
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Václav Nidrle

Vektorová DIS cartridge pro Oracle

Vector IRS cartridge for Oracle

Department of Software Engeneering

Supervisor: RNDr. Michal Kopecký, Ph.D.

Study program: Computer Science

I would like to thank my supervisor, RNDr. Michal Kopecký, Ph.D., for his valuable
advice. Special thanks belong to Bc. Zuzana Nidrlová, who has enhanced this thesis
to a higher linguistic level. Also I would like to thank my parents for their permanent
support during my studies. Finally I would like to express my gratitude to my
girlfriend Melinda for standing by me at all times.

I declare that I wrote this master thesis on my own and listed all the used sources. I
agree with lending of the thesis.

Prague, August 9, 2007 Václav Nidrle

Contents

1 Introduction 9
1.1 Goals . 9
1.2 Structure of the Thesis . 10

2 Information Retrieval 11
2.1 IR models summary . 12

2.1.1 Logical models . 12
2.1.2 Vector space models . 13
2.1.3 Probabilistic models . 14

2.2 Common IRS tasks and problems . 15

3 Boolean vs. Vector space model 19
3.1 Boolean model . 19
3.2 Vector space model . 21

4 Oracle Text 23
4.1 Oracle data cartridge fundamentals 23
4.2 Introduction to Oracle Text . 24
4.3 Indexing process . 24
4.4 Extended query features . 27
4.5 Index design . 28

4.5.1 Index types . 28
4.5.2 Context index tables . 31
4.5.3 Global context index tables 32
4.5.4 DML processing . 33

4.6 Privileges . 35
4.7 Possible improvements . 36

5 Vector Text implementation 37
5.1 Fundamental design decisions . 37

5.1.1 Form of extending the Oracle Text 37
5.1.2 Index structure in Vector Text 38
5.1.3 Vector Text user interface . 39

5

6 CONTENTS

5.1.4 Language for writing of methods 39
5.1.5 Vector Text design complexity 40

5.2 Indexing process . 40
5.3 Index design . 41

5.3.1 Vector index tables and triggers 41
5.3.2 Query memory structure . 43
5.3.3 DML processing . 46

5.4 Privileges . 49
5.5 Similarity measure functions . 50

5.5.1 Implementing user’s own measure procedure 52
5.6 Token weight functions . 56

5.6.1 Implementing user’s own token weight 58

6 Test 61
6.1 Test environment and data . 61
6.2 Index manipulation test . 61
6.3 Querying test . 63

7 Conclusion 71

A Vector Text user documentation 75
A.1 Installation . 75
A.2 SQL Statements and Operators . 76

A.2.1 CREATE INDEX . 76
A.2.2 CONTAINS . 77
A.2.3 INDEXED TEXT . 78
A.2.4 NONINDEXED TEXT . 79
A.2.5 TEXT VECTOR . 81
A.2.6 SCORE . 82
A.2.7 ALTER INDEX . 83
A.2.8 DROP INDEX . 84

A.3 Public packages . 84
A.3.1 VECTX ADM . 84
A.3.2 VECTX DDL . 85
A.3.3 VECTX OUTPUT . 93
A.3.4 VECTX OUTPUT . 94
A.3.5 VECTX REPORT . 96

B Queries used in texts 99

Název práce: Vektorová DIS cartridge pro Oracle

Autor: Václav Nidrle

Katedra (ústav): Katedra softwarového inženýrstv́ı

Vedoućı diplomové práce: RNDr. Michal Kopecký, Ph.D.

e-mail vedoućıho: michal.kopecky@mff.cuni.cz

Abstrakt: Oracle Text je dokumentografický informačńı systém, který tvoř́ı ned́ılnou

součást databáze Oracle. Je postaven na základńım boolském modelu rozš́ıřeném

o daľśı možnosti jako jsou přiřazeńı vah jednotlivým term̊um, výpočet podobnosti

dotazu a dokument̊u nebo fuzzy logika.

Jako nadstavba Oracle Text je implementována nová databázová cartridge Vector

Text, jej́ı základńı filosofii však tvoř́ı vektorový model. Dı́ky tomuto modelu jsou tak

vylepšeny možnosti ř́ızeńı velikosti výstupu a poměřováńı relevantnosti vracených

dokument̊u. Pro tyto účely je ve Vector Text připraveno mnoho funkćı pro výpočet

váhy termu a mı́ry podobnosti dotazu s dokumenty a nechyb́ı také jednoduché rozhrańı

pro jejich daľśı rozšiřováńı. Uživatelské rozhrańı cartridge Vector Text maximálně

zachovalo podobu i principy použité v Oracle Text. Dále byla ponechána a nav́ıc

rozš́ıřena možnost využit́ı některých speciálńıch funkcionalit Oracle Text použitelných

v obou modelech, jako jsou např. tezaurus nebo slovńık stop slov.

Kĺıčová slova: DIS, vektorový model, Oracle Text

Title: Vector DIS cartridge for Oracle

Author: Václav Nidrle

Department: Department of Software Engeneering

Supervisor: RNDr. Michal Kopecký, Ph.D.

Supervisor’s e-mail address: michal.kopecky@mff.cuni.cz

Abstract: Oracle Text is an information retrieval system, which is included in

Oracle database. It is built up on the basic Boolean model being further extended by

features like assigning weights to individual tokens, calculating similarity of query

and documents or fuzzy logic.

The new database cartridge called Vector Text is implemented as the extension of

Oracle Text, however it is based on the Vector space model. Thanks to this fact

the possibilities of controlling the output amount and measuring the relevance of

the returned documents are improved. For this purpose there is prepared a lot of

functions for calculating token weight and similarity measure of query and document

in Vector Text. The simple interface for their further extensions is also present

there. The user interface of Vector Text cartridge kept the same principles used in

the Oracle Text. Furthermore, the possibility of using special functionalities of Oracle

Text being applicable in both models like thesaurus or stoplist have been preserved.

Keywords: IRS, Vector space model, Oracle Text

7

Chapter 1

Introduction

The history of the information retrieval (IR) is very long, however the IR used to be
for a substantial period of time regarded an activity that would engage only a few
people such as librarians. With the recent boom of PC know-how and the Internet,
hundreds of millions of people got the access to the enormous amount of information
which they needed to be able to search effectively. That is why the IR-enabling
systems and systems serving up the results of IR to the user had to be developed.
These systems specialized in the IR in text documents are known as the Information
Retrieval Systems (IRS).

Oracle is one of the largest IT firms specialized for developing and offering systems
based on its own object-relational database system. The growing need of IR forced
the integration of the special full-text retrieval module into their database. This
module is called Oracle Text (formerly known as interMedia Text in Oracle database
version 8 and Oracle ConText in database version 7). It uses the SQL extensions
to index, search and analyze text and documents stored in different locations. Its
core is based on the basic Boolean model which works on the principle of inverted
index and queries including words connected by boolean connectives. During the
years in which the Oracle Text was developed, a great number of extending features
was progressively implemented which often came out of the extended Boolean model
principles.

1.1 Goals

The elementary goal of the work is to implement an easy-to-use extension of Oracle
Text using IR Vector space model. The Vector space model works on the principle
of projecting documents and queries as the vectors into n-dimensional spaces and
calculating of the similarity of such vectors. The emphasis should be placed on the
Vector space model implementation where the advantages of Vector space model
approach compared to the Boolean model approach should become evident. The
resultant extension should offer a useful tool for the distinct IR methods comparison

9

10 CHAPTER 1. INTRODUCTION

and for the confrontation of usability and results of different similarity measures in
concrete situations.

The future users of the new extension would certainly appreciate the user interface
of the extension being kept as similar to Oracle Text as possible. It would make the
process of mastering the use of the new extension easier for those already being
familiar with the Oracle Text. That is why the projected extension should also
preserve as much existing Oracle Text functionality as possible.

1.2 Structure of the Thesis

At first, there is a brief description of Information Retrieval (IR) and Information
Retrieval Systems (IRS) given in the Chapter 2. This chapter also introduces an
overview of existing IR models and describes the most common IRS problems together
with the techniques being used for their solutions.

The thesis then follows by the description of principles of both the Boolean model
as well as the Vector space model. This description, together with the discussion of
both the advantages and disadvantages of each model, form a content of the Chap-
ter 3.

The fundamentals of Oracle Text features and their implementation with a lot of
examples are described in the Chapter 4. This chapter discuss also its disadvantages
and mentions key reasons for implementing the Vector Text cartridge.

Afterwards, the Chapter 5 introduces the new Vector Text cartridge. It starts with
the discussion of possibilities of solving different implementation problems. Then it
follows by the description of Vector Text design and processing and finally introduces
all implemented similarity measure and token weight methods.

Chapter 6 introduces the test data, describes used test environment and presents
achieved results.

The user documentation for Vector Text cartridge can be found in the Ap-
pendix A. It consists of the installation manual and user’s reference describing all
implemented statements, operators and packages with a lot of examples for their
simple usage.

Chapter 2

Information Retrieval

The general definition of the information retrieval according to Manning [7] says:
”Information retrieval (IR) is finding material (usually documents) of an unstructured
nature (usually text) that satisfy an information need from large collections (usually
on local computers, servers or on the Internet)“. But the use of IR in the practice
shows that this definition is not fully accurate. IR research has focused mainly on the
retrieval of natural language texts including books, news articles or email messages
and all these documents has some structure, e.g. each book has an author, a publisher,
it can be divided into chapters etc. However each of its parts contains an amount of
unstructured text and so all these documents are qualified as semi-structured.

The main goal of IR is to find documents in a given collection that are dealing
with a given topic expressed by a user’s query. The given collection can be divided
in two parts. One part includes the documents that fulfill the user’s demands and
needs, these documents are called relevant. The other part contains documents that
are not about the given topic and they are called non-relevant. The same collection
can be also divided by the IR engine in two different parts, one of which includes the
documents that the engine pronounces to be relevant for the user according to his
query and the other one is built up of those documents seen as non-relevant according
to the engine. The question is, does the IR engine return the proper documents?

There are used two measures of success in the IR which are based on the concept
of relevance. They are called precision and recall. According to Saracevic [16] the
precision is defined as the ratio of relevant items retrieved to all items retrieved,
or the probability given that a retrieved item will be relevant. The recall is then
defined as the ratio of relevant items retrieved to all relevant items in a collection,
or the probability given that a relevant item will be retrieved. These two measures
are contradictory. When all documents from the collection are returned to the user
then all relevant documents are fetched and the recall equals one. But on the other
hand all non-relevant documents are returned as well and because the number of
relevant documents is typically very small in comparison to the size the document
collection, the precision is low (close to zero). Ideally the user would like to retrieve
all the relevant documents and only them. Normally the user wants to achieve the

11

12 CHAPTER 2. INFORMATION RETRIEVAL

best combination of good precision and good recall.
The Information Retrieval System (IRS) is the system for offering information

retrieval services. It is build and developed for the purpose of work with the textual
data, their holding, processing and retrieving. The typical IRS works on the following
principle:

1. user enters the query

2. the query is compared to the collection of documents

3. the documents regarded by the system as relevant according to given query are
then returned to the user

4. the user optimizes the query and repeats the steps 1.-3. according to his satis-
faction with the returned results

5. the user asks for the detail of the resultant document

6. the user receives the document

2.1 IR models summary

This section serves the basic overview of different approaches to IR and presents the
list of existing IR models.

It is hard to construct the taxonomy of all known IR models. In this case the
main distribution according to Kraaij [3] is applied - by comparing the way in which
the notion of relevance is treated in individual models. The main classes of IR models
according to the criteria given are the logical models, the Vector space models and
the probabilistic models. Not all the existing models can, however, be assigned to
one of these three classes. Some models can be based on other approaches such as
neural networks, genetic algorithms etc, but such approaches are more suitable for
the information filtering or routing tasks and that is why they are not dealt with
further in this text.

2.1.1 Logical models

The earliest and the most known logical IR model is the Boolean model which was
introduced in the 1950s. Its basic idea is to represent each document by a set of
index tokens, which are included in given document. The query is then expressed
by using this index tokens and operators from the Boolean algebra: conjunction,
disjunction and negation. Every query is thus a sententional formula. If and only if
this formula holds for a document, the document is then considered to be relevant by
the IR system and it is therefore retrieved. Besides, every query can be rewritten in
a disjunctive normal form, because that way it can be efficiently evaluated for each

2.1. IR MODELS SUMMARY 13

document. The Boolean model is the only one which ignores uncertainity and is not
based on the ranking of relevance. It only divides the documents set into two classes
one of which answers the query and the other does not. More details about Boolean
model can be found below in the Section 3.1.

Some extensions of the Boolean model were introduced with the purpose of taking
out the disadvantage of missing relevance ranking. The Co-ordination Level Matching

[15] defines the retrieval status value as the number of unique query terms found in
the document. The higher this number, the higher the co-ordination level by which
the result set of documents is being ordered.

The Proximity Matching [1] extends the previous method by enhancing the preci-
sion of retrieval result. It processes the cover density ranking which means calculating
a relevance based on the distance between query tokens in the document. The closer
the tokens are, the more relevant is the document for given query. This method is
especially suitable for short queries.

The Fuzzy Set model [13] comes with a different evaluation of term membership in
document. Unlike in Boolean models, where the term-document membership values
are binary, fuzzy membership values range between 0 and 1. The advantage of this
approach is that the uncertainty and its degree can be encoded there.

The Extended Boolean model [14] integrates token-weighting and distance mea-
sures into the Boolean model. Like in Fuzzy Set model, the index tokens can be
weighted between 0 and 1. The boolean operators are modeled as similarity measures
based on non-Eucledian distances in a V-dimensional space. Despite the sophisticated
concept, extended Boolean models have not become too popular. They are less clear
for the user because of various semantic changes. For longer queries the Vector space
or probabilistic models are being preffered [7].

The logical models class got a new impulse in 1986 when van Rijsbergen intro-
duced non-classical logics [17] on which the framework for IR can be built. He showed
that different retrieval models (Boolean,probabilistic) can be re-expressed as a com-
putation of logical implication. The basic conception is that a retrieval of relevant
documents can be expressed by the implication q ← d where d stands for the doc-
ument and q presents the query. Because of the uncertainity involved, this is not a
material implication in first logic order, but it requires a conditional logic. Van Ri-
jsbergen’s work stimulated the renewal of interest in logical and uncertainity models
for IR and so a lot of new models were presented during the 1990s.

2.1.2 Vector space models

The first ideas for a text representation based on weighted term vectors were presented
in the late 1950s by Luhn [6]. His ideas were then further developed by Gerard Salton
during the following thirty years.

For the Vector space model (VSM) the relevance of a document for a query is
defined as a distance measure in a high-dimensional space. The distance measure

14 CHAPTER 2. INFORMATION RETRIEVAL

actually serves as a metric to compute the similarity between queries and documents.
In order to compute this similarity measure it is necessary to firstly project documents
and queries in the high-dimensional space defined by the vocabulary of index tokens.
The main assumption of Vector space model is the token independence, but this
can not be reached in practical use. The common practice is to circumvent this
dependency problem. More details about Vector space model including the basic
model formalization are to be found below in the Section 3.2.

In 1990, Deerwester et al. [2] introduced the Latent Semantic Indexing model

(LSI) based on approximation of data dependency set with a model with fewer di-
mensions. The dependence is detected here by the co-occurrence of tokens. If the
tokens co-occur in a document frequently then they might be semantically related.
The co-occurring tokens are projected onto the same dimension of the document-
by-term matrix, independent tokens onto different dimensions. Finally the singular
value decomposition is applied to this matrix. The synonyms are projected onto
the same dimension and so the recall of a query is significantly improved. LSI was
not implemented in many IR systems because it is computationally very demanding,
the resulting dimensions are hard to characterize and token co-occurrence can be
exploited in a cheaper way (eg. by applying pseudo-relevance feedback).

The Generalized Vector space model (GVSM) [18], [19] uses as the basic indexing
unit so called generalized term which is defined as a set of binary token weights for
each token in the collection. A collection with vocabulary size of L tokens yields
2L possible generalized terms corresponding to all possible patterns of co-occurrence.
Both queries and documents are mapped into this space. The generalized term vectors
are linearly independent and orthogonal, while the index tokens can be dependent.
GVSM produces slightly better results on small collection than standard VSM based
on binary indexing scheme. However, for the purpose of general use the standard
VSM is still more suitable.

2.1.3 Probabilistic models

The probabilistic models exploit different distributions of tokens in the class of rel-
evant and the class of non-relevant documents. They use various probabilistic and
statistic methods for it.

Probabilistic Relevance models [8] try to estimate the relevance of a document
directly based on the idea that query tokens have different distributions in relevant
and non-relevant documents. These models presuppose having available relevance
information (for instance in a routing task), otherwise they are equivalent to VSM
using inverse collection frequency weighting. The most widely known Probabilis-
tic Relevance models are the Binary Independence Retrieval model and 2-Poisson
distribution based model.

Inference based models are blended between logic and probability theories. They
are highly extendible, collection independent and they include two subclasses: In-

2.2. COMMON IRS TASKS AND PROBLEMS 15

ference networks which apply Bayesian inference for the computation of relevance
score and Probabilistic inference models which are based on non-classical logics and
probability theory.

In the late 1990s a new class of IR models turned up - the Language models.
Basically they are modeling the probability that given document could be the basis
for the user’s query instead of modeling the probability of relevance. As the examples
of this class can be mentioned the Ponte and Croft model [12] or the Hiemstra and

Miller et al. models [9], other new models are still under development now.

2.2 Common IRS tasks and problems

Presented in this section are the most common tasks and problems which are be-
ing solved in the majority of IR systems and should be addressed by the proposed
cartridge.

Tokenization

The process of tokenization is basically dividing the content of a document into
individual words, which are called tokens. It also includes throwing away certain
characters, e.g. white space, punctuation etc. But the question is how to find the
right characters to be taken away? This decision is clearly content and language
specific as in some document the character in question should be thrown away, while
in others its preservation is desirable. For instance the dot character should be left
out from a usual text as opposed to the cases where the dots represent an essential
part of IP or email address.

Another problematic step of tokenization process is collocations identification
where collocations should be regarded as a single token (e.g. New York, white space).
One solution is the use of the phrase index, e.g. biword index where each index token
consists of the two following tokens from the document. In this case the queries longer
than the ones including two tokens can be afterwards rewritten to the conjunction of
several collocations being composed by two tokens. Another and much more common
solution is the use of a positional index where a list of positions of their occurrences
in given document exists for each token of the index dictionary. The positional index
is very often used in inverted indexes.

A lot of languages create new words by compounding several shorter words in one
long word. For instance the German language creates compounds very often (e.g.
Computerlinguistik). Some east Asian languages (e.g. Chinese, Japanese) even do
not have any spaces between words and so there is a need of word segmentation. It
can be processed using large dictionaries and taking the longest matching word from
the dictionary with some heuristic for unknown words. The different approaches are
the use of machine learning sequence models (hidden Markov fields) or indexing via
short subsequences of words or characters called character k-grams.

16 CHAPTER 2. INFORMATION RETRIEVAL

Stop words

The term stop word means the token which is too common and non-selective in the
collection of documents and therefore it should be excluded from the indexing. Key
searching using such a word would not be efficient in the most of cases anyway. The
stop words are generally recognized by the highest frequencies of their occurrence
in the collection of documents and they are collected into the stop lists. The use
of stop list significantly reduces the number of entries that an IR system has to
store, e.g. excluding the 30 most frequent words reduces the document data size by
approximately 30% [7].

Token normalization

The token normalization is involved in the process of tokenization to be able to
properly decide if given token in query matches the token from the document because
the query need not be entered using exactly the words used in the relevant text.

The problem of token normalization is generally being solved by creating the
equivalence classes of words. Hence the set of general equivalence rules is defined
which specify for instance removal of hyphens, dots, single quote marks etc. Each
unnormalized token is then processed according to those rules and the resultant
normalized tokens are creating the equivalence classes.

The other way to process the token normalization is by creating relations between
unnormalized tokens. It can be achieved by the two methods. The first one creates
an index with unnormalized tokens and then maintains a query expansion list which
results in the query containing disjunctions of all possible equivalents for each used
word. The alternative method performs a contraction during the index creation. All
equivalent tokens are indexed under one given representative. Both of these methods
are less efficient then the equivalence classing, by contrast they have better results
for synonyms processing.

Another issue to deal with during the tokenization is the capitalization. The
differences between the upper and the lower case of characters in tokens need to be
cleared out to decide if the words match. The most common strategy is to reduce all
the letters to the lower case which solves the differences caused by e.g. use of a capital
letter at the beginning of a sentence or entering the whole query in the lowercase.
This strategy brings some problems with personal names identification (e.g. Bush vs.
bush, Bean vs. bean) and that is where the alternative method of truecasing can be
used. It is based on a machine learning sequence model for deciding when to case-fold
which reduces to lower case only tokens according to adjusted rules. But even the
truecasing is not almighty, it does not help in situations where the user enters in the
whole query in the lower case.

Each language has its other specific features and issues (e.g. diacritics, accents
etc.) which need to be handled by the token normalization. The normalization
has to be processed in terms of the used language. Generally speaking, the token

2.2. COMMON IRS TASKS AND PROBLEMS 17

normalization is in most of the cases helpful yet sometimes it use results in unexpected
consequences.

Stemming and lemmatization

The goal of both stemming and lemmatization is to get rid of different inflectional
and grammatical forms of the words in text. These two methods convert such words
into their common base form, but they vary in their way of doing so. The stemming
performs the heuristic analysis and separates the ending of the words, while the
lemmatization converts the words into their basic form by using the directory and
morphological analysis of the words.

The results of using these methods are ambiguous. It helps a lot for some queries.
However it can greatly reduce the performance of other queries. In general, the
stemming is more convenient for treating the derivationally related words, whereas
the lemmatization is more suitable for converting the different inflectional forms to
the basic form. The stemming also enhances the recall to the prejudice of precision.

Inverted index creation

The searching in unstructured documents would be very inefficient and that is why the
inverted index structure optimized for holding indexed data is usually used by the IRS
systems. The basic format of inverted index consists of dictionary of tokens. A list of
documents the token occurs in is saved there for each token. The tokens in dictionary
are usually alphabetically sorted. Each document in the list is identified by its explicit
id and the list is sorted by those ids. Commonly, the token frequency from the whole
document collection is holded separately for each token in the dictionary. The token
frequency of the token in the given document is also saved for each document in the
list together with the document id. Additionally the list of positions of all occurrences
in the document for the token can be also saved.

Thesaurus

The thesaurus represents a set of words with the defined semantic relations between
them. Such relation can be either hierarchical (e.g. broader term which means more
general token, narrower term which means more specific token) or it can describe
synonyms or near-synonyms. IRS often use thesauri for automatic query expansion
by which it solves the problem of synonyms. Thesaurus can also be offered to the
users for entering more complex queries.

Chapter 3

Boolean vs. Vector space model

3.1 Boolean model

Let’s introduce the basic Boolean model more deeply here. As mentioned in the
previous chapter, a Boolean query is an expression in which a set of tokens is combined
by the logical operators of conjunction, disjunction and negation. For illustration,
the query t1 AND t2 is satisfied by a given document D1 if and only if D1 includes
both tokens t1 and t2. Similarly, the query t1 OR t2 is fulfiled by D1 if and only if it
contains token t1 or token t2 or both of them. And finally, the query t1 AND NOT t2
satisfies D1 if and only if it includes t1 and does not include t2. Any more complex
Boolean query can be built up out of these operators and evaluated according to the
rules showed above. For the purpose of more efficient evaluation, every query can
be rewritten in a disjunctive normal form. It means that the individual tokens or
tokens grouped by the AND operation are ORed together. The evaluation is easier
for such form because it is enough to find only one part of the query which is satisfied
by the document. The whole query will be thus satisfied as well with the help of
the disjunction. The classical Boolean operator evaluates its arguments and returns
a value of either true, respectively one (document matches the given query) or false,
respectively zero (document does not match given query). The concept of relevance
in the Boolean model is binary, in the sense that a document is either relevant or it
is not to a considered query.

The basic Boolean model, as it was introduced up to now, has many fundamental
disadvantages. The possibility of ranking of relevant documents according to their
relevance does not exist here. The documents are only divided into two groups as
relevant and non-relevant ones. This problem also implies the difficulty connected
with the output size control, because when user reduces the amount of relevant doc-
ument to be retrieved, the most relevant ones will not necessarily be retrieved in all
the cases. Boolean operators cause also another trouble with output control. The
AND operator is too severe, e.g. it does not distinguish between the situations where
none tokens are satisfied and those where all except one are satisfied, whereas the

19

20 CHAPTER 3. BOOLEAN VS. VECTOR SPACE MODEL

OR operator does not differentiate enough. It results frequently in a situation where
either all or no documents are retrieved.

Many different extensions were thus introduced to remove the mentioned disad-
vantages of Boolean model. The user can specify one of proximity operators, which
check if the distance between two tokens in the document satisfies the query con-
dition. In general, the proximity operators specify a unit (e.g. word, sentence or
paragraph) and a value of maximal distance, which still satisfies the query condition.
Based on this fact there can be specified queries such as that two tokens have to be
located in the same sentence or that the distance between two tokens has to be max-
imally 5 words. When the proximity operators are required, the inverted index has
to include the exact positions of token occurrences in the documents. The relevance
ranking can be built on the proximity in the Boolean model. Its basic idea suggests
to measure the relevance of documents by the proximity of tokens that specifies the
query. The closer the tokens are, the more relevant the individual document is.

Another relevance ranking, which is very common in Boolean model implemen-
tations, is based on the frequence of token ocurrence in individual documents. It
is assumed that the higher the number of occurrences is, the more important is the
token for the document. The measure of relevance of the individual document can
be calculated by the summation of token frequencies of all tokens being specified in
the query. The exact value of the token frequency is defined as the frequency of oc-
currences of the given token within the given document divided by the total number
of all tokens occurrences in the document.

More additional features can be built into the Boolean model. For instance the
principles of the uncertainity and fuzzy logic can extend the possibilites of the Boolean
model. In that case the membership value of each token in individual document is
enlarged from the binary values to the range between 0 and 1. The measure of
assumption and beliefs can be expressed thanks to it. However, the evaluation of
Boolean operators has to be changed to the minimum or maximum of the membership
values.

The Boolean model is used inside the majority of IRS because its concept is easy to
implement and at the same time it is computationally efficient. The Boolean retrieval
works best when a query requires selection of an entire and definite result set. Other
advantages of Boolean queries are their expressiveness and clarity. The rules applied
are always very simple, e.g. the synonyms are specified using disjunction, whereas
the phrases are grouped by conjunction.

On the other side the Boolean model has some more disadvantages except the
ones being introduced before. The Boolean operators are the reason for some users’
difficulties with constructing the query. The meaning of the operator concerning the
query is different from the use in a natural language. The statement A and B can
in a conversation refer in to more entities then A used alone would, while in IR the
number of documents referred to will be lower then it would be when retrieved by A
alone. By contrast, the A or B statement refers in conversation either to A only or

3.2. VECTOR SPACE MODEL 21

to B only, whereas IR would retrieve all documents including either one of the two
entities or both of them. The query formulated in natural language cannot be used
in Boolean model and thus neither citations nor abstracts can be used to enter the
query easily.

3.2 Vector space model

The Vector space model has been developed as the successor of the Boolean model.
It attempted to remove the most prominent disadvantages of the Boolean model. As
stated in the previous chapter, the key idea is based on representing the documents
as vectors in high-dimensional spaces.

After all the tokens are extracted from a given document, their normalization is
done, stop words are eliminated and stemming is processed, the resultant set of tokens
defines a document space so that each distinct token represents one dimension in that
space. Every token in the document is evaluated by a numeric weight, representing
usefulness of given token as a descriptor of the given document. The rule used for
evaluation says that the more useful token, the higher weight value. To formalize this
concept, each document Di can be represented by vector

Di = (wi,1, wi,2, ..., wi,n)

where n stands for the total count of different tokens which occur in the query or
document collection and wi,j means the weight of j-th token in i-th document from
the collection.

The user can specify a query as a set of tokens each associated with numeric
weight. It may be even specified in natural language and in this case the query can
be processed exactly like a document (including removal of stop words, stemming
etc.). This results into the fact that a query can always be interpreted as another
document in document space and so each query Q can represented by vector

Q = (q1, q2, ..., qn)

where n stands for the total count of different tokens which occur in the query or
document collection and qi means the weight of i-th token in query.

Now the question remains how to distinguish the relevancy of the documents
for the given query. Both document and query vectors can be projected into the
n-dimensional space created by all tokens from the query and document collection.
The relevance of documents can be measured there by comparing the similarity of the
document and query vectors. The set of documents with high similarity is expected
to include a high proportion of the relevant documents, while the set of documents
with very low similarity will probably include very few relevant documents. The usual
similarity measure employed in document vector space is the inner product between
the query vector and a given document vector [13] [14]. Let qj be the j-th element of

22 CHAPTER 3. BOOLEAN VS. VECTOR SPACE MODEL

query vector, let Di be the i-th document in collection and let wi,j be the j-th element
of document vector for i-th document. The similarity measure calculating the inner
product is then given by the formula

sim(Q, Di) =
∑n

j=1 qj ∗ wi,j

The inner product is not often used practically because it for instance does not
take into account the length of the document (long documents have higher similarity
values). See the Section 5.5 for the examples of different similarity measures being
used in practise along with their brief descriptions and comparation.

The variety of weighting schemes have been used so far. Manual assigment is
expensive and unrealistic for large collections, that is why the automatic generation
of weights is being processed. Weights based on the token frequency values are used
most commonly. The usage of token frequency brings some disadvantages, e.g. it
does not take into consideration the length of document (long documents have higher
frequencies of tokens) or all resultant values of token frequency are very low. That is
why a great deal of other weighting schemes were developed in attemp to eliminate
the above mentioned problems. They use normalization techniques which are being
processed with regard to the document or the whole collection. See the Section 5.6
for the examples of different weighting schemes along with their brief descriptions
and comparison.

The Vector space model enables good ranking of retrieved documents. They can
be retrieved sorted from the most relevant ones having the highest similarity values.
That further results into an easy control of the output amount since the strict amount
of the most relevant documents can be specified. The weighting of index query tokens
brings the possibility to prefer the importance of one query token to others. User
has newly the opportunity to retrieve the documents most similar to the specified
one. This document can be used directly in the query and the similarity of other
documents in collection is being evaluated.

The Vector space model is handicapped by the fact that there is a lot of different
methods used to calculate token weight and document similarity values. To choose the
suitable ones for each searching conditions according to the specified query, collection,
computational effectiveness of the methods etc. is thus crucial. The phrase queries
can be somewhat tricky, too, because the relative order of tokens is lost in the vector
space index, thus this information cannot be used in the process of calculation of the
similarity measure values.

Chapter 4

Oracle Text

4.1 Oracle data cartridge fundamentals

Oracle data cartridge is a mechanism being used for extending the potentialities of
the Oracle server. It consolidates specific datatypes, functionalities and features in a
single, compact, reusable component. The data cartridge is server-based. This means
that all its parts and the most of its processing reside on the server.

The most frequent reason for production of a data cartridge is a business need
to create, handle and operate on complex data objects that make up the essence
of this business. These complex data objects can be made of the new user-defined
object types, collections, relationship types, internal large objects, external files etc.
Then the functionality upon these complex data objects have to be built, so that the
database server runtime environment is extended by user-defined methods, functions
or procedures which can be developed using PL/SQL or external languages as C or
Java. The new operators are often created for simple querying over the new data
object.

There is also a need for new indextypes for fast query evaluation over the user-
defined datatypes. These are called domain indexes. A domain index is a schema
object and it is created, interpreted and accessed by common interface. It consists of
routines implemented as methods of a user-defined object type, called an indextype.
Another part of the data cartridge is created by the statistics type, which extends
the capabilities of the database optimizer. The extensible optimizer functionality
allows creating statistics collections as well as selectivity and cost functions. This
information is subsequently used by the optimizer for choosing a query plan. The
cost-based optimizer is thus extended to use the user-supplied information, whereas
the rule-based optimizer is left unchanged.

All previously introduced components are ordinarily packaged, so the whole data
cartridge can be installed as a unit. Once installed, the data cartridge is integrated
with the server so that the optimizer, query parser, indexer and other server mecha-
nisms recognize and use all this components.

23

24 CHAPTER 4. ORACLE TEXT

4.2 Introduction to Oracle Text

Oracle Text is a full-text retrieval data cartridge integrated in the Oracle Standard
and Enterprise Database Editions. It extends standard SQL to index, search and
analyze text and documents stored in different locations. Oracle Text can perform
linguistic analysis on documents and search text using a variety of strategies based
on the extended Boolean model, which was introduced in Section 3.1. Oracle Text
also makes use of many additional techniques being described in Section 2.2.

4.3 Indexing process

This section gives a brief description of the Oracle Text indexing process which is
initiated by the CREATE INDEX statement. The diagram of this process is displayed
in the Figure 4.1 according to the Oracle Text Reference [10].

DATASTORE

INDEXING
ENGINE

FILTER SECTIONER LEXER
Document

Filtered
text

Marked-up
text

Tokens

Oracle
Text index

STOPLIST

WORDLIST
DATABASE

OS FILE INTERNET

Figure 4.1: Oracle Text indexing process

Datastore

The indexing process starts with reading documents from the datastore they are
stored in. This datastore can be presented by one or more columns in database table,

4.3. INDEXING PROCESS 25

operating system file, external file on intranet or internet. This is specified by the
DATASTORE preference in the CREATE INDEX statement.

Filter

The filter that is used on each document allows indexing of formatted documents.
They are being filtered into plain texts which are used for indexing afterwards. The
filter also enables conversion of a non-database character set to the database character
set. The specific filter parameters are specified by the FILTER preference in the CREATE
INDEX statement.

Sectioner

The sectioner is used afterwards to separate documents into individual text sections
according to document structure. Thanks to this the queries can be built to search
only specific document sections using the WITHIN operator. This is used for marked-
up texts such as HTML, XML etc. The SECTION GROUP preference in the CREATE

INDEX statement specifies used sectioner parameters.

Lexer

The lexer then processes both tokenization and token normalization. The specific
lexer parameters are specified by the LEXER preference in the CREATE INDEX state-
ment. They include the stemmer specification, definitions for the characters that
separate tokens such as punctuation and white space, whether or not to convert the
text to all upercase or leave it in mixed case, how to process compounds etc.

Indexing engine

Finally the indexing engine creates the inverted index that maps tokens to the docu-
ments that contain them. This engine applies the specified stoplist to exclude stop-
words from index and the wordlist with prefix and substring indexing parameters.

Stoplist

The stoplist identifies the words for specific language that are not to be indexed. It
is specified by the STOPLIST preference in the CREATE INDEX statement. Oracle Text
provides default stoplists for the most of languages.

Wordlist

The wordlist preference enables the query options such as stemming, fuzzy matching,
substring and prefix indexing, which improve wildcard queries. It is specified by the

26 CHAPTER 4. ORACLE TEXT

WORDLIST preference in the CREATE INDEX statement.

Now let’s describe the indexing process again on the very artificial example, which
was designed to show the use of all previously described features at once. Let’s
assume that the documents to be indexed are saved in the directory C:\docs, they
are holding German texts in XML format and they are saved in separate PDF files.
Let’s further suppose that the user enters the following statements for the creation
of the context index with required preferences. The detailed description of the whole
process is described bellow the example:

CREATE TABLE german_news (

id NUMBER,

xml_texts VARCHAR2(2000)

);

BEGIN

CTX_DDL.CREATE_PREFERENCE(’text_files_dir’,’FILE_DATASTORE’);

CTX_DDL.SET_ATTRIBUTE(’text_files_dir’,’PATH’,’C:\docs’);

CTX_DDL.CREATE_SECTION_GROUP(’xml_group’,’XML_SECTION_GROUP’);

CTX_DDL.CREATE_PREFERENCE(’german_wordlist’,’BASIC_WORDLIST’);

CTX_DDL.SET_ATTRIBUTE(’german_wordlist’,’STEMMER’,’GERMAN’);

CTX_DDL.CREATE_PREFERENCE(’german_lexer’,’BASIC_LEXER’);

CTX_DDL.SET_ATTRIBUTE(’german_lexer’,’COMPOSITE’, ’GERMAN’);

CTX_DDL.CREATE_STOPLIST(’german_stoplist’,’BASIC_STOPLIST’);

CTX_DDL.ADD_STOPWORD(’german_stoplist’,’der’);

CTX_DDL.ADD_STOPWORD(’german_stoplist’,’die’);

CTX_DDL.ADD_STOPWORD(’german_stoplist’,’das’);

END;

CREATE INDEX ind ON german_news(’xml_texts’)

INDEXTYPE IS ctxsys.context

PARAMETERS(’

DATASTORE text_files_dir

FILTER ctxsys.inso_filter

SECTION GROUP xml_group

WORDLIST german_wordlist

LEXER german_lexer

STOPLIST german_stoplist

’);

4.4. EXTENDED QUERY FEATURES 27

The process of handling the statement above looks as follows. The document col-
lection for indexing is taken from the directory C:\docs specified by the DATASTORE

preference. Each file stands for one document and each value in the column xml texts

of german news table holds the name of one file. After accessing the files, every doc-
ument is processed by the INSO FILTER which decodes the text from their binary
form in PDF format. Afterwards, the sectioner xml group is used which separates
the XML document into the sections. The querying can be then more specific and
the user can easily search only in the requested sections of the XML structure. The
lexer then processes tokenization which means it breaks the document into individ-
ual tokens. The used german lexer defines that the german composite words are
indexed as one token and they are not broken into the basic words from which is the
composite word concatenated. The processing continues by removing all stopwords
defined in the german stoplist. The user here specified his own stoplist preference,
which manages removing of only three german articles: der, die and das. And finally,
the tokens are prepared for being queried using special wildcard or fuzzy operators
and so the special modifications of the resultant inverted index structure are done
yet. In the example, the user specified by the german wordlist preference that he
wants to use the german stemmer in the queries.

4.4 Extended query features

The Oracle Text is based on the standard Boolean model and thus it accepts queries
including the boolean operators AND, OR and NOT. However, it contains a lot of features
from the extended Boolean models, which will be briefly introduced here.

The most important is the existence of documents ranking by using a score value.
This value is returned by the CONTAINS operator and for the goal of sorting the result
the SCORE operator can be used as well. The calculation of score value for the given
document is based on the inverted token frequency principle, but the exact definition
of the algorithm is not generally available.

To find more accurate results in cases with frequent misspellings in the document
collection, the FUZZY operator can be used. It expands queries to include words that
are spelled similarly to the specified token. The expanded words have to be contained
in the index and there can be specified their maximum number, the lowest similarity
score of the token to be included into expansion and if the tokens should be weighted
according to their similarity to the given token.

The use of a proximity operator is possible thanks to the NEAR operator. It returns
a score based on the distance between two or more query tokens in a text, the higher
scores for the closer tokens. The duty of keeping the order of specified tokens can be
specified there too.

Users can also use thesaurus for extending the query, the Oracle Text interface
includes a lot of functions working with the thesaurus and returning for the given
word e.g. all synonyms, broader, narrower or related tokens etc. For details about

28 CHAPTER 4. ORACLE TEXT

manipulating and using thesaurus see the public package CTX THES in Oracle Text
Reference [10].

The special stemmer operator $ can be used to search for tokens having the
same linguistic root as the given query token. The wildcard operators are available
in Oracle Text as well. They can be used in query to expand word searches into
pattern searches. The % wildcard specifies that any characters can appear in multiple
positions represented by the wildcard. The wildcard specifies a single position in
which any character can occur.

In expressions that contain more than one query term, the weight operator * can
be used to adjust the relative scoring of the query tokens. The score of a query token
can be reduced by using the weight operator with a number less than 1, whereas it
can be increased by using the weight operator with a number greater than 1 and
less than 10. The weight operator is useful in accumulate, disjunctive or conjunctive
queries when the expression has more than one query token. With this weighting
on individual tokens, the user is able to formulate that one token in query is more
important for him then the other one.

4.5 Index design

This section describes the individual Oracle Text indextypes. Furthermore it closer
addresses to the context index because only this index type is used for the Vector
Text implementation. Its design is thoroughly described as well as the process of its
data being saved in the database and processed by DML statements.

4.5.1 Index types

There are three possible types of indexes in the Oracle Text - context, ctxcat and
ctxrule.

The context index is well-suited for indexing large coherent documents such as
plain text, HTML or MS Word documents. Such index can be customized in a
variety of ways, but it is not transactional and needs to be synchronized after DML
statements manually. The CONTAINS operator is used to build queries over context
index. More details about context index type processing are described in the following
sections.

The ctxcat index is designed for indexing small text fragments and related pieces
of information, so the other columns of base table can be included in the index
to improve a mixed query performance. This index type is transactional, so the
synchronization after DML statements is processed automatically and immediatelly
by Oracle. The ctxcat index is comprised of sub-indexes defined for the created index
set and the index customization variability is much lower then for the context index
type. The CATSEARCH operator is used for issuing queries over the ctxcat index.

4.5. INDEX DESIGN 29

The next example shows the use of ctxcat index type in practice. Let’s assume
that the user has the following table:

CREATE TABLE thesis (

isbn NUMBER,

title VARCHAR2(200),

author VARCHAR2(100),

abstract VARCHAR2(2000),

year NUMBER(4),

rating NUMBER

);

The user’s goal is to search for the thesis saved in this table according to specified
content of the abstract and he wants to reduce the result by some constraints on year
and rating values. The best solution is the following:

BEGIN

ctx_ddl.create_index_set(’thesis_idx_set’);

ctx_ddl.add_index(’thesis_idx_set’,’rating’);

ctx_ddl.add_index(’thesis_idx_set’,’year’);

END;

CREATE INDEX thesis_abstract ON thesis (abstract)

INDEXTYPE IS ctxsys.CTXCAT

PARAMETERS (’INDEX SET thesis_idx_set’);

The user creates index set thesis idx set on rating and year columns and then he
creates the ctxcat index on abstract column specifying the thesis idx set to be
used. As the next step, he can enter queries according to his needs mentioned above,
e.g. the following query that returns the specification of all thesis which discuss the
information retrieval or IRS themes, which were published after the year 2000 and
which are retrieved to user sorted by their rating.

SELECT isbn, author, title

FROM thesis

WHERE CATSEARCH (abstract,

’(information retrieval) | IRS’,

’year > 2000 order by rating desc’) > 0;

Finally, the ctxrule index is well-suited for document classification or routing. This
index is created on the table of queries, where the queries define the classification or
routing criteria. The documents can be then classified using the MATCHES operator.

Let’s introduce an example of such document classification here. The following
statements prepare the table of queries, which will control the classification of docu-
ments into groups: sport, living and travel documents.

30 CHAPTER 4. ORACLE TEXT

CREATE TABLE categ_query (

query_id NUMBER,

category VARCHAR2(100),

query_spec VARCHAR2(2000)

);

INSERT INTO categ_query VALUES(1,’Sport’,’ABOUT(sport)’);

INSERT INTO categ_query VALUES(2,’Living’,’house or flat’);

INSERT INTO categ_query VALUES(3,’Travel’,’ABOUT(travel)’);

The ctxrule index has to be created for the table of queries to be used in classification.

CREATE INDEX ON categ_query(query_spec)

INDEXTYPE IS ctxsys.CTXRULE;

Suppose that there is a table article and new records with individual articles are
being progressively inserted. The structure of the table can be the following:

CREATE TABLE article (

article_id NUMBER,

author VARCHAR2(30),

publishing_date DATE,

article_text CLOB

);

The user would like to classify all articles which will be inserted there. The classifi-
cation should be saved in the separate table having the following structure:

CREATE TABLE article_category (

article_id NUMBER,

category VARCHAR2(100)

);

For the purpose of processing the classification a trigger set article category is
created which will decide about the corresponding categories for each inserted record
and it will create requested records in the article category table.

CREATE TRIGGER set_article_category

AFTER INSERT ON article FOR EACH ROW

BEGIN

-- find matching queries

FOR c1 IN (SELECT category

FROM categ_query

WHERE MATCHES(query_spec, :new.article_text)>0)

LOOP

4.5. INDEX DESIGN 31

INSERT INTO article_category(article_id, category)

VALUES (:new.article_id, c1.category);

END LOOP;

END;

4.5.2 Context index tables

The Oracle Text context index includes four tables which are referred to the $I,
$K, $N and $R tables. These tables are being created in the schema of the index
owner and their names are built up by concatenating ”DR$“, the index name, and
corresponding suffix (e.g. ”$K“). Figure 4.2 shows the global design of the context
index.

INDEXED_TABLE

 TEXT
 ...

USER SCHEMA CTXSYS SCHEMA

DR$PENDING

PK PND_CID
PK PND_PID
PK PND_ROWID

 PND_TIMESTAMP
 PND_LOCK_FAILED

DR$WAITING

PK WTG_CID
PK WTG_PID
PK WTG_ROWID

DR$DELETE

PK DEL_IDX_ID
PK DEL_IXP_ID
PK DEL_DOCID

DR$INDEXNAME$N

PK NLT_DOCID

 NLT_MARK

DR$INDEXNAME$R

 ROW_NO
 DATA

ORACLE TEXT INDEX DATA

DR$INDEXNAME$I

 TOKEN_TEXT
 TOKEN_TYPE
 TOKEN_FIRST
 TOKEN_LAST
 TOKEN_COUNT
 TOKEN_INFO

DR$INDEXNAME$K

PK TEXTKEY

 DOCID

Figure 4.2: Oracle Text context index design

$I The inverted index table

This table holds the inverted index data. That means it stores all the indexed tokens
together with a binary structure which holds all documents the given token occurs in

32 CHAPTER 4. ORACLE TEXT

as well as the exact positions of occurrences within those documents. Each document
in this structure is represented by an internal docid value.

$K The docid mapping table

This table maps the internal docid value to the external rowid value for each indexed
document. A single docid/rowid pair can be found for each row of the table being
indexed. This table is used for fetching a docid when the rowid value is known.

$R The rowid mapping table

This table is designed for the opposite mapping against the $K table. The rowid
value is being fetched when the docid value is known. Because of the facts that
rowids have a fixed length and docids are being allocated sequentially, it is possible
to save all rowids in a binary structure and to get any specific rowid by reading the
fixed length of data at specific position from the very start. To prevent a single row
from getting too large, this binary structure is split over several rows in the $R table
in practice.

$N Negative row table

This table contains a list of docid values for those documents deleted from the indexed
table. These data are used and cleaned up by the index optimization process.

4.5.3 Global context index tables

These tables exist within the CTXSYS schema and they are used for all context indexes
of Oracle Text. That is why the identification of appropriate index has to be contained
in each saved record.

DR$PENDING

This table contains rowids of rows which were newly inserted into the indexed ta-
ble and have not yet been processed into $I table by index synchronization. The
timestamp of insert operation is present there as well.

DR$WAITING

The rowids of rows, which were at first inserted and then updated in the indexed
table, are saved here. They have not yet been processed into $I table by index
synchronization in this case either.

4.5. INDEX DESIGN 33

DR$DELETE

This table contains rowids of rows, which were deleted from the indexed table and
the commit has not been processed yet.

4.5.4 DML processing

Inserts

When a new record is inserted into a table with an Oracle Text context index, the
appropriate index creation routine is called. The new row containing the rowid of
the new record is created in the DR$PENDING by this routine and no other operations
are being executed at this time. This means that the indexes are not updated to
reflect the new record. This is done later by the means of the index synchronization
process. The row inserted into DR$PENDING is in the same commit unit as the new
record being inserted into the base table, thus they will both be either rolled back or
committed together.

Deletes

When an indexed row is deleted, the following three operations are processed: the
corresponding row from the $K table is deleted too, a row containing id of index and
docid is inserted into the DR$DELETE table, and a row containing rowid is inserted
into the $N table. When the user commits his delete, all these events are committed
too. Removing the row from $K means that functional lookups in the index will
not lookup the deleted row. Adding a row into DR$DELETE means that normal index
lookups will not find the deleted row and the commit callback can process the delete
of row from the $R table. The row added into the $N table will be used during the
index optimization to remove the docids which are not needed from the $I table.

If the row is inserted and deleted again in the same commit unit, then there will
be no row in the $K at the start of this process and no special action needs to be
taken.

Updates

An update of the indexed table is basically treated as a delete followed by an insert.
The record is deleted according to the previous section and then the rowid for the
record is inserted into the DR$PENDING table. An extra step needs to be taken when
a given row in the DR$PENDING table already exists. This means an early insert
of the row given is not synchronized yet. In this case the row is inserted into the
DR$WAITING table. The reasoning behind this functionality is the fact that the row
in the DR$PENDING table may already being processed by an index synchronization.
If this is true the indexed data have to be resynchronized later again.

34 CHAPTER 4. ORACLE TEXT

Commit callback

The commit callback is invoked at a commit time with an internal id for the index to
be updated. This callback fetches all docids for the given index id from the DR$DELETE
table . For each fetched docid an update of the LOB in $R table is performed where
the corresponding rowid strings are set to nulls. Finally it deletes all the rows of the
index given from the DR$DELETE table.

Query time

There are two types of index lookup in the Oracle Text - a normal and a functional
lookup. The normal lookup returns all the rowids that satisfy the query criteria,
while the functional lookup decides whether the given row satisfies the query criteria.

The normal lookup fetches at first a set of docids from the $I table and then
it converts them to rowid values using the $R table. If a record has been deleted
in the current session but not committed yet then the $R table will not have been
modified yet. That is why during a normal lookup the DR$DELETE table must be
checked and all unneeded docid values found in this table must be removed before
converting fetched values to rowids using the $R table. This control applies only to
records modified in user’s own session - other session’s uncommited modifications are
invisible to the current user anyway. And once they are committed, the $R table will
have the old docids nulled out.

In the case of a functional lookup there is no need for any special processing
because the functional lookup reads from the $K table and this table is updated
immediately after the record is changed.

Index synchronization

The index synchronization occurs when the user executes the SQL statement ALTER

INDEX indexname REBUILD ONLINE PARAMETERS (’sync’) or calls a PL/SQL rou-
tine CTX DDL.sync index. The synchronization process loads all changes done by
insert and update operations on the indexed table into the index structure. It looks
at first into DR$PENDING and DR$WAITING tables for rowids of records to be updated.
A new internal docid value is assigned for each fetched rowid. Then the document
data are indexed via the indexing pipeline and all the resultant token, docid, and
word position data are inserted into the $I table. A new row in the $K table holding
the docid/rowid pair is created and the structure in the $R table is extended by the
new rowid string on the appropriate possition.

Index optimization

Index optimization occurs when a user executes the SQL statement ALTER INDEX

indexname REBUILD ONLINE PARAMETERS (’optimize’) or calls a PL/SQL routine
CTX DDL.optimize index. The process of optimization performes two actions; it

4.6. PRIVILEGES 35

removes old data and minimizes the index fragmentation. The data in the $I table
are changed, all deleted docids are removed from inverted index structure and the
different rows holding the data for the same token are concatenated into one row.

Implications

The delete operation results in an immediate change of index. That means the user’s
session will no longer find anything for the deleted record from the moment the change
has been made. Other users will not find it as soon as the commit has been processed.

The insert and update operations work differently, meaning that the new informa-
tion will not be visible to text searches until an index synchronization has occurred.
The most important effect of this behaviour becomes evident on the updates: when
the user makes a small alteration to a document, it becomes effectively invisible for
all searches until an index synchronization occurs!

When a record has been deleted, there is no way to process the functional lookup
because of using the $K table.

4.6 Privileges

While any user can create an Oracle Text index and issue a query using CONTAINS

operator, Oracle Text provides the CTXSYS user for administration and the CTXAPP

role for application developers.

CTXSYS user

The CTXSYS user is created at install time, Oracle Text users are administered by this
user.

CTXSYS can do the following:

• Modify system-defined preferences

• Drop and modify other user preferences

• Call procedures in the CTX ADM PL/SQL package to set system parameters

• Query all system-defined views

• Perform all the tasks of a user with the CTXAPP role

CTXAPP role

The CTXAPP role is a system-defined role that enables users to do the following:

• Create and delete Oracle Text preferences

• Use the public Oracle Text PL/SQL packages

36 CHAPTER 4. ORACLE TEXT

4.7 Possible improvements

The Oracle Text has been developed in many years. That is the reason why the scope
of this thesis does not allow any bigger improvements based on the Boolean model
potential, morover for a person standing out of the Oracle corporation. Therefore all
further proposed improvements result from the planned implementation of the Vector
space model.

The use of the Vector space model brings along the possibility of experiencing
several types of calculation similarity measure and token weight values. In some
specific situations it can be more convenient to use the specific type of similarity
measure or token weight, because of the either resultant values or computational
effectiveness. For very special situations the possibility of designing an own special
similarity measure or token weight function that would satisfy the desired conditions
can be useful. The resultant score values in the Vector space model are also more
transparent because the exact algorithm of calculating the score values in Oracle Text
is not generally known.

The Oracle Text also requires the queries being made up of tokens connected
by logical conjunctions, which can be confusing to some users. These users would
appreciate the possibility of entering queries using just the natural language. Another
comfortable feature would be an option of specifying the document to form a query,
which search for the other similar documents in the database.

Chapter 5

Vector Text implementation

5.1 Fundamental design decisions

5.1.1 Form of extending the Oracle Text

The form of extending the Oracle Text was the most fundamental design decision and
had to be created first. The main question was how to implement the Vector Text
index. There were three main options: to implement all starting from document’s
parsing and tokenization, to re-use the functions implemented inside the Oracle Text
or to build the Vector Text index based on the Oracle Text index data.

Own implementation

The first way was to implement all needed functionality from the beginning. It would
imply a lot of extra work for implementing every step of the process of creating Vector
Text index, e.g. document’s parsing, stemming, filtering, enabling use of different
data locations etc. This principle would enable the existence of Vector Text cartridge
even on Oracle database where the Oracle Text is not installed. Such system could
also have a better performance than the system creating the vector index based on
the Oracle Text index. The immoderate additional amount of work would have been
done anyway. This is, however, definitelly not the goal of the work. That is why the
own implementation of document’s parsing and tokenization was taken as the worst
possibility and would be executed only when there was no other option left.

Use of internal functions from the Oracle Text

The opposite approach for implementing the required functionality was to use existing
internal functions from the Oracle Text. It would probably take the least effort and
could run as fast as in the Oracle Text, that is why this way was the very much
preferred one. Unfortunately all this functionality of Oracle Text is encapsulated
inside the wrapped PL/SQL source code and dynamic libraries and it is not available

37

38 CHAPTER 5. VECTOR TEXT IMPLEMENTATION

from outside. For this reason this approach could not be used for implementing
Vector Text cartridge.

Build index based on Oracle Text index

The last way was to create the Oracle Text context index first and then use its data
for creating the Vector Text index. The advantage of this approach is the possibility
to use both the context and the vector index at the same time. The Boolean queries
can be in this case processed on the table where the vector index is built. This
feature can be used for the direct comparison of the application and performance of
both cartridges. The obvious disadvantage is the length of the duration of all DDL
operations on the vector index because changes has to be processed at first in the
context index data and then in the vector index data.

The primary goal here is to take an advantage of the context index data. The
first idea, how to get the inverted index data, was to use the existing Oracle Text
procedure ctx report.token info which parses inverted index data for the given
token and creates the report with results. Unfortunately using this procedure during
the vector index creation was extremely time-consuming and it did not work for
common tokens in larger collections of documents either. That is why the only other
way was to implement the own decoding of the binary structure of inverted index
data, which is fast enough to be used.

5.1.2 Index structure in Vector Text

The basic architecture of the Vector Text index structure had to be designed before
start of implementation phase.

The way of processing the Boolean queries is always the same. The Boolean query
searches for all documents, which include the token specified in the query. That is
why the index can have a structure of one record for one token. The list of documents
with occurrences of the given token is thus coded in the binary structure and saved for
each token record. However, such index structure is unusable in Vector space model,
because this model needs both search directions. It needs to search for documents,
which include the specified tokens and it also needs to find all tokens occurring in
the specified document.

Two basic designs of the index structure in Vector Text were considered. The first
design proposes to create two separate index structures. Each of them would be used
for one of the search directions - all documents for a specified token and all tokens
for a given document. The second design suggests having only one index structure.
One record would be created in the index table for the combination of each token
and the document where the given token occurs.

The advantage of creating of two separate index structures is less space require-
ment for saving index data. This benefit would be enhanced by coding the data into
a binary structure similarly to the Oracle Text index principle. By contrast, having

5.1. FUNDAMENTAL DESIGN DECISIONS 39

only one index structure would result in much faster lookups. The final decision
preferred more the faster querying than the less space requirements and that is why
Vector Text uses only one main index structure.

5.1.3 Vector Text user interface

The Vector Text cartridge was assigned as the extension of the Oracle Text and the
obvious decision was made to make the user interface as similar to Oracle Text as
possible. The same naming convention was used for the implemented global and
internal methods, tables, structures and scripts. A lot of functionality that is used in
Oracle Text such as index preference handling, packages for index reporting or logging
was incorporated also into the Vector Text cartridge. There is also the possibility of
using some functionality from the Oracle Text, such as specifying thesaurus functions
in the queries or defining own stoplists. That all enables the easy understanding and
the same style of work to the users being used to working with the Oracle Text. The
resemblence between both interfaces for Oracle Text and for Vector Text is provided
by the Table 5.1.

Object type Oracle Text Vector Text
SCHEMA CTXSYS VECTXSYS
ROLE CTXAPP VECTXAPP
PACKAGE CTX ADM VECTX ADM
PACKAGE CTX DDL VECTX DDL
PACKAGE CTX OUTPUT VECTX OUTPUT
PACKAGE CTX REPORT VECTX REPORT
OPERATOR CONTAINS CONTAINS
OPERATOR SCORE SCORE
INDEXTYPE CONTEXT VECTOR

Table 5.1: Similarities in using Oracle Text and Vector Text

5.1.4 Language for writing of methods

The choice of the programming language to be used for implementation of methods
had to be made too. There were two main variants - PL/SQL or 3GL represented
by the C language. The 3GL should be generally used in Oracle database when it is
impractical or impossible to code the required functionality in SQL (PL/SQL). The
SQL calls to the database are used in the Vector Text statements implementation all
the time and for such work the SQL and PL/SQL languages are the most suitable
ones. That is why the use of 3GL was consulted only once for the task of decoding

40 CHAPTER 5. VECTOR TEXT IMPLEMENTATION

inverted index data of context index. The parsing of binary data and related in-
memory operations are much faster when implemented in C language than coded in
PL/SQL. The speed of C language parsing outweighs the extproc callout overhead
when all DML operations are implemented using arrays and bulk operations. Finally,
the decision was made to code the functionality of parsing context index data along
with inserting data into vector index tables in C language.

The best PL/SQL practices [4] should be used during the implementation to
achieve the best performance of the system for its designed architecture. To be
more specific, all SQL statements should be created using bind variables instead of
constant values because bind variables minimize the very time-consuming repeated
parsing. For the massive multirow operations a bulk processing for reducing traffic
and permanent communication between client and database server should be used.
The dominant use of static SQL should be considered because it is more scalable,
easier to debug and maintain and it runs faster than the same code using dynamic
SQL.

But not all these methods could be complied during the implementation because
the design of Vector Text cartridge forced the frequent use of dynamic SQL. All data
of given index are saved in the index specific tables and thus all general methods,
querying the tables which name is not known in the time of the code compilation,
have to use dynamic SQL.

5.1.5 Vector Text design complexity

Primary utilization of the Vector Text cartridge was drawn up for academic pur-
pose and studies, that is why the amount of produced similarity measures and token
weights and the simple-used interface for their further addition was preferred to the
tuning and optimization of the most powerful implementation of such similarity mea-
sure. The index creation and manipulation performance had already been affected
by the decision to use the context index from Oracle Text as the fundament on which
the Vector Text index is built up. That is why the performance of Vector Text index
manipulation had to be always lower then the Oracle Text index manipulation.

5.2 Indexing process

This section describes the Vector Text indexing process and the way it extends the
Oracle Text indexing process. For the illustration see the diagram in the Figure 5.1.

The Vector Text indexing process creates first the Oracle Text context index
where all the document content processings like text filtering, tokenization, stop
words elimination etc. are included. Then it uses context index data to prepare
additional data for the needs of the Vector Text index.

5.3. INDEX DESIGN 41

DATASTORE

INDEXING
ENGINE

FILTER SECTIONER LEXER
Document

Filtered
text

Marked-up
text

Tokens

Oracle
Text index

INDEXING
ENGINE

Vector
Text index Index data

STOPLIST

WORDLIST
DATABASE

OS FILE INTERNET

Figure 5.1: Vector Text indexing process

Indexing engine

Vector Text indexing engine fetches data from Oracle Text inverted index in binary
form. Then it decodes inverted index data structure and extracts the mapping of
individual tokens to documents they are contained in. As the next step token fre-
quency values for individual documents are counted and finally these data are saved
into database table for the Vector Text queries processing.

5.3 Index design

This section describes the Vector Text index design, the way the Vector Text in-
dex data uses and extends Oracle Text index and how DML statements are being
processed. The schema of Vector Text index design shows Figure 5.2.

5.3.1 Vector index tables and triggers

The Vector Text index design extends the Oracle Text index design by the $TI

and $TF tables being created within the schema of the index owner. Two new
triggers referred as $AT and $BT are being created on Oracle Text $I table. All

42 CHAPTER 5. VECTOR TEXT IMPLEMENTATION

INDEXED_TABLE

 TEXT
 ...

USER SCHEMA CTXSYS SCHEMA

DR$PENDING

PK PND_CID
PK PND_PID
PK PND_ROWID

 PND_TIMESTAMP
 PND_LOCK_FAILED

DR$WAITING

PK WTG_CID
PK WTG_PID
PK WTG_ROWID

DR$DELETE

PK DEL_IDX_ID
PK DEL_IXP_ID
PK DEL_DOCID

DR$INDEXNAME$AT

after I or U trigger

DR$INDEXNAME$BT

before D trigger

DR$INDEXNAME$TF

 TOKEN_ID
 DOC_ID
 TOKEN_FREQUENCY

DR$INDEXNAME$N

PK NLT_DOCID

 NLT_MARK

DR$INDEXNAME$R

 ROW_NO
 DATA

ORACLE TEXT INDEX DATA

VECTOR TEXT INDEX DATA

DR$INDEXNAME$I

 TOKEN_TEXT
 TOKEN_TYPE
 TOKEN_FIRST
 TOKEN_LAST
 TOKEN_COUNT
 TOKEN_INFO

DR$INDEXNAME$K

PK TEXTKEY

 DOCID

VECTXSYS SCHEMADR$PRECOMPUTED_VALUE

PK PCV_ID

 PCV_IDX_ID
 PCV_NAME
 PCV_VALUE
 PCV_TYPE

Query memory structure

 query definition data
 query processing data

DR$INDEXNAME$TI

 TOKEN_ROWID
 TOKEN_ID
 DOC_COUNT

Figure 5.2: Vector Text index design

these new objects have names concatenated from ”DR$“, the name of the index,
and appropriate suffix (e.g. ”$TF“). Besides that one global index table named
DR$PRECOMPUTED VALUES is added in the VECTXSYS schema. The $I and $K tables
from the Oracle Text are used directly by Vector Text cartridge for the purpose of
query processing and vector index data creating.

5.3. INDEX DESIGN 43

$TI The token identification table

This table maps token records from $I table (represented by rowid value) to the
internal token ids. Each record in this table holds also the value of document count
where the given token occurs. The $TI is created as index organized table for the
better performance during queries.

$TF The token frequency table

This table consists of all the tokens that have been indexed, together with the internal
docids and token frequency values for each document. Each token in this table
is represented by the internal id which is mapped through the $TI table to the
individual token record from the $I table.

$AT After insert or update trigger

This trigger identifies inserted/updated rows from the $I table and prepares their
rowids into the collection in memory. This collection is consequently used by index
synchronization or optimization for processing changes into the $TI and $TF tables.

$BT Before delete trigger

This trigger identifies the rows deleted from the $I table and prepares their rowids into
the collection in memory. This collection is consequently used by index optimization
to process these changes into the $TI and $TF tables.

DR$PRECOMPUTED VALUES table

This table holds for given index values that can be repeatedly used during the query
processing, similarity measure values calculating etc.

5.3.2 Query memory structure

Two main structures are used as shown in the Figure 5.3 - the first one stores the
data for all queried documents being created during query processing and the second
one holds the data for the query definition and its tokens.

Opened cursors

The list of opened cursors for given query is saved here. All opened cursors are closed
after processing the query.

44 CHAPTER 5. VECTOR TEXT IMPLEMENTATION

Query definition data

Query tokens

Query processing data

Weight data

Document collection

Opened cursors Query definition id Query definition id

Query results

Tokens

Precomputed values

Normalization
factor

Documents count

Query type Query formula

Indexed text specification Queries count

Figure 5.3: Query memory structure

Query results

The list of queried documents with their current score value and normalization factor
for query is stored here.

Weight data

Holds the weight data for all queried documents and its tokens. It consists of the
following three main parts:

• List of all tokens which take place in queried documents, for each token there
are saved the following data:

– List of documents where the given token is included with its frequency for
the particular document

– Count of documents where the given token is included

• Collection of documents being queried, for each document the following data
are saved:

– List of included tokens with their frequencies for given document

– Count of all tokens in given document

– Maximal token frequency in given document

5.3. INDEX DESIGN 45

• Count of all documents in collection being queried

Normalization factor

Normalization factor for given query is stored here. It is being used by some similarity
measure procedures with the aim to normalize the resultant values.

Query definition id

The identification of the query definition structure, which is used for actual query is
saved here.

Precomputed values

Holds the list of precomputed values, which can be used only for the needs of the
actual query.

Query type

Identification of the query type is saved here. It holds the information about the
operator and the parameters used for creating the query.

Query formula

The query formula is stored here according to the operator used for the query creation.
It can be a formula of text vector or the text which has allready been indexed or not.

Indexed text specification

The data about being used only with queries created by INDEXED TEXT operator are
to be found here. This data provides the user with the information about indexed
table, name of vector and context indexes etc.

Queries count

Number of queries using current query definition is stored here.

Query tokens

Holds the list of tokens from query definition in uppercase, for each token the following
data are saved:

• Token frequency and weight for query

• List of tokens in mixedcase which, are equivalent to given token in uppercase.
For each mixedcase token there is saved its frequency and weight.

46 CHAPTER 5. VECTOR TEXT IMPLEMENTATION

5.3.3 DML processing

Inserts, deletes, updates, commits

These DML statements are processed in the same way described for the Oracle Text
context index and they have the same implications. Because of using $K table for
vector index lookups all deletes are reflected by index immediately. In comparison
with that insert and update operations are not considered by index until its synchro-
nization is done.

Query time

As for the Oracle Text index there are two sorts of index lookup used in Vector Text
- normal and functional lookups. Document rowids from $K table are used for the
both types of lookup. In this way the deleted documents are not queried immediatelly
after being deleted.

The query processing starts with parsing and creating query definition using pre-
sented operator - TEXT VECTOR, INDEXED TEXT or NONINDEXED TEXT. This operator
fills up the query definition structure with appropriate data, allocates the query data
structure and returns its identificator. If the functional lookup takes place then the
presented operator is called separately for each row. Thats why the query formula is
saved and when such a formula allready exists in the memory then the query parsing
does not need to be processed again.

The CONTAINS operator is processed after creating the query definition. This
operator chooses the suitable similarity measure procedure from the index preferences
as well as it selects a token weight function which should be used for the query. Then
it calls the chosen similarity measure procedure for given document or all queried
documents according to the query lookup type.

All similarity measure procedures can be processed in different ways according to
their definitions. The following example is presented to demonstrate some of those
ways. Let’s suppose the following query is being processed

SELECT SCORE(1),

id

FROM news

WHERE CONTAINS(text,

TEXT_VECTOR(’oracle:1;database:0.5’),

’similarity_measure cosine_measure

token_weight tf_weight’,

1) > 0.5;

and there is the Vector Text index called news ind on the news table. The presented
similarity measure is then processed the following way:

5.3. INDEX DESIGN 47

1. Get the actual documents collection using the query

SELECT docid

FROM DR$NEWS_IND$K;

2. Go through all tokens in query, which are being saved in the query tokens

structure

3. For each such token calculate

(a) its weight in the query: qj

(b) its weights for all documents in queried collection:

∀i ∈ (1, . . . , n) : wi,j

SELECT SUM(tf.token_frequency)

FROM DR$NEWS_IND$I i,

DR$NEWS_IND$TI ti,

DR$NEWS_IND$TF tf

WHERE i.token_text = query_tokens(index)

AND i.rowid = ti.token_rowid

AND ti.token_id = tf.token_id

AND tf.doc_id = document_id;

4. Calculate unnormalized score values for all documents and saves them into
query results structure, one value for each document:

unnormal score(Di) =
∑n

j=1 qj ∗ wi,j

5. Normalize resultant values of similarities for each document - cosin normalize
of token frequency

(a) get squared weights of all documents:

square weight(Di) =
∑n

j=1(wi,j)
2

SELECT tf.doc_id,

SUM(tf.token_frequency)

FROM DR$NEWS_IND$TF tf

GROUP BY tf.doc_id;

(b) get squared weight of query, more precisely get sum of all squared token
frequencies for all tokens being saved in the query tokens structure:

square query =
∑n

j=1(qj)
2

48 CHAPTER 5. VECTOR TEXT IMPLEMENTATION

(c) count the total normalized score for each document and saves normalized
values back into query results structure:

normal score(Di) = unnormal score(Di)√
square weight(Di)∗

√
square query

The normalized score values from the query results structure are returned by the
CONTAINS operator for each document. Such value can be also returned by the SCORE
operator for sorting the query results. Only the rows fulfilling the condition for the
CONTAINS operator are returned to the user. Finally after returning query result the
query data and query definition structures are cleaned up.

More details about previously used operators including detailed examples can be
found below in the Appendix A, subsections A.2.2 - A.2.6.

Index synchronization

The index synchronization occurs when the user executes the SQL statement ALTER

INDEX indexname REBUILD ONLINE PARAMETERS (’sync’) or calls a PL/SQL rou-
tine VECTX DDL.sync index. At first the synchronization of Oracle Text index is
processed which among others inserts new rows into the $I table. Rowids of all these
inserted rows are saved in a collection in the memory thanks to $AT trigger on the $I

table. The collection is consequently processed by Vector Text index synchronization
which decodes inverted index data from $I table for all rows included in the collec-
tion. Then new token ids are insertd into the $TI table. The token frequences for
particular documents are further counted and finally saved into the $TF table.

Index optimization

The index optimization takes place when the user executes the SQL statement ALTER
INDEX indexname REBUILD ONLINE PARAMETERS (’optimize’) or calls a PL/SQL
routine VECTX DDL.optimize index. To begin with, the optimization of Oracle Text
index is being processed. During this process all the old token rows are deleted from
$I table and more rows for one token are concatenated in the $I table. All such
deleted and updated rows are saved in a collection in the memory thanks to $AT

and $BT triggers on the $I table. This collection is consequently being processed
by Vector Text index optimization. Rows are deleted from the $TI and $TF tables
for all corresponding rows previously deleted from the $I table. For all previously
updated rows inverted index data are being decoded from the $I table and counted
token frequencies for particular documents. These token frequencies are finally saved
into the $TF table.

5.4. PRIVILEGES 49

Implications

The implications are the same as for the Oracle Text index - deletes are taken into
consideration immediatelly while inserts and updates are not proceeded until index
synchronization is done.

5.4 Privileges

While any user can create an Vector Text index and issue a query using CONTAINS op-
erator, Vector Text provides the VECTXSYS user for administration and the VECTXAPP
role for application developers.

VECTXSYS user

The VECTXSYS user is created at install time, Vector Text users are administered by
this user.

VECTXSYS can do the following:

• Modify system-defined preferences

• Drop and modify other user preferences

• Call procedures in the VECTX ADM PL/SQL package to set system parameters.

• Query all system-defined views

• Perform all the tasks of a user with the VECTXAPP and CTXAPP roles

• Implement new similarity measure procedures and token weight functions

VECTXAPP role

The VECTXAPP role is a system-defined role that enables users to do the following:

• Create and delete Vector Text preferences

• Use the Vector Text PL/SQL packages

• Perform all the tasks of a user with the CTXAPP role in Oracle Text

50 CHAPTER 5. VECTOR TEXT IMPLEMENTATION

5.5 Similarity measure functions

This chapter contains the list of similarity measures implemented in the Vector Text
cartridge and a guide for implementing user’s own similarity measure. The similarity
measures are briefly described along with some performance assumptions. The prin-
ciple of saving some important precomputed values is used by a lot of implemented
functions. This results into the efficiency of individual methods, the first query of
given type takes longer then the subsequent ones. There has to be calculated all
values during the first query, but the other queries can leave out some calculations
and use precomputed values instead. The precomputed values are deleted either dur-
ing the process of synchronization and optimization, or together with dropping or
truncating the whole index. The notation in individual formulas is the same as in the
Chapter 3 - Q stands for the query, Di means the i-th document in the collection, qj

represents the j-th element of the query vector and wi,j stands for the j-th element of
document vector for the i-th document.

Scalar measure

The Scalar measure is the basic similarity measure implemented in the Vector Text
cartridge, its definition is following:

sim(Q, Di) =
∑n

j=1 qj ∗ wi,j

This formula computes the length of the projection of the document vector onto the
query vector. The resultant document score is directly proportional to the length of
the document vector. This measure can be used by the SCALAR MEASURE preference.

Cosine measure

The Cosine measure is the Scalar measure being normalized and the result represents
the cosine of the angle between the query and document vectors. The definition of
Cosine measure is following:

sim(Q, Di) =

∑n

j=1
qj∗wi,j

√

∑n

j=1
q2

j
∗

√

∑n

j=1
w2

i,j

The maximum resultant similarity value is one, which means that two identical vec-
tors have a zero angle between them. The minimum possible similarity value is zero,
which means two vectors having nothing in common, the angle between them being
90 degrees. The denominator in this equation discards the effect of the lengths of
the documents on their scores. Unfortunately, the computation of the normalization
factor is extremely expensive because it requires an access to every token in the doc-
ument and not just the tokens specified in the query. This measure can be used by
the COSINE MEASURE preference.

5.5. SIMILARITY MEASURE FUNCTIONS 51

Approximated cosine measure

The Approximated cosine measure executes the normalization of Scalar measure too
but only by number of tokens in given document. See the definition:

sim(Q, Di) =

∑n

j=1
qj∗wi,j√

number of tokens in Di

The effect of the normalization is not as strong as for the Cosine measure, but the
computational requirements are much lower and so this measure works better in IRS
implementations. This measure can be used by the APPROXIMATED COSINE MEASURE

preference.

Jaccard measure

The Jaccard measure is defined the following way:

sim(Q, Di) =

∑n

j=1
qj∗wi,j

∑n

j=1
q2

j
+
∑n

j=1
w2

i,j
−
∑n

j=1
qj∗wi,j

Briefly speaking, it is the weight of all tokens included in both query and document
divided by the weight of all tokens included in query or document. This implies
the fact that the shorter document will result with a higher weight than the same
document, which is only enlarged by the text including tokens that are not queried.
The shorter documents are more descriptive and therefore preferred by this measure.
The computational requirements needed are similar to those used for the Cosine
measure. The Jaccard measure can be used by the JACCARD MEASURE preference.

Dice measure

The Dice measure is very similar to the Jaccard measure and it is defined as follows:

sim(Q, Di) =
2∗

∑n

j=1
qj∗wi,j

∑n

j=1
q2

j
+
∑n

j=1
w2

i,j

The same principle is valid for the resultant weights according to document length
and descriptiveness as for the Jaccard measure. This measure can be used by the
DICE MEASURE preference.

Overlap measure

The definition of Overlap measure is following:

sim(Q, Di) =

∑n

j=1
qj∗wi,j

∑n

j=1
min(q2

j
,w2

i,j
)

The computation of the normalization factor is not as expensive as the one for the
Cosine measure, since only the tokens from the query need to be accessed thanks to
using the minimum function. This measure can be used by the OVERLAP MEASURE

preference.

52 CHAPTER 5. VECTOR TEXT IMPLEMENTATION

Asymmetric measure

The Assymmetric measure is defined as follows:

sim(Q, Di) =

∑n

j=1
min(qj ,wi,j)

∑n

j=1
w2

i,j

The needed computational requirements are similar to those of the Cosine measure
because the access to every token from the document is required in both cases. This
measure can be used by the ASYMMETRIC MEASURE preference.

Pseudocosine measure

The Pseudocosine measure is very similar to Cosine measure and is defined the fol-
lowing way:

sim(Q, Di) =

∑n

j=1
qj∗wi,j

(

∑n

j=1
q2

j

)

∗

(

∑n

j=1
w2

i,j

)

This measure can be used by the PSEUDOCOSINE MEASURE preference.

5.5.1 Implementing user’s own measure procedure

The Vector Text cartridge was designed to enable implementing and using own sim-
ilarity measures easily. The three main steps have to be completed for user’s own
similarity measure use. First, the procedure has to be implemented, second, the new
preference using given procedure has to be created and last but not least, the index
with this new preference has to be created.

Measure procedure implementation

User’s own similarity measure procedure can be developed only under the VECTXSYS

schema. This procedure has to have the following declaration structure:

procedure user_measure_procedure(

index_info in vectxsys.VectorIndexInfo

, query_id in pls_integer

, doc_id in pls_integer);

The first parameter of VectorIndexInfo type contains all necessary information
about index against which the query is being processed. The second parameter
identifies the processed query and the third parameter identifies the document for
which the similarity measure should be counted. The following figure shows the
skelet of every similarity in the measure procedure:

5.5. SIMILARITY MEASURE FUNCTIONS 53

loop

--get next token from query

query_token := vectxsys.driqry.fetch_token(...);

--set weight_info object with actual attributes

weight_info := TokenWeightInfo(...);

--run appropriate token weight procedure

-- on query token and get its weight

...

--insert query token with its weight into memory structure

vectxsys.driqry.insert_token(...);

if doc_id not null then

--set weight_info object with actual document and token

weight_info := TokenWeightInfo(...);

--run token weight function and get document weight

...

--save document weight into memory structure

vectxsys.driqry.increase_doc_score(...);

else

loop through all documents

--set weight_info object with actual document and token

weight_info := TokenWeightInfo(...);

--run token weight function and get document weight

...

--save document weight into memory structure

vectxsys.driqry.increase_doc_score(...);

end loop;

end if;

end loop;

--run appropriate normalizing procedure

...

This skeleton forms the basis of implemented similarity measure, more useful func-
tions are prepared for usage in Vector Text drifun package (eg. get document weight

54 CHAPTER 5. VECTOR TEXT IMPLEMENTATION

function for calculating document weight using many different algorithms). The
simplest way of the implementing user’s similarity measure procedure is to call
drifun.user measure prototype procedure inside. This procedure is implemented
according to previously shown skeleton and it can process many types of calcula-
tion according to chosen input parameters. The details of this procedure can be
found in the technical documentation. The following example creates a procedure to
implement Asymmetric similarity measure using described prototype:

create procedure user_asymmetric_measure(

index_info vectxsys.VectorIndexInfo,

query_id pls_integer,

doc_id pls_integer

)

is

begin

drifun.generic_measure_prototype(

index_info,

query_id,

doc_id,

’ASYMMETRIC_MEASURE’,

’MIN’,

);

end user_asymmetric_measure;

For the purpose of creating own similarity measure the implementation of own nor-
malizing procedure can be necessary. Such a procedure process normalization of
calculated similarity measure and implementation of the procedure outside of the
similarity measure procedure is appropriate for enabling the use of the same normal-
ization principle in more similarity functions. This procedure can be created only in
VECTXSYS schema and it has to have the following declaration structure:

procedure user_normalize_procedure(

index_info vectxsys.VectorIndexInfo

, query_id number);

The first parameter of VectorIndexInfo type contains all the necessary information
about the index against which the query is being processed and the second param-
eter identifies the processed query. The following figure shows the skelet of every
normalization procedure for similarity measure:

loop

--get score value for the next document

score_value := driqry.get_next_doc_score(...);

5.5. SIMILARITY MEASURE FUNCTIONS 55

--exit when all document score values normalized

exit when doc_id is null;

--normalize actual document score value

...

--save normalized score value into memory structure

driqry.insert_doc_score(query_id, doc_id, score_value);

end loop;

Preference creation

The new preference for the implemented measure has to be created. Then all the
attributes used by implemented procedure have to be set. The only compulsory
attribute that has to be set is named PROCEDURE and its value means implemented
measure procedure name. All other optionally attributes used by the particular
similarity measure procedure have to be set too.

The following example creates the preference my new measure which uses the pro-
cedure named my new measure from the user procs package for calculating similarity
measure and the function named cosin measure from the drifun package is taken
for normalization processing in the given measure.

begin

VECTX_DDL.CREATE_PREFERENCE(

’MY_NEW_MEASURE’,

’USER_MEASURE’);

VECTX_DDL.SET_ATTRIBUTE(

’MY_NEW_MEASURE’,

’PROCEDURE’,

’user_procs.my_new_measure’);

VECTX_DDL.SET_ATTRIBUTE(

’MY_NEW_MEASURE’,

’NORMALIZE_PROCEDURE’,

’drifun.cosine_normalize’);

end;

New measure usage

The newly implemented measure can be used as a default for all queries on the created
index.

The following statement creates the vector index called news ind on text column
in news table and my new measure preference is used as the default similarity measure
for all queries on given index.

56 CHAPTER 5. VECTOR TEXT IMPLEMENTATION

CREATE INDEX news_ind ON news(text)

USING INDEXTYPE vectxsys.VECTOR

PARAMETERS(’similarity_measure my_new_measure’);

The other way of using the new measure for specific query is by specifying optional
parameter of CONTAINS operator.

The following query uses my new measure preference for the similarity measure
calculation even if the default measure preference is different for the given vector
index.

SELECT *

FROM news

WHERE CONTAINS(

text,

TEXT_VECTOR(’oracle:1;database:0.5’),

’similarity_measure my_new_measure’

) > 0;

5.6 Token weight functions

This chapter contains the list of token weight functions implemented in the Vector
Text cartridge and a guide for implementing user’s own token weight function. Token
weight functions are using the same principle of saving important precomputed values
as similarity measure functions.

TF weight

The basic and most simple option for token weighting is the use of token frequency.
The token frequency is defined as follows:

TFi,j =
tokenj occurrencecount in document Di

all tokens occurrencecount in document Di

wi,j = TFi,j

It grants the basic principle: the more occurrences of token in given document the
more significance of the token for the document. This token weight function can be
used by the TF WEIGHT preference.

LOG TF weight

The Logarithmic token frequency is defined as following:

LOG TFi,j =

{

1 + ln TFi,j if TFi,j > 0,
0 otherwise.

5.6. TOKEN WEIGHT FUNCTIONS 57

wi,j = LOG TFi,j

It reduces the importance of token frequency in collections of individual documents
with various length and it also reduces the effect of a token with an unusually high
token frequency within the given document. This token weight function can be used
by the LOG TF WEIGHT preference.

NTF weight

The normalized token frequency weight is defined as follows:

NTFi,j =

{

0 for TFi,j < ε,
1
2

+ 1
2
∗ TFi,j

maxk (TFi,k)
otherwise.

wi,j = NTFi,j

Such a definition decreases the size of data to be processed because it distinguishes
the significant tokens from the insignificant ones. It also raises the weight values to
normal digit places because even for the most frequent terms the tf value is very low.
However the normalized tf value of all significant tokens vary between 0.5 and 1.

The normalized token frequency can be used as token weight function by the
NTF WEIGHT preference.

TF ITF weight

The inverted token frequency (ITF) represents the importance of token in the whole
collection and not only in the given document. It is defined in the following way:

ITFj = log
(

documents count in collection
documents count containing tokenj

)

The most simple weight function including ITF is then defined as follows:

wi,j = TFi,j ∗ ITFj

The descriptors suitable for such definition characterize only a relatively small number
of documents from the given collection. They have higher weight than unsuitable
descriptors, which are so common that they occur in many documents from the given
collection.

This token weight function can be used by the TF ITF WEIGHT preference.

NTF ITF weight

This token weight function is similar to the previous one and is defined as follows:

wi,j = NTFi,j ∗ ITFj

It integrates the advantages of data size decreasing from NTF weight and the de-
scriptors stress from TF ITF weight.

This token weight function can be used by the NTF ITF WEIGHT preference.

58 CHAPTER 5. VECTOR TEXT IMPLEMENTATION

Normalized NTF ITF weight

The normalized NTF ITF weight minimizes the influence of document length on the
token weight. The definition of weight function is following:

vi,j = NTFi,j ∗ ITFj

wi,j =
vi,j

√

∑

k
v2

i,k

The resultant effect of the weight normalization is that the importance of the token
in a given document depends on its frequency of occurrence relative to other tokens
in the same document and not on its absolute frequency of occurrence.

This token weight function can be used by the NORM NTF ITF WEIGHT preference.

5.6.1 Implementing user’s own token weight

The process for user’s own token weight implementation and use is analogous to the
similarity measure implementation process. The three main steps have to be taken
again. To begin with, the function has to be implemented, then the new preference
using given function has to be created and finally the index with this new preference
has to be created. The mentioned function can be created only in the VECTXSYS

schema and it has to possess the following declaration structure:

function user_token_weight(

weight_info vectxsys.TokenWeightInfo

)

return number;

The only parameter of TokenWeightInfo type contains all necessary information
about token, document and index against which the token weight value is being
calculated. The actual data for calculation should be taken from the $TF index
table or memory structure for actual query. The calculated token weight value has
to be returned as the function result.

Preference creation

The new preference for implemented weight function has to be created. All the
attributes used by the implemented function have to be set. The only compulsory
attribute that has to be set is named FUNCTION and its value means the name of the
implemented token weight function.
The following example creates the preference named my new weight which uses the
my new weight function from the user funcs package for calculating the token weight
value.

5.6. TOKEN WEIGHT FUNCTIONS 59

begin

VECTX_DDL.CREATE_PREFERENCE(

’MY_NEW_WEIGHT’,

’USER_WEIGHT’);

VECTX_DDL.SET_ATTRIBUTE(

’MY_NEW_WEIGHT’,

’FUNCTION’,

’user_funcs.my_new_weight’);

end;

New token weight use

The newly implemented token weight function can be used as the default for all
queries on the index created.
The following statement creates a vector index named news ind on text column in
the news table and the preference called my new weight is used as the default token
weight for all queries on given index.

CREATE INDEX new_ind ON news(text)

USING INDEXTYPE vectxsys.VECTOR

PARAMETERS(’token_weight my_new_weight’);

The another way to use new token weight for the specific query is to specify the
optional parameter of CONTAINS operator.
The following query uses my new weight preference for the token weight calculation
even if the default token weight preference is different from the given vector index.

SELECT *

FROM news

WHERE CONTAINS(

text,

TEXT_VECTOR(’oracle:1;database:0.5’),

’token_weight my_new_weight’

) > 0;

Chapter 6

Test

6.1 Test environment and data

The LISA (Library and Information Science Abstracts) collection was used for the
purpose of testing the Vector Text implementation. LISA 1 is one of standard IR
collections. It is provided by Peter Willett of Sheffield University to support research
investigations. The collection contains 6004 abstracts of documents. Along with the
documents it also provides 35 queries together with the list of all relevant documents
which should ideally be returned by the IR system. Each pre-defined query contains
its definition in natural language. Several words or collocations which should be
used for the searching are included too. These document relevance judgments were
prepared manually as a part of course which took place at Sheffield University.

All tests were performed on the notebook with the parameters that are presented
in Table 6.1.

Processor Intel T7200 Core2Duo, 2.00 GHz
Disk 120 GB, 5400 RPM
Memory 1 GB RAM
OS Microsoft Windows XP Professional, Service Pack 2
Oracle database version 9.2.0.1

Table 6.1: Parameters of the test environment

6.2 Index manipulation test

The first test measures the time needed for creation of the chosen index. Both
indextypes, context as well as vector, were created on the test table which was holding
the whole LISA collection. Its structure was the following:

1downloaded from http://www.dcs.gla.ac.uk/idom/ir resources/test collections/lisa/

61

62 CHAPTER 6. TEST

CREATE TABLE test_docs (

id NUMBER,

text VARCHAR2(4000)

);

0

1

2

3

4

5

6

7

8

9

10

context index vector index vector index,
MIN_TOKEN_FREQUENCY =

2
indextype

tim
e

(s
)

creating of context index parsing of context index data
inserting of data into vector index tables building of lookup indexes on vector index tables

Figure 6.1: Time of index creation

The Figure 6.1 shows the comparison of time spent on creating the context and vector
indexes. Time needed for creating the vector index has to be always higher than for
the context index because of the design of Vector Text cartridge. At first it is created
the context index and then - using its data - the vector index is subsequently created.
The main difference in the time result is caused by the number of records being hold
by the index data tables. The precise counts of held records shows the Table 6.2. The
context index holds one record for one text token, whereas the vector index holds one
record for the combination of token and the document where the given token occurs.
This difference in the amount of held records results in the growth of time needed

6.3. QUERYING TEST 63

Oracle Text Vector Text Vector Text optimized
$I 19164 19164 19164
$K 6004 6004 6004
$TI - 19164 5784
$TF - 263626 41887

Table 6.2: Number of records being hold by index tables

for inserting those records into the $TF table and building lookup indexes on this
table. The distinct structure of index data is forced by the different approach for the
searching using Boolean or Vector space model. The Boolean model always searches
for all documents to the specified token, whereas the Vector space model often needs
to find tokens occuring in the specified document as well as documents including the
specified token. More details about differences in context and vector index structures
are discussed in Section 5.1.2.

The Figure 6.2 shows the other effect of the higher amount of records which
need to be held in the vector index tables. The index implementation has increased
demands on the disk space for holding the vector index data than for holding the
context index data.

The previously described disadvantages of the Vector Text cartridge can be de-
creased by specifying MIN TOKEN FREQUENCY value (see Appendix A.2.1 for details).
Thanks to this option, the extremely low values, which will not fundamentally in-
fluence the query results, can be left out of vector index data. Both Figures 6.1
and 6.2 show in the last columns the influence of creating vector index having set the
MIN TOKEN FREQUENCE to 2. Let’s realize that this example is too penetrative because
the abstracts are short texts, which do not include a lot of words more then once.
So the effect in the collections holding the bigger text documents would not be as
massive as presents this example.

6.3 Querying test

This section contains the results for queries, which were evaluated on the LISA col-
lection. It was chosen 5 out of the total 35 pre-defined queries. This choice was made
randomly, the only request was to include both queries having associated many and
low relevant documents into the test. Only the first 20 returned documents having
the highest score values were considered in the following test. The queries used for
Oracle Text and Vector Text searches had to be slightly different because of the nec-
essary usage of logical connectives in Oracle Text queries, but their meaning was the
same. Each query was built only from the words and collocations that are specified
for each pre-defined query.

The Vector Text queries were optimized during the test by specifying query token

64 CHAPTER 6. TEST

0

2

4

6

8

10

12

index data tables lookup indexes on index data tables

A
m

o
u

n
t o

f m
em

o
ry

 n
ee

d
ed

 fo
r

st
o

ra
g

e
(M

B
)

Oracle Text index Vector Text index Vector Text index, MIN_TOKEN_FREQUENCY = 2

Figure 6.2: Memory demands for saving index data

weights to achieve the best results for each query. The final results of original and
optimized queries were compared and they are presented further in this section.

Let’s present here the example of the specific queries that were used during the
testing. The query 3 used for the searching of context index was the following:

SELECT SCORE(1) sc,

id

FROM test_docs

WHERE CONTAINS(text,’CHEMISTRY or CHEMICAL or PATENTS’,1) > 0

ORDER BY sc DESC;

When the vector index wanted to be searched instead of the context index, the same
query 3 was specified the following way:

6.3. QUERYING TEST 65

SELECT SCORE(1) sc,

id

FROM test_docs

WHERE CONTAINS(

text,

NONINDEXED_TEXT(’CHEMISTRY, CHEMICAL, PATENTS’),

’similarity_measure SCALAR_MEASURE

token_weight TF_WEIGHT’,

1) > 0

ORDER BY sc DESC;

The queries using Vector Text cartridge was optimized to return the best possible
results, let’s see the example of such optimization via specifying the weights for query
tokens:

SELECT SCORE(1) sc,

id

FROM test_docs

WHERE CONTAINS(

text,

TEXT_VECTOR(’CHEMISTRY:0; CHEMICAL:1; PATENTS:4’),

’similarity_measure SCALAR_MEASURE

token_weight TF_WEIGHT’,

1) > 0

ORDER BY sc DESC;

The full list of queries, which were used in the test, is introduced by the Appendix
B. All tables presented in Appendix B include only the different parts of queries
being specified by the CONTAINS operator for the individual queries, because their
structure was always the same as demonstrated above.

The Figures 6.3 and 6.4 present the first part of the test results, where the count
of relevant documents being returned by the individual queries was compared. The
comparisons according to the used token weight method are represented on the Figure
6.3, the scalar measure was used for counting all score values in this case. By contrast,
the Figure 6.4 shows the results of the use of different similarity measure methods
evaluated on the index using the TF weighting.

The other part of test results is composed by the Figure 6.5 and 6.6, where the
proportion of returned relevant documents according to their order in the returned
documents is presented. The exact definition of the proportion value is introduced
further in this section. The Figure 6.5 shows the comparison according to the used
token weight method, whereas the differences in use of alternative similarity measure
methods are presented by the Figure 6.6.

The computation of the proportion values considers the first 20 documents re-
turned by the query, they are ordered starting from the ones having the highest score

66 CHAPTER 6. TEST

0

2

4

6

8

10

12

14

Q1 (2 relevant) Q3 (5 relevant) Q6 (18 relevant) Q10 (14 relevant) Q15 (20 relevant)
Original query

R
et

u
rn

ed
 c

o
u

n
t

o
f

re
le

va
n

t
d

o
cu

m
en

ts

Oracle Text TF weight LOG_TF weight
NTF weight TF_ITF weight NTF_ITF weight
Normalized NTF_ITF weight

0

2

4

6

8

10

12

14

Q1 (2 relevant) Q3 (5 relevant) Q6 (18 relevant) Q10 (14 relevant) Q15 (20 relevant)

Optimized query

R
et

u
rn

ed
 c

o
u

n
t o

f r
el

ev
an

t d
o

cu
m

en
ts

Figure 6.3: Count of retrieved relevant documents for the different token weight
methods - original and optimized queries

6.3. QUERYING TEST 67

0

2

4

6

8

10

12

14

Q1 (2 relevant) Q3 (5 relevant) Q6 (18 relevant) Q10 (14 relevant) Q15 (20 relevant)

Original query

R
et

u
rn

ed
 c

o
u

n
t o

f r
el

ev
an

t d
o

cu
m

en
ts

Oracle Text Scalar measure
Cosine measure Jaccard measure
Dice measure Pseudocosine measure
Asymmetric measure Approximated cosine measure

0

2

4

6

8

10

12

14

Q1 (2 relevant) Q3 (5 relevant) Q6 (18 relevant) Q10 (14 relevant) Q15 (20 relevant)

Optimized query

R
et

u
rn

ed
 c

o
u

n
t

o
f

re
le

va
n

t
d

o
cu

m
en

ts

Figure 6.4: Count of retrieved relevant documents for the different similarity measures
- original and optimized queries

68 CHAPTER 6. TEST

0

10

20

30

40

50

60

70

80

90

100

Q1 Q3 Q6 Q10 Q15

Original query

P
ro

p
o

rt
io

n
 o

f r
et

u
rn

ed
 r

el
ev

an
t d

o
cu

m
en

ts

Oracle Text TF weight LOG_TF weight
NTF weight TF_ITF weight NTF_ITF weight
Normalized NTF_ITF weight

0

10

20

30

40

50

60

70

80

90

100

Q1 Q3 Q6 Q10 Q15
Optimized query

P
ro

p
o

rt
io

n
 o

f
re

tu
rn

ed
 r

el
ev

an
t

d
o

cu
m

en
ts

Figure 6.5: The proportion of retrieved relevant documents for the different token
weight methods - original and optimized queries

6.3. QUERYING TEST 69

0

10

20

30

40

50

60

70

80

90

100

Q1 Q3 Q6 Q10 Q15

Original query

P
ro

p
o

rt
io

n
 o

f r
et

u
rn

ed
 r

el
ev

an
t d

o
cu

m
en

ts
Oracle Text Scalar measure
Cosine measure Jaccard measure
Dice measure Pseudocosine measure
Asymmetric measure Approximated cosine measure

0

10

20

30

40

50

60

70

80

90

100

Q1 Q3 Q6 Q10 Q15

Optimized query

P
ro

p
o

rt
io

n
 o

f r
et

u
rn

ed
 r

el
ev

an
t d

o
cu

m
en

ts

Figure 6.6: The proportion of retrieved relevant documents for the different similarity
measure methods - original and optimized queries

70 CHAPTER 6. TEST

value. Let’s present here the formula for calculating the proportion value. Let’s define
the sum of orders of all relevant documents the following way

S =
∑n

i=1 oi + (k − n) ∗ E

where n stands for the number of relevant documents being returned to the user
among the first 20 documents, oi means the order of i-th relevant document in the
returned collection of documents, k presents the total number of relevant documents
and E stands for default order of the relevant document, which is not returned to
the user among first 20 returned documents (E > 20 is the required condition, the
test value of E was set to 30). The resultant proportion value is then defined by the
formulas

MAXS = k ∗ E

MINS = n∗(n+1)
2

P = MAXS−S
MAXS−MINS

where P presents the resultant proportion value, MAXS stands there for the maxi-
mal value of S which means that no relevant documents were retrieved and MINS

stands there for the minimal value of S which means that all relevant documents were
retrieved before the first nonrelevant one.

The definition presented above is not easily understandable and so it follows
the description of the proportion value calculation principles. The 100% propor-
tion means that all relevant documents were returned by the query before the first
document being non-relevant, whereas the 0% proportion means that no relevant doc-
ument was returned by the query. Furthermore the lower order has a given relevant
document in the returned collection the higher is the resultant proportion value.

Let’s summarize here some facts, which can be observed from the results of the
query testing. According to the retrieved values, there is no universal method, which
gives the best results in every situation. The weight methods that are using normal-
ization give slightly better results then the same methods without the normalization.
On the other hand their processing takes longer. The methods implemented by
the Vector Text cartridge are undoubtedly comparable to the Oracle Text. What
is more, the query optimization can be processed easily in Vector Text via specify-
ing the weights for query tokens. These optimized queries have much better results
comparing to the Oracle Text.

Chapter 7

Conclusion

The vector IRS cartridge designed in this thesis fulfills all the proposed goals and the
implementation shows that it is viable.

The resultant cartridge highlights the main advantages of the Vector space model
approach. A high amount of different similarity measure and token weight functions is
prepared to be used for querying. An easy interface for creating and adding more such
functions is available too. Each of the similarity measure and token weight functions
can be suitable for different searching conditions, with the purpose of enable the user
test easily several functions and decide which one will work best in the particular
situation. By contrast, Oracle Text uses only one algorithm for score calculation. By
creating vector index via Vector Text cartridge, user can experiment and compare
results of queries over both context and vector indexes.

The possibilities of entering the query were also extended in Vector Text cartridge.
Oracle Text offers only one way of query specification (searched tokens connected
by logical conjunctions), whereas Vector Text enables more possibilities. Users can
specify query vector with weights assigned to its individual tokens, they can also enter
part of a text in natural language or even the whole document to which they search
the similar documents. The wide potential of queries using a thesaurus is enabled in
Vector Text too.

On the other hand, some extra features of query specification from the Oracle
Text was not implemented into the Vector Text cartridge. The vector index data
does not include the positions of token occurrences in individual documents, thus the
proximity operator and collocations cannot be specified in the Vector Text. The fuzzy
operator also absents from the Vector Text, because any existing implementation of
this operator from Oracle Text could not be re-used in Vector Text cartridge. The own
implementation of fuzzy operator could be a subject for a future possible extension
of the Vector Text cartridge. But the solution for the case, that the use of any of the
mentioned operators is imperative, is very simple. The Boolean query can be always
specified. The context index, on which the vector index is built, will process such
query.

Due to the chosen architecture, the performance of all DDL operations being

71

72 CHAPTER 7. CONCLUSION

processed for Vector Text index is worse than for Oracle Text index. That is due
to the context index creation in Vector Text first and vector index building up to
make use of the context index data later then. This obvious disadvantage of Vector
Text performance is counterbalanced with many benefits, eg. the possibility to use
both context and vector indexes on specific data at the same time, the possibility of
comparison of their results and performance of individual queries, the possibility to
keep all different options during the index creation that are used in Oracle Text etc.

One of the main contributions of the Vector Text cartridge is that it kept the user
interface very similar to the Oracle Text. For example, several operators were left
and even extended while the principle of index preferences is also preserved there.
Similar public packages for application developers in Vector Text were implemented
as well.

A lot of original functionality is available in Vector Text too. All the parameters
inexhaustible for index creation from the documents storage options via the filtering
and tokenization to the stoplists usage possibilities were preserved.

I believe that the Vector Text cartridge will be widely used thanks to its features
for both querying and further extending, comparing of results of the different methods
etc.

Bibliography

[1] C. L. Clarke, G. V. Cormack & A. E. Tudhope. Relevance ranking for one to

three term queries. Proceedings of RIAO’97, 388-400, 1997.

[2] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer & R. Harshman.
Indexing by latent semantic analysis. Journal of the American Society for Infor-
mation Science, 41(6), 391-407, 1990.

[3] W. Kraaij. Variations on Language Modeling for Information Retrieval. Print
Partners Ipskamp, Enschede, 2004.

[4] T. Kyte. Effective Oracle by Design. Osborne ORACLE Press Series, 2003.

[5] D. L. Lee, Huei Chuang, K. Seamons. Document ranking and the vector-space

model. Software IEEE, 14(2), 67-75, 1997.

[6] H. Luhn. A statistical approach to mechanized encoding and searching of literary

information. IBM journal, 309-317, 1957.

[7] Ch. D. Manning, P. Raghavan, H. Schutze. An Introduction to Information Re-

trieval, Preliminary Draft. Cambridge University Press, 2007.

[8] M. Maron & J. Kuhns. On relevance, probabilistic indexing and information

retrieval. Journal of the Association for Computing Machinery, 7, 216-244, 1960.

[9] D. R. H. Miller, T. Leek & R. M. Schwartz. A hidden markov model informa-

tion retrieval system. Proceedings of the 22th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’99),
ACM Press, 214-221, 1999.

[10] Oracle Text Reference. Release 9.2, http://download-
uk.oracle.com/docs/cd/B10501 01/text.920/a96518.pdf, 2002.

[11] Oracle9i Data Cartridge Developer’s Guide. Release 2 (9.2), http://
download-uk.oracle.com/docs/cd/B10501 01/appdev.920/a96595.pdf, 2002.

73

74 BIBLIOGRAPHY

[12] J. M. Ponte & W. B. Croft. A language modeling approach to information re-

trieval. Proceedings of the 21th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’98), ACM Press,
275-281, 1998.

[13] G. Salton. Automatic Text Processing - The Transformation, Analysis and

Retrieval of Information by Computer. Addison-Wesley Publishing Company,
Reading(MA), 1989.

[14] G. Salton, E. Fox & H. Wu. Extended boolean information retrieval. Communi-
cations od the ACM, 26(12), 1022-1036, 1983.

[15] G. Salton & C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing & Management, 24(5), 513-523, 1988.

[16] T. Saracevic. Evaluation of Evaluation in Information Retrieval. Proceesings of
the 18th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, 137-146, 1995.

[17] C. van Rijsbergen. A non-classical logic for information retrieval. Computer
Journal, 29, 481-485, 1986.

[18] S. K. M. Wong, W. Ziarko, V. V. Raghavan & P. C. N. Wong. On extending

the vector space model for boolean query processing. Proceesings of the 9th An-
nual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’86), ACM Press, 175-185, 1986.

[19] S. K. M. Wong, W. Ziarko, V. V. Raghavan & P. C. N. Wong. On modeling of

information retrieval concepts in vector space. TODS, 12(2), 299-321, 1987.

Appendix A

Vector Text user documentation

A.1 Installation

Vector Text cartridge was created as the extension to Oracle Text, so it can be
installed only on machines with existing installation of Oracle Text in version 9.2
(9.2.0.1.0 or higher)1. The following three steps have to be done to install Vector Text
cartridge: The following three steps has to be done to install Vector Text cartridge:

1. Create schema for Vector Text - Run script dr0csys from source directory
in SQL*Plus as user with DBA role granted. This script will create schema
VECTXSYS and role VECTXAPP for Vector Text cartridge. Role VECTXAPP has
granted right EXECUTE for all public packages of Vector Text cartridge and it
has also granted role CTXAPP for using public packages from Oracle Text. You
will have to specify three values during run of the script dr0csys: VECTXSYS

user password, tablespace and temporary tablespace.

2. Install the shared library - For a Windows platform, run a script
install lib.bat which will copy the shared library vectxx9.dll to
the %ORACLE HOME%\bin directory. For a Unix platform, run the script
install lib.sh which will copy the shared library vectxx9.so to the
$ORACLE HOME/bin directory.

3. Install the Vector Text database objects - Connect as VECTXSYS user to the
database using SQL*Plus and run dr0install script to install Vector Text
cartridge. You will have to specify ORACLE HOME value as the input param-
eter of the script dr0install.

1Vector Text was not tested with Oracle Text version 10.1 and higher, the important changes in
privileges principles were done there and so the proper functionality of Vector Text is not ensured.

75

76 APPENDIX A. VECTOR TEXT USER DOCUMENTATION

A.2 SQL Statements and Operators

This section describes the SQL statements and Vector Text operators used for creating
and managing Vector Text indexes and performing Vector Text queries.

A.2.1 CREATE INDEX

This subsection describes the CREATE INDEX statement as it pertains to creating a
Vector Text domain index.

Syntax

CREATE INDEX [schema.]index_name ON [schema.]table(column)

INDEXTYPE IS vectxsys.VECTOR [PARAMETERS(paramstring)];

[schema.]index name

Specify the name of the Vector index to create.

[schema.]table(column)

Specify the name of the table and column to index The column you specify must be
one of the following types: CHAR, VARCHAR, VARCHAR2, BLOB, CLOB, BFILE, XMLType
or URIType. Indexes on multiple columns are not supported with the vector index
type. You must specify only one column in the column list.

PARAMETERS(paramstring)

Create vector index with given preferences. All preferences as in Context index
CREATE INDEX statement can be specified and the following preferences are added in
Vector Text:

• SIMILARITY MEASURE – Name of similarity measure which is default for queries
issued on created index.

• TOKEN WEIGHT – Name of token weight which is default for queries issued on
created index.

• USE CONTEXT INDEX – Name of context index on which is vector index based.
If this parameter is set, no other parameters for Context index can be specified
and vector index is based on given existing context index. Otherwise it can be
specified any parameter for Context index, which is being created as a part of
vector index.

A.2. SQL STATEMENTS AND OPERATORS 77

• MIN TOKEN FREQUENCY – Minimal count of occurrences of the token in individual
document to include the token frequency value into the resultant index. This
option is used for decreasing size of index tables by leaving out the extremely
rare data.

Notes

Partitioning is not implemented for Vector Text cartridge!

Examples

The following example creates a vector index called new idx on the text column in
news table. Default preferences are used.

CREATE INDEX new_idx ON news(text) INDEXTYPE IS vectxsys.VECTOR;

The following example creates a vector index called new idx on the text column in
news table. The index is created with a custom stoplist preference called stop (has to
be created using CTX DDL.CREATE PREFERENCE from Oracle Text) and similarity mea-
sure preference called dice measure. Default preferences are used for the unspecified
attributes.

CREATE INDEX new_idx ON news(text) INDEXTYPE IS vectxsys.VECTOR

PARAMETERS(’STOPLIST stop SIMILARITY_MEASURE dice_measure’);

The following example creates a vector index called new idx on the text column in
news table. Created index is based on existing Context index called news ctx ind and
all index preferences are taken out of it. In that case only SIMILARITY MEASURE and
TOKEN WEIGHT preferences can be also specified in parameters list of CREATE INDEX

statement. The data about tokens with at least 5 occurances in a document are saved
into index tables.

CREATE INDEX new_idx ON news(text) INDEXTYPE IS vectxsys.VECTOR

PARAMETERS(’USE_CONTEXT_INDEX news_ctx_ind MIN_TOKEN_FREQUENCY 5’);

A.2.2 CONTAINS

CONTAINS operator returns a relevance score for every row selected. This value can
be obtained by SCORE operator. Returned value depends on used similarity measure
and token weight methods.

Syntax

CONTAINS([schema.]column,query[,query_params VARCHAR2]

[,label NUMBER])

78 APPENDIX A. VECTOR TEXT USER DOCUMENTATION

[schema.]column

Text column to be searched on. This column must have Vector Text index associated
with it.

query

Query specification, use one of the following functions is required:

• TEXT VECTOR – text vector

• INDEXED TEXT – identification of text which is allready indexed by Vector Text
index

• NONINDEXED TEXT – text abstract which is being searched for

For more detailed specification see following subsections of this chapter.

query params

Allows specifying of optional SIMILARITY MEASURE and TOKEN WEIGHT parameters of
the query.

label

The label that identifies the score generated by the CONTAINS operator, optional
usage.

Examples

The following example searches for all titles of documents where text column contains
the words oracle and database and the word oracle is preffered more.

SELECT title

FROM news

WHERE CONTAINS(

text,

TEXT_VECTOR(’oracle:1;database:0.5’)

) > 0;

A.2.3 INDEXED TEXT

INDEXED TEXT operator prepares specified text to be compared to others by CONTAINS

operator. This text has to be saved in column which has Vector Text index associated
with it.

A.2. SQL STATEMENTS AND OPERATORS 79

Syntax

INDEXED_TEXT(table_spec VARCHAR2, key_spec VARCHAR2)

table spec

Column specification where the text to be compared is saved. The specification has
to be in [schema.]table(column) form.

key spec

Row identification where the text to be compared is saved. The specification has to
be in column(value)[,column2(value2)...] form.

Examples

The following example searches for all titles in news table having texts similar to text
being indexed by vector index. The source text for similarity comparison is saved in
text column of history table in current user’s schema and the record containing given
text is specified by 2005 value in year column and 1123 value in text id column. The
resultant titles are returned sorted starting with the most similar texts.

SELECT title

FROM news

WHERE CONTAINS(

text,

INDEXED_TEXT(

’history(text)’,

’year(2005),text_id(1123)’),

1

) > 0.5

ORDER BY SCORE(1) DESC;

A.2.4 NONINDEXED TEXT

NONINDEXED TEXT operator prepares specified text to be compared to others by
CONTAINS operator.

Syntax

NONINDEXED_TEXT(text [,index_name VARCHAR2])

80 APPENDIX A. VECTOR TEXT USER DOCUMENTATION

text

The text to be compared, it has be one of the following types: VARCHAR2, CLOB, BLOB,
BFILE, XMLType, URIType.

index name

Name of the Vector Text index which preferences to use when preparing text (eg.
LEXER preference). Usage is optional, default preferences used when not specified.
The specification of index name has to be in [schema.]index name form.

Note

Oracle Text thesaurus usage is supported inside the text.

Examples

The following example searches for all titles in news table having texts similar to
source text. Assume that this source text for similarity comparison is returned by
GetSourceText in CLOB datatype. The resultant titles are returned sorted starting
with the most similar texts. Default preferences are used for parsing and indexing of
source text.

declare

lclb_text CLOB;

begin

lclc_text := GetSourceText(...);

SELECT title

FROM news

WHERE CONTAINS(

text,

NONINDEXED_TEXT(lclb_text),

1

) > 0.5

ORDER BY SCORE(1) DESC;

end;

The next example searches for all titles in news table having texts similar to source
text which is taken from news history table. The resultant titles are returned sorted
starting with the most similar texts. Preferences for parsing and indexing of source
text are used the same as for history vect ind index in dataminer schema.

SELECT n.title

FROM news n,

A.2. SQL STATEMENTS AND OPERATORS 81

(SELECT NONINDEXED_TEXT(

text,

’dataminer.history_vect_ind’

) source_text

FROM news_history

WHERE history_id = 1233

) s

WHERE CONTAINS(n.text, s.source_text, 1) > 0.5

ORDER BY SCORE(1) DESC;

A.2.5 TEXT VECTOR

TEXT VECTOR operator creates query from specified similarity vector for usage by
CONTAINS operator.

Syntax

TEXT_VECTOR(vector_spec VARCHAR2)

vector spec

Similarity vector specification, its value has to be in format
token:weight[;token2:weight2...].

Note

Oracle Text thesaurus usage is supported in tokens of similarity vector.

Examples

The following example searches for all titles in news table where text column contains
the words oracle and database and the word oracle is preffered more. The resultant
titles are returned sorted starting with the most similar texts.

SELECT title

FROM news

WHERE CONTAINS(

text,

TEXT_VECTOR(’oracle:1;database:0.5’),

1

) > 0.5

ORDER BY SCORE(1) DESC;

82 APPENDIX A. VECTOR TEXT USER DOCUMENTATION

The next example shows usage of Oracle Text thesaurus in query, it searches for all
titles in news table where text column contains the word oracle and any synonym
of the word delete. The resultant titles are returned sorted starting with the most
similar texts.

SELECT title

FROM news

WHERE CONTAINS(

text,

TEXT_VECTOR(’oracle:1;SYN(delete):0.5’),

1

) > 0.5

ORDER BY SCORE(1) DESC;

A.2.6 SCORE

SCORE operator in a SELECT statement returns the score values produced by a
CONTAINS query.

Syntax

SCORE(label NUMBER)

label

A number to identify the score produced by the query, it is used to identify the score
in the CONTAINS clause.

Example

The following example searches for all titles and its score values in news table where
abstract column or text column contains the words oracle and database and the word
oracle is preferred more. The resultant titles are returned sorted by the most similar
abstracts.

SELECT title, SCORE(1), SCORE(2)

FROM news

WHERE CONTAINS(

abstract,

TEXT_VECTOR(’oracle:1;database:0.5’),

1

) > 0.5

OR

CONTAINS(

A.2. SQL STATEMENTS AND OPERATORS 83

text,

TEXT_VECTOR(’oracle:1;database:0.5’),

2

) > 0.1

ORDER BY SCORE(1) DESC, SCORE(2) DESC;

A.2.7 ALTER INDEX

The ALTER INDEX statement is described here as it pertains to managing a Vector
Text domain index.

RENAME Syntax

ALTER INDEX [schema.]index_name RENAME TO new_index_name;

[schema.]index name

Specify the name of the index to rename.

new index name

Specify the new name for [schema].index. The new index name parameter can be
no more than 25 characters.

REBUILD Syntax

ALTER INDEX [schema.]index_name

REBUILD [PARAMETERS(paramstring)];

PARAMETERS(paramstring)

Rebuild with changed parameters, rebuild to optimize or synchronize.

replace(optional preference list)

Rebuilds index with changed given preferences. If the vector index was not created
as based on existing Context index (using USE CONTEXT INDEX parameter in CREATE

INDEX statement) it can be specified any appropriate preference for Context index
ALTER INDEX statement. Following preferences added in Vector Text:

• SIMILARITY MEASURE – Name of similarity measure which is default for queries
on given index.

• TOKEN WEIGHT – Name of token weight which is default for queries on given
index.

84 APPENDIX A. VECTOR TEXT USER DOCUMENTATION

Examples

The following statement renames the index old ind to new ind:

ALTER INDEX old_ind RENAME TO new_ind;

Changing the default similarity measure used for new ind index querying to co-
sine measure shows the following example:

ALTER INDEX new_ind REBUILD

PARAMETERS(’replace similarity_measure cosine_measure’);

New ind index optimization for oracle token can be processed by calling the following
statement:

ALTER INDEX new_ind REBUILD

PARAMETERS(’optimize token oracle’);

A.2.8 DROP INDEX

Use DROP INDEX to drop a specified Vector Text index. If given index was not created
as based on existing Context index (using USE CONTEXT INDEX parameter) it drops
Context index too.

Syntax

DROP INDEX [schema.]index_name;

Example

The following example drops an index named new ind in the current user’s database
schema.

DROP INDEX new_ind;

A.3 Public packages

This chapter contains description of all public packages which support users usage of
Vector Text cartridge.

A.3.1 VECTX ADM

VECTX ADM package is used to administer Vector Text data dictionary.

A.3. PUBLIC PACKAGES 85

SET PARAMETER

This procedure sets system-level parameters for index creation.

Syntax

VECTX_ADM.SET_PARAMETER (

param_name IN VARCHAR2,

param_value IN VARCHAR2

);

param name

Specify the name of parameter to set, which can be one of the following:

• default similarity measure – default similarity measure procedure

• default token weight – default token weight function

• log directory – default directory for log files

Example

The following example sets similarity measure and token weight parameters used in
Vector Text by default. The similarity measure parameter is set to dice measure and
token weight parameter is set to normalized token frequency.

begin

VECTX_ADM.SET_PARAMETER (

’default_similarity_measure’,

’dice_measure’);

VECTX_ADM.SET_PARAMETER (

’default_token_weight’,

’ntf_weight’);

end;

A.3.2 VECTX DDL

VECTX DDL package is used to create and manage the preferences and precomputed
values required for Vector Text.

SYNC INDEX

Use this procedure to synchronize the index. It processes insert, updates and deletes
to the base table.

86 APPENDIX A. VECTOR TEXT USER DOCUMENTATION

Syntax

VECTX_DDL.SYNC_INDEX (

index_name IN VARCHAR2

);

index name

Specify the name of index to synchronize.

Example

The following example performs synchronization of news text ind vector index in
dataminer schema.

begin

VECTX_DDL.SYNC_INDEX (’dataminer.news_text_ind’);

end;

OPTIMIZE INDEX

Use this procedure to optimize the index. You optimize your index after you synchro-
nize it. Optimizing the index removes old data and minimizes index fragmentation.
Optimizing index can improve query response time.

Syntax

VECTX_DDL.OPTIMIZE_INDEX (

index_name IN VARCHAR2,

opt_level IN VARCHAR2,

token IN VARCHAR2 DEFAULT NULL

);

index name

Specify the name of index to optimize.

opt level

Specify optimization of level as a string. You can specify one of the following methods:

• FAST – Compacts fragmented rows, old data are not removed

• FULL – Compacts fragmented rows, old data are removed

• TOKEN – Compacts fragmented rows for specified token, old data are removed

A.3. PUBLIC PACKAGES 87

token

Specify the token index to be optimized.

Examples

The following example performs fast optimization of news text ind vector index in
dataminer schema, which compacts fragmented index rows but doesn’t delete old
data.

begin

VECTX_DDL.OPTIMIZE_INDEX (

’dataminer.news_text_ind’,

’FAST’);

end;

The next example performs optimization of news text ind vector index in dataminer
schema only for oracle token. It compacts fragmented index rows for oracle token
and deletes old data.

begin

VECTX_DDL.OPTIMIZE_INDEX (

’dataminer.news_text_ind’,

’TOKEN’,

’oracle’);

end;

CREATE PREFERENCE

Creates a preference in the Vector Text data dictionary. You specify preferences in
the parameter string of CREATE INDEX, ALTER INDEX or CONTAINS.

Syntax

VECTX_DDL.CREATE_PREFERENCE (

preference_name IN VARCHAR2,

object_name IN VARCHAR2

);

preference name

Specify the name of preference to be created.

object name

Specify the name of preference type.

88 APPENDIX A. VECTOR TEXT USER DOCUMENTATION

Example

The following example creates preference my new measure for user measure object.

begin

VECTX_DDL.CREATE_PREFERENCE (

’my_new_measure’,

’user_measure’);

end;

DROP PREFERENCE

The DROP PEFERENCE procedure deletes the specified preference from the Vector Text
data dictionary. Dropping a preference does not affect indexes that have already been
created using that preference.

Syntax

VECTX_DDL.DROP_PREFERENCE (

preference_name IN VARCHAR2

);

preference name

Specify the name of preference to be dropped.

Examples

The following example drops preference my new measure.

begin

VECTX_DDL.DROP_PREFERENCE (

’my_new_measure’);

end;

SET ATTRIBUTE

This procedure sets a preference attribute. You use this procedure after you have
created a preference with VECTX DDL.CREATE PREFERENCE.

Syntax

VECTX_DDL.SET_ATTRIBUTE (

preference_name IN VARCHAR2,

attribute_name IN VARCHAR2,

A.3. PUBLIC PACKAGES 89

attribute_value IN VARCHAR2

);

preference name

Specify the name of preference.

attribute name

Specify the name of attribute.

attribute value

Specify the attribute value. You can specify boolean values as TRUE or FALSE, T or
F, YES or NO, ON or OFF, or 1 or 0.

Examples

The following example sets values of two attributes of my new measure preference.
The procedure attribute is set to dataminer.measures.my new measure proc value
and the normalize procedure attribute is set to drifun.cosine normalize value. These
attributes means which database procedure and function are used for counting simi-
larity measure using my new measure preference.

begin

VECTX_DDL.SET_ATTRIBUTE (

’my_new_measure’,

’procedure’,

’dataminer.measures.my_new_measure_proc’);

VECTX_DDL.SET_ATTRIBUTE (

’my_new_measure’,

’normalize_procedure’,

’drifun.cosine_normalize’);

end;

UNSET ATTRIBUTE

Removes a set attribute from a preference.

Syntax

VECTX_DDL.UNSET_ATTRIBUTE (

preference_name IN VARCHAR2,

attribute_name IN VARCHAR2

);

90 APPENDIX A. VECTOR TEXT USER DOCUMENTATION

preference name

Specify the name of preference.

attribute name

Specify the name of attribute.

Example

The following example removes value of normalize procedure attribute from
my new measure preference.

begin

VECTX_DDL.UNSET_ATTRIBUTE (

’my_new_measure’,

’normalize_procedure’);

end;

SET PRECOMPUTED VALUE

This procedure saves precomputed value for given index and is designed for usage in
user own similarity measure or token weight functions.

Syntax

VECTX_DDL.SET_PRECOMPUTED_VALUE (

index_info IN vectxsys.VectorIndexInfo,

name IN VARCHAR2,

precomputed_value IN [[VARCHAR2],[BOOLEAN],[NUMBER]]

query_id IN PLS_INTEGER DEFAULT NULL

);

index info

Object containing all information about given index.

name

Name of precomputed value.

precomputed value

Value to be saved.

A.3. PUBLIC PACKAGES 91

query id

Id of the query in case precomputed value should be saved only for given query
duration.

Example

declare

lint_docweight NUMBER;

ind_info vectxsys.VectorIndexInfo;

begin

VECTX_DDL.SET_PRECOMPUTED_VALUE (

ind_info,

’doc_weight’,

lint_docweight);

end;

UNSET PRECOMPUTED VALUE

This procedure deletes precomputed value for given index and is designed for usage
in user own similarity measure or token weight functions.

Syntax

VECTX_DDL.UNSET_PRECOMPUTED_VALUE (

index_info IN vectxsys.VectorIndexInfo,

name IN VARCHAR2,

query_id IN PLS_INTEGER DEFAULT NULL

);

index info

Object containing all information about given index.

name

Name of precomputed value.

query id

Id of the query in case precomputed value should be saved only for given query
duration.

92 APPENDIX A. VECTOR TEXT USER DOCUMENTATION

Example

declare

ind_info vectxsys.VectorIndexInfo;

begin

VECTX_DDL.UNSET_PRECOMPUTED_VALUE (

ind_info,

’doc_weight’);

end;

GET PRECOMPUTED VALUE

This procedure returns saved precomputed value for given index and is designed for
usage in user own similarity measure or token weight functions.

Syntax

VECTX_DDL.GET_PRECOMPUTED_VALUE (

index_info IN vectxsys.VectorIndexInfo,

name IN VARCHAR2,

precomputed_value OUT [[VARCHAR2],[BOOLEAN],[NUMBER]]

query_id IN PLS_INTEGER DEFAULT NULL

);

index info

Object containing all information about given index.

name

Name of precomputed value.

precomputed value

Resultant saved precomputed value.

query id

Id of the query in case precomputed value should be saved only for given query
duration.

A.3. PUBLIC PACKAGES 93

Example

declare

ind_info vectxsys.VectorIndexInfo;

resultant_weight NUMBER;

begin

VECTX_DDL.GET_PRECOMPUTED_VALUE (

ind_info,

’doc_weight’,

resultant_weight);

end;

A.3.3 VECTX OUTPUT

START LOG

Begin logging index and document service requests.

Syntax

VECTX_OUTPUT.START_LOG (

logfile IN VARCHAR2

);

logfile

Specify the name of the log file. The log is stored in the directory specified by the
system parameter LOG DIRECTORY.

Example

The following example starts logging of Vector Text cartridge usage in current ses-
sion into userlog01.log file (stored in directory specified by the system parameter
LOG DIRECTORY).

begin

VECTX_OUTPUT.START_LOG (’userlog01.log’);

end;

END LOG

Halt logging index and document service requests.

Syntax

VECTX_OUTPUT.END_LOG;

94 APPENDIX A. VECTOR TEXT USER DOCUMENTATION

Example

The following example ends logging of Vector Text cartridge usage in current session.

begin

VECTX_OUTPUT.END_LOG;

end;

LOGFILENAME

Returns the filename for the current log. This procedure looks for the log file in the
directory specified by the LOG DIRECTORY system parameter.

Syntax

VECTX_OUTPUT.LOGFILENAME RETURN VARCHAR2;

Returns

Log file name.

Example

The following example returns the filename for current log. If logging is not started
for current session then NULL is returned.

SELECT VECTX_OUTPUT.LOGFILENAME FROM dual;

A.3.4 VECTX OUTPUT

START LOG

Begin logging index and document service requests.

Syntax

VECTX_OUTPUT.START_LOG (

logfile IN VARCHAR2

);

logfile

Specify the name of the log file. The log is stored in the directory specified by the
system parameter LOG DIRECTORY.

A.3. PUBLIC PACKAGES 95

Example

The following example starts logging of Vector Text cartridge usage in current ses-
sion into userlog01.log file (stored in directory specified by the system parameter
LOG DIRECTORY).

begin

VECTX_OUTPUT.START_LOG (’userlog01.log’);

end;

END LOG

Halt logging index and document service requests.

Syntax

VECTX_OUTPUT.END_LOG;

Example

The following example ends logging of Vector Text cartridge usage in current session.

begin

VECTX_OUTPUT.END_LOG;

end;

LOGFILENAME

Returns the filename for the current log. This procedure looks for the log file in the
directory specified by the LOG DIRECTORY system parameter.

Syntax

VECTX_OUTPUT.LOGFILENAME RETURN VARCHAR2;

Returns

Log file name.

Example

The following example returns the filename for current log. If logging is not started
for current session then NULL is returned.

SELECT VECTX_OUTPUT.LOGFILENAME FROM dual;

96 APPENDIX A. VECTOR TEXT USER DOCUMENTATION

A.3.5 VECTX REPORT

DESCRIBE INDEX

Creates a report describing the index. This includes the settings of the index meta-
data, the indexing objects used and the settings of the attributes of the objects.

Syntax

procedure VECTX_REPORT.DESCRIBE_INDEX(

index_name IN VARCHAR2,

report IN OUT NOCOPY CLOB

);

function VECTX_REPORT.DESCRIBE_INDEX(

index_name IN VARCHAR2

) return CLOB;

index name

The name of the index to be described.

report

The CLOB locator to which the report is written. It will be truncated before the
report is generated.

Example

The following example fills into rep CLOB the index report for new idx index.

DECLARE

rep CLOB;

BEGIN

rep := VECTX_REPORT.DESCRIBE_INDEX(

’new_idx’

);

END;

CREATE INDEX SCRIPT

Creates a SQL*Plus script which will create a text index that duplicates the named
text index. The created script will include creation of preferences identical to those
used in the named text index, only the names of the preferences will be different.

A.3. PUBLIC PACKAGES 97

Syntax

procedure CTX_REPORT.CREATE_INDEX_SCRIPT(

index_name in varchar2,

report in out nocopy clob,

prefname_prefix in varchar2 default null

);

function CTX_REPORT.CREATE_INDEX_SCRIPT(

index_name in varchar2,

prefname_prefix in varchar2 default null

) return clob;

index name

The name of the index for which the script is created.

report

The CLOB locator to which the script is written. It will be truncated before the
script is generated.

prefname prefix

Specify optional prefix to use for preference names. If not specified the index name
is used.

Example

The following example fills into rep CLOB the index create script for new idx index.
The preference names are created with the prefix pref.

DECLARE

rep CLOB;

BEGIN

rep := VECTX_REPORT.CREATE_INDEX_SCRIPT(

’new_idx’,

’pref’

);

END;

Appendix B

Queries used in texts

The list of all queries used for tests are presented here. The results of the tests can
be found in the Section 6.3. The individual table contains three columns - the first
one contains the type of query (CTXT stands for query on context index, VECT
stands for pre-defined query on vector index and VOPT stands for optimized query
on vector index), the second one specifies the used similarity measure or token weight
method and the last one contains the query specification being used.

99

10
0

A
P

P
E

N
D

IX
B

.
Q

U
E

R
IE

S
U

S
E

D
IN

T
E

X
T

S

Type Parameter Query specification
CTXT - ’(COMPUTER ARCHITECTURES) or (ASSOCIATIVE PROCESSORS) or (AS-

SOCIATIVE STORES) or (ASSOCIATIVE or MEMORY)’
VECT ALL METHODS ’COMPUTER ARCHITECTURES, ASSOCIATIVE PROCESSORS, ASSOCIA-

TIVE STORES, ASSOCIATIVE MEMORY’
VOPT TF WEIGHT ’COMPUTER:0; ARCHITECTURE:2; ASSOCIATIVE:3; PROCESSOR:0;

STORE:1; MEMORY:0’
VOPT LOG TF WEIGHT ’COMPUTER:0; ARCHITECTURE:2; ASSOCIATIVE:2; PROCESSOR:0;

STORE:1; MEMORY:0’
VOPT NTF WEIGHT ’COMPUTER:0; ARCHITECTURE:2; ASSOCIATIVE:2; PROCESSOR:0;

STORE:1; MEMORY:0’
VOPT TF ITF WEIGHT ’COMPUTER:0; ARCHITECTURE:2; ASSOCIATIVE:3; PROCESSOR:0;

STORE:1; MEMORY:0’
VOPT NTF ITF WEIGHT ’COMPUTER:0; ARCHITECTURE:2; ASSOCIATIVE:2; PROCESSOR:0;

STORE:1; MEMORY:0’
VOPT NORM NTF ITF WEIGHT ’COMPUTER:0; ARCHITECTURE:1; ASSOCIATIVE:1; PROCESSOR:0;

STORE:1; MEMORY:0’
VOPT COSINE ’COMPUTER:0; ARCHITECTURE:2; ASSOCIATIVE:3; PROCESSOR:0;

STORE:1; MEMORY:0’
VOPT JACCARD ’COMPUTER:0; ARCHITECTURE:2; ASSOCIATIVE:3; PROCESSOR:0;

STORE:1; MEMORY:0’
VOPT DICE ’COMPUTER:0; ARCHITECTURE:2; ASSOCIATIVE:3; PROCESSOR:0;

STORE:1; MEMORY:0’
VOPT OVERLAP ’COMPUTER:0; ARCHITECTURE:2; ASSOCIATIVE:13; PROCESSOR:0;

STORE:0; MEMORY:0’
VOPT PSEUDOCOSINE ’COMPUTER:0; ARCHITECTURE:2; ASSOCIATIVE:2; PROCESSOR:0;

STORE:1; MEMORY:0’
VOPT ASYMMETRIC ’COMPUTER:0; ARCHITECTURE:1; ASSOCIATIVE:3; PROCESSOR:0;

STORE:1; MEMORY:0’
VOPT APPROXIMATED COSINE ’COMPUTER:0; ARCHITECTURE:1; ASSOCIATIVE:3; PROCESSOR:0;

STORE:1; MEMORY:0’

T
ab

le
B

.1
:

Q
u
er

y
1

-
se

tt
in

gs
of

C
O

N
T
A

IN
S

op
er

at
or

s
fo

r
al

l
te

st
q
u
er

ie
s

10
1

Type Method Query specification
CONTEXT - ’CHEMISTRY or CHEMICAL or PATENTS’
VECTOR ALL METHODS ’CHEMISTRY, CHEMICAL, PATENTS’
OPTIM V TF WEIGHT ’CHEMISTRY:0; CHEMICAL:1; PATENTS:4’
OPTIM V LOG TF WEIGHT ’CHEMISTRY:0; CHEMICAL:1; PATENTS:4’
OPTIM V NTF WEIGHT ’CHEMISTRY:0; CHEMICAL:2; PATENTS:2.5’
OPTIM V TF ITF WEIGHT ’CHEMISTRY:0; CHEMICAL:1; PATENTS:5’
OPTIM V NTF ITF WEIGHT ’CHEMISTRY:0; CHEMICAL:2; PATENTS:2.5’
OPTIM V NORM NTF ITF WEIGHT ’CHEMISTRY:0; CHEMICAL:3.1; PATENTS:5’
OPTIM V COSINE ’CHEMISTRY:0; CHEMICAL:2; PATENTS:5’
OPTIM V JACCARD ’CHEMISTRY:0; CHEMICAL:1; PATENTS:5’
OPTIM V DICE ’CHEMISTRY:0; CHEMICAL:1; PATENTS:5’
OPTIM V PSEUDOCOSINE ’CHEMISTRY:0; CHEMICAL:2; PATENTS:3’
OPTIM V ASYMMETRIC ’CHEMISTRY:0; CHEMICAL:1; PATENTS:3’
OPTIM V APPROXIMATED COSINE ’CHEMISTRY:0; CHEMICAL:1; PATENTS:10’

T
ab

le
B

.2
:

Q
u
er

y
3

-
se

tt
in

gs
of

C
O

N
T
A

IN
S

op
er

at
or

s
fo

r
al

l
te

st
q
u
er

ie
s

10
2

A
P

P
E

N
D

IX
B

.
Q

U
E

R
IE

S
U

S
E

D
IN

T
E

X
T

S

Type Method Query specification
VECTOR ALL METHODS ’LIBRARY OUTREACH, BOOK DEPOSIT COLLECTIONS, ETHNIC MINORI-

TIES, CHINESE, RACIAL GROUPS, ETHNIC GROUPS, LIBRARY SERVICES
FOR MULTI-CULTURAL SOCIETY’

OPTIM V TF WEIGHT ’LIBRARY:2; OUTREACH:0; BOOKS:1; DEPOSIT:0; COLLECTIONS:1; ETH-
NIC:5; MINORITIES:4; CHINESE:4; RACIAL:0; GROUPS:1; SERVICES:2;
MULTI-CULTURAL:0; SOCIETY:0’

OPTIM V LOG TF WEIGHT ’LIBRARY:2; OUTREACH:0; BOOKS:1; DEPOSIT:0; COLLECTIONS:1; ETH-
NIC:5; MINORITIES:4; CHINESE:4; RACIAL:0; GROUPS:1; SERVICES:2;
MULTI-CULTURAL:0; SOCIETY:0’

OPTIM V NTF WEIGHT ’LIBRARY:2; OUTREACH:0; BOOKS:1; DEPOSIT:0; COLLECTIONS:0; ETH-
NIC:6; MINORITIES:6; CHINESE:4; RACIAL:0; GROUPS:2; SERVICES:3;
MULTI-CULTURAL:0; SOCIETY:0’

OPTIM V TF ITF WEIGHT ’LIBRARY:2; OUTREACH:0; BOOKS:1; DEPOSIT:0; COLLECTIONS:1; ETH-
NIC:6; MINORITIES:6; CHINESE:4; RACIAL:0; GROUPS:1; SERVICES:2.5;
MULTI-CULTURAL:0; SOCIETY:0’

OPTIM V NTF ITF WEIGHT ’LIBRARY:2; OUTREACH:0; BOOKS:1; DEPOSIT:0; COLLECTIONS:0; ETH-
NIC:6; MINORITIES:6; CHINESE:4; RACIAL:0; GROUPS:2; SERVICES:3;
MULTI-CULTURAL:0; SOCIETY:0’

OPTIM V NORM NTF ITF WEIGHT ’LIBRARY:3; OUTREACH:0; BOOKS:1; DEPOSIT:0; COLLECTIONS:0; ETH-
NIC:6; MINORITIES:6; CHINESE:4; RACIAL:0; GROUPS:2; SERVICES:4;
MULTI-CULTURAL:0; SOCIETY:0’

T
ab

le
B

.3
:

Q
u
er

y
6

-
se

tt
in

gs
of

C
O

N
T
A

IN
S

op
er

at
or

s
fo

r
th

e
te

st
q
u
er

ie
s

u
si

n
g

th
e

d
iff

er
en

t
to

ke
n

w
ei

gh
t

m
et

h
o
d
s

10
3

Type Method Query specification
CONTEXT - ’(LIBRARY OUTREACH) or (BOOK DEPOSIT COLLECTIONS) or (ETHNIC

MINORITIES) or (CHINESE) or (RACIAL GROUPS) or (ETHNIC GROUPS) or
(LIBRARY SERVICES FOR MULTI-CULTURAL SOCIETY)’

OPTIM V COSINE ’LIBRARY:2; OUTREACH:0; BOOKS:1; DEPOSIT:0; COLLECTIONS:0; ETH-
NIC:6; MINORITIES:6; CHINESE:6; RACIAL:0; GROUPS:1; SERVICES:2;
MULTI-CULTURAL:0; SOCIETY:0’

OPTIM V JACCARD ’LIBRARY:2.5; OUTREACH:0; BOOKS:1; DEPOSIT:0; COLLECTIONS:0; ETH-
NIC:6; MINORITIES:6; CHINESE:6; RACIAL:0; GROUPS:1; SERVICES:3.5;
MULTI-CULTURAL:0; SOCIETY:0’

OPTIM V DICE ’LIBRARY:2.5; OUTREACH:0; BOOKS:1; DEPOSIT:0; COLLECTIONS:0; ETH-
NIC:6; MINORITIES:6; CHINESE:6; RACIAL:0; GROUPS:1; SERVICES:3.5;
MULTI-CULTURAL:0; SOCIETY:0’

OPTIM V PSEUDOCOSINE ’LIBRARY:2.5; OUTREACH:0; BOOKS:1; DEPOSIT:0; COLLECTIONS:0; ETH-
NIC:6; MINORITIES:6; CHINESE:6; RACIAL:0; GROUPS:1; SERVICES:3.5;
MULTI-CULTURAL:0; SOCIETY:0’

OPTIM V ASYMMETRIC ’LIBRARY:2.5; OUTREACH:0; BOOKS:1; DEPOSIT:0; COLLECTIONS:0; ETH-
NIC:6; MINORITIES:6; CHINESE:6; RACIAL:0; GROUPS:1; SERVICES:3.5;
MULTI-CULTURAL:0; SOCIETY:0’

OPTIM V APPROXIMATED COSINE ’LIBRARY:2.5; OUTREACH:0; BOOKS:1; DEPOSIT:0; COLLECTIONS:0; ETH-
NIC:6; MINORITIES:6; CHINESE:6; RACIAL:0; GROUPS:1; SERVICES:3.5;
MULTI-CULTURAL:0; SOCIETY:0’

T
ab

le
B

.4
:

Q
u
er

y
6

-
se

tt
in

gs
of

C
O

N
T
A

IN
S

op
er

at
or

s
fo

r
th

e
te

st
q
u
er

ie
s

u
si

n
g

th
e

d
iff

er
en

t
si

m
il
ar

it
y

m
ea

su
re

m
et

h
o
d
s

10
4

A
P

P
E

N
D

IX
B

.
Q

U
E

R
IE

S
U

S
E

D
IN

T
E

X
T

S

Type Method Query specification
CONTEXT - ’SDI or (SELECTIVE DISSEMINATION OF INFORMATION) or (CURRENT

AWARENESS BULLETINS) or (INFORMATION BULLETINS)’
VECTOR ALL METHODS ’SDI, SELECTIVE DISSEMINATION OF INFORMATION, CURRENT AWARE-

NESS BULLETINS, INFORMATION BULLETINS’
OPTIM V TF WEIGHT ’SDI:10; SELECTIVE:2; DISSEMINATION:1; INFORMATION:1; CURRENT:1.2;

AWARENESS:3; BULLETINS:3.5’
OPTIM V LOG TF WEIGHT ’SDI:3; SELECTIVE:1; DISSEMINATION:1; INFORMATION:2; CURRENT:1;

AWARENESS:1; BULLETINS:2’
OPTIM V NTF WEIGHT ’SDI:10; SELECTIVE:2; DISSEMINATION:1; INFORMATION:1.2; CUR-

RENT:1.2; AWARENESS:4.5; BULLETINS:4.5’
OPTIM V TF ITF WEIGHT ’SDI:10; SELECTIVE:2; DISSEMINATION:1; INFORMATION:1; CURRENT:1.2;

AWARENESS:3; BULLETINS:3.5’
OPTIM V NTF ITF WEIGHT ’SDI:10; SELECTIVE:2; DISSEMINATION:1; INFORMATION:1.2; CUR-

RENT:1.2; AWARENESS:4.5; BULLETINS:4.5’
OPTIM V NORM NTF ITF WEIGHT ’SDI:12; SELECTIVE:2; DISSEMINATION:1; INFORMATION:1.2; CUR-

RENT:1.2; AWARENESS:4.5; BULLETINS:4.5’
OPTIM V COSINE ’SDI:10; SELECTIVE:2; DISSEMINATION:1; INFORMATION:1; CURRENT:1.3;

AWARENESS:3.5; BULLETINS:3.5’
OPTIM V JACCARD ’SDI:12; SELECTIVE:2; DISSEMINATION:1; INFORMATION:1; CURRENT:1.3;

AWARENESS:3.5; BULLETINS:3.5’
OPTIM V DICE ’SDI:12; SELECTIVE:2; DISSEMINATION:1; INFORMATION:1; CURRENT:1.3;

AWARENESS:3.5; BULLETINS:3.5’
OPTIM V PSEUDOCOSINE ’SDI:12; SELECTIVE:2; DISSEMINATION:1; INFORMATION:1; CURRENT:1.3;

AWARENESS:3.5; BULLETINS:3.5’
OPTIM V ASYMMETRIC ’SDI:12; SELECTIVE:2; DISSEMINATION:1; INFORMATION:1; CURRENT:1.3;

AWARENESS:3.5; BULLETINS:3.5’
OPTIM V APPROXIMATED COSINE ’SDI:10; SELECTIVE:2; DISSEMINATION:1; INFORMATION:1.2;CURRENT:1;

AWARENESS:3.5; BULLETINS:3.5’

T
ab

le
B

.5
:

Q
u
er

y
10

-
se

tt
in

gs
of

C
O

N
T
A

IN
S

op
er

at
or

s
fo

r
al

l
te

st
q
u
er

ie
s

10
5

Type Method Query specification
CONTEXT - ’(CHEMICAL STRUCTURES) or (COMPUTERIZED DATABASES) or CHEM-

ISTRY or CHEMICAL or SUBSTRUCTURE’
VECTOR ALL METHODS ’CHEMICAL STRUCTURES, COMPUTERIZED DATABASES, CHEMISTRY,

CHEMICAL, SUBSTRUCTURE’
OPTIM V TF WEIGHT ’CHEMICAL:3; STRUCTURES:4; COMPUTERIZED:0; DATABASES:0; CHEM-

ISTRY:1; SUBSTRUCTURE:10’
OPTIM V LOG TF WEIGHT ’CHEMICAL:3; STRUCTURES:4; COMPUTERIZED:0; DATABASES:0; CHEM-

ISTRY:1; SUBSTRUCTURE:10’
OPTIM V NTF WEIGHT ’CHEMICAL:3; STRUCTURES:4; COMPUTERIZED:0; DATABASES:0; CHEM-

ISTRY:1; SUBSTRUCTURE:10’
OPTIM V TF ITF WEIGHT ’CHEMICAL:3; STRUCTURES:4; COMPUTERIZED:0; DATABASES:0; CHEM-

ISTRY:1; SUBSTRUCTURE:10’
OPTIM V NTF ITF WEIGHT ’CHEMICAL:3; STRUCTURES:4; COMPUTERIZED:0; DATABASES:0; CHEM-

ISTRY:1; SUBSTRUCTURE:10’
OPTIM V NORM NTF ITF WEIGHT ’CHEMICAL:3; STRUCTURES:4; COMPUTERIZED:0; DATABASES:0; CHEM-

ISTRY:1; SUBSTRUCTURE:10’
OPTIM V COSINE ’CHEMICAL:3; STRUCTURES:4; COMPUTERIZED:0; DATABASES:0; CHEM-

ISTRY:1; SUBSTRUCTURE:10’
OPTIM V JACCARD ’CHEMICAL:3; STRUCTURES:4; COMPUTERIZED:0; DATABASES:0; CHEM-

ISTRY:1; SUBSTRUCTURE:10’
OPTIM V DICE ’CHEMICAL:3; STRUCTURES:4; COMPUTERIZED:0; DATABASES:0; CHEM-

ISTRY:1; SUBSTRUCTURE:10’
OPTIM V PSEUDOCOSINE ’CHEMICAL:3; STRUCTURES:4; COMPUTERIZED:0; DATABASES:0; CHEM-

ISTRY:1; SUBSTRUCTURE:10’
OPTIM V ASYMMETRIC ’CHEMICAL:3; STRUCTURES:4; COMPUTERIZED:0; DATABASES:0; CHEM-

ISTRY:1; SUBSTRUCTURE:10’
OPTIM V APPROXIMATED COSINE ’CHEMICAL:4; STRUCTURES:5; COMPUTERIZED:0; DATABASES:0; CHEM-

ISTRY:1; SUBSTRUCTURE:15’

T
ab

le
B

.6
:

Q
u
er

y
15

-
se

tt
in

gs
of

C
O

N
T
A

IN
S

op
er

at
or

s
fo

r
al

l
te

st
q
u
er

ie
s

Enclosed CD

The enclosed CD contains the following data:

doc/ programming documentation in the HTML format generated
by RoboDoc (http://sourceforge.net/projects/robodoc) from
the sources of the Vector Text cartridge

test/ LISA collection with pre-defined queries and lists of relevant
documents

thesis/ LATEX sources of this thesis including used pictures
thesis.ps this thesis in PostScript format
thesis.pdf this thesis in PDF format
VectorText/ installation scripts and sources of the Vector Text cartridge

107

