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Abstract

Název práce: ZlomekFS Over FUSE
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Katedra: Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: Doc. Ing. Petr T̊uma, Dr.
e-mail vedoućıho: tuma@nenya.ms.mff.cuni.cz
Abstrakt: ZlomekFS (ZFS) je distribuovaný systém soubor̊u, který umožňuje
práci se soubory i v př́ıpadě odpojeńı poč́ıtače od śıtě. Změny provedené
v době, kdy je śıť nedostupná, jsou po připojeńı k śıti automaticky synchro-
nizovány.

P̊uvodńı implementace ZlomekFS použ́ıvala vlastńı ovladač systému sou-
bor̊u pro operačńı systém Linux. Tato práce tento ovladač nahrazuje použit́ım
rozhrańı FUSE, které bylo přidáno do Linuxu až po dokončeńı p̊uvodńı imple-
mentace ZlomekFS. Pro implementaci ZlomekFS pomoćı FUSE bylo rozhra-
ńı FUSE rozš́ıřeno o potřebné operace pro správu cache v jádru operačńıho
systému. Tato rozš́ıřeńı rozhrańı FUSE byla implementována pro operačńı
systémy Linux a FreeBSD.
Kĺıčová slova: systém soubor̊u, správa cache
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Department: Department of software engineering
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Abstract: ZlomekFS (ZFS) is a distributed file system, which allows working
with files even if a computer is disconnected from the network. The changes
performed while the network is not available are automatically synchronized
after connecting the computer to the network.

The original ZlomekFS implementation was using its own file system
driver for the Linux operating system. This work replaces the driver with
use of the FUSE interface, which was added to Linux only after the origi-
nal ZlomekFS implementation was finished. To implement ZlomekFS using
FUSE, the necessary kernel cache management operations have been added
to the FUSE interface. These FUSE interface extensions were implemented
for the Linux and FreeBSD operating systems.
Keywords: file system, cache management
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Chapter 1

Overview

1.1 ZlomekFS

ZlomekFS[1] is a distributed file system. Unlike a simple network file sys-
tem used on a local network, ZlomekFS supports local caching of volume
contents. When a computer is disconnected from the network, it can use its
local volume cache and continue to use the file system, reading it as well as
modifying it.

After the computer is reconnected to the network, the local volume cache
is synchronized with the primary volume copy, propagating the file system
changes in both directions. If the file system changes conflict, the conflict
is represented as a directory in the file system and the user can resolve the
conflict simply by deleting one of the file or directory versions present in the
conflict directory, without using specialized tools.

ZlomekFS was implemented as an user-space daemon and a kernel mod-
ule. The daemon communicates with other computers over the network and
implements all file system operations. Volume caches are stored as directories
located on other file systems (e.g. ext3) mounted on the local computer.

The kernel module is a Linux file system driver, which also implements a
character device (usually /dev/zfs). It implements file system operations by
serializing them (using a modified version of the ZlomekFS network protocol)
and making them available to user-space. The daemon opens the /dev/zfs

device, handles the operation requests, and returns results to the kernel.

1.2 FUSE

Implementing most of a file system in user space in a manner similar to the
above-described ZlomekFS implementation has several important advantages
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over a pure kernel-space implementation:

• The whole operating system is significantly more resilient to bugs in
the file system implementation.

• Debugging of the file system driver is easier in user-space because most
debugging and process inspection tools cannot be used on kernel-space
tasks.

• Most of the file system implementation is not Linux-specific and can
be quite easily ported to any POSIX-compliant operating system.

Therefore, Linux since kernel version 2.6.14rc1 provides FUSE[2], a ge-
neric interface for implementing file systems in user-space. FUSE consists
of a kernel module, an user-space library for communicating with the ker-
nel module, and a utility which allows mounting user-space file systems by
unprivileged users (if permitted by the system administrator).

1.3 Goals

The primary goal of this thesis is to remove the ZlomekFS-specific kernel
module and to modify the user-space daemon to use FUSE for processing
file system operations. This has the following advantages over a ZlomekFS-
specific kernel module:

• It reduces the long-term effort necessary to maintain ZlomekFS. The
Linux kernel is well-known for its explicit decision not to keep backward
compatibility (not even an API compatibility) for kernel modules[3],
while the FUSE interface has been revised several times, always without
breaking binary compatibility.

• The FUSE kernel module is widely used (the FUSE wiki currently
lists 82 file systems using FUSE), so it will be likely maintained and
enhanced by developers not participating in ZlomekFS development.

• FUSE provides the mechanisms necessary for using ZlomekFS without
system administrator cooperation, and for using several ZlomekFS file
systems on a single computer (the ZlomekFS kernel module provides a
single /dev/zfs device, which cannot support two separate ZlomekFS
mounts). Although the ZlomekFS kernel module could in principle be
extended to add these features, they are already available in FUSE and
porting ZlomekFS to FUSE will automatically make them available to
ZlomekFS users.
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The current FUSE interface is insufficient for ZlomekFS implementation;
therefore, the thesis is focused mainly on the design of the FUSE interface
extensions. In addition to the unavoidable interface extensions necessary
for implementing ZlomekFS, other possible FUSE interface extensions are
examined to make the FUSE interface general enough for implementing a
wide range of different file systems.

Finally, the possibility of implementing ZlomekFS on operating systems
other than Linux is considered. The port of ZlomekFS to FreeBSD is de-
scribed, and possibilities of porting ZlomekFS to some other operating sys-
tems are described as well.
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Chapter 2

File System Interface Overview

To be useful in practice, an user-space file system interface should fulfill the
following requirements:

• The interface should support all operations customarily provided by file
systems on the target platform. The common operations provided by
UNIX operating systems are standardized by POSIX and described in
more detail in section 2.2. In addition to these operations, some other
operations are available on several operating systems.

• The interface should support, or at least not prevent, performance en-
hancements, like caching or sending requests to remote network servers
in batches.

• The interface should use an efficient data representation which is, if
possible, easy to work with, both in the kernel and in the user-space
driver.

• The interface must allow a secure implementation: e.g. the interface
should not require exposing of kernel pointer values to the user-space
driver. Interfaces which allow mounting of arbitrary user-space file
system drivers by unprivileged users, like FUSE does, also need to
protect the kernel and applications run by other users against malicious
file system drivers. Thus, the interface must not allow arbitrary access
to memory of a process which performs operations on a file system with
an user-space driver, for example.

Fulfilling the above requirements by FUSE is strongly influenced by the
kernel file system interface: a file system operation or a caching mechanism
that cannot be supported by the kernel is useless. Therefore, this chapter
reviews several widely used or otherwise significant file system interfaces,
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focusing on operations they support and the caching mechanisms they use,
and the ways they might be represented in FUSE or used to enhance FUSE.

Network file systems are more suitable for user-space implementation than
other file systems because the network latency is usually at least comparable
to, if not significantly greater than, the overhead of the user-space file system
interface. That’s why the most commonly used network file systems are also
briefly examined to make sure that FUSE can be used to implement efficient
clients for these network file systems, reusing the long-term effort to optimize
these protocols and their caching mechanisms.

2.1 Data Representation

Before reviewing specific file system interfaces, some common issues related
to data representation are described in this section. The data that need to
be represented by any file system interface include:

• Raw data, i.e. the bytes transferred using the read or write system
calls. This data should, obviously, be transmitted unchanged.1

• Operation flags and parameters (e.g. the O_* flags for the open system
call, or struct flock).

This data can usually be transmitted without major modification, us-
ing the same ABI which is used for system calls on the platform. This
avoids the necessity to translate data between different formats in the
kernel. For user-space file system interfaces this guarantees the inter-
face will remain sufficiently stable, because an user-space file system
driver which can run on a specific platform can also use the kernel
interface.

Using “the same ABI” for an user-space file system interface is, unfor-
tunately, ambiguous on systems with support for more than one ABI in
the kernel. Other than genuinely different ABIs on a single platform,
this includes “multilib” systems, running 32-bit user-space processes
on a 64-bit kernel. On those systems, the kernel contains a layer which
translates the system calls and data structures using the legacy ABI to
the current one. To maintain the correspondence between system call
ABI and the user-space file system interface, it would therefore be nec-
essary to implement a similar translation layer in the kernel file system

1Representing raw data might be more difficult on platforms which don’t use 8-bit
bytes, but such platforms are extremely rare. 8-bit bytes are required by POSIX since the
2001 revision.
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driver, and to enable or disable its use depending on the ABI used by
the user-space driver. This removes the main advantage of using the
system ABI for the user-space file system interface: if the kernel file
system driver must contain a translation layer, it would be simpler to
use a translation layer unconditionally.

• File2 names. Unlike other operation parameters, which are compara-
tively uniform, the capabilities of the underlying file system affect the
available file system names and the semantics of their representation.

• “Kernel” data structures. Apart from data structures directly related
to file systems, this may include other data structures (e.g. a represen-
tation of processes, in order to check whether the process invoking the
operation is allowed to perform a file system operation). In a typical
kernel-internal file system interface, these data structures are directly
referenced by passing pointers, which is obviously unsuitable for an
user-space file system interface.

The main data structures that need to be represented in a file system
interface are a representation of files (whether open or not), and a
representation of the state associated with open files (which usually
includes at least the current position within the file data).

2.2 POSIX File System Interface

The fundamental document for FUSE interface design is the POSIX specifi-
cation[4], which describes the file-system operations that should be supported
by an operating system.3

2.2.1 POSIX File System Operations

Although POSIX defines several file system interfaces at higher levels of
abstraction (e.g. FILE, glob), they can all be implemented using the following
low-level operations:

2POSIX explicitly includes directories in the meaning of “file”. The same convention
is used throughout this thesis.

3POSIX does not address the issue of file systems in wide-spread use (e.g. FAT) which
cannot support all the requested operations. Such file systems therefore must not be used
on a system installation that claims POSIX compliance. Nevertheless, applications must
be able to handle such file systems in practice, and FUSE should support implementation
of such file systems.

11



• Operations on whole files: access, *chmod, *chown, link, mkdir,
mknod, *pathconf, readlink, rename, rmdir, *stat, *statvfs, sync,
symlink, *truncate, unlink, utimes.

• Operations on opened files: aio_*, closedir, close, fcntl file locking,
fsync, ioctl, lio_listio, lseek, mmap, msync, munmap, opendir,
open, poll, posix_fadvise, posix_fallocate, *read*, readdir_r,
seekdir, *select, telldir, *write*.

• Kernel-internal data manipulation: dup*, fcntl (except for locking),
getcwd, *chdir, umask. Implementation of these operations doesn’t
require any support from file system drivers.

• Kernel-local operations: pipe*, the socket API. These operations are
handled in other parts of the operating system unrelated to the file
system interface. To the extent these operations may affect file system
contents (e.g. mkfifo, binding AF_UNIX sockets to local paths), they
can be implemented using other file system interfaces (e.g. mknod for
both of the examples above).

2.2.2 POSIX Data Representation

Portable file names in POSIX contain only characters in the portable filename
character set, which includes ASCII letter and digits, period, underscore and
hyphen. File name length limit is file-system specific, but not less than 14.
The special file names “.” and “..” refer to the “current” directory and its
parent directory, respectively. File names in a path name are separated by
slashes. Path names starting with exactly two slashes are unportable, and
may be interpreted using completely different rules (even using a different
file name separator character).

Open file states are represented using file handles, integers allocated by
the operating system (using a specified algorithm). Each process has its
own file handle name space, but a single open file state may have several
file handles referring to it; the file handles may all be defined within one
process, or they may be in several separate processes. File handles in multiple
processes that refer to a single open file state are usually created using the
fork system call. UNIX also supports a mechanism to transfer an open file
state to a different process, using an AF_UNIX socket: the file handle of the
source process is resolved to an open file state, and a new file handle in the
target process referring to this open file state is created. Curiously, POSIX
requires a definition of the SCM_RIGHTS ancillary data message type used for
such open file state transfer, but doesn’t specify any semantics of the data.
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References to files within a file system are usually performed using path
names or file handles. In addition, each file has an integer inode number 4,
returned in st_ino by the *stat system calls. Each file within a file system
must have a different inode number. Inode numbers can’t be used to reference
files in system calls; the application must use a path name or a file handle.
Thus, inode numbers are usually used to detect symbolic link loops or races
when interpreting path names in user space, and less often to detect hard
links (because the inode number is available in struct dirent returned by
the readdir function, but to check st_nlink in struct stat the application
would have to use a separate *stat system call).

2.3 Linux File System Interface

This section describes the Linux[5] file system interface. It is neither the first
generally used file system interface, nor the most widely used interface, nor
an user-space file system driver interface; nevertheless, it is described first
because Linux is the primary platform of ZlomekFS, it is the base of the
FUSE interface and because describing the Linux interface first will simplify
the description of the FUSE interface.

2.3.1 Linux File System Operations

Linux file system drivers provide several sets of functions that operate on
kernel objects. Some of the functions are mandatory; many are optional and
work as hooks for the file system layer to handle less usual file systems.

The file system interface is tightly integrated with the kernel “caches”.5

At the lowest level lies the inode cache. A struct inode represents a single
file, whether currently used or not. Each file in a file system has at most one
entry in the inode cache. Besides data used by the generic file system layer,
it caches information that is returned by the *stat system calls. Thus, for a
typical block device-backed file system, the information would be read once
when initializing the inode, and *stat only copies the data to user space.
The inode cache layer handles writing out the data when it is modified and
manages the amount of unused inodes that are kept in the cache, depending

4Inode number is the traditional UNIX name of the identifier. It is called a file serial
number in the POSIX specification.

5The word “cache” usually means a system component that can in principle be removed
without impacting the functionality of the system; the Linux “caches” contain currently
used data together with currently unused data, and it is not possible to remove any of the
“caches”.
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on memory pressure. To do so, the inode cache uses functions (e.g. read
inode from disk, write inode to disk) provided by the file system driver in
struct super_operations. Optionally, the file system driver may replace
the default implementation of inode allocation and deallocation (usually to
embed the struct inode within a larger data structure and use the extra
space to store file system-specific data), or it may be notified when inode
in memory becomes modified (e.g. to preallocate space in a modification
journal). Finally, it may be notified when the inode is no longer used; the
file system driver can e.g. immediately evict the inode from the inode cache.

Because the file system driver may be notified whenever the metadata
of an inode is read, whenever an inode is modified and whenever an inode
stops being used, the file system driver can prevent most of the caching. The
most important function of the inode cache is thus not caching of the inode
metadata, but unique file identification. The core kernel code, with very few
exceptions, does not track any file system-specific inode identification data;
currently referenced files within the kernel and on the interface between the
kernel and the file system are simply identified using the struct inode * or
a higher-level data structure that references a struct inode *.

A similar mechanism is used for whole file systems: a file system is identi-
fied by a struct super_block *6, the file system layer tracks modifications
of the file system metadata and uses struct super_operations to write
the modifications out. The only difference is that file system metadata is
not cached when the file system is unmounted, thus there is no “super block
cache”.

Above the inode cache is a dentry cache, which caches name lookups.
Each dentry represents one directory entry; the dentries form a tree which
represents a subset of the possible absolute paths (not containing symbolic
links) that can be used to designate a file. The cached information is either an
inode reference, or an information that no file exists with that name. Because
each dentry contains a link to a dentry representing its parent directory, a
reference to a dentry implicitly describes “the” absolute path that refers
to the file within the containing file system.7 The availability of the path
information makes dentry references more useful than inode references in
some situations, so dentries are often used instead of inodes to refer to files.

The file system driver may customize the dentry cache behavior by imple-
menting several hooks. Most significant is the ability to replace the hash func-

6The name is derived from a “super block” on the first UNIX file systems, a disk block
with a fixed location on the block device that contained file system-global metadata. The
unintuitive name struct super operations is a shorthand for “super block operations”.

7The names in dentries are modified by the rename system call, so the path might be
different from the path used to open the file.
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tion and name comparisons, which allows e.g. case-insensitive name lookups.
Similarly to the inode cache, the lookup caching may be restricted because
the file system is notified when a lookup is satisfied from the dentry cache
(with the possibility to override the cached results) and when a dentry ref-
erence count becomes zero.

Each inode refers to a struct inode_operations, a set of functions
provided by the file system driver to perform operations on the inode as
a whole. Typically, a file system driver has separate inode_operations

structures for different file types (e.g. one for regular files, one for directories,
one for symbolic links). Most of the provided operations closely match the
POSIX operations on whole files, with the following exceptions:

• Two lower-level operations are provided: lookup, used during path
name lookup to fill in a dentry for an entry of a directory, and create,
used to create regular files.

• The *chmod, *chown and *utimes system calls are provided by a single
setattr operation.

• The *truncate system calls are implemented using two operations:
First, setattr is called with the new file size. Then the affected page
cache pages are removed, and, if provided by the file system driver,
a truncate operation is called. The truncate operation deallocates
disk blocks on block-based file systems, and is called after the page
cache does not refer to the blocks to make sure the page cache does
not contain data for a single disk block on two different pages. The
setattr operation, called before purging the page cache, can be used
by journaling file systems to create a “truncate” transaction to make
sure the file system will remain consistent even in the event of a system
crash while removing page cache pages (which might block until I/O
in progress is completed).

• The getxattr, listxattr, removexattr and setxattr operations are
provided to support extended attributes of files. ACLs, if supported by
the file system, are manipulated using these operations on attributes
within the reserved system.* name space. Enforcing ACLs is per-
formed in the driver’s permission operation, corresponding to the
access operation in POSIX. If the file has a SELinux context label, it
is stored as an extended attribute as well.

• The follow_link and put_link operations are provided for resolving
symbolic links. The generic readlink operation copies the path con-
tained in a symbolic link to a caller-provided buffer. The follow_link,
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put_link operation pair allows the file system driver to simply return a
pointer to the path in its internal data structures, which eliminates un-
necessary copying of the data, and more importantly allocating a buffer
(a whole page) for the data on each lookup. For example, a disk-based
file system may use the system page cache to cache symbolic link paths
like any other data, and simply point to the data in the page cache.

In addition, the follow_link operation may, instead of returning a
pointer to a path, directly resolve the symbolic link to a dentry refer-
ence. This is used for the symbolic links in /proc/*/fd/, which can be
used to view opened files of a process. readlink on such a symbolic
link returns the path to the opened file, as recorded by the structure
of the dentry cache. If the file was unlinked, the returned path cannot
be used to access the file (the path returned by readlink actually has
a  (deleted) suffix), but the follow_link operation can still obtain
a valid dentry reference and opening the symbolic link will succeed.

When a file system is mounted, the file system driver allocates a dentry
for the root file (usually a root directory) of the file system. This allows using
the lookup operation to reach any file within the file system.

File systems that can be served over NFS must implement two additional
operations and provide them in a struct export_operations:8 encode_fh

creates an NFS file handle for a specified dentry, and decode_fh returns a
dentry for a specified NFS file handle. File systems which store the inode
number and a generation counter in the NFS file handle can use the provided
default implementation, and only implement creation of a dentry with a
specified inode number.

Open file states are represented by a struct file, which contains a
dentry reference, kernel state such as file position, a place for file system
private data, and a reference to a struct file_operations, provided by a
file system driver for performing operations on opened files. To open the file,
an initial struct file_operations is provided by the file system driver
in the inode. The open function from these operations may replace the
struct file_operations pointer in a struct file by a more specific set
of operations (e.g. when opening a named pipe, different file operations are
used for named pipes opened for reading and for named pipes opened for
writing). The struct file_operations pointer may be replaced even after
the file is opened, although this is done very rarely.

8The operations could easily be provided directly in struct super operations with-
out the additional indirection. Splitting them to a separate data structure, apart from a
minor implementation simplification, allows checking whether a file system supports NFS
simply by checking whether a pointer to the struct export operations is not NULL.
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The operations provided by struct file_operations, are, again, quite
similar to the POSIX operations they are used to implement, although the
interface differences are somewhat larger. The significant differences are:

• The readdir operation provided by struct file_operations actu-
ally implements a getdents system call, filling a memory buffer with as
many directory entries as possible.9 The closedir, opendir, seekdir
and telldir operations are not provided by Linux file system drivers
because the functionality is available using the ordinary close, open
and lseek system calls.

• Three different functions can be provided to implement the ioctl sys-
tem call. The simplest function is unlocked_ioctl. For convenience,
a file system driver may provide an ioctl function instead, which is
called with the big kernel lock10 held. Originally, only the ioctl func-
tion was provided. If the ioctl operation for a specific file type turns
out to be performance critical, the implementation is modified to use
a more fine-grained locking mechanism and used as unlocked_ioctl

instead.

The third function, compat_ioctl is used on “multilib” systems, run-
ning 32-bit applications on a 64-bit kernel. For most other system
calls, the generic kernel code can translate between the 32-bit and 64-
bit data structures, but driver-specific ioctl operations need driver-
specific data translation. The compat_ioctl function is called without
the big kernel lock.

• As described above, there is a separate create operation provided by
the file system driver in struct inode_operations, so the open oper-
ation does not handle the O_CREAT flag.

• Two operations are used to implement the close system call. The
split is necessary to correctly handle open file states with more than
one associated file descriptor or other reference (e.g. a memory-mapped
region of the file). The first operation, flush, is called on every close

call. A file system driver can write out all modified data to ensure

9readdir, which returns one entry at a time, is implemented in GNU libc using
getdents. This decreases the total number of system calls necessary to transfer the data
to user space.

10A recursive spin lock or mutex (depending on the architecture), which was used to
make sure only one task is running kernel code at a time when Linux was being ported to
multiprocessor platforms. Nowadays it is mostly used in legacy code where replacing the
big kernel lock use by a more local synchronization mechanism is not worth the effort.
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that if the data cannot be written to the underlying file system, the
application calling close will receive an error code—there would be no
other opportunity to notify the application about the error if this were
the only file descriptor available to the process calling close.

The second operation, release, is called when there are no more ref-
erences to the open file state and the open file state is being freed. If
the file system driver is keeping private data in the open file state, it
can provide this operation to deallocate the data.

• A fasync operation notifies the file system that a value of the FASYNC

flag has changed for the file state. If supported by the file system,
the process “owning” a file state with the FASYNC flag receives a signal
when the underlying file can be used without blocking[6]. Whether a
file is considered usable without blocking should be consistent with the
values returned by poll.

• The sendfile and sendpage operations are variants of the read and
write operations for files using the page cache. While read copies the
read data to user space, sendfile calls a specified callback function
with a reference to the memory page containing the data. Similarly,
sendpage writes data specified by a reference to a memory page instead
of copying data from user space. These operations can be used by the
sendfile system call to copy data from one file to another (usually
from a regular file to a network socket) without copying it to user
space and back.

The splice_read and splice_write operations provide a similar func-
tionality, using a pipe as an intermediary buffer. The splice_read

operation “reads” data from a file by collecting the relevant pages from
the page cache and attaching references to them to a destination pipe.
The splice_write operation writes data contained in a pipe to a des-
tination file. These operations are used to implement the splice sys-
tem call. Compared to sendfile and sendpage, the splice_read and
splice_write operations can, using the intermediate pipe buffer, op-
erate more than one page at a time (possibly reading from the input
file and writing to the output file in parallel, using separate threads).
For file systems that implement sendpage and can’t benefit from op-
erating several pages at a time, a generic version of splice_write,
implemented using sendpage, is available.

There is one more difference between the sendfile / sendpage and
splice_read / splice_write operations. The sendfile system call
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is expected to fail with EINVAL if it cannot perform the operation with-
out copying the data, so the sendpage operation should not be imple-
mented by file systems which would copy data from the supplied page.
On the other hand, such file systems may implement splice_write,
by using a generic implementation which copies the data.

• The get_unmapped_area operation can be provided by file systems
with additional requirements on the addresses passed to mmap. The
main user of this hook is hugetlbfs, used to map physical memory
(reserved in advance for the purpose) using higher-level page table en-
tries.

• The check_flags operation can be used to impose additional restric-
tions on open file state flags modified using the fcntl(. . . , F_SETFL,

. . . ) operation.

• The dir_notify operation is called when an user-space process re-
quests to be notified about modifications to a directory. dnotify, the
user-space interface to this feature, has been obsoleted by inotify,
mainly because to use dnotify, an application has to keep the watched
directory open, which makes the watch intrusive because file systems
with open files cannot be unmounted. inotify does not need any sup-
port from the file system driver because it does not report directory
modifications performed on a remote file system by the server or other
clients.

• The lock operation can be used to override the default (local) imple-
mentation of the fcntl file locking. The flock operation can similarly
override implementation of the flock system call.

The following POSIX operations cannot be implemented by file system
drivers:

• The posix_fadvise operation, which advises the kernel about future
use of a specified part of a file. Linux uses this information to tune
read-ahead for file systems that use the page cache, uniformly across
all file system types. All file systems therefore automatically benefit
from the advisory information without any additional code.

• The posix_fallocate operation is not implemented in any released
Linux kernel, although an implementation has been merged and will
probably be available in Linux 2.6.23.
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• The pathconf operation is not implemented in Linux. A subset of the
information can be obtained using the *statfs* system calls.

The unavailability of the posix_fallocate and pathconf operations does
not automatically mean Linux cannot be POSIX compliant, it would be
sufficient to implement them in the C library. GNU libc provides an ineffi-
cient, but correct implementation of the posix_fallocate operation. The
pathconf operation is provided as well, but not all requested information is
available to the calling application.

Quota files, if supported by the file system, are handled specially: they
are not cached, and on journaling file systems modifications to the quota
database should be performed in the same transaction as the related file
system operation. The file system driver therefore must provide, at minimum,
specialized operations to read and write data from quota files. It also must
cooperate with the quota database before allocating and after freeing data
blocks and inodes.

Linux file systems usually cache file data in memory, using the page cache:
data contained in each inode is logically split into page-sized chunks, and each
chunk may be present in the page cache. The file operations used by the page
cache code to read and write data are provided by the file system driver in a
separate struct address_space_operations11. At minimum, a read-write
file system driver needs to implement the following operations:

• The readpage operation starts (possibly asynchronously) reading file
data to a page.

• The writepage operation starts (possibly asynchronously) writing a
modified page to the underlying file.

• The prepare_write and commit_write operations are used to imple-
ment the *write* system calls. The prepare_write operation is called
before copying data from user space, and the commit_write operation
after copying the data. Both operations are called with an exact spec-
ification of the byte range to be modified, not only a reference to the
affected page.

On block device-backed file systems, the prepare_write operation usu-
ally makes sure the relevant blocks are allocated, and if the write op-
eration partially affects blocks which contain older data, it reads them

11The page cache implementation is somewhat independent of the file system layer,
referencing “address spaces” instead of inodes. In practice, there is exactly one non-inode
address space, used to keep track of anonymous pages that are both stored in the swap
space and present in memory.
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to the page. The commit_write operation marks the relevant blocks
dirty.

Using these operations, instead of only readpage and writepage, al-
lows overwriting existing files without having to read old data from
the file system if the *write* system calls are suitably aligned. File
systems drivers can also use the more specific information, e.g. to write
only the affected blocks to a journal instead of writing the whole page,
or to send only the modified data to a network server instead of sending
the whole page.

Other operations may be implemented by the file system driver if a very tight
integration with the page cache is necessary.

2.3.2 Linux Data Representation

Operation flags and parameters use the system call ABI, to the extent it is
relevant; many data structures and constants are used only for the Linux
file system interface. If the platform supports several system call ABIs,
or several versions of a particular interface (the layout of struct stat is
a notorious example: four versions of struct stat are supported on the
x86 64 platform, three of them only for compatibility with i386), the generic
kernel code converts the data to a single representation which is used in the
file system driver interface.

File names are strings of arbitrary bytes, terminated by the NUL charac-
ter. The special file names “.” and “..” are handled in the generic code, so
the file system driver does not need to implement them, and it cannot over-
ride their semantics. The file system driver still must return them among
the entries returned by the readdir operation, though.

File names in a path are separated by slashes and no special handling
is performed for the POSIX-reserved path names starting with two slashes.
The file system driver interface does not use path names; path name lookup is
performed in the generic code, using the lookup operation to resolve separate
path components. The result of a path name lookup is a dentry reference,
which uniquely identifies the path within a single file system.12 All file system
operations reference files using dentries and inodes. Path names for files
which might not exist yet are represented as a dentry referencing the parent
directory and a file name within that directory. The symlink and readlink

operations are an exception: the symbolic link contents are passed through

12To identify the path within the whole set of valid absolute paths, a reference to a
struct vfsmount representing the mount point of the file system is necessary because a
single file system can be simultaneously visible under more than one mount point.
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the generic file system code as an uninterpreted NUL-terminated string. This
matches the UNIX practice, where arbitrary data can be stored in a symbolic
link, even if it does not currently form a valid path name. It also allows
special symbolic link semantics within a file system (e.g. “variables” within
the path, which are substituted by the host name or the architecture of the
system).

Other than handling slashes, NUL, “.” and “..”, the generic code does
not try to interpret the file names in any way, and it makes no assumptions
about the character encoding used for the file names. On some systems, two
or more encodings might be used at the same time, possibly within a single
file system, or even within a single path.

This is simple and easy to implement for local, UNIX-like file systems,
but network file systems, file systems such as NTFS or VFAT which store file
names in Unicode, and file systems with case-insensitive file name matching
need to know the used character encoding. In Linux, this was traditionally
solved by using a file system-specific mount option to specify the encoding.
Because the only practical way a generic application can handle file names is
to assume they are all using the character encoding specified by the LC_CTYPE
locale category, the character encoding should be a system-wide (or at least
chroot-wide), not a per-file system parameter. This is supported in Linux
using the CONFIG_NLS_DEFAULT compile-time option, which is used to provide
a default character encoding if no mount option is specified.

As described above, files within a file system are identified using paths
or dentry references. The generic file system code does not work with inode
numbers at all, it only copies them from data provided by a file system driver
to user-space. Providing unique inode numbers on some file systems is very
hard, though: some file systems, including ZlomekFS, use file identifiers too
large to fit within in the inode numbers, and on some file systems, e.g. a
virtual file system which allows “mounting” a remote FTP server, files can
be identified only by their paths. If there is no way to algorithmically derive
a unique inode number from a file identifier, the file system would need to
maintain a mapping of file identifiers to inode numbers.

If maintaining the mapping requires allocating storage for each mapped
inode number, the POSIX requirement implicitly limits the number of files
on a supported file system by the storage space necessary to store the inode
number mapping (after a single (find /mount point) command, the inode
number for each file is selected and it must be preserved until the file system
is unmounted). This makes the POSIX requirement impractical for very
large file systems (in the extreme case, using such a file system would require
using additional disk space for storing the mapping because it can’t fit in
the system memory), therefore some file systems don’t provide the required
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guarantee.
On Linux, a subset of the requirement is typically implemented by using

the inode cache to maintain the mapping between files and inode numbers:
as long as the file is in the inode cache, its inode number is constant. When
a file is not in the inode cache, it is added into the cache and assigned an
inode number which doesn’t conflict with any other file in the inode cache.
As long as a single application does not store inode numbers for a very long
time, and the system is not under extreme memory pressure, applications
will usually not see two different files with a single inode number; on the
other hand, it is likely that some application will eventually notice a single
file with two different inode numbers. This implementation is used e.g. in
the Linux smbfs and vfat file systems.

2.4 FUSE Kernel Protocol

FUSE uses /dev/fuse, a character device, for communication between user
and kernel space. Before mounting a FUSE file system, the fusermount

utility opens /dev/fuse, which creates an unassociated device context. If
this succeeds, fusermount mounts a fuse file system to the desired mount
point, passing the /dev/fuse file descriptor as a string among other mount
options, which associates the device context with the mounted file system.
The file descriptor is then transferred over a socket to the main user-space
file system driver.

File system requests from the kernel are queued in the device context
and the user-space driver can read them using the read system call. Each
read system call copies exactly one request to user space (if the request is
larger than the supplied buffer, the request is aborted). After processing the
request, the user-space driver uses write to pass a response to kernel; again,
each response must be copied using exactly one write system call.

The user-space driver may read more than one request from the kernel
before sending any response, and it may return responses out of order. Each
request and response contains a 64-bit request identifier to allow matching
responses to replies. If the task which created the request is interrupted by
a signal, a pending request may be canceled by sending an interrupt request
to the user-space driver.

2.4.1 FUSE File System Operations

The FUSE request types reflect the Linux file system interface, with opera-
tions that assume direct access to kernel data structures replaced by simpler,
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although perhaps less efficient, operations (e.g. readpage, readpages, read,
aio_read are all represented by a single “read” request type). The following
Linux functionality is not supported in FUSE:

• As described below, no write caching is supported by FUSE to prevent
denial of service by malicious file system drivers. For the same reason,
read-write mmap operations (with both PROT_WRITE and MAP_SHARED)
are not supported.

• ioctl. Instead of being a specific operation, ioctl is a way to multi-
plex file-specific system calls with a single parameter. The parameter
is often a pointer to a structure in memory, which further describes the
request, and may point contain other pointers to more data structures.
To implement ioctl in full, a FUSE file system driver would have to
be able to arbitrarily read and write to the memory of the process call-
ing ioctl. Because the FUSE file system drivers are expected to be
potentially malicious, this capability is not provided.

Although it is possible to design a safe subset of ioctl (e.g. similar to
the Windows DeviceIoControl call), this is not necessary in practice
because ioctl is very rarely used on regular files and directories, and
other file types are handled in the kernel proper without forwarding
requests to FUSE. The primary ioctl used on regular files and direc-
tories is FIBMAP, used by low-level tools to retrieve the block number
used by the file system to store a specific block of a file on the underly-
ing block device. This single ioctl is supported by FUSE, as a special
“bmap” operation.

• posix_fadvise, posix_fallocate and pathconf, because these oper-
ations are not exposed by Linux to file system drivers.

• dir_notify, an obsolete interface specific to Linux.

• poll, *select and the FASYNC flag. This functionality is traditionally
only used on sockets, pipes and character device files, which are all im-
plemented in the kernel proper without help from file system drivers.
Although implementing poll or pselect for regular files might be use-
ful if file operations have high latency (which is often true for network
file systems implemented using FUSE), POSIX, consistent with his-
torical practice, currently requires that state of regular files is always
reported as ready for both reading and writing.

• Disk quotas.
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2.4.2 FUSE Data Representation

Operation flags and parameters use the local ABI for constants (e.g. the
O_* flags). Composite data structures (e.g. the struct stat-like data re-
turned by the “getattr”) operations use FUSE-specific layout, using platform-
independent types, instead of the local ABI. This reflects the Linux multilib
implementation, which shares the constant values to reduce the necessary
complexity of the ABI translation layer, but may use different data types
and structure layouts in the 32-bit and 64-bit ABI. The user-space FUSE
library shields the user-space drivers from the FUSE-specific layout, using
the local ABI for representation of all data and converting the data between
the local ABI and the FUSE-specific layout.

File names are represented by arbitrary NUL-terminated sequences of
bytes, without specifying their encoding.

Open file states are identified by a 64-bit file handle, chosen by the user-
space driver when opening the file, and passed to the driver on operations
performed using the handle. Because the file handle is never revealed to
other processes, the user-space driver can use a pointer to its internal data
structure as the file handle. The operations on open files all also pass the
necessary inode numbers and the current position within the file data (if
necessary), so user-space drivers may be implemented without keeping any
state for open files.

Files within a file system are identified by a single 64-bit inode number,
chosen by the user-space driver. As noted in section 2.3.2, this is not sufficient
to identify files on all file systems. Because the FUSE interface notifies the
user-space driver when an inode is removed from the inode cache, FUSE file
system drivers can implement a mechanism similar to using the kernel inode
cache to maintain a subset of the mapping between file identifiers and inode
numbers. Although implementing the mapping in user space is more difficult
than using the inode cache by kernel-space file system drivers, the user-space
driver may be able to perform the mapping more efficiently (e.g. by directly
using the inode numbers of the underlying file system if they fit) and the
storage necessary to store the mapping can be swapped out under memory
pressure. The FUSE library also provides a simplified API that identifies
files only by full paths from the file system root, keeping inode numbers
completely hidden from the file system driver.

Preliminary support for serving FUSE file system over NFS is available in
the FUSE repository, but it has not been merged to the Linux kernel yet. An
NFS file handle consists of (only!) the lower 32 bits of the FUSE inode number
and a generation number. The FUSE kernel protocol transfers the generation
number, but it is not exposed in the FUSE library API. File system drivers
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therefore cannot specify the generation number, and cannot avoid accepting
stale file handles if the inode has been deallocated and allocated to a new
file. The above-described simplified API, which hides even inode numbers
from the file system driver, keeps the generated inode numbers small enough
to fit in 32 bits, and uses the inode generation number as higher 32 bits of
the inode number. But because the mapping between file paths and inode
numbers is maintained only as long as the inode is present in the kernel inode
cache, NFS operations may fail with spurious ESTALE errors if a file has not
been used for a while.

By default, FUSE file systems can be only used by the unprivileged user
who mounted them. If allowed by the system administrator, files on FUSE
file systems can be accessible by other users. In that case, all access decisions
are performed in the user-space driver, based on the user ID, primary group
ID and process ID of the process attempting to perform the operation, which
are transferred as a part of each request. Note that supplementary group IDs
are not passed to user space this way; there may be as many as 65536 supple-
mentary groups, which would impose an unacceptable overhead on request
processing. If necessary, the user-space driver can gather the supplementary
group IDs for the known user ID from the group database and keep them in
a local cache to avoid the per-request overhead. File systems implementing
the usual UNIX permission model may optionally leave the access decisions
to the kernel proper, using the st_mode, st_uid and st_gid file attributes;
this handles supplementary group IDs automatically.

2.4.3 Caching in FUSE

Because FUSE request handling has considerably larger overhead than call-
ing a kernel-mode operation implementation, results of the most often used
operations are cached in the kernel. The most important case is the “getattr”
operation, used to populate the kernel struct inode with file attributes and
to update the attributes for the *stat operation. Therefore, the returned
file attributes include a timeout specifying how long to use the returned data
without performing another “getattr” request.

The second important case is the “lookup” request, used to find the inode
number for a file identified by its parent directory and name. Because it
would be immediately followed by a “getattr” request, the “lookup” response
includes the file attributes. The “lookup” responses are automatically cached
in the Linux dentry cache. The Linux dentry cache contents are dropped only
in response to memory pressure, which suits the block device-backed file
systems where the kernel is the only entity modifying the data. For network
file systems, where the “lookup” results may become invalid without any
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activity of the client computer, the Linux dentry cache uses a revalidate

callback, which allows the file system driver to declare the dentry cache entry
stale. FUSE cannot forward this callback to user space, because the overhead
would be very similar to simply using a “lookup” request; the dentry cache
would provide negligible benefit in that case. FUSE therefore uses a simpler
mechanism, again allowing the user-space driver to define a timeout for the
validity of the lookup results.

File data is automatically cached in the Linux page cache. While open-
ing a file for reading or writing, the user-space driver may specify that the
page cache should be completely bypassed and the “read” and “write” re-
quests should be passed unmodified to the user-space driver. Otherwise,
the page cache is used, without any associated timeout, and the user-space
driver can request invalidation of the cache for the whole file while the file
is being opened. This is sufficient for basic network file systems with little
or no changes to files (e.g. “mounting” anonymous FTP server), where the
page cache is invalidated if the file modification time has changed since the
previous open.

The Linux implementation of FUSE passes all writes to the user-space
driver immediately (“write-through”) to prevent a denial of service: if the
operating system attempts to write out a dirty cache page, allocation of
additional memory should be minimized while writing the data out. This
can be handled in kernel-space file system drivers or cooperating user-space
drivers, for example by preallocating enough memory in advance. Because
FUSE is designed to allow untrusted user-space drivers, it cannot rely on
the user-space driver to avoid such allocations. A malicious user-space driver
might intentionally create separate processes (“memory hogs”) that try to
allocate even more memory. While completely avoiding memory exhaus-
tion in a general-purpose operating system without significant performance
sacrifices is difficult, the operating system always has the option to kill an
user-space process which has allocated excessive amount of memory. With
FUSE, killing the memory hogs would not solve the problem because the
dirty cache pages would still remain allocated. The guilty user-space driver
can avoid being killed by holding a very small amount of memory allocated;
the kernel would eventually have to start killing completely unrelated pro-
cesses in order to free memory. An implementation that limits the number
of outstanding dirty pages per file system was proposed in February 2007,
but it did not prevent users from mounting hundreds of FUSE file systems
to avoid the limit.
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2.5 ZlomekFS Kernel Protocol

The ZlomekFS kernel module uses a subset of the ZlomekFS network proto-
col to relay file system operations to the user-space server. In addition to the
basic operations used in the kernel protocol, the network protocol also sup-
ports connection authentication, merging of changes on conflicts, and volume
configuration changes.

Similarly to FUSE, requests to the user-space driver are queued and made
available to user space by a character device. The user-space driver can
read requests from the device, and write replies. Multiple requests may be
outstanding at once, with a request ID used to match replies to requests.
Mounting ZlomekFS is much simpler than mounting FUSE file systems be-
cause ZlomekFS is not designed to be mounted by unprivileged users and
because only one ZlomekFS mount can be mounted at a time, which makes
the privileged fusermount utility and the complex mechanism for associating
mounts and instances of opening the character device unnecessary.

The ZlomekFS protocol operations are even more similar to Linux op-
erations than the FUSE operations because the extra flexibility to handle
different kinds of file systems is not necessary. The operations not supported
by FUSE are not supported by the ZlomekFS protocol either, with the ex-
ception of write caching and writable mmap operations—again, ZlomekFS is
not designed to be mounted by unprivileged users, so there is no danger of
a malicious driver intentionally exhausting system memory. In addition, the
ZlomekFS protocol does not support extended attributes and exporting over
NFS.

2.5.1 ZlomekFS Data Representation

Like the ZlomekFS network protocol, the kernel protocol uses platform-
neutral data structures and constants, independent of the local ABI, with
two exceptions: The file permission and mode bits (corresponding to the
st_mode member struct stat, except for S_IFMT), and the flags parameter
of the “open” and “create” operations, use the local ABI to define flag val-
ues. The UNIX values of the permission and mode bits are well-known and
rather commonly hard-coded in applications, so using the local ABI instead
of translating the values bit by bit is safe in practice. This unfortunately
cannot be expected of the O_* flags (the non-O_ACCMODE flag values differ
significantly between Linux and FreeBSD, for example).

File names are specified by arbitrary NUL-terminated sequences of bytes,
without specifying their encoding.

Files within a ZlomekFS file system are identified by their file handle, a
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quintuple of integers specifying the server storing the master version of the
file, the volume on the master server, the device and inode on the underlying
file system on the master server, and a generation number. Reserved values
for some of the integers are used to carve out name space for virtual direc-
tories and directories representing merging conflicts. The ZlomekFS kernel
module uses the kernel inode cache to assign inode numbers for files currently
represented in the inode cache, as described in section 2.3.2.

The ZlomekFS server does not keep any state about open files for the
client (in this case, the kernel): the file position is stored by the client and
the “read” and “write” operations specify the position. Capabilities formed
by concatenating a file handle, the granted access mode, and an authentica-
tor, are used in the protocol to verify the client can perform the requested
operation. A client receives a capability in a reply to a “create” or “open”
request, and it can release it using the “close” request. If a client has more
than one capability for the same file with the same access mode, they can be
used interchangeably. For the client, capabilities are stateless, at least until
invalidated by closing them.

The ZlomekFS server, as currently implemented, treats ZlomekFS capa-
bilities as stateful: for each capability handed to a client, it stores a capability
used for accessing the master server. The authenticator in the capability is
not a cryptographic authenticator, but merely a string of random data, and
a capability is considered valid if the server is currently holding state for a
capability with the same authenticator.

As a network file system using the UNIX permission model, ZlomekFS
needs a single name space of user and group identifiers over the whole set
of interconnected systems. It implements such a name space by maintain-
ing a shared configuration file which maps user and group names to integer
identifiers, and by specifying the mapping between local UIDs and GIDs and
ZlomekFS user and group names locally on each connected system. The UID
and GID fields in the ZlomekFS protocol contain the identifiers maintained
in the global database in structures transferred over the network, and local
UIDs and GIDs in structures transferred between the kernel and the local
server.

2.5.2 Caching in ZlomekFS

The basic caching mechanisms in the ZlomekFS kernel module are similar
to FUSE: results of many operations return file attributes along with their
main result, the page cache is used to store file data, and the data returned
by the “getattr” and “lookup” requests is cached in the kernel inode and
dentry cache, respectively. The timeout after which data stored in the inode
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and dentry cache expires is fixed, not specified by the user-space server.
Usually it is acceptable if modifications performed on a network file

system by another client are visible locally only after a few seconds, but
ZlomekFS uses directories to present a “user interface” for file conflict reso-
lution: when the user selects one of the presented file versions and removes
the other, the user has effectively given a command to the “file system ap-
plication”, and expects some response by the application—in this case, the
conflict resolution directory should be replaced by the user-designated “cor-
rect” file. If the file system creates a conflict directory X /file containing
versions file-A and file-B, the user removes file-B and returns to di-
rectory X, the inode and dentry cache entries relevant for file should be
immediately invalidated; otherwise, the user would still see that X contains
a subdirectory file (although in the ZlomekFS internal state, file already
refers to file-A, the chosen file verson), and even worse, attempts to enter
that subdirectory would fail with a “not a directory” error. Such a user
experience would be very confusing and frustrating.

That’s why the ZlomekFS protocol supports an asynchronous “invali-
date” notification. Unlike operation requests made by the kernel to the
user-space server, the “invalidate” notification is sent by the server to the
kernel whenever the server modifies attributes of a specific file. The kernel
module looks up the affected file by the specified file handle, and marks the
cached “getattr” and “lookup” results invalid.

On “cached volumes” (volumes which have a remote master server, but
store a local copy of the data), additional care is necessary to safely synchro-
nize data modifications between the local system and the remote server. This
synchronization is performed by the user-space daemon, which contacts the
remote server to determine if a synchronization is necessary when looking up
the file, while opening it, and before closing it (if the file is open multiple
times, the check is performed on each close by a client). Before synchronizing
regular files, there must be no dirty data left in the page cache, and the page
cache contents must be treated as invalid after the synchronization. The
ZlomekFS kernel module automatically writes out all modified data before
each close of a file, and invalidates the page cache after closing the file. Inval-
idating the page cache after each close of the file is not strictly necessary, the
page cache needs invalidating only after the local copy of the file is modified
by a synchronization.
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2.6 The Vnode Interface

The file system interfaces used on of BSD-derived UNIX operating systems
are derived from the vnode interface[7], which was originally implemented in
SunOS[8]. This section describes the variant of the vnode interface currently
implemented on FreeBSD[9, 10].

The references to the implementation of the single supported file system
by the rest of the original UNIX kernel were replaced by references to a “vir-
tual file system” in the vnode interface, and references to inodes were replaced
by “virtual inodes”, or vnodes. The “virtual file system” code calls functions
provided by file system drivers to provide the requested functionality.

Compared to the Linux file system interface, the vnode interface is sim-
pler because the generic FreeBSD code handles only the necessary minimum
(e.g. vnode reference counts and mandatory access control). Other com-
monly used routines are optional and used only if explicitly called from the
file system driver. The only mandatory “cache” in the Linux sense is the
vnode allocation pool, which lets file system drivers keep unused vnodes in
memory. In Linux, on the other hand, as much as possible is implemented
in the generic code, and only the truly file system-specific actions are imple-
mented in file system drivers, even at the cost of more complex interface. For
example, the Linux dentry cache is mandatory and the interface of directory
operations uses dentry references; FreeBSD has a similar cache, but its use
is optional and the file system driver must take care to correctly invalidate
cache entries while performing directory modifications. Even basic UNIX
permission checking is done in the generic code in Linux, but in the file sys-
tem drivers in FreeBSD. The FreeBSD file system drivers necessarily contain
a lot of duplicate, or nearly duplicate, code.

2.6.1 Vnode File System Operations

The file system driver provides file system-level operations as function point-
ers in a struct vfsops. Apart from mounting and unmounting a file system,
and operations corresponding to POSIX operations, the following operations
are provided:

• The root operation returns the vnode representing the root of the file
system.

• The quotactl, extattrctl and sysctl operations are used for file
system-specific operations on the file system invoked by system calls
with corresponding names, like ioctl is used for file-specific opera-
tions. The generic code only translates a path parameter into a vnode
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reference. Note that quotas, if supported, must be completely imple-
mented in the file system; no generic quota database maintenance code
is provided.

• The checkexp and fhtovp operations are used for serving the file sys-
tem over NFS. The fhtovp operation returns a vnode representing the
specified file handle, and the optional checkexp operation can be used
to prevent accessing the file system over NFS.

• The vget operation returns a vnode for the specified inode number.
This operation is necessary for the NFS server (to look up all vnodes
in a directory in O(N)—reading names of all entries and looking up
vnodes by name would take O(N2) time). Many FreeBSD file system
drivers call the vget operation from their own struct vfsops instead
of calling their implementation of the vget operation directly. Because
the vget pointer is never modified after registering the file system,
there appears to be no reason for this indirection, and it seems likely
it was simply copied from one file system driver to another.

Operations on single vnodes are provided in a struct vop_vector refer-
enced by the vnode. The POSIX file and directory operations are provided,
with the following differences and additional operations:

• The O_CREAT flag is handled using a separate create operation.

• Two operations are used for file name lookup: the lookup operation
is called by the generic kernel code to return a vnode for a file, given
its parent directory and a file name. This operation must handle the
“.” and “..” entries (except for “..” in a mount point). To use the
optional lookup cache, the file system driver moves the implementation
of lookup to the cachedlookup operation, and uses a generic imple-
mentation of the lookup request.13

• A single setattr operation is used to implement the *chmod, *chown,
*truncate and *utimes operations.

• An advlock operation implements the flock system call and fcntl

file locking.

• The readdir operation implements a getdirentries system call. Like
getdents, it writes as many directory entries to the user-space buffer
as possible. In addition, it returns a file offset of the first returned
directory entry.

13Thus, the cachedlookup function is called when the lookup is not cached!
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• The whiteout operation allows creation and removal of whiteout di-
rectory entries. A whiteout directory entry stores only the file name
and an indication of the entry type in the directory; it has no associ-
ated content or attributes. It is used to stop lookups of a file name in
an unionfs directory without searching other underlying file systems.
Creation of a whiteout entry “deletes” a file from the unionfs view,
and removal of the whiteout entry “undeletes” the file.

• The lock1, unlock and getwritemount operations can be implemented
to completely replace the main vnode locking mechanism, and to asso-
ciate a different mount point with file system modifications. unionfs

and similar file systems implement these hooks to make sure the files on
the underlying file system are locked as well as the virtual files managed
by the virtual file system.

• The kqfilter operation is used to add a “watch” on file events, so
that the events are reported to user space via the kqueue interface[11].

• The revoke operation implements a system call with the same name,
making all file descriptors currently referring to a character device in-
valid.

• There are three operations for access to and interpretation of ACLs,
and six operations for access to extended attributes. If a file has a
MAC label, it is stored as an extended attribute, but modification of
the label is performed using a separate setlabel operation.

• To implement mmap, the getpages operation reads data into the spec-
ified pages, and putpages writes data from the specified pages to the
underlying file. Generic implementations are available for disk-based
file systems, using a bmap operation to find which disk blocks to read
to the pages, and a write operation to write out dirty pages. Note
that the memory-mapped pages are not used as a file data cache, and
file system’s read and write operations use only the buffer cache.

• To use the buffer cache, disk buffers are attached to the vnode, indexed
by the “logical” block number (within vnode’s data blocks), and a
strategy operation of the vnode is used to perform I/O on the buffers.
This operation translates the logical block number to a physical block
number (within the underlying block device) if the translation is not
already cached for the buffer, and forwards the I/O request to the block
device.
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• To make the read and write operations more efficient, the I/O may
optionally be performed in clusters of more than one block. To do this,
the bmap operation returns, along with the physical block number, the
number of blocks before and after this block that are allocated on the
disk continuously (as far as it is easy to determine this information,
e.g. until encountering an indirect block boundary). The file system
driver can also support a limited form of online defragmentation by
implementing the reallocblks operation, which attempts to reallocate
specified blocks to be contiguous on disk.

• The vptofh operation returns an NFS file handle for the specified vn-
ode.

2.6.2 Vnode Data Representation

Operation flags and parameters reuse parts of the system call ABI. The
most significant exception is the representation of vnode attributes using a
struct vattr instead of struct stat.

File and path names use the traditional UNIX convention, described in
detail in previous sections.

The generic file system code in FreeBSD uses vnode references for file
identification. Inode numbers and NFS file handles are available only if the
file system can be exported over NFS.

Open file states are represented using a struct file. Each open file
state has an associated struct fileops pointing to implementations of file-
specific operations. A file system driver may associate an struct fileops

with the file state while the file is being opened. Most file system drivers,
however, use the default implementation of struct fileops, which simply
calls the corresponding operations from struct vop_vector. Curiously, the
relevant struct file is not available to any of the called vnode operations
except for open and close, even though the struct file is available to
struct fileops.

2.7 9P2000

9P2000[12] is a file system protocol used in the Plan 9 and Inferno oper-
ating systems. Unlike the traditional UNIX file system, which uses device
files, even if stored on a remote file server, only as a way to communicate
with device drivers on the local kernel, 9P was designed to provide a general
interprocess communication mechanism on a microkernel-like operating sys-
tem. When resources accessible to a process are represented as files within a
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single name space, manipulating the name space allows transparent resource
sharing (e.g. replacing a “mouse pointer” device by a connection to a virtual
device provided by a window system) and distributed operation[13].

The protocol provides only operations to create and delete files, read
and modify their attributes, open and close them, and read or write data.
Although the protocol is small and simple, it presents an unconventional
approach to file system interface design.

The most important difference of 9P2000 from the other file system in-
terfaces described in this thesis is its implementation of path lookup and file
identification. Other interfaces are based on a file identifier which, although
possibly short-lived, refers to a single file throughout its lifetime: an inode
number, pointer to an inode cache member, or a file path (either absolute,
or relative to a specific directory). 9P2000 uses “cursors” instead: during
the initial connection to the file system server, the client obtains a file ID
for the root directory of the file system. To reach other files, it uses a walk

operation to obtain a file ID for a file identified by a path (not necessarily a
single file name) relative to the root directory. The path operand of the walk
operation is limited to 16 segments, for larger paths it is necessary to use the
walk operation repeatedly. The repeated walk operations can be instructed
not to create a new file ID for the result, but to move the base file ID to the
new path.

The open operation has no file name or path parameter. It only checks
client’s permission to access a file specified by its file ID and prepares the file
for ID later read or write operations. The file ID is then used to identify
the open file state, and it cannot be used for walk operations.

This decoupling of path lookups from other operations simplifies modifi-
cation of the directory structure (either by writing an intermediate server, or
within the Plan 9 kernel) because it is necessary to intercept only the walk

operation, and maybe the wstat operation (used to modify file attributes)
to intercept file renames.

In addition to the volatile file IDs, each file has a 64-bit identifier, which
should be unique not only among all currently existing files on the file sys-
tem, but also among deleted files and files which will be created in the future.
The path ID is returned by the the create, open and stat operations. In
addition, walk returns path IDs not only for the target file, but for all di-
rectories along the specified path. Like UNIX inode numbers, the path ID
can only be used to check whether two paths refer to the same file, it is not
possible to look up a file by its path ID.

The 9P2000 protocol supports read-only caching of data by using a “ver-
sion” attribute for all files, and providing it to the client whenever a path
ID is provided (the path ID, file version and file type identification together
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form a “qid”). In particular, the client can compare the version number re-
turned by the open operation with the version number of cached data, and
invalidate the cache if the version numbers differ.

Although the 9P2000 protocol is lightweight, with no obvious “warts”
(e.g. compared to the large portion of the CIFS protocol which is kept or
defined only to preserve backward compatibility), it has several significant
deficiencies:

• On error, the server returns only an error message (a string in UTF-8).
The contents of the string are completely arbitrary, so the client can-
not automatically handle specific errors (for example, a logging system
cannot automatically delete old log files if the file system runs out of
space). Because the file server has no information about the language
used by the ultimate human user, it cannot return an appropriate error
message.

In the worst case, both the client application and the user only know
that something has failed, and neither has any information about the
cause of the problem.

• There are only two ways to open files: the create operation creates a
new file, and fails if a file already exists, and the open operation opens
an existing file, and fails if it is not present. The protocol does not
provide a way to atomically open a file, creating it if it does not exist.
The Plan 9 kernel attempts to support the functionality by trying to
use the open, create, open requests in order, but that can still fail
if another process is concurrently creating and deleting a file with the
specified name. In that case, the request to open a file, and create if it
is not found, would fail with a nonsensical “file not found” error.

• File IDs, used to identify the “cursor”, are allocated by the client. This
might require additional code on the server because the server cannot
use “natural” identifiers (e.g. an index within a static table) for shared
state, and it is forced to use a data structure storing a mapping between
state identifiers and server’s data.

In theory, allocating identifiers by the client should simplify the client’s
code: some very simple clients might use only two or three file IDs
during the whole lifetime of the process, using compile-time constants
instead of variables to refer to file ID values. In practice, simplification
of client code is unlikely.

The most important 9P2000 client in Plan 9, the kernel, mounts many
separate 9P2000 servers to a single path name space. The state kept
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for a file object visible from user space must therefore at minimum
specify the server, and storing a server-generated file ID along with
server identification would be trivial. An user-space client connected
to a single server can use compile-time file identifiers, but only if the
application does not share the connection with third-party library code.
To share a server connection between independent libraries, it would be
necessary to implement a shared mechanism for allocating file identi-
fiers between the libraries, which would be unnecessary if the identifiers
were allocated by the server.

• The protocol does not provide any way to move a file from one directory
to another.

Finally, the protocol does not implement some widely used features. They
are arguably not really necessary in a file system protocol, and the function-
ality can be provided by other means (e.g. using the Plan 9 bind system call
to alter name space of a process instead of using symbolic or hard links, or
using a specialized server or a file system with efficient support for very small
files to implement a database library instead of implementing server-side byte
range locking), but considering the large amount of software that relies on
these features, 9P2000 is unlikely to replace the currently used network pro-
tocols.

To support some UNIX features missing in 9P2000, an extension called
9P2000.u[14] was implemented. It still does not support moving a file be-
tween directories and byte range locking.

2.8 CIFS

The CIFS protocol[15], known also as SMB, is the primary remote file access
protocol of the Microsoft Windows operating system. Because it is designed
to primarily support the Windows API, the detailed specification of the sup-
ported operations differs significantly from the POSIX and traditional UNIX
interfaces. During the more than two decades the protocol is used, the pro-
tocol has changed significantly, new flags were defined to identify support
for newer features and new operations were defined to replace their obsolete
variants. Neither the API differences between UNIX and Microsoft Win-
dows nor the evolution of the protocol over time are discussed in this thesis;
the following section focuses on features of the protocol that are relevant to
FUSE or could be used to design a more efficient interface.

Files within a file system are identified using paths, which are relative to
the root directory of the file system, or relative to an arbitrary previously
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opened directory. A client can therefore open a directory and then use paths
relative to the directory instead of retransmitting the full path each time,
and unlike the POSIX current working directory, a process can use more
than one base directory.14

To support client-side data caching, a client can request an oplock on a
file while opening it. If the server grants the oplock, the client may safely
cache data. The server may at any time ask the client to synchronize its
state with the server and to give up the oplock. Oplocks are granted purely
at the discretion of the server15, a client must be prepared to give up the
oplock at any time, and to use files for which the server did not grant the
requested oplock at all.

The weakest oplock is called “level II”: it guarantees no data is written
to the file while the oplock is held, so the clients holding a level II oplock
can cache data read from the server. A client holding an “exclusive” oplock
is guaranteed no other clients have the file open, so it is safe to cache both
read and written data and to manage file locks locally without consulting
the server. A “batch” oplock has the additional guarantee that other clients
won’t affect the file in any other way that could prevent its reopening (e.g. re-
move the file); it can be obtained if the client intends to close the file and
reopen it later. Because an oplock is automatically released when the file it
was granted for is released, the client which was granted a batch oplock must
not send the “close file” and “reopen file” operations to the server.

To minimize the number of round-trips necessary to perform a simple
operation, several operations can be transmitted as a single protocol request.
For example, a request could contain operations to open a file, read data
from it, and to close the file. The server would send a single reply, containing
the results of all three operations, in order. If any of the operations fails,
request processing is terminated and the server reply contains results of the
successful operations and an error code for the unsuccessful operation. Note
that the “read data” and “close file” operations operate with an unknown file
handle; the server implicitly substitutes the result of the first operation in the
request in place of the relevant handle parameter in all further operations.
To make this possible, the request is transmitted as a special variant of the
first operation (*_ANDX) and the other operations are formally transmitted
as data within the first operation.

The protocol further reduces the overhead of some operations by imple-
menting some high-level operations completely at the server side. The most

14A similar mechanism (openat and related operations) was implemented in Solaris and
will be specified by the next version of the POSIX standard.

15“Oplock” means “opportunistic lock”—the server may revoke the lock whenever it is
convenient.
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important of these operations is copying and moving complete files (without
copying data to the client and back). Several operations can use wildcards
to specify a group of files, so the client does not have to transfer the com-
plete contents of a directory over the network. Finally, the protocol supports
creating a temporary file with an unique name. This does not result in a sig-
nificant improvement if the client-specified file name is unique, but it could
save many round-trips if the sequence of file names proposed by the client
were not random enough.

2.9 NFS

Network File System is the most commonly used remote file access protocol
used by UNIX operating systems. Version 4 of the protocol[16] was designed
quite recently, based on the experience with both previous versions of NFS
and other protocols, such as CIFS. Because it is not compatible with previ-
ous versions of NFS, version 4 provided an opportunity to design a cleaner
implementation of the ideas developed for other protocols.

Unlike other file systems interfaces described in this thesis, the NFS pro-
tocol is designed to transparently recover from server crashes or other server
failures that have not corrupted the storage device. The RFC contains a
detailed description of the used mechanisms, their rationale and implemen-
tation advice. Although the mechanisms are non-trivial and interesting in
themselves, they are not described in this thesis because its author cannot
possibly describe them better than the protocol designers, and because they
are not relevant to design of FUSE (the FUSE transport mechanism is reli-
able, the user-space server has only one client, the kernel-space client is never
uncertain whether a server has crashed, and a crash of the client implies a
crash of the server). The reader is encouraged to refer to the RFC to learn
about these aspects of the NFS protocol.

Files on an NFS file system are primarily identified by their full path,
using UTF-8 and specified string canonicalization rules (without canonical-
ization, it is possible that visually equivalent strings which differ e.g. in use
of composing characters versus precomposed characters would be considered
different file names). This is a significant change from earlier versions of NFS,
which uses opaque file handles that are valid even after server reboot. As
described in section 2.3.2, it is not always possible to provide such file han-
dles, so NFS version 4 allows the use of “volatile” file handles, and it allows
using two or more different file handles to refer to a single file. A volatile file
handle may become invalid (even without a server crash); when it does, the
client needs to obtain a new handle using a full path to the file. The server
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may provide a “fileid” attribute that can be used by clients to check whether
two file handles refer to the same file, but supporting this attribute is not
mandatory.

Because all paths resolved by an NFS client are relative to a file handle,
the server provides two file handles: a file handle for the root directory of
the file system, and a file handle for a root of the “public” subtree of the file
system (for compatibility with WebNFS[17]).

To support a wide variety of client and server platforms, the set of file
attributes supported by the protocol is not completely fixed. Only a small
number of attributes is mandatory (file size is the only modifiable mandatory
attribute), most defined attributes are optional. All operations dealing with
file attributes use a bitmap to specify a subset of attributes which is trans-
ferred, and the result of operations that modify file attributes always includes
a bitmap of attributes that are supported and were actually modified. The
client can therefore determine which attribute values will be preserved by
the server, and maybe use an alternate mechanism for storing unsupported
attributes. In addition to the file attributes defined by the NFS protocol,
the server may support other attributes (identified by string names) and/or
user-defined extended attributes; both types are accessed as by associating a
virtual directory of attributes to each file.

Like CIFS, NFS supports performing more than one operation per a
roundtrip. Unlike CIFS, this mechanism is not limited to requests starting
with a special operation nor to operation sequences in which all operations
use a single file handle. The only available server request RPC is designed
to transfer a sequence of operations, so a request with a single operation is
simply a multi-operation request that contains only a single operation.

Instead of automatic rewriting of file handles in the requested operations,
the protocol provides two file handle variables (a current and a saved file
handle), and most operations implicitly use the current file handle, or both
the current and saved file handle. For example, the open operation stores
the file handle of the opened file as the current handle, a following read

operation uses the current handle, and a final close operation closes the
current handle. Another important example is the lookup operation, which
resolves a file name within the directory specified by the current handle and
replaces the current handle by a handle of the found file: the operation
does not support multi-component path names, but a client can chain many
lookup operations in a single request.16

16Note the difference between chaining of NFS lookups and the 9P2000 walk: walk
modifies a single file ID to point to a different file, NFS lookups change the value of the
“current handle” variable to a different file handle.
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The getfh and putfh operations can be used to read or write the current
handle if the client needs to work with more than one file at a time, and the
savefh and restorefh operations allow access to the saved handle.

The CIFS oplocks are called delegations in NFS.17 The delegations are
not coupled to an open file state, the client can close the file and reopen
it only before synchronizing state with the server. NFS introduces three
improvements to write delegations (corresponding to exclusive oplocks in
CIFS):

• An NFS client usually sends all file modifications to the server when
an application on the client closes a file to make sure some common
errors (running out of space on the file system or out of the assigned
quota) can be detected and reported to the application. A client that
holds a write delegation for a file might be able to avoid sending the
modifications to the server until the delegation is revoked and to send
only the final version of the file if detecting these errors were not nec-
essary. Therefore, when the NFS server grants a write delegation, it
may promise the client that any writes up to a specified maximum size
will not fail for other reasons than a media error.

• A client that owns a write delegation does not have to notify the server
about file attribute changes, so the server would have to revoke the
delegation to know the current attributes of a file. Because reading
of file attributes is very common (every readdir operation returns a
client-specified subset of file attributes) and there is no way to re-grant
a revoked delegation, NFS defines a callback which can be used by
the server to ask the client for the current state of the file attributes
without breaking the delegation.

• When an NFS server revokes a write delegation because another client
is requesting to open the file and truncate it to zero bytes, the server
can disclose this to the delegation owner. In that case the delegation
owner can simply discard its modified data and avoid sending them to
the server.

The NFS standard also requires clients that do not own a delegation to at
minimum check the file change time when opening a file and to invalidate its
caches if the file was modified since the cached data was obtained, and to send
all file modifications to the server before closing the file. Although a client
that does not hold a lock or a delegation on a file can never guarantee the data

17By granting the delegation, the server delegates performing operations to the client
without requiring the client to cooperate with the server.
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it uses is current, these requirements define at least minimum standard of
data consistency, in line with the most popular implementations of previous
versions of the protocol.

42



Chapter 3

Extensions to FUSE

This chapter discusses features of operating system interfaces described in the
previous chapter that are currently not available in the FUSE kernel protocol,
discusses possible extensions of the protocol to support these features, and
proposes a set of extensions to the FUSE kernel protocol.

3.1 Extensions Necessary for ZlomekFS

As described in section 2.5.2, two functions not provided by FUSE are nec-
essary to support ZlomekFS:

• The directory cache must immediately reflect creation and changes in
the virtual conflict directories.

This can be implemented either by using a very short validity timeout
for the dentry cache (effectively bypassing the cache and giving up its
benefits), or by allowing the user-space driver to notify the kernel that
a specific dentry is not valid anymore.

• The page cache must support file synchronization without becoming in-
consistent with the user-space driver: all modified data must be written
to user-space before last close (release) of a file, and the page cache
contents must not be considered valid after a synchronization that mod-
ifies the local copy of the file.

The trivial solution, to completely disable the page cache, is not correct
in this case, because the page cache (support for mmap, in particular)
is necessary to support executing programs stored on ZlomekFS. The
necessary behavior can be implemented primarily in kernel space, by
directly copying the ZlomekFS kernel module behavior (write data be-
fore last close and unconditionally discard the cache after closing the
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file) in the FUSE kernel module, and using it if it is enabled by a mount
option or by a flag in the data returned by the “open” operation.

Alternatively, the user-space driver can ask the kernel to discard the
cache when returning from the “release” operation. Similarly asking
the kernel to write data when returning from the “release” operation
wouldn’t work because the user-space driver would not be notified when
no modified data is left; the kernel would have to call a “prepare-
release” operation, optionally write modified data, then call the “re-
lease” operation, and optionally invalidate the cache.

Finally, the page cache changes can be completely decoupled from the
“release” operation by allowing the user-space driver to ask the kernel
to write out all modified data for a specific file, or to invalidate the cache
of a specific file, whenever the user-space driver considers it necessary.

3.2 Other Functionality Extensions

The descriptions of various file system interfaces above contain many features
that are not currently supported by FUSE. The primary constraint for FUSE
extensions is the requirement that it must be possible to use the new func-
tionality using the available system calls, without modifying applications to
explicitly communicate with the user-space driver. This currently excludes
the posix_fadvise and posix_fallocate operations, and support for many
features and properties of the CIFS protocol.

Features of other file system interfaces that are not currently supported
by FUSE are described in the following list:

• The dnotify interface, already abandoned by the Linux applications it
was designed for (GUI file managers), is probably not useful enough to
implement. In addition, the client processes are notified about changes
in a directory by a signal, and the user-mode driver, an untrusted
process, should not be allowed to flood processes of other users with
signals.

• The FreeBSD kqueue interface is, like poll, not very useful for regular
files. On directories it can be used to receive notifications about changes
in the directory, similarly to dnotify above.

• The FreeBSD revoke system call is only used on character devices, so
it is not relevant to FUSE.
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• The FUSE interface cannot enforce standardization of the character
encoding used for paths. Like any other kernel driver, the FUSE kernel
module does not know the encoding used by incoming data, so the
paths transferred over the FUSE kernel interface cannot have a specified
encoding. On the other hand, the user-space driver can, at least for file
systems that are private to the user that mounted them, and usually
even for file systems available system-wide, use the locale specification
in its environment to determine the correct encoding. This knowledge
can be used either when implementing clients for other file systems
that specify file name encoding, or to implement a “filter” file system
driver that forwards all request to another file system, converting file
names on the fly. A “module” that performs the automatic conversion
is actually already distributed with FUSE; unlike a complete file system
driver, the module is a shared library that runs in the address space of
the underlying file system driver.

• File system quotas could be useful if implemented by specific trusted file
system drivers, even though they do not make any sense for untrusted
drivers. File system quotas can currently be enforced by a FUSE file
system driver (except for notifying the user on the TTY on which the
restricted application is running), if the file system driver implements
access to quota data files (in particular, user-space drivers cannot use
the quota handling code present in the Linux kernel).

It is currently not possible to extend the FUSE protocol to portably
support transparent quota management (e.g. changing and recomput-
ing quotas) using the platform’s standard user-space tools. These tools,
at least on Linux and FreeBSD, access quota data files (or even the
block device underlying the file system) directly, and the quota data
file cannot have multiple formats at once. Therefore, each user-space
file system driver needs to be accompanied by its own set of file system-
specific quota management tools.

• The current implementation of serving FUSE file systems over NFS can,
as described in section 2.4.2, return spurious ESTALE errors. Although
support of persistent file handles can be avoided in NFS version 4, it is
necessary to support older clients.

To support UNIX-like file systems with persistent inode numbers and
a generation number stored in the inode, it is only necessary to add
support for the st_gen field of struct stat, as described later in this
section. No protocol extension is necessary to use more than 32 bits
of the inode number to represent file handles if the NFS file handle is

45



large enough. Unfortunately, the current design of Linux file handles
limits the size of directory file handles (inode and generation number
together) to ten bytes on NFS version 2, which is not enough to store
a full 64-bit inode number and a 32-bit generation number.

In general (to support file systems with persistent file identifiers that
cannot fit in 64 bits), it is necessary to delegate the interpretation of
NFS file handles to the user-space driver. To interpret file handles,
the protocol could be extended either by a “return inode number for
this file handle” operation, or by providing an “getattr for this file
handle” operation (which returns the inode number along with other
attributes). Returning only an inode number might be simpler if the
mapping between file handles and inodes is trivial, and it avoids trans-
ferring attributes if they are already cached by the kernel. On the
other hand, if the inode is not in the cache, two user-space requests are
necessary to use the inode. Because most of the overhead of an user-
space request (e.g. context switching and memory allocation) does not
depend on the size of transferred data, it would probably be more ef-
ficient to return all attributes along with the inode number: if the file
is not in the cache, there is one fewer request to make, and if it is in
the cache, the cache can be updated. To further reduce the number of
user-space requests, the FUSE kernel module could implement a hash
table of NFS file handles for files currently present in the inode cache.

The user-space driver could return an NFS file handle whenever it
returns other file attributes. Alternatively, a separate “get file handle”
protocol request could be used: this would save the overhead of creating
and transferring file handles for FUSE mounts that are not served over
NFS, at the cost of additional requests for exported file systems. Again,
most of the overhead does not depend on the size of transferred data,
so transferring the NFS file handle along with other attributes would
be the better choice for file systems that are served over NFS. The
vast majority of FUSE mounts are not served over NFS, though, and
“getattr” is a very commonly performed request (unlike both operations
proposed in the previous paragraph that use a file handle to identify a
file, which are both used only on NFS-exported file systems), and it is
possible that using a separate operation would result in smaller average
overhead, when measured over all FUSE users. When comparing worst-
case behavior, it is necessary to consider an NFS “readdir” operation,
which reads a directory and returns file names and a specified subset of
file attributes, usually including a file handle. It would be necessary to
perform a “get file handle” request for each returned directory entry,
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and user-space drivers that do not use natural inode numbers would
have to look up the file using its inode number, which could be very
inefficient when compared to simply returning the file handle along
with other data returned by “readdir”.1

If the NFS file handle were returned along with other file attributes,
the file system driver could choose not to provide a valid handle if the
file system would never be mounted over NFS; the user could provide
such a guarantee by using a mount option. This can be more efficient
if the overhead of mapping between “natural” file identifiers and NFS
file handles is significant, although that is unlikely. No additional ex-
tension of the FUSE kernel protocol would be necessary to support
such a mount option. In addition, if the file attribute structure used an
variable-length byte array to represent the NFS file handle, using such
a mount option could even avoid the cost of transferring unused NFS
file handles to kernel space. A file system driver could indicate it does
not support NFS at all by returning an invalid NFS file handle for the
root directory of the file system.

Although the above paragraphs suggest how the FUSE kernel protocol
could be extended for more general NFS support, the value of the
feature is rather limited. A malicious FUSE file system accessible over
NFS can be used to deny NFS service to other users by accessing the
file system over NFS and not responding to any file system requests,
causing the NFS server’s thread to block and to stop replying to other
NFS clients. This makes serving arbitrary FUSE file systems over NFS
undesirable on a multi-user machine.2

Fundamentally, in most cases it is possible, and probably more efficient,
to mount a FUSE file system on a client directly instead of exporting
it over NFS.

• Whiteout directory entries can be easily supported without extending
the FUSE protocol on host operating systems which support whiteout
entries, in particular the S_IFWHT file type constant. The mknod opera-
tion can be used to create the entries, and unlink to remove them. A
portable file system driver can check whether the S_IFWHT constant is
available during build configuration, and enable or disable support for

1It would be possible to replace the sequence of “get file handle” requests by a single
batch request, but the lookups by inode number are not easily avoidable.

2It is still possible to serve user’s home directories over NFS safely because the default
NFS configuration does not make file systems mounted in the subtree of an exported file
system visible to NFS clients.
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whiteout directory entries depending on the result.

• Similar approach can be used by file system drivers to support addi-
tional file attributes if they are present in struct stat. In this case,
however, a new protocol version would be necessary to actually transfer
the attributes between the kernel and the user-space driver.

Compared to POSIX and Linux struct stat, the FUSE file attribute
structure is missing a value of the st_blksize attribute. The file sys-
tem driver of a block-device backed file system can specify a block size
while mounting the file system; other file systems use PAGE_SIZE, the
default value.

Three more attributes are supported on FreeBSD: st_flags, st_gen
and st_birthtime. The st_flags and st_gen attributes are useful
only for system software. The st_birthtime stores information which
could be useful to the user, and a similar attribute is supported by
several widely used file systems.

• An NFS client implemented using FUSE should be able to fulfill the
cache management requirements on clients that do not own a delega-
tion. Currently, the only way to fulfill the requirements is to completely
disable data caching for the file. To use the page cache, the file system
driver must be able to optionally invalidate the cache when opening a
file, and to write out modified data before closing the file.

Because this is quite similar to the ZlomekFS page cache requirements,
the possible implementations are similar as well. The driver could
use a flag in the data returned by the “open” operation to request
immediate cache invalidation without disabling data caching, which is
already implemented in FUSE, or to request modification write out
before closing the file. (A mount option cannot be used because the
server grants or declines delegations for each file separately, not for the
whole file system.)

Alternatively, the driver could send explicit requests to the kernel to
invalidate or write out the caches. The semantics of these requests is
equivalent to the semantics of the requests proposed for ZlomekFS.

• Beyond the semantics required by NFS, it might be useful to invalidate
the cache whenever a change of the last modification time is detected
(e.g. when the user calls fstat on the file and updated attributes
are fetched from a remote server). This cannot be implemented using
a flag returned by the “open” operation. The FUSE kernel module
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could in principle invalidate the caches automatically when the last
modification time changes, but it is better to delegate the decision to
the user-space driver, which can use protocol-specific information to
evaluate the trade-off between caching obsolete data and rereading it.
Again, the “invalidate cache” request proposed for ZlomekFS can be
used by the driver if it decides the obsolete data should not be held in
the cache.

When implementing file system driver in user-space, the FUSE kernel
interface is not the only constraint. Some facilities available to kernel-space
drivers are simply not available in user space, usually for security reasons:

• Direct access to hardware (/proc/driver/nvram on Linux)

• Access to the address space of the calling process (ioctl, hugetlbfs
on Linux)

• Access to the address space of other processes (procfs)

• Access to arbitrary kernel data structures: although the data may be
available in /dev/kmem, the user-space driver cannot use kernel’s locks
to safely access it.

• Deep cooperation with kernel’s caches, either because the overhead of
communication about cache changes would be prohibitive, or because
the design of data structure locks does not allow blocking for a response
from user space.

3.3 Performance Enhancements

FUSE is not suitable for implementing file systems tuned for maximum pos-
sible performance. Even if the FUSE kernel protocol had the best possible
design and the kernel module, user-space library and user-space driver were
all implemented in the most efficient way, the interface between user and
kernel space imposes some overhead that can be avoided by implementing
a kernel-space file system driver. By imposing unavoidable overhead, FUSE
limits the extent to which it makes sense to optimize the interface and imple-
mentation: savings of two machine instructions while processing a request
are insignificant compared to the overhead of transferring the request and
response between kernel and user space. This section describes some pos-
sible improvements of the FUSE kernel protocol that can bring significant
performance enhancements without imposing large implementation costs.
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At the lowest level, it might be possible to reduce the amount of data
copied between kernel and user space by changing the layout of data struc-
tures used by the protocol (removing various padding, or using the smallest
possible data type to represent the request type). This is a good example
of an optimization that is probably not worth the cost, saving a few cycles
at the cost of introducing a new version of the protocol and extending the
library to handle both versions.

Another way to reduce the amount of copied data would be to allow the
driver to directly map pages from the kernel’s page cache, avoiding one copy
of the data. The decrease in the amount of copied data could be signifi-
cant, but mapping pages to the address space of the driver, together with
the necessary TLB flushes, impose additional overhead. As described in ap-
pendix A.1, direct access to the page table from a file system driver would
actually cause a net slowdown.

At a higher level, the overhead could be reduced by avoiding some requests
altogether. The operations are specified by system calls from user-mode
applications, so to reduce the number of requests it is necessary to reduce
the average number of requests per operation.

In general it is not possible to delay executing operations, gather sev-
eral operations from applications, and to send several operations as a single
“batch request” to the user-space driver. First, any of the operations could
fail and there would be no way to report this to the application. Second, an
application can sometimes observe the external effects of its actions because
a single file system often can be observed using several independent paths
(e.g. over NFS, FTP, HTTP, as an IMAP mailbox), and the application
would observe an inconsistent state.

The only case in which partially inconsistent state might be acceptable
(because it is expected by applications) is reading obsolete data and writes
that do not propagate to a remote file server until the file is closed. FUSE
already allows file systems to use the page cache for data caching (delayed
writes are not supported for security reasons described in section 2.4.3). File
system drivers that want to avoid providing obsolete data if possible could
benefit from data caching if they obtain an oplock from a remote server, or a
similar guarantee that the file will not be concurrently modified. To benefit
from oplocks, the kernel module must support cached and uncached data
access, and the file system driver must be able to switch between the two
and to invalidate the page cache. The “invalidate cache” request proposed for
ZlomekFS is usable for handling oplock revocation as well, but an “invalidate
cache and switch to uncached data access” request would be better. Enabling
cached data access can be done using a flag returned with other results of
the “open” operation because both NFS and CIFS grant oplocks only when
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opening a file.
The FUSE kernel module caches file data, but it does not cache direc-

tory contents returned by readdir at all. The cache validity times returned
for each entry can be used to determine the cache validity time associated
with the whole batch of readdir results. No extension to the FUSE kernel
protocol is necessary to support readdir result caching.

To avoid file system requests for other operations, it would be necessary
to make the sequence of file system operations asynchronous with respect to
the application that requests the operations. An interface that could be used
to specify such an asynchronous sequence of operations (similar to the way
a “channel program” would be started on an S/360 I/O channel processor)
was proposed for Linux[18], but it does not seem to be worked on currently.
Finally, even if the application can specify such a sequence of operations
to the kernel, the Linux file system interface would probably not represent
this directly to the file system drivers, preventing the use of the operation
sequence for avoiding FUSE requests.

The other way to reduce the average number of requests per operation
is to literally implement each operation using fewer requests. Both FUSE
and ZlomekFS return file attributes along with other results of operations
that create new files and of the “lookup” operation; otherwise a “getattr”
operation would follow immediately when setting up an inode for the created
dentry.

A path lookup is split by the generic file system layer into a sequence of
file name lookups, and the FUSE kernel module simply forwards each file
name lookup in turn if the results are not present in the dentry cache. The
current Linux and FreeBSD file system interfaces do not allow any batching
of the requests, the lookup operation is no different from other operations
in this regard. If changing the kernel’s file system interface is possible, the
sequence of lookups could be replaced by a single user-space request if the
following properties can be maintained:

• The atomicity of directory operations must be preserved. For exam-
ple, if the file system’s implementation of rename (A, B) performs
a separate operation to remove B before renaming A, all other local
applications must be prevented from observing the state where no file
named B exists. The generic kernel code guarantees this by locking
each directory before looking up a file name in it. If the path lookup
were performed on a remote server, the local locks would be ineffective
and the result could indicate a missing B.

• Mount points must be interpreted, even if the requested path exists on
a file system that was hidden by the mount point.
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• Symbolic links must be correctly resolved, even if they point outside of
the file system in which they are stored.

• The untrusted file system driver must not be able to cause anoma-
lies in file lookup, such as interpreting “..” differently. Similarly, the
untrusted file system should not even be passed paths that it other-
wise could not observe, e.g. looking up ../../secret-name in a FUSE
mount point should not make secret-name available to the user-space
driver.3 Note that it is acceptable to make symlink/secret-name

available to the file system driver if the contents of symlink are cur-
rently “../..” because the untrusted file system driver can at any time
observe secret-name by changing the contents of symlink to be “.”.

On Linux, mount points are always present in the dentry cache, so no
file system support for lookup operations is necessary if file name lookup
batching is performed only for path names that cannot be resolved using the
dentry cache, and the path does not contain any “loops” of the form X /..,
where X is a directory not present in the dentry cache. To implement the
atomicity requirement, it is necessary to make the results of the full path
name batch only advisory, and to discard them if the relevant directories are
concurrently modified by other processes. Lookup batching could be imple-
mented on Linux by adding an optional “path tail” parameter to the lookup
operation. The file system driver could ignore the path, or it could use it to
lookup the remaining path components as well, and to receive whatever file
attributes are conveniently available from the underlying storage mechanism
or remote server. After preparing a dentry to return to as a result of the
lookup operation, it could use the data about additional path components
to pre-create inodes and dentries in the kernel’s caches, if not prevented by
concurrent modification by other processes. The lookup of the remaining
path components by the generic kernel code would then be satisfied from
the dentry cache without requesting repeated lookups from the file system
driver.

This design preserves the atomicity guarantee, mount point handling and
“..” semantics because implementation of the lookup in the generic kernel
code does not change, it still performs the same locking and it still interprets
each file name separately. To keep sensitive file names secret from untrusted
file system drivers, no path tail hint would be passed if the tail contains a

3Some file names, for example “Personal bankruptcy filing”, are naturally sensitive.
It is also possible to use file names as a crude replacement for ACLs by storing data in
X /secret-name, making X publicly accessible but not publicly readable, and revealing
secret-name only to the intended users of the data.
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“..” component; this restriction need not apply to kernel space file systems,
it can be implemented in the FUSE kernel module.

To support symbolic links, the underlying file system must be able to
return as much data as possible, terminating at an invalid lookup: if the tail
is X /symlink/Y, the underlying file system should be able to return data
about X and symlink without failing because symlink is not a directory.
Otherwise, looking up a long path ending with symlink/Y could result in
looking up O(L2) file names, where L is the number of components in the
path name. The 9P2000 walk operation and the possibility of requesting
several lookup operations in a single request in NFS are suitable for lookup
batching; CIFS supports specification of files using path names, but cannot
return partial results if the path does not exist.

At the highest level, most of the overhead could be eliminated by using
high-level operations, such as “return the complete contents of a file at this
path”, “replace the contents of a file at this path by this data”, or “copy
this file to another path on the same file system”. These requests cannot
be expressed using POSIX operations, so they are out of scope of FUSE. A
file system interface that supports such requests could, though, support file
access over FUSE as well. This approach is planned for the GVFS library (a
replacement for GNOME’s libgnomevfs): it will provide a native interface
for applications that use the GVFS API, and it will make the same files
simultaneously accessible as a mountable FUSE file system.

3.4 Summary of Proposed Extensions

The above description of various possible extensions to the FUSE protocols
also helps choosing a suitable extension to support ZlomekFS: the possibility
to invalidate the page cache or to write out modified data under complete
control of the user-space driver (instead of only implementing a specific be-
havior which can be enabled or disabled from user space) can be used for
other purposes as well.

The following extensions are proposed to support ZlomekFS, to fulfill the
NFS requirements on clients that are not granted a delegation, and to allow
cache invalidation whenever a file modification is detected:

• Add a way to invalidate a dentry and file attribute cache of a specific
file from user space.

• Add a way to invalidate page cache of a specific file from user space.

• Add a way to write out all modified data for a specific file from user
space.
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In addition to the above page cache management operations, the following
extensions are proposed to allow data caching only if an oplock is granted:

• Add a way to invalidate page cache of a specific file from user space,
switching future data accesses to uncached.

• Add a flag to the data returned from an “open” request that switches
future data accesses for the file to cached.

The following extensions are proposed for better NFS support, if an in-
compatible change to the protocol is acceptable:

• Add NFS file handle to the attributes returned by the user-space driver
in the reply to “getattr” and various other requests. The NFS file
handle should be represented as a variable-length array.

• Add a variant of the “getattr” request that identifies a file by its NFS
file handle.

If the set of attributes returned by the user-space driver is changed incom-
patibly, members necessary to support the st_blksize and st_birthtime

could be added.
Finally, to avoid repeated “lookup” requests, adding of an optional “path

tail” parameter to the “lookup” operation (both in the kernel file system
interface and in the FUSE kernel protocol) is proposed.
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Chapter 4

Implementation

The cache management extensions proposed in the previous chapter (the
first two groups described in section 3.4) were implemented in the FUSE
user-space library and the Linux kernel module.

4.1 Protocol Extensions

A new FOPEN_NO_CACHING flag value was defined for the open_flags mem-
ber of struct fuse_open_out to support switching between cached and un-
cached file access. The “no caching flag” is associated with the file, not the
single open file state, and each open or create result updates the value of
the flag. The default value of the flag is 0 for compatibility with previous
versions of the protocol.

The other protocol extensions (invalidating dentry and file attribute cache
entries, invalidating page cache and optionally disabling caching, and writ-
ing out all modifications) are all “reverse” requests, originating in user-space.
The FUSE interface did not support any such requests before, and all data
written to the character device was supposed to be request results. To sup-
port reverse requests, the request identifier 0 was reserved, and request result
header with request identifier 0 are used to identify reverse requests. The
reverse request itself follows, starting with a 32-bit command code and fol-
lowed by other operands; in our case, all reverse requests need only a single
operand, inode number of the file operand.

When requests are originated in the kernel, their results are asynchro-
nously supplied by the user-space driver by writing a reply structure to the
character device. Similar handling of reverse request results, letting the user-
space driver read a reply structure from character device, would cause im-
plementation difficulties because the user-space driver might have to read
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several requests from the device (and defer their processing) only to reach
the reply structure; even if the reply structure were placed at the head of the
read queue, multi-threaded user-space drivers would have to add an exclusion
mechanism to make sure the reply structure is handled by the thread that
has sent the reverse request.

Because it is not necessary to return any data from the kernel for these
requests, except for an error code, a simpler solution was used instead: the
error code is returned directly as the error code of the *write* system call
used to perform the reverse request.

The implementation of the kernel protocol extensions in the FUSE user-
space library is straightforward.

4.2 ZlomekFS

The kernel listener implementation in the ZlomekFS daemon was rewritten
from scratch to use the FUSE protocol. The ZlomekFS command-line parsing
code was rewritten to use the FUSE command-line parsing API to make usage
of zfsd consistent with other FUSE file system drivers.

A mlock configuration option was added for the config configuration file.
It can be used to prevent the default mlockall() system call and to allow
running the ZlomekFS daemon by unprivileged users.

Unlike the original ZlomekFS implementation, the new version cannot be
used as a server-only daemon without mounting the ZlomekFS file system
locally. The original implementation allowed only one ZlomekFS mount, so
it was simple to start zfsd and mount the file system later. FUSE supports
running a single file system driver several times at once, but mounting a file
system requires access to the file handle used to open the /dev/fuse device,
so deferral of the mount is not possible without implementing a protocol
to transfer the file handle from the file system driver over a socket. It is
difficult to justify this implementation effort when the ZlomekFS file system
can simply be mounted in a special-purpose directory that is never accessed.

4.3 Linux

Only small modifications of the FUSE kernel module were necessary to sup-
port the protocol extensions on Linux.

When invalidating dentries for a single file, some dentries may be refer-
enced and thus it is not possible to immediately discard them. Instead, an
indication that the metadata was invalidated is added to the inode. When
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the generic kernel code attempts to use the dentry in a lookup, it uses the
revalidate operation provided by the FUSE kernel module to check the
validity of the dentry; if the dentry references an inode which has invalidated
metadata, the dentry is considered invalid.

Because the Linux kernel module never caches file modifications, the “no
caching” flag affects only file reads. Reading data using the *read* system
calls handles the “no caching flag”; mapping a file to memory and reading the
memory ignores the flag because there is no way to catch every memory read
(by removing page table entries after exactly one memory access). Besides,
the overhead of rereading the whole page when any single byte of the page
is modified would be prohibitive.

4.4 FreeBSD

The protocol extensions necessary to support ZlomekFS were also imple-
mented on fuse4bsd[19], a FreeBSD implementation of the FUSE kernel
protocol.

The implementation revealed a significant difference between low-level as-
pects of the Linux and FreeBSD file system interfaces. On Linux, a process
that uses an inode only increments the reference count, and the inode mutex
is used only to serialize specific operations; most of the file system driver’s
operations are called without locking the inode mutex. Although FreeBSD
vnodes have a reference count, the vnode’s read-write lock is locked almost
whenever a reference to the vnode is held; even looking up a vnode by its in-
ode number in the global hash table returns a locked vnode. This introduces
extra complexity to the generic file system code because it must often han-
dle vnodes locked both exclusively and non-exclusively. Because vnodes are
locked while processing calling driver’s operations, the FUSE kernel module
cannot avoid keeping them locked while the user-space driver is processing
requests. If the user-space driver performs a reverse request for the same file,
the kernel cannot process it because locking the vnode again would cause a
deadlock.

A reverse request to invalidate the file attribute cache needs to be pro-
cessed soon enough not to degrade user’s experience, but it is not necessary
to process it immediately: the user-space driver is not affected by attribute
caching and the reverse request cannot fail in a way that needs to be handled
by the user-space driver. Therefore, a queue of invalidation requests pending
in the kernel was added to each FUSE mount: invalidation requests that can-
not be processed immediately because the destination vnode is locked1 are

1This is possible because the desired locking operation can be specified to the above-
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put on the queue and success is reported to the user-space driver. Whenever
the user-space driver answers a request and no other requests are pending (so
no vnodes can be locked by processes that block until the user-space driver
does something), the queue is processed and invalidations for unlocked vnodes
are performed; invalidation requests for locked vnodes are kept on the queue.
The length of the queue is artificially limited to MAX_INVAL_QUEUE_LEN (1024)
entries to make sure the user-space driver cannot cause unbounded kernel
memory allocations.

Execution of the “write modified data” request cannot be delayed like
this, because the data needs to be written out before closing the file; in
general, the “write modified data” request inevitably results in a deadlock.
The kernel module was modified to support at least writing modified data
while processing the “release” request. As described in [19], the FUSE open
file states are independent of the open file states used by the kernel interface,
and sometimes the kernel module releases several FUSE open file states at
once—while the vnode is kept locked. The code was modified to gather
the open file states in a list, temporarily unlock the vnode, and release the
file handles. An extensive rework of locking (to use vnode’s “interlock”, a
spinlock, instead of relying on the read-write lock) was necessary to safely
maintain a list of the open file states to be released.

4.5 Other Work

The ZlomekFS-specific kernel module was updated to work on newer kernel
releases, eventually up to Linux 2.6.22.1, to serve as a base against which
the FUSE port can be compared (some benchmark results are presented in
appendix A.2).

Testing of ZlomekFS on the FreeBSD port of FUSE has revealed a prob-
lem in the design of the ZlomekFS protocol: the readdir operation returns
an inode number, not a file handle, for each directory entry. The ZlomekFS
daemon returns the inode number of the file underlying the directory entry
in the local volume cache (on a local file system), if present; otherwise it re-
turns the inode number returned by a remote ZlomekFS server. These inode
numbers are obviously inconsistent with inode numbers that are assigned by
the zfsd kernel listener and available using the *stat system calls. The
tree search functions provided by the FreeBSD C library, unlike the GNU C
library implementation, abort the search upon encountering such inconsisten-

mentioned hash lookup by inode number, and the desired locking operation can be non-
blocking; of course, support of non-blocking locking adds some complexity to the hash
lookup function.
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cies because they assume the directory tree is being unpredictably modified
and continuing the search could result in an infinite search or a search that
continues outside the originally specified subtree.

There seems to be no unobtrusive fix to this problem because the file
handles that should be returned by the readdir operation are not available
along with file names: whenever a lookup operation is performed, zfsd can
attempt to synchronize the destination file and optionally create a conflict
directory with a new, synthetic, file handle. Changing the network protocol
to replace the inode number with a file handle would not help because the
decision whether to synchronize a file happens locally. If the FUSE readdir

operation must return inode numbers consistent with the results of a sub-
sequent lookup, a simple readdir to gather only names of files present in
a directory must trigger synchronization of all files in the directory. Nev-
ertheless, the implicit lookup of all directory entries returned by readdir

seems to be the only possible solution, even though it increases the cost of
the readdir operation.

4.6 Future Directions

This thesis opens opportunities for future work in several areas:

• Several FUSE kernel protocol extensions where proposed in chapter 3,
but not implemented. Most important is probably the proposed ad-
dition of a “path tail” argument to lookup, which could be used by
several Linux file systems drivers. The generalization of NFS support
and support for additional attributes in the FUSE kernel protocol are
comparatively less useful.

• The FUSE kernel protocol allows caching of readdir results, but nei-
ther Linux nor FreeBSD kernel modules currently implement it.

• The ZlomekFS implementation could use the more flexible possibilities
of invalidating the page cache to invalidate it only when a file synchro-
nization actually occurs, not after each file close.

The current implementation of the readdir FUSE request in ZlomekFS
performs an implicit lookup for each returned directory entry. The
result of a lookup operation includes the full set of file attributes, but
the only attribute returned to the kernel is the file handle. Better
integration of the file handle lookup to the readdir implementation
might be more efficient.
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• ZlomekFS could be ported to other operating systems. Operating sys-
tems that support NFS must already support the necessary data cache
management operations, and support of file attribute cache invalidation
is likely as well, so a kernel-space implementation (if such a distinction
makes sense for the operating system in question) would probably be
possible.

A more practical way to port ZlomekFS is to port FUSE instead, and
to implement the necessary FUSE kernel protocol extensions. The
split between kernel and user space in FUSE makes some assumptions
about the interface that do not necessarily hold for the native file sys-
tem interface of the target operating system. The fuse4bsd author has
encountered non-trivial implementation difficulties[19], and larger dif-
ficulties can be expected on non-UNIX operating systems. The design
of locking and resource “ownership” in the native file system interface
can also have large impact on the porting FUSE; the reverse requests
necessary for ZlomekFS place even more requirements on the locking
design. It would not be surprising to discover that it is impossible to
port FUSE with the ZlomekFS extensions to some operating systems
without extensive modification of the native file system interface.
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Chapter 5

Conclusion

The main goals of this thesis were fulfilled successfully: The FUSE kernel
protocol was extended to support ZlomekFS, ZlomekFS was ported to FUSE,
and the FUSE kernel protocol extensions were implemented on Linux. The
FUSE protocol extensions were implemented on FreeBSD in a manner that
allows running ZlomekFS on FreeBSD, although the implementation is not
fully general.

In addition, the FUSE protocol was extended further to let user-space file
system drivers benefit from oplocks and similar mechanisms that make local
data caching possible, and several other extensions of the FUSE protocol
were proposed.
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Appendix A

Performance Measurements

The measurements were performed on an otherwise idle computer with an
Intel Pentium M processor and 512 MB of system memory. The automatic
CPU frequency scaling was disabled and the frequency was fixed at 600 MHz.

A.1 Mapping Page Cache to User Space

As described in section 3.3, copying of data between user space and the
kernel-space page cache can be avoided by mapping page cache pages into
the driver’s address space, at the cost of additional overhead necessary to
modify the page tables. To evaluate this trade-off, a simple proof-of concept
program was written.

The program writes 160 MB of data (bytes with value 0x01) to a file,
one page at a time, using a single page-sized and page-aligned buffer. Using
conditional compilation, it can write the data using one of the following
methods:

• write: The buffer is filled with data, and a pwrite system call writes
its contents at the desired position. Although the data does not change
between different pages, it is always overwritten again to be consistent
with the other methods, which must write data to the mapped pages.

• mmap+munmap: The contents of the file at the desired position are
mapped over the buffer, the buffer is filled with data, and the memory
mapping is torn down.

• mmap-only: The contents of the file at the desired position are mapped
over the buffer (overriding a previous mapping, if any), and the buffer
is filled with data. Before closing the file, the final memory mapping is
torn down.
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The write method corresponds to the behavior of a FUSE file system
driver responding to a “read” request in the current implementation: the
driver prepares the data, uses a writev system call, and the kernel copies it
to the page cache page. The mmap+munmap method represents a hypothetical
FUSE modification, in which the kernel maps the destination page cache
page to the driver’s address space, the driver prepares the data directly in
the page cache page, and the page is unmapped.

The mmap+munmap method tears down a memory mapping only to create
another mapping in the following iteration. If the hypothetical FUSE inter-
face preallocates address space for the purpose of mapping page cache tables,
it is unnecessary to unmap memory pages from the address space as long as
the page cache pages are not reused for another purpose. The mmap-only
method was prepared to evaluate this improvement.

The test program was run ten times for each method. Before each test
run, the destination file (placed on an ext3 file system) was already allocated
and the compiled test program was run at least once. Results are summarized
in table A.1.

Table A.1: write vs. mmap
Method Wall Time User Time System Time User + Sys
write 8.4± 2.3 0.107± 0.006 0.562± 0.029 0.669± 0.026
mmap+munmap 7.5± 1.2 0.220± 0.010 0.521± 0.024 0.741± 0.023
mmap-only 7.5± 1.4 0.208± 0.020 0.493± 0.034 0.701± 0.036

All times are in seconds.

As expected, replacing write by mmap decreases system time because the
data does not have to be copied by the kernel, and increases user time due
to TLB misses and less efficient cache use (accessing various pages in the
page table instead of a single physical page containing the buffer). Overall,
when measured as a sum of user and system time, the mmap-only method
causes a slight slowdown over write, and mmap+munmap is slower significantly.
The results are reversed when comparing the wall time, but the variance of
the wall time measurements is so large that the results are not statistically
significant.

A.2 Comparison of ZlomekFS Implementa-

tions

This section provides a performance comparison of the original ZlomekFS
implementation and the port to FUSE. The Bonnie++ benchmark utility
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was used to compare the speed of the implementations. This benchmark was
chosen because it tests both raw data access speed and directory operations,
while being more transparent than an “application” benchmark such as a web
server benchmark or software compilation. Bonnie++ reports throughput
(measured in kilobytes or operations per second) and CPU usage; the CPU
usage figures were omitted because they measure only CPU usage attributed
to the benchmark process, not CPU usage of the user-space driver.

ZlomekFS was tested in a “single-node” configuration, on a local volume
backed by an ext3 file system. The following three variants were tested:

• module: The original implementation with a ZlomekFS-specific kernel
module.

• FUSE: The port of ZlomekFS to FUSE.

• direct: The port of ZlomekFS to FUSE, but the “no caching flag” is
set for all files. This change approximates the behavior of a simpler
port of ZlomekFS that completely disables page cache use instead of
extending the FUSE kernel protocol. Note that setting the “no caching
flag” does not simulate the effects of using a very small file attribute
and lookup cache validity timeout instead of explicit flushing of cache
entries.

To provide at least a rough indication of the total overhead of ZlomekFS, a
single run of each benchmark was performed on an ext3 file system,

Data access throughput tests were performed using 1 GB of data, using
three test runs. The results in table A.2 show the FUSE port is usually faster
than the original ZlomekFS implementation, up to 23% in the “rewrite” test.
A possible cause was revealed by comparison of the source code: FUSE copies
data directly between user space and the page cache, the ZlomekFS kernel
module uses an intermediate data buffer.

Another perhaps surprising result is that the uncached variant of FUSE
is faster than the cached variant, although only slightly. The page cache
cannot provide any benefit in this benchmark because the file used for the
benchmark is more than twice as large as the memory available for caching,
and it is read and written sequentially using page-aligned system calls. The
uncached variant copies data directly between the benchmark process and
the user-space driver; the cached variant must perform one more copy to
keep the page cache updated.

Directory operation tests were performed using 10240 files in a directory,
using ten test runs. The ext3 file system performs these operations so fast
that it could not be accurately measured; operation speed for ext3 was
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Table A.2: ZlomekFS Data Access Throughput
Test module FUSE direct ext3

putc 7.60± 0.18 7.78± 0.07 7.86± 0.06 10.76
write 13.99± 2.67 15.84± 0.39 15.60± 0.35 16.71
Rewrite 6.15± 0.26 7.57± 0.15 7.62± 0.13 7.95
getc 8.07± 0.70 10.54± 0.06 10.58± 0.04 10.47
read 16.43± 3.84 16.15± 0.67 15.27± 1.75 18.56
Seek 75.83± 1.57 84.73± 1.57 86.03± 1.59 101.10

Throughput is measured in megabytes per second. Seek performance is mea-
sured as number of seeks per second.

Table A.3: ZlomekFS Directory Operations per Second
Test module FUSE direct ext3∗

Seq. create 828 ± 35 851 ± 12 825 ± 23 10955
Seq. read 9427 ± 635 4419 ± 118 4329 ± 142 102624
Seq. delete 956 ± 40 830 ± 24 828 ± 22 19754
Rand. create 841 ± 31 824 ± 22 832 ± 23 10592
Rand. read 10864 ± 587 8410 ± 274 8468 ± 139 158647
Rand. delete 957 ± 51 931 ± 26 923 ± 30 20325

∗ The values for ext3 were measured in a directory with ten times as many
files.

therefore measured in a directory with ten times as many files. The results
are summarized in table A.3. The extreme slowdown of the sequential read
test in FUSE implementations can be attributed to the implicit “lookup”
operations performed on readdir, as described in section 4.5.
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