
Univerzita Karlova v Praze

Matematicko-fyzikálnı́ fakulta

Diplomová práce

Jakub Žemlička

Recognition of 3D Objects with Uniform
Surface Reflectance

Katedra softwarového inženýrstvı́

Vedoucı́ diplomové práce: ing. Martin Urban, Phd., Katedra
kybernetiky, FEL ČVUT

Studijnı́ program: Informatika, Softwarové systémy - Počı́tačová
grafika

ii

PODĚKOVÁNÍ

Děkuji Ing. Martinovi Urbanovi, Phd. za vedenı́ této diplomové práce. Dále

nesmı́m zapomenout na Doc. Dr. Ing. Jiřı́ho Matase a Ing. Michala Perďocha

za jejich cenné připomı́nky a poznatky. A zvláštnı́ dı́k firmám Eyedea Recognition,

s.r.o. a ZNOVU, s.r.o. za poskytnutı́ testovacı́ch dat a oporu ve studiu.

Prohlašuji, že jsem svou diplomovou práci napsal(a) samostatně a výhradně

s použitı́m citovaných pramenů. Souhlası́m se zapůjčovánı́m práce.

V Praze dne 10. srpna 2007 Jakub Žemlička

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Overview of the Proposed Approach 5

1.3 Thesis Outline . 7

1.4 State-of-the-art of the Local Features Retrieval 8

2 Polygon Detection 10

2.1 Problem Formulation and Related Work 11

2.1.1 Methods based on Hough Transform 11

2.1.2 Methods based on perceptual grouping 13

2.1.3 Comparison of our approach with others 16

2.2 Line Primitives Extraction . 18

2.2.1 The Fit-Split algorithm . 20

2.2.2 Discussion . 21

2.3 Finding Junctions . 27

2.3.1 Tolerance Areas . 27

2.3.2 The algorithm . 31

2.3.3 Relation graph construction 34

2.3.4 Relation graph optimization 36

2.4 Searching a Graph for Specific Cycles 40

2.4.1 The algorithm . 42

iii

iv

3 Experiments 44

3.1 The License Plate Detection . 45

3.1.1 LP detector’s brief description 46

3.1.2 Experiment results . 47

3.2 Feature Repeatability . 50

4 Concluding Remarks 52

A Content of the CD-ROM 54

A.1 Directory structure . 55

A.2 Demo application usage . 56

List of Algorithms

1 The Fit-Split algorithm . 26

2 Non-max suppression algorithm 33

3 Collinear grouping . 39

v

List of Figures

1.1 uniform vs. non-uniform object . 3

1.2 example of detected features . 5

2.1 gaps in a group of lines . 14

2.2 junctions example . 15

2.3 line segment support . 18

2.4 line inaccuracy near corners . 19

2.5 Fit-Split algorithm stages . 22

2.6 edges and lines . 25

2.7 line tolerance area . 28

2.8 junction types . 29

2.9 line crossings . 30

2.10 multiple junctions at parallels . 32

2.11 relation graph construction . 35

2.12 vertex merging . 38

2.13 polygons and junctions . 41

3.1 detected license plates . 45

3.2 LP detector parameters . 47

3.3 LP experiment results . 48

3.4 detection time histograms . 49

3.5 feature correspondences . 51

vi

vii

Anotace

Název práce: Recognition of 3D Objects with Uniform Surface Reflectance

Autor: Jakub Žemlička

Katedra (ústav): Katedra softwarového inženýrstvı́

Vedoucı́ diplomové práce: Ing. Martin Urban, Phd., Katedra kybernetiky, FEL

ČVUT

e-mail vedoucı́ho: urbanm@cmp.felk.cvut.cz

Abstrakt: Jako alternativa k MSERům a Harrisovským bodům byla vyvinuta

metoda pro detekci polygonálnı́ch struktur v obraze, která je založena na analýze

hranových pixelů. Původnı́ motivacı́ bylo rozpoznávánı́ objektů s uniformnı́m

povrchem. Detekované polygony lze ovšem také použı́t jako doplňujı́cı́ přı́znaky

pro rozpoznávánı́ neuniformnı́ch objektů. Navrhovaná metoda byla testována na

reálné aplikaci týkajı́cı́ se pohledově invariantnı́ detekce SPZ.

Hlavnı́m přı́nosem našeho postupu je jeho schopnost detekce polygonů bez ohledu

na jejich velikost, počet vrcholů nebo orientaci. Polynomiálnı́ asymptotická

složitost pro nı́zké stupně hledaných polygonů umožňuje našemu algoritmu jeho

nasazenı́ v aplikacı́ch pracujı́cı́ch v reálném čase. Navı́c jej lze jednoduše modi-

fikovat pro hledánı́ vı́ce typů polygonů najednou.

Klı́čová slova: zpracovánı́ obrazu, zájmové oblasti, detekce SPZ

viii

Abstract

Title: Recognition of 3D Objects with Uniform Surface Reflectance

Author: Jakub Žemlička

Department: Department of Software Engineering

Supervisor: Ing. Martin Urban, Phd., Department of Cybernetics, FEE CTU

Supervisor’s e-mail address: urbanm@cmp.felk.cvut.cz

Abstract: A new approach based on the edge examination has been developed for

the detection of polygonal structures as an alternative to MSERs and Harris points.

The recognition of objects with a uniform surface was the initial motivation. The

detected polygonal structures can be used as supplementary features for the non-

uniform object recognition as well. Finally, the method has been tested on the real

application of the viewpoint invariant car license plate detection.

The main contribution of our approach is the ability to detect polygons regardless

to their size, number of vertices and orientation. The polynomial time complexity

for low polygon degrees allows our method the real-time performance. Moreover,

the searching algorithm can be modified to find more types of polygons at a time

very easily.

Keywords: image processing, features, regions of interest, license plate detection

Chapter 1

Introduction

1

2

1.1 Motivation

The task of the 3D object recognition in a scene captured from an arbitrary view-

point is a common fundamental problem in the computer vision. Many applications

of autonomous recognition systems have found their way into commercial products

during last three decades since the computers were capable to process large data

sets such as images. With arising demands on vision systems the complexity of a

current problem may increase rapidly. Consequently there is no universal method

telling how should computer vision problems be solved. Instead, there exists an

abundance of methods for solving various well-defined tasks, where the methods

are often very specific and seldom can be generalized over a wide range of applica-

tions. Many of them are still in the state of basic research.

Recently, a considerable success in solving this task has been addressed by ap-

proaches based on matching of local regions. Their descriptors should be invariant

to geometric changes which can be modeled by affine transformations under the

assumption of local planarity. Thus, a significant viewpoint invariance is achieved

even for objects with complicated shapes contrary to global object descriptors con-

sidering only their whole appearance. As a result, these approaches are more robust

to partial occlusion as well as to cluttered background since it is not required that

all local features match.

The first important issue each recognition process should address is an extrac-

tion of anchor key points or regions on which local appearance descriptors can be

computed. These points and regions should be repeatably detected and localized in

images taken over the range of viewpoint and illuminant changes as well as assumed

degradation conditions. There exist several methods based on the matching of re-

peatably distinguished areas which represent the state-of-the-art [32, 31, 27, 30] in

the visual recognition. However, the restricted class of objects these methods are

applicable to seems to be a main limitation to them - they fail for objects with a

uniform surface reflectance. The reason is that they focus on color or intensity clut-

tered areas because there is a better opportunity to do various independent measure-

3

ments. Uniform objects are characterized by their shape in the first case whereas

their textures provide only supplementary attributes, such as a color, a material or

an illumination reflectance. For example, windows on buildings, on cars and other

shiny items represent typical objects which can be determined only by their bound-

aries as their faces reflect the surrounding environment. Objects like chairs, ladders

or streetlights form another special class of objects [6] which are not also detectable

via common distinguished regions as most of their face is transparent to the back-

ground. That’s why the texture examination of uniform objects is not suitable for a

unique and successful object recognition.

Fig. 1.1: A difference between the uniform (left) and the non-uniform (right) object.

The initial goal of this work was to investigate a method dealing with uniform

objects while trying to cover this class as much as possible. Edges, corners and

boundary pixels carry the most relevant information indicating a presence of these

objects in the input image. However, their general recognition based on the contour

classification presented itself as a too extensive task to solve within the scope of this

thesis and which, in addition, has been also widely described among the literature.

4

Instead, we attended to the detection of well-defined closed polygonal regions

as distinctive features occurring in the single gray-scaled image. It has figured out

that looking for polygonal structures was well suitable even for non-uniform objects

too. The car license plate localization seemed to be a very interesting real applica-

tion for our method because license plate occurrences in the image are also condi-

tioned by the presence of their boundary edges. In addition, a fact that a big amount

of multi-view traffic images was at our disposal conduced to the decision that the

proposed polygon detector was primarily tested on this task. Detected quadrangle

hypotheses were compared to manually marked ground-truth license plate positions

within the over 3.500 testing images taken from different viewpoints.

Even though our polygon detector was tuned just for the task of the license

plate localization, it was executed on building facades to verify a feature repeatabil-

ity under the given viewing homography. Examples of successfully detected poly-

gons will be shown at the end of this work. Next phases of the object recognition,

such as the feature description, feature matching and the object’s model verifica-

tion, have not been investigated in this work so the possible reader concerned in this

problem is referred to [34].

5

Fig. 1.2: An example of detected polygonal features (yellow) with junctions (red).

1.2 Overview of the Proposed Approach

Given a single gray scaled image, our method consists of following steps:

1. Edge detection using the Canny’s operator.

2. Extraction of line primitives representing straightest patterns within the binary

edge image.

3. Finding junctions interpreting probable relationships (intersections) between

detected line segments based on their mutual proximity.

4. Building a relation graph G = (V,E) where line segments stand for vertices

and two of them are connected by an edge if and only if they have a common

junction point

6

5. Relation graph optimization by grouping of collinear segments tending to ap-

proximate the same straight edge.

6. Searching G for well-defined closed cycles corresponding to polygons we wish

to detect.

We also had to challenge several difficulties which occurred during the solving

this task:

Edge detector’s unreliability accompanied with an object contour disruption. Or-

dinary edge detectors are not robust enough to identify the same edgel under

different homography and illuminant changes. Hence found edges as well as

detected line segments are corrupted due to variety of biases. We faced this

problem by computing junction points which put detected line segments into

their mutual relations and thus help us to bridge occurred gaps. All is per-

formed without any a priori information about their mutual relations.

Efficient cycle evaluation was another problem we had to deal with since the

searching of unoriented graphs for all cycles is time consuming. This has been

solved by an establishing of special polygon restrictions applied during the

graph search which has prevented the algorithm to perform useless computa-

tions.

Our polygon detector has been supposed to be robust to geometry as well as to

intensity changes providing that relevant edges have been still found. Thus, we do

not expect any robustness to blurred images. The noise sensitivity also depends on

the edge detector or on any other chosen segmentation method.

7

1.3 Thesis Outline

Some of the state-of-the-art approaches for the detection of regions of interest are

introduced in the next section 1.4. The problematics of polygon detection with

other related works are analyzed in the detail in section 2.1. The line detection,

junction finding and cycle searching algorithms are presented in sections 2.2, 2.3,

2.4, respectively. Experiment results are contained in chapter 3.

8

1.4 State-of-the-art of the Local Features Retrieval

A lot of candidate feature types have been described and explored among the liter-

ature. A brief review of a recent and past methodology of the feature extraction can

be found in [40]. Indeed, many of them are based on corner detectors [5, 31] such

as Harris, Harris-Laplace or Hessian-Laplace. Such methods are mostly applicable

in the field of the image registration where scenes often have a non-uniform surface.

These methods are not usually suitable for the uniform objects recognition because

their descriptors don’t provide a sufficient determinability in this case.

Lowe in [27] presented a method for the image features retrieval called the

Scale Invariant Feature Transform (SIFT). This approach transforms an image into

a large collection of local feature vectors (SIFT keys) based on local histograms

of oriented gradient changes which are invariant to image translation, scaling and

partially to illumination changes. The scale-invariant features are efficiently identi-

fied using a staged filtering approach. First, key locations are marked as extremal

responses to the Difference of Gaussian filter through the image scale-space. Each

point is then used to generate a SIFT vector that describes the local image region

sampled relatively to its scale-space coordinate frame.

Tuytelaars et al. in [37] discussed two different methods for the invariant re-

gions extraction. First, a geometry-based, uses Harris corners as seeds for the sub-

sequent extraction of patches as invariant regions. Patches are then attached to their

anchor points and adapted to cover the same region in the sense of viewpoint inde-

pendence. As viewpoint changes, these invariant patches change their shape with

regard to extrema of a specific intensity function of the underlying image. Second

Tuytelaars’s method is intensity-based. Its main purpose is to avoid the inherent

unreliability of edge detections and serves as the complement to the first approach.

It is directly based on the analysis of image intensity, without an intermediate step

involving the extraction of features such as edges or corners. With the local inten-

sity maximum as a center, an affine invariant irregular polygonal region of stable

gradient is found to which an ellipse is fitted using moments up to the 2nd order.

9

A term of the virtual circle was first defined by Alhichri [1]. A virtual circle

is a circle with maximum radius representing an open space in the image edge

map. Circle centers are computed as local maximums of a function resulting in

a distance of each pixel to the nearest edge point. The noise sensitivity caused

by the nature of edge detectors has been eliminated by the smoothness criterion

filtering approach applied on each virtual circle separately. However, a detection of

virtual circles is invariant only to scale and shift transforms whereas rotation and

other affine similarities were subjects of his consecutive research.

A new type of distinguished regions was presented in [30], the Maximally Sta-

ble Extremal Regions, MSERs. A MSER is a connected component of pixels which

are all brighter (or darker) than all on region’s boundary and is maximally stable in

a manner of its size changes while the intensity threshold decreases (or increases,

respectively). MSERs are characterized by a great covariance to affine and perspec-

tive transforms and to monotonic intensity changes. The computational complexity

of the evaluating algorithm is almost linear in the number of pixels and thus near

real-time performance. Both very fine and coarse image structures are detected

since no smoothing is involved but the disadvantage of the sensitivity to corruptions

of the region’s boundary still remains.

A more detailed comparisons of some of the state-of-the-art feature detectors

(also including MSERs and SIFTs) have been performed by Mikolajczyk et. al. in

[32].

Chapter 2

Polygon Detection

10

11

2.1 Problem Formulation and Related Work

In scenes containing manufactured objects, features often appear as regular poly-

gons, convex polygons, rectangles or skewed parallelograms. For example, trian-

gular, rectangular or octagonal signs display critical information in road scenes.

License plates situated on cars are perspectively projected rectangles into the image

plane. Buildings and their windows also exhibit features that can be recognized

repeatably by the polygon detection. Polygonal shapes and straight structures such

as lines appear frequently in aerial images of urbanistic densely populated areas.

Indoor scenes may be represented by a large sets of polygons too.

The more is the problem of the polygon detection generalized to cover a wider

class of polygons, the more complex this task is. This is the main reason why

many algorithms described in a literature are task-specific with various number of

restrictions, mostly including a constrained view-range or exact polygon type to

be detected. A parallelism with a convexity are usually considered as strong clues

reducing a search space. Although the method of the polygon detection presented

in this work gives an idea how to detect an arbitrary polygonal shape in an im-

age, its time-complexity does not give a chance to achieve a real time performance

without well defined polygon restrictions according to the given task. Next, some

of the techniques concerned in the detection of polygonal features will be briefly

introduced.

2.1.1 Methods based on Hough Transform

Hough Transform is a standard approach for the detection of different types of ge-

ometric primitives, including lines and polygons [9]. In HT based methods, each

pixel votes for each feature it could possibly be a part of. The efficiency of these

methods strongly depends on the parametrization of shapes to be detected, resp. on

the dimension of a parametric space to be searched for specific patterns. For ex-

ample, a generic rectangle has five degrees of freedom: two for center coordinates,

and by one for width, height and orientation. Although the mapping into this space

12

is relatively simple for each pixel, the shape generalizations [3] vote into higher

dimensions and quickly become computationally expensive. Thus, some methods

derive their benefits from the simplifying of a shape representation which results in

a constrained capability of an arbitrary shape detection.

Jung and Schramm presented a rectangle detector that uses a Windowed Hough

Transform in [18]. Their idea is based on the statement proved by Rosenfeld and

Weiss [36] which says that a convex polygon is uniquely determined by the peaks

which correspond to its sides and form specific patterns that can be detected directly

in its Hough Space. First, line elements are found using HT within the sliding

window. Next, several conditions are used to determine if some of them form a

rectangle centered in the middle of the sliding window. It can be seen from the

nature of the algorithm that it is able to detect only rectangles which do not exceed

the size of the sliding window. On the other hand, orientation of such rectangles is

not a problem.

Most recently, a novel technique for the regular polygons detection similar to

HT has been introduced and applied to detect road signs by Barnes and Loy [28, 4].

Their method extends the concept of the Fast Radial Symmetry Transform [29] to

detect regular polygons. The Fast Radial Symmetry Transform is also a method

for detecting of points of interest and is similar to circular Hough Transform. Five

parameters are needed to represent an arbitrary regular polygon too: Two for center

position and orientation, radius and number of sides. However, only 3D space has

been examined since the number of sides and polygon scale were fixed. Each pixel

then votes in this space for possible centers of a polygon it could be a part of accord-

ing to its gradient direction. This method is invariant to an in-plane rotation while

returning the location and size of the detected shape. A good real-time performance

and reliability was claimed by the authors.

13

2.1.2 Methods based on perceptual grouping

Another techniques reported in the literature and concerned in a detection of polyg-

onal structures often include methods based on the perceptual grouping which or-

ganizes detected linear features into the high-level formations. Our approach also

belongs to this category.

The common characteristics of methods based on the perceptual grouping is

a claimed partial robustness to noise and occlusions because they allow gaps to

appear within the line groups. This property is very disputable as it depends on the

tolerance of the gap measure, ie. the maximal allowed distance between the given

line segment and its possible neighbours. The more are gaps tolerable the more

false positive detections occur whereas the zero tolerance can cause that no polygon

would be found. Gaps occurrences also expose the problem of detected collinear

segments which are probably parts of a single continuous line in the reality. Such

line is often corrupted and severed in a number of smaller segments due to the

discretization error or the edge detector’s inconsistency. Thus the pre-processing

which finds collinear sets of lines is usually performed before the self polygonal

grouping. However, this optimization takes a lot of processing time since all line

pairs have to be examined as their mutual relations are still unknown.

To decide whether some lines form a polygon, their mutual location must be

analyzed. Jacobs [17] pointed out that convex sets of line segments with relatively

small gaps between neighbouring elements rarely occur at random. This fact en-

ables more efficient finding of such groups and their reliable identification because

too distant segments can be ignored. Jacobs presented an exponential algorithm

finding first m most salient convex groups in an image having n lines in expected

time O(n2 logn + nm). The saliency is measured as a percentage of the boundary

identified as gaps between end points of neighbouring segments. The line space is

recursively searched while evaluating only promising possibilities of convex groups

in descending order by their salient factor. Small concativities are also allowed to

occur within the convex groups due to sensing errors. However, Jacobs’s algorithm

failed on groups where one or more line segments can divert the convexity but tak-

14

ing only their parts would have formed strong convex groups (see fig. 2.1).

A

B

C

D

E

x

y

z

uv

w

Fig. 2.1: An example of a group of line segments u,v,w,x,y,z where the Jacob’s

method would fail. It is obvious that partitioning of w in point E would have formed

a strong convex group. Dashed lines represent gaps in the group boundary whereas

A,B,C,D,E possible corners of the hypothetical convex polygon.

Another approach based on the perceptual grouping was studied by Lin and

Nevatia [26]. They focused on the detection of flat-roofed buildings in aerial images

which may appear as parallelograms that could be only projections of rectangles.

Another constrains were derived from the viewing geometry and the orientation of

the parallelogram. The process starts with the extraction of line segments within a

range of values determined by maximum and minimum building sizes. Neighbour-

ing parallel segments are grouped into a single segment whose length and orienta-

tion is derived from the contributing elements. This step helps to partially overcome

15

the problem of fragmented lines generated by low-level vision processes. Next, all

L-junctions and T-junctions as probable rectangle corners are found among detected

and infinitely extended lines. Then the parallelogram hypotheses can be evaluated.

Given an initial line segment, its anti-parallel lines (parallel, but with opposite di-

rections) are found. They together define a region where remaining two sides of

the rectangle are searched. As this procedure evaluates an enormous number of

false positive hypotheses, they must satisfy several topological conditions in order

to proceed to the next stage of the algorithm. The filtering relies on the mutual con-

stellation of junction points telling which line segments really incidents to others.

L

T

a

b

c

Fig. 2.2: Points L and T represent an L-junction and a T-junction, respectively.

Lagunovsky and Ablameyko [23] proposed a similar method that has been

intended to detect rectangles in remote sensing images and in industrial images of

integrated circuits, ie. in the images where rectangles don’t undergo almost any

16

perspective deformation. Their technique differs from [26] by the way of detection

of line pairs within the parallelism tolerance. As they claimed, the direct evaluation

of all possible line combinations has relatively high computational cost and the

number of combinations is enormous. To reduce the number of operations, a 3D

parameter space was constructed in such a manner that almost parallel lines which

can possibly form opposite sides of a rectangle will be situated close to each other.

A rectangle is evaluated by corners found as cross-points of chosen lines by letting

them grow until intersection. The mutual relationship of detected pairs is directly

analyzed by computing their rectangularity value to decide whether the quadrangle

is within a confidence level. This value is computed as the maximum distance

between the intersection point and its corresponding lines. If it exceeds an allowed

threshold, the quadrangle is rejected.

2.1.3 Comparison of our approach with others

Two last mentioned methods ([23, 26]) use junction points as a tool for the consec-

utive filtering of generated groups of line segments. Contrary to them, we find all

feasible junctions first. It can be done in the linear time with respect to the number

of pixels all line segments are composed of. This enables to perform the grouping

faster and, of course, brings the advantage for the direct cycle evaluation according

to our demands. Hence we don’t need to compute any gap measure for polygon

hypotheses as our junctions follow this condition automatically.

Another limitation of methods described above is the restricted class of poly-

gons they are able to found because the generalization of their grouping processes is

not trivial. In our approach, we transformed an input image into a planar graph rep-

resentation whose vertices correspond to detected line segments. Two vertices are

connected with an edge if and only if there exist their appropriate junction. Every

closed loop in this graph corresponds to a polygon from the input image. This way

is in principle general and allows to detect an arbitrary polygonal shape regardless

to the number of its sides, scale, orientation and other properties. It only depends

17

on the description of polygons we wish to detect. Each such a definition is a set of

rules which are applied during a cycle search and help the algorithm to reduce the

number of its decisions made at each vertex. As mentioned above, the request of the

polygon convexity is a very strong clue for real images. Unfortunately, with an in-

creasing degree of freedom of the polygon definition one must count with the higher

time consumption, especially when the input image is too complex. The reason is

that the finding of all cycles in a graph is NP-hard as it includes the Hamiltonian

problem. We will attend to this problem in the section 2.4 more precisely.

18

2.2 Line Primitives Extraction

At first, the input image is processed by the Canny’s edge detector. This step sig-

nificantly reduces the number of pixels to be examined which is very advantageous

especially in the light of the algorithm speed as well as of the fact that non-edge pix-

els are not interesting for the polygon detection purposes. The gained binary edge

image is represented by a system of mutually disjoint and connected sets of edgels

(so-called strings) such each its element has at most two neighbours in the manner

of the standard pixel 8-connectivity. In our approach we exploited the advantage

that points in the string are connected and ordered.

e1

en

Li

φi

Fig. 2.3: Illustration scheme of the string with highlighted line segment support

(gray pixels).

The next task is to find such line segments which may constitute parts of de-

sired polygons. Line segments never appear ideally due to the rasterization during

the image acquisition. Because we are interested in their detection as accurate as

possible, the effort is to identify only the straightest and longest blocks of input

19

strings as the line segment supports. The real problem comes at corners where

edgels are usually displaced and form local fuzzy structures. Adding these inappro-

priate pixels to any neighbouring line support may cause the overall fit inaccuracy

(fig. 2.4). So we perceive edgels with too high local curvature as noise and exclude

them from further computations. Thus we do not strictly insist on the request that

the entire string must be approximated by a single connected poly-line at all cost

by which we differ from another algorithms approximating discrete curves because

they tend to consider every pixel of their input.

φi

φj

Fig. 2.4: It is unwished if white pixels would contribute to either of neighbouring

supports φi or φ j which would deflect both line segments from their ideal positions.

Let S = {e1,e2, . . . ,en} be an arbitrary string gained by the Canny’s operator.

Let’s say that an edgel ei is on the left of e j for any 1≤ i < j≤ n. Analogically, e j is

on the right of ei. We wish to approximate the given string S by a set of line segments

such that we are looking for an optimal partitioning of S into k mutually exclusive

subsets φ1,φ2, . . . ,φk, which form separate supports for the consecutive line fitting.

Given a φi, the problem of identification of line segment Li approximating φi is

20

addressed using a classical orthogonal regression technique [2]. Thus, if we mind a

φi as the support for the infinite line
←→
li under the given error tolerance, line endings

of the segment Li are found as orthogonal projections of φi’s endpoints on the
←→
li .

It is obvious that
⋃k

i=1 φi is not necessarily equal to S in the manner of our line

detection philosophy.

2.2.1 The Fit-Split algorithm

Our Fit-Split algorithm has been inspired by the one presented in [25]. It takes a

set of self non-crossing, non-cyclic and continuous strings as its input. The output

is the list of all detected line segments. Without loss of generality, we will consider

only a single string S as the algorithm’s input. Remaining strings are examined in

the same way independently. The Fit-Split algorithm works in O(kn) where k is the

average number of line segments found within the S of length n.

Let ω0 be a specific initial set of 5− 7 adjacent pixels from S which we call

the seed. The seed also forms the support for the initial line
←→
l0 whose direction

specifies an axis of two imaginary infinite bands of pre-defined widths bin and bout ,

bin ≤ bout (fig. 2.5). Let δ(x,
←→
l) be the orthogonal distance of point x from the line

←→
l whereas δ′(x,L) denotes the distance between x and the nearest point lying on

the segment L. During the first stage, adjoining edgels are added to ω0 as long as

they lie within the outer band along the foregoing initial line, ie. as long as it holds

that δ(x,
←→
l0) < bout

2 ,∀x ∈ ω0. We say that the seed ω0 grows while forming the new

line support φ0 = {x : x ∈ ω0∧ δ(x,
←→
l0) ≤ bin

2 }. Next, the line
←→
l0 is re-fitted using

only pixels from the φ0. The grow and re-fit stages repeat until the seed is no longer

updated. Afterwards, whole process repeats on remaining two (the left and right)

substrings recursively.

Dividing ω0 in two its separate subsets has two reasons. This allows the al-

gorithm a better accuracy near line endings providing that casual corner edgels can

deflect whole line from its exact location. Both line ends consisting of last edgels

tending to leave the outer band are cut off due to this little trick so they do not con-

21

tribute to the line support as long as they don’t belong to φ0. However, they possibly

will be considered in the next iteration step if the line can benefit from their pres-

ence in its support. The second advantage is a controlled robustness to outlayers

which also shouldn’t fall in φ0, depending on the chosen values of bin and bout . The

tighter is the outer band the less it tolerates outlayers. It results in the unreasonable

line fragmentation whereas wider inner band yields to greater fitting error.

Assuming that a good-class line should only grow from a high-quality seed, an

input string should be searched for the best candidate initially. As we are interested

in the most straight sections of the string, we are looking for seeds with maximum

weight (ie. straightness) defined as

wi =
1

1+λi
(2.1)

where λi stands for the smallest non-negative eigenvalue of the appropriate

covariance matrix related to the seed with center in ei. It is strongly advisable to

begin line growing from the max-weighted seeds.

Average fitting error of the line segment Lk is equal to

ΛLk =
∑ei∈φk

λi

|φk|
(2.2)

and it represents the line’s overall quality measure. It is clear from previous

definitions that ΛLk ≥ 0 and the less it is the more probable is that Lk corresponds

to a real one in the image.

2.2.2 Discussion

The described algorithm for the line detection performs in O(kn). The fitting stage

itself takes O(n) as pixels join the line support and the searching for best and worst

pivots also takes at most O(n) in our implementation, both executed k times in

average. The worst case is for k = n which would mean that each pixel represents a

single degenerated line segment. The Canny’s operator has been used for the string

extraction.

22

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

ω0 l0 boutbin

(a) Seed initialization

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

ω0l0

(b) Line refit

xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxx
xxx
xxx
xxx

ω0

L0

(c) Final step

Fig. 2.5: This figure demonstrates particular stages of the Fit-Split algorithm. Dark

pixels form the initial seed ω0 (fig. 2.5(a)). Pixels marked by the light gray fall into

the inner band of the current line
←→
l0 whereas shaded pixels are always perceived

as outlayers. Fig. 2.5(b) shows the refit stage when only dark and light gray pixels

are used for the
←→
l0 recalculation. Note that three shaded pixels on the right fall

into the inner band in the next iteration step (fig. 2.5(c)). Finally, the complete line

segment L0 is established while all white pixels are ignored.

23

The inner and outer band widths have been chosen very carefully. The fact,

that these choices might affect the outlayer sensibility to diagonal lines more than

to verticals or horizontals, has also been considered. Thus the inner half-band must

be wide at least
√

2 of pixel size in order to allow neighbouring diagonal edgels to

join the line support. However, as it was mentioned above, too big values are also

inadvisable. Experiments have proved that values of 1.5 and 2.5 for bin
2 and bout

2 ,

respectively, appear as sufficient estimations for most images regardless to their

resolution and the scene. As no images with pre-defined edges and line segments

were available, the quality of the whole detection process has been checked visually

from the series of real images as well as from synthetic pictures showing geomet-

ric primitives. Hence there is no statistical analysis available. Nevertheless, very

satisfactory results were achieved by this method.

Advantages of the Fit-Split algorithm have outweighed its drawbacks. Spe-

cially we highlight the user controlled preciseness of the line fit while outlayers are

being omitted. An interesting feature of this algorithm is also its ability to dynam-

ically adjust the direction of bands to increase the number of enclosed pixels and

thus to enlarge the line support. As the main disadvantage we see the strong depen-

dency on the edge detector. The Fit-Split algorithm assumes that chains of edgels

are not severed. If so, gaps along the line occur, and thus the original line segment

appears to be consisting of several disconnected collinear parts. The solution comes

with the estimation of so-called junction points to which is the attention given in the

next section.

There are a lot of methods reported in the literature over the last 30 years

concerned in the polygonal representation of discrete curves and are still in state of

the research.

Kumar et al. [22] presented a polygonal approximation of closed curves invari-

ant to projective transformations. Furthermore, let’s refer to the work of Feschet et

al. [12, 11] as an interesting example of the recent methodology. They proposed

a purely discrete O(n) algorithm for the tangent estimation for each of n points of

the discrete curve as the improvement of the Vialard’s [38] one resulting from De-

24

bled’s [8]. Each tangent corresponds to largest linear segment of pixels centered at

the given point. Although the optimal layout of line segments along the curve has

not been investigated in this method, it might show the way of the possible future

improvement of our line detector. A similar algorithm to Fechet’s can be found in

Lagunovsky’s [23], where straight linear primitives are grouped to form line seg-

ments during the edge detection. However, the cluster analysis of purely discrete

methods has a higher sensitivity to corruption of line straightness than algorithms

based on approximation. Therefore we combined the efficiency of discrete meth-

ods with the analytical accuracy. Although the time complexity of our approach is

not optimal with respect to number of found edgels, experiments have proved that

it performs fast enough to not become a crucial stumbling block of our polygon

detector.

25

(a) (b)

(c) (d)

Fig. 2.6: Edge maps (left) and detected line segments (right).

26

Algorithm 1 The Fit-Split algorithm
INPUT: A continuous, non-cyclic edge string S = {e1,e2, . . . ,en}
INPUT: Indices f irst and last such as 1≤ f irst < last ≤ n
INPUT: Initial seed size z
INPUT: Inner and outer band widths bin, bout in pixels
OUTPUT: The list of line segments along the S between e f irst and elast

/* Initial call is FitSplit(S,1,n,z,bin,bout) */
1: if last− f irst < z or f irst < 1 or last > n then
2: return /0

3: end if
4: find k : wk = max{wi : f irst ≤ i≤ last}
5: set le f t := k−b z

2c
6: set right := k + b z

2c
7: set φ := {ele f t , . . .ek, . . .eright}
8: repeat
9: fit line

←→
l to φ

/* Grow line support to the left */
10: while δ(ele f t−1,

←→
l) < bout

2 and le f t > f irst do
11: if δ(ele f t−1,

←→
l) < bin

2 then
12: φ := φ∪ ele f t−1

13: end if
14: le f t := le f t−1
15: end while

/* Grow line support to the right */
16: while δ(eright+1,

←→
l) < bout

2 and right < last do
17: if δ(eright+1,

←→
l) < bin

2 then
18: φ := φ∪ eright+1

19: end if
20: right := right +1
21: end while
22: until φ is no longer updated
23: compute L as orthogonal projections of ele f t and eright on the

←→
l

24: set right := max(i : ei ∈ φk)
25: set le f t := min(i : ei ∈ φk)
26: set Le f tList := FitSplit(S, f irst, le f t−1, z, bin, bout)
27: set RightList := FitSplit(S, right +1, last, z, bin, bout)
28: return Le f tList ∪L∪RightList

27

2.3 Finding Junctions

The next objective is to find out which lines or their parts probably form sides of

polygons occurring in the image. That’s why we are interested in their mutual pla-

nar topology and thus in finding their junctions. In general, junctions are perceived

more as adjoining relations between line segments rather than their possible inter-

sections if they were extended. The reason is that we also wish to connect collinear

segments whose extensions would never intersect or would intersect out of the im-

age boundaries but obviously approximate the same straight edge. That is the reason

why no method for finding analytical intersections between lines come in useful to

our purposes. Another reason is that we work with discrete and mostly displaced

line segments and thus it proved to our advantage to analyze their mutual relations

in the image bitmap directly by the use of the Bresenham’s algorithm. So, by the

junction point we understand a representative of the most probable area where two

or more line segments reach the other’s proximity. Two line segments are consid-

ered proximal if any part of one segment appears close to any part of the other one.

2.3.1 Tolerance Areas

Due to noise in feature detection, we assume that every discrete detected line seg-

ment present itself as an entity with uncertain position, length and orientation with

respect to the reality. Thus the line attributes provide only a probabilistic informa-

tion. Thereby we define the so-called Tolerance Area (TA) to model this uncertainty

associated with each line segment. The TA of a given line segment is a non-empty

bounded set of pixels from its immediate vicinity where the original line probably

occurs. The junction points are found as means of non-empty intersections between

appropriate TAs. Summarized, we demand that each TA

• is evaluated easily in order to compute their intersections efficiently

• model possible occurrences of a given line segment enough to reach TAs of its

probable neighbours

• do not produce any false junctions

28

τ(L)

ξ(L)

L

Tolerance Area

Fig. 2.7: Line Tolerance Area.

The definition of each Tolerance Area can be any function of the given line

segment returning a (weighted) set of pixels from the line segment’s vicinity. In

our approach, each TA was simply constructed as thickened and to both directions

extended original line segment which could be evaluated by the Bresenham’s al-

gorithm very easily. Let’s call τ(L) the acceptable thickness and ξ(L) the length

of the TA associated with the line segment L. The thickness τ(L) has been set to

3−5 pixels by default for each tolerance area which allowed relations between two

parallels approximating the same edge to be established. Obviously, if it had only

one pixel width we wouldn’t be also sure that two crossing lines (resp. their TAs)

had a non-zero intersection due to the pixel discretization (fig. 2.9).

The question arises how much should the original line be extended to satisfy

conditions mentioned above? Following facts have been observed from both the

real and simulated experiences:

Due to disturbances near corners line segments miss their real endpoints. The

effort was to prevent line segments to be overgrown while giving them a sufficient

power to compensate leaks and gaps within polygon boundaries. It has figured out

that a constant extension of each line segment in both its directions wasn’t sufficient

enough to cover corrupted areas. To be robust to polygon occlusions, each line

segment should be extended much more, even at the cost of the increased count of

junctions. Summarized, a length proportional estimation of the line extension has

29

L

J K

(a)

L J K

(b)

L

J

K

(c)

L J
K

M

(d)

Fig. 2.8: Examples of junctions between two, resp. three, line segments.

seemed to be the most reasonable solution. Moreover, the line’s average fitting error

should also be taken into account. The effort is not to extend line segments with

greater fitting error too much in comparison with those whose supports are almost

ideal. The goal of this effort is to eliminate too short line segments which originated

from displaced or noisy pixels and which would yield into unwanted junctions.

Let ρ(L) be a relative expansion function returning a coefficient of the rela-

tive extension for a given line segment L with respect to its length. Therefore, an

absolute line extension in one direction is

σ(L) = |L| ·ρ(L) (2.3)

where |L| denotes the length of the line segment L. Thus, the total length of an

appropriate tolerance area of L is equal to

30

Fig. 2.9: Example of two line segments whose TAs wouldn’t intersect if they had one

pixel width.

ξ(L) = |L|+2σ(L)

= |L|(2ρ(L)+1)
(2.4)

A ρ(L) can be any function designed for the current application’s purposes

according to assumed image degradations. The behavior of the polygon detector

strongly depends on the choice of this function. We set the ρ(L) as

ρ(L) =
1

|L|−m
k (ΛL +1)+ c

f or |L| ≥ m

else

ρ(L) = 0

(2.5)

31

for any fixed parameters k > m > 0, c > 0. The interpretation of this function

is that any given line segment L of length at least m is about to be extended by p =
100

c % to both its directions but no more than by k pixels. Good-class segments have

been made advantageous by the Λ-parameter which can be optionally multiplied by

a constant to influence its effect.

2.3.2 The algorithm

Analytical finding of intersections between sets of pixels may not be trivial. In-

stead, the non-analytical bitmap-based algorithm has been developed working in

the bounded image domain which plays into its hands. Its time complexity is linear

with respect to number of pixels all tolerance areas consist of which never can be

worse than the image size.

Every tolerance area is printed into the helper bitmap of the same size as the

original image using the Bresenham’s line draw algorithm (even for thick lines).

Each pixel holds the list of all line identifiers passing through in order of their

appearance. Thus the intersections between TAs (resp. junctions) are found as local

maximas (2) of the discrete 3D function where x and y coordinates denote pixel’s

position while the z axis its intensity, resp. the total number of lines drawn over the

given pixel. From the real image experience, we do not expect that more than four

or five lines meet at one point, so the expected memory requirement for this helper

data structure corresponds to the size of an ordinary RGBA image.

Every time a pixel is touched during the printing operation its intensity is raised

by one, thus it denotes the total number of line segments (resp. their TAs) meeting

at its location. Next, all affected pixels are sorted in descendant order in the list P
by their intensity after all segments have been drawn into the helper bitmap. This

list can be built in the linear time and helps the algorithm to extract local extremas

using a non-maximum suppression.

Let’s suppose that each pixel constitutes a potential junction point. Let’s denote

the set of line identifiers meeting at pixel [x,y] as Sxy while I(x,y) = |Sxy| stands for

32

L2

L1

Tolerance Area of L2

Tolerance Area of L1

Four junctions between L1 and L2

Fig. 2.10: A side-effect may occur where mutual position of two parallels is ex-

amined. As can be seen at this figure, several junctions originated between two

parallels L1 and L2.

its intensity. Each junction point, besides its position, is also characterized by a set

of incident lines which are common for all neighbouring pixels having the same

intensity. Without loss of generalization, let’s assume that i-th pixel [x,y] ∈ P is

being examined and not visited yet. Thus, it creates a basis of a new junction point

J whose position Jpos is centered to [x,y] initially. The J inherits the Jlist = Sxy

automatically. The Jpos is found by an iterative neighbour examination as the mean

of all pixels [x′,y′] reachable from Jpos having all Sx′y′ = Jlist . Simultaneously, any

pixel from the Jpos vicinity with Sx′y′ ⊆ Jlist is marked as visited. This, together with

the descendant character of P , ensures that no pixel which is not a maximum won’t

serve as a new junction basis.

It often happens that several junctions are found as multiple responses of two

parallel lines (fig. 2.10). It is caused by the discrete error when the intersection

of two appropriate tolerance areas is not continuous. In final all such junctions are

represented by a single edge in the relation graph.

33

Algorithm 2 Non-max suppression algorithm
INPUT: P - descendant sorted list of pixels by their intensity
OUTPUT: J - list of detected junctions

1: set J := /0

2: while P is not empty do
3: pick up first pixel [x,y] from P
4: if [x,y] not visited then
5: set A := /0

6: set queue := [x,y]
7: while queue is not empty do
8: pick up first pixel [x′,y′] from queue
9: if Sx′y′ ⊆ Sxy then

10: set [x′,y′] as visited
11: end if
12: if Sx′y′ == Sxy then
13: A ← [x′,y′]
14: end if
15: queue← all neighbouring pixels of [x′,y′]
16: end while
17: create new junction J
18: set Jlist := Sxy

19: set Jpos := 1
|A |∑[x′,y′]∈A [x′,y′]

20: J ← J
21: end if
22: end while

34

2.3.3 Relation graph construction

Let V = {L1,L2, . . . ,Ln} be the set of detected line segments denoting vertices in

the unoriented relation graph G = (V,E). Let an unique ID to be assigned to each

junction such J = {J1,J2, . . . ,Jm}. Two line segments are connected by an edge if

and only if they have a common junction. Formally,

(e ji = ei j = {Li,L j} ∈ E, i 6= j)⇔ (∃J ∈ J : Li ∈ Jlist ∧L j ∈ Jlist) (2.6)

If Li and L j are not collinear or parallel, the edge ei j represents their crosspoint

whose position is inherited from J or can be analytically refined from Li and L j if

necessary.

In result, pairwise relations between line segments have been found. This has

brought a small disadvantage of false cycles when at least three lines are about to

meet close to one point. As can be seen at fig. 2.11, lines Lh, Li and L j meet

at junction indexed by 7. Thus the derived graph contains a cycle Lh → Li → L j

whose edges ehi,ei j,e jh define corner points of a possible polygon. Because all

these edges originate from the same junction, it implies that this polygon (triangle)

would degenerate to one point. So let each junction be uniquely indexed and all

edges referring to the same junction to share its index. In our example, edges ehi,

ei j, e jh would have been indexed by 7 providing that their common junction has

also been previously indexed by 7. This feature helps us to eliminate unwanted

false cycles if we made a statement that no pair of edges carrying the same index

may occur in any cycle. In the following text, indexed edges and junctions will be

intuitively denoted as eγ
xy and Jγ, respectively.

35

La

Lc

Lb Ld

Lh

Lj

Li Lk

Lg Lm

Le

Lf
1 2

4

6

3

9

75

8

12

11
10

13

La

Lb
Lc

Ld

Lf

Le

Lg

Li

Lh
Lj

Lm

Lk

e10
cf

e7
jh

e7
ij

e10
ce

e10
ef

e7
hi

e13
mk

e9
ej

Fig. 2.11: Relation graph construction. Above: Line segments with colored junc-

tions. Below: Constructed graph.

36

2.3.4 Relation graph optimization

It is very convenient to join collinear segments into their single representative which

is equivalent to merging vertices of the relation graph. This grouping process opti-

mizes the graph and ensures that searched k-polygons really correspond to cycles of

same lengths. In other words, collinear segments constituting parts of one straight

edge are eliminated and replaced by their common representative. A knowledge of

their mutual relations implies the efficient implementation because it reduces the

search space of collinear segments.

Due to noise in feature detection, we must always allow for some deviation

from the pure form of any non-accidental property. Hence grouping systems based

on the parallelism or the collinearity must always consider lines that are bit non-

parallel. Therefore, clues like parallelism in practice provide only probabilistic in-

formation. There is a non-zero probability that random orientations will lead to

nearly parallel lines so it is likely that two coterminous collinear segments form

parts of the same object. These facts yield into following definition:

Definition 1 Let ai, bi and ci be the normalized parameters of line
←→
li relating to

segment Li such as aix+biy+ ci = 0 and a2
i +b2

i = 1. Two line segments Li, L j are
parallel under the given tolerance κ, 0 < κ≤ 1 if and only if

κ < |cosαi j|= |[ai,bi] · [a j,b j]| ≤ 1

where κ is the inferior threshold for a cosine of angle between the pair of
incident lines and the symbol · denotes the dot product between two vectors.

�

If the previous condition is fulfilled for any Li and L j we mark this fact as

Li ‖κ L j. Clearly, if α = 0, both lines are purely parallel and for i = j the inequation

holds automatically.

Having known the relation graph G = (V,E), clusters of collinear segments

are identified as maximal mutually disjoin connected components of G such that

all segments within each cluster are parallel to their common representative. This

central segment also adopts all neighbours of contributing elements while the orig-

inals can be discarded safely. The result of this clustering is an optimized graph

37

where all collinear segments are replaced by a single one. Additionally, we demand

that no line segment is from its representative orthogonally further than the value of

acceptable thickness τ. This imposes more natural requirement and prevent too dis-

tant parallel lines to join a common cluster. In other words, we do not let any two

line segments to merge if the sum of their distances from their common junction

exceeds τ, ie.

δ(Jγ
pos,
←→
li)+δ(Jγ

pos,
←→
l j)≤ τ (2.7)

for any appropriate Li and L j connected by the edge eγ

i j. Summarized, the task

is to find a complete division of graph’s vertices into separate equivalence classes

(clusters) according to their mutual coincidence and collinearity:

Definition 2 A set C⊆V is a cluster of collinear segments represented by a segment
LC if and only if
(∀{Li,L j} ∈ C, i 6= j)⇒ (∃ connected path P from Li to L j, P ⊆ V : ∀LP ∈ Pi j ⇒
L ‖κ LC)

�

The algorithm performing the collinear grouping (alg. 3) combines both the

principles of the mean-shift clustering as well as of the graph BFS. Line segments

(graph vertices) are grouped (merged) together on basis of their normal vectors sim-

ilarities. However, only this property is not enough because it yields itself in clusters

of all parallels regardless of their mutual locations. Thereby each such cluster has

to be divided into separate equivalence classes just in accordance to their mutual

coincidences. This is achieved by the BFS part of the algorithm which identi-

fies connected components of the relation graph in a manner of the line segment

collinearity. The cluster representative is computed from the two farthest endpoints

of segments within the current cluster (fig. 2.12) and are iteratively updated from

the principle of the mean-shift procedure.

38

La

Lc

Lb Ld

Lh

Lj

Li Lk

Lg Lm

Le

Lf

1
2

4

6

3

9

7

5

8

12

11
10

13

La

Lcf

Lb Ld

Lj

Lhik

Lg Lm

Le

1 2

4

6

3

9

75

12

11
10

13

(a) Line segments

La
Lb

Lcf

Ld

Le

Lg

Lhik

Lj

Lm

La

Lb
Lc

Ld

Lf

Le

Lg

Li

Lh
Lj

Lm

Lk

e10
cf

e7
jh

e7
ij

e10
ce

e10
ef

e7
hi

e13
mk

e9
ej

(b) Relation graphs

Fig. 2.12: Line segments before and after collinear grouping (left) and their appro-

priate relation graphs (right).

39

Algorithm 3 Collinear grouping
INPUT: Relation G = (V,E)
OUTPUT: Optimized G = (V,E)

1: for all unvisited Li ∈V do
2: set Li as visited
3: set Ci := {Li}
4: repeat
5: Ci := {L j : eγ

i j = (Li,L j) ∈ E ∧Li ‖κ L j∧δ(Jγ
pos,
←→
li)+δ(Jγ

pos,
←→
l j)≤ τ}

6: update parameters of Li with respect to ∀Lk ∈Ci

/* let vertex Li to adopt all neighbours of ∀Lk ∈Ci,k 6= i */
7: E← E ∪{(Li,Ln) : (∀Lk ∈Ci,k 6= i 6= n)⇒ (Lk,Ln) ∈ E}

/* delete ∀Lk ∈Ci,k 6= i from G */
8: E← E \{(Lk,Ln) : (Lk,Ln) ∈ E ∧Lk ∈Ci,k 6= i 6= n}
9: V ←V \Lk : Lk ∈Ci,k 6= i

10: until Ci is no longer updated
11: end for

40

2.4 Searching a Graph for Specific Cycles

Throughout the following text, we have in mind an unoriented graph G = (V,E)

constructed as in the previous section. With the apparent intuition, we always mean

by the term path of length n the connected sequence of n vertices without any repe-

titions whereas the cycle refers to its closed version. Let’s denote path and cycle of

n vertices as Cn and Pnrespectively. Note that Cn = Pn+1 if and only if first and last

vertices of Pn+1 are equal.

Every cycle Cn, n≥ 3, found in the graph substitutes a polygon whose n sides

are formed by line segments corresponding to vertices of Cn. It is clear that the

number of all possible cycles within the graph can be enormous. Their complete

evaluation can grow exponentially with increasing n coming close to |V |. According

to this fact, we have decided to look only for well-specified cycles designing only

a small subset of all of them. Especially, it includes triangles, convex quadrangles,

parallelograms, hexagons and octagons as features pointing to man-made objects so

the searching for polygons of higher degrees does not seem to make a sense.

It is obvious that finding all cycles first and their consecutive filtering is not

feasible for our purposes. Instead, demanded cycles are evaluated directly during

the search process. The fact that the collinear grouping has been just performed

brings a big advantage to us: The graph became simpler while segments approx-

imating the same edge have been grouped so each Cn really substitutes a unique

polygon of the same degree. The only problem is the efficient evaluation of such

cycles.

There are many ways of finding cycles in both oriented and unoriented graphs.

Mostly, one of fundamental cycle bases [13, 15, 10] is established from which all

possible cycle combinations are generated to complete a finite-dimensional vector

space of all cycles for a given graph. Every cycle in the graph can be found as a

linear combination of basis elements. But the construction of all suitable polygons

can not be done without the evaluation of the whole vector space because even a

cycle of demanded properties can be composed from those which does not seem to

41

be useful. Contrary, the algorithm of Yuster and Zwick [39] can verify for a constant

n if a given graph contains a C2n and finds one if such exists. This algorithm is based

on the BFS search executed from each vertex and thus it runs in O(|V |2). However,

the way of evaluation of all cycles has not been investigated. Instead, we have

decided for the O(|V |n+1) straightforward algorithm which is ease to understand

and implement, despite of Monien [33] claims that the decision of existence of Pn

between each pair of vertices can be made in O(n!.|V |.|E|). Other methods for the

cycle evaluation have not been studied.

Our effort was aimed at minimization of number of decisions to be made dur-

ing a graph searching which would be impossible in Moniens’s method based on

incidence matrix multiplications. The constrained polygon degree, parallelism and

the convexity are the most useful clues indicating whether a given path is worth to

be grown further. Applying these rules does not improve the asymptotic complexity

of the algorithm but the set of all possible paths will be reduced very significantly.

In result, an almost real time performance has been achieved.

(a) (b)

Fig. 2.13: Detected polygons (yellow) with junctions (red).

42

2.4.1 The algorithm

It holds that no cycle can consist of vertices from different biconnected components

of G which can be identified in O(|E|) running a DFS from arbitrary vertex. So,

without loss of generalization, let’s assume the input graph G = (V,E) to be bicon-

nected. The algorithm for finding all cycles of the given length n is very simple:

It runs a brute-force search for all salient paths of length n + 1. Each path is then

tested if its endpoints are equal and if so the cycle Cn is identified. Running a search

algorithm from each vertex allows to find all cycles a given vertex is a part of. Such

one can be safely discarded so the graph becomes even simpler for the next iteration

until no vertex remained in |V |. It is also advisable to force the graph to be still bi-

connected to keep it as small as possible. It can be achieved easily by the recursive

vertex removal which, besides the given vertex, also deletes all vertices with at most

one neighbour because such vertices cannot be parts of any cycle.

Let us recall that vertices represent line segments and edges their uniquely

indexed cross-points since no pair of parallels connected by an edge can occur in the

graph due to just performed collinear grouping. To not be confused with previous

symbolism, let’s follow from now the L1 to be the first vertex of a path, L2 the second

one and so on. Simultaneously, ei j stands for the crosspoint between Li and L j. For

convex parallelograms, a vertex Li+1 is allowed to join the Pi = {L1,L2, . . . ,Li} if

conditions in the following order are satisfied to avoid non-promising computations:

1. Edge eγ

i,i+1 = {Li,Li+1} /∈ Pi while the index γ has not occurred in Pi yet.

2. The new path length must not exceed n+1: i≤ n

3. δ′(eγ

i−1,i,Li)+δ′(eγ

i,i+1,Li) < |ei,i+1− ei−1,i|
4. A convexity must not be broken so vector products (eγ

i,i+1− eγ

i−1,i)× (eγ

i−1,i−
eγ

i−2,i−1) must have the same sign (let’s say positive) for ∀i > 2. In the other

words, it says that the path can turn only to the right (or to the left, depending

on the sign). A convexity for remaining edges has also to be checked when the

path is about to close.

5. Opposite sides of Pi+1 must remain parallel under the given tolerance: Li ‖κ

Li− n
2

for ∀i > n
2

43

First condition guarantees that no vertex is repeated while preventing from

false cycles whereas the second one ensures the proper length of the evaluated path.

The fourth and fifth conditions are optional and the need of their fulfilling depends

on the given task. If we wished to detect specific cycles such as regular polygons,

size constrained polygons or polygons under a specific orientation, another rules

had to be established to be applied during a path evaluation. If the convexity is

not demanded one must count with the fact that each non-convex cycle would have

been found just twice for each its direction as the initial turn has not been specified

contrary to the convex case.

Chapter 3

Experiments

44

45

3.1 The License Plate Detection

The main experiment was aimed at the detection of car license plates (LP) from

multi-view gray-scaled images. This kind of real application represented a great and

interesting opportunity to test abilities of our polygon detector. Although license

plates can not be considered to be uniform objects, their occurrences in the image

are conditioned by the presence of their boundary edgels. Detected quadrangle

hypotheses were compared to manually marked ground-truth license plate positions

within the set counting over 3.500 testing images taken from various viewpoints and

distances under different illuminant conditions. The detector’s run time, number

of LP hypotheses per image and a probability of searched LPs occurrence among

generated hypotheses were the main quality measures.

(a) (b)

Fig. 3.1: Detected license plates with polygon hypotheses.

There exist many ways of the car’s license plate detection developed during

the past 20 years. In general, they mostly include approaches based on template

matching [21], intensity thresholding [35], edge statistics [7, 14, 16], local inten-

sity and gradient histogram analysis [24, 20] or adaboost classification [19]. Such

46

methods usually consider the camera’s front view which is the most frequent prop-

erty requested by commercial surveillance systems. They are built on the fact that

license plate’s background together with its characters constitute high contrast areas

in the image. But a problem arises when it is needed to estimate geometric deforma-

tions of the license plate precisely for character segmentation purposes. Mentioned

systems are claimed to work reliable enough because they are specialized for their

specific task, so it wasn’t our effort to overcome any of them. Our intention was to

find out if our polygon detector could be worth to be considered as a complement

of any other LP detector to increase its overall efficiency.

3.1.1 LP detector’s brief description

Our experimental LP detector works in following steps:

Step 1: First, our polygon detector is used to generate all LP hypotheses. This

implies that its parameters must be customized according to this task while

considering certain projective distortions. In general, license plates can occur

as perspectively transformed rectangles in images. This means that we are

looking for all convex quadrangles whose opposite sides are almost parallel,

ie. they are parallel under the tolerance specified for both the vertical (κV =

0.9) and horizontal (κH = 0.94) directions separately. The κ coefficient has

been set to 0.96. This settings corresponds to approx. 25◦ to be tolerable

deviation for two horizontal parallels, 20◦ to vertical ones and 16◦ for two

collinear segments.

Step 2: An amount of generated quadrangles can be still high, so it is necessary

to perform some filtering. Only polygons with absolute size in pixels greater

than 1.500px and a dominant horizontal axis can be passed to the next stage of

the LP detector. The specified minimal size results from the fact that each LP

should have at least 15px in height and 100px in width unless the characters

are not readable. Over a half of hypotheses were eliminated for each image by

this step which drastically increased the speed of our LP detector.

47

Step 3: Each polygon hypothesis is normalized to fixed proportions using an es-

timated affine homography and passed to the SVM module which verifies

whether the queried polygon contains a license plate or not. The demonstra-

tional video sequences on the enclosed CD were generated frame by frame

with the help of the adopted non-linear SVM classifier whose design wasn’t

part of this work.

All the detector’s parameters were determined to give optimal results experi-

mentally and are summarized in tab. 3.2. For example, we could have reached better

ratio of false negatives if we allowed line segments to be more extended during the

junction detection phase or if we tolerated more line inaccuracy, but in the cost of

the increased number of hypotheses to be analyzed.

Detection phase Parameters

Line fitting z = 7px bin = 3.6px bout = 5px

Junction det. k = 20px m = 10px c = 2

Cycle det. κ = 0.96 κH = 0.94 κV = 0.9

Fig. 3.2: Parameters used for the LP detection.

3.1.2 Experiment results

The testing set consisted of 3.688 gray scaled images containing 3.329 readable

license plates. The resolution of testing images varied between 740x287x8 and

720x576x8. We have encountered many images with various problems, including

• a poor ambient lighting

• diverse plate locations

• a tilt of the plate

• a strong influence of sun beams

• partially occluded LPs and

• blur and noise

48

The efficiency of our polygon detector was obtained by comparisons of de-

tected hypotheses to manually defined ground-truth license plate positions defined

for each sample image within the testing set. A quadrangle hypothesis was consid-

ered as convenient if it contained all the characters of the searched license plate and

has the same size and orientation under the given tolerances. Our polygon detector

missed about 16% of license plates while generating in average 44 hypotheses per

image after the filtering. With the 97% efficiency of the SVM we reached the over-

all effectiveness of 82% for our LP detector. The computation time spent on each

image by our C++ implementation, including the edge detection and hypotheses

generation, varied between 2− 10 FPS on a standard Pentium 4 2.6GHz PC. Un-

fortunately, we used a 3rd party implementation of Canny’s detector. As came out

later, its execution took the overwhelming majority of the computation time which

influenced the overall performance negatively (fig.3.4). In spite of this, our part

of the algorithm (line fitting, junction detection and cycle evaluation) usually took

less than 100ms. However, there exist numerous ways in which the code (includ-

ing ours) could be improved to reduce the required amount of computation time.

We believe that the polygon detector could be faster by up to 50% if this were our

primary goal. The data gained during our experiment follow in tab.3.3:

Testing set # img # lp hyp/img hypf/img # FN err. rate % ok

IMAGES 2609 2251 66.4 28.5 437 0.194 80.6%

VIDEO1 726 725 366.0 86.7 83 0.115 88.5%

VIDEO2 353 353 174.8 73.5 4 0.011 98.9%

TOTAL 3688 3329 135.7 44.3 524 0.157 84.3%

Fig. 3.3: Result data measured on the testing set of traffic images.

From left: No. of images, No. of LPs, No. of detected LP hypotheses, No. of

hypotheses after filtering, No. of False Negatives, Error rate and Overall efficiency.

49

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

Elapsed time in [ms]

N
um

be
r

of
 im

ag
es

20 40 60 80 100 120
0

500

1000

1500

2000

Elapsed time in [ms]

N
um

be
r

of
 im

ag
es

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

300

350

400

450

Elapsed time in [ms]

N
um

be
r

of
 im

ag
es

Line fitting
Junction detection
Cycle evaluation

Edge detection

Overall

Fig. 3.4: Time histograms of measured durations on the test set.

50

3.2 Feature Repeatability

The second, very short and optional experiment was aimed on the repeated detection

of polygonal features within two radially undistorted stereo images of the same

resolution of 480x720 as it would be acquired by an ordinary portable video camera.

Testing images depicted building facades on which we estimated their mutual affine

homography. We were interested in the total number of successful polygon matches.

Following examples show a few hundreds of corresponding features detected in

both the left and right stereo images.

51

(a) 339 matches

(b) 263 matches

Fig. 3.5: Feature correspondences.

Chapter 4

Concluding Remarks

We have developed a new polygon detector which is also robust to partial occlu-

sions. The motivation was to recognize objects with a uniform surface reflectance.

However the detected polygonal features can serve as the supplementary basis for

the recognition of non-uniform objects as well. The detector was called to test its

ability in scenes containing both uniform and non-uniform objects. In spite of its

polynomial time complexity dependent on the degree of desired polygons, our C++

implementation allows its assignment in real-time vision systems. It has shown

off that finding of polygons different from triangles and convex quadrangles, pen-

tagons, hexagons and octagons is worthless because they do not occur in real images

in practice.

Our feature detector has been tested on the real application of the viewpoint in-

variant car license plate (LP) detection. Our detector has been meant as the supple-

mentary alternative to another commercial license plate detector based on MSERs

in order to improve its overall efficiency. We hoped that our detector would be able

to find some license plates the second detector failed on due to missing or occluded

extremas. We achieved the 84% effectiveness only by our approach on the set of

over 3.500 testing images of a traffic. It is more optimistic result than we have ex-

pected in spite of the strong dependency on the edge detector. The integration with

the commercial MSER based LP system decreased the rate of undetected license

52

53

plates to one third.

Other similar methods ([26, 23]) for the polygon detection often consider only

one type of geometric primitives with very constrained properties to be found at a

time while the approaches based on Hough Transform ([18, 4]) are limited by their

Hough space searching capability. Our method is able to detect numerous types of

polygons of any size, scale and orientation simultaneously.

Summarized, our detector of polygonal structures occurring in the image has

been found useful as the supplementary feature for several wide base line stereo

applications as well as for license plate surveillance systems.

Appendix A

Content of the CD-ROM

54

55

A.1 Directory structure

/data samples of testing images

/demo matlab demo application for the polygon detection

config.m default configuration file

run.m main demo script

polydetect.mexw32 WIN32 mex file compatible with Matlab7

/source source code of the demo application

/video processed traffic video sequences

thesis.pdf pdf version of this document

56

A.2 Demo application usage

1. Run Matlab7 under the Windows operating system.

2. Execute the run.m script which takes the full image path as the input.

Bibliography

[1] ALHICHRI, H. S., AND KAMEL, M. Virtual circles: a new set of features for

fast image registration. Pattern Recogn. Lett. 24, 9-10 (2003), 1181–1190.

[2] ANDĚL, J. Statistické metody. MATFYZPRESS, MFF UK, Praha, 2003.

[3] BALLARD, D. H. Generalizing the hough transform to detect arbitrary shapes.

714–725.

[4] BARNES, N., LOY, G., SHAW, D., AND ROBLES-KELLY, A. Regular poly-

gon detection. In ICCV ’05: Proceedings of the Tenth IEEE International

Conference on Computer Vision (ICCV’05) Volume 1 (Washington, DC, USA,

2005), IEEE Computer Society, pp. 778–785.

[5] BAY, H., TUYTELAARS, T., AND VAN GOOL, L. Surf: Speeded up robust

features. In 9th European Conference on Computer Vision (Graz Austria, May

2006).

[6] CARMICHAEL, O., AND HEBERT, M. Shape-based recognition of wiry ob-

jects. IEEE Trans. Pattern Anal. Mach. Intell. 26, 12 (2004), 1537–1552.

[7] CASTELLO, P., COELHO, C., NINNO, E. D., OTTAVIANI, E., ZANINI, M.,

AND P. A., E. S. Traffic monitoring in motorways by real-time number plate

recognition. In ICIAP ’99: Proceedings of the 10th International Confer-

ence on Image Analysis and Processing (Washington, DC, USA, 1999), IEEE

Computer Society, p. 1128.

[8] DEBLED-RENNESSON, I., TABBONE, S., AND WENDLING, L. Fast polygo-

nal approximation of digital curves. In ICPR ’04: Proceedings of the Pattern

57

58

Recognition, 17th International Conference on (ICPR’04) Volume 1 (Wash-

ington, DC, USA, 2004), IEEE Computer Society, pp. 465–468.

[9] DUDA, R. O., AND HART, P. E. Use of the hough transformation to detect

lines and curves in pictures. Commun. ACM 15, 1 (1972), 11–15.

[10] FERREIRA, A., FONSECA, M., AND JORGE, J. Polygon detection from a set

of lines. In In Proceedings of 12 Encontro Portugu es de Computac ao Gr

afica (12th EPCG) (Porto, Portugal, 2003), pp. 159–162.

[11] FESCHET, F. Canonical representations of discrete curves. Pattern Anal. Appl.

8, 1 (2005), 84–94.

[12] FESCHET, F., AND TOUGNE, L. Optimal time computation of the tangent of

a discrete curve: Application to the curvature. In DCGI ’99: Proceedings of

the 8th International Conference on Discrete Geometry for Computer Imagery

(London, UK, 1999), Springer-Verlag, pp. 31–40.

[13] GIBBS, N. E. A cycle generation algorithm for finite undirected linear graphs.

J. ACM 16, 4 (1969), 564–568.

[14] HONGLIANG, B., AND CHANGPING, L. A hybrid license plate extraction

method based on edge statistics and morphology. In ICPR ’04: Proceedings of

the Pattern Recognition, 17th International Conference on (ICPR’04) Volume

2 (Washington, DC, USA, 2004), IEEE Computer Society, pp. 831–834.

[15] HONKANEN, P. A. Circuit enumeration in an undirected graph. In ACM-SE

16: Proceedings of the 16th annual Southeast regional conference (New York,

NY, USA, 1978), ACM Press, pp. 49–53.

[16] HSIEH, J.-W., YU, S.-H., AND CHEN, Y.-S. Morphology-based license

plate detection from complex scenes. In ICPR ’02: Proceedings of the 16 th

International Conference on Pattern Recognition (ICPR’02) Volume 3 (Wash-

ington, DC, USA, 2002), IEEE Computer Society, p. 30176.

[17] JACOBS, D. W. Robust and efficient detection of salient convex groups. IEEE

Trans. Pattern Anal. Mach. Intell. 18, 1 (1996), 23–37.

[18] JUNG, C. R., AND SCHRAMM, R. Rectangle detection based on a windowed

hough transform. In SIBGRAPI ’04: Proceedings of the Computer Graphics

59

and Image Processing, XVII Brazilian Symposium on (SIBGRAPI’04) (Wash-

ington, DC, USA, 2004), IEEE Computer Society, pp. 113–120.

[19] KHAMMARI, A., NASHASHIBI, F., ABRAMSON, Y., AND LAURGEAU, C.

Vehicle detection combining gradient analysis and adaboost classification.

In Intelligent Transportation Systems (Washington, DC, USA, 2005), IEEE

Computer Society, pp. 66–71.

[20] KIM, S., KIM, D., RYU, Y., AND KIM, G. A robust license-plate extraction

method under complex image conditions. In ICPR ’02: Proceedings of the

16 th International Conference on Pattern Recognition (ICPR’02) Volume 3

(Washington, DC, USA, 2002), IEEE Computer Society, p. 30216.

[21] KO, M.-A., AND KIM, Y.-M. License plate surveillance system using

weighted template matching. In 32nd Applied Imagery Pattern Recognition

Workshop (Washington, DC, USA, 2003), IEEE Computer Society, pp. 269–

274.

[22] KUMAR, M., GOYAL, S., JAWAHAR, C., AND NARAYANAN, P. Polygonal

approximation of closed curves across multiple views. In Indian Conference

on Computer Vision, Graphics and Image Processing (2002), pp. 317 – 322.

[23] LAGUNOVSKY, D., AND ABLAMEYKO, S. Straight-line-based primitive ex-

traction in grey-scale object recognition. Pattern Recogn. Lett. 20, 10 (1999),

1005–1014.

[24] LEE, H.-J., CHEN, S.-Y., AND WANG, S.-Z. Extraction and recognition

of license plates of motorcycles and vehicles on highways. In ICPR ’04:

Proceedings of the Pattern Recognition, 17th International Conference on

(ICPR’04) Volume 4 (Washington, DC, USA, 2004), IEEE Computer Soci-

ety, pp. 356–359.

[25] LEUNG, M. K., AND YANG, Y.-H. Dynamic strip algorithm in curve fitting.

Comput. Vision Graph. Image Process. 51, 2 (1990), 146–165.

[26] LIN, C., AND NEVATIA, R. Building detection and description from a single

intensity image. Comput. Vis. Image Underst. 72, 2 (1998), 101–121.

60

[27] LOWE, D. G. Distinctive image features from scale-invariant keypoints. Int.

J. Comput. Vision 60, 2 (2004), 91–110.

[28] LOY, G., AND BARNES, N. Fast shape-based road sign detection for a driver

assistance system. In IEEE/RSJ Interational Conference on Intelligent Robots

and Systems (IROS2004), Sept 28 - Oct 2, 2004 (Sendai, Japan, 2004), IEEE

Computer Society, pp. 70–75.

[29] LOY, G., AND ZELINSKY, A. A fast radial symmetry transform for detecting

points of interest. In ECCV ’02: Proceedings of the 7th European Conference

on Computer Vision-Part I (London, UK, 2002), Springer-Verlag, pp. 358–

368.

[30] MATAS, J., CHUM, O., URBAN, M., AND PAJDLA, T. Robust wide baseline

stereo from maximally stable extremal regions. In Proceedings of the British

Machine Vision Conference (London, UK, September 2002), P. L. Rosin and

D. Marshall, Eds., vol. 1, BMVA, pp. 384–393.

[31] MIKOLAJCZYK, K., AND SCHMID, C. Scale and affine invariant interest

point detectors. International Journal of Computer Vision 60, 1 (2004), 63–

86.

[32] MIKOLAJCZYK, K., TUYTELAARS, T., SCHMID, C., ZISSERMAN, A.,

MATAS, J., SCHAFFALITZKY, F., KADIR, T., AND VAN GOOL, L. A com-

parison of affine region detectors. International Journal of Computer Vision

65, 1/2 (2005), 43–72.

[33] MONIEN, B. How to find long paths efficiently. Annals of Discrete Mathe-

matics 25 (1985), 239–254.

[34] OBDRŽÁLEK, Š. Object recognition using local affine frames. PhD thesis

(2006).

[35] OZBAY, S., AND ERCELEBI, E. Automatic vehicle identification by plate

recognition. In Transactions On Engineering, Computing And Technology

(Tokyo, Japan, 2005), vol. 9, WORLD ENFORMATIKA SOCIETY, pp. 564–

568.

61

[36] ROSENFELD, A., AND WEISS, I. A convex polygon is determined by its

hough transform. Pattern Recogn. Lett. 16, 3 (1995), 305–306.

[37] TUYTELAARS, T., AND VAN GOOL, L. Matching widely separated views

based on affine invariant regions. Int. J. Comput. Vision 59, 1 (2004), 61–85.

[38] VIALARD, A. Geometrical parameters extraction from discrete paths. In

DCGA ’96: Proceedings of the 6th International Workshop on Discrete Ge-

ometry for Computer Imagery (London, UK, 1996), Springer-Verlag, pp. 24–

35.

[39] YUSTER, R., AND ZWICK, U. Finding even cycles even faster. In Automata,

Languages and Programming (1994), pp. 532–543.

[40] ZITOVÁ, B., AND FLUSSER, J. Image registration methods: a survey. Image

and Vision Computing 21, 11 (October 2003), 977–1000.

