
Univerzita Karlova v Praze

Matematicko-fyzikálńı fakulta

BAKALÁŘSKÁ PRÁCE

Evelina Gabašová

Text Clustering and Classification
(Klastrováńı a klasifikace text̊u)

Katedra teoretické informatiky a matematické logiky

Vedoućı bakalářské práce: Mgr. Marta Vomlelová, Ph.D.

Studijńı program: Informatika, obecná informatika

2007

Ráda bych poděkovala Mgr. Martě Vomlelové, Ph.D. za cenné připomı́nky

a odborné vedeńı této bakalářské práce.

Prohlašuji, že jsem svou bakalářskou práci napsala samostatně a výhradně

s použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce a jej́ım

zveřejňováńım.

V Praze dne 9. srpna 2007 Evelina Gabašová

2

Contents

1 Introduction 7

2 Preprocessing 9

2.1 Feature extraction . 9

2.1.1 Feature thresholding 10

2.1.2 Feature weighting . 11

2.2 Further feature processing 11

2.2.1 Latent semantic analysis 12

3 Clustering 14

3.1 Clustering algorithms . 14

3.1.1 Hierarchical clustering 14

3.1.2 Partitional clustering 16

3.1.3 Bisecting k-means algorithm 17

3.2 Similarity and distance measures 17

4 Classification 19

4.1 Naive Bayes Classifier . 19

5 Implementation 23

6 Experimental results 29

6.1 Evaluation of clustering and classification results 29

6.2 Results . 31

7 Summary 37

3

A Data used for testing 39

A.1 Reuters-21578 collection . 39

A.2 Czech newspaper articles . 40

B User documentation for the program 41

B.1 Task: Clustering . 41

B.2 Task: Modifying the hierachy 43

B.3 Task: Learning a classifier 45

B.4 Task: Classification . 46

Bibliography 48

4

Title: Text Clustering and Classification

Author: Evelina Gabašová

Department: Department of Theoretical Computer Science and Mathemat-

ical Logic

Supervisor: Mgr. Marta Vomlelová, Ph.D.

Supervisor’s e-mail address: Marta.Vomlelova@mff.cuni.cz

Abstract: Text clustering and classification are important machine learning

tasks. In this work, a combination of their approaches is presented. The

main purpose was to automatically prepare a set of clusters (or generally

concepts), which would subsequently serve as a training data for learning

of a classifier. This work comprises of theoretical background, implementa-

tion details and experimental results of clustering and classification of text

documents. A train set of documents is first hierarchically clustered by the

bisecting k-means algorithm. The result is offered to an expert for mod-

ifications and possible improvements of the hierarchy. Following this, the

resulting structure is used for learning of a naive Bayes classifier and a test

set of documents is classified by it. A program was developed to perform

these tasks and its results are evaluated and compared in processing docu-

ment collections written in both English and Czech.

Keywords: clustering, classification, machine learning, naive Bayes classifier,

k-means algorithm

5

Název práce: Klastrováńı a klasifikace text̊u

Autor: Evelina Gabašová

Katedra (ústav): Katedra teoretické informatiky a matematické logiky

Vedoućı bakalářské práce: Mgr. Marta Vomlelová, Ph.D.

e-mail vedoućıho: Marta.Vomlelova@mff.cuni.cz

Abstrakt: Klastrováńı a klasifikace text̊u jsou d̊uležitými úlohami strojového

učeńı. V této práci je prezentována kombinace jejich př́ıstup̊u. Hlavńım

účelem bylo automaticky připravit množinu klastr̊u (nebo obecně koncept̊u),

které by následně sloužily jako trénovaćı data pro naučeńı klasifikátoru.

Tato práce zahrnuje teoretické pozad́ı, detaily implementace a výsledky

experiment̊u pro klastrováńı a klasifikaci textových dokument̊u. Trénovaćı

soubor dokument̊u je nejprve hierarchicky klastrováńı algoritmem bisect-

ing k-means. Výsledek tohoto procesu je možné upravovat a vylepšovat

s využit́ım expertńı znalosti. T́ımto zp̊usobem vytvořená hierarchická struk-

tura je použita pro naučeńı naivńıho bayesovského klasifikátoru, který je

následně využit k roztř́ıděńı testovaćı množiny dokument̊u. Pro tyto účely

byl vyvinut program, jehož výsledky jsou zhodnoceny a porovnány při zpra-

cováńı českých a anglických dokument̊u.

Kĺıčová slova: klastrováńı, klasifikace, strojové učeńı, naivńı bayesovský klasi-

fikátor, algoritmus k-means

6

Chapter 1

Introduction

Classification of text documents is becoming a very important task as the

amount of documents, e.g. on the internet, rises. To be able to manipu-

late large collections of documents, their organization to some predefined

categories (classes) according to their content is very practical. It helps to

effective resource management.

Manual classification of documents is very time-consuming. Therefore,

demand for automated tools for this task is increasing. The automatic classi-

fication algorithms work well, however they have to be learned on a collection

of documents, which have already been classified to some predefined classes.

After the classifier is trained on such documents, it is able to automatically

categorize new documents.

The main problem of classification is the described necesity to have an

already classified set of documents. For learning of a successful classifier, this

collection should be large enough to contain as much as possible cases, which

can occur. Indexing of documents by an expert is again very demanding and

time-consuming.

An alternative to learning a classifier on some previously indexed docu-

ments is clustering. This process is unsupervised and does not require any

external data. It works only with the information present in the texts them-

selves. The documents are grouped into subsets according to similarity of

their content. However, this method does not usually reach the accuracy of

classification. Word usage, choice of expressions and form of documents can

greatly vary, even if the documents share the same topic.

7

In this work we present an approach, which combines both classification

and clustering. It first uses clustering for creating a hierarchy of clusters.

These clusters can be modified with use of expert knowledge to reduce the

number of documents assigned to an improper group. Following this, the

clustered documents become a training collection for a classifier. The classi-

fier is learned on the clusters and can be afterwards used for categorization

of new documents.

For clustering, a hierarchical modification of the k-means algorithm, the

bisecting k-means, was implemented. To perform classification, a naive Bayes

classifier was used.

This work comprises of theoretical background of clustering and classifi-

cation, implementation of a program, which allows to execute the described

tasks, and evaluation of its results.

In the chapter 2, conversion of documents to a form suitable for cluster-

ing and classification is described. In the chapters 3 and 4 an overview of

algorithms used for clustering and classification is given. In the chapter 5

we describe, how the whole task was implemented. Following this, the chap-

ter 6 shows methods of measuring clustering and classification quality and

how outputs of the program were evaluated. The last chapter 7 contains

conclusions.

The first appendix A describes the document collections, which were used

for testing the program. The appendix B contains a user documentation of

the program in a form of a sample walk through the individual clustering

and classification tasks.

8

Chapter 2

Preprocessing

Clustering and classification methods operate with a space of document

vectors, which is prepared in the preprocessing stage. In this vector-space

model, each document is represented by a vector of its features, which are

constructed from the words of the document.

There is a large amount of various methods for creating the document

vectors. The following provides just a brief description of the techniques,

that were used in this work.

2.1 Feature extraction

As the initial step, each document is transformed to a vector of words,

which appear in the given document. Together these vectors form a word-

by-document matrix

A = (wij),

where the elements wij represent a weight of a word j in the i-th document.

Number of various words that appear in a collection of documents is usually

huge, therefore the document vectors form a vector space of a very large

dimension. To be able to perform clustering and classification, the number

of dimensions should be reduced in attempt to extract features, that charac-

terise each document well and are capable of distinguishing documents from

each other.

9

A common preprocessing steps in working with mostly English docu-

ments are removal of stop words and stemming. The so-called stop words

are mostly functional words and do not have much relation to a document’s

content. It is eligible not to process them. The stemming works by reducing

a word to its base or root, because words with common root share mostly

the same meaning. These words are therefore considered to represent a sin-

gle word in its basic form. This reduces the dimension of the feature vector

space and lowers the amount of noise in the data.

Nevertheless, these methods were not used in this work. One of purposes

of this work was to use the clustering and classification techniques for pro-

cessing of documents written in Czech. In case of the Czech language, stop

words removal and stemming are much more complex tasks than in English.

They represent a separate comprehensive problem. Therefore we chose not

to perform them and concentrate on the main clustering and classification

tasks.

The following sections show, how weights of words (features) in individ-

ual documents are extracted from the document collection. Possible further

processing of the features is described in the section 2.2.

2.1.1 Feature thresholding

Features that appear very frequently and are included in most documents do

not help to distinguish between documents and bear just a little information

about the individual document’s content. Such features are usually general

or auxiliary words. Also features that appear very rarely through the whole

collection of documents are not helpful. They do not indicate any similarities

between documents.

For these cases, the method of feature thresholding [1] is used. An up-

per and a lower threshold for the feature frequency is set. Afterwards, all

features, which appear in more documents in the collection than the upper

threshold, or in less documents than the lower theshold, are not considered.

10

2.1.2 Feature weighting

As a next step, the raw frequencies (i.e. counts) of words are converted

to feature weights. There are numerous weighting methods. The simplest

technique assigns Boolean vallues to the document features

fi =

{
0 fi does not occure in the document

1 fi occurs in the document

Another simple method is to use directly relative frequencies of features

in the document. There are also many more sophisticated techniques, whose

main attempt is to take into account other factors, such as the lenght of the

document, frequency of a given word in the whole collection of documents

etc.

The weighting scheme, which was used for this work, is the entropy

weighting as described in [1]. This method comes from the information the-

ory and considers also the distribution of words in the whole document

collection. The weight of a word i in a document j is computed as

wij = log(fij + 1) ·

(
1 +

1

log(n)

n∑
k=1

[
fik

ni

log

(
fik

ni

)])
,

where fij is the frequency of the word i in the document j, n is the number

of documents and ni is the number of occurences of word i in the whole

document collection.

2.2 Further feature processing

As mentioned, the vector space formed by the document vectors has a very

large dimension. In order to process these data effectively, the dimensionality

is usually reduced. Also to prevent overfitting of the model, some general-

ization provided by the dimensionality reduction is appropriate.

Again, many techniques exist for this problem. A form of dimensionality

reduction is the feature thresholding described earlier. A more elaborate

method is the latent semantic analysis (indexing) [3].

11

2.2.1 Latent semantic analysis

Latent semantic analysis (LSA) is an algebraic method for reducing the

dimensionality. The main purpose of this technique is to replace individual

features with fewer more general concepts.

The aim is to suppress effects of polysemy (a single word with multiple

different meanings) and synonymy (a single meaning expressed by a number

of different words) to expose the “latent semantic” structure of the text.

This latent semantic structure attempts to capture the underlying patterns

in word usage throughout the document collection, which is hidden because

of different choice of expressions in various documents.

The mathematical background of LSA comes from the singular value

decomposition (SVD). Let A be a word-by-document matrix of size m× n,

where m denotes number of words and n number of documents, m ≥ n. The

rank of A is r, r ≤ m,n. The singular value decomposition of A is defined

as

A = UΣV T .

The matrix Σ is a diagonal matrix of size r× r, where its diagonal elements

σ1, σ2, . . . , σn are the so-called singular values. The matrices U and V are

orthogonal and contain the left and right singular vectors, which correspond

to the singular values. U is of size m× r and V r × n.

Let the elements of Σ be ordered by size from the largest to the smallest

(together with the corresponding singular vectors) and σ1, σ2, . . . , σk be the

k largest singular values. The matrix

Ak =
k∑

i=1

uiσiv
T
i , i.e.Ak = UkΣkVk

is the best approximation of A of rank k. Therefore, the decomposition

reduces the dimensionality of the original problem. Moreover, the matrix Ak

as an approximation reduces the noise and ambiguity of the original data

while preserving the structure. Words with similar patterns of usage are

considered close or similar in the k-dimensional space. Similar documents

may be close in the approximate model while not sharing any terminology.

Also the relations between documents and features (words) are retained.

12

The SVD also offers a reduction of the computational demand. To com-

pare two documents, cosine between two respective columns of Ak or cosine

between two rows of VkΣk can be used. The cosine value indicates the de-

gree of similarity between the contents of the two documents. Similarly, two

words are compared by the cosine between two columns of Ak or two rows

of UkΣk. Finally, to get the measure of relevance of a feature (word) i to a

document j, cosine between the i-th row of the matrix UkΣ
1/2
k and VkΣ

1/2
k is

used.

To incorporate new documents into the computed LSA model or to com-

pare new documents with the already created document vectors, the ideal

way is to recompute the whole decomposition with added documents. How-

ever, less computationally demanding methods can be used. To update the

model or to compare a new document, the added document is folded-in the

existing SVD [3]. The folding-in is performed by

d̂ = dTUkΣ−1
k ,

where d is the vector of the new document. The created vector d̂ can be

either appended as a new row of the Vk matrix, or compared with other

processed documents by the already described method.

Folding-in is a simple method of updating the LSA model. However, it

does not consider any possible new features in the added document, which

were not present in the original document collection. It is therefore only

a limited method for updating the model. Other methods of updating are

described in [3].

13

Chapter 3

Clustering

Clustering is a process of partitioning the collection of documents (in general

points) to clusters - subsets of points which are considered similar according

to some criterion. It is a method of unsupervised learning.

Clustering algorithms use two main approaches to the clustering pro-

cess, hierarchical and divisional. The next section gives an overview of both

approaches.

3.1 Clustering algorithms

Hierarchical and partitional methods produce different results. Partitional

algorithms create a division of the original set to a given number of clusters.

These clusters are determined all at once. On the contrary, the hierarchi-

cal algorithms build the clusters in a sequential order by processing the

previously created clusters and thus producing a hierarchy of clusters. The

result of hierarchical clustering can be graphically demonstrated as a tree of

clusters, so-called dendrogram (see the figure 3.1).

3.1.1 Hierarchical clustering

Hierarchical clustering produces a tree of nested clusters. There are two

approaches of building the hierarchy, agglomerative (bottom-up) and divisive

(top-down).

14

Figure 3.1: An example of a dendrogram; c0, . . . , c3 are clusters, d0, . . . ,d4

are clustered documents.

The agglomerative method begins with each point as a single cluster

and repeatedly compares the clusters with each other and merges two (or

generally k) points, which are most similar according to a chosen criterion

(see the section 3.2). The process ends with one cluster that contains all the

points. For this algorithm, important is the choice of the clusters to merge.

On the contrary, the divisive approach starts with one cluster, which

contains all the points. Afterwards, the cluster is recursively split to two (or

generally k) subclusters until each point represents a single cluster. Again,

crutial is the way to divide the cluster and the choice of the cluster to divide.

There are many methods to choose, which cluster to split next. The

simplest one is to choose the cluster with the largest cardinality (number

of points) at the moment. However, when in the data there are clusters of

unbalanced size, the larger clusters are split earlier. Another method is to

choose the cluster with the largest inner variance.

The tree built by these methods offers a more in-depth view of the data

with each level of the hierarchy. The main disadvantage of this approach

comes from the need to compare all the clusters with each other during the

clustering process to decide, which clusters to merge/split. Consequence is

its quadratic complexity and therefore larger computational demand.

15

3.1.2 Partitional clustering

The partitional clustering techniques attempt to detect k clusters at the

same time. They do not create any hierarchical structure of clusters, the

result is a flat division of elements into subsets. An important member of

this group of algorithms is the k-means algorithm, which will be discussed

in more detail.

For the k-means algorithm, each cluster has its representant, a centroid.

The centroid indicates the center of the cluster and is taken as the mean (or

weighted average, median etc.) of the points assigned to the given cluster.

In the process of clustering, the points are assigned to the centroid, which

lies nearest according to some distance measure (see the section 3.2).

The basic version of the k-means algorithm can be described as follows:

1. Choose the number of clusters k.

2. Randomly initialize the initial k centroids.

3. Assign points to their nearest centroid.

4. Recompute the centroids.

5. Repeat the steps 3. to 4. until the distribution of points between clus-

ters does not change or some other criterion is fulfilled.

This algorithm is straightforward and efficient (linear to the number of

points). However, it has also some disadvantages. In the first place, there is

no clear choice of the number of clusters k. The results can be misleading

when an inappropriate k is chosen. Furthermore, the clustering depends

greatly on the choice of the initial centroids. One of the solutions of this

problem is to repeat this process a couple of times and then choose the

best result measured by some chosen criterion function (see the section 3.2).

However, the algorithm is not guaranteed to find the global minimum of the

criterion function, it finds only a local minimum.

16

3.1.3 Bisecting k-means algorithm

Both clustering approaches can be combined to get a hierarchy of clusters

and at the same time reduce the computational complexity. The bisecting

k-means algorithm as described by [8] and [9] is one of these methods. The

algorithm performs repetitive iterations of the k-means algorithm and thus

creates a nested hierarchical structure of clusters.

This method is based on the hierarchical divisive approach but the split is

performed by the k-means algorithm with k = 2, i. e. the cluster is bisected.

The algorithm builds the clusters in the following way:

1. Start with all points in the same cluster.

2. Choose a cluster to split.

3. Use k-means algorithm with k = 2 to bisect the cluster.

4. Repeat steps 2. to 3. until each cluster contains only a single point (or

some other criterion is satisfied).

As an improvement, the bisecting step can be repeated several times

with different choice of the initial centroids to choose the best result. The

computational complexity remains linear in the number of points.

3.2 Similarity and distance measures

The results of described clustering algorithms depend mainly on the chosen

measures of distance between clusters and similarity of points in a cluster.

Measures of distance are used to determine the degree of similarity of two

clusters and according to this to find the division into subclusters, i.e. to

assign a cluster to the nearest centroid in the case of the k-means algorithm.

The measures of similarity are on the other hand used to measure the quality

of the clustering, i.e. to find the best result between some repeated cluster-

ings. The clustering algorithms attempt to find the optimum of the quality

function.

Some of the common distance measures include the Euclidean distance

(2-norm distance) and unquestionably the cosine measure. This measure

17

computes the cosine of the angle between two vectors in the n-dimensional

space. It is defined as

cos(di, dj) =
di × dj

‖di‖‖dj‖
,

where di and dj indicate two document vectors. The value of this measure

does not depend on the lenght of the vectors. The result is equal to 1 for

identical vectors and to 0 for orthogonal vectors. For similar vectors, the

value comes closer to 1, for diverse vectors it is nearer to 0. The cosine

measure is widely used especially for the document vectors comparison.

The clustering similarity measures are used to find the optimal clustering

result. Again, there are numerous functions to measure this property. As

shown by [9], for the bisecting k-means algorithm, the best results were

achieved by maximizing the sum of cosine distances between the cluster

centroid and documents assigned to the cluster, summed over all clusters:

maximize
k∑

r=1

∑
di∈Cr

cos(di, Centrr),

where k is the number of the clusters, di are the document vectors, Cr

represent the created clusters and Centrr is the centroid of the cluster Cr.

This can also be rewrited as

maximize
k∑

r=1

‖
∑

di∈Cr

di‖

if the document vectors are normalized to lenghth 1. The distance of each

document in the cluster to the corresponding centroid is minimized over all

the clusters.

18

Chapter 4

Classification

Document classification (categorization) is a task of assigning documents

to some predefined classes. Whereas clustering is unsupervised, what will

be discussed in the this chapter is a form of supervised learning. A set of

documents with assigned class labels is used as a training set and a classi-

fier is learned on it. Following this, the classifier is used for assigning new

documents to the learned classes.

As the clustering algorithms, classification works with vectors of features

constructed from documents. In the terminology of probability theory, a

feature vector is considered to be a vector of observed random variables,

d = (F1, F2, . . . , Fm). Every feature can take values from a given domain,

e.g. Fi = f, f ∈ R. Apart from this, there is also a class variable C assigned

to every document vector in the training set, which is unobserved in case of a

new set of documents and must be determined. If there are k classes, then C

can take values from the domain {0, 1, . . . , k− 1}. The classification process

is to assign a value to the class variable C for every document vector d.

4.1 Naive Bayes Classifier

The naive Bayes classifier is a simple yet effective probabilistic classifier.

It is based on the application of the Bayes rule and depends on strong

independence assumptions, therefore it is called naive.

19

The Bayes theorem for our case is stated as

P (C|F1, . . . , Fm) =
P (C)P (F1, . . . , Fm|C)

P (F1, . . . , Fm)
,

where P (C|F1, . . . , Fm) is the probability of a class C when given the vector

of features (F1, . . . , Fm) (i.e. probability that the document vector belongs to

the class C), P (C) is the prior probability of a occurence of the class C and

P (F1, . . . , Fm|C) represents the probability of a occurence of the vector of

features (F1, . . . , Fm) in the class C. Finally, P (F1, . . . , Fm) is the probability

of observing the feature vector (F1, . . . , Fm). However, this term is fixed

during the computation of P (C|F1, . . . , Fm) and serves as a normalization

constant. Therefore, it can be omitted.

With the naive assumption that the feature variables are conditionally

independent given the class variable, the equation for the classifier can be

rewritten in the following form:

P (C|F1, . . . , Fm) =
P (C)

∏m
i=1 P (Fi|C)

P (F1, . . . , Fm)
= αP (C)

m∏
i=1

P (Fi|C)

The classification is then performed according to

arg max
c∈C

P (c|F1, . . . , Fm),

the most probable class is assigned to the document vector.

The independence assumption is unrealistic and hardly met in the data.

In spite of this fact, it has been shown that the classifier works surprisingly

well in real situations, even in those with strong dependencies as shown for

example in [6]. The estimation of probabilities computed by the classifier is

not reliable, nevertheless for the purpose of classification it is very effective.

The parameters of the probability distribution can be easily estimated

from the trainig data.

P̂ (C = c) =
nc

n

and

P̂ (Fi = f |C = c) =
nf

nc

20

where nc is the number of documents assigned to class c, n is the number of

documents in the training collection and nf is the number of cases in which

Fi has a value f for a document assigned to class c (for details see [7]).

This maximum-likelihood estimate has also its drawbacks. The training

collection is limited and some of the probabilities can become zero, when

the feature f is not observed in documents of class c. To overcome this,

smoothing of the estimates can be used. It assures that no probabilities will

be set to zero (or one). A simple form of smoothing is the additive smoothing:

P̂ (Fi = f |C = c) =
nf + δ

nc + nFiδ

where nFi is the numer of possible states of the feature variable Fi and δ is

a small positive number.

However, the described methods work only in the case of discrete values

of the feature variables, e.g. features generated by the boolean weighting

scheme from the section 2.1.2. Continuous domains must be handled in a

different way. One approach is to assume some probability distribution of

the feature values for a given class and to model the probabilities according

to this distribution. For example, a common assumption is the Gaussian

distribution of the feature values. After obtaining its parameters from the

training data, the mean µc,f and the standard deviation σc,f , the probability

estimation can be computed as

P̂ (Fi = f |C = c) = n(f ;µ, σ) =
1

σ
√

2π
e−

(f−µ)2

2σ2

with parameter estimations

µ̂ =
1

nFi

nFi∑
j=1

fj,

σ̂ =

√√√√ 1

nFi − 1

nFi∑
j=1

(fj − µ̂)2.

In order to work with the continuous features in the same way as the

numerical values, also some form of discretization can be used. A simple

21

discretization method is the equal width interval binning, where the domain

is cut into intervals of equal width. The size of intervals is computed as

l =
fmax − fmin

i
,

where i is a chosen number of intervals and fmax, fmin are the bounds of

the possible values of the feature variable. Each interval is then handled as

a separate feature value.

Another similar method is to divide the domain to equal frequency in-

tervals, where each interval contains the same number of values. Given j

instances of feature weights, the values are sorted and then divided to i

intervals, such that each interval is comprised of j/i adjanced values.

In both these methods, there is a possibility of putting feature values

associated with different classes into the same interval, which can deform

the classification. Also more sophisticated techniques can be used, which

take advantage also of the class labels. For these more elaborate methods

and their comparison with the simple ones see [4]. In implementation of this

process, the division to equal width intervals was chosen.

22

Chapter 5

Implementation

For this work, a program was developed to perform the described clustering

and classification algorithms on document collections. Its main purpose is to

first cluster a set of documents, then to allow an expert to modify the created

hierarchy of clusters and afterwards to learn a classifier on it. Following this,

the classifier can be used for categorization of a new set of documents. The

whole implemented process is illustrated in the figure 5.1. The program also

offers a graphical user interface for working with hierarchies of clusters or

classes.

The primary input of the program is a directory with text documents

to cluster. The documents are converted to vectors of features with the

techniques described in the chapter 2. First, the thresholding is applied.

The user can specify the upper and lower threshold and features, which

appear in more/less documents than the given upper/lower threshold wil

not be considered in the further processing. After determining the features,

their frequencies in documents are computed and weighted by the entropy

measure.

As the next step, the latent semantic analysis (LSA) is performed. The

singular value decomposition is done on the matrix of document feature vec-

tors. The user can set a number of singular values that will be computed.

This number must be smaller than the number of documents, which are pro-

cessed. Smaller numbers of singular values will provide more generalization

but also more simplification, therefore there is a danger of supressing impor-

tant features. Larger numbers of singular values are, on the other hand, more

23

Figure 5.1: The processing of documents implemented in the program.

computationally demanding and are more liable to overfitting of the later

clustering. The singular value decomposition is computed by the ARPACK

software [5] (a set of Fortran77 subroutines to solve large scale eigenvalue

problems).

The matrices produced by the singular value decomposition are used to

compare document vectors between themselves during the clustering step.

Clustering is performed by the bisecting k-means algorithm. The process

starts with one cluster containing all the documents and recursivelly splits

the cluster to get the complete hierarchy. Each split can be recomputed

several times with different random choice of the initial centroids to achive

better results. This number of iterations of the k-means algorithm is also

offered to the user for modification.

By default, the clustering ends when each cluster contains a single docu-

ment. This behaviour can be changed by setting a different maximal number

x of documents in a leaf cluster. Splitting of a cluster then stops, if it contains

x or less documents.

After the clustering has finished, features are reassigned to the documents

24

and subsequently also to the created clusters. This step must be performed

due to the fact, that the feature vectors used for clustering do not represent

real words used in the documents. The latent semantic analysis combines the

original features to get a generalized model and thus reduces the length of

document vectors. These vectors of recomputed features are hard to interpret

and cannot be directly converted to words. Therefore, the features must be

reassigned to be able to view them.

To take advantage of the effects provided by LSA, the features are not

assigned according to originally computed weights, but compared with docu-

ments by the method described in the section 2.2.1. By this comparison, the

features which are considered relevant to a given document are assigned to

it, even if they do not actually appear in its content. The relevancy is mea-

sured by the cosine measure. The user can set a threshold for the relevancy.

Features with lower relevancy to a given document than the threshold will

not be assigned to it. The features of clusters represent the union of features

of documents, which belong to the cluster. The weight is determined as the

mean of feature weights of contained documents.

When the processing has completed, the created hierarchy is displayed to

the user. At this stage, it is possible to modify the hierarchy in various ways.

Documents or whole clusters can be moved from one cluster to another, they

can be copied, deleted etc. The clusters do not have to remain disjoint, a

document can belong to more than one cluster. Also a cluster can be joined -

the hierarchy of its subclusters is cleared and only documents, which belong

to the given cluster, are retained. Thus the expert can create a more general

hierarchy of concepts.

The program also allows the expert to change features assigned to doc-

uments and clusters. Features can be deleted or added, or their weight and

form can be altered to better reflect the content of the corresponding docu-

ment/cluster.

Once the modifications of the hierarchy of concepts (clusters) is com-

pleted, a classifier can be learned on it. The program implements the learn-

ing of a naive Bayes classifier with either the assumption of a Gaussian

distribution of the feature weights, or with a discretization of the feature

values.

In the case of learning the parameters of the Gaussian distribution of the

25

feature values, for each class the mean and standard deviation of each of its

features is computed. These parameters are then saved into a specified file

for subsequent classification.

Similarly, for the discretization of the feature weights the feature domain

is split into n equal width intervals. For each class in the hierarchy, the prob-

ability of the discretized feature weight value given the class is computed.

Again, these probabilities are saved into a file to allow classification of a

new set of documents. For this stage of the process, the user can specify the

number of intervals, into which will be split the feature domain.

Afterwards, the learned classifier can be used to categorize a new collec-

tion of documents. They are preprocessed in mostly the same way, as the

documents for clustering. One difference lies in the feature selection - the

new document vectors comprise only of the features, that were previously

used for the document clustering. Other difference lies in the LSA, the new

documents are only added to the model created in the previous clustering

process to allow relevant comparison with feature vectors used for learning

the classifier.

After the preprocessing phase, the created feature vectors are compared

with the class (concept) vectors and assigned to classes in the hierarchy. This

process can be performed in two possible ways. The first method assigns

documents to classes throughout the whole hierarchy. The second method

goes only through the leaf classes in the tree and assigns the document

directly to them.

In case of the first method, the whole classification process starts with

the root class, which contains all remaining classes. Among its subclasses the

most probable according to the learned classifier parameters is determined

and the document is assigned to it. The computation repetitively continues

inside the cluster, to which the document was inserted, until the leaf class

in the tree is reached.

Number of comparisons needed to classify a document depends on the

depth of the tree. To classify a document to a leaf class in depth l, l − 1

comparisons have to be performed. Because the tree can have branches of

very unbalanced sizes, also the number of comparisons greatly varies.

This approach does not guarantee, that a document will be assigned to

the most probable cluster throughout the whole hierarchy. The main draw-

26

back of this method of classification is, that if the document is incorrectly

assigned in some of the the top levels of the hierarchy, it will not be classified

to classes, where it should belong. This effect can be reduced by setting a

threshold for the probability of a document to belong to a class (concept).

With this modification, the document is primarily assigned to all classes,

for which the probability of belonging to them is larger than the specified

threshold. If the probability for all classes is smaller than the threshold, the

document is assigned to the most probable of them.

The second method of classifying a document goes through all leaf classes

in the tree. For a document, in each leaf class the probability of belonging to

the class is computed and the most probable is chosen. This assures that the

most probable class will be chosen. Similarly, the probability threshold can

be set to allow a document to belong to more than one class. In this case,

number of comparisons needed for classification of a document is alwayes

equal to the count of leaf classes.

After the classification, the hierarchy of documents assigned to features

is displayed to the user. The user can again modify the resulting hierarchy

with use of expert knowledge in the same way as the hierarchy of clusters.

There is also a possibility of learning a new classifier on it.

The main part of the program, which provides all the computations, was

written in C++ and the code is mostly platform independent. However, the

graphical user interface was developed with the use of C# and the .NET

Framework and therefore can be run only in the Windows environment. A

screenshot of the program is showed in the figure 5.2 and the user documen-

tation is given in the appendix B.

27

Figure 5.2: A screenshot of the developed program.

28

Chapter 6

Experimental results

6.1 Evaluation of clustering and classification

results

To measure quality of clustering or classification is a difficult task. There are

no objective criterions, which would reliably compare solutions and identify

the best one. We can only measure some properties and use their combina-

tion to determine, which algorithms produce better results.

A level of similarity of documents in a cluster can serve as a measure of

clustering quality. If the similarity is small, the clusters are not compact and

do not separate natural clusters present in the data well.

The inner similarity of a cluster can be measured as the average pairwise

similarity of documents present in the cluster, as measured by the cosine

measure:

Sim(c) =
1

nc

∑
d∈c,d′∈c

cos(d, d′),

where c is the cluster, d, d′ are documents from the cluster and nc is the

number of documents in the cluster. This measure was used for comparing

clustering algorithms for example in [8].

The described measure can be used in situations, when there is no exter-

nal information about the clustered documents, such as class labels. If such

information is available, it is possible to take advantage of it and use it for

other measures of quality.

29

A common approach to evaluating a clustering or classification result

with external information is the F score measure, used for example in [8], [9]

or [1]. It treats the clusters of documents as a result of a query when class

represents the correct result. It measures, how well the result answers to the

query (class). The F score is computed as

F (l, c) =
2 ·Recall(l, c) · Precision(l, c)

Recall(l, c) + Precision(l, c)
,

Recall(l, c) =
nlc

nl

,

P recision(l, c) =
nlc

nc

where l represents a class (a class label), c a cluster, nlc is the number of

documents from class l, which are placed into the cluster c and nl, nc are

the numbers of documents in the class l, cluster c. Larger F scores indicate

a better clustering.

The F score was designed for a flat clustering. To use it for a hierarchy

of clusters, the F score for a class l is determined as the maximum F score

reached in all clusters throughout the hierarchy. Subsequently, the F score

of the whole hierarchy is computed as the sum of class F scores:

F =
k∑

l=1

nl

n
max(F (l, c)),

k is the number of classes and n the total number of documents.

Another common measure is the entropy. The entropy of a cluster is

computed by the formula

E(c) = − 1

log(k)

k∑
l=1

nlc

nc

log
nlc

nc

,

where again l is a class, c a cluster, nlc is the number of documents in

the cluster c, which belong to the class l, nc is the number of documents in

the cluster c and k is the total number of classes. The term nlc/nc is the

30

probability of a document from cluster c to belong to the class l. Afterwards,

the entropy for the whole clustering result is computed as

E =
kc∑

c=1

1

ninner

E(c),

where kc is the total number of clusters and ninner is the number of inner

(non-leaf) nodes in the hierarchy. The entropy measure must be used with

a caution, that the best entropy shows a result, where each cluster contains

only a single document.

6.2 Results

Implemented clustering and classification techniques were tested and com-

pared on English and Czech document collections. Both collections comprise

of newspaper articles. As English documents, the widely used Reuters-21578

collection was taken. For testing the performance of the program on Czech

documents, a set of various newspaper articles was used. Both collections

were split to training and test sets. A detailed description of the data is

given in the appendix A.

First clustering of the training collection was performed. The resulting

hierarchy of clusters was then used for learning a classifier. Finally, a test

set of documents was categorized by this classifier.

No modifications of the clustering hierarchy with use of expert knowledge

were performed. Therefore it is possible to see, how well a hierarchy built by

clustering can serve for learning of a classifier only by itself. Also the compar-

isons of results are more objective. With use of some expert modifications,

the results would be better.

The Reuters-21578 training collection with 7 063 documents was first

used for clustering. For preprocessing, only features, which appear in a single

document were disqualified from further computations. This resulted in the

total number of 18 890 features. As the number of singular values for the

latent semantic analysis, 200 was used. In the computation of the clustering

hierarchy, 10 iterations of the algorithm were performed at each split of a

cluster and the best of them was used.

31

Figure 6.1: Average inner similarity of clusters during the clustering process

of the Reuters-21578 training collection of documents.

First, a complete hierarchical clustering was performed, which ends when

each cluster contains only a single document. The figure 6.1 shows average

inner similarity of clusters in relation to the number of clusters at each

step of the algorithm. The inner similarity of clusters was increasing, as the

clusters were split to smaller and more compact subclusters.

The average inner similarity increased rapidly in the first approximately

60 splits. This suggests, that there was quite a small number of large natural

clusters present in the data. Inside these natural groups, the documents were

more compact and did not differ much from each other. The almost linear

smooth increase of average inner similarity, which started after the half of

the clustering process, was caused by splitting clusters of size 2 to clusters

with a single document, which have inner similarity equal to 1.

The F score and entropy value of this result are displayed in the table 6.2

(this result is labeled as Clustering1). The F score value is comparable to

the results of the bisecting k-means algorithm reported in [8] on the same

dataset. In our case, however, no stop words removal or stemming was used.

As a next step, a clustering hierarchy for learning a classifier was built.

The classifier needs to have larger number of documents in each cluster to

32

Clustering Number of leaf Average size of leaf

(classification) clusters (classes) cluster (class)

Clustering1 7063 1

Clustering30 658 10.734

Clustering150 119 59.3529

Classification30 - Gaussian 17 161.294

Classification30 - discretization 67 40.9254

Classification150 - Gaussian 6 457

Classification150 - discretization 48 57.125

Table 6.1: The sizes of clustering and classification results for the Reuters-

21578 collection.

learn the parameters of each cluster. To achieve this, a stop condition was

set - splitting of a cluster stops, when the cluster contains k documents

or less. Some experiments with the various values of k were performed. It

should be large enough to allow learning of the classifier and at the same

time preserve the hierarchical structure. Clustering with smaller values of k

were very liable to overfitting of the classifier, which was learned on them.

For comparison, results for k = 30 and k = 150 are presented. The

number k = 30 should preserve the granularity of the data well. On the

other hand, the k = 150 attempts to capture the larger natural clusters.

The sizes of produced clusterings are shown in the table 6.1, the F score and

etropy values in the table 6.2 as Clustering30 and Clustering150.

These clusterings were subsequently used for learning of a naive Bayes

classifier. The classifier with discretization and with the assumption of Gaus-

sian distribution of feature weights were trained on both clusterings. These

classifiers were then used for categorization of the test document collection.

Each document was assigned to the single most probable leaf class (cluster)

in the hierarchy.

The sizes of produced classifications are shown in the table 6.1 and their F

scores and entropies are in the table 6.2 (they are labeled correspondingly to

the clusterings, which were used for training). The classifier with discretized

feature weights generally outperformed the classifier with Gaussian assump-

33

Clustering F score Entropy

(classification)

Clustering1 0.626601 0.16533

Clustering30 0.616058 0.491801

Clustering150 0.605154 0.777597

Classification30 - Gaussian 0.449385 1.0923

Classification30 - discretization 0.532004 0.665098

Classification150 - Gaussian 0.342882 1.08975

Classification150 - discretization 0.475569 0.833621

Table 6.2: The F scores and entropy values of clustering and classification

results for the Reuters-21578 collection.

tion. The criterions of classification quality show worse performance, than

the original clustering solution. However, the difference especially for the

classifier with discretization is not very large. The worse performance could

be caused by overtraining of the classifier on smaller clusters. For this rea-

sons, very few or no documents were assigned to clusters, which were small

in the training model. This could be prevented by expert modifications of

the original hierarchy to achieve a better result. Unfortunately, some small

classes with a few assigned documents were already present in the Reuters

collection and could not serve well for training of a classifier.

To prevent the overtraining of the classifier on smaller clusters, also a

modification of the clustering process was used, which does not split a clus-

ter, if it will lead to a cluster smaller than some threshold. However, this

method led to large clusters, that could not be split because of some small

different subset of documents in them, and did not led to an improvement.

The second document collection used in experiments was a set of news-

paper articles written in Czech. These documents were not annotated with

class labels, therefore entropy measure and F score could not be used for

evaluating the results.

For clustering a training set of 4 552 documents was used. These doc-

uments were much more diverse than the Reuters collection. More various

features were used through the text and therefore more radical feature tresh-

34

Figure 6.2: Average inner similarity of clusters during the clustering process

of the Czech newspaper articles.

olding had to be used. In the preprocessing step, all features which appeared

in less than 5 documents and in more than 3500 documents were excluded

from the computation. It resulted in the total number of 21 313 features.

This number is still larger than in the Reuters documents, although the size

of the set of documents is smaller. For the latent semantic analysis, 200

singular values was used as in the previous case.

First, the complete clustering was performed with 10 iterations of the

bisecting k-means algorithm at each split. The average inner similarity of

clusters during this process was computed and the result is shown in the

figure 6.2.

The average inner similarity was increasing more steadily than in the

case of Reuters documents. This also confirms larger diversity of the data.

Similarly as in the previous case, the clustering with stop condition of at

most 30 and 150 documents in a leaf cluster was performed. The sizes of these

clusterings are shown in the table 6.3 as Clustering30 and Clustering150.

On these hierarchies, both Bayesian classifiers were trained and after-

wards used to classify the test set of documents. The classifiers turned out

to be very liable to overfitting. They tended to assign documents only a few

35

Clustering Number of leaf Average size of leaf

(classification) clusters (classes) cluster (class)

Clustering1 4 552 1

Clustering30 825 5.48121

Clustering150 67 67.4925

Classification30 - Gaussian 3 687.333

Classification30 - discretization 30 68.7333

Classification150 - Gaussian 3 687.333

Classification150 - discretization 17 121.294

Table 6.3: The sizes clustering and classification results for the collection of

Czech documents.

large classes and smaller ones were left empty. This was caused partly by the

large variability of features in documents and partly by a smaller number of

training documents, than in the Reuters collection. The results are shown

in the table 6.3

It seems important to use some additional techniques for processing doc-

uments in Czech. The stop words removal and some form of stemming could

reduce the large variability of the data and improve the result.

36

Chapter 7

Summary

In this work a clustering of documents was proposed as a way of creating

a training collection, which could be used for construction of a classifier. A

program was developed to perform these tasks and its results were tested on

clustering and classification of document collections in Czech and English.

The clustering provided by the bisecting k-means algorithm on the Reuters-

21578 document collection showed similar results as were reported by [8].

The clustering result can be modified with use of expert knowledge. For this

work this step was omitted to see, how well the clustering alone can create a

training collection for the classifier. A naive Bayes classifier with either the

assumption of Gaussian distribution of feature weights or discretization of

feature weights to intervals was trained on the clustering. Afterwards, the

classifications produced by these classifiers were compared.

The classifier, which used discretized feature values, showed better results

in all experiments compared to the classifier with Gaussian assumption. The

classification had sligtly worse performance on the test set than showed by

the original clustering on the train set. It is caused by the noise in the cluster-

ing solution and by overfitting of the classifier on small clusters. This can be

prevented by expert modifications of the clustering hierarchy before learning

of the classifiers. Also some more sophisticated classification methods than

the naive Bayes classifier could be used to improve the results.

The documents in Czech were hard to process because of large diversity

of the data. In consideration of this fact, the collection of documents was

relatively small to provide enough training patterns for a classifier. The

37

results of clustering and classification of Czech documents were also hard to

evaluate due to absence of any class labels in the data. For better results for

Czech documents, stop words removal and some form of stemming should

be used. This would reduce the noise in the data and also reduce the large

diversity.

We have shown, that the clustering can serve as a good tool for creating

initial division of documents to clusters, which can greatly simplify the pro-

cess of creating a training set for document classification by an expert. The

described algorithms performed generally better on documents in English

than in Czech and more work should be done to process the documents in

the Czech language more successfully.

38

Appendix A

Data used for testing

A.1 Reuters-21578 collection

As the first collection of documents for experiments, one of the most widely

used collections was used, the Reuters-21578 text categorization test collec-

tion (Distribution 1.0) 1.

It is distributed in 22 files, which contain together 21 578 Reuters arti-

cles, which were published in 1978. They were manually indexed with topics

(classes). A document can have zero or more topics assigned to itself. There

exist a few splits of the collection to train and test set of documents. For

this work, the “ModApte”’ split was used. It divides the collection to three

sets. The first one contains 9 603 training documents, the second one is used

for testing and is composed of 3 299 documents. The last one with 8 676

documents is intended for statistical analyses of the data and is not used for

clustering or classification.

However, after examination of the data, it turned out that some of the

documents from the training and test sets do not have a topic assigned or

they have an empty body. In [1], there is an overview of some researches,

which were performed with use of the Reuters-21578 document collection.

Part of the researches were done with the original split of documents, other

part used a modified collection, with some of the documents removed.

1This document collection is available at
http://www.daviddlewis.com/resources/testcollections/reuters21578

39

For this work, we chose to disqualify the empty documents or documents

without a topic from the processing, following the setup used in [1]. This

resulted to 7 063 documents in the train collection and 2 742 documents in

the test collection. In the training set, 114 classes (topics) were used to index

the documents. The most frequent class was assigned to 2709 documents and

the smallest class to only a single document. Average size of a class is 77.24

documents.

The train set was used for clustering and learning of a classifier, whereas

the test set was used for classification.

A.2 Czech newspaper articles

The second collection of documents is a collection of czech newspaper arti-

cles. Compared to the Reuters-21578 collection, they were not annotated in

any way. They come from the collections of documents, which are used as

sources of texts for The Prague Dependency Treebank.

The collection is composed of some articles from the following sources:

• Lidové noviny (daily newspapers), ISSN 1213-1385, 1991, 1994, 1995

• Mladá fronta Dnes (daily newspapers), 1992

• Českomoravský Profit (business weekly), 1994

• Vesmı́r (scientific journal), ISSN 1214-4029, Vesmı́r, s.r.o., 1992, 1993

The original collection of 6828 documents was split to the training set

with 4552 documents and test set with 2276 documents. Documents were

assigned to these sets at random.

40

Appendix B

User documentation for the

program

In this chapter, a user documentation for the developed program is provided.

It is presented in a form of a demonstrational walk though the whole clus-

tering and classification process, as it is executed by the program. A sample

collection of documents is provided on the the enclosed CD, which will be

used through this chapter for demonstration. It is recommended to open the

program and follow this guide through this sample walk to explore all its

options.

To run this program, Windows operating system and .NET Framework

2.0 (or higher) is requiered. The program is located in the program folder

on the CD and is named ClusterClass. Installation of the program lies in

the copying of the whole program folder. The dll files, which are also in the

folder, must stay in the same folder as the actual program.

B.1 Task: Clustering

As an input for clustering, a folder of documents is used. On the enclosed

CD, a sample set of 100 documents can be found in the sample\clustering
folder.

First open the program and select the item Start clustering in the Clus-

tering menu. A dialog window will appear, where the parameters of the

41

clustering process can be set. It is composed of four tabs, each represents a

step of the clustering process.

In the General Properties tab, the input directory with documents to

cluster is set. Apart from this, it is also necessary to provide a directory for

auxiliary files needed for work. By default, all output files are saved into this

folder. When the button Show details is pressed, the default filenames are

displayed for possible modifications. However, it is recommended to leave

them in their default form, because they will be needed in later processing,

e.g. during learning of a classifier. Now you can set the documents folder

as the sample\clustering from the CD. Then select an arbitrary local

directory for work.

In the Preprocessing panel, you can set parameters for creating the

document vectors. First there are the upper and lower thresholds for feature

occurences. Features, which appear in a smaller number of documents than

the lower threshold, or in larger than the upper threshold will not be included

in the computation. To demonstrate, a lower threshold 1 and upper threshold

95 will skip the words, which appear throughout the sample collection in

more than 95 documents or which appear only in a single document.

A following property to set up is the number of singular values, which

will be computed for the latent semantic analysis as described in the section

2.2.1. Larger values are more computationally demanding and do not provide

generalization, smaller values can be too simplifying. Therefore, it is ideal

to try a few settings and choose the one which produces the best results.

It is important, that the number of singular values must be smaller than

the number of documents, which will be clustered. For the sample case, set

30 singular values. Again, it is possible to set manually the names of the

working filenames.

As the next step, the parameters for clustering are presented in the Clus-

tering tab. Here you can set the number of iterations of the bisecting k-means

algorithm described in the section 3.1.3. Larger numbers of iterations in-

crease the computational requirements, but also increase the probability of

finding a better solution and not ending in a local minimum of the criterion

function. By default, 10 iterations are used. You can also set a stopping cri-

terion for the bisecting k-means algorithm. Processing of a cluster finishes,

when it contains at most the specified number of documents. If this value is

42

set to 1, the computation stops in the moment, when each cluster contains

only a single document.

The last tab presents the parameters for the feature assignment. Here

you can set a threshold for assigning features to documents. Features, which

will show a cosine similarity with a given document larger than the spec-

ified threshold, will be assigned to it. A default value is set to 0.7, which

corresponds to the angle 45◦ between the vectors.

After completion of these settings, you can push the button Start clus-

tering and the whole process will be performed. You can also execute ev-

ery phase separately by pushing the Perform preprocessing/Perform cluster-

ing/Generate features buttons. This requires maintaining the correct order

of the individual phases and setting correct filenames for each step.

When the clustering of the input document collection has finished, the

resulting hierarchy is displayed in the main window. Subsequent actions are

described in the next section.

B.2 Task: Modifying the hierachy

This section provides a description of the main window environment. If you

have just completed a clustering of a document collection, the resulting hier-

archy is automatically displayed. Otherwise, you can open a sample hierarchy

from the CD. Select the File - Open item in the main menu. Then select the

collection of documents as DocumentList.txt and the clustering result file

as Clustering.xml from the sample\results folder from the CD.

Now you should see the resulting tree of clusters in the left part of the

window. The upper-right part of the window serves for displaying a list of

features assigned to a selected document/cluster. In the lower-right part a

preview of a document is displayed, if a document is selected in the hierarchy.

In case of a cluster, it shows a list of documents, that belong to the selected

cluster.

You can save the created hierarchy by clicking on the File - Save item in

the main menu. The result is saved in the XML format. To open a clustering

hierarchy, it is necessary to provide the file with the clustering result and

also a text file with the list of documents, which has been clustered. This

43

file is created during the preprocessing stage and its default file name is

DocumentList.txt. If you have not changed this name, it should be located

in the working folder.

The figure B.1 shows a description of tools available for modifying the

hierarchy. It is possible to drag documents and clusters from one location to

another, to copy and paste them, to create new clusters or to delete them.

For example, if a document is assigned to an improper cluster, it is possible

to move it by mouse to another.

After some modifications, the tree of clusters can be degenerated - an

empty cluster or a path formed by nested clusters can remain in the tree.

To solve this problem, you can push the Reload hierarchy button and these

malforms will be eliminated.

Another modification is a join of subclusters. The built hierarchy is de-

faultly a binary tree with each document as a leaf cluster. However, for the

purposes of learning of a classifier it is more suitable to have leaf clusters

with a larger sets of documents. To enable this, it is possible to join subclus-

ters of a specified cluster, i.e. to delete the structure of its subtree of clusters

and to make it a leaf node. This node will contain union of documents from

its original subclusters. The join is performed by selecting a cluster in the

hierarchy and pushing the Join subclusters button on the toolbar.

Modifications of feature vectors is also possible. When a cluster or a

document is selected in the hierarchy tree, its features together with their

weights are displayed in the upper-right part of the main window. They

are sorted alphabetically. You can alter a form of the feature or adjust its

weight. It is also possible to add new features and delete them. If a feature

is deleted, it is removed only from the actually selected document/cluster.

If some features are removed from documents, they remain assigned to their

parent clusters. To resolve this, select a cluster and push the Update features

button. The features assigned to the cluster will be recomputed to contain

again union of features from its subclusters. These features will be afterwards

used for learning of a classifier. All the described actions are performed by

pushing corresponding buttons on the toolbar (see the figure B.1).

After the hierarchy is modified to a satisfactory state, you can save it

and proceed to learning of the classifier.

44

Figure B.1: The program’s toolbar - a description of control buttons.

B.3 Task: Learning a classifier

For building a classifier, select Create classifier from clustering item in the

Classification menu. A dialog window will appear. This window has two

tabs, each for a different type of classifier.

The first tab allows to build a naive Bayes classifier with an assumption

of a Gaussian distribution of feature weights. It requires the user to set two

input filenames. The fist one is a complete list of features from the document

collection, which was clustered. This list was created during the preprocess-

ing of documents for clustering. Its default filename is FeatureList.xml

and it should be located in the corresponding working directory. The second

input filename is the clustering result, wich will serve as a training model

for the classifier. Its default filename is Clustering.xml. Again, sample files

can be found in the sample\results folder on the enclosed CD.

Two remaining fields to fill are the files, to which the classifier will be

45

saved. The first one represents the hierarchical structure of the classes. The

next file will contain learned parameters of the classifier. Again, it is recom-

mended not to change the default names. After pressing the Create classifier

button, the classifier will be learned on the specified clustering.

The second tab presents a building of a naive Bayes classifier with dis-

cretization of the feature weights. The first four fields are the same as in the

previous case. For this type of classifier, a number of intervals i, to which will

be split the feature domain, is also set. The feature domain will be divided

to i equal-width intervals. Its default value is 10. Again, after setting these

parameters, the classifier can be built.

When the training of the classifier is finished, classification of a new set

of documents can be performed.

B.4 Task: Classification

The classification process is in many respects similar to the clustering task. In

the Classification menu select the Start classification item. A dialog window

will appear. It is composed of three tabs.

The first tab shows general properties, which are the same, as in the

clustering window. You should set a folder with documents, which will be

classified, and a working folder. On the enclosed CD, there is also a test

collection of documents to use for this purpose. It contains 40 text docu-

ments and is located in the sample\classification folder. Similarly, after

pushing a button Show details, the filenames, which will be used, are dis-

played for possible modifications. It is recommended to set the same working

directory, as was used for the previous clustering.

In the Preprocessing tab, properties for creating document vectors are

set. Preprocessing of documents for classification requires some files created

during the clustering of documents, which was used for learning of the clas-

sifier. Implicitly, the default filenames are expected in the working directory.

If you have changed them in the preprocessing for clustering, you should

change them appropriately here. If you used the default filenames, you can

simply skip this tab.

In the last tab, parameters for classification itself are set. You can choose

46

a file to store the result of classification. Next, set the filenames, in which

the built classifier is stored. On the CD, you can also find the classifier with

the Gaussian assumption of distribution of feature values (sample\results\
ClassGaussHierarchy.xml, sample\results\ClassGaussParams.txt) and

the classfier with discretization of the feature values (sample\results\
ClassDiscrHierarchy.xml, sample\results\ClassDiscrParams.txt).

At this point, decide if you want documents to be classified to more than

one class and what threshold will be used in this case. Documents will be

assigned to all classes, for which the probability to belong there is larger than

the specified threshold. You can also choose, whether documents should be

classified directly to leaf classes in the hierarchy. If you uncheck this option,

the classification will start in the root class, where the document will be

assigned to its most probable subclass, and proceed recursively until a leaf

in the tree is reached.

Similarly as in the other tabs, under the Show details button, modifica-

tions of used filenames are possible. There is also an eventuality of perform-

ing preprocessing of documents and classification separately by pushing the

buttons Perform preprocessing and Perform classification at each tab. To

perform the whole process at once, push the OK button.

After the classification completes, the resulting assignment of documents

to classes is displayed in the main window. This resulting hierarchy can

be viewed and modified in the same way as the hierarchy created by the

clustering process.

47

Bibliography

[1] Aas, K., Eikvil, L.: Text categorisation: A survey, technical report, Nor-

wegian Computing Center, 1999.

[2] Berkhin, P.: Survey of Clustering Data Mining Techniques, Accrue Soft-

ware, 2002.

[3] Berry, M. W., Dumais, S. T., O’Brien, G. W.: Using Linear Algebra for

Intelligent Information Retrieval, SIAM Review 37(4):573–595, 1994.

[4] Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised

discretization of continuous features, Proceedings of the Twelfth Inter-

national Conference on Machine Learning, Tahoe City 1995.

[5] Lehoucq, R. B., Sorensen, D. C., Yang, C.: ARPACK Users’ Guide:

Solution of Large Scale Eigenvalue Problems with Implicitly Restarted

Arnoldi methods , technical report, Rice University, 1997.

[6] Rish, I.: An empirical study of the naive Bayes classifier, IJCAI Work-

shop on Empirical Methods in Artificial Intelligence, 2001.

[7] Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, Sec-

ond edn. Prentice Hall, 2003.

[8] Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clus-

tering techniques, KDD Workshop on Text Mining, 2000.

[9] Zhao, Y., Karypis, G.: Hierarchical Clustering Algorithms for Document

Datasets, Data Mining and Knowledge Discovery, Vol. 10, No. 2, pp.

141-168, 2005.

48

