfCtrEventDataRecorder AtomicEventDataRecorder

DefaultPerfCtrEventDataRecorder

DataStore

DefaultAtomicEventRecorder

DefaultDataStore

DeliveryStorage DataItemDescription

0..*

1

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.13: Data storage component

event processors to store data for its events and −DataStore classes that are used for
unified storage of event data and measured data to the memory. While recorders
are separate for every event source, data store should be single for all profiler.

4.6.1 Data recorders

As mentioned in previous section, event processors use the data recorders to store
measured data and event data to the memory. The EventDataRecorder interface de-
clares the root class of all recorders. It defines the method to register measure-
ment contexts that will be stored using that recorder (registerMeasurementContext()
and unregisterMeasurementContext()) and the setDataStore() method that associates the
recorder with memory data storage. It is possible for one recorder to have more
contexts registered.

Every event type has defined its recorder interface inherited from EventDataRecorder
(except PERFCTR JAVA type, but it is special case of PERFCTR event type

only). For the atomic events, the AtomicEventDataRecorder interface is defined. It
adds one method – record() that can be used to record one event and its data. In the
implementation class (DefaultAtomicEventRecorder) the methods only passes its argu-
ments to appropriate methods of the DataStore object. The registerMeasurementContext
() method calls the method with same name, record() calls the storeData() method

57

+registerMeasurementContext() : void
+unregisterMeasurementContext() : void
+setDataStore() : void

EventDataRecorder

+recordSynchronous() : void
+recordLateData() : void
+recordCopy() : void
+cancel() : void

PerfCtrEventDataRecorder
+record() : void

AtomicEventDataRecorder

DefaultPerfCtrEventDataRecorder

DataStore

DefaultAtomicEventRecorder

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.14: Data Recorders

and unregisterMeasurementContext() is empty, because data store does not support this
operation.

The recorders for the performance counter overflow events are not so simple. The
reason is the data are collected in two phases and we decided to use recorders to put
them together again (literally, they are never apart, because they are stored within
contexts, but we must be aware of both measurement phases and join the sampling
status). The PerfCtrEventDataRecorder interface defines methods to support storing
data in two phases (recordSynchronous() and recordLateData()), method to cancel events
that has already recorded synchronous phase (cancel()) and method to record event
with a copy of data of next event (recordCopy() – this is used when next event of the
same type arrives while still processing previous instance). The implementation is in
the DefaultPerfCtrEventDataRecorder class. The implementation of context registration
method and setDataStore() method is same as for atomic events. If event is recorded
by the recordCopy() method it is only put into linked list of other events recorded as
copy. Method for recording synchronous data (recordSynchronous()) creates structure
in which it stores event data pointer, result of sampling and pointer to measurement
context with data. Then it puts this structure to a linked list and returns. The
recordLateData() method then searches for record in that list that has stored event
with same event ID as specified in the eventId parameter of the method. The record
is removed from the list and a new result is created as a worse one from sampling of
synchronous and late data. After this, list of events stored by recordCopy() method
is traversed and events that were generated by the same processor event are linked

58

+registerMeasurementContext() : void
+storeData() : void
+setDeliveryStorage() : void
+flush() : void
+setCapacity() : void
+getCapacity() : int
+getFreeCapacity() : int
+setOverflowPolicy() : void
+getStorageDescriptions()
+setDeliveryTreshold() : void
+readRecord() : bool

DataStore

-readOneRecordRaw() : void

DefaultDataStore DeliveryStorage

+getValueType() : ValueType
+getDescriptions() : void

DataItemDescription

<<enumerat ion>>
ValueType

0..*

1

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.15: Data store

to one linked list using the next field of event data. This list is then passed to the
storeData() method of data store. At request for event cancellation (cancel() method)
the list with recorded synchronous data is traversed, and the record with appropriate
event is destroyed.

4.6.2 Data store

The data store is a part that unifies all events in one place. It takes data from all
events and stores them in memory and provides interface that no longer distinguish
the event types. The interface supports two possible approaches how to deliver data
to external storage. It can flush all data at once when it runs out of capacity or the
external storage can asynchronously read the records one by one. The flushing ap-
proach brings overhead that counts to the application’s threads while asynchronous
reading needs its own thread and in total it is a little less effective, but does not
affect application’s threads. Simplified class diagram is displayed in the Figure 4.15.

The DataStore interface defines several methods – some are for configuration, other
provide information about state of storage and the last methods manipulates the
data. The interface supports following configuration methods:

• registerMeasurementContext() – the storage must store data in some common for-
mat and the storage must be effective. The storage needs a way to prepare its
data structures for data it will be storing.

• setDeliveryStorage() – configures the external storage where the stored data will
be delivered.

59

• setCapacity() – request to set size of internal buffers to support specified number
of records for every registered context.

• setOverflowPolicy() – specifies what to do if the internal storage is full. FLUSH
causes all stored events to be delivered to the external storage and IGNORE
will ignore all events until storage is available.

• setDeliveryTreshold() – sets when the external storage will be notified that it
should start reading data. The value is in per cents of capacity.

To inspect the state, we defined three methods – getCapacity() returns the size of
internal buffers in number of data records, getFreeCapacity() tells free capacity for
specified measurement context and getStorageDescriptions() returns descriptions of data
that the data storage is storing in way with that the external storage can work. It
returns a vector of description lists. The order is important, since the data that are
passed from the memory storage to the external storage use an index to that vector.

In the data manipulation group of methods we defined the storeData() method, that
is called by recorders to store event data and measured data. The flush () method
collects all data stored in storage and passes them to the external storage. readRecord
() method reads the oldest record from data storage stored with specified context.

Our implementation is in the DefaultDataStore class. To store the data it uses the
separate memory buffers for all registered contexts. At context registration, the class
creates description of the data that the context provides using its sensor descriptors.
It also determines, how much memory is needed to store one record. It is simple
sum of memory sizes required by the sensors. Then it allocates memory that is as
large as capacity ∗ datalength and stores the pointer to the associative array. The
key is the context ID. It has also two pointers to the data buffer (actually they are
indices from 0 to capacity) – one points to the location that will be next written to
and other to the location that will be next read from.

Then the data storing (the storeData() method) selects the appropriate buffer and
stores the data to the location specified by writing pointer. The data are stored
one by one item to the memory in their binary representation. This resembles using
structures, but we cannot use compiler support for that so we must compute data
offsets manually. If the number of written recordes reached the threshold defined by
the setDeliveryTreshold() method (or its default value – set to 30 per cents), it calls the
startReading() method of external storage class (the DeliveryStorage interface). To read
the data we defined the readOneRecordRaw() method that reads one record from the
specified buffer and location in that buffer. The reading is same as writing – we use
the created data descriptions and read binary data from the memory buffer as it is
a structure. Then the flush () method reads all records and passes them to external

60

+saveData() : void
+setDataStore() : void
+finish() : void
+startReading() : void

DeliveryStorage

+saveOneRecord() : void

IndexedDeliveryStorage

DataStore

XMLFileDeliveryStorage

Thread

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.16: External storage component

storage, while readRecord() reads one record from the specified context’s buffer.

4.7 External storage

The external storage component, respresented by the data delivery classes, is re-
sponsible for storing the data from the memory storage to the external devices. We
have defined two implementations, indexed file storage and XML file storage. The
storage to the XML file was created only for debugging purposes and we will not
describe it. It is almost same as indexed file storage, except it stores only text data.
The component diagram is displayed in the Figure 4.16.

The DeliveryStorage interface communicates with the memory storage (DataStore) and
writes the data to the external devices. It defines following methods:

• saveData() – used in the flush operation – stores a set of data.

• setDataStore() – sets the data storage that will be processed.

• finish () – called by infrastructure at exiting from application – used to close
files, stop threads, etc.

• startReading() – called by data storage when the capacity threshold is exceeded.
The implementation should start reading data after being notified by this
method.

Our implementation (the IndexedDeliveryStorage class) uses mechanism described in
the Section 3.9 to store the data. It defines private method (saveOneRecord()) that

61

+getPerformanceDataManager() : PerformanceDataManager &
+createAtomicEventTrigger() : AtomicEventTrigger *
+deleteAtomicEventTrigger() : void
+createPerfCtrEvents() : void
+createPerfCtrJavaEvents() : void
+getPerfCtrEventSource() : EventSource &
+preparePerfCtrEventSource() : void
+preparePerfCtrJavaEventSource() : void

InfrastructureManagement

PerformanceDataManager AtomicEventTrigger

EventSource

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.17: Infrastructure management

stores one data record. We believe it is not necessary to describe this procedure
exactly, it only creates record in index file as structure and then stores data fields
one-by-one to the data file and stores record length and position to the index record.

The implementation of the saveData() method is just loop that calls saveOneRecord()
. To implement asynchronous data delivery, the class is defined as descendant of
the Thread class. It makes possible to define run() method that can be executed
in separate thread. Our implementation uses semaphore, that is raised in calls to
the startReading() method. In the thread routine we have a loop that lowers the
semaphore and then reads the available data from memory storage. The read data
are stored by the saveOneRecord() method. The finish () method stops the thread and
closes the files.

4.8 Infrastructure management

The infrastructure management part of the implementation provides a way for easy
usage of other components. In principle, it is possible to use the infrastructure
without management object, but it would be difficult. The InfrastructureManagement
class (diagram is in the Figure 4.17) provides methods that create and destroy atomic
event source (createAtomicEventTrigger() and deleteAtomicEventTrigger). The user only
needs to specify the measurement context and then he or she can call the trigger ()
method to generate event. The contexts can be created using performance data
manager, that is available by calling getPerformanceDataManager() method (manager
is described in the Section 4.4.3). The createPerfCtrEvents and createPerfCtrJavaEvents
methods prepare the event source for CPU performance counters and sensors for

62

reading their values. The preparePerfCtrEventSource() and preparePerfCtrJavaEventSource
() methods are used to initialize performance counters event source to be able to
process events and measure data specified in the context parameter.

When no longer needed, the user is obliged to destroy all created atomic event
sources by calling the deleteAtomicEventTrigger method. All other objects created or
passed to manager (such as the measurement contexts) are destroyed automatically
by the manager.

4.9 Java interface and other tools

In order to use the infrastructure with Java, it must have a form of JVMTI agent. We
define the Agent OnLoad() entry point, that initializes JVMTI environment, sets JVM
capabilities and registers JVMTI events. We are using the JVM initialisation and
death events, and thread start and end events. In entry point we only enable VM init
and death events. In VM initialisation event callback we create the environment for
infrastructure, and start measurement of data. This cannot be done in Agent OnLoad
(), because there cannot be created new threads the infrastructure needs. Here
we also enable thread start and end events. Their callbacks maintain associations
between the Java and native threads, as described in the Section 3.8.1.1. In VM
death event the infrastructure is stopped and destroyed.

We have created other supporting tools, that are worth explanation. The most
important is the Thread class. It can run code defined in its descendants (in the run()
method that is abstract in the Thread class) in separate thread. This works both
for native and Java profiling. In native profiling, it just creates new POSIX thread,
while if profiling Java the thread must be created using procedure described in the
Section 2.2.3.3. The class determines if it is run in native environment or within
Java and chooses the correct way. We are also using simple classes that provides
encapsulated access to POSIX mutexes, spinlocks and SYSV semaphores.

63

Chapter 5

Evaluation

All profilers are exposing the tested applications to some overhead. It is important to
keep the overhead as low as possible. In this chapter, we will measure the overhead
of our tool. First, we will introduce benchmarks we have used and then provide the
measurement results.

5.1 Benchmarks

Our tool is able to profile both Java and C++ code. We will focus on measurement
of Java profiling, but we will also measure in C++. For Java, we have used three
benchmarks:

• Fhourstones benchmark [20] – integer operation benchmark computing po-
sitions in modification of tic-tac-toe game. The results are in thousands of
positions computed per second (Kpos/s). The higher values are better.

• Sampler benchmark from CCPSuite [18] – benchmarking suite that consists
of set of measurements. We have chosen 3 benchmarks: two measurements of
memory allocations and one measurement of thread lifecycle. The results are
in processor’s clock ticks – lower values are better.

• Our simple Java program – TestingJavaProgMulti – computes some integer
calculations, using very frequent method calls. Uses two identical threads.
The result is measurement of time it spent on processor using time command.

In C++ we measured using the C version of Fhourstones.

64

5.2 Measurements

We measured on two computer configurations:

• Single CPU Athlon XP (Barton) @ 1921 MHz, 512 KB cache, 1 GB system
memory

• Dual CPU Pentium III (Coppermine) @ 800 MHz, 256 KB cache each, 512 MB
system memory

For each benchmark, we made a set of measurements. The first measurement was
always without profiling and the results serve as the base values. Then we measured
the same benchmark with three or four different configurations of the tool. We
decided to do the measurements with processor events that count the completed in-
structions. For Java, we used values 50000000, 100000000, 150000000 and 200000000
for overflow threshold. For C++, the values 500000, 1000000 and 1500000 were used.
We executed every combination of benchmark and configuration several times and
we will provide results as an arithmetic mean.

5.2.1 Fhourstones – Java

The benchmark can be run using following command:

$ java -Xmx70m SearchGame < inputs

The inputs file contains starting positions for calculation. For our measurements,
we used the third value from inputs distributed with benchmark – 13333111. For
every configuration we executed the benchmark 5 times. The results are following:

1x Athlon XP
Configuration KPos/s Events

Base 1400 0
50000000 758 9620
100000000 808 4530
150000000 999 2470

2x Pentium III
Configuration KPos/s Events

Base 635 0
50000000 624 4990
100000000 626 2490
150000000 629 1660

65

The difference in overhead is obvious. Generally, in profiling Java, almost all over-
head is caused by GetStackTrace() function (details in the Section 3.8.1.2). In single-
processor machine, the function must be run on the same processor as the benchmark
and the overhead becomes visible. On multiprocessor, as shows the second measure-
ment, the overhead is not so apparent. This is because the measurement is using
separate thread and it is using the other processor. Also important is the difference
in number of events. Since we are using number of completed instructions as events,
the number of events can be interpreted as number instructions needed to finish the
task. The difference is probably caused by the fact that in multithreaded case, all
events that comes from processor running the measurement thread are stored only
as copies (because that thread is processing events or is sleeping), and therefore not
causing additional overhead. In single-processor case the code of measurement is
probably not so often interrupted, because it may run less then the time required to
complete measurement. But the used instructions are counted for the benchmarking
thread and that is interrupted sooner then in multi-processor.

5.2.2 Fhourstones – C++

The benchmark is run in same manner as from Java. It must be compiled, we used
the -O3 optimisation level, and executed with data on standard input. We measured
the benchmark with same data as the one for Java. Here are the results:

1x Athlon XP
Configuration KPos/s Events

Base 2570 0
500000 2410 288000
1000000 2490 141000
1500000 2520 93000

2x Pentium III
Configuration KPos/s Events

Base 1110 0
500000 1000 293000
1000000 1040 143000
1500000 1060 95000

In the C++ case, the overhead is much lower, even if the event frequency is 100 times
bigger. Also, the event count is approximately equal in both computer configura-
tions. No significant source of overhead (as opposed to Java’s GetStackTrace()) is
present in native version and it makes the overhead much smaller.

66

5.2.3 TestingJavaProgMulti

This benchmark does a simple integer computations. It has two identical threads.
We measure total time spent on processor as provided by time command. We use
the sum of user and sys times. We ran the benchmark 5 times on every configuration
and presented results are the arithmetic mean of measured times in seconds. The
results follows:

1x Athlon XP
Configuration Time (s) Events

Base 58 0
50000000 79 5600
100000000 79 2800
150000000 78 1900

2x Pentium III
Configuration Time (s) Events

Base 161 0
50000000 211 5000
100000000 192 2400
150000000 189 1600

From the measurement it is clean the advantage of using 2 processors is lost if
the application has more threads. Interesting result are the almost same time in
single-processor measurement. The third measurement has the lowest overhead, as
expected, but the measurement at highest event frequency has better time then less
demanding case. This is probably caused by fact that the events were triggered
while processing previous event very often. These events are stored as copies of
another event and it is free of the overhead caused by GetStackTrace(). The event
count is also similar in this benchmark.

5.2.4 Sampler

This benchmark is a set of different measurements. Each measurement provides
several readings, called samples. They are computed from pre-defined number of
measurements and consist of minimal measured value, average value and maximum
value. The data is stored in the Client.out file, in XML format. An example follows:

<Benchmark Type=”Thread Locking”>
<Measurement>
<Sample LoadBefore=”2” LoadAfter=”2”>22297 23386 116092</Sample>
<Sample LoadBefore=”2” LoadAfter=”3”>22297 22936 52262</Sample>

67

<Sample LoadBefore=”2” LoadAfter=”3”>22297 23710 130906</Sample>
<Sample LoadBefore=”3” LoadAfter=”9”>22297 22580 34861</Sample>
<Sample LoadBefore=”8” LoadAfter=”4”>22297 22661 36595</Sample>

</Measurement>
</Benchmark>

We have chosen three measurements from two benchmarks. From Memory Alloca-
tion we picked the measurement of 10000 allocations of 1023 and 8121 bytes long
blocks. The other measurement is from the Thread Lifecycle benchmark, and we
used measurement with 128 threads. all used measurements provide 5 samples and
we executed the benchmark 3 times for every configuration, getting 15 samples in
total. We provide average values in following results. We ran the benchmark on
both machines, but since the benchmark takes very long to execute, we did not
manage to keep the single-processor machine at low load and the results are not
reliable. Therefore we provide results for dual processor machine only here:

2x Pentium III
Benchmark

Configuration Allocation 1023 Allocation 8191 Threads 128
106 ticks 106 ticks 105 ticks

Base 193 814 186
50000000 197 896 264
100000000 190 841 276
150000000 189 815 274
200000000 188 803 266

In the memory allocation benchmarks the overhead is low (and sometimes surpris-
ingly negative). The reason is probably the fact that the Sampler is written in Java,
but it uses some native code parts. Moreover, we noticed that the benchmarks with
the same configuration tended to have better results if run multiple times. The third
benchmark is using only Java language and the overhead is very high again. Again,
the configuration with the highest event rate has better results then other profiling
configurations. We think the reason is the usage of event data copies instead of
exact measurement if two events appear in same time.

5.2.5 Summary

As the measurements implies, the overhead of Java profiling is very high, ranging
from 20 to 50 per cents. This is caused by Java code position inspection, that takes
aproximately 20 millions processor clock ticks for each event. The native profiling
has acceptable overhead of 2-10 per cents depending on configuration. For native

68

code, minimal event threshold was set to 500000 events and we do not recommend
to set it lower.

5.3 Comparison

Here we will compare the overhead to one of the commonly used JAVA profilers –
HPROF. It takes, like our tool, the form of agent. We used HPROF with Fhour-
stones and TestingJavaProgMulti benchmarks. The HPROF was configured with
option cpu=samples that orders the profiler to create statistical profile. We ran
both of them several times and here is the table with average results, measured on
the single-processor machine:

1x Athlon XP
Benchmark Result
Fhourstones 697 Kpos/s

TestingJavaProgMulti 79.5 seconds

As shows the results, the overhead of our tool is slightly lower that the overhead
of HPROF, and we think it cannot be different with any tool that uses JVMTI or
similar library.

69

Chapter 6

Conclusion

6.1 Summary

The main goal of this work – to devise a tool that is able to profile Java and
native code using data from hardware, operating system and virtual machine – was
accomplished in priciple. Specifically:

• A method for communication between the profiling interrupt, intercepted in
kernel space, and the monitoring agent, running in user space, was devised
(Section 3.7).

• A method for querying the position of the virtual machine from within the
asynchronously invoked monitoring agent was devised (Section 3.8).

• The framework for performance data collection from [2] was adopted for use
in the combination of native and interpreted environments.

• A format for storing the collected performance data, with separation of index
and data for efficient random access, was designed (Section 3.9).

• The entire approach was prototyped in a tool that runs on current version of
Linux and Java platforms with very decent stability given the number of low
level assumptions that the prototype relies on. The tool is designed for running
on x86 Linux systems with processors not based on NetBurst microarchitecture
and JVM from Sun.

From the practical perspective, the usability of the prototype is limited due to high
overhead of Java profiling. Even if this overhead is not higher than for other sam-
pling profilers (like HPROF), it lowers the advantages provided by the performance

70

counters. For native code, the overhead is acceptable. Still, the prototype is unique
in its ability to combine profiling of both interpreted and native code, which was
one of the main goals of the thesis.

Besides the major goal of designing and implementing the prototype, other poten-
tially useful output was delivered as a part of the thesis:

• We have created a comprehensive overview of hardware performance counters
(Section 2.1.1), because in the documentation available from CPU vendors the
description is split in many parts.

• We have also provided the description of handling of performance counter
in OProfile for x86 machines, which the official documentation lacks (Sec-
tion 2.1.2.2).

• We have also investigated a number of ways how the kernel interrupt handler
can communicate with userspace without delays (Section 3.6 and Section 3.7)
and options of calling JVMTI functions from the signal handler (Section 3.8).

• We have proposed adjustments to the performance monitoring framework
[2](Section 2.3.1.2).

6.2 Future work

The biggest disadvantage of Java profiling is the overhead of the code position
detection. The further investigation for possibilities hot to do this task would be
very helpfull. Moreover, the opensource version of JDK is now available, what make
the option to change the mechanism used by JVMTI possible, but the task would
be very difficult. Maybe also the option to use bytecode instrumentation instead of
GetStackTrace() would be worth the effort.

The created tool could be improved of options to identify the code position in the
native code. The tool currently provides only absolute value of program counter,
but the tool could cooperate with OProfile and use its infrastructure to provide
annotated source. To accomplish this, the OProfile data that are stored to the
userspace should be extended by the absolute value of program counter and process
identificator. From this couple the source code position could be determined using
OProfile’s tools.

Also the mechanism of performance data measurement is not ideal. It could be
modified to use multiplexing of contexts or use one data snapshot for measurement
of data that can be read from common data source, as proposed in [2]. One of

71

the future task could be to use some more common (and reliable, maybe) manage-
ment of CPU performance counters. The most commonly used options are PAPI
library and perfctr Linux kernel extension. As mentioned, both of them would need
modifications.

The disadvantage of the tool for native code is the need to modify source codes
and include the infrastructure. The methods how to attach the library to running
application, or how to start the application to use the profiling library could be
elaborated.

72

Bibliography

[1] BIOS and Kernel Developer’s Guide for the AMD Athlon 64 and AMD
Opteron Processors, 2006 – http://www.amd.com/us-en/assets/content type/
white papers and tech docs/26094.PDF

[2] Bulej L.: Connector-based Performance Data Collection for Component Appli-
cations, Ph.D. Thesis, Charles University, 2007 [p. 52-97]

[3] GNU gprof Manual – http://www.gnu.org/software/binutils/manual/gprof-
2.9.1/gprof.html

[4] Hauswirth M, Sweeney P., Diwan A., Hind M.: Vertical profiling: understand-
ing the behavior of object-priented applications, Proceedings of the 19th an-
nual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, October 24-28, 2004, Vancouver, BC, Canada

[5] Intel 64 and Ia-32 Architectures Software Developer’s Manual – Volume 3A:
System Programming Guide, Part 1 – http://developer.intel.com/ design/pro-
cessor/manuals/253668.pdf

[6] Intel 64 and Ia-32 Architectures Software Developer’s Manual – Volume 3B:
System Programming Guide, Part 2 – http://www.intel.com/ design/proces-
sor/manuals/253669.pdf

[7] Intel VTune Performance Analyzer – http://www.intel.com/cd/software/
products/asmo-na/eng/vtune/239144.htm

[8] Jikes RVM web site – http://jikesrvm.org/

[9] JVM Tool Interface Reference – http://java.sun.com/j2se/1.5.0/docs/guide/
jvmti/jvmti.html

[10] Levon J.: OProfile Internals – http://oprofile.sourceforge.net/doc/ internal-
s/index.html

73

[11] McDougall R., Mauro J., Gregg B.: Solaris Performance and Tools, Prentice
Hall, 2006, ISBN 0-13-156819-1

[12] O’Hair K.: HPROF: A Heap/CPU Profiling Tool in J2SE 5.0, 2004 –
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html

[13] Open JDK home page – http://openjdk.java.net/

[14] OProfile homepage – http://oprofile.sourceforge.net/news/

[15] PAPI homepage – http://icl.cs.utk.edu/papi/

[16] Pettersson M.: Linux performance monitoring counters kernel extension –
http://user.it.uu.se/˜mikpe/linux/perfctr/

[17] Prasad C.K., Ramchandani R., Rao G., Levesque K.: Creating a Debugging
and Profiling Agent with JVMTI – 2004 – http://java.sun.com/developer/ tech-
nicalArticles/Programming/jvmti/

[18] Sampler benchmark – http://dsrg.mff.cuni.cz/˜ceres/prj/CCPsuite/

[19] Sweeney P., Hauswirth M., Cahoon B., Cheng P., Diwan A., Grove D., Hind
M.: Using hardware performance monitors to understand the behavior of java
applications, Proceedings of the 3rd conference on Virtual Machine Research
And Technology Symposium, May 06-07, 2004, San Jose, California

[20] Tromp, J: The Fhourstones Benchmark – http://homepages.cwi.nl/˜tromp/
c4/fhour.html

74

Appendix A

Installation and usage

A.1 Installation

The system requirements are following:

• x86 system with non-NetBurst processor (all x86 processors except Pentium 4-
based ones).

• Linux operating system compatible with 2.6.24 version of kernel.

• JDK from Sun, version 1.5 at least.

• Development version of expat library.

• OProfile (most recent version recommended - currently 0.9.3).

• GCC compiler with C and C++ support (version 4 and newer recommended).

• Linux kernel sources - 2.6.24 version (2.6.24.X works, too).

The installation consists of two phases:

1. Kernel patching and configuration.

2. Userspace compilation and setup.

To patch the kernel, change working directory to the directory with kernel sources
(kernel-source in example). Copy kernel patch from enclosed CD (file named msi-
kernel-2.6.24.patch in the src/patch directory) to some accessible location (we will
refer to the file as patch-dir/patch). Then use the patch command to to apply
patch. The following example illustrates this procedure:

75

$ cd kernel-source
kernel-source$ patch -p1 < patch-dir/patch

After this, prepare a kernel configuration suitable for your system. The OProfile
must be compiled as in-build, not as a module. It is the option CONFIG_OPROFILE in
the .config file, available in the “Instrumentation Support” submenu in menuconfig.
Also make sure that Local APIC is enabled. Then the kernel can be built and
installed. After reboot, the presence of the patched code can be checked by following
commands:

opcontrol --init
ls -l /dev/oprofile/signal
-rw-rw-rw- 1 root root 0 2008-04-10 12:51 /dev/oprofile/signal

If the signal file is available, the patch was properly installed.

For the userspace part, copy the sources from CD (available in the src/infrastructure
directory), and make sure the JDK_HOME environment variable points to the installa-
tion of JDK. Then execute make depend, make and make suidwrappers commands
and change access right to the suid wrappers:

chown root:root initoprofile startoprofile stopoprofile
chmod +s initoprofile startoprofile stopoprofile

The functionality of infrastructure can be tested by running test2 test:

$./test2

In case of error message about unknown event, the test is prepared for different type
of CPU and the event that is set for the test is not available for current CPU. The
solution is explained in Usage.

A.2 Usage

To use the infrastructure with Java, copy libinfrastructure.so and suid wrappers
to the working directory of the application. The EmptyThread.java file must be
available through CLASSPATH environment variable. Make sure, the suid wrappers
have correct access rights. Use following command to run JavaApplication with
profiling:

$ export LD_LIBRARY_PATH=.
$ java -agentlib:infrastructure JavaApplication

76

or

$ export LD_LIBRARY_PATH=.
$ java -agentlib:infrastructure=outputname JavaApplication

to store the results in files with name outputname.

We have not developed any configuration utility or data format for selecting the
events and sensors for the measurement.Because of this, the measurement must be
configured in infrastructure’s source code directly. For Java, the configuration is in
the JavaInterface/agententry.cpp file, for C++ profiling the infrastructure must be
included and configured directly from its code.

The following code is in the JavaInterface/agententry.cpp file:

// i n i t i a l i z e the i n f r a s t r u c t u r e
IM = new InfrastructureManagement (output name option ?

output name option : ” javaoutput ”) ;

//Create performance couter event (s)
std : : l i s t < PerfCtrEventSpec > events ;
PerfCtrEventSpec ev spec1 (”RETIRED INSNS” , 50000000) ;
PerfCtrEventSpec ev spec2 (”DATA CACHE REFILLS FROM L2” , 500000 , 0 x1f)

;

events . push back (ev spec1) ;
events . push back (ev spec2) ;

IM−>createPer fCtrJavaEvents (events) ;

This code initializes the infrastructure and selects the performance events to count.
The user must specify the event name and the overflow threshold. The third pa-
rameter is optional and can specify the event mask. Maximum number of events is
defined by CPU (4 for AMD and 2 for Intel CPUs). The IM−>createPerfCtrJavaEvents
(events); command registers the events and prepares sensors that can read values of
the counters.

Next task is to create the measurement contexts. The following code does this task:

// c rea t e con t ex t (s)
PerformanceDataManager & pdm = IM−>getPerformanceDataManager () ;
s td : : vector<std : : s t r i ng > s en so r s 1 ;
s en so r s 1 . push back (”Random”) ;
s en so r s 1 . push back (”ProgTotalMemory”) ;

s td : : vector<std : : s t r i ng > s en so r s 2 ;
s en so r s 2 . push back (”SysFreeMemory”) ;

77

MeasurementContext ∗ context1 = pdm. createMeasurementContext (s en so r s 1
) ;

MeasurementContext ∗ context2 = pdm. createMeasurementContext (s en so r s 2
) ;

The first step is to acquire the performance data manager that can create con-
texts. Then we specify the sensor names in the lists and create the contexts using
createMeasurementContext() method. We support following sensors:

• Random – returns random number.

• ProgTotalMemory – gets the total memory consumed by application.

• ProgSwappedMemory – gets the amount of the application’s memory that is
swapped.

• SysFreeMemory – gets the total amount of free memory in the system.

• SysUsedMemory – gets the total amount of used memory in the system.

• SysSwappedMemory – gets the total amount of swapped memory in the sys-
tem.

• NetSentSensor – gets total amount of data sent on all network interfaces.

• NetReceivedSensor – gets total amount of data received on all network inter-
faces.

The number of sensors in one context is not limited.

After creation of contexts, they must be associated with events. This is done by the
following code:

std : : l i s t < MeasurementContext∗ > context s ;
context s . push back (context1) ;
context s . push back (context2) ;

IM−>preparePerfCtrJavaEventSource (context s) ;

IM−>getPerfCtrEventSource () . enable () ;

The code puts the contexts to the list. Here, the order of items is important. The
first context is associated with first event defined in events list, the second with second
and so on. The IM−>preparePerfCtrJavaEventSource(contexts); associates events with
contexts and creates event source. The last line starts the measurement.

So, for configuration the change of these parts of code is required. The list of
available events for running CPU can be obtained from the command:

78

$ opcontrol --list-events

For the C++ code, the infrastructure must be included directly to the application
and configured from its code. This is done usually in the file that contains the main()
function. An example is in the Listing A.1.

#include <in f rastructuremanagement . h>

int main ()
{

MeasurementInfrastructure : : InfrastructureManagement IM(” te s toutput ”
) ;

//Create performance couter event (s)
std : : l i s t < MeasurementInfrastructure : : PerfCtrEventSpec > events ;
MeasurementInfrastructure : : PerfCtrEventSpec ev spec1 (”

RETIRED INSNS” , 500000) ;
events . push back (ev spec1) ;

IM. createPer fCtrEvents (events) ;

// c rea t e con t ex t (s)
MeasurementInfrastructure : : PerformanceDataManager & pdm = IM.

getPerformanceDataManager () ;
s td : : vector<std : : s t r i ng > s en so r s 1 ;
s en so r s 1 . push back (”Random”) ;

MeasurementInfrastructure : : MeasurementContext ∗ context1 = pdm.
createMeasurementContext (s en so r s 1) ;

s td : : l i s t < MeasurementInfrastructure : : MeasurementContext∗ >
context s ;

context s . push back (context1) ;

IM. preparePerfCtrEventSource (context s) ;
IM. getPerfCtrEventSource () . enable () ;

/∗ . . . code o f a p p l i c a t i o n . . . ∗/
}

Listing A.1: Example of using infrastructure in C++ program

It is from test2 program mentioned in Installation, the code is available in the Test-
s/test2.cpp file. So, if you get error that the event does not exists, experiment with
“RETIRED INSNS” string. The program must be linked with libinfrasructure.so
library and compiled with infrastructure source directory in include path.

The running profiler creates profile in the files that begin with the name specified
in the InfrastructureManagement constructor, or name specified as parameter in Java

79

agent (the default name is “javaouput” for Java). In the file basename.desc.xml is
description of measured data. You can pass it as the only parameter of the reader

program that is available in the directory where the infrastructure was build. This
program interprets the data in human-readable format.

80

Appendix B

Content of enclosed CD-ROM

/README – description of context of the CD.

/src/ – source codes of applications and kernel patch.

infrastructure/ – code of userspace part of profiling tool.

patch/ – patch for required kernel modifications.

java tests/ – simple testing Java programs.

test agents/ – simple testing Java agents.

/doxygen/ – generated documentation in HTML format.

/thesis/ – electroic version of this document.

/results/ – some results measured by the created tool.

81

