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Abstrakt

Názov práce: Vyhledávací stroj pro matematiku
Autor: Jozef Mišutka
Katedra: Katedra softwarového inženýrství
Vedúci diplomovej práce: RNDr. Leo Galamboš, Ph.D.
E-mail vedúceho: leo.galambos@mff.cuni.cz
Abstrakt:

Vyhľadávacie stroje (napr. Google) vládnu obsahu dnešného WWW. Sú neoddeliteľnou súčasťou
každodenného prístupu k informáciám. Veda, ktorá sa zaoberá práve vyhľadávacími strojmi, sa
sústreďuje na vyhľadávanie prirodzených častí jazyka - slov. V posledných rokoch sa rozšírila
pôsobnosť vyhľadávačov aj na iné oblasti. Veľkosť matematických dát na WWW enormne narástla.
Dôležitosť matematických vyhľadávacích strojov je evidentná. Aj napriek tomuto vývoju, sa oblasť
vedy skúmajúca matematické vyhľadávanie donedávna zanedbávala.

Napriek tomu, že aktívny výskum napreduje vo vývoji, zatiaľ bolo prezentovaných len niekoľko
málo výsledkov. Hlavným cieľom tejto práce je vyplniť túto medzeru. Nový matematický vy-
hľadávací stroj bol navrhnutý so zameraním sa na použiteľnosť. Jediný vyhľadávací stroj schopný
efektívne indexovať WWW - čisto textový (fulltextový) vyhľadávací stroj - bol použitý ako zák-
lad a vypracovaný návrh ako jeho rozšírenie. Toto umožnuje využívať všetky výhody fulltextového
vyhľadávacieho stroja.

Väčšina matematických dokumentov neobsahuje informáciu o sémantike. Riešenie tohoto prob-
lému je základným cieľom tejto diplomovej práce. Testovanie ukázalo, že navrhovaný vyhľadávací
stroj má viacero výhod. Najdôležitejšou je použitelnosť pre veľkú množinu matematických doku-
mentov s minimálnym sémantickým popisom, ako je WWW.

Kľúčové slová: matematické vyľadávanie, matematický vyhľadávací stroj
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Abstract:

The WWW is dominated by search engines such as Google. They are inseparable part of everyday
search for information. Theoretical research field interested in searching, the information retrieval,
focuses mainly on the natural language constructs - words. During the last years the field has been
extended to other searchable content as well. The world of mathematical knowledge on the WWW
has grown enormously. The importance of a general mathematical search engine is clear. However,
this research field had been abandoned until very recently.

Despite the fact that an active ongoing research is in progress, few practical results have been
presented. The main goal of this thesis is to fill this gap. A new mathematical search engine was
proposed with the focus on applicability. As the only capable search engine of indexing WWW
effectively is the full text search engine it was used as the basis. The mathematical extension was
designed as an extension which allows it to exploit and use all the advantages of the full text search
engine. Most of the mathematical documents do not contain semantic information. The solution to
this problem was one of the main goals of this thesis.

The extensive evaluation showed that the proposed search engine has many advantages. The
most important one is the usability over a large collection of semantically poor mathematical doc-
uments such as WWW.

Keywords: scientific search engine, mathematical search engine, formula search
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1 Introduction

When internet was recognised as a very powerful tool it quickly began to grow. Very
soon many problems arise. One of the most important problems was not the absence
of information itself, but where and how to find it. Many different search technologies
have been created to solve these problems. The first one was Archie providing only
file name lookup, later Veronica and Jughead which were the first to index plain text.
Both search technologies were using Gopher to acquire the text. It was simple but
sufficient. And then the WWW came.

With the new concept of hypertext importance and need for new search technolo-
gies rose again. Among the first were web portals (also called web directories) and
very primitive full text search. Both of them are still used. Directories are more
likely to be used in local searches (e.g. http://centrum.cz). One global directory
would be too immense and chaotic. Full text search can be used with any query (e.g.
http://google.com, http://live.com) but the quality of results can vary. Results are
sorted according to a ranking algorithm.

It could seem that these technologies are old but they are merely dated back
to 1998 when Google came. The late development is very likely one of the key
reasons why search engines are still simple. With expansion of the WWW came
diversity. Crawling, indexing and searching became a complex problem. But still
many document formats are not indexed or indexed only partially.

There are many specialised search engines which index only selected file formats
like pictures, videos, music, code, maps, books. Each of them is based on a full
text search engine with special recognition and indexing algorithms that extract key-
words and assign them to files (http://video.yahoo.com, http://www.skreemr.com,
http://codesearch.google.com/). However, there is no search engine indexing scien-
tific documents on the WWW other than full text and it is only indexing simple text
it can extract which is clearly not satisfactory.

The intense research activities in the field of scientific searching [6, 19, 19] clearly
show the importance of scientific search engine. It can be used either to find scientific
documents containing specific formulae without knowing proper names or to find
scientific documents with similar formulae for example to prove the uniqueness of
a theory. Moreover it can be used to simply classify documents and thus enabling
better categorization. It can also be used to connect scientific research fields because
many research groups from various scientific fields are analysing the same theory but
from different angles without knowing about themselves. Another usage is to improve
the performance of today’s automatic theorem provers or the search engine can be
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used in proof planning systems for example as a proof assistant by collecting similar
proofs. Another important usage example is in learning assistance where searches
for proofs of various mathematical equations or formulae are common. Very useful
can be searching for techniques used in similar proofs. All these applications with
so many heterogeneous problems makes scientific search engine a very challenging
research field.

The nonexistence of commonly used scientific search engine is caused by the num-
ber of problems which must be solved. They range from practical issues through
document format problems to mathematical problems. Another important problem
is that it must satisfy many different types of questions as can be see from the various
applications. Although currently available text search engines can be used on these
documents too, they are deficient in almost all cases. Except the obvious problems
resulting from the mathematical aspect, indexing mathematical notations with sci-
ence not aware search engine would have strange results. Ambiguous searches like
"sin" or "a" would return documents containing sine function and the English noun
sin or documents containing variable a and indefinite article or moreover the "a" is
filtered by a stop word1 filter. Another problem is that expressing scientific notations
in graphical front-end of a text search engine is impossible.

Every search engine must operate over a set of data. Full text search engines nor-
mally operate over simple texts which are extracted from various formats. There are
many tools which can fairly successful extract simple text from most of the document
formats. But the scientific search engine must not only identify scientific text but
also reconstruct it to its original or equivalent notation. The first task is a classifi-
cation problem [10] where the text is classified into scientific text and simple text.
The second one can be described as a recognition problem. Both these problems are
important parts of computer science.

There are many possibilities how to publish scientific text each of them resulting
either in a picture like format or a highly-structured notation. Several organisa-
tions tried to introduce a standard for mathematical representation in the last years.
Without a standard the development of a serviceable scientific search engine is almost
impossible. The most promising and used document format containing support for
mathematical semantic information is MathML.

Information retrieval has been one of the main research areas in computer science.
One part of the information retrieval is also searching and generating additional infor-
mation called metadata (including context data) from the document. Search engines
can index text documents with little or completely without any document’s metadata
and still be very valuable as today’s most favourite text search engines prove. The
basic impression is that the scientific search engines must heavily depend on meta-
data as many results are valid only in special theories or under special circumstances.
Many papers [3, 5, 18] suggest that approach to scientific searching leaving out the
semantic information is not sufficient. This statement is on one hand clearly a fact

1A stop word is a commonly used word (such as "a" or "the") that a search engine has been
programmed to ignore.
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from the mathematical point of view but on the other hand rather ambiguous and
vague as the full text search engines already proved that the lack of document’s meta-
data and context data does not mean less valuable results. Besides to fully use the
metadata the user would have to include metadata about his query too which would
be very limiting.

Supported features and graphical interface of a full text search engine has been
standardized over the last few years. But there is no such standard in scientific search.
There are many experimental designs and mostly the search engines offer more ways
to express the query. It is partly because no real scientific search engine exists, partly
because many people have different expectations from it and partly because every
existing scientific search engine has still limited scientific awareness [37, 23, 34, 40,
38, 33, 39]. One feature is for granted when a search engine is to be considered
truly scientific and that is the support for searching scientific notations and symbols.
Mathematical formulae, chemical formulae, dental formulae, vertebral formulae and
others are included in the term scientific formulae. But because these notations can be
described by mathematical formulae and it is very likely that mathematical formulae
are the most common in internet the term scientific search engine and mathematical
search engine can be used interchangeably.

Last but not least problem connected with scientific searching is the fact that
most of the documents are author’s intellectual property and the access to them is
restricted to paying subscribers only. Papers are usually published in interactive
databases [41, 32] and the access is granted only to paying subscribers. This is the
reason why published papers are not indexed by common search engines. However,
the abstracts are normally made available and indexed.

The first workshop about scientific searching was held in 2004. The main conclu-
sion was the need for searching, especially in scientific documents. XML and MathML
were considered as very important for publishing scientific documents. Many research
groups are addressing issues connected with scientific searching [27, 28, 29, 30, 31].

1.1 Goals of the Thesis

Scientific searching is still very academic. It faces many problems from complexity of
mathematics through the lack of standards in electronic presentation to the definition
of what a scientific search engine should look like and which features should it contain.

To create a scientific search engine these new problems must be solved: 1) the ex-
traction of mathematical content from mathematical documents, 2) classifying simple
text and scientific notation, 3) indexing of scientific text and the design of the ranking
algorithm, 4) design of the query language. The approach presented in this paper
tries to exploit the current state of art of search engines and to present a practical
approach to scientific searching. The goal is to propose a new approach addressing
almost all of the fundamental problems above with the accent on practical usability.

Extracting and classifying content from mathematical documents include both
converting the document to supported format and parsing the format to at least
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syntactically equivalent form. The first issue is very complex and the results can be
ambiguous. Both issues are analysed in [11].

The successful addressing of the third problem also includes brief analyse of the
state of art of available scientific aware search engines and reasons for their advan-
tages, disadvantages and reasons for their failure to become a general practical solu-
tion. The main goal of this thesis except the general proposal of a search engine is
the design of a novel indexing technique. The design of general ranking algorithm is a
very complicated and complex research field and thus this issue will not be analysed
in depth but rather proposals and remarks will be made based on the results.

Another important goal is to evaluate the proposed solution and decide whether
it is another failure or success with the potential to become a practical solution.

This is a summary of issues addressed in this paper:

1. problems connected with the scientific searching, state of art of existing solu-
tions and the reasons why they are not suitable for large collections of documents

2. design of scientific search engine

3. proposal of scientific notation indexing technique and ranking algorithm

4. proposal of scientific query language

5. prototype implementation

6. summary based on the evaluation results

1.2 Structure of the Text

The definition of a scientific search engine with an architecture overview is described
in Chapter 2. The theoretical background of indexing with solutions to presented
issues is in Chapter 3. The searching phase and the description of a searching query
language is in Chapter 4. The prototype implementation is described in Chapter 5.
Practical results and statistics are summarised in Chapter 6.

1.3 Related previous work

The area of full text search engines is developed very well. There are also many
different approaches in scientific searching like theorem provers and proof checkers
[14, 23], engines using statistical models (similarity, frequency of occurrences), sub-
stitution and unification [37, 38, 39] and specialized databases [34, 33, 40]. The only
part really connected to this work are the statistical models more precisely similarity
models.

At the time of analysing the state of art of the available scientific search engines,
developing the theory and proposals of new search engine (fall of 2006) the only
work publicly available connected to approach presented in this paper was the [22].



1.3 Related previous work 5

It is a very brief introduction originated in 2002 and from that time till the end
of analysis no valuable work known to the author had been made available. Other
mathematical aware search engines have been still either in research phase or in
development. MathDex search engine beta version gone public in the first half of 2007.
LeActiveMath is a not publicly accessible project of web-based learning environment
called ActiveMath running till 2007. The time line of MathWebSearch is not known
but the earliest paper appeared at 2006 and the publicly available implementation
has been very likely not put online before 2007.

Because of such an extensive and rapid development of this field mainly presented
at Mathematical Knowledge Management Conference 2007 hosted from the 27th to
the 30th of June 2007 the newest results had to be analysed and incorporated into
this work. New research results are still being published at conferences and the latest
results used in this paper date to July 2007.

Therefore it can be claimed that no previous research known to the author but [22]
has addressed the issues of using full text search engine as the base search engine for
scientific search engine and the issue of designing indexing and querying algorithms
for it.



2 Mathematical Search Engine

The importance of mathematical search engine is clear. There are few novel solutions
developed specially for this purpose but none of them seems to be practically applica-
ble for large collection of real documents. Real documents usually do not contain any
semantic information only presentation. To fill the gap a new solution is presented
which works with documents not containing semantic information, but uses it when
available, and which tries to exploit the current state of search engines with the stress
on applicability. Every text search engine can be easily extended to adopt it because
it is designed as an extension.

2.1 Full text search engine overview

Search engine is an information retrieval system aimed to help finding information.
It operates over information stored electronically on local computers or networks.
There are few different types of search engines. The most used search engines op-
erate over the WWW and are called web search engines (http://www.google.com,
http://www.yahoo.com, http://www.baidu.com). In this paper the general term
search engine will refer to web search engine. Each search engine should meet several
basic requirements to be successful. It must operate over all information available and
integrate content changes as early as possible, return all relevant documents sorted by
importance. Search engines must face many challenges and several interesting ones
can be found in [2].

Each search engine has three fundamental phases either directly separable or
mixed together: 1) crawling, 2) indexing, 3) searching. The brief description of each
phase follows.

2.1.1 Crawling

Search engine receives documents for indexing mostly from its own program auto-
matically browsing the WWW called crawler. Crawler starts by retrieving one of its
starting addresses and then recursively all addresses to which the starting address
links. Web search engines usually retrieve only sites from the surface web1.

1Very simple definition defines it as a part of the WWW that is available to the general public
without human interaction e.g. passwords, user input [4].

6
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2.1.2 Indexing

In this phase the search engine takes a document, parses it to tokens, classifies its
parts, collects other important information, ranks the tokens and finally stores them
with other complementary information. This results in database update. Many spe-
cial techniques are used to reduce and pack information stored in the index database.
The information is usually not independent and a database update can result in a
cascade of updates. Full text search engines use static databases - this means that in
the searching phase the information from the index database is used as it is stored.

This part is considered the most important as the other parts are more or less
standardized for all search engine types. But it is for granted that it is the most
difficult part which joins many interdisciplinary research fields.

2.1.3 Searching

The only user visible part of a search engine is a graphical interface called search
front-end. The trend is to have the search front-end as simple as possible. Inputted
search term is usually encoded to the url, sent to a server and then the result page is
retrieved showing relevant hits sorted by importance according to the search engine.
Basically, forming a query to get relevant answers to more complex questions requires
a very good imagination and practice. In the last days users of the most used search
engines face a new challenge. They must win over the hard-coded algorithms deciding
what user really wants in contrast to the query she inputted.

A search query language can be defined as words and commands sent to the
search engine. The specific user input is called a search term. The search term must
be parsed and then the index database is queried. The query language can contain
commands like OR, AND, "". All favourite search engines support only few operators
from all the possibilities they could. Still the statistics show that only very few of
them are really used and the most common user does not use them at all (AOL
Research).

The most usual characteristics of today’s search engines are:

• smallest searchable unit is one word
• ranking algorithms are based on quality of document, backlinks2 and semantic

structure
• context used only during the indexing phase and it is difficult to utilize it

afterwards
• query language supports publicly only simple boolean logic but internally more

powerful operators (e.g. near operator3) are available
• possibility to limit search terms to a specific document type or document field

(e.g. title, body)
2Backlinks are all incoming links to a web page.
3Proximity operators allow you to locate one word within a certain distance of another.
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2.2 New challenges

The difference between simple text search and mathematical search is that it has
to answer completely different types of questions. Whereas the text search engine
generally answers the question which documents contain a very well defined text
string or which documents are relevant to a text string the number of questions user
would want a scientific search to ask is high. For example user would like to get all
documents containing proofs of a theorem, new trends and knowledge from a research
field, all research fields containing a specified theorem or formula, mathematically
similar or equal formulae, numerical values of formulae etc.

With standard search engines in mind these new challenges have been identified:
1) enabling to search for scientific notations, formulae etc., 2) support for raw text
queries, 3) search for mathematical notation should be limited to mathematical con-
tent (e.g. "sin" problem), 4) providing query language on one hand powerful enough
to handle all mathematical notations but on the other hand simple to be usable by
a common user, 5) support for basic mathematical operations to enable other forms
of matching except exact hits e.g. similarity matching, pattern matching, 6) results
should be ordered according to a ranking algorithm based also on the mathematical
content.

As mentioned in the previous section the creation of a scientific search engine
includes these main new problems which must be solved:

1. extract content from mathematical documents

2. distinguish between simple text and scientific notation

3. index scientific text and design ranking functions

4. design query language supporting mathematical notation

Solutions to these problems in the new proposed technique are addressed in the
next section. To better understand the design decisions made in the proposal a brief
analyse of available mathematical aware search engines and of new techniques that
could be used for mathematical searching follows. Each description tries to briefly
describe the technique used and main characteristics. Advantages and disadvantages
of the mathematical approach are summarized at the end. The main goal of this
thesis except the general proposal of a search engine is the design of a novel indexing
technique. The design of general ranking function is a very complicated and complex
research field and thus this issue will not be analysed in depth but rather proposals
and remarks will be made based on the results.

2.3 Available mathematical search engines

There is a plenty of possibilities how to categorise mathematical search engines. Each
possibility has a different point of view. The categories identified here definitely do
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not try to be exhaustive but rather present the most successful techniques used in
the second and third phase of the search engine:

1. strictly mathematical model - the most precise solution when looking for mathe-
matically equal notations. The problem is that it would have to contain millions
of mathematical models to be suitable for the vague ambiguous world of internet
and furthermore it would have to classify the models correctly.

2. substitution model - best results expected for searching aiming at similar pre-
sentation of formulae. Tries to unify two theorems by recursive substitutional
rules, in the simplest form does not use mathematical axioms (like distributiv-
ity, associativity, commutativity). More practical for searching than the model
above at the cost of losing information.

3. similarity model - best for interdisciplinary searches, searches with limited in-
formation. Even more practical than both models described above but at the
cost of losing the most information.

Here is a list of techniques which could be used for scientific searching, available
mathematical-aware search engines and also other search engines connected which
scientific searching. Other techniques which have been analysed for possible use but
found unsuitable like hashing and image matching are not included.

The three real solutions (LeActiveMath, MathDex, MathWebSearch) described be-
low have been added after the MKM conference at the end of June, 2007. The analyse
is based only on research papers and conference papers publicly available because the
author of this paper has not attended the conferences. All questions sent to the au-
thors of the mathematical search engines about the design or evaluation had been
left unanswered but one. Therefore the analyse can be imprecise at some points.

2.3.1 Citeseer like

Citeseer search engine [34] does not use any of the model mentioned above because it
is not a mathematically aware search engine. However, it is considered as a scientific
search engine by many researchers. The main reason for its success is its specialization
in searching through scientific documents with the paradigm of ranking based on
backlinks introduced by Google.

Every well formatted scientific document contains at least bibliography section.
This engine tries to exploit it and splits a document into fields significant for science
documents [34]. The entries in the bibliography are considered as links to other
documents. However, in many cases the lack of precise information about the author
or title makes this search impossible.

2.3.2 Directories

The author does consider web directory to be a normal search engine. It must perform
all search engine phases mentioned above and the user query is the specification of
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the directory entry. Science digital libraries [33] or databases [41, 32] exist all over the
world. This search engine does not index document content but classifies documents
into categories and indexes only these categories.

The success and application of a directory as a mathematical search engine is
questionable. The advantages are that it is easily applicable for the WWW. It can
be also used to obtain new results from a specified research field. The key concept
used here is to assist the user in classifying the documents without the need to read
it.

This technique can be easily deployed together with a search engine to improve
the presentation and information about the results.

2.3.3 Xml searching

Scientific documents contain highly structured notations and therefore are a very
good candidate for structured document format. In fact, the standard mathematical
document formats (MathML, OpenMath) are XML based and therefore suitable for XML
search engines [25]. There has been much development in this field because XML
became world wide used with many different applications. There are many different
approaches to the XML searching. Describing all of them is beyond the scope of this
paper. To take the advantage of the structural approach, at least some information
about the path to each attribute, element and value must be stored.

The only known research on this topic is in [21]. This is probably due to the fact
that effective XML searching is still more an academic research field.

The basic XML processing query languages are XQuery and XPath. Both are
very powerful but there has been no implementation usable for large collection of
documents with these features: 1) complex transformations - needed for mathemat-
ical notations, 2) full text support. Another characteristic is that most of practical
implementations do not support XML specification diversity but rely on the fact that
the input data are based on single DTD or scheme.

The research is still at the beginning [26]. For instance a document is parsed
to entities which are the smallest units of information. The key concept would be
to construct the mathematical awareness at higher abstraction level than on raw
formula string and that is at the level of the parsed entities. Because information
about complete entity paths must be stored it is a natural process to retrieve the basic
context information after the indexing phase. However, the process of searching over
structures containing much information is very complex and usually only very limited
queries are available.

2.3.4 Theorem provers and proof checkers

Computer programs specialised in proving of mathematical theorems are called the-
orem provers (E, Vampire, Isabelle, etc.) and in proof checking are called proof
checkers (Mizar etc.). Both are important parts of automated reasoning. They op-
erate over specified logic - set of axioms and transformation rules. The problem of
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deciding the validity of a theorem or a proof varies from trivial to impossible depend-
ing on the logic used (propositional, first order). For the common case the problem is
decidable but NP-complete and hence only exponential time algorithms are believed
to exist. They have special applications like software verification.

A theorem prover can be considered a mathematical-aware search engine as they
search for theorems in a mathematical structure. They use the strictly mathematical
model. Because proofs are constructed usually by using rewriting techniques it can
not be used over a larger logic at present time. One characteristic is that this approach
can not return results that "almost" match and that the query representing a theorem
must contain all the semantic information about the mathematical structure where
it should hold.

2.3.5 Semantic web

Semantic web is a relatively new, blooming research field in which information is
expressed not only in natural language but also in a standardised way. The standard
allows automated processing of such metadata. Current WWW is far from semantic
but there are many sites already supporting it. Semantic metadata does not only
describe objects more properly making the classification of documents and the content
more precise, but also the relations between objects which current full text search
engine can not use. Even though it is a very interesting and promising way to share
scientific knowledge it is not in the near future to rely on the data to be available.
Semantic searching can be very vaguely described as a combination of XML searching
and reasoning about the search results. Theorem proving is a part of automated
reasoning.

The practical solutions are still very feeble and much research must be done in or-
der to decide whether this approach is suitable for mathematical searching. However,
the main characteristics would be: 1) very precise classification of documents and
notations (by assuming the document content is from a credible source), 2) support
for the strict mathematical model, 3) very precise searches, 4) it can be seen as the
natural way for automated reasoning (e.g. theorem provers) to access the WWW.

But even if the documents are described with reasonable metadata it is still limited
by the knowledge of the author thus for example preventing completely new relations
to be uncovered or similarity searches. The search would be processed on higher
abstraction level like in XML searching. Another issue is the amount of overhead with
which the semantic search engine would have to work and of course the computational
complexity.

2.3.6 Encyclopedia of Integer Sequences

Encyclopedia of Integer Sequences is a very specialised mathematical database with
its own search engine. As the name tells it stores integer sequences with additional
information like where it can be found and more. Currently the database contains
around 130 000 integer sequences. It is not truly mathematical aware search engine
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but proved very helpful in many ways including connecting different disciplinary
research areas and their results.

2.3.7 LeActiveMath

ActiveMath is an intelligent web-based learning mathematical environment. The se-
mantic content of mathematical documents is encoded in OMDoc4. The main goal is to
present a learner personalised content based on her previous work, actual knowledge
etc. Currently, the system does not provide public content and only subscribers or
members can use it.

Obviously, the system needs a search engine. The requirements for this search
engine are: 1) very easy to use allowing querying for text, metadata, mathematical
formulae, 2) reasonably tolerant, 3) allow explorative learning. The OMDoc metadata
in this project can be used to split the content to units called items: theorems,
exercises, proofs, definitions etc. They can be addressed by unique identifiers and
relations between them are also supported.

The indexing phase converts the OMDoc formulae into special text tokens with
depth information which is then indexed. Although the ranking algorithm is very
simple it can be still effective.

This specialized mathematical-aware searching engine is suitable for learners of
mathematical content which do simple searches. The usability for more complex
searches is questionable. When the depth information of subformulae is included in
the indexed string the searching phase must convert the input formula to a repre-
sentation including depth level too. The general search can not be used on searches
for subformulae because we do not know at which level the subformula occurs. The
solution to this is trivial but the problem gets more complex with increasing depth of
the searched subformula. Another characteristic is that it does not use the semantics
very much for the formulae itself which results in the fail when searching for com-
mutatively equal subformulae (searching for f(A, B) = f(B, A) requesting that the
terms A and B are matched consistently is impossible). From the description of in-
dexing phase follows that it does not support mathematical equality (commutativity
- searching for a+ b should also return b+a) but this statement could not be proved.

The indexing phase fully depends on special format always including semantic
information and metadata. The usability for real data is therefore very likely to be
much smaller. However the use of special OMDoc format can boost the relevance of
documents thus making this search engine very helpful in specialised environments.
The important feature is that searching does not require precise definitions of the
mathematical terms because it was designed for common users (students, teachers,
researchers) which usually do not posses the knowledge.

4It is an extension of MathML, see http://www.omdoc.org/ for more details.
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2.3.8 MathDex

MathDex5 beta went public in the first quarter of 2007. It is one of the real solutions to
mathematical searching aiming for these main features: 1) support for poor markup,
2) accepting many mathematical encodings, 3) allows searching on both mathematical
notation and text, 4) attempts to match user text search expectations rather than
strictly following the query. Between the first phase and the second phase all retrieved
documents are converted to XHTML+MathML. The results are sorted according to the
structural and syntactic similarity with the search term. It falls into the statistical
model because matched formulae are not necessarily mathematically equal and the
ranking is based on subformulae of a formula.

When analysing strings during the index phase not only simple word tokens are
indexed but also the information about subformulae frequencies is collected. The
information about frequencies is used to enhance the ranking of documents. This
technique is also used when indexing mathematical formulae. Assuming we have all
the frequencies of meaningful subformulae (x2, cos(x) or sin(x) ...) we can use them
to increment the ranking of complex formulae. To remedy some important problems
with this algorithm fields have been introduced. It is the same principle as with fields
in normal documents (title, body, etc). The mathematical formula is divided into
numerators, superscripts, rows etc. The input formula is parsed, appropriate fields
identified and the query is rewritten to match the subterms in the selected fields.

The main feature is the support of both mathematical and plain text search.
Others include the rich support of input formats. The graphical user interface does
not support other input possibility than graphical. The indexing algorithm uses
only a special part of the available semantics and frequencies of formulae occurrence.
Therefore pages with many formulae and notations (like summaries) will probably
rank really high thus devaluing the quality of the results. Searching for f(A, B) =
f(B, A) requesting that the terms A and B are matched consistently is impossible.

2.3.9 MathWebSearch

The last representative of the small group of real mathematically aware search engines
is MathWebSearch6. It is assumed that the first version was publicly available around
the end of 2006.

It looks at formulae only from the semantic point of view which can be both an
advantage and a disadvantage. The main goal is on one hand to distinguish between
syntactically same notations but semantically different (

∫
f(x)dx can mean Riemann

but also Lebesgue integral) and on the other hand to identify and group syntactically
different but semantically equal (nC

k, Cn
k , (

n

k), n!
k!n!(n−k)!

).
Substitutional tree indexing technique is used to index mathematical notations.

The result is a tree-like structure with nodes containing substitutions of its parents.
5http://www.MathDex.com:8080/MathDex/search
6http://search.mathweb.org/
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The formula is constructed from a root node by applying one or more substitutions.
It can be placed to the substitutional classification category.

The substitution technique enables searches for f(A, B) = f(B, A) e.g. search for
mathematical objects showing commutativity of multiplication. This is an important
advantage. It also allows for searching independent of variable name, for example∫

x2dx will match
∫

y2dy. This has an impact on the subformula searching and can
be currently solved only by adding all subformulae to the index. Currently it lacks
the support for simple text searches limiting searches only to mathematical notations.
The project has this issue selected as one of its future goals.

The mathematically correct behaviour has borrowed some techniques from theo-
rem provers inheriting also their disadvantages. The searching is basically traversing
of a formula tree from the root node to leaves. Without extensive evaluation it is
difficult to estimate the seriousness of this issue but the first results show no serious
performance drawback.

The search engine web front-end is very similar to the of MathDex but the query
language is different. An extended form of MathML is used. Currently it can index
documents in Content MathML and OpenMathformat. The support for Presentation
MathML is limited and thereby also limiting its usage. The reason is that the presen-
tation does not include semantic data about the mathematical notation.

The question is if they can not meet their goals in real-world data (as by online
publishers, WWW) where the diverse and heterogeneous mathematical structures
presented can not be supported mathematically correctly because of lacking semantic
information.

2.3.10 Summary

Presented solutions have one thing in common. All of them are applicable in spe-
cialised environments with specialised purposes with relative success. At this stage
of development they can not be compared and evaluated. They greatly differ in
technical quality and currently the practical application aiming for real data is very
uncertain for most of them.

The database approach can be very useful in connection with a mathematical
aware search engine. The CiteSeer search engine proves the success of a simple
idea to split the scientific documents into several parts allowing them to be indexed
separately. Theorem provers and proof checkers have the advantages of mathematical
correctness and deduction at the cost of performance and the considerable dependence
on the availability of semantic information. Not only the presence in the indexed
documents but mostly also for the inputted query which must exactly specify (either
explicitly or implicitly) in which mathematical structures it should be searched for,
proved etc. Another disadvantage is that it is not flexible and does not allow for
similarity search nor for text search. Nevertheless, in connection with semantic web
this technique can be proved useful.

The mathematically most aware search engine is MathWebSearch. The advantage
is clear but this brings also many disadvantages from the practical point of view. The
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main goal is very ambitious. It tries to correctly interpret the meaning of formulae.
To behave mathematically correct it must heavily depend on the semantic information
which results in decrease of precision and recall when operating over documents with
little semantic information. The matching is done traversing special trees which can
bring the problem of performance but it has not been confirmed yet. The user query
should also include semantics (currently not supported) to fulfil the main goal. The
lack of full text search makes this search engine very limited and the integration with a
text search engine can be tricky. As the only search engine it supports mathematically
equal notations with different variable names but at the same time it forms the
question how to decide what is a variable and what is not in semantically poor
documents.

The second most mathematically aware search engine is MathDex. It can search for
both text and formulae. The mathematical precision is however unclear. The ranking
algorithm uses techniques to increase the precision and relevance like frequency of
subformulae occurrences. It also uses the paradigm of CiteSeer applied on formulae
which are split into sections. The gain from this approach is unclear too. It depends
less on the context than MathWebSearch. The user query does not need to contain
much semantic information to exploit the power of the search engine which is from the
mathematical equality smaller than of the MathWebSearch. But it definitely does not
mean that the results must be of less or same value. The search for mathematically
equal formulae is limited.

The last solution is LeActiveMath which uses special semantically rich format.
The advantage of the special format is clear and can be very significant but the ap-
plicability for data on the WWW is dramatically decreased. The feature of storing
depth information together with the formulae is very interesting but whether it is
an advantage or a disadvantage is not clear. The user query language was aimed
for common users. The real application of LeActiveMath in the ActiveMath sys-
tem can provide the authors with very important statistics about common user of
mathematical search engine.

It is difficult to create a search engine without knowing the most common use of it.
The nonexistence of user expectations about mathematical search engines makes the
first prototypes very diverse. This makes very difficult to decide which is the best. It
is clear that the less semantic information is used the better it will handle documents
on the WWW (till up to certain point because full text search engine are really
not suitable for mathematical searching). Introducing axioms like commutativity to
mathematical structures which do not support and also to structures where it holds
can surprise the user. On the other hand it is clear that in most cases at least the
recall will be improved.

The conclusion is that the main focus now should be aimed for the WWW - where
the most mathematical documents can be found. In this stage the precision or recall is
not as much important as the user feedback mainly because the recall and precision
is very questionably in mathematical searching. Moreover many searches will be
originated by a common user not possessing the knowledge about the item searched
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for and therefore to rely on the semantics of the user query is probably pointless and
very limiting. Furthermore to rely on semantics on one side of the search engine and
not on the other (e.g. only in the indexing phase) can produce unexpected results.
Also many of the presented techniques, features are not yet proved to be of any use.
And because of this, further "enhancing" can decrease the value of the search engine
for a common user. The proposed solution tries to fill this gap between void and
theoretical or highly specialised solutions.

2.4 Definition and characteristics

The analysis of available mathematical search engines from the previous section gave
a very good impression on how this research field is enormous and diverse. The defi-
nition of a mathematical search engine accepted by the users has not been successful
yet. One of the reason is the big number of different types of reasonable and usable
questions we can ask a mathematical information system. Users want proofs, similar
theorems, similar formulae, proof concepts, equal formulae, formulae based on out-
put, etc. The following definition of important features puts stress on practical usage
- usage over real word data as the WWW. It does not repeat the features every search
engine should have like ranking algorithm. However, the general definition must be
based on an exhaustive testing and feedback from the mathematical society.

The first fundamental characteristic is clear. It must support formulae searching
and searching for other mathematical notations. The second fundamental feature is
support of simple text search. Another important feature must be an extensive, clear
but expressive query language with graphical user interface as an improvement but
definitely not a replacement. It should be extensible as new forms of queries will be
added.

A usable scientific search engine should be able to process the pdf format because
it is the most common format for scientific publications. The few available convert-
ers can produce only output with the information about the layout (like Presenta-
tion MathML) not about the real semantics (like Content MathML). Therefore another
feature should be support not only for semantic formats but also for presentation
formats. Because there is a vast number of basic formula equal notations at least
some kind of similarity search should be supported and the next feature immediately
following is the support for subformula search. The atomic information unit must be
chosen carefully.

Additional features can contain categorisation of documents, classifying theorems
or formulae against a database. The result page should show parts of the document
including searched terms and grouping of similar documents which can significantly
assist in the user decision of relevance.

The summary of main features

• mathematical awareness
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• similarity search and subformula search

• both content and presentation support

• easy, extensible but clear query language

2.5 Proposed solution

The design was based on the analysis of engines available at that time. None of the
most important ones (MathDex, MathSearchWeb, LeActiveMath) have been available
at that time. Although the new engines bring new solutions, there is no need for
any change. The proposed solution solves the mathematical searching problem from
the practical point of view. It is still a new contribution in this research field and
proposes novel indexing technique.

The main design decision was whether to use an already existing type of a search
engine and extend it or design a completely new one. The latter choice has lead
always more to academic solution than to practical. Two of the presented engines
copy or slightly modify already existing indexing techniques and it is highly improb-
able that in the near future another search engine type will be capable of indexing
large amounts of data but the full text search engine. And moreover even full text
search engines usually index only first few kilobytes of documents [20]. As men-
tioned in the introduction full text search engines can index text documents with
little or completely without any metadata and still be very valuable by applying
many sophisticated techniques, tricks and other solutions to gain the most informa-
tion from a document and then use it in the ranking algorithm. The text search
engine ranking algorithm works well on mathematical documents too because they
are still documents. Each theorem is usually well described in the text. But it could
work better. Mostly the marginal cases like completely new documents, which tend
to rank lower, could be boosted after using the mathematical information making
important new research results available.

The proposed solution is based on a full text search engine. Instead of reinventing
the wheel an already existing solution is used. The implementation extends the
Egothor [12] search engine.

A mathematical document can be separated into two different sections. The first
one is the text section and the second one is the mathematical section. This way all
the advantages of a full text search engine can be used with the possibility to limit
the search by mathematical content. A search for a proof of a formula could result in
searching for word "proof" in the text section and the formula in the mathematical
section. When the search engine supports the proximity operator it can be even
specified that the word "proof" and the text representation of formula must be at
most N words apart. The proposed search engine considers mathematical notation
as some sort of very important metadata of documents which are indexed and used
in ranking.



2.5 Proposed solution 18

To exploit all the existing features the proposed mathematical search engine is
designed as an extension of a text search engine leaving all its features untouched.
This way the theoretical background of the proposed solution can be implemented
in any existing search engine. The only two changes required are: 1) the support
of a mathematical query language in the front-end, 2) use the mathematical data
when ranking documents. The second is not essential for the function of the search
engine only for the quality of results. The design of the mathematical extension in the
indexing phase is illustrated in Figure 2.1. The mathematical extension is a mediator
between mathematical documents and the indexing part.

Figure 2.1: Design of the proposed mathematical search engine

The following sections address the problems identified above.

2.5.1 Extraction of mathematical content

Extracting and classifying content of a mathematical document includes both con-
verting the document to a supported format and parsing the format to at least syn-
tactically equivalent form.

Mathematical text is highly-structured and symbolic. Most common way of pub-
lishing a mathematical text is to write it in a typesetting language (TEX, LATEX) and
then export it into either pdf or ps format [15, 16]. The first two formats can contain
formatting information but many online publishers (e.g. ACM) remove it. It can be
even impossible to extract the text from the raw file itself because the transformation
function from character codes to glyphs7 can be irreversible. This makes parsing
very difficult, sometimes impossible and very time consuming [7, 15]. It is even more

7A glyph is a graphical shape [16]. For example, "a" or the dot on the letter "i" are glyphs.
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difficult with mathematical expressions because some characters are not part of the
standard encoding.

The problem can be solved by using:

1. man power - converting manually

2. OCR - optical character recognition. Most of the successful converters [8, 7] us-
ing OCR are tuned by many-year experience. But OCR only gives the character
code and its position on a page and it must be further processed.

3. raw file processing - neither character decoding nor character order is guaranteed

4. combination of OCR and raw file processing - combining guaranteed character
codes with formatting, when available, can be very accurate [42, 16]

Even when the source text can be translated to the most used LATEX source code,
converting it to a format supporting content markup like OpenMath or Content MathML
is a very complicated problem [11].

Because digital documents are mostly published on the WWW another approach
is to use an HTML-like language (e.g. MathML) to view mathematical documents. The
goal of MathML is to enable mathematics to be served, received, and processed on
the World Wide Web just as HTML has enabled this functionality for text. MathML
value lies in the ability to encode both mathematical notation and content. It can
be embedded in HTML. In the last few years the size of mathematical content using
MathML has increased rapidly. However, it is still very seldom used as the first choice
by online publishers.

After analysing several formats (OpenMath, MathML, LATEX, TEX, XML, pdf, ps,
HTML) which can contain either mathematical content or presentation of mathematics
and due to this are suitable for mathematical indexing, MathML was chosen as the
primary format. The reasons are that this format is sufficient for mathematical
encoding, it can be embedded in HTML, there are many converters to this format and
finally it is pushed by W3C Consortium.

Because the pdf format is by far the most used format special emphasis has been
made to be able to index it. In June 2007 the Infty8 Project [8] released product
version of their OCR system which is specialised for documents containing mathe-
matics. Using this program the pdf format will be converted to MathML which is
already supported.

The implementation currently supports Content and Presentation MathML and
LATEX-like syntax.

Classifying simple text and scientific notation

The classification is one of the main tasks of the converter and is not part of the
search engine. Simple heuristics can be used to decide whether a document includes

8http://www.inftyproject.org/en/software.html#InftyReader
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mathematical content or not. Each document is processed by the search engine itself
in the document format that the full text search engine supports. If a document con-
tains mathematical notation it is converted to a supported format (MathML) and then
delegated to the mathematical extension which extracts only mathematical formulae
from the content. The content is marked as mathematical.

The techniques used to classify the document are beyond the scope of this paper.

2.5.2 Indexing and design of ranking algorithm

Text search engines parse documents to tokens which are simply speaking words
and these words are then stored. It means that a mathematical formula must be
represented by text consisting of one or more words. A query is just a comparison of
words.

One of the goals is to support mathematically equal notations (e.g. search for
a ∗ (b + c) should also return a ∗ b + a ∗ c). Another goal is the support of at least
simple similarity and substitutional matching (e.g. search for a+ b should return also
b + a). The following problems or limitations must be solved in the indexing phase.

Full text search engine limitations

The main disadvantage of text search engine is clear. In the original form it can search
only for documents containing specified words and therefore only exactly equal string
representations of mathematical notations would match. For a mathematical search
engine to be usable the search for subformulae must be available. This implicates
that one formula can not be represented by only one word but by one or more ordered
sequences of words.

Mathematical

Summary of important issues:
1. no commonly used mathematical format nor unitary notation 1/x = 1

x
=

(x)−1, π = Π = Pi, xy = x ∗ y, ..., more character codes or names mapped
to one symbol

2. symbol meaning dependent on context

3. structured text

4. no canonical form (1 + 1 + a = 2 + a = b− b + a + 2, sin2x = 1− cos2x)

5. equivalent transformation rules - e.g. commutativity, distributivity, associativity

6. many mathematical structures with different axioms

Solution

To fully exploit the full text search engine and eliminate the main disadvantages
the indexed formula is expressed not only in one but in more representations. This
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technique is called augmentation. It does not solve the unique canonical form problem,
but it can greatly reduce the possibility that two equivalent formulae do not match.
To store exactly all of the possible representations is clearly impossible because unique
canonical form of mathematical formulae does not exist. Theoretically the number
of textual representations of one formula is not limited. Due to the performance the
maximum number of representation is set to a fixed number. The upper bound can
be changed.

The second technique is called generalisation. The algorithm in several iterations
computes a more generalised representation which is then indexed. The generalisation
is based on a set of transformation rules. In each step one or more transformation
rules are used. Precisely speaking some assumptions are made on the underlying
mathematical model which is simplified in each step of the algorithm. This way
the representation from later iterations match more formulae. It is clear that the
first iteration is the most important and naturally it is ranked as the most impor-
tant. Another problem is that mathematically equivalent formulae with the same but
permuted operators and operands would be considered as different when comparing
letter after letter. Ordering algorithm guarantees that these formulae would have
the same representation. This can be guaranteed because of the simplifications and
assumptions made on the underlying mathematical apparatus. Common indexing
algorithm works only with single linear words whereas mathematical formulae can be
structured in more levels (e.g. argument, exponent, factor). To adapt mathematical
formula to normal text, linearisation must be performed. Each formula is converted
into linear stream of text words.

Linearisation, transformation rules and ordering algorithm simplify the complex
and highly symbolic mathematical structures into linear structures with strictly well
defined symbols where searching is possible but at the cost of losing unambiguity of
formulae.

To solve the first mathematical issue a very simple but important step must be
performed before parsing the document. Symbols that do not have a representation
in a standard encoding have to be converted to words. For example

∫
is stored as

int.
Mathematical symbols can be context dependent. As a matter of fact, most of

them are ambiguous when standing alone. For example Π(a+b) can be either a func-
tion or a multiplication of Pythagoras’ constant. Because mathematical search engine
does not store context results containing both the function and the multiplication are
returned. It is left on the user to decide which result is relevant. The solution to these
ambiguities is to eliminate them by specifying text query to include only documents
either containing specified words or not containing specified words. It is very likely
that there are not many documents where one symbol has more different meanings.
This implies a very important statement. The meaning is not important when the
context is not known. The solution is to choose one meaning and operate with for-
mulae identically at both sides of the search engine (indexing phase and searching).
Each ambiguous symbol is converted to its normal form, for example π, Π, P i, pi to
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π. The best specification of normal forms is specific to the data set and is a subject
to evaluation.

Many scientific fields use formulae (physics, mathematics, computer science, me-
dicine, chemistry, etc.) to describe various processes. Many formulae are sound and
valid only in specific mathematical structures. There is a huge number of different
mathematical structures. Instead of distinguishing between them, all structures are
generalised into single one in which these basic and most common axioms hold

• commutativity - a + b = b + a

• associativity - a + (b + c) = (a + b) + c

• distributivity - a ∗ (b + c) = a ∗ b + b ∗ c

The author estimates that these rules hold in most mathematical structures found
in Internet. The rest consists of either structures which are not suitable for full text
search or so specific that they can be easily found by common search engines.

The indexing phase is described in more detail in Chapter 3.

2.5.3 Design of the query language

The most common groups of users of a scientific search engine are students and
researchers. It can be assumed that both groups have already came to contact with
scientific documents. Scientific documents are written in LATEX and therefore to
reduce the time to understand the query language a LATEX-like language is used. It
can express mathematical notations fairly intuitive. The advantage of this approach
is that the language is de facto standard. The disadvantage of this approach is that
it lacks any semantic information but because the proposed index algorithm is not
dependent on semantic information the disadvantage is eliminated.

The details of the query language and other important parts of the searching
phase can be found in Chapter 4.



3 Indexing Mathematical Formulae

The most important part of a search engine is indexing and nearly all of the problems
need to be solved there. The indexing phase can be split to two not necessarily isolated
stages.

The first one includes the indexing algorithm and is responsible for parsing the
input document to supported structures (words, sentences, paragraphs etc.) which
are then converted to streams of text words. Words with additional information (in-
formation about the position in document, the value of relevance to the document
etc.) are called document tokens and are the smallest information units of a docu-
ment. The text word represented by a document token usually undergoes a process
of modification and normalisation which produces one or more variations of it which
are then stored in a database. The information unit is called token.

The indexing algorithm of a full text search engine must use a language recognition
technique. It is responsible for analysing parts of the text and parse them correctly.
The analogous technique must be also used in the mathematical search engine and is
called formula recognition. After the formula is recognised it is transformed to several
textual representations which consist of one or more words.

The second stage defines the ordering of results. Ordinarily there are many rel-
evant results which are sorted by a ranking algorithm. The statistics show that
search engine users do not look at more than twenty results and therefore the rank-
ing algorithm is very important (AOL Research). In present days the most important
search engines conceal their ranking algorithms not only because of competition but
also because of spamdexing1. Currently, this problem is negligible in the design of a
mathematical search engine.

There are many index data structures which can be used to store the data (inverted
indices, suffix trees, citation indices, ngram indices, trees, ...). Some of them are also
used in the scientific search engines described in the previous section. The most
popular data structure is the inverted indices also because it allows full text search.
All well known full text search engines use this type of data structure.

There are few very important factors which must be considered when designing the
index phase: 1) merge factors, 2) storage techniques, 3) index size, 4) lookup speed,
5) maintaining the index over time, 6) fault tolerance. Even a brief description of all
parts of a full text indexing phase is outside the scope of this master thesis and can
be found in [1].

1Spamdexing or search engine spamming is the practice of deliberately modifying HTML pages
to increase the chance of them being placed close to the beginning of search engine results.
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3.1 First stage

The reasons for selecting MathML as the main supported format are described in
Chapter 2. It supports both the Presentation and Content MathML. The example of
MathML document format is shown in Table 3.1.

Content MathML Presentation MathML

<apply> <msup>
<power/> <mfenced/>
<apply/> <mi>a</mi>
<plus> <mo>+</mo>

<ci>a</ci> <mi>b</mi>
<ci>b</ci> </mfenced>

</apply> <mn>2</mn>
<cn>a</cn> </msup>

</apply>

Table 3.1: Simple MathML markup example

The Content format copies the hierarchical structure of a mathematical formula
and therefore can be naturally transformed to a tree. The presentation format is on
the other hand very linear and it is ambiguous (a b can mean also a∗b). The approach
to transform both notations to trees is followed in both cases. There are many
tree types representing mathematical formulae but for the purposes used here the
differences are not important. However, it must contain some additional information.
The theory is built on a specific type of tree but basically any other structure can be
used on which the transformation rules can be applied. One example of such a tree is
in Figure 3.1. Because single leaf node of a tree contains little information the rules
operate not with leaf nodes but with more complex structures called formula tokens.
It is the same paradigm as used in full text search where the atomic information unit is
a word and not a letter. It is the smallest mathematical unit which can be searched for.
The difference is that words are common constructs of natural language whereas the
formula tokens must be constructed artificially. The construction is parametrised
by the formula appearance - number of operands, number of operators, number of
depth levels etc. This part of the system responsible for building formula tokens
from a formula is called formula tokenizer. It is crucial for the fine granularity of
the mathematical search engine.

Each mathematical formula consists of operands and operators. Whereas op-
erators are functions taking arguments, operands are divided into these categories:
1) numerical constant - 0, 100,−104, ..., 2) common known constant - Π, e, ... (Note:
only few symbols are predefined as constants because also many common used sym-
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Figure 3.1: Formula tree for a2 + b2 + ln(1 + 1/n)

bols mean something else in other mathematical domain), 3) common known operator
-

∑
,
∫

, ... (Note: only few are selected as common and the reason is the same as in
2)), 4) unknown variable - a, F, ....

Definitions and notations used in this text are ordinarily used but some need to
be redefined.

1. Formula tree - Undirected connected tree data structure in which each node
has at most two children. Leaves which have children are called internal nodes.
All other nodes are called leaf nodes. Internal nodes contain mathematical
functions (+,/,ln, ...). Leaf nodes can contain numbers, constants and variables.
Each node can have one or more mathematical subformula connected to it like
index or exponent. The depth of all nodes must be stored. It is computed with
the respect to the basic mathematical operators. For example x+ y +10/x will
have three levels, with +,+ as root nodes. x, y, / as child nodes and 10, x as
children of /. The depth must satisfy a condition that at the same depth level
the commutativity axiom holds.

2. Operator - Internal node of formula tree.

3. Operand of an operator - A child of an operator.

4. Most important operators - All nodes with the least depth level.

5. Most important operands - All operands of the most important operators.

6. Canonical representation of formula - Result of the ordering algorithm
used on a formula tree.

From the mathematical point of view, in this stage a function Q is constructed.
The domain is the space of all mathematical formulae (F ) and the range is FN := F1×
F2×, ...,×FN . Simply speaking it produces N (N is a predefined constant dependent
on the generalisation rules and transformation rules) formulae f1, f2, ..., fN for one
input formula. The function Q can be defined: Q : F → FN , Q(f) =< f1, ..., fN >.
The function Q must satisfy one requirement about its domain FN : for all valid i,
Fi+1 is a generalisation of Fi. It means that Fi+1 is more simple (does not contain
so many axioms, more symbols are mapped to one) but it may still contain new
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symbols. The algorithm which produces the output of function Q is called gener-
alisation algorithm. Different representations are not mathematically equal but the
advantage is that more and more formulae are mapped to the generalised formula in
each step. Practically speaking the output of the first stage of the indexing phase of
the mathematical extension is one or more different textual representations of the in-
put formula. The representations consist of products produced by the generalisation
algorithm with each representation having its advantages and disadvantages. Ad-
vantages and disadvantages of chosen representations are discussed in Section 3.1.4.
Finally the ordering algorithm orders the operators to ensure that mathematically
equal but permuted formulae are transformed to the same representation.

One important feature is that there can be more than one function Q with different
specialisations. The only limitation is the number of important formulae in one
document. This number is usually negligible comparing to the number of text words.

Structure of the generalisation algorithm is not strictly set and can be changed
to meet special demands. In each step one or more transformation rules are applied
and a more general formula is constructed. The construction of fi can be described
by defining functions Qi which take a formula and produce the i− th representation
by applying the rules at this level. The main algorithm used in the mathematical
extension performs these steps:

Input: Input formula - f
Output: f1, f2, ..., fN , fi - formula
f0 := f ;
for i = 1 to N do

fi := Qi (fi−1);
fi := ordering (fi);

end
Algorithm 1: Main algorithm

The resulting set must be converted to text. Text is an ordered set of words.
Infix form is the common notation of mathematical formulae. The advantage is the
readability but the disadvantage is the necessity of parentheses. The solution is not to
use infix. The proposed search engine uses reverse polish notation also called postfix
notation. This technique has two main advantages. The first one is that it does not
need parentheses and the second one is that it enables one type of similarity searching
as illustrates the following example. The formula (a + b) − (c + d) is converted to
ab + cd + −, let’s assume that formula tokens are ab+ and cd+ and so the index
database contains three words in this order: ab+, cd+, −. This allows to search for
the subformulae (ab+, cd+) without knowing the operator between them.

The definition of a formula token is very difficult because it depends on many
aspects like user behaviour, mathematical context, data set. The vague definition is:
the smallest part of a formula which can be searched for. The precise definition is a
subject to evaluation. A model definition can be found in Chapter 5.
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3.1.1 Transformation rules

List of transformation rules :

1. Partial evaluation at each level

Example: 7 + a + 5 → 12 + a

See rule #2.

2. Approximate numerical constants

Example: 3.14
.
= 3

This approximation does not practically decrease search precision. Formula ei-
ther contains important special constants (because they are special they should
be easily found on the WWW by any full text search engine) or does not contain
an important constant and can be approximated. Other cases are negligible.

In many parts of mathematics formulae with different constants are still con-
sidered to be very similar and can be easily transformed or immediately used
when found. This is the reason why most of the constants can be replaced by
symbols without effecting the search. However, few exceptions should be taken
into account (see rule #6).

To keep the possibility of a nearly perfect match (with constant approximation
imprecision) constants should not be immediately replaced. At least the first
produced representation should contain them.

The approximation is parametrised by rounding behaviour (mode - up, down,
floor, ..., precision - integer, float, ..., etc).

3. Remove brackets using distributivity

Example: a ∗ (b + c) → a ∗ b + b ∗ c

The general intention is to linearise formulae. It is clear that one formula
has more different textual representations (but mathematically equal) with the
possibility to use brackets then without. This implies the statement that the
more two mathematically equal formulae are linear the bigger chance is to
convert them into the same canonical representation. In general the ordering
algorithm is more suitable for linearised formulae.

This transformation is parametrised by the appearance of their operands. It is
the same problem as with formula token. Complex operands are less suitable
for the distribution than simple operands. The appearance of the result can
be considered very different to the original formula and therefore the precision
would be very low. By adjusting the requirements for the operands the precision
can be kept above a specified limit.

4. Multiply tokens

Example: a+b
2
∗ Π → Πa+Πb

2
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Apply this rule only when one of the tokens is a division with numerator being
an addition or subtraction. The reasoning for this transformation is the same
as with #3. When the number of transformation applicable to a formula is cut
down less different textual representation of a formula can be created and the
chance to match them is higher. In this case the prohibited transformation is
to take out and operand.

This transformation is also parametrised by the appearance of their operands.
Complex operands are less suitable for the multiplication than simple operands.

5. Assign each numerator its own denominator

Example: Πa+Πb
2

→ Πa
2

+ Πb
2

Each numerator token will be detached from the original division if either + or
− is between the numerators. The reason for this transformation is the same
as for #3 and #4 to limit the number of possible representations of a formula.

6. Replace constants with const symbol

Example: 74 + a2 + b2 → const + aconst + bconst

or → const + a2 + b2

As mentioned in #1 it is meaningless to distinguish between formulae only by
value of a constant.

An extension of this rule can contain the requirement that standalone constant
on one depth level are not replaced as in a2: 7 + a2 → const + a2 because they
can be considered very important. Another extension can disallow replacing
known constants as Π, e, etc.

7. Replace unknown constants and variables with id symbol,

Example: a2 − b2 − c2 + 2bc cos α → id2
1 − id2

1 − id2
1 + 2id1id2 cos id3

or → id2
1 − id2

2 − id2
3 + 2id1id2 cos id3

or → id2
1 − id2

2 − id2
3 + 2id2id3 cos id4

Variable names can differ. Search for x + y should also return a + b or R + S.
As mentioned in the beginning of this chapter mathematical structures are very
context dependent and only few symbols are really standardised. Due to this
fact unknown constants are considered as variables. Both are replaced by id
symbol. This rule ensures to return also formulae with other variable names at
the cost of precision.

This approach has one disadvantage when searching for subformula. The vari-
ables can not be numbered globally because the position of subformula can vary
and so the numbering in the input subformula is not known. Assume that a
global numbering has been performed and these are representations of indexed
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formulae in infix order for readability and that each operand is a formula token
for simplicity: id1 + (id2 − id3) and 1 + (id1 − id2). Logically, both match the
search term a− b when searching for subformula. In the first case it should be
converted to (id2 − id3) and in the second case to (id1 − id2). Because of this
the global numbering can not be performed and so the precision lost at this
level can be significant. Therefore, this rule is applied at the end.

An extension to this rule follows from the definition of a formula token. Formula
token is the smallest searchable unit and therefore a numbering inside a formula
token does make sense and should be performed as shown in the second and
third possible example transformation.

The list of the rules applicable to a formula is not complete but contains rules
solving the most common mathematical problems. Any other rule can be simply
added. The number of text representations of one formula is not limited and depends
on the goal of the engine.

The searching algorithm tries to find a match at the most exact level and if it
does not find any result it can try the more general level. In the manner described
even the most generalising rule can have impact on the recall and precision only at
its own or lower level. Therefore these rules should be put at the end.

More technical simplification rules

Because the formulae are very complex non linear structures more simplifications
must be introduced. All the following simplifications are technical. This means that
there is no reason for their presence other than keeping the mathematical extension
as simple, but still usable, as it can be. Equations are considered as two formulae
with equal operator between them. Constraints and variables of known operators are
not considered (

∫∞
0

x2dx →
∫

x2). These simplifications are not consequences of any
limitations and are introduced only to allow the mathematical search engine to be
very simple. They are subjects for further improvements.

3.1.2 Ordering algorithm

The purpose of the ordering algorithm is to guarantee that two mathematically equal
formulae with the same but permuted operands have a unique canonical representa-
tion and that two similar (but not equal) formulae have a similar unique representa-
tion.

One definition of formulae similarity is that the more operations they have in
common the more similar they are. The same can be imagined as comparing the
formula tree using breadth search. To get the best search results the token ordering
must be done with regard to the similarity of operations not to the difference of
characters or values. The ordering does not use simple string comparison, if not
really necessary, but a rather more complex comparison algorithm.
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The usual operator priority must be kept, otherwise canonical formula and original
formula do not need to be equivalent. The basic operator priority from least important
to most important is +,−, ∗, /.

The ordering algorithm is used always on one depth level at a time. Assume a for-
mula tree has more than one most important operator. Then the ordering algorithm
uses this order:

1. smallest numerical constant (more constants can be at one level, despite the
first transformation rule, when the operator between them is unknown or not
suitable for arithmetic)

2. common constants with predefined order (e, Π, ...), if equal use operator priority

3. known operators with predefined order (
∫

, ln, ...), if equal use operator priority

4. other subformulae are ordered according to this rules:
(a) ordered by operator priority - first +x2, second −x2

(b) ordered by operand count - the operator with the least operands is at the
beginning

(c) if the operator priority and the count of operands are equal for two sub-
formulae then order them recursively according to these rules:

i. priority of the first different operator

ii. if exactly one contains numerical constant then it is the first one

iii. if one contains more common constants then it is the first one

iv. if one contains more known operators then it is the first one

v. otherwise use string comparison

3.1.3 Proof of the ordering algorithm

The ordering algorithm must satisfy two conditions. Firstly, two mathematical equiv-
alent formulae with the same operands but permuted using commutativity must have
the same unique canonical representation. And secondly, two not equivalent formulae
or equivalent but with different operands must have a different canonical representa-
tion.

Because ordering algorithm neither deletes nor inserts operands or operators the
second condition is clearly met. If one formula contains operand or operator which
the other does not the two can not have equivalent representation. Commutativity is
mathematically equivalent transformation and therefore two not equivalent formulae
will have different representations.

Schematic proof of the first condition is done using mathematical induction. The
proof is built on formula tree depth. Firstly, prove that after applying the algorithm
to leaf nodes of equivalent formulae results in the same representation and then for
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the k+1 level. Because input formula has finite number of operands and each operand
is ordered by the algorithm exactly once the algorithm is clearly finite too.

• For depth = 1, meaning just symbols from the leaf nodes are being ordered and
it is clear that the order is unique because no two different symbols are in the
same category. If the same symbol can have more meanings only one is used as
described in Section 2.5.2.

• Assume the theorem holds for depth = k.
• For depth = k + 1, because each child of an operand is already ordered both

subformulae have the same operands. Because the same algorithm is applied
on both formulae the ordering is the same.

When the depth is equal to the formula tree depth all single operands are ordered
and so is the formula.

3.1.4 Formal description

A formal description of the algorithm:

Input: Input formula - f , set of transformation rules T1, ..., T7

Output: Set of formulae f1, f2, f3, f4, f5

f0 := f ;
Q1 := T1, T2;
Q2 := T3, T4, T5;
Q3 := T6;
Q4 := T7;
f1 := ordering (f);
for i = 1 to 4 do

fi+1 := ordering (Qi (fi));
end

Algorithm 2: Generalisation algorithm

The textual description of the algorithm:

1. apply the ordering algorithm

2. store actual representation

3. apply 1. and 2. transformation rule - partially evaluate numerical constants
on every level and round them

4. apply the ordering algorithm

5. store actual representation

6. apply 3., 4. and 5. transformation rule - linearise the formula which means try
to minimise formula tree depth

7. apply the ordering algorithm

8. store actual representation
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9. apply 6. transformation rule - replace constants with const

10. apply the ordering algorithm

11. store actual representation

12. apply 7. transformation rule - replace variables with id symbol

13. apply the ordering algorithm

14. store actual representation

The purpose of the first representation is to allow mathematically most precise
match. The second representation is again very likely mathematically equal to the
original form. It can be still considered very similar and therefore the first two
representations have relatively high rank. The third representation resulted from
more complex transformations which are parametrised by several factors. The main
goal was to cut down the number of possible representations mapping very common
variations to single one. The fourth representation uses the idea that constants are
not important in many parts of mathematics. The last one limits the similarity to the
operations and number of operands. It is probably the most severe transformation
because there is no global numbering. However, local numbering is possible and can
be very effective. On one hand the last representation allows searches for a+b = b+a
but on the other hand at the cost of a big precision lost.

3.2 Second stage

The ranking algorithm is taken over from the underlying full text search engine. Each
word in a document has a weight which indicates the relevance to the document. For
example the words in the title are ranked higher than the words in the body of a
document. There are many heuristics which slightly enhance the relevance of words
in the relation to the document.

Because the mathematical search engine produces words they must be ranked too.
If two documents match( .

=) a search term but both match with different representa-
tion, fi

.
= fj but i 6= j, i < j, then the document with fi should rank higher. Let R

be the rank of a word then the requirement for the ranking of the formula words can
be written as: R(f1) ≥ R(f2) ≥ ... ≥ R(fN). The mathematical background for this
approach is taken from similarity searching and is described in Chapter 6.

3.3 Case studies

Case studies of formulae transformations are in Appendix A.



4 Searching Mathematical Formulae

The last phase of a search engine is the only user interactive phase. The user must
formulate a search query which specifies her searching needs. Because the query
language is usually very simple queries can be ambiguous. Statistics show that most
text search engines users do not use the offered potential very much but are limiting
the search string only to simple words.

The user interface of a full text search is standardised as can be seen in the most
successful search engines (http://live.com/, http://google.com/, http://yahoo.com/).
Also the presentation of results is very similar. The first few (around twenty) results
are the most important and the results are sorted according to a ranking algorithm.

The searching phase must perform several steps: 1) query parsing, 2) mapping
query operators to supported internal constructs, 3) find all words/phrases in the
query, 4) evaluate the logic of the query and collect suitable documents, 5) sort them
according to their rank and relevance to the query, 6) return the result list. Query
constructs usually include boolean operators AND, OR, NOT. The mathematical
extension must be part of 1) and 2) and the changes must be appended to the text
search using the available internal constructs.

From the practical point of view a dramatic change to the interface could have
great impact on the usability. Because of this no new graphical interface is designed
but rather the common interface is extended to allow mathematical searching. The
entry point to a full text search engine is a text field where a simple string is specified.
The string is sent to the server which in return sends the result. The entry point
to a mathematical search engine must be augmented by one or more fields where
formulae can be expressed. The best solution from the short time perspective is a
graphical application assisting in the creation of a formula but from the long time
perspective a simple string query language is necessary. In both cases the query must
be somehow encoded and sent to the server. In the latter case the inputted string
can be send directly. In the first case the graphical representation can be converted
to text too but the problem is that the query string can be very complex and because
it is converted automatically it can be less user friendly. The most important goal is
to have the query language as simple and user-friendly as possible but with no limits
to the expressivity.

33
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4.1 Query language

Most users searching for mathematics have already made contact with science pa-
pers. One assumption can be made about the diverse group of users. One of the
programming languages that have been seen by most of the users is LATEX. To allow
intuitive usage the search query language proposed in this study is very similar to
LATEX. The main advantage is the standardised use. The main disadvantage is that
it does not allow semantic information. However, the proposed search engine does
not use the semantic information and therefore this disadvantage is eliminated.

Basic mathematical notations and operations must be supported. One basic am-
biguous simple grammar that should be at least supported is illustrated in Listing
4.1. Terminal can be rewritten to supported constants, symbols, numbers or unknown
symbols. Supported symbols must be carefully selected to avoid high equivocation
and must match symbols in the indexing phase. The grammar is ambiguous but as
mentioned above the lack of semantic information from the user and the lack of se-
mantic information in the document enables us to select one specific meaning of the
formula without having a negative effect on the search engine performance. The only
requirement is that it is the same in the indexing phase as in the searching phase.
Few query language search examples are in Table 4.1.

Despite the fact that the grammar is very simple it can be used to express most of
the tested mathematical notation. More complex definition are either very ambiguous
or too complex to try other technique but perfect match. The latter case depends on
the amount of the specification which can be adjusted according to current dataset.

On this special type of ambiguous grammar similar techniques to island parsing
can be used [17]. The grammar can be imagined as a sea which is divided into
islands surrounded by water. Water contains the less important production rules and
islands are the more important production rules. The rules are selected according to
a predefined order.

−> S
S −> expr
S −> eq
expr −> expr ’+ ’ term | expr ’− ’ term
expr −> term
eq −> eq ’= ’ expr | expr
term −> term ’∗ ’ atom | term ’ / ’ atom
term −> atom
atom −> atom ’^{ ’ expr ’ } ’ | atom ’_{ ’ expr ’ } ’
atom −> (expr ) | terminal
atom −> ’\ s in ’ atom | ’\ cos ’ atom | . . .
terminal −> NUMBER
terminal −> DEFINED_CONSTANT | DEFINED_SYMBOL
terminal −> UNDEFINED_SYMBOL

Listing 4.1: Sketch of a query language grammar
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Query Meaning

a^{2}+b^{2} a2 + b2

\Pi(a+b) Π(a + b)

\int e^{-x^{2}}
∫

e−x2

\lambda +y = \Pi * r^{2} λ + y = Π ∗ r2

Table 4.1: Query examples

4.2 Performing query

The mathematical search engine computes representations using the generalisation
algorithm. It is clear that it must be the same generalisation algorithm as in the
indexing phase. If there is more than one representation it is appended to the text
search query string using AND operator one at a time. This ensures that only
documents containing both search terms are returned. The text query must be present
in the text section of the document and the formula in the mathematical section. So
instead of one query there is up to N queries. One query is built at each step of the
generalisation algorithm. One advantage of this approach is that if there is a match
at a step of the algorithm it is very likely more relevant than that the results obtained
by performing query using representations from later steps. Therefore the queries are
performed till the first match of K different documents are found.

The ranking algorithm of mathematical formulae is based on the similarity search
which uses formula distance to rank each formula. The mathematical background is
discussed in Chapter 6. The user can use this technique to limit his search only to a
specified domain of similar formulae and achieving finer mathematical granularity.

The process of searching is demonstrated in Figure 4.1.

4.3 Displaying results

There are many ways how to display full text results. Usually, very helpful is to
display parts of the text where the word/phrase was found. It is called highlighting
and helps the user to decide which document is relevant without the need to open it.

The problem with mathematical documents is their presentation format as de-
scribed in Chapter 1. There is no effective technique which extracts interesting parts
from found documents without big storage overhead or undergoing the same process
as in the indexing phase which is very time consuming. Another problem is that the
formula representations stored in the index are different than the original formula and
there is no connection between the original formula and the representation except the
position in the document.
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Figure 4.1: Query flow chart

The searching phase of a mathematical search engine must display at least a small
abstract of the text extracted from the document. Because of the common structure
of scientific texts proper authors and titles should be displayed too, if available. All
other features are optional.



5 Prototype Description

The proposed mathematical search engine is designed as an extension to an existing
search engine. The prototype implementation is based on the Egothor v21 search
engine.

The goal of this chapter is not to offer an extensive technical description of the
prototype implementation but rather to describe parts of the system which had to be
reimplemented and added to enable mathematical searching. The user manual and
the technical documentation can be found on the enclosed CD in Appendix B.

The Egothor project was created because no other open project met specific re-
quirements put on the full text search engine. The most important demands were put
on the transparent handling in local and distributed environment and extensibility
which allows to implement arbitrary searching technique.

It is implemented in Java language because of its native Unicode support, easy
code management and high-quality support for networking. The Java language has
already proven itself in Lucene2 search engine.

The first goal was to design and implement a robust, efficient crawler and its
supporting utilities. Then the WWW content can be analysed and the information
gained used to improve the overall design. However, this strategy has had an impact
on the current status. Several parts of the search engine has not been finished yet.

Egothor is highly configurable and the mathematical extension follows this goal.
In the following sections only those parts are described which are important for
understanding the implementation of the mathematical search extension. Other parts
are described in [12, 35].

5.1 Indexing

The purpose of the indexing part is to create an index over a set of documents. The
index is called tanker. After the index is created the most important operation will
be adding new information. The index directory contains metadata with their index,
index map mapping local unique identifiers of documents to global identifiers, then
inverted index itself, actual occurrences in documents and term dictionary with quick
access map.

1The project homepage is http://www.egothor.org/.
2The project homepage is http://lucene.apache.org/java/docs/.
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Index is filled with information units represented called index tokens. It contains
the text it represents and additional information about the token type, start, end of
line and column of its place in a document, weight, number of sentence and finally
relative offset. The token type can be, for example, "<WORD>", "<GRAM>", "<NUM>",
"<DIGIT>", "<MARK>", "<DATE>", "<LETTER>", "<ACRONYM>", "<BITMAP>".

The last mentioned token type can be used to add a characteristic or a feature
to a document. A characteristic can be the language used, file type, year of change
etc. In the implementation it is used to mark all documents containing mathematical
notations. Furthermore, the token types are also used to distinguish mathematical
notation from normal text. This way the desired behaviour is achieved to limit
formula searching only to the mathematical section.

After the document is parsed to index tokens it is added into a filtering chain.
The task of the filtering chain is clear - create new stream of index tokens by sending
each index token through a set of filters. Egothor has several filter classes with clear
purpose - LowerCase, StopFilter etc. This paradigm is very important and will be
described in more detail below.

5.2 Searching

The searching runs over the inverted index and is performed in these steps: 1) analysis
of the input query and splitting the query to words, 2) inverted lists of all words are
found in the index (more precisely in the dictionary), 3) the logic of the query is
evaluated over the words with hit relevance, 4) first K (arbitrary constant) hits are
returned. The query evaluation model can be one of boolean, vector or fuzzy model.

The analysis of the query transforms the string representation to internal tree
representation. The default operation in the root node is AND. All supported op-
erators are mapped to one of the classes in query.representation: QTerm - word
occurrence, QProx - proximity operator ([]), QPhrase - whole phrase occurrence (""),
QOr - (||),QNot - (-), QAnd - (&&), QGroup - default behaviour is that it requires the
occurrence of at least one its children.

5.3 Changes

Several modules were reorganised to allow straightforward adding of the mathematical
extension. The implementation of the extension itself required only modifications in
the indexing and searching phase. The next sections discuss these changes in more
detail.

5.3.1 Indexing

Egothor v2 supports only HTML document format. The first change was to add support
for Presentation and Content MathML document format. Because the format is based
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on XML standard Xerces XML parser3 was used.

Figure 5.1: Filter architecture

The parsing itself is straightforward though it is very complex. The evaluation
phase showed that the parsing must be very robust and flexible otherwise the whole
formula can be invalid and besides can degrade the document value. Another impor-
tant factor is the mapping of MathML symbols to known symbols. When a formula
contains unknown symbol it can not be searched for. Moreover, the Presentation
MathML does not contain information about the semantic meaning. For example
<mi>J</mi><mo/><mi>o</mi><mi>e</mi> can be interpreted as J ∗ o ∗ e or simply
three tokens J o e. The problem illustrated in this example is very frequent and must
be handled together with many other similar problems. Because of its complexity
the parsing of MathML is located in a subproject together with the MathML interface
provided by W3C Consortium.

The most important goal in the implementation was to add the mathematical
extension to the Egothor transparently to demonstrate the advantages of the solution.
The best choice was to use the filtering architecture. Before doing so it had been
reimplemented.

The final architecture slightly resembles Boost filtering streams4. The basic idea
is that a stream contains one or more filters followed by a device. Each stream can
be either input or output. The Egothor project uses only input stream mode.

The common practise by the input mode is to have the device produce real data,
for example, from a file. When a read operation is called on the stream the call is

3The project homepage is http://xerces.apache.org/.
4Boost is a C++ library already included in the C++ Standards Committee’s Library Technical

Report (TR1) and will very likely be part of a future C++ Standard. The boost iostreams can be
found at
http://www.boost.org/libs/iostreams/doc/guide/filtering_streams.html.
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delegated to the first added filter, which in turn calls the second filter etc. till the
last filter calls the device which provides the filter with real data. Then the filter
transforms the data and returns them to the previous filter etc. till the first filter
transforms them and returns them to the stream. The schema is illustrated in Figure
5.1. The implementation of the idea of filtering stream is described in Appendix C.

This approach is easy to use and it enables adding index tokens produced from
mathematical extension transparently by creating new filter class. After submitting
all index tokens created by the original search engine the mathematical ones are
submitted. The indexing algorithm does not need to be changed.

The filter class is initialised by a list of formulae which are converted to index
tokens. The formula recognition technique used to build formulae uses either static
symbol specification or dynamic specification illustrated in Appendix C. The eval-
uation phase showed that this is a crucial part of the system. It ensures that two
identical formulae but stored in different encodings are recognised to be identical (Φ,
φ, \u03C0, \u03A0, Phi, phi must be converted to one symbol). The mapping file has
been created over a document set described in Chapter 6. First the formula is parsed
to tokens, then converted to postfix notation and finally the tree is built. Along this
process several helper techniques must be applied to eliminate possible problems (e.g.
Joe problem). Again the solution is to select one approach and use it in both phases -
indexing and searching.

Figure 5.2: Filtering chain

The overall algorithm is a list of transformations applied on a formula with one
special transformation called Output Collector. This class collects the formula
representations from each step of the generalisation algorithm. These representations
are then split to words forming, with additional information, the index tokens. The
splitting of representations to words is very important. The design relies on generic
specifications which decide whether a subformula satisfies a specification or not. This
part of the implementation is responsible for defining the atomic search unit for the
mathematical search engine.

Each transformation has its own implementing class which operates over the for-
mula tree. In this method the actual transformation is performed. The algorithm
flow chart is shown in Figure 5.2. Note that the number of algorithms applied to a
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formula can be greater than one and is specified either dynamically or statically. The
dynamic specification is in illustrated in Appendix C.

5.3.2 Searching

The same generalisation algorithm is used in the searching part. Each representation
is appended to the text query with the AND operator forming the final query. If
a query does not return any results the next representation is used. The internal
representation is illustrated in Figure 5.3.

Figure 5.3: Internal query representation

The prototype implementation of the searching phase supports only command
line user interface. It is clearly sufficient for evaluation purposes and moreover can
be used for batch processing.

5.4 PDF support

The Egothor v2 project with mathematical extension supports embedded MathML
into HTML and self-contained MathML documents natively. It can also support all
mathematical document formats which can be converted to MathML. The goal of the
implementation is to evaluate mathematical search engine and therefore it is focused
on scientific notation rather than on normal text. The pdf support aimed for simple
text is implemented in Egothor v1 using xpdf5 utilities and can be integrated to
version 2 easily.

5http://www.foolabs.com/xpdf/



5.4 PDF support 42

The architecture of pdf support is illustrated in Figure 5.4. In the first step the
pdf file is converted to monochrome portable pixmap graphical format (pbm). Then it
is converted to tagged image file format (tiff) and finally it is converted to embedded
MathML using OCR system. The usability of this method is discussed in Chapter 6.

Figure 5.4: PDF conversion



6 Evaluation

Mathematical searching is a new research field with few practical results that is why
there is not a widely accepted evaluation metric or method. Very few papers address
this issue [18]. There are no testing databases for mathematical search engines like
Trec1 or Wang2 with already predefined inputs and expected outputs.

There are three ways how to evaluate a mathematical search engine. One approach
is to use existing techniques from general searching or information retrieval, another
to use specialised techniques developed for specific purposes and the last one is to
develop new techniques. The evaluation here exploits all three approaches.

The goal of this Chapter is to describe the important characteristics of this sci-
entific search engine rather than to develop a new universal evaluation technique. It
is very likely that the completely different approaches taken in the field of scientific
searching can not be even reasonably unified.

The used datasets are described in the first section. It is very important to know
the precise characteristics of the underlying datasets. The evaluation itself can be
divided into several characteristics. Each characteristic describes one or more aspects
of the search engine.

Fine granularity of the mathematical search engine is described in Section 6.2.
This characteristic is important as it shows the effects of changed granularity on
performance. It has an impact on the storage, speed and mainly on the usability
where it defines the size of an atomic information element.

The most common metrics used to evaluate the performance of an information
retrieval system, recall and precision, can be used too. But they would be rather
less informative and more subjective than by, for example, full text search engines.
However, the next characteristic in Section 6.3 is based on them and shows the search
engine performance.

The size and speed of the implementation are shortly described in the next section.
As there is nothing to compare it with and as it is a prototype implementation it is
more informative than precise.

The last characteristic is similarity of the input formula and the indexed formula.
Because this search engine is based on a full text search engine nothing is computed
dynamically. The similarities are precomputed and stored as meta information. It
means that each formula in the index database has a similarity value which is not
dependent on the user query formula. The searching phase just selects the formula

1http://trec.nist.gov/
2http://wang.ist.psu.edu/docs/related.shtml
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from the index and uses its similarity value.
The evaluation is closed by a short description of pdf converting process evalua-

tion.

6.1 Dataset

Connections3 (referred to as CNX in the remainder) is a site where educational mate-
rial is shared. It is organised into modules, in other words small pieces of knowledge,
which are further organised into courses, books etc. One of the basic categories is
Mathematics and Statistics. The modules are displayed using embedded MathML,
both Presentation and Content MathML are included in the document. There are
around 500 modules in CNX Mathematics and Statistics section. CNX datasets have
been obtained by partially mirroring its site in July 2007. The selection of this source
is not arbitrary but it is the same dataset as indexed by MathWebSearch.

The first dataset, referred to as CNX1, is the whole set of files downloaded by
the partial mirroring. This set also includes documents not containing mathematical
formulae. The second dataset, referred to as CNX2, includes 16 modules from CNX1 rep-
resenting various mathematical research fields. The most interesting fields included
are: Bilinear Transform, Torque about a point, Discontinuities, Interesting Graphs,
Finding the Domain of Radical Functions, Basic Mathematical Operations, Angle
between vectors, Basic Definitions in Stochastic Processes, The Central Limit Theo-
rem, Important Examples of Expectation, Fixed Point Arithmetic, Fourier Analysis
in Complex Spaces, Functions of a Matrix.

Several abbreviations have to be defined before presenting the statistics. The
definitions are in Table 6.1. For example #0.Es means element count in the original
formula.

# - count A. - average
D. - different Nums - numerical constants
Fs - formulae Es - mathematical elements (a, +,

∫
, ...)

FT - formula token Rs - representations of a formula produced
by the generalisation algorithm

pD - per document pFT - per formula token
pR - per representation 0. - original formula

Table 6.1: Abbreviations

Several important characteristics of both datasets are illustrated in Table 6.2 and
Table 6.3. The table includes information about the whole mirrored dataset not only
about mathematical documents. Different versions of the same document have been
excluded. Each formula is represented in Presentation and Content MathML and there-
fore the number of different formulae is half the number of all formulae. A formula

3http://cnx.org/
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in the Presentation and Content format is not necessarily converted to the same in-
ternal representation and therefore they can be considered as two different formulae.
It is because of the solely meaning selection technique described in Chapter 2. Both
complete datasets are included in Appendix B. Although the CNX2 dataset is much
smaller than the whole collection the statistical differences of presented characteristics
can be neglected.

Dataset Total Size
Size of Text
Documents

Size of Mathematical
Documents

CNX1 99.2 MB 40.19 MB 19.68 MB
CNX2 0.99 MB 0.79 MB 0.79 MB
Dataset #Files #Documents #Mathematical Documents
CNX1 2454 1470 421
CNX2 44 16 16

Table 6.2: CNX datasets size statistics

Dataset #Fs A. #Fs (pD) #Es A. #0.Nums
CNX1 32306 76.736343 1539133 1.043645
CNX2 1416 88.500000 90680 1.492938

Table 6.3: CNX datasets overall statistics

6.2 Fine granularity

Each search engine must define its atomic search unit. Improper definition of an
atom can greatly decrease the usability and speed and increase the index size. This
section provides comparison of different atom definitions and their impacts on the
performance. The mechanism used to split representations to atomic information
unit is called formula tokenizer. The precise tokenizer definitions are included in
Appendix B. The tokenizer looks on a formula and decides whether it is small enough
to be an atomic piece of information. Otherwise it splits the formula into more parts.

There are 5 different tokenizers for CNX2 (JM1, JM2, JM3, JM4, JM5) and one
for CNX1 (JM0). The definition of the CNX1 (JM0) tokenizer is the same as JM1.
The statistics of the tokenizers are illustrated in Table 6.4-Table 6.6. The common
used, JM1, accepts subformula up to 10 nodes with a reasonable depth difference.
JM2 accepts all formulae. JM3 accepts all nodes without index nor exponent. JM4
accepts only really simple ones and the JM5 accepts only constants. JM0 is not
included considered in the remainder as it operates over different dataset than the
others.
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Tokenizer #FT #Es #D.Rs #0.FT #0.Es
JM0 438317 1569026 78631 79887 282717
JM1 25514 94780 3732 3869 14512
JM2 7080 95906 3732 1416 14691
JM3 7589 96267 3730 1521 14760
JM4 48811 88000 3721 7407 13949
JM5 77735 82929 3720 11969 12945

Table 6.4: Basic statistical information

Tokenizer A. #FT (pR) A. #Es (pFT) A.#D.Rs A. #0.Es (pR)
JM0 2.713533 3.579660 2.433944 3.538961
JM1 3.603672 3.714823 2.635593 3.750840
JM2 1.000000 13.546045 2.635593 10.375000
JM3 1.071893 12.685070 2.634181 9.704142
JM4 6.894209 1.802872 2.627825 1.883219
JM5 10.979520 1.066817 2.627119 1.081544

Table 6.5: Average statistical information

The corresponding graphs are illustrated in Figure 6.1 - Figure 6.4. The CNX1
dataset is not included because it is much bigger and the data obtained would distort
the comparison of different tokenizers over CNX2 dataset. The first graph (#FT)
shows the number of formulae. It is clearly shown that when the tokenizer accepts
only constants the number of formula tokens is the highest. The difference between
the tokenizers is signigicant, where the strictest specification contains almost 11 times
the number of formulae tokens as the most loose one.

The number of mathematical elements illustrated in the next graph (#Es) is
similar but not identical. It is caused by the algorithm producing string representation
of complex formula tokens where e.g. the index and exponent are concatenated to
the operator without a space and therefore are counted as one operand. But as it

Tokenizer A. #FT (pD) A. #0.Nums
JM0 1041.133017 1.057636
JM1 1594.625000 1.535311
JM2 442.500000 1.540960
JM3 474.312500 1.549435
JM4 3050.687500 1.468220
JM5 4858.437500 1.444209

Table 6.6: Additional information
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can be seen it is not very common behaviour.
On the third graph (#Different Rs) in the first figure the number of different

representations is illustrated. Different tokenizer specifications proved insignificant in
comparison of the resulting transformations. It is also because the other parameters
in the transformations are very strict and therefore allow only few mathematical
operations.

Figure 6.1: First set of characteristics

Figure 6.2 shows the same results as Figure 6.1. The difference in the number
of mathematical elements across different tokenizers is up to 15%. These graphs
(#0.FT, #0.Es) clearly state that both statistics, number of formula tokens and
number of mathematical elements, are not dependent on whether only the original
formula or all representations are included.

Figure 6.2: Second set of characteristics

Figure 6.3 contains the average characteristics of formula tokens and mathematical
elements. The first two graphs (A. #FT (pD), A. #FT (pR)) show the same trend
and that is the strict tokenizers having greater average counts than the less strict
ones. The average number of elements (A. #Es (pFT)) is very interesting with JM2
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and JM3 having almost 14 mathematical elements per formula token. This number
is very high and almost disallows subformula search in a common formula.

Figure 6.3: Third set of characteristics

The last characteristic figure (A. #DRs) shows that the number of different rep-
resentations is almost identical among the tokenizers. It shows that approximately
three out of five representations are different. When considering the properties of
the transformations the first, second and third are more similar than the last ones.
It influences the size of the index database where only approximately three differ-
ent representations must be stored. The second graph (A. #0.Ed (pR)) tells that
the other representations add two mathematical operands in average to the original
formula.

The last one (A. #0.Nums) shows the average number of numerical constants in
the original formulae. It indicates that proposed partial evaluation transformation
is not used often because it is evaluating only numerical constants (functions like
sin, log, ... and more complex operations across different depth levels which could
increase the usage are not implemented in the prototype).

Figure 6.4: Fourth set of characteristics
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6.3 Not exactly recall and precision

The recall (R) and precision (P ) metrics are subjective metrics used to evaluate
search engines. The definitions of recall (R) and precision (P ) are:

P =
{relevant documents} ∩ {retrieved documents}

{retrieved documents}

R =
{relevant documents} ∩ {retrieved documents}

{relevant documents}
Both measures rely on a collection of documents and queries for which the rele-

vancy of the documents is known. Every document is known to be either relevant or
non-relevant to a particular query. The relevancy of a document is very subjective in
mathematical searching. Many users can consider 1−cos2(x) the same as sin2(x) but
many can find this very disturbing as new knowledge, not necessarily known to them,
is introduced. Moreover, this subjectivity spreads to whole parts of mathematics.
Because there is neither official nor unofficial testing set it would be meaningless to
define this set by the author itself. The creation of the set has to be based on a study
of many different potential users of the mathematical search engine.

A new evaluation technique was developed which concentrates on simple mathe-
matical formulae rather than on documents to partially eliminate the problem. The
subjectivity is limited to binary decision of similarity between two formulae. The
whole set is included in Appendix B and is referred to as QUERY. A sample part of
the specification file is illustrated below on the left and several tested formulae are
illustrated on the right. There are 82 formulae divided into original formulae and for-
mulae which either should or should not match the original. Each formula is classified
into several categories. Each category represents one characteristic transformation or
feature. The categories are: COMPLEX - cpx, ORIGINAL - o, SUBFORMULA
- sub, COMMUTATIVITY - com, DISTRIBUTIVITY - dis, CONSTANT ARITH-
METIC - ca, CONSTANT DIFFERENCE - cd, VARIABLE ARITHMETIC - va,
VARIABLE DIFFERENCE - vd and a special category ALL where all formulae are
included.

(1/(x+2))+(3/(x-3))
CAT: o
EXP: 1
GOT: 1

1/(x+2)
CAT: sub,
EXP: 1
GOT: 1

(2*a) / (b^2+7)^{0.5} = z
s’=s*e^{ComplexI*\phi}
\sum_{i=0}^{N-1} (x_i*y_i)
F_{bot}*r = \tau
x^T*y=\sum_{i=0}^{N-1} (x_i*y_i)
IntegerS*(0*\sigma^2)
a = (a(a-7))/(a-88)
||x||_2^2=x^T*x
\tau = F*r*sin(\phi)

The search engine either finds or finds not the document containing the formula.
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The result (RP ) for one category (C) is converted in percentage terms by this formula:

RP =
∑
f∈C

Query(f)

C
where Query(f) =

{
1 expectation matches result
0 otherwise

where f can be included in more categories.
The QUERY was prepared by the author of the thesis and was refined by two

potential users of the mathematical search engine. All formulae have been chosen
from the CNX2 dataset. The selection was random but one special type of formulae
has been omitted - formulae containing matrices. The reason is that: 1) it is difficult
to notate a matrix, 2) the matrix must be noted exactly as no matrix transformation
is very common.

The result RP metric is shown in Figure 6.5. Table on the left contains exact
numerical values, the graph on the right is in percentage terms.

Dataset QUERY
all 0.4834
o 0.6667

sub 0.5790
com 0.5000
ca 0.5000
cd 0.4000
va 0.3333
vd 0.5263
cpx 0.5455

Figure 6.5: QUERY results

The Variable arithmetic test came out as the worst. It is because the variable
arithmetic is not considered in the proposal. On one hand the arithmetic can prove
useful but on the other hand it introduces too much new knowledge which can be
confusing. The second worst test was the Constant difference. It is because the
numbering of formula tokens is not implemented and so query a + b also matches
a + a. However this looseness happens only with the most generalised representation
and can be easily excluded. The only 64% success of the original formula matching is
caused by missing symbols and incorrect parsing of complex formulae e.g. the limits
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of an integral or a summation are not handled specially and in the most cases result
in the unusability of the whole formula. However, this is again the implementation
issue. The result of Variable and Constant arithmetic is also influeneced by the
smallest number of available test cases.

It is very interesting that the Content and Presentation MathML format have been
in most cases complementary rather than equivalent. This is caused by the lack of
semantic information in the search query. The Content format kept the formula to-
gether as one word on the contrary to the Presentation format which had to introduce
new mathematical operations (like ∗ when encountering ab) and therefore made the
formula more complex.

All the results were influenced by two factors. Firstly, the lack of symbol definition
in the implementation, the worst appeared to be the lack of commutativity by =,
≥ etc.). The second factor was that the search engine returned more results than
expected. This was principally caused by the last most generalised representation.

The process of evaluation showed that the recall metric is high at the cost of
lower precision. The results confirming this statement can be found in Appendix B.
If this behaviour is not desirable it can be influenced either by revisiting the last
transformation rule or simply by using the ranking algorithm to limit search up to
specified precision.

MathWebSearch

The CNX dataset has been selected in the first place because a comparison of both
engines was planned. But during the evaluation several problems have been encoun-
tered.

The exact date of the source used by MathWebSearch is not known, but it is
estimated to be sometime around the start of 2007. Documents in CNX are versioned
and MathWebSearch always explicitly specifies the version indexed enabling precise
comparison of the same document. However, it lacks the information whether the
document is indexed at all.

There are no evaluation statistics available from the MathWebSearch yet and
therefore the evaluation had to be done manually. However, the evaluation process
of MathWebSearch is being in progress.

The biggest problem encountered was to find more complex queries which would
return any result by MathWebSearch. It is strongly dependant on the choice of one of
three supported query languages. All three have different expression power. It has not
been intuitive to find any results but for simple queries without the exact knowledge
of the searching and indexing process. These problems resulted in abandoning the
comparison as it would be very subjective and of almost zero information value.
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6.4 Speed and size

This evaluation does not contain speed comparisons. It is clear that no existing
search engine type can match full text search engine in speed. The extension must
create representations of the user mathematical query which increases the time. The
computation is dependent only on the input query and can be easily cached. Fur-
thermore, the speed evaluation is meaningless without precise information about the
speed and method of measurement of other search engines which is not available.

The formula tokenizer definitions are used from Section 6.2 and the underlying
dataset is CNX2. The information about the size of the index is and the comparison
is in Figure 6.6. The result was computed as the size of the whole index directory,
described in Chapter 5, with text words from the documents included.

Tokenizer Sizein Bytes
JM1 338 938
JM2 534 400
JM3 534 445
JM4 288 119
JM5 281 243

Figure 6.6: Size comparison

The JM2 and JM3 have the largest index database because they accept almost all
formulae making the text word representing a formula token very long. This lowers
the probability of existence of the same word in the database. JM4 and JM5 accept
formulae only with the smallest sizes and therefore the change of already existing
tokens is very high. The result of the common tokenizer, JM1, is right in the middle
as could be expected.

6.5 Similarity search

One possibility how to evaluate and mathematically describe the proposed search
model is to use similarity search. It is also described as very important and useful in
[18]. Similarity is a well known field of interest in many research areas of computer
science [24, 9].
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The proposed technique is based on a full text search engine where the dynamic
computing of similarity is not possible. However, it is used in the ranking algorithm
to weight formulae more precisely. In the searching phase it can be used to specify
minimum similarity. The last use is when designing the formula token specification.
It can compare different specifications based on evaluation.

The definition of distance metric is taken from [18].

Definition 1. Given a distance metric d in the "space" of mathematical expressions
or patterns, and given a threshold h, two expressions or patterns E1 and E2 are said
to be h-similar if d(E1, E2) < h.

The distance does not need to be a distance in the topological sense. The distance
metric should satisfy these properties: 1) d(E1, E2) = d(E2, E1), 2) d(E1, E2) = 0 ⇔
E1 ≡ E2. In the second requirement the equal sign (≡) must be strictly defined
because it would be very limiting in the most of the common cases . For example,
if f1, f2 are formulae and f1 ≡ f2 means that the two formulae are mathematically
equal. The second requirement would restrict the usage of this metric only to systems
where d(sin2x, 1− cos2x) = 0 holds and that is very limiting.

Assume that for an input formulae f, g the function Q generated f1, ..., fN and
g1, ..., gN . The formulae f, f1, ..., fN are used to build a special tree with f as the root
node, f1 is the child of f , f2 the child of f1 etc. and analogously with g.

The distance metric d is naturally dependent on the depth of nodes in which the
formulae match. Each depth level D has a weight W (D). Then the metric d can be
defined as the sum of weights of first nodes in which they match. First f is compared
with g, g1, ..., gN , then f1 is compared with g, g1, ..., gN etc. till fN . Let the first match
occur at fi and gj. Then d(f, g) = W (i) + W (j). The definition can be extended to
include the structure of each formula.

Because boolean string comparison is commutative the first requirement is sat-
isfied (d(f, g) = W (i) + W (j) = W (j) + W (i) = d(g, f)). The ≡ operator can be
defined this way: f ≡ g means f and g are mathematically equal having all their
operands the same but they can be permuted at the same depth level. The definition
could be extended to the first depth level but than it would lack the mathematical
correctness. To distinguish between matching at various depth levels the function W
should satisfy: if i 6= m, j 6= n and i 6= n, j 6= m then Wi + Wj 6= Wm + Wn.

Let D be an integer, D ∈ [1, 5] and W : D → [0, 100], then W can be defined as:
W (1) := 100, W (2) := 90, W (3) := 75, W (4) := 45, W (5) := 20. This definition is
used in the prototype.

6.6 PDF support

The implementation can also handle pdf document format. The pdf document is
converted to pictures and then OCR is used. The most important conversion is from
the picture format to MathML done by the Infty application. As the licensing policy
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does not allow for automatic use of the newest available version Infty version 2.4.4e
is used.

One of the problems encountered is the speed of the conversion. It takes tens of
seconds to convert single pdf file and it is very dependent on the number of pages.
This drawback is notable only during the first processing of a dataset because pdf
files are rarely updated comparing to HTML content. Another problem is the accuracy
of the used version. The result of the comparison has not been the same for all
pdf files. On one hand the newer version outperformed the older one in the number
of recognised characters but on the other hand single characters were sometimes
converted to a set of characters (e.g. M was converted to IVI). One pdf file could not
be converted and resulted in an exception in both versions.

Small difference between the original and the converted formula can have great
impact on the similarity. From the mathematical point of view also a single difference
is significant and can change the meaning of a formula completely. Because of the
presented drawbacks of the older version no further testing has been done. The basic
test cases are included in Appendix B.



7 Summary and Discussion

Why is there no scientific search engine available? What are the problems and so-
lutions of such a search engine? These, at first sight, simple questions have been
addressed in this thesis.

In the first chapter the importance together with general problems of mathemat-
ical searching were outlined. The state of art of this research field, described in
chapter two, showed that the topic is very young with few practical results available.
Because there is no general theoretical background this work starts with defining the
term mathematical search engine. The main focus was put on the applicability.

The most successful real world search engine is the full text search engine. It is the
only one capable of indexing large collections of documents effectively and because of
this it was selected as the base for the mathematical search engine designed in this
paper.

A new theory of mathematical searching is developed in chapter three and four.
To study the applicability of the theory a prototype has been implemented using
Egothor v2 search engine. The prototype implementation is described in the chapter
five. The important part of the new technique proposal is the evaluation described in
chapter six. Again, it faces the problem of the absence of previous research. None of
the analysed evaluation techniques could describe the performance of a mathematical
search engine sufficiently. Therefore, not one but a set of metrics has been proposed
and evaluated describing it more comprehensively. The set includes several already
existing techniques or technique proposals and one new specially developed for this
purpose. A prototype of a database, necessary for testing, was created and is included
in Appendix B.

The engine is not primarily dependent on Content MathML document format or
other format including semantic information. This makes the engine unique. It must
be noted that common documents do not include semantic information. Moreover, it
is very likely that users will not provide the query with much semantic information.
This could result in a strange behaviour. For instance, pdf document format as
the most widely used for mathematical documents can not be converted to Content
MathML but only to Presentation MathML. All of these issues had to be solved.

Currently, as the only one, it can be used on a large collection of data, which is
guaranteed by the underlying full text search engine. Another advantage is that the
techniques developed over the last several years of the existence of publicly available
full text search engine are automatically inherited and ready to use. There is no need
to design, implement and test a new search engine. The extension character of the

55
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proposal allows every full text search to adopt it easily.
The search engine described in this thesis is based only on static textual represen-

tations which has been considered by many researchers as unsuitable for mathematics.
But the technique has proven itself equal to already developed techniques. It is differ-
ent from all other known techniques because it does not try to find a certain formula
by concretising provided user query formula but on the contrary. Firstly, it tries to
find an exact match and when not successful the user query formula is generalised
and the search is repeated. It is definitely worth the further research efforts.

The prototype implementation of the proposed solution has already proven useful
when gathering user and document statistics which are crucial for building the theory
behind it. It has already offered a first glance on the real world mathematical formu-
lae. The results show that the probability of finding a formulae is strongly dependant
on the correct symbol recognition during the indexing phase. The technique of se-
lecting one solely symbol meaning and using it during all phases solve the problem
of little semantic information partially.

Another very interesting piece of knowledge obtained was that the Presentation
and Content MathML format used to describe a mathematical formula have been
complementary to each other rather than stand-alone during the evaluation.

The evaluation has illustrated problems with simple textual query language. More
complex structures as matrices are very tedious to write. Practical results obtained by
the evaluation have shown the exponential decrease of recall metric with the increase
of the complexity of a formula. Assuming this statement holds, the increase of the
recall metric by generalisation transformation rules is an important characteristic
and the disadvantage of lower precision is therefore partially suppressed.

The fine granularity has not only influenced the usability from the user point of
view but also the size of the index database. The difference is significant and therefore
it must be taken into consideration.

The mathematical search engine is a very active research field. The most common
problem encountered during this study was the lack of either precise definition or any
previous work done. The search engine research field is very complex also without
adding the necessity of defining and researching the same areas again and again. Very
few attempts have been made to describe the theory or basic properties. Without
widely accepted mathematical search engine characteristics, based mainly on common
users rather than researchers of this field, it is very difficult to create a usable solution.

7.1 Future work

The basic research of the new technique has been already done. The future work
should include the refinement of the indexing phase by introducing new transforma-
tions and analysing the overall impact on the performance, especially on the similarity.
The user interface should also allow refinement of the search query to more fields than
only text and mathematical.
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Another main focus should be on the evaluation. It should also include the click-
through1 information from users.

In the long term horizon, the goals of the whole research field are more important
than the goals of individual search engines. The main goal should be the definition
of the term mathematical search engine. This is a non trivial task because of the
different approaches taken and different user expectations. It is very likely that a
universal definition is pointless and the effort should be rather on identifying the
categories of mathematical search engines.

The evaluation of other available mathematical aware search engines indicate that
the user must have at least basic knowledge of the underlying system e.g. the query
language. Because of this the last, but not least important, is the user interface
specification together with a definition of a standard query language.

Solving the above mentioned problems would simplify the development of new
techniques and the research can focus on simple problems rather than on the whole
research field.

1The act of a user clicking on a hyperlink that directs the user to another site.



Appendix A

The example transformations of several formulae are illustrated below. Each step
number corresponds to a particular step in generalisation algorithm in Chapter 3. The
examples are only one possibility of the Q transformations out of many. The reason is
that the transformation rules are parametrised by many factors. The most important
is the formula token specification which defines the smallest, atomic, information unit.

Example 1 (simplified cosine rule):

0. Input formula: a2 − b2 − c2 + 2bc cos α

1. a2 − b2 − c2 + 2 cos(α) ∗ b ∗ c

2. Representation: a2 − b2 − c2 + 2 cos(α) ∗ b ∗ c

3. a2 − b2 − c2 + 2 cos(α) ∗ b ∗ c

4. a2 − b2 − c2 + 2 cos(α) ∗ b ∗ c

5. Representation: a2 − b2 − c2 + 2 cos(α) ∗ b ∗ c

6. a2 − b2 − c2 + 2 cos(α) ∗ b ∗ c

7. a2 − b2 − c2 + 2 cos(α) ∗ b ∗ c

8. Representation: a2 − b2 − c2 + 2 cos(α) ∗ b ∗ c

9. a2 − b2 − c2 + const cos(α) ∗ b ∗ c

10. a2 − b2 − c2 + const cos(α) ∗ b ∗ c

11. Representation: a2 − b2 − c2 + const cos(α) ∗ b ∗ c

12. id2
1 − id2

2 − id2
3 + const cos(id4) ∗ id2 ∗ id3

13. id2
1 − id2

2 − id2
3 + const cos(id4) ∗ id2 ∗ id3

14. Representation: id2
1 − id2

2 − id2
3 + const cos(id4) ∗ id2 ∗ id3

Example 2:

0. Input formula: 2π(a2 + b2

2ε
ln 1+ε

1−ε
)

1. 2π(a2 + ln 1+ε
1−ε

∗ b2

2ε
)
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2. Representation: 2π(a2 + ln 1+ε
1−ε

∗ b2

2ε
)

3. 2π(a2 + ln 1+ε
1−ε

∗ b2

2ε
)

4. 2π(a2 + ln 1+ε
1−ε

∗ b2

2ε
)

5. Representation: 2π(a2 + ln 1+ε
1−ε

∗ b2

2ε
)

6. 2π ∗ a2 + 2π ∗ ln 1+ε
1−ε

∗ b2

2ε

7. 2π ∗ a2 + 2π ∗ ln 1+ε
1−ε

∗ b2

2ε

8. Representation: 2π ∗ a2 + 2π ∗ ln 1+ε
1−ε

∗ b2

2ε

9. const ∗ π ∗ a2 + const ∗ π ∗ ln const+ε
const−ε

∗ b2

const∗ε

10. const ∗ π ∗ a2 + const ∗ π ∗ ln const+ε
const−ε

∗ b2

const∗ε

11. Representation: const ∗ π ∗ a2 + const ∗ π ∗ ln const+ε
const−ε

∗ b2

const∗ε

12. const ∗ π ∗ id2
1 + const ∗ π ∗ ln const+id1

const−id1
∗ id2

1

const∗id2

13. const ∗ π ∗ id2
1 + const ∗ π ∗ ln const+id1

const−id1
∗ id2

1

const∗id2

14. Representation: const ∗ π ∗ id2
1 + const ∗ π ∗ ln const+id1

const−id1
∗ id2

1

const∗id2



Appendix B

One part of the master thesis is the evaluation of the proposed technique. The
implementation of the technique together with all utilities and datasets used for
evaluating purposes are included in the attached CD.

The distribution is focused on the extended Egothor v2 search engine. Addi-
tional libraries and applications, with sources and different versions when available,
are included too. The documentation includes a draft version of a description of
Egothor v2. Evaluation tools developed especially for this master thesis are included
as subprojects. Other statistics have been generated using scripts spread over the dis-
tribution. The evaluation dataset collection includes some pdf files and their MathML
representations, documents from cnx.org and other documents used also for testing.

The general description of the CD content is in the main folder in readme file.
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Appendix C

The following listings demonstrate several important design paradigms of the imple-
mentation. The whole implementation can be found in Appendix B.

The paradigm of filtering streams are presented in listings C.1-C.2. The trimmed
output of the symbol mapping file is in Listing C.3. The definition of one generalisa-
tion algorithm is illustrated in Listing C.4.

Both specification files are included in Appendix B:
• symbol specification - in settings/math/symbols.xml
• algorithm specification - in settings/math/algorithms.xml
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f ina l public void push ( IE lementFi l t e r<E> t f ) {

i f ( null == _ f i r s t f )
// f i r s t c a l l to push
_ f i r s t f = t f ;

else
// append next f i l t e r
_la s t f . f i l t e r ( t f ) ;

// save l a s t f i l t e r
_la s t f = t f ;

}

f ina l public void push ( IElementInDevice<E> td ) {

i f ( null == _ f i r s t f )
// no f i l t e r s
_ f i r s t f = td ;

else
// append next f i l t e r
_la s t f . f i l t e r ( td ) ;

_device = td ;
}

Listing C.1: Implementation of push()

public Token read ( IElementRead<Token> next f ) {

// Anything to read
i f ( ! _empty_device ) {

Token token = next f . read ( ) ;
i f ( null != token )

return token ;
_empty_device = true ;

}

// Return math tokens or n u l l i f empty
return _tokens . p o l l F i r s t ( ) ;

}

Listing C.2: Implemenation of read()
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<?xml version=" 1 .0 " encoding="UTF−8"?>
<d e f i n i t i o n>
<!−− CONSTANTS −−>
<constant r ep r e s en t a t i on="ExpE">
<a l t e r n a t i v e>expe</ a l t e r n a t i v e>
<a l t e r n a t i v e>exp</ a l t e r n a t i v e>
<a l t e r n a t i v e>ExponentialE</ a l t e r n a t i v e>
<a l t e r n a t i v e>e</ a l t e r n a t i v e>
<a l t e r n a t i v e>ee</ a l t e r n a t i v e>
<a l t e r n a t i v e>âĚĞ</ a l t e r n a t i v e>

</ constant>
. . .

<!−− VARIABLE −−>
<va r i ab l e r ep r e s en t a t i on="Gamma">
<a l t e r n a t i v e>gamma</ a l t e r n a t i v e>
<a l t e r n a t i v e>ÎŞ</ a l t e r n a t i v e>
<a l t e r n a t i v e>Î ş</ a l t e r n a t i v e>

</ va r i ab l e>
. . .

<!−− OPERATORS −−>
<operator r ep r e s en t a t i on=" ( " p r i o r i t y="HIGHEST" a r i t y="1">
<a l t e r n a t i v e>{</ a l t e r n a t i v e>
<a l t e r n a t i v e>[</ a l t e r n a t i v e>

</ operator>
. . .

<!−− UNARY −−>
<unary r ep r e s en t a t i on="!−" />
<unary r ep r e s en t a t i on=" Fo ra l l ">
<a l t e r n a t i v e>f o r a l l</ a l t e r n a t i v e>
<a l t e r n a t i v e>âĹĂ</ a l t e r n a t i v e>

</unary>
. . .

<!−− BINARY −−>
<binary r ep r e s en t a t i on="NotEq" p r i o r i t y="MED">
<a l t e r n a t i v e>noteq</ a l t e r n a t i v e>
<a l t e r n a t i v e>neq</ a l t e r n a t i v e>
<a l t e r n a t i v e>âĽ </ a l t e r n a t i v e>

</binary>
. . .

</ d e f i n i t i o n>

Listing C.3: Symbol mapping file
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<?xml version=" 1 .0 " encoding="UTF−8"?>

<s p e c i f i c a t i o n>

<algor i thm name=" bas i c ">

<trans fo rmat ion name=" order " />
<output p r i o r i t y="1" />

<trans fo rmat ion name=" eva l " />
<trans fo rmat ion name="approximate " />
<trans fo rmat ion name=" order " />
<output p r i o r i t y="2" />

<trans fo rmat ion name=" d i s t r i b u t i v i t y " />
<trans fo rmat ion name=" mul t ip ly ing " />
<trans fo rmat ion name="owndenominator" />
<trans fo rmat ion name=" order " />
<output p r i o r i t y="3" />

<trans fo rmat ion name=" cons tant s2cons t " />
<trans fo rmat ion name=" order " />
<output p r i o r i t y="4" />

<trans fo rmat ion name="unknown2id" />
<trans fo rmat ion name=" order " />
<output p r i o r i t y="5" />

</ algor i thm>

</ s p e c i f i c a t i o n>

Listing C.4: Definition of one generalisation algorithm
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