
Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR THESIS

David Hauzar

Image Viewing and Manipulation Tool

Department of Software Engineering

Advisor: RNDr. Tomáš Kalibera, Ph.D.

Study Program: Computer Science, General Computer Science

2007

My most sincere thanks go to my advisor, RNDr. Tomáš Kalibera, Ph.D. I thank
him for many ideas and suggestions, for great support during the development of
this work, and for giving me the opportunity to work with this thesis.

Furthermore, I would like to express my gratitude to my friends, Marcin Ki-
larski and Archibald Liddell, who reviewed the text.

I hereby declare that I wrote the thesis myself using only the referenced sources.
I agree with lending the thesis.

Prague, August 9, 2007 David Hauzar

2

Contents

1 Introduction 7
1.1 Digital Image Processing . 7
1.2 Digital Image processing and Photographs 7
1.3 Why Another Image Processing Tool? 8

2 Aims of the tool 9
2.1 Demands on the Tool from Users Viewpoint 9
2.2 Demands on the Tool from Extension Programmer Viewpoint . . 10

3 Structure of the Thesis 12

4 Analysis of the Design of the Tool 13
4.1 Monolithic or Modular . 13
4.2 First Glance at the Modules . 13
4.3 Extracting Functionality into Plugins 13
4.4 Analysis of the Plugins Concept 14
4.5 Installation, Uninstallation and Updating of Plugins 16
4.6 Functions of the Kernel of the Tool 17
4.7 Programming Language . 18
4.8 Other Plugins Mechanisms . 18
4.9 Image Processing in the Tool . 19

5 Analysis of Selected Image Processing Functions 21
5.1 Noise Cleaning . 21
5.2 Exposure Bending . 23

6 Users Guide 28
6.1 Installation . 28
6.2 Running the Program . 29
6.3 Browsing Filesystem . 31
6.4 Viewing Image . 32
6.5 Using Batch Processing . 33
6.6 Interpreting Image Histogram . 34
6.7 Manipulation with Brightness Levels 36
6.8 Exposure Bending . 40
6.9 Using Exposure Bending in the Tool 43

3

CONTENTS

7 Architecture of the Tool 46
7.1 Architecture Overview . 46
7.2 Plugins Concept . 46
7.3 Image Data Structure . 50
7.4 Kernel Modules . 50
7.5 Process Flow . 52

8 Evaluation – Comparing with Similar Tools 55
8.1 Compared Tools . 55
8.2 Methodology . 55
8.3 Comparison Results . 57
8.4 Comparison Conclusion . 59

9 Conclusion 60

A Plugin Developers Manual 62
A.1 Working with Images in the Program 62
A.2 Using Plugins . 67
A.3 Other API of the Program . 68
A.4 Writing Plugins . 70
A.5 Writing Action Plugins . 72
A.6 Writing Processing Plugins . 75
A.7 Writing User Interface Plugins . 76
A.8 Writing I/O Plugins . 78
A.9 Writing Worker Plugins . 78
A.10 Using Action Plugins . 79
A.11 Advanced Use of UndoableImage 80
A.12 Working with Selections . 81
A.13 Using Batch Processing . 83
A.14 Other Advanced Issues . 85
A.15 Licence . 88

Bibliography 89

4

CONTENTS

Název práce: Nástroj na prohĺıžeńı a manipulaci s obrázky
Autor: David Hauzar
Katedra (ústav): Katedra softwarového inženýrstv́ı
Vedoućı bakalářské práce: RNDr. Tomáš Kalibera, Ph.D.
e-mail vedoućıho: tomas.kalibera@dsrg.mff.cuni.cz

Abstrakt: Digitálńı zpracováńı obrazu zahrnuje mnoho technik užitečných pro
opravu a korekci fotografíı. Je to např́ıklad filtrace šumu, zaostřováńı obrázk̊u,
vyvažováńı barev a mnoho daľśıch. Ćılem práce je navrhnout a implemento-
vat přenositelný program, který by umožnil snadnou integraci existuj́ıćıch im-
plementaćı těchto technik a uživatel̊um poskytl sjednocené a snadno použitelné
uživatelské rozhrańı.

Program obsahuje funkce pro procházeńı, prohĺıžeńı a zpracováńı obrázk̊u.
Mezi pokročilé funkce patř́ı spojeńı expozice – spojeńı fotografíı stejného
objektu poř́ızených s odlǐsným nastaveńım expozice do jedné fotografie s větš́ım
dynamickým rozsahem. Nástroj umožňuje aplikovat některé operace na skupinu
obrázk̊u. Je to rotace obrázku, změna velikosti obrázku a mediánový filtr.
Mechanizmus rozš́ı̌reńı programu zahrnuje podporu pro přidáváńı nových op-
eraćı zpracováńı obrázk̊u, aplikaci těchto operaćı na skupinu obrázk̊u, přidáváńı
podpory nových grafických formát̊u, modifikaci a rozšǐrováńı uživatelského
rozhrańı programu.

Kĺıčová slova: digitálńı zpracováńı obrazu, prohĺıžeńı obrázk̊u, vylepšeńı obrázk̊u,
spojeńı expozice

Title: Image Viewing and Manipulation Tool
Author: David Hauzar
Department: Department of Software Engineering
Advisor: RNDr. Tomáš Kalibera, Ph.D.
Advisor’s e-mail address: tomas.kalibera@dsrg.mff.cuni.cz

Abstract: Image processing comprises many useful techniques for fixing and cor-
recting of digital photographs, such as noise filtering, sharpening of images, color
balancing, and many others. The aim of the work is to design and implement
a portable tool that would allow easy integration of existing implementations of
such techniques, providing its users with a unified and easy to use interface.

The tool offers basic functions for image browsing, viewing, and process-
ing. The advanced functions include image bending – manual combining of
photographs of the same object taken with different exposures into a single
photograph with higher dynamic range. The tool makes it possible to apply
some of the operations to a group of images. These operations are image
rotation, image rescaling, and median filtering. The extension mechanism of
the tool includes support for adding new image processing operations, applying
operations to a group of images, extending the range of supported image formats,

5

CONTENTS

modifying and extending user interface of the program.

Keywords: digital image processing, image viewing, image enhancement, exposure
bending

6

Chapter 1

Introduction

1.1 Digital Image Processing

William K. Pratt [9]:

Now, in this beginning of twenty-first century, image processing
has become a mature engineering discipline.

Thanks to a high computer efficiency, digital image processing can be used in
many applications in both research and industry. Well known are applications in
space imagery and medical research.

The example of such application was correcting an error of Hubble telescope
optical system [1, 2, 3, 4]. Because of this error, first pictures taken by the tele-
scope were so distorted, that they were unsuitable for any further analysis. Un-
fortunately, it was physically not possible to fix physically the optical system in
following three years. Nevertheless, with the exact knowledge of the error, it was
possible to construct an image processing operator that enabled the correction
of distorted images. The results were very good and the telescope carried out a
large number of observations.

1.2 Digital Image processing and Photographs

Progress in this field has led to the development or improvement of many image
processing techniques. It is not surprising that many of such techniques are useful
for fixing and correcting digital photographs.

The example of the image processing technique, potentially practical for com-
mon users, combines information from more photographies of the same object
into the enhanced one. This includes the technique of exposure bending, which
serves for enhancing the dynamic range of photographies and, whose implemen-
tation is present in this tool. However, it is possible to go even further. With the
techniques of image registration, it is possible to automatically fit the images.
Next, with the use of a blind deconvolution technique, it is possible to sharpen

7

CHAPTER 1. INTRODUCTION

such images. The noise of such images can be also highly suppressed without the
loss of information.

Many techniques also enable the enhancement of a single image. As an ex-
ample, one can mention noise cleaning techniques, sharpening image techniques,
or histogram modification techniques, which seek to enhance the contrast of the
image.

It could be interesting, that some digital image improvement techniques are
derived from traditional techniques used to enhance images taken on the photog-
raphy film. The difference is, that enhancing digital photographs is much faster.

1.3 Why Another Image Processing Tool?

Despite the great potential asset of the image improvement techniques of pho-
tographs fixing and correcting, more sophisticated techniques are often used only
in specialised applications and are not accessible for common users.

The first kind of programs providing the image improvement techniques are
image editors like Photoshop. The problem is that such tools are aimed at painting
and are too complex for most users. Moreover, the image improvement techniques
available in such tools are often oriented to long work with a single image. This is
usually not acceptable for users, who would like to enhance many photographies.

Then, there are tools aimed at one specific image improvement function. This
approach is good while realizing image improvement functions, which implies
complex manual manipulating with images. Once again, this is not interesting
for common users. Moreover, there is usually no point in integrating other image
improvement functions with these tools.

Next, there are tools designed for image viewing and automatic image pro-
cessing. It is for example XnView, Google Picasa, or IrfanView. These tools are
usually suitable for common users, there are easy to use and suitable for process-
ing a large number of photographies.

Although these tools sometimes offer relatively wide range of functions, it
is still only a small part of the potential of image processing techniques. The
problem is, that they usually do not provide public SDK or API that would allow
easy integration of more complicated image processing techniques.

8

Chapter 2

Aims of the tool

The tool should bring the advantages of image improvement techniques for com-
mon users and allow easy integration of existing implementations of image im-
provement techniques for programmers.

2.1 Demands on the Tool from Users Viewpoint

The long term plan is to offer all image processing functions that can be helpful to
easy to use improvement of photographs. Unfortunately, this is not manageable
to maintain by a single programmer. Consequently, functions of the tool must be
limited in the initial design. Tool has to offer basic image processing functions
exploitable by the majority of users.

The tool should support reading and writing of the most widespread image
formats, particularly JPEG and PNG image formats. It should be able to set the
quality of the lossy image formats such as JPEG.

Because users will notice the imperfections of photographies while viewing it
and they do not often want to spend time by loading a special tool for image
processing, the tool should also provide image viewing, browsing and processing
functions. The browsing and viewing functions of the tool include browsing images
in the filesystem, viewing single images, viewing previous and next images in the
directory, zooming images and the support of the full screen mode.

The tool should support basic image processing functions such as image rota-
tion, image cropping, adjusting the contrast and the brightness of the image, the
modification of contrast with the curves tool, and simple noise filtering. Other
image processing functions should be addible via plugins.

It should be able to select parts of the images so that the image processing
functions could work with such selections. In the long term plan, the majority of
the image processing functions should be applicable to only the selected part of the
image. However, in the initial design, the only image processing function that will
work with the selections will be the cropping function, where such functionality
is the most useful.

The functionality, which can remarkably save users time, is batch processing.
It should be possible to apply various image processing functions to all images in a

9

CHAPTER 2. AIMS OF THE TOOL

given directory. It should be possible to set the image format of processed images
and set the directory, where processed images will be stored. Batch processing
should be supported by all functions which can be applicable to the group of
images. In the referring version of the tool, it is the function of image rotation,
the function of image rescaling, and the function of noise cleaning.

The tool should support one advanced image processing function which is not
common in other image processing tools and which would make the tool more
interesting. The function of exposure bending was chosen.

2.2 Demands on the Tool from Extension Pro-

grammer Viewpoint

The tool should provide a simple to use and at the same time powerful enough
API that would allow the implementation of even complex image improvement
functions. Such implementations should be addible without the modification of
the source code of the program via additive extensions.

At first, it should be possible to write extensions that could be run by a user
clicking on a menu item or on a button. The API of the tool should allow easy
integration of such plugins to the menus of the tool.

Next, it is necessary to have the possibility to write extensions that would
allow processing a given image. It should be possible to call this plugins from
other parts of the tool with various parameters.

Furthermore, the API of the tool should allow to call given image processing
operator with given parameters to the group of images and should provide a
component which will allow to get the parameters of batch processing from a
user.

Extension programmers may need to access the image which a user is currently
viewing, process it with a given processing operator, and display the processed
image to the user. They should not have to deal with such displaying of the
image and with connected problems such as rescaling the image to fit the window,
zooming the image, translating the image to the centre of the window, or handling
undo and redo operations.

Display operations such as iterative zooming in and zooming out must not af-
fect the quality of processing image. There should also support preview operations
without affecting the quality of processing image.

It should be able to access the directory that a user is currently browsing and
get images from this directory.

It should be possible to write user interface extensions that would allow to
get the input from the user or to display custom user interface component to the
user. Moreover, it should be possible to reuse such extensions and the tool should
provide user interface components that provide the getting of basic user input
from a user.

It should be possible to obtain the selected parts of the image and it should
be practicable to add new methods of user driven creating and manipulating with

10

CHAPTER 2. AIMS OF THE TOOL

the selections.
Last but not least, it is necessary to allow programmers to add the support

of new image formats or to integrate better algorithms that work with existing
image formats.

11

Chapter 3

Structure of the Thesis

In chapter 4, the design of the tool is analysed, discussing possible approaches
to fulfill abovementioned requirements. Next, chapter 5 presents the techniques
of noise cleaning and exposure bending. Using the tool is described in chapter 6.
Chapter 7 provides the description of the architecture of the tool. Chapter 8 is
dedicated to the comparison of similar tools and the tool itself is there evaluated.
Finally, chapter 9 wraps up the thesis.

12

Chapter 4

Analysis of the Design of the Tool

4.1 Monolithic or Modular

The basic question is whether the tool should be monolithic or modular. In the
monolithic approach, there is no need to define any modules, interactions between
modules, and to design interfaces that realise these interactions. This can be
beneficial in the initial phase of implementation. Nevertheless, the code would
quickly become unmanageable while implementing such complex tool.

The next problem is that the monolithic approach does not allow automated
integration of extensions. It would be necessary to modify the source code of the
tool while extending it. Hence, it is necessary to recompile the tool every time
when an extension is added. This is disadvantageous also for users of the tool.

Consequently, it will not be able to fulfill the demands on the tool listed in
Section 2 with the monolithic approach and the modular approach was chosen.

4.2 First Glance at the Modules

Modules should be separated as possible and the purpose of the modules should
be recognisable at first glance. The modules should be easy to use, so good design
of their interfaces is fundamental.

It must be possible to enable extending given modules by extensions loaded
on the start-up of the tool. Such extensions will be called plugins in further text.

4.3 Extracting Functionality into Plugins

Plugins can play different roles in the architecture of the tool. At first, most of
the functionality can be implemented in the kernel of the tool and plugins can
serve to extend it. In this approach, it would be possible to work directly with
other classes of the kernel, create several independent objects of a given class and
call its concrete methods.

The second approach is to design a small kernel of the tool that would include
more or less only the extension mechanism and the functionality extract into

13

CHAPTER 4. ANALYSIS OF THE DESIGN OF THE TOOL

plugins implemented with the use of the extension mechanism. This solution is
naturally more extendable. The Extension mechanism must have enough power
to allow the implementation of all the functionality of the tool.

Plugins are written while implementing basic functionality. It allows the ex-
tension mechanism to be tested before publishing the interfaces of the extension
mechanism to external programmers.

Extracting functionality into plugins typically provides higher re-usability of
the source code. The source code of plugins will probably be considerably less
dependent on the special purpose classes than corresponding source code in the
kernel would be.

The disadvantage of this approach is the higher requirements on the extension
mechanism. When solving problems, it is necessary to design a universal API in-
stead of simple tying two classes together. This however has a big risk excessive
complexity of the system for the extensions programmer. It is necessary to de-
sign the system to automate as many things as possible. As well as this, careful
segmentation of the tool to modules and good design of interfaces is essential.
Well designed modules allow an extension programmer to study only the part of
extension mechanism in which he is most interested.

Conclusion

The architecture with functions in the kernel of the tool is suitable when require-
ments of the functionality of the tool are exactly given, the re-usability is not the
most important and the extending of the tool is exactly specified. In the context
of image processing tool, it could be for example only adding the support for new
image formats or adding new image processing filters.

For the demands of the analysed tool, the approach with the functionality in
the plugins is more fitting.

4.4 Analysis of the Plugins Concept

Plugins types and plugins interfaces

Plugins must allow processing of images, extending the support of image formats,
they should also allow the input from the user to be obtained, or display custom
user interface component to the user. Plugins should also provide user interface
components exploitable in user interface plugins. Next, it would be beneficial, if
plugins could also do further general work. Furthermore, it must be possible to
integrate a plugin to the menu of the tool.

This list implies that plugins play significantly different roles in the function-
ality of the tool and consequently could be used in different domains of interest. It
would be appropriate to divide plugins into more types with reduced complexity.

In order to allow automatic integration, the plugins of a given type must
implement a given interface.

14

CHAPTER 4. ANALYSIS OF THE DESIGN OF THE TOOL

Lifetime and state of the plugins

Assume that each plugin is represented by one object of the class implementing
given interface. It must be determined, whether the object of the plugin will be
created only once and will live on between its calling or whether the object will
be created at each calling.

In the first approach, the object can maintain its state in instance variables
and can react differently at each calling. The advantage of this concept is greater
flexibility. However, it must be guaranteed, that the instance variables are in the
correct state before calling the plugin. If the plugin can be called concurrently, it
is also necessary to provide the correct synchronisation of instance variables.

Plugins which are represented by such objects allow realising asynchronous
communication in the tool by receiving messages via the mechanism of backward
calling. The asynchronous communication is described in Section 4.4.

Due to these benefits, the approach with plugins represented by an object
which lives on between its callings was chosen.

It is possible to go even further into the design of the state of the plugins.
Previously designed persistent object holds only one state shared by all callers.
The caller of the plugin does not know anything about callings of this shared
plugin object by other entities and it is consequently not possible to rely on that
the plugin in the same state after the previous calling. It would be possible to
solve this problem by simulating independent objects by one object of the plugin.
The plugins object could assign each caller a unique identifier and could store
the independent state for each identifier. The caller could then pass this identifier
when calling the plugin.

The extension mechanism of the tool does not contain a direct support of inde-
pendent states of plugins. However, because the objects representing the plugins
live on between callings, it is possible to construct such plugins.

Plugins Communication

It should be possible to call a plugin from any other plugin. A plugin will be
identified by its type and the unqualified name of its main class. It is necessary
to determine the form of the calling.

The caller will pass the identifier of the plugin or more generally the service
he demands and additional information in the parameters. The calling should
be mediated by the kernel of the tool. The kernel will choose the correct plugin
which offers given service and call it. It can handle additional functions before
and after calling the plugin for example creating a new thread for the plugin.

The previous concept provides a unified way of calling the plugins that should
be sufficient in most cases. However, it could be also possible to obtain the object
representing given plugin and invoke its custom method. This would allow plugins
to provide richer interfaces.

With the concept of plugins as permanent objects which was described ear-
lier, there is also possibility to implement indirect, asynchronous communication
controlled by events. Consequently, it is possible to create a plugin that will do an

15

CHAPTER 4. ANALYSIS OF THE DESIGN OF THE TOOL

arbitrarily complex operation when such an event occurs. This means the plugins
programmer has a very strong mechanism in automating the functionality of the
tool. The concept of asynchronous communication is developed more in Section
4.6

4.5 Installation, Uninstallation and Updating of

Plugins

Due to the fact that plugins can call other plugins, it is necessary to guarantee that
pulgins which are needed by another plugins will not be uninstalled. Consequently,
the dependencies between plugins need to be defined.

It would be good to allow programmers to divide the implementation of one
plugin to more class files. This is easily manageable when plugins will be in jar
archives. Detecting the name of the main class of the plugin can be solved simply
by introducing the convention that the main class has the same name as the jar
archive.

Installation and uninstallation

As plugins will be detected in the start-up of the tool, the installation of a new
plugin will consist in detecting the plugins type, checking the dependencies of the
plugin and copying it to the given directory if all dependencies were fulfilled.

Uninstallation of the plugin will consist of checking dependencies and deleting
the jar file of the plugin.

Updating

allows the existing functionality of the tool to be improved. For example, updated
user interface plugin can provide more functionality or a better look and feel.

However, because a plugin is identified only by its type and unqualified name
of its main class, the new version of the plugin must have the same interface as
the old version and must be usable in the same way.

Hence, updating the plugin will consist only of the uninstallation of the plugin
and performing new installation of such a plugin. Besides from this, it is necessary
to solve non standard situations caused by plugin dependencies. Different versions
of the plugin have different implementations and can call different plugins. It is
therefore necessary to check whether the new version of plugin has the unfulfilled
dependencies. If it has, then it cannot be installed. If it has not, the old version
will be uninstalled. To perform uninstallation, a check of dependencies will be
omitted. Thereinafter, the new version of the plugin will be installed.

Further issues

It can be necessary to perform other actions while installing and uninstalling
specific types of plugins. For example integrating a plugin to the menus of the

16

CHAPTER 4. ANALYSIS OF THE DESIGN OF THE TOOL

tool or removing the plugin from the menus.
Unexpectedly terminating the tool while performing installation, uninstalla-

tion and especially updating the plugins can lead to a not well defined state of
tool. Therefore recovery from these states should be performed.

4.6 Functions of the Kernel of the Tool

The rest of the section provides an overview of the basic demands on the func-
tionality of the kernel of the tool.

Managing plugins

The kernel must provide loading of plugins and calling of plugins. Calling of the
plugins is analysed in Chapter 4.4.

Shared data structures

It is necessary to provide access to the image which the user is currently viewing
or to the directory which the user is currently browsing. This data will be stored in
shared data structures in the kernel of the program. Plugins should also have the
possibility to react to changes in such structures via the mechanism of backward
calling.

Hence, arbitrary complex action can be automatically performed when shared
data structure is changed. This gives the possibility to implement the architecture
of the tool with functionality in the plugins. The particular solution is described
in Chapter 7.

Managing menus

The kernel must provide the ability to obtain the data needed for creating menus
of the tool and provide the interface for accessing it.

The data can be stored in XML text files. This enables the automated inte-
gration of plugins to the tool menus. A plugin specifies to which place on which
menu it should be placed and it will be automatically integrated to the specified
menus by changing the given text files. If these files are accessible by plugins, the
integration can be done by plugins.

API of the tool should provide automated creating of the menu component of
given GUI toolkit from menu data. Once again, this functionality can be provided
by plugins.

Batch processing

In general, batch processing includes obtaining the parameters of processing,
obtaining the plugin that provides the given processing function, and processing
each image of a given set of images with use of this plugin.

17

CHAPTER 4. ANALYSIS OF THE DESIGN OF THE TOOL

All this functionality can be provided by plugins. However, the kernel of the
tool should offer the data structure that keeps to the parameters of batch pro-
cessing.

Other plugins should for example provide user interface component that allows
obtaining the batch processing data.

Localisation of the tool

It would be advantageous to store localised strings in text files. This would allow
easy localisation of the tool. The kernel should manage the initialisation of the
localisation and offer method for getting localised strings.

The problem is, that because of potential collisions, the automatic modifi-
cation of localisation files is barely manageable. Consequently, programmers of
plugins which will be not distributed with the tool and will be installed by the
user will not be able to use the localisation provided by the tool and will have to
solve it themselves.

Further functionality

The kernel must include the data structure for working with the image. Kernel
should also include classes, which can make the programming of the functionality
of the tool easier, such as utility classes, user interface components, or various
data structures.

4.7 Programming Language

One of the main demands on the programming language and used libraries was
the support of multiple platforms. Also because of plugins concept, the straight-
forward support of loading classes unknown during the compilation was very im-
portant. As well it was necessary to implement relatively complex functionality
in short time, so programming languages with garbage collector were preferred.

Java programming language was chosen. It enables to create code which runs
wide spectrum of platforms and it provides the Reflection API, or the support
of multi-threading and synchronisation. Moreover, it has garbage collector and
provides libraries with rich functionality including the collections framework or
the support of Observer design pattern. It is possible to call native code compiled
for given platform that enables particularly optimalisation of the computationally
costly operations with big image data.

4.8 Other Plugins Mechanisms

The rest of the section provides an overview of two plugin mechanisms in Java.
It will be discussed, whether it would be appropriate to adopt the mentioned

18

CHAPTER 4. ANALYSIS OF THE DESIGN OF THE TOOL

mechanisms in the tool. However, there are more plugin mechanisms available.
For example the JPlugin [6].

Extension mechanism of ImageJ

ImageJ [5] is a public domain Java image processing tool inspired by NIH Image
for the Macintosh designed to process medical images.

The tool has a powerful and easy to use extension mechanism specialised
for extending the image processing program. These declare as many interesting
plugins written for ImageJ. There is even possibility to use ImageJ library outside
ImageJ. The advantage of this approach is particularly the adoption of an existing
plugin mechanism and reuse of the plugins written for ImageJ.

On the other hand, it was put emphasis on distinctly different demands while
designing ImageJ, the tool for processing medical images, than while designing
this tool. There is no support of browsing and viewing images, no support of batch
processing, there is not sufficient support of integrating plugins to the menu, the
support of user interface is not satisfactory enough.

Consequently, it would not be possible to use this plugin mechanism directly.
While the plugins concept is nice and it is easy to write ImageJ plugins, the
sources of kernel classes are highly complicated and sometimes badly designed,
so it would be complicated to modify and extend ImageJ’s plugin mechanism.

ImageJ classes are also tightly knotted with ImageJ image processing engine.
This engine is relatively efficient and certainly noteworthy, but it does not offer
such complexity as dedicated processing engines such as JAI [13].

It was decided not to adopt the extension mechanism of ImageJ. However, the
plugins concept of ImageJ strongly involved the design of the tool.

Java Plugin Framework

Java Plugin Framework [7] provides a runtime engine that dynamically discovers
and loads plugins. Using JPF directly would be not suitable, because Java Plugin
Framework is general framework and therefore cannot offer desirable degree of
automation. Nevertheless, it would be possible to use JPF to implement more
specialised plugin mechanism that would satisfy the demands stated earlier.

4.9 Image Processing in the Tool

Library for image processing

Photographs include millions of pixels and their processing can easily became
a bottle neck. Consequently, one of the most important characteristics of image
processing library is efficiency. Next important characteristics are easy to use and
the amount of included image processing functions.

JAI [13] image processing library was chosen. It supports accelerating of com-
mon image processing operations using native code of given platform, it offers

19

CHAPTER 4. ANALYSIS OF THE DESIGN OF THE TOOL

wide spectrum of functions, and it has presentable documentation. Furthermore,
it has wide community of users and it is supported by the Sun. However, JAI
is not part of standard Java distribution, so it is necessary to distribute it in-
dependently. JAI library is relatively complex and plugins programmers should
not be forced to use it. There should be the possibility to use less complex image
processing solutions, especially AWT imaging which is standard part of Java. On
the other hand, the usage of JAI should be as easy as it is possible.

The image data structure

The image data structure must primarily store the image data. Then, it must
store the information about selected areas in the image – regions of interest. The
basic support of regions of interest includes the possibility of adding new regions
of interest to an image and getting information about regions of interest from an
image. Next issues include the support of modifying existing regions of interest by
user. Then, there must be solved the problem how to modify regions of interests
when there was performed geometrical modification of the image. Next, plugins
would have the possibility to observe the regions of interest.

Other demands on the image data structure is storing additional information
like EXIF [8] information.

20

Chapter 5

Analysis of Selected Image
Processing Functions

The image processing functions that the tool should support were mentioned in
Section 2.1. In this chapter it is described in more detail the function of noise
cleaning and the function of exposure bending.

5.1 Noise Cleaning

In [9] is pointed:

An image may be subject to noise and interference from several
sources, including electrical sensor noise, photographic grain noise,
and channel errors.

Consequently, an undesirable noise, perceptible particularly on photographs
of night scenes where setting long exposure time and high sensibility is necessary,
is one of the most common defects of digital photographs. Hence, it is appropriate
to offer functions for noise suppression.

Noise can be reduced by statistical filtering techniques or the application of
ad-hoc noise cleaning techniques. The statistical filtering is suitable particularly
if the additional information about the distortion of the image is known. More
information about statistical filtering is in [9].

If no information about the distortion of an image is available, noise cleaning
techniques are usually more congruous. Many noise cleaning techniques stands
on the observation, that image noise caused by a noisy sensor or channel trans-
mission errors usually consists of isolated pixels that are not spatially correlated.
Consequently, erroneous pixels are markedly different from their neighbours.

Linear noise cleaning

Owing to the fact, that an image noise is not spatially correlated, it usually has a
higher spatial frequency spectrum than the other image elements. Consequently,

21

CHAPTER 5. ANALYSIS OF SELECTED IMAGE PROCESSING
FUNCTIONS

the noise can be reduced by simply removing the high frequencies. This can be
done by the convolution or equivalently in the Fourier domain by low pass filter.
In the discrete case, the convolution of the image I with M rows and N columns,
and the kernel K with J rows and K columns is given by:

O[m,n] =
J∑

j=1

K∑

k=1

I[m− j, n− k]K[j, k]

Information about convolution and low pass filter are in [9].
Unfortunately, high frequencies also contain the information about the edges

of an image. Consequently, linear noise cleaning techniques tend to smooth the
image highly. This is discussed in [9].

Nonlinear noise cleaning

Nonlinear techniques aim to not blur the edges of images and to provide better
compromise between noise smoothing and not loosing of image detail.

The example of nonlinear cleaning technique is outlier. Each pixel is com-
pared to the average of its eight neighbours. If the magnitude of the difference is
greater than some threshold level, the pixel is judged noisy, and it is replaced by
its neighbourhood average.

The next example is the median filter. In the one dimensional case, median
filter is performed using a sliding window consisting of an odd number of samples.
The centre pixel in the window is replaced by the median of the pixels in the
window.

The bilateral filter works like convolution based filters in the areas with
constant colour, but it lowers the contribution of pixels whose values differ greatly
from the centre sample.

The last discussed filter is the rotating mask filter. The neighbourhood of
the pixel is divided into sub-regions. For each sub-region is computed the mean
and dispersion. The output value is the mean of the sub-region with minimal
dispersion.

Noise cleaning technique present in the tool

The implementation of median filter was integrated to the tool. It is simple and
consequently easy to implement, and it gives relatively good results in suppressing
the noise of digital cameras. The capabilities of median filter are discussed in [9].

The tool enables to determine the level of noise cleaning by choosing the size
of the window. The median filter is also applicable to the group of images.

The further improvement of median filter implementation in the tool could
include better support for adjusting the window of the median filter – user would
specify the initial size of the window. Then, the preview of the filtered image would
be displayed. If the filtering was insufficient, user could press the “More filtering”
button, which would enlarge the size of the mask and display the preview. If the
filtering was excessive, user could press the “Less filtering” button, which would
decrease the size of the mask and display the preview.

22

CHAPTER 5. ANALYSIS OF SELECTED IMAGE PROCESSING
FUNCTIONS

5.2 Exposure Bending

The exposure bending technique enables combining of photographs of the same
object taken with different exposures into a single photography with higher dy-
namic range. The motivation and using of exposure bending is described in Sec-
tion 6.8.

Two types of limitations of the dynamic range have to be considered. The
first one is the limitation of the dynamic range of the camera. The second one
the limitation of the dynamic range of the resulting image and common monitors
and printers. Because of the limitation of resulting image, the dynamic range
increase must be defined as the process of correctly reproducing the highlights
and shadows of a high dynamic range scene in the resulting image.

It was considered, that the exposure bending method provided by the tool
should aim to add the information missing in the underexposed or overexposed ar-
eas in the image, not to distort the details of other parts of image, and to preserve
natural transitions between the dark and bright areas. By contrast, mapping of
high dynamic range image into the image with substantially lower dynamic range
image must lead to distortion of details. Moreover, the results of such mapping
can look unnaturally. Consequently, the exposure bending method provided by
the tool should correct primarily the limitations of the camera. Because the dy-
namic range of two photographs of high dynamic range scene – one well-exposed
in dark areas and overexposed in bright areas and the second one well-exposed in
bright areas and underexposed in dark areas – is usually higher than the dynamic
range of 8 bit image, bending of only two images is considered.

Assume that such two images – image one, well-exposed in the bright areas of
the scene and underexposed in the dark areas and image two, well-exposed in the
dark areas and overexposed in the bright areas – should be bended into enhanced
one.

Figure 5.1: Image one is well-exposed in the bright areas of the scene and under-
exposed in the dark areas (left); Image two is well-exposed in the dark areas and
overexposed in the bright areas (right).

23

CHAPTER 5. ANALYSIS OF SELECTED IMAGE PROCESSING
FUNCTIONS

Averaging

If two images mentioned earlier are averaged, the information from image one
will appear in the bright areas of the resulting image and the information from
image two will appear in the dark areas.

Unfortunately, this information will be distorted by mostly irrelevant infor-
mation from the other image. Consequently, the contrast in the image will be
decreased. Moreover, resulting image will be highly blured in areas where two
images are not correctly fitted.

Dynamically weighted averaging

Dynamically weighted averaging assigns higher weight to the pixels of this image
that is well-exposed in given area. It therefore suppresses both the loss of contrast
and blurring in unfitted areas.

Mask of the image

The weights of the pixels of averaged images can be given by a mask. The mask
of the image is a grey scale image with the same dimension as the image. The
brightness value of a given pixel in the mask determines the transparency of
the corresponding pixel in the image. Black colour means that the pixel is fully
transparent, white colour means, that the pixel is opaque. If the mask is applied
to one image and the second image is placed under this image, these two images
will be averaged with weights given by the brightness values of the mask.

Masks for weighted averaging

Hence, the mask should hold the information where the images are well-exposed.
One possible approach is to convert image two to grey scale image and the result-
ing image apply as a mask to image one. Image two is overexposed in the bright
areas so the mask will be white or nearly white in such areas. Consequently, in
such areas will be image one opaque. The mask will be darker in the dark areas
and therefore, image one – underexposed in such areas – will be more transparent
there. Finally, image two will be placed under the image one.

This approach almost eliminates the loss of the contrast and blurring in the
bright areas of the scene. The suppression of such effects is smaller in the dark
areas and particularly in the areas with middle brightness. The effect of reduction
of contrast and blurring resulting image could be reduced by modification of the
brightness of the mask using for example curves tool described in Section 6.7.

Another approach should be to create the mask as the average of the brightness
values of bended images. The effect of the reduction of the contrast and blurring
the images can be then suppressed by enhancing the contrast of such mask.

24

CHAPTER 5. ANALYSIS OF SELECTED IMAGE PROCESSING
FUNCTIONS

Blurring the mask

Simply applying masks presented earlier usually does not give good results. Such
masks induce too sharp transitions between the images in the borders between
dark and bright areas. This causes the creation of undesirable artifacts and blur-
ring of resulting image in such areas if bended images are not exactly fitted.

It is therefore necessary to blur the mask and make such transitions smoother.
Gauss blurring is fitting for this purpose. Higher blurring radius is needed when
the images are worse fitted and there are sharp borders between dark and bright
areas. The blurring radius of 120 gives usually good results in most cases.

Thresholding

The process of exposure bending with use of thresholding is based on the idea
that image two is well-exposed in the dark areas and in the middle tones, but
overexposed in the bright areas and would be enhanced by adding the informa-
tion in the bright areas from image one. Similar technique is used for bending
photographs taken with the analogue camera and photography film.

The bending process used in this technique is special case of dynamically
weighted averaging. Mask representing the weights of bended images is obtained
by the thresholding operation. Image two is thresholded into two levels. Parts
of the image two that are correctly exposed will be in the mask black and parts
of image two that are overexposed will be in the mask white. This mask will be
applied to image two. Well-exposed areas will be opaque and consequently not
affected by image one. Overexposed areas will be fully transparent, so only image
one will be visible there.

Naturally, this procedure would create sharp transitions between bended im-
ages. Because of different exposition, these transitions would look unnaturally.
Moreover, if the images were not correctly fitted, there would appear undesirable
artifacts in such transitions. It is therefore necessary to blur the black and white
mask highly. The resulting mask will be grey near transitions between black and
white colour and the latter effect will be suppressed.

The advantage of thresholding technique is, that almost only the areas in the
transitions between bended images are influenced. Other areas are not affected
neither by the effect of blurring nor by the effect of reduction of the contrast.

Consequently, the method of thresholding is well suitable for bending more
than two images. The areas with middle brightness could be taken from one
image, the dark areas could be taken from the second image, and the bright areas
could be taken from the third image.

The disadvantage is, that the transitions between bended images can look
less naturally than while using masks mentioned earlier. This effect is even worse
when specifying unsuitable threshold level and insufficient blurring radius.

Next disadvantage is that this method cannot be easily fully automated. User
must specify the thresholding level. Even though specifying the thresholding level
is intuitive – a user specifies what information will be taken from one image and
what information from the other – and with use of the preview of the thresholding

25

CHAPTER 5. ANALYSIS OF SELECTED IMAGE PROCESSING
FUNCTIONS

operation would be probably manageable for most of the users, it requires certain
effort and also some practise to get best results.

HDR exposure bending

In a HDR (High Dynamic Range) image is possible to store the information about
full dynamic range of the scene.

According to [10], the exposure bending process with the use of HDR image
consists of merging bended photographs into the HDR image and tone mapping.
The tone mapping process compresses the tonal range of an HDR image of the
scene in order to reveal its details in highlights and shadows.

HDR exposure bending is significantly less straightforward and thus more dif-
ficult to implement than the techniques mentioned earlier. Moreover, it assumes,
that the dynamic range of the resulting image is smaller than the dynamic range
of the merged image. Consequently, it is beneficial particularly when bending
many images.

The method implemented in the tool

The method of dynamically weighted averaging using the mask taken from the
brighter image applied to the darker image was implemented to the tool.

It produces naturally looking images for most of the scenes and it does not
require specifying any input from a user. The effect of loss of the contrast or
blurring in the dark areas and the areas with middle brightness is usually not
noticeable. Moreover, this effect is usually less intrusive than unnaturally looking
transitions between bended images caused by improperly chosen thresholding
level and blur radius while using thresholding. Last but not least, implementation
of this method is relatively easy.

Possible improvements

The method of creating the mask as the average of the brightness values of bended
images and enhancing its contrast would probably give better results. However,
it was not implemented from capacity reasons and its implementation was left
for future work.

Next, the thresholding exposure bending method can be implemented. Even
though yet implemented method gives good results while bending two images and
it is more suitable for beginners, the thresholding method can give better results
in some cases. Moreover, the thresholding method is more suitable for bending
more than two images and it would be good to offer this functionality to advanced
users.

The possibility of manipulating with the brightness of the mask using the
curves tool can be considered. In fact, with adjusting the mask using the curves
tool, it is possible to get even the thresholding mask. However, manipulating
with the mask using the curves tool is probably too laborious and maybe blind

26

CHAPTER 5. ANALYSIS OF SELECTED IMAGE PROCESSING
FUNCTIONS

to users. Users would have to know what the mask is and to what image it will
be applied. Hence, the asset of manipulating with the mask using the curves tool
might be verified before offering such functionality to users.

27

Chapter 6

Users Guide

6.1 Installation

Package content

PhotoJ binary package is suitable for users that want to run the tool as well
for plugin developers. It contains:

• Jar files of the program providing native acceleration on Windows and
Linux, and jar file of the program without the native acceleration runnable
on all the platforms where JRE is accessible.

• Runnable scripts for Windows and Linux.

• JAI [13] library. Versions with the support of native acceleration on Win-
dows and Linux, and version without the support of native acceleration.

PhotoJ source files package is suitable for users that want to compile the
tool and for the develepers of the kernel of the tool. It contains:

• Source files of the tool.

• Ant scripts for compilation of the tool with the support of native accelera-
tion on Windows and Linux, and without the support of native acceleration.

• Runnable scripts for Windows and Linux (need appropriate jar files to be
created)

• JAI [13] library. Versions with the support of native acceleration on Win-
dows and Linux, and version without the support of native acceleration.

System Requirements

The tool requires Java JRE SE version 1.6. It can be downloaded from [11]. It is
expected, that tool will run with newer versions as well.

28

CHAPTER 6. USERS GUIDE

Installation

To install the tool, unpack the archive with the tool. If archive with binary package
was chosen, follow the instructions in Section 6.2.

Compilation

There are prepared three Ant [12] scripts in the buildfiles directory: build win-

dows.xml provides compilation with the support of accelerated JAI operations on
Windows, build linux.xml provides compilation with the support of accelerated
JAI operations on Linux, and build no acceleration.xml compiles the program
with non-acclelerated version of JAI, which runs in all platforms, where JRE is
available. To compile the tool with the support of acceleration in other platforms,
new ant script needs to be created.

To compile the program, copy chosen ant file from directory buildfiles/ to
main directory of the program and run:

$ ant

To create jar files, run:

$ ant jar

According to buildfile that was chosen, file photoj.jar, photoj windows.jar,
or photoj linux.jar will be created and all the plugins will be packed into its
own package.

To display all options of given ant script, run:

$ ant -v -projecthelp

6.2 Running the Program

Windows: Go to the directory where the tool was unpacked and enter:

$ photoj.vbs

Linux: Go to the directory where the tool was unpacked and enter:

$ sh ./photoj.sh

Other platforms: Go to the directory where the tool was unpacked and enter:

$ java -Xmx256m -jar photoj.jar

29

CHAPTER 6. USERS GUIDE

Supported arguments

[path to a directory or image file] [interpolation quality]

path to directory or image file If a directory is passed, the tool will start
browsing given directory.

If an image file is inserted, the tool will start viewing given file.

If no path is inserted, the tool will start browsing the last directory when it
was while previous running the tool. If the program is started for the first
time, it will start browsing in the home directory of the user.

interpolation quality It is possible to specify an interpolation quality used for
given types of processing. The quality is given by the numbers from one to
three. One is the lowest quality, three is the highest quality.

The interpolation quality settings have following syntax:

[permanent quality

[display quality

[preview quality

[default quality]]]]

permanent quality The quality of interpolation of image operations ap-
plied to the images that can be saved to disk or can have an impact
to further operations.

display quality The quality of interpolation of image operations that
transforms an image in order to display the image to the user. It is for
example zooming of the image.

preview quality The quality of interpolation used when performing pre-
view of operations.

default quality The quality of interpolation used when it is not specified
whether the operation is permanent, whether it serves to display image,
or whether it serves for preview of the operation.

Setting the amount of RAM memory

It is possible to change the amount of RAM memory accessible to the tool. Setting
at least 256MB of memory is recommended.

If photoj.vbs or photoj.sh is used to start the tool, change value of the item
memory in photoj.vbs or photoj.sh. If java is used directly to start the tool,
change the value 256 in -Xmx256m argument.

30

CHAPTER 6. USERS GUIDE

6.3 Browsing Filesystem

Filesystem can be browsed in a browsing mode. If there are images in current
directory, the thumbnails of images are displayed. By clicking on the thumbnail of
given image, the viewing mode is started. The following operations are accessible
from the menu of the browsing mode window:

File menu:

• Exit – quits the tool.

Tools menu:

• Exposure bending – runs the exposure bending tool. Exposure
bending is described in Section 6.8. Using exposure bending in
the tool is described in Section 6.9.

• Image fitting – runs the image fitting tool. Image fitting tool
enables to fit two images. This is useful when bending the images.
Fitting images is described in Section 6.9.

Plugins menu:

• Install plugin – allows installing new plugin and updating exist-
ing plugin.

The jar file of the plugin that should be installed can be cho-
sen using displayed dialog. Next, the description of the plugin is
displayed and it is possible to confirm or cancel the installation.
After confirming, he installation begins. If the plugin is already
installed, it is possible to update it.

• Uninstall plugin – allows listing installed plugins and uninstalling
of such plugins.

To uninstall the plugin, select the plugin’s type and than select
the plugin. Description of the plugin is displayed. The plugin
can be uninstalled by pressing uninstall button. After doing so,
it is checked, whether the uninstallation of the plugin would not
violate any dependencies. If it would not, the plugin will be unin-
stalled.

Batch processing menu:

• Rotate – enables rotating all the images in current directory by
an arbitrary angle.

• Rescale – provides rescaling all the images in current directory
to given dimension.

• Noise suppression – enables applying noise suppression filters to
all the images in current directory.

– Median filter – provides the median noise suppression filter.
The level of noise suppression can be set by adjusting mask
size. Setting higher values will cause greater noise suppres-
sion, but also greater image distortion.

31

CHAPTER 6. USERS GUIDE

6.4 Viewing Image

An image can be viewed in a viewing mode. The following operations are acces-
sible from the menu of the viewing mode window:

File menu:

• Save – saves changes to currently viewed image.

• Save as – saves currently viewed image in specified image for-
mat to specified directory and switches to this image and this
directory.

• Exit – quits the tool.

Edit menu:

• Undo – performs an undo of previous operation.

• Redo – perfroms a redo of previous undo.

View menu:

• Next image – starts viewing next image in the directory.

• Previous image – starts viewing previous image in the directory.

• Zoom in – zooms in the image.

• Zoom out – zooms out the image.

• Fit viewing window – rescales the image to fill the area of the
viewing window.

• Original scale – displays the image in the original scale.

• Toggle full screen – toggles full screen mode.

• Browsing mode – switches to the browsing mode.

Selections menu:

• Lock in selecting / Unlock selecting – locking in selecting dis-
ables modification of selections. Unlocking selecting enables the
modification of selections.

Transform menu:

• Rotate left – rotates the image left with the angle of 90 degrees.

• Rotate right – rotates the image right with the angle of 90 de-
grees.

• Rotate – rotates the image with arbitrary angle. Provides the
preview of the rotation and enables applying this operation in
batch to all images in actual directory.

• Rescale – rescales the image to the given dimension. Enables
applying this operation in batch to all images in actual directory.

32

CHAPTER 6. USERS GUIDE

• Crop – crops the image. The cropping area is defined via rect-
angular selection. If there is some rectangular selection in the
image, the cropping area will be initialised with dimension of
this selection. If there is no rectangular selection in the image,
new rectangular selection will be created.

If the selections is unlocked (see the menu item Selections – Lock
in selections / Unlock selections), it is possible to change crop-
ping area by manipulating with the selection.

The cropping area can be set also by adjusting values of the
spinners. The selection is automatically changed to correspond
to entered values. Width and height spinners can be linked to
keep the same ratio while changing one of the spinner. X offset
and Y offset spinners can be also linked. Linking offset spinners
arranges adding the same value to both spinners.

Enhance operations menu:

• Brightness up – heightens the brightness of the image.

• Brightness down – lowers the brightness of the image.

• Brightness and contrast – adjusts the brightness and contrast of
the image.

• Histogram – displays the histogram of brightness of the image.
Interpreting histogram is described in Section 6.6.

• Curves – runs the curves tool. Working with the curves tool is
described in Section 6.7.

• Noise suppression – provides suppressing the noise in the image.

– Median filter – starts median noise suppression filter. The
level of noise suppression can be set by adjusting mask size.
Setting higher values will cause greater noise suppression,
but also greater image distortion.

6.5 Using Batch Processing

Batch processing allows applying given operation to all images in actual directory.
Processed images will be saved to specified directory. Images in this directory with
the same name will be rewritten.

Batch processing settings

Batch processing panel offers following settings:

Directory to store results The directory in which processed images will be
stored.

33

CHAPTER 6. USERS GUIDE

Image format of results The file format of processed images. If the file format
is not specified, the tool assigns each processed image the file format of
processing image.

Encoding quality The quality used while encoding images to given file format.
This setting has great importance when choosing lossy file formats like
JPEG. However, it can have the sense even for non lossy formats such as
PNG.

Figure 6.1: Batch processing settings.

After confirming the batch processing operation, the batch processing will be
started. The progress of batch processing is showed on the progress bar.

Running batch processing in the browsing or processing
mode

Batch processing is currently supported by operation of Rotation, Rescaling and
Median filter. This operations are accessible both from the browsing mode and
from the viewing mode.

The behaviour of dialogs that enables settings of these operations can vary
when they are run from the browsing mode or from the viewing mode. For exam-
ple, when setting parameters of Rotation operation, there is preview available in
the viewing mode. Next, batch processing can be activated or deactivated, when
running these operations from the viewing mode.

6.6 Interpreting Image Histogram

The example of image histogram is showed in Figure 6.2. In the horizontal axis
of the histogram are displayed the values of the brightness. In the vertical axis
is displayed the proportion of number of pixels of given brightness value on the
total number of pixels in the image.

Dark images have a majority of values on the left side, bright images have a
majority of values on the right side.

It can be guessed, whether the image is underexposed or overexposed from the
histogram. Big areas of white colour caused by overexposing image are indicated
by big number of pixels with in the last bin of the histogram, big areas of black

34

CHAPTER 6. USERS GUIDE

Figure 6.2: The histogram of the image.

colour caused by underexposing image are indicated by big number of pixels in
the first bin of histogram. This effect is visible on both images in Figure 6.3. Note
that these areas do not contain any further information and cannot be restored
by histogram modification. One mean of indicating distorted image should by
percentage of pixels with brightness value of 0 and 256.

Image with low contrast is indicated by narrow histogram. If there are no or
very little values on the left or right side of the histogram, the contrast of the
image can be easily enhanced by stretching the contrast. Stretching the contrast
is described in the following section.

Figure 6.3: Histogram of a dark image (left) and the histogram of a bright image
(right).

35

CHAPTER 6. USERS GUIDE

6.7 Manipulation with Brightness Levels

The mapping of brightness levels in the input image to the brightness levels in
the output image can be specified using the curves tool.

Such mapping is realised by the transfer function. In the x coordinate are
brightness values of the input image. On the left side is white colour, on the right
side is black colour. The value of transfer function specifies the output brightness
value of pixels with input brightness value given by x coordinate.

The transfer function can be specified by placing points that the transfer
function must intersect. The curves tool is showed in Figure 6.4.

Figure 6.4: The curves tool.

Inverting image

In figure 6.5 is showed the transfer function that does not affect the brightness
values of pixel and the transfer function that inverts the brightness values of the
image. The lowest brightness value in the x coordinate – white colour – is mapped
to the highest value in the y coordinate – black colour.

Simple contrast enhancement

If the image has no pixels with high or low brightness, the contrast of such image
can be easily enhanced without the loss of information. Such transfer function is
shown in Figure 6.6. This transfer function has its left point moved right and right
point moved left. It maps all pixels less than 100 to black colour and all pixels
with brightness value greater than 245 to white colour. Other brightness values
are linearly stretched within whole dynamic range. The histogram of enhanced
image is wider, which indicates higher contrast.

There is observable from the histogram, that the output image has unoccupied
brightness levels within its range, and some of the brightness transitions are

36

CHAPTER 6. USERS GUIDE

Figure 6.5: The transfer functions of original image (left) and the transfer function
of the inverted image (right).

Figure 6.6: Simple contrast enhancement: Low contrast image and the enhance-
ment transfer function (left); Enhanced image and its histogram (right).

37

CHAPTER 6. USERS GUIDE

larger than in the original image. This effect may result in noticeable grey scale
contouring when the stretching is big.

The contrast was possible to enhance without the loss of information, because
there were no brightness values less than 100 and higher than 245. Hence, similar
transfer function can be useful for partial correction of highly over- or under- ex-
posed images or for enhancing contrast of photographs taken from mobile phones
which sensors often produce low contrast images with only few pixels with high
or low brightness.

Contrast stretching

Figure 6.7: Contrast stretching: Original image and the enhancement transfer
function (left); Image with stretched contrast in dark areas and its histogram
(right).

The contrast of given brightness interval can be stretched by specifying the
transfer function highly-pitched than average. Naturally, there must be parts
where the transfer function is less high-pitched than average and where the con-
trast is contracted. The example of such contrast stretching is shown in Figure
6.7.

In fact, simple stretching of contrast was showed also in Figure 6.6. The trans-
fer function is horizontal in the first interval, than highly-pitched than average in
the second interval at than again horizontal.

Unfortunately, all pixels in the horizontal interval are mapped to one bright-
ness value and the information about its difference and consequently about the

38

CHAPTER 6. USERS GUIDE

details in such areas is lost. It is therefore good to set the transfer function hori-
zontal only in the intervals with insignificant number of pixels.

Enhancing image

Figure 6.8: More complex contrast enhancement transfer function: Original image
and the enhancement transfer function (left); Enhanced image and its histogram
(right).

In [9] is pointed:

The luminance histogram of a typical natural scene is usually highly
skewed toward the darker levels; a majority of the pixel possess a
luminance less than average. In such images, details in the darker
regions is often not perceptible.

These details become better perceptible by stretching the contrast there. Gen-
erally, the brightness intervals, where there are a lot of pixels should be stretched
and the brightness intervals with little pixels should be contracted. This means
that the transfer function should be highly pitched than average in the intervals
where the bins are high, lower pitched than average where the bins are low and
horizontal in the intervals where there are no pixels.

The histogram of resultant image should be therefore more equalised. To reach
such aim, the preview of the histogram of resultant image can be displayed by
pressing Preview histogram button.

The example of such enhancement is showed in Figure 6.8.

39

CHAPTER 6. USERS GUIDE

Generating contrast enhancement transfer functions

It exist the techniques for automatic generating of transfer functions that enhance
the contrast of the image. The term that is coined to denote such techniques is
Histogram modification.

Generally, these techniques are based on the principle mentioned earlier. The
contrast of brightness intervals where is high number of pixels is stretched and
the contrast of brightness intervals where is few pixels is contracted.

The example of such technique is histogram equalisation. Histogram equalisa-
tion seeks to create such transfer function which transforms the brightness values
of the pixels in that way, that all brightness values in the resultant image has the
same number of pixels. Resultant images are usually not visually appealing, but
have more details visible. This technique is therefore exploitable when extract-
ing some information from the image – this is important for example in medical
research. More information about histogram equalisation can be found in [9].

However, there are also similar techniques designed to improve the visual
appearance of images. Thus, such techniques are exploitable for automatic en-
hancing of digital photographs.

6.8 Exposure Bending

Exposure bending serves to manual combining of photographs of the same object
taken with different exposures into a single photograph with higher dynamic
range.

Dynamic range of the scene

Dynamic range of the scene is the range of the brightness values of the scene. The
scene with high dynamic range has high spectrum of brightness values. Typical
scene with high dynamic range is the scene which one part is in the shadow and
one part on the sunshine. The examples of scenes with extremely high dynamic
range are a sunset or a sunrise. The sun is very bright and the other parts of the
scene are relatively dark.

Photographing the scenes with high dynamic range

The problem is, that the dynamic range of the camera’s sensor is limited. Only
relatively narrow spectrum of dynamic range of the scene can be caught. If the
scene has higher dynamic range than the sensor of camera and the exposition is
adjusted according to the area on the shadow on the scene, the areas on the sun-
shine will be overexposed. The bright areas will appear like white in the resulting
image and details in such areas will be lost. This is indicated by high number of
pixels with the highest brightness value on the histogram. On the other hand, if
the exposition is adjusted according to the areas on the sunshine, the areas on
the shadow will be underexposed.

40

CHAPTER 6. USERS GUIDE

The example of such scene is in Figure 6.9. On the right side of the figure is
the photography well-exposed in the bright areas, but underexposed in the areas
in the shadow. On the left side of the figure is the photography well-exposed in
the area in the shadow, but overexposed on the bright area.

Figure 6.9: High dynamic range scene photographed with the exposure adjusted
to the bright areas of the scene (left) and to the dark areas of the scene (right).

Obtaining photographs fitting for exposure bending

Obtaining photographs fitting for exposure bending consist only of getting two
photographs of given scene. The first one well-exposed in the dark areas and the
second one well-exposed in the bright areas.

To achieve best results, the photographs should be, with exception of different
exposure, the as same as possible. The most important things that should be taken
care of are:

• The scene should be static. All objects should be in the same positions in
both photographs.

Even bending photographs taken while strong wind was blowing and the
trees was moving can cause undesirable artifacts in resulting image.

• All objects in the scene must have the same size in both photographs.
Consequently, the photographs should be taken with the same zoom factor
and from the same distance.

• Even though the tool enables to fit two photographs that are mutually
translated and rotated, it is good to try not to move or rotate the camera
between taking the photographs which will be bended. More important

41

CHAPTER 6. USERS GUIDE

is not to rotate the camera, because only translating the scene is better
corrigible. Tripod can help remarkably to archive aim.

Using exposure bracketing

Exposure bracketing is the function of camera that allows taking series of pho-
tographs which exposure vary by specified value. The photographs are taken at
nearly the same time and therefore are are with exception of the exposure nearly
the same.

Exposure bracketing is originally designed just to take more differently ex-
posed photographs and to choose the best one later. By contrast, when using
exposure bending, two badly exposed photographs are needed to obtain. One
photography overexposed in the bright areas and well-exposed on the dark areas.
Consequently, higher values of exposure adding in exposure bracketing settings
should be set.

Exposure bracketing usually allows taking big quantity of differently exposed
photographs. While using exposure bracketing in this tool, only two photographs
are needed.

The disadvantage of using exposure bracketing is that the correct exposition
only at for example dark areas can be adjusted and photographer must rely on
that one of taken photography will be well-exposed in the bright areas. However,
the exposure difference between well-exposed photography in bright areas and
well-exposed photography in the dark areas can be measured and set the exposure
bracketing difference to this value.

Exposure bending method used in the tool

The exposure bending method used in the tool aims to add the information
missing in the underexposed or overexposed areas in the image and to keep the
image naturally looking.

The problem is, that not only the dynamic range of the camera, but also even
the dynamic range of the resulting image and common monitors and printers is
limited. Mapping very high dynamic range into limited dynamic range of such
devices would usually result to the distortion of details in the image and mostly to
unnaturally looking images. Because the information extracted from two images
has usually big enough dynamic range to use all dynamic range of 8 bit image,
more than bending more than two images is not supported.

However, the exposure bending process can be iterated to get desiderative
result. Note that bending more images with exposure bending method currently
used in the tool could cause the loss of contrast particularly in the middle tones,
dark areas and border areas between the dark and bright areas. Moreover, it is
more difficult to obtain more images suitable for exposure bending and correctly
fit them.

42

CHAPTER 6. USERS GUIDE

6.9 Using Exposure Bending in the Tool

Go to the tools menu in the browsing mode and choose exposure bending option.
The dialog will be displayed.

Figure 6.10: Exposure bending dialog.

Get data for exposure bending dialog

Following settings are available:

Image selection Choose the images that will be bended. One should be well-
exposed in the dark areas and the other one well-exposed in the bright
areas. It does not matter whether the darker image is chosen as the image 1
or the brighter image as the image 1. The tool will auto detect which image
is the brighter one and which the darker one.

Mask blurring radius higher values of mask blurring radius suppresses the
undesirable artifacts on the borders between dark and bright areas in the
scene and suppresses blurring in such areas. These artifacts and blurring
are caused by incorrectly fitting of images in such borders. Unfortunately,
higher values of the mask blurring radius also lower the precision of exposure
bending. Very high values cause that used exposure bending method became
nearly simple image averaging. The blurring radius of 120 gives usually good
results in most cases.

Fit images Choose whether the images might be fitted. Unselect this option
only when the images are already fitted. Images can be fitted separately by
using fitting images function. This is beneficial for example if you want to
try out the settings of the mask blurring radius.

Fitting images dialog

Fitting images dialog is showed if the fit images option was chosen or if the image
fitting tool was run.

The dialog provides following settings:

43

CHAPTER 6. USERS GUIDE

Figure 6.11: Fitting images dialog.

Position Position of the upper image can be adjusted pressing buttons in the
position panel or dragging mouse over the image. The image can be moved
to the original position by pressing the button in the middle of the position
panel.

Rotation Rotation panel enables adjusting the rotation of upper image. The
rotation can be canceled by pressing the middle button in rotation panel.

Zoom Zoom panel enables to set the zoom of images.

Transparency Transparency panel enables to set the transparency of upper
image. Only bottom image will be visible if the transparency slider is on
the left and only upper image will be visible if the transparency slider is on
the right.

Scale Scale panel enables to set the scale of position and rotation. Set small
values for fine adjusting the fitting.

Upper image should be translated or rotated to fit the bottom image as pre-
cisely as it is possible. Correctly fitted image is indicated by not blurring result
image when the transparency slider is approximately in the middle. If the images
are not correctly fitted, resulting image can be blurred and it can be impacted
by undesirable artifacts.

These undesirable artifacts are usually most intrusive in the middle of the pic-
ture. Consequently, the images should be correctly fitted primarily in the middle.
Note that bending method used in the tool creates these artifacts mostly in the

44

CHAPTER 6. USERS GUIDE

boarders between dark and bright areas. Special attention should be therefore
paid also to correctly fitting the images on these borders.

The result of exposure bending

The exposure bending operation will be started after confirming Get data for
exposure bending dialog respectively Fitting images dialog if the option fit images
was selected. The progress of the operation will be shown on the progress bar.

After the exposure bending finishes, the result of exposure bending will be
displayed in the viewing window. The result can be saved by choosing File – Save
or File – Save as.

Figure 6.12: The result of exposure bending.

45

Chapter 7

Architecture of the Tool

7.1 Architecture Overview

The architecture of the tool is based on plugins – objects detected on the start-up
of the tool. The plugins implement all the functionality of the tool.

The kernel of the tool loads the plugins, mediates the calling of the plug-
ins, holds shared data used by the plugins, provides various helper classes and
interfaces, and provides further functions such as managing a menu.

[htp]

Figure 7.1: The basic concept of the architecture.

7.2 Plugins Concept

Characteristics of the plugin

During the running of the tool, each plugin is represented by one instance of the
main class of the plugin. This class must implement the interface given by the
type of the plugin. The plugin is identified by this plugin type and by unqualified
name of this class. The object representing plugin is created only once during the
running of the tool and lives on between callings of the plugin.

46

CHAPTER 7. ARCHITECTURE OF THE TOOL

It is possible to call plugins via interfaces in the kernel of the tool. These
interfaces are accessible from plugins so it is possible to call any plugin from any
other plugin.

Contract of the plugin

Each plugin provides some service. This service must be exactly described in the
documentation of the plugin.

Plugins can be updated by replacing the class of the plugin by another class
with the same name. Then, given service will be provided by the object of this
new class. New class must fulfill the contract of the plugin. This means, that it
must offer the same service and its interface must be the same.

The interface of the plugin is defined by further specification of types of ar-
guments and types of return values of plugin’s methods. This specification must
be pointed in the documentation of the plugin. The interface of the plugin can
be enriched by additional public methods not defined by the interface which
must plugins of given type implement. The specification of such methods must
be pointed in the documentation of the plugin too.

Then, plugin can specify inner classes which it provides and which Class

object the callers of the plugin can obtain.

Plugins communication

There are two main ways how plugins can communicate. The first one is syn-
chronous calling of the plugins. It is possible to call the plugin via specified static
class in the kernel or even to get the object of the plugin and call an arbitrary
method of the plugin’s interface or invoke other method provided by the plugin.

The second concept is asynchronous communication based on events. It is
possible to register a plugin to receive a message when some event occurs. A
plugin can be also observable – it can notify registered plugins when some event
occurs.

Asynchronous communication and shared data

Shared data are hold by objects or static classes accessible for all plugins. Updat-
ing of such data often causes an event. Plugins can register to receive asynchronous
message when such event occurs.

The example of shared data is the image which is user currently viewing.
When this image is updated, the event occurs. Plugin, which displays the image,
receives the message and displays the image. Consequently, another plugins sim-
ply updates the image and does not need to care about the process of displaying
the image to a user. Furthermore, more plugins can be registered to receive such
message and can do work that is even more complex.

This is strong mechanism how to automate many technical processes and
reduce the amount of complexity the programmer must deal with. Owing to the

47

CHAPTER 7. ARCHITECTURE OF THE TOOL

Figure 7.2: Shared data structures in the kernel of the tool.

fact, that plugins can be observable, the concept of shared data is not limited to
the data structures included in the kernel.

Plugin types and interfaces

Plugins play different roles in the tool. Consequently, there are more types of
plugins. Plugins of given type are called via given kernel module. This module
also provides the object of class PluginManager which enables to get the object
of given plugin. Plugin types and corresponding modules are shown in List 7.3.

[htp]

Figure 7.3: Plugin types and modules of the kernel.

Each plugin type is represented by the enum constant PluginTypes. This
enum constant provides general information about plugins of given type such as
the directory where plugins of given type are located and the package of the main
class of plugins of given type.

Plugins of given type must implement given interface. The hierarchy of plugins
interfaces is showed in List 7.4. The following List provides the description of
plugins interfaces:

48

CHAPTER 7. ARCHITECTURE OF THE TOOL

Figure 7.4: The hierarchy of the plugins interfaces.

Plugin Defines administrative methods needed for installing, uninstalling and
updating plugins and methods that allow to specify additional classes that
the plugin provides.

PluginProcess Is implemented by plugins that process an image. Such plugins
are of type PluginType.PROCESSING.

PluginAction Implement plugins that will be started when user clicks to menu
item or button. Such plugins are of type PluginType.ACTION.

PluginIO Defines a method that specifies which image format the plugin read
or write.

PluginIOWriter Implement plugins that write some image format. Such plugins
are of type PluginType.IO.

PluginIOReader Is implemented by plugins that read some image format. Such
plugins are of type PluginType.IO.

PluginUI Implement user interface elements. Plugins programmer must specify
in which GUI toolkit the plugin is implemented.

In the start-up of the tool, only plugins of GUI toolkit specified by the
return value of the method UI.getActGUI() will be loaded.

PluginUIDialog Is implemented by plugins used to get the user input. Such
plugins are of type PluginType.UI * DIALOG. Where * is identifier of GUI
toolkit in which given plugin is implemented.

PluginUIDisplay Implement plugins that display something. Such plugins are
of type PluginType.UI * DISPLAY.

49

CHAPTER 7. ARCHITECTURE OF THE TOOL

PluginUIFactory Is implemented by plugins that usually create some user in-
terface component. Such plugins are of type PluginType.UI * FACTORY.

PluginUIWorker Implement plugins that can be used for arbitrary not pre-
defined purposes. Such plugins are of type PluginType.WORKER.

7.3 Image Data Structure

The class that stores image data in the tool is called ImagePlus. In this class
are stored also additional information related to processing of the image such as
information about image regions.

ImagePlus and JAI

JAI [13] is a library for processing the images in Java. It offers rich functionality
and it supports native acceleration of common operations on various platforms.

It is therefore recommended to use JAI when it is possible. A ImagePlus

object provides an object of PlanarImage class – the class used for storing image
data in JAI. PlanarImage implements RenderedImage interface, which is used
for accessing image data in AWT. Consequently, using AWT imaging instead of
JAI is also possible.

Image regions

An image region – the object of the ImageRegion class – represents selected part
of given image. The most common usage of image regions is to represent part
of an image that should be processed or analysed. However, the usage of image
regions can be wider. It can be used also for example to define the cropping area
while getting the cropping bounds from the user.

ImageRegion objects belonging to given image are accessible via an object
of the ImageRegions class stored in the image. This class contains methods for
iterating all image regions, for applying geometrical transformation to all image
regions, and for observing image regions.

Selections

Selections are used to create image regions and manipulate with image regions.
It is possible to create new method of creating the selections and to create new
method of manipulating with the selections. This is described section A.12.

7.4 Kernel Modules

The kernel is divided into a modules. The modules of the kernel are showed in
Figure 7.5.

50

CHAPTER 7. ARCHITECTURE OF THE TOOL

[ht]

Figure 7.5: Kernel modules.

Processing module Arranges loading and calling of plugins that can process
the image.

Actions module Manages loading and calling of plugins that can be run when
user presses a button or a menu item. Action system also maintains cor-
rect enabled state of such buttons and menu items and offers functions for
changing the labels on such elements.

Worker module Mediates calling of plugins that do some arbitrary work. It can
be calculation of some value but also installing plugins or batch processing.

User interface module Arranges loading of plugins of correct GUI toolkit. It
guarantees, that there are loaded only plugins from one specified GUI sys-
tem. Then, it mediates the calling of user interface plugins.

Menu module Stores the information about menus in the tool and loads the
data necessary for creating menus from XML files.

It does not handle the creation of component of used GUI toolkit. This is
done by user interface factory plugin MenuFactory.

I/O module Provides calling of plugins for reading and writing of images. Offers
the list of supported formats for reading or writing.

Image module Provides classes for working with an image. ImagePlus class was
described in Section 7.3. Shared data structure ActImage holds information
about the image which is the user currently viewing.

Directory module Includes the class CachedImages that provides the access to
the images in given directory. It accelerates reading of the image by caching
and notifies observers when some image is changed.

Shared data structure ActDirectory holds information about the directory
with which user is currently working.

51

CHAPTER 7. ARCHITECTURE OF THE TOOL

Selection module Manages selections in the tool. It provides interfaces for cre-
ating selections and manipulating with selections. Shared data structure
ActSelection holds the information about actual selection method in the
tool.

Status module Provides shared data structure ActStatus that holds informa-
tion about actual status of the tool.

Plugin module Stores information about plugin types and provides the class
PluginManager that serves for loading and calling of plugins of all types.
Then, it provides the interface Plugin and corresponding adapter class Ab-
stractPlugin.

Information module Stores system properties such as file separator, prefer-
ences of the tool, and stores information about viewing and browsing win-
dow.

Utility module Provides various functions like handling error messages, han-
dling debug messages, utility functions for working with files, functions for
loading of plugins, or functions for localisation.

Messages module Provides classes useful for sending messages in the tool via
arguments of the methods.

Swing module Provides the support of the work with Swing GUI toolkit. It
offers several utility classes and classes of several swing components. How-
ever, majority of swing components are provided as an object returned by
user interface factory plugins. In the Swing module are primarily such swing
components that provides more complicated interface and components that
could be used for inheritance.

7.5 Process Flow

There are three main plugins that are called during the running of the tool. The
worker plugin ProgramStarter is called at the start-up of the tool. It handles
parsing the command line arguments and initialising of the tool. According to
passed command line arguments, the plugin ProgramStarter calls either the
user interface plugin BrowsingWindow or user interface plugin ViewingWindow.

Browsing window

The browsing window is realised by the user interface plugin BrowsingWindow.
The primary function of the browsing window is to allow a user to browse filesys-
tem and to choose an image he wants to view or process. If the user chooses the
image, the viewing window is called and it displays the image.

52

CHAPTER 7. ARCHITECTURE OF THE TOOL

[ht]

Figure 7.6: The basic process flow in the tool.

The browsing window contains amenu that allows running action plugins
placed there. Such menu is represented by enum constant MenuInfo.MAIN ME-

NU BROWSING and it is defined in the XML file MenuInfo.MAIN MENU BROWSING.-

getMenuPath().
Then, browsing window can contain component that displays information

about running operations. This information is stored in shared data structure
ActState.

When browsing the filesystem, browsing window uses shared data structure
ActDirectory. Browsing window must guarantee that this data structure really
contains the information about directory which is the user currently browsing.

The object that physically displays the browsing window is stored in the class
Windows. It is of class given by conventions of actually used GUI toolkit. For
Swing, it is JWindow or JFrame. Such object can be obtained by other plugins
and used for example for specifying the owner argument when calling display or
dialog plugins via the class UI.

Viewing window

Viewing window is realised by user interface plugin ViewingWindow. The primary
function of the viewing window is displaying the image contained in ActImage

shared data structure.
Viewing window contains a component that is automatically updated when

actual image is changed. Consequently, if some entity in the tool wants to display
particular image, it only sets given image to the ActImage data structure.

[ht]

Figure 7.7: Displaying the image in the viewing window via the mechanism of
backward calling.

Viewing window contains menu that allows running action plugins placed
there. Such menu is represented by enum constant Menus.MenuInfo.MAIN ME-

53

CHAPTER 7. ARCHITECTURE OF THE TOOL

NU VIEWING and it is defined in the XML file Menus.MenuInfo.MAIN MENU VIEW-

ING.getMenuPath(). Entries of this menu should enable to go to the next and
preview image in the actual directory, save the image, do undo and redo, zoom
the image, or it should enable user to work with selections.

Viewing window contains also a pop-up menu. This menu is represented by
enum constant Menus.MenuInfo.POPUP MENU VIEWING and it is defined in the file
Menus.MenuInfo.POPUP MENU VIEWING.getMenuPath().

Like the browsing window, viewing window contains the component that
displays information about running operations stored in shared data structure
ActState.

The object that physically displays the viewing window is stored in the class
information.Windows.

Viewing window must keep actualised information class ViewingWindowPro-
perties. It contains for example the information about actual state of the viewing
window or the dimensions of the area usable for displaying the image.

54

Chapter 8

Evaluation – Comparing with
Similar Tools

8.1 Compared Tools

Following tools were compared:

XnView [18] Is well known multimedia viewer, browser, and converter available
for several platforms.

Gwenview [19] Is an image viewer and manipulator for KDE.

Almara [20] Is an image viewing and manipulating tool for UNIX written by
students of MFF UK.

Picasa [23] Is an image viewer, browser, and organiser from Google.

Among other interesting tools belongs Ekspos Image Viewer [21], an image
viewer written in Java, Fotox, a tool which supports exposure bending function,
or IrfanView [24], popular image viewer for Windows.

8.2 Methodology

Tools were compared according to platforms on which they are available, pro-
vided extension capabilities, and provided functions supporting the work with
photographs.

Support of platforms

It was checked out, whether the tool supports Windows, Unix, and Mac OS X.

55

CHAPTER 8. EVALUATION – COMPARING WITH SIMILAR TOOLS

Extension support

• Open source – it was checked up, whether the tool is open source.

• SDK/API available – it was tested, whether SDK or API is available.
SDK / API enables to extend the tool without modification of source codes
of the tool.

• Localisation – it was checked up, whether the tool supports adding local-
isation strings by users.

Functions that support the work with photographs

• Rotation, Cropping and Rescaling – it was tested, whether the tool
includes function or image rotation, cropping, and rescaling.

• JPEG lossless – it was tested, whether the tool enables lossless operations
with JPEG images. Lossless operations enable to transform directly the data
of the JPEG file without decoding it to the image data and encoding back
to the JPEG file.

The support of JPEG lossless operations usually includes the support of
rotating the image with angles that are multiples of 90 degrees and vertical
or horizontal flipping of the image pixels.

• Batch processing – it was tested, whether the tool supports applying
image operations in the batch.

• Brightness, Contrast and Saturation – it was tested, whether the tool
supports adjusting the brightness, contrast, and saturation of an image.

• Image histogram and the Curves tool – it was tested, whether the tool
supports displaying image histogram and whether it includes the curves
tool.

• Noise reduction, Sharpening and Red eye reduction – it was tested,
whether the tool supports the function of noise reduction, image sharpening,
and red eye reduction.

• Auto enhancement – it was tested, whether the tool includes automatic
enhancement functions such as automatic tone balancing.

• EXIF – it was tested, whether the tool reading and writing EXIF informa-
tion.

EXIF [8] – Exchangeable Image File Format, enables to store additional
information about photography in image file. It can be for example the date
when the photography was taken, information about exposure settings, or
description of the photography.

56

CHAPTER 8. EVALUATION – COMPARING WITH SIMILAR TOOLS

• Video playback – it was tested, whether the tool supports the video play-
back.

• Organising images – it was checked out, whether the tool includes func-
tions for organising images such as sorting images to the albums, searching
images, or creating web photo albums.

• Panorama tool – it was tested, whether the tool supports assembling a
mosaic of photographs into a panorama image.

• Exposure bending – it was checked out, whether the tool includes the
function of exposure bending.

8.3 Comparison Results

The results of comparison are shown in Tables 8.1, 8.2, and 8.3.

System PhotoJ Gwenview Almara Picasa XnView

Windows YES YES NO a YES YES
UNIX YES YES b YES YES c YES d

MAC OS X YES NO NO NO YES e

aIt can run under windows with help of Cygiwin [25].
bIt depends on KDE libraries.
cOnly the support of Linux, uses wine emulator [26].
dOnly version 1.7.
eOnly version 1.7.

Table 8.1: Comparison of platform support.

Function PhotoJ Gwenview Almara Picasa XnView

Open source YES YES YES NO NO
SDK/API available YES YES a NO NO YES b

Localisation YES YES NO NO YES

aOnly the integration of external tools.
bSDK only for I/O available.

Table 8.2: Comparison of the extension capabilities.

57

CHAPTER 8. EVALUATION – COMPARING WITH SIMILAR TOOLS

Function PhotoJ Gwenview Almara Picasa XnView

Rotation YES YES a YES YES YES
Cropping YES NO YES YES YES
Rescaling YES NO YES YES YES
JPEG lossless NO NO YES NO YES
Batch processing YES YES b NO YES YES
Brightness YES YES YES YES YES
Contrast YES YES YES NO YES
Saturation NO NO YES YES YES
Image histogram YES NO NO NO YES c

Curves tool YES NO NO NO NO
Noise reduction YES NO YES NO YES
Sharpening NO NO NO NO YES
Red eye reduction NO NO NO YES YES d

Auto enhancement NO NO YES YES YES
EXIF NO YES YES YES YES
Video playback NO YES YES YES YES
Organising images NO NO YES YES YES
Panorama tool NO NO NO NO YES
Exposure bending YES NO NO NO NO

aOnly multiples of 90 degrees.
bWith the usage of extern tools.
cCurrently supports only the version of the tool for Windows.
dCurrently supports only the version of the tool for Windows.

Table 8.3: Comparison of functions that support the work with photographs.

58

CHAPTER 8. EVALUATION – COMPARING WITH SIMILAR TOOLS

8.4 Comparison Conclusion

PhotoJ offers the widest support of platforms. Such a support of platforms is
unique not only among tested tools, but also among image viewing and ma-
nipulation tools in general. The only other tested tool that supports all tested
platforms is XnView. However, the latest version of XnView, currently available
only for Windows and Linux versions of XnView, provides only X11/Motif user
interface. Next, PhotoJ offers the broadest support of extending. No other tested
tools provides a straightforward integration of more complex image processing
techniques.

Even though the support of image processing functions is not as broad as in
the other tools, PhotoJ offers basic processing functions and it can be used for
viewing and manipulating photographs.

The most limiting is probably the lack of support of reading and writing EXIF
information. Another important missing function is a red eye reduction and auto
enhancement functions. For some users, the lack of support of video playback, is
also limiting.

On the other hand, PhotoJ contains the function of exposure bending, which
does not provide any other compared tool. Moreover, with the exception of EXIF
support, it is possible to implement all other appointed missing functions in plu-
gins.

59

Chapter 9

Conclusion

PhotoJ, a portable tool for image viewing and manipulation, fulfills the require-
ments set out in the specification. It can be used for image viewing and manipu-
lation in various platforms and it includes the function of exposure bending. The
functionality of the tool can be widely extended via plugins. Almost one hun-
dred of plugins currently available demonstrates the efficiency of the extension
mechanism.

The level of the tool extensionability enables the integration of the arbitrary
image processing function. Consequently, the tool could be profitable for pro-
grammers who have already implemented a processing technique and would like
to integrate it into the image viewing tool.

Features that are more complex would be usually implemented in more plugins
of various types. When such a feature is not distributed with the program, it is
necessary to install all plugins forming this feature independently. Hence, one of
the next possible improvements is to provide the function of automatic installation
and the uninstallation of more plugins coining one feature.

Another improvement of plugin mechanism would be to offer the class loader
that would extend the class path of a plugin, so that it would include the class-
paths of plugins, on which the plugin depends. This will enable to call public
methods of plugins, on which a given plugin depends directly without the use of
Reflection API.

Another important point is adding the support of the reading and writing an
EXIF [8] image file format. Integration of this feature requires a small modification
of IO module of the tool kernel.

Other improvements would include adding functions for automatic contrast
stretching or adding support for suppressing the red eye effect. Last but not least,
usability improvements such as a support of quick navigation in browsing mode
would be also integrated.

60

CHAPTER 9. CONCLUSION

Experience with the Development of the Tool

The design and the development of the tool was a new experience for me. Due
to the fact that, I had almost no knowledge of software engineering, I was unable
to design the tool correctly. Owing to many mistakes in the design of the tool, I
had to spend a lot of time refactoring it later on.

Then, I found the tool too broad to implement by one programmer. Because of
the big quantity and because of extensive refactoring, it was hardly manageable
to sustain the quality of the code acceptable.

However, the experience with the development of the tool has been invaluable
for me. I had the possibility of familiarising myself with the problems of software
engineering and such techniques as modular programming, design patterns, re-
flection, or event handling. Next, the possibility of discussing problems with my
project manager was very precious. I can say, that the work has encouraged me
to think about software development in wider context than before.

61

Appendix A

Plugin Developers Manual

Further material describes how to write plugins for the tool and how to use
functions both of the kernel of the tool and of some, important built in plugins.

However, there is not systematically described the architecture of the tool.
The architecture of the tool was described in Chapter 7.

In Sections A.1, A.2 and A.3 is described basic usage of tool APIs that should
be sufficient for most cases. Selected APIs are described in more detail in Sections
following Section A.9.

In Sections A.4, A.5, A.6, A.7, A.8, and A.9 is described how to write given
type of plugins. Even though it is possible to start with these sections, at least
basic knowledge of tool’s APIs is needed when writing more complex plugins.

A.1 Working with Images in the Program

Getting and updating image which is user currently view-
ing

The image which is user currently viewing and the information about such image
are accessible via static methods of the class ActImage. The list of such methods
is in Table A.1.

The image which is user currently viewing is stored in this static class as an
object of UndoableImage class. It is possible to get and update the image data.
If the image is updated and viewing window is visible, the image is automatically
displayed to the user. The list of selected methods of the class UndoableImage is
in Table A.2.

Processing image

The image itself is stored in object of class ImagePlus. This class provides the
method getPlanarImage() that returns the object of the PlanarImage class.

62

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Method Description

UndoableImage getActImage() Gets the object which stores the image
which is user currently viewing

File getActImageFile() Gets the file of actual image
String getActImageName() Gets the filename of actual image
boolean unsavedChanges() Gets true if there are unsaved changes in

the actual image

Table A.1: Static methods of the class ActImage.

PlanarImage is class of JAI [13] image library. Consequently, it can be used
directly as the input of the JAI operators. It implements also Renderable inter-
face so AWT imaging can be used as well. Naturally, also the array with the values
of the pixels can be obtained and the image can be processed without the usage
of any library. However, it is recommended to use JAI because of performance
optimalisation.

In the code in Listing A.2 is showed obtaining the PlanarImage object and
performing simple operation with the image. In the code in Listing A.1 is showed
the same operation with direct accessing the pixels.

Using of PlanarImage is described in more detail in [15] and [14].

Listing A.1: Obtaining actual image and performing simple JAI operation

1 // Get the image
2 ImagePlus image = . . .
3 // Process the image
4 image . setPlanarImage = JAI . c r e a t e (
5 ” i nv e r t ” , image . getPlanarImage ()) ;

Listing A.2: Direct access to the image data

1 // Get the image
2 ImagePlus image = . . .
3
4 // Get the data o f the image
5 PlanarImage p i = image . getPlanarImage () ;
6 int width = pi . getWidth () ;
7 int he ight = pi . getHeight () ;
8 SampleModel sm = pi . getSampleModel () ;
9 int nbands = sm . getNumBands () ;

10 Raster inputRaster = pi . getData () ;
11 int [] p i x e l s = new int [nbands∗width∗ he ight] ;
12 inputRaster . g e tP i x e l s (0 , 0 , width , height , p i x e l s) ;
13
14
15 // Process ob ta ined data
16 int o f f s e t ;
17 for (int h=0;h<he ight ; h++)

63

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Method Description

ImagePlus getProcessingImage() Gets the image which is
user currently viewing.

ImagePlus Updates the image which
updateProcessingImageDisplay(ImagePlus) is user currently viewing

and displays it to the
user. The old version will
be accessible via Redo().

ImagePlus Like previous method
updateProcessingImageDisplayFit(ImagePlus) but the image will be

rescaled to fit viewing
window while displaying.

ImagePlus Sets new image which
setProcessingImageUpdateDisplay(ImagePlus) is user currently viewing.

The undo and redo will
be reseted.

ImagePlus undoImage() Does undo operation.
ImagePlus isUndoAvailable() Indicates whether the

undo operation is avail-
able.

ImagePlus redoImage() Does redo operation.
ImagePlus isUndoAvailable() Indicates whether the

redo operation is avail-
able.

void resetUndo() Resets undo.

Table A.2: Selected methods of the class UndoableImage.

18 for (int w=0;w<width ;w++) {
19 o f f s e t = h∗width∗nbands+w∗nbands ;
20 for (int band=0;band<nbands ; band++) {
21 p i x e l s [o f f s e t+band] = 255 −− p i x e l s [o f f s e t+band] ;
22 }
23 }
24 }
25
26 // Create new PlanarImage from processed data
27 WritableRaster outputRaster =
28 inputRaster . createCompat ib leWritableRaster () ;
29 outputRaster . s e tP i x e l s (0 , 0 , width , height , p i x e l s) ;
30 // Tit ledImage i s w r i t a b l e descendant o f PlanarImage
31 TiledImage t i = new TiledImage (pi , 1 , 1) ;
32 t i . setData (outputRaster) ;
33
34 // Set the data in to the image
35 image . setPlanarImage (t i) ;

64

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Using image regions

Image region represents part of the image. The concept of image regions is de-
scribed in Section 7.3.

It is possible to obtain image regions from object of class ImagePlus and
iterate it.

It is also possible to add image region to the image. New image region can
be added simply by calling method add(Shape) of given ImageRegions object.
However, user would not have the possibility to manipulate with such image
region. Enabling user to manipulate with image regions is described in Section
A.12.

If the image is modified by geometrical modification, the image regions should
be modified in the same way. It is possible to send the message to transform to
all image regions by calling the method transform(AffineTransform) of the
ImageRegions class. This mechanism is described in more detail in Section A.11.

The usage of image regions is showed in Listing A.3.

Listing A.3: Using image regions

1 // ge t the image
2 ImagePlus image = . . .
3
4 // add image reg ions to the image
5 image . getImageRegions () . add (new Rectangle (100 , 1 0 0)) ;
6 image . getImageRegions () . add (new Rectangle (50 , 1 5 0)) ;
7
8 // process image reg ions
9 I t e r a t o r <ImageRegion> i t e r a t o r = image . getImageRegions () ;

10 i t e r a t o r () ;
11 while (i t e r a t o r . hasNext ()) {
12 ImageRegion imageRegion = i t e r a t o r . next () ;
13 // process image reg ion
14 }
15
16 // r o t a t e image reg ions
17 Aff ineTransform ro iRota t i on = Aff ineTransform .
18 getRotate Ins tance (angle , xRotCentre , yRotCentre) ;
19 image . getImageRegions () . t rans form (ro iRota t i on) ;

Using interpolation

The enum Interpolation holds information about interpolation. Interpolation
constant is usually passed to processing plugins. Processing plugin should process
the image with given interpolation. It is possible to get JAI interpolation instance
from given interpolation constant by calling method getJAIInstance().

The static methods of enum Interpolation enables to set and get default
interpolation settings for given type of processing. The setting of interpolation
constants is done in the start of the tool by worker plugin InitializeProgram.

65

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Plugins should use these settings. If action plugin calls processing plugin to
create the preview of some operation, it should pass it the interpolation constant
given by Interpolation.getPreviewInterpolation(). If the processing plugin
doesn’t get interpolation constant in the argument, it should use interpolation
constant given by Interpolation.getDefaultInterpolation(). The list of in-
terpolation constants is in Table A.3, the list of the static methods used to get
the default interpolation constants is in Table A.4.

The enum InterpolationQuality is used to map integer numbers repre-
senting the interpolation quality to the interpolation constants defined in enum
Interpolation. The list of static methods of enum InterpolationQuality is in
Table A.5.

Constant Description

NEAREST Neareast neighbour interpolation.
BILINEAR Bilinear interpolation.
BICUBIC Bicubic interpolation.

Table A.3: Interpolation constants defined in enum Interpolation.

Method Description

Interpolation getPreviewInterpolation() Gets default interpolation
constant for processing
preview images.

Interpolation getDisplayInterpolation() Gets default interpolation
constant for processing
images which will be dis-
played to user but which
do not affect further pro-
cessing.

Interpolation getPermanentInterpolation() Gets default interpolation
constant for processing
images which will affect
further processing.

Interpolation getDefaultInterpolation() Gets default interpolation
constant.

Table A.4: The static methods used to get the default interpolation constants.

66

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Method Description

Interpolation getBestInterpolation() Gest the interpolation which
offers the results of the best
quality.

Interpolation getFastestInterpolation() Gets the fastest interpola-
tion method.

Interpolation getInterpolation(int) Gets the interpolation con-
stant associated with the
quality of given integer
value.

Table A.5: The static methods of enum InterpolationQuality.

A.2 Using Plugins

Processing plugins

Processing plugins can be called via the class Processing. The arguments passed
of the plugin are be specified in the documentation of plugin. In the table A.6 is
the list of most frequently used static methods of this class.

Method Description

ImagePlus Process given image.
callPlugin(String, ImagePlus, Object...) with given processing plu-

gin.

Table A.6: Most frequently used static methods of the class Processing.

User interface plugins

User class UI allows calling user interface plugins. The arguments of the plugin
should be specified in the documentation of plugin.

User interface display plugins usually serve to display something to user, user
interface dialog plugins usually serve to get some input from user and factory
plugins usually serve to create some user interface component. The static methods
which mediates the calling of the user interface plugins are listed in Table A.7.

Display and dialog user interface plugins can use the argument owner of meth-
ods UI.callDisplayPlugin() and UI.callDialogPlugin() for example to set
the owner of window which they display or to centre such window. Static class
Windows enables to to get the objects can be used as argument owner when the
owner should be browsing or viewing window.

Note that factory plugins often creates objects of classes defined in given
plugin. Using specific methods of such classes is described in A.14

67

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Method Description

Arguments callDisplayPlugin(Calls the display.
String, Object, Object...) plugin with given iden-

tifier and given argu-
ments.

Arguments callDisplayPluginInNewThread(Calls the display
String, Object, Object...) plugin with given iden-

tifier and given argu-
ments. Run it in the
new thread.

Arguments callDialogPlugin(Calls the dialog.
String, Object, Object...) plugin with given iden-

tifier and given argu-
ments.

Object callFactoryPlugin(String, Object...) Calls factory plugin
with given identifier
and given arguments.

Table A.7: Static methods of class UI providing the calling of the user interface
plugins.

Worker plugins

Worker plugins can be used to handle arbitrary function. Calling worker plugins
mediates the class Worker. The list of static methods used for calling worker
plugins is in Table A.8.

Method Description

Arguments Calls given plugin.
callPlugin(String, Object...)

Arguments Calls given plugin.
callPluginInNewThread(String, Object...) in new thread.

Table A.8: Static methods of the class Worker used for calling worker plugins.

A.3 Other API of the Program

Using the status of the tool

Actual status of the tool is stored in the class ActStatus. It is possible to set the
status and get the status. If the status is set, components displaying the status
will be automatically updated. The most frequently used static methods of the
class ActStatus are in Table A.9

68

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Method Description

void setStatus(String, int) Set the status text and progress value.
void setStatus(String) Set the status text. The progress value will

be not available.
void finished() Send message to actual status that the op-

eration is finished. It can be used to notify
user, that the operation is finished.

Table A.9: Most frequently used static methods of the class ActStatus.

Writing error and debug messages

The class ErrorMessages serves for handling error messages. You should always
use this class for writing error messages. The list of static methods of this class
is in Table A.10.

Method Description

void error(String, String) Handles the error message form
given source file.

void error(String, String, Exception) Handles the error message from
given source file caused by
given exception.

void error(String, String) Handles the fatal error message
form given source file. Typi-
cally stops the tool.

void error(String, String, Exception) Handles the error message
from given source file caused
by given exception. Typically
stops the tool.

Table A.10: Static methods of the class ErrorMessages.

The class DebugMessages serves for handling debug messages. Debug mes-
sages are messages that are usually written to the command line and includes
further information for the user.

Getting information viewing window

Classes ViewingWindowProperties offers static methods that allow getting in-
formation about viewing window. The list of such methods is in Tables A.11.

Note that the methods allowing to set this information should be used only
by plugins representing browsing and viewing window.

69

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Method Description

Object getViewingWindowContainer() Get the container which
represents viewing window.
It should be used for exam-
ple to specify the owner in
UI.callDialogPlugin() and
UI.callDisplayPlugin().

ViewingWindowState getState() Get the state of the viewing
window.

Dimension getImageDisplayAreaDimension() Get the dimension of area
used to display image in the
viewing window.

Table A.11: The most frequently used static methods of the class ViewingWin-
dowProperties used for getting information about viewing window.

Getting and storing tool preferences

The class Prefs handles storing tool preferences to disk and loading it from the
disk.

java.util.prefs.Preferences object can be obtained via method getPre-

ferencesObject() and used to store the preferences.

Localisation plugins

Built in plugins are localised using class Localisation. This class enables getting
localised strings according to current locale settings in the computer. Translations
are stored in files in format GeneralResources locale.

Note that java.util.ResourceBundle class is used in Localisation class
internally. This class doesn’t allow UNICODE files. Non-ASCI characters must
be therefore escaped.

The programmers of plugins that are not distributed with the tool and are
installed via plugin manager could not modify localisation files. Consequently,
they must organise the localisation themselves. It is possible to use for example
java.util.ResourceBundle class to handle localisation.

A.4 Writing Plugins

Common conventions

The unqualified name of the main class of the plugin is the identifier of the
plugin used for calling plugins of given type. The package of class is given by
SystProp.PluginTypes.PLUGIN TYPE.getPluginsPackage().

70

APPENDIX A. PLUGIN DEVELOPERS MANUAL

All plugins which should be loaded must be placed in the directory given
by SystProp.PluginTypes.PLUGIN TYPE.getAbsPath() in jar files. The plugin’s
jar file must have the same name as the main class of the plugin and must have
directory structure given by the package of the plugin. The main class of the plugin
must be in the package given by SystProp.PluginTypes.PLUGIN TYPE.getPlu-

ginsPackage.
Plugin must exactly define its contract. The contract is defined in Section

7.2. All versions of plugin should respect this contract. Calling plugin that do
not respect the contract can cause runtime error. It is recommended to copy the
specification of contract of previous version of the plugin when writing the plugin.

It is discouraged to rely on the characteristics of plugin that are not described
in the contract of given plugin, because updated version of plugin needn’t to fulfill
this characteristics.

Concurrent calling of plugins

In the section 7.2 was described that the object representing the plugin during
the execution of the tool is created only once and the same object handles all
callings of the given plugin. Consequently, all callings of given plugin share the
instance variables of this object. Hence, it must be paid attention to provide
correct synchronisation of the instance variables.

Example of not correctly synchronised plugin which concurrent calling can
cause an error is showed in Listing A.4. If the plugin is called concurrently, the
second calling will rewrite instance variable startupTime. This causes problem
if the first calling will use this variable.

In Listing A.5 is showed fixing of this problem simply by not having any
instance variables. In this approach, independent instance of class WorkingClass
is created by each calling of the plugin.

Listing A.4: The plugin which concurrent running can cause the error

1 public class SamplePlugin extends AbstractPlug in
2 implements PluginWorker {
3
4 // This v a r i a b l e i s shared f o r a l l c a l l i n g o f the p l u g in
5 private Date startupTime ;
6
7 public Arguments run (Object [] a rgs)
8 throws PluginNotSucceededException {
9 startupTime = new Date () ;

10 // . . .
11 // some computation
12 // . . .
13
14 /∗ Var iab l e startupTime can be r ewr i t t en during
15 ∗ prev ious computation by o ther c a l l i n g o f run () method
16 ∗/
17 return doSomethingWithStartupTime (startupTime) ;

71

APPENDIX A. PLUGIN DEVELOPERS MANUAL

18 }
19 }

Listing A.5: The plugin which is runnable concurrently

1 public class SamplePlugin extends AbstractPlug in
2 implements PluginWorker {
3
4 /∗ Implements a l l f u n c t i o n a l i t y o f the p l u g in
5 ∗/
6 private stat ic class WorkingClass {
7 private Date startupTime ;
8
9 public ComputationClass (Date startupTime) {

10 this . startupTime = startupTime ;
11 }
12 public Arguments run (Object [] a rgs) {
13 // . . .
14 // some computation
15 // . . .
16 return doSomethingWithStartupTime (startupTime) ;
17 }
18 }
19
20 public Arguments run (Object [] a rgs)
21 throws PluginNotSucceededException {
22 Date startupTime = new Date () ;
23 /∗ The independent in s tance o f the c l a s s WorkingClass
24 ∗ i s c rea t ed f o r each invoca t i on o f the p l u g in .
25 ∗/
26 WorkingClass notShared = new WorkingClass (
27 startupTime) ;
28 return notShared . run (args) ;
29 }
30 }

A.5 Writing Action Plugins

Action plugins are called by user by pressing given menu item or button.
Action plugins are usually not called from other plugins and parameters of

run(Objec[]) method are usually not used so action plugins have usually no
exact contract specified.

Interface PluginAction

Action plugins must implement the interface PluginAction. It defines methods
which defines a placement of the plugin in menus, the text which should appear

72

APPENDIX A. PLUGIN DEVELOPERS MANUAL

at the component which runs the plugin, the accelerator key which should run
such component, the conditions in which should be such component, and other
properties of given button or menu item.

The adapter class AbstractPluginAction offers default implementations of
some methods of this interface.

Conventions

Action plugin can do any arbitrary work. However, they should be independent
on given GUI toolkit. User interface plugins should be called to handle actions
dependent on given GUI toolkit such displaying something to the user or to get
user input. If there is no suitable user interface plugin, new user interface plugin
should be created.

It is also recommended not to do any processing of images in action plugins.
Processing plugins should be used instead. Then, worker plugins should be used to
implement other potentially reusable operations and called from action plugins.

Placing action plugin in the menu

It is possible to place Action plugins to the menu by editing the XML file with
the definition of given menu. This is proper when the tool is distributed to the
user with the plugin and the plugin is not uninstallable.

Furthermore, it is possible to define the placement in the menus via method
MenuPlacement[] getMenuPlacements(). This enables automatic placement of
the plugin to the menu during an installation of the plugin, automatic replacement
of plugin from the menu during an uninstallation of the plugin, and automatic
changing of the menu placent when updating the plugin.

Listing A.6: Example of the action plugin

1 package p lug in s . a c t i on ;
2 /∗∗ Rotates a c t ua l image l e f t . ∗/
3 public class RotateLeft extends AbstractPlug inAct ion {
4 /∗∗
5 ∗ Rotates a c t ua l image .
6 ∗ @param args not used
7 ∗/
8 @Override
9 public void run (Object [] a rgs)

10 throws PluginNotSucceededException {
11 // g e t s image which i s user cu r r en t l y v iewing
12 ImagePlus image = ActImage . getActImage () .
13 getProcess ingImage () ;
14
15 // r o t a t e s the image and au toma t i c a l l y t r a n s l a t e s i t
16 image = Proces s ing . c a l lP l u g i n (”RotateAuto” ,
17 image , 270 .0 f ,
18 I n t e r p o l a t i o n . getPermanentInterpo lat ion ()) ;

73

APPENDIX A. PLUGIN DEVELOPERS MANUAL

19
20 // updates the image which i s user cu r r en t l y v iewing
21 actImg . updateProcess ingImageDisp layFit (image) ;
22 }
23
24 public St r ing getLabe l () {
25 /∗ Returned s t r i n g w i l l be d i s p l a y ed as the l a b e l
26 ∗ o f the but ton or menu item
27 ∗/
28 return Loc a l i s a t i o n . g e tS t r i ng (” r o t a t eL e f t ”) ;
29 }
30
31 @Override
32 public KeyStroke getAcce leratorKey () {
33 /∗ The a c c e l e r a t o r key which shou ld run the but ton
34 ∗ or menu item which runs the p l u g in
35 ∗/
36 return KeyStroke . getKeyStroke (’ l ’) ;
37 }
38
39 @Override
40 public MenuPlacement [] getMenuPlacements () {
41 MenuPlacement [] placement = new MenuPlacement [2] ;
42
43 /∗ The placement in the main menu o f the v iewing
44 ∗ window
45 ∗ The p l ug in w i l l be p laced in the sub−menu view
46 ∗/
47 St r ing [] p l0 = { ”view” } ;
48 placement [0] = new MenuPlacement (
49 MenuInfo .MAIN MENU VIEWING, pl0) ;
50
51 /∗ The placement in the pop−up menu o f the v iewing
52 ∗ window
53 ∗ The p l ug in w i l l be p laced in the sub−menu
54 ∗ image −> view
55 ∗/
56 St r ing [] p l1 = { ” image” , ”view” } ;
57 placement [1] = new MenuPlacement (
58 MenuInfo .POPUP MENU VIEWING,
59
60 return placement ;
61 }
62
63 }

74

APPENDIX A. PLUGIN DEVELOPERS MANUAL

A.6 Writing Processing Plugins

Processing plugins serves for processing the image. They must implement
interface PluginProcess. This interface defines method ImagePlus pro-

cess(ImagePlus, Object[]). Further specification of the argument of this
method is part of plugin’s contract.

Regions of interest can be used when processing an image. For example, only
the part of the image that is in the regions of interest can be processed. Note that
if geometrical transformation is done with the image, regions of interest should be
transformed in the same way. Working with image regions is described in Section
A.3.

Listing A.7: Example of the processing plugin

1 /∗∗
2 ∗ Rotates the image wi th g iven ang le and ro t a t i on cen t re .
3 ∗/
4 public class Rotate extends AbstractPlug in
5 implements Plug inProcess {
6
7 /∗∗
8 ∗ Rotates the image .
9 ∗ @param args the message to the p l u g in

10 ∗ args [0] . . . (f l o a t) r o t a t i on ang le (in rad ians)
11 ∗ args [1] . . . (f l o a t) x coord ina te o f the cen ter
12 ∗ o f the r o t a t i on
13 ∗ args [2] . . . (f l o a t) y coord ina te o f the cen ter
14 ∗ o f the r o t a t i on
15 ∗ args [3] . . . (o p t i ona l) (p j . messages . I n t e r p o l a t i o n)
16 ∗ i n t e r p o l a t i o n cons tant
17 ∗/
18 public ImagePlus p roce s s (ImagePlus image , Object [] a rgs)
19 throws PluginNotSucceededException {
20
21 // Get arguments
22 f loat ang le = (Float) args [0] ;
23 f loat xRotCentre = (Float) args [1] ;
24 f loat yRotCentre = (Float) args [2] ;
25 I n t e r p o l a t i o n i n t e r p o l a t i o n ;
26 i f (args . l ength > 3) {
27 i n t e r p o l a t i o n = ((I n t e r p o l a t i o n) args [3])
28 . getJAIInstance () ;
29 } else
30 i n t e r p o l a t i o n = In t e r p o l a t i o n .
31 g e tDe f au l t I n t e r po l a t i o n () . getJAIInstance () ;
32
33 // Rotates image
34 // . . . implementat ion o f image r o t a t i on
35

75

APPENDIX A. PLUGIN DEVELOPERS MANUAL

36 // Rotates image reg ions
37 Aff ineTransform ro iRota t i on =
38 Aff ineTransform . getRotate Ins tance (angle ,
39 xRotCentre , yRotCentre) ;
40 image . getImageRegions () . t rans form (ro iRota t i on) ;
41
42 return image ;
43 }
44
45 }

A.7 Writing User Interface Plugins

User interface plugin serves to get user input, to display something to user or
to create user interface components used in other user interface plugins. All user
interface plugins must implement the interface PluginUI which defines method
GuiIDs guiID(). This method specifies which in which GUI system is given
plugin implemented.

Dialog plugins

The interface PluginUIDialog defines method Arguments getInforma-

tions(Object, Object[]). This method typically displays some dialog to user
and returns user input. Further specification of the argument of this method is
part of plugin’s contract.

The kernel of the tool provides several classes, which supports the us-
ing of dialog plugins. The example of such classes is the DialogParametres

class that can be used as an argument passed to dialog plugin. The
class AbstractSwingDialog automates work with swing dialogs. Classes
OkCancelPanel and OkCancelRestore panel offers panels which serves for con-
firming actions.

Display plugins

The interface PluginUIDisplay defines method Ob1ject display(Object, Ob-

ject[]). This method displays the user interface component to user. Further
specification of the argument of this method is part of plugin’s contract.

Factory plugins

The interface PluginUIFactory defines method Object createComponent(Ob-

ect[]). This method should create arbitrary user interface component. Further
specification of the argument of this method is part of plugin’s contract.

76

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Factory plugin often returns object of class defined inside it. If it is necessary
to call specific methods of such class, plugin must define this methods in its
contract.

Listing A.8: Example of the user interface plugin

1 package p lug in s . u i . swing . d i a l o g ;
2
3 /∗∗
4 ∗ Disp lays s tandard yes / no d i a l o g
5 ∗
6 ∗/
7 public class YesNoDialog extends AbstractPlug in
8 implements PluginUIDialog {
9 /∗∗

10 ∗ Disp lays s tandard yes / no d i a l o g
11 ∗ @param args message to the p l u g in
12 ∗ args [0] . . . (S t r ing) message d i s p l a y ed in the d i a l o g
13 ∗ args [1] . . . (o p t i ona l) (S t r ing) t i t l e o f the d i a l o g
14 ∗
15 ∗ @return the o b j e c t which method ge t () r e turns (Boolean)
16 ∗ t rue . . . user s e l e c t e d yes ;
17 ∗ f a l s e . . . user s e l e c t e d no
18 ∗/
19 public Arguments ge t In fo rmat ions (Object owner ,
20 Object [] a rgs)
21 throws PluginNotSucceededException {
22
23 // Get arguments
24 Component ownerC = (Component) owner ;
25 St r ing message = (St r ing) args [0] ;
26 St r ing t i t l e = null ;
27 i f (args . l ength > 1)
28 t i t l e = (St r ing) args [1] ;
29
30 // Disp lay the d i a l o g
31 int o = JOptionPane . showConfirmDialog (ownerC , message ,
32 t i t l e , JOptionPane . YES \ t e x t i t {NO} OPTION) ;
33 Arguments retValue = new Arguments () ;
34 i f (o == JOptionPane .YES OPTION) {
35 retValue . s e t (true) ;
36 }
37 else {
38 retValue . s e t (fa l se) ;
39 }
40
41 return retValue ;
42 }
43

77

APPENDIX A. PLUGIN DEVELOPERS MANUAL

44 public GuiIDs guiID () {
45 return GuiIDs .SWING;
46 }
47
48 }

A.8 Writing I/O Plugins

I/O plugins handles reading images from the disk and writing images to disk.
Each I/O plugin must implement interface PluginIO. This interface defines

method PluginImageFormat[] offers(). Plugins specify there which image for-
mats it reads or writes and the priority of given format. If there are two plugins
that read or write the same format, the plugin with higher priority will be called.

I/O plugins are usually not called directly so they have no exactly specified
contract.

The interface PluginIOReader implement plugins that read the image from
disk and encode it from given format. The interface PluginIOWriter implement
plugins, which decode image data and write it to disk.

A.9 Writing Worker Plugins

Worker plugins are general-purpose plugins that can handle arbitrary functional-
ity.

Worker plugins implement interface PluginWorker. This interface defines the
method Arguments run(Object[]). Further specification of the argument of this
method is part of plugin’s contract.

Listing A.9: Example of worker plugin

1 package p lug in s . worker ;
2
3 /∗∗
4 ∗ Dele te p l u g in . De le te p l u g in from the d i s c .
5 ∗ Do not care to dependencies e t c . This do
6 ∗ Un in s t a l lP l u g i n .
7 ∗
8 ∗ @see p l u g i n s . worker . Un in s t a l lP l u g i n
9 ∗/

10 public class DeletePlug in extends AbstractPlug in
11 implements PluginWorker {
12
13 /∗∗
14 ∗ Dele te p l u g in .
15 ∗
16 ∗ @param args
17 ∗ (S t r ing) args [0] . . . name o f the p l u g in

78

APPENDIX A. PLUGIN DEVELOPERS MANUAL

18 ∗ (S t r ing) args [1] . . . in format ion about the p l u g in
19 ∗ (Plugin) args [2] . . . p l u g in
20 ∗
21 ∗ @return Arguments .NOARGUMENTS
22 ∗/
23 public Arguments run (Object [] a rgs) throws
24 PluginNotSucceededException {
25 // Get arguments
26 St r ing plName = (St r ing) args [0] ;
27 PluginTypes p l I n f o = (PluginTypes) args [1] ;
28 Plugin p lug in = (Plugin) args [2] ;
29
30 // d e l e t e p l u g in from the d i s c
31 F i l e path = new F i l e (
32 p l I n f o . getAbsPath () + plName + ” . c l a s s ”) ;
33 i f (! path . d e l e t e ()) {
34 path = new F i l e (
35 p l I n f o . getAbsPath () + plName + ” . j a r ”) ;
36 i f (! path . d e l e t e ()) {
37 St r ing message = ”Cannot d e l e t e the p lug in f i l e . ” ;
38 ErrorMessages . e r r o r (message , s ou r c eF i l e) ;
39 throw new PluginNotSucceededException (message) ;
40 }
41 }
42
43 // r ep l a c e ac t i on p l u g in from the menu
44 i f (p l I n f o == PluginTypes .ACTION) {
45 Worker . c a l l P l u g i n (”ReplacePluginFromAllMenus” ,
46 plugin , plName) ;
47 }
48
49 return Arguments .NOARGUMENTS;
50 }
51 }

A.10 Using Action Plugins

The static class Action arranges automatic updating of enabled state of menu
items or buttons which wraps action plugins according to the actual result of
the method isEnabled() when some pre-defined event occurs. It is also possible
to add new event which causes updating the state of the actions. Then, it is
possible to update the enabled state of all action plugins or of selected action
plugin manually.

The class Action also enables to set new label of action plugin.

While using action plugins, it is necessary to wrap the action plugin to com-
ponent representing button or menu item. The class SwingActions enables to

79

APPENDIX A. PLUGIN DEVELOPERS MANUAL

get object of SwingAction class that is descendant of class javax.swing.Abs-

tractAction.AbstractAction which wraps given action plugin. The objects of
class AbstractAction can be used to create both buttons and menu items.

Listing A.10: Using action plugins in the buttons

1 AbstractAct ion ac t i on =
2 SwingActions . getSwingAction (”ActionPlugin ”)
3
4 // Create a but ton which runs g iven ac t i on p l u g in
5 // The but ton w i l l be c rea t ed accord ing to the s e t t i n g s
6 // prov ided by g iven ac t i on p l u g in .
7 // Enabled s t a t e o f the but ton w i l l be au t oma t i c a l l y updated
8 JButton button = new JButton (ac t i on) ;
9

10 // . . .
11
12 // Update the bu t tons l a b e l
13 Actions . s e tLabe l (”Act ionPlugin ” , ”New l a b e l ”) ;
14
15 // Manually update the s t a t e o f the but ton
16 Actions . updateEnabled (”ActionPlugin ”) ;

Built-in user interface factory plugin MenuFactory offers the swing component
that represents specified menu of the tool. This menu component includes all
action plugins specified in XML file with definition of given menu.

Listing A.11: Creating swing menu component

1 // Creates new window
2 JFrame frame = new JFrame () ;
3
4 // the window w i l l have the same menu as the BrowsingWindow
5 setJMenuBar ((JMenuBar) UI . ca l lFac to ryP lug in (” MenuFactory” ,
6 new MenuFactoryArguments (MenuTypes .MENUBAR) ,
7 MenuInfo .MAIN MENU BROWSING. getMenuData ())) ;

A.11 Advanced Use of UndoableImage

The image that is user currently viewing is represented by the object of Undo-
ableImage class. This object holds two images. The processing image stores the
data of the image that is user currrently viewing. This data can be used for further
processing or for writing image to disk. The second stored image is display image
– the image that is displayed to the user. Typically, it is processing image rescaled
to fit the viewing window or translated to be in the center of viewing window.

Fortunately, it is usually not necessary to care about this concept. Both
images are updated automatically when using methods such as update-

ProcessingImageDisplay(ImagePlus) or updateProcessingImageDisplay-

80

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Fit(ImagePlus). However, setting the processing image and display image inde-
pendentely is needful for example when the image is zoomed and it is beneficial
for example when showing the preview of some operation to the user.

The relationship between the processing and the display
image

To allow the proper function of the tool, the processing image and the display
image must represent the same image. Moreover, the geometrical transformation
between these two images needs to be known.

Thus, the transformation which converts the coordinates of processing im-
age to the coordinates of display image must be passed when using method
setDisplayImage(ImagePlus, AffineTransform). Note that this transforma-
tion mustn’t include the scale transformation. The scale transformation is com-
puted automatically using the dimensions of processing and display image.

Actual transformation between the processing and display image can be ob-
tained by calling method getProcessingToDisplayCoordinatesConventer() or
getDisplayToProcessingCoordinatesConverter().

When using method setDisplayImageTransform(ImagePlus), the image pa-
ssed in the argument will be transformed to correspond the processing image in
that way that affine transformation between new processing image and new dis-
play image will be the same as affine transformation between old display image
and new display image. The method setDisplayImageFit(ImagePlus) trans-
forms given image to fit the display area of the viewing window. Correct trans-
formation between processing image and display image will be automatically set.

Observing UndoableImage

Class UndoableImage is observable. Observers can be registered to be notified
when UndoableImage is changed. The argument arg of of the method update()

which receive such observers is type MessagesToObserver. It specifies the event
that occurred.

Observing undoable image is used for example in the component which dis-
plays actual image. When the actual image is updated, the component displays
it.

A.12 Working with Selections

Selections are used to create image regions and to manipulate with them.

Creating selections

Selections are typically created by the user. The process of creating a selection
varies on the shape of the resultant selection. Such process is directed by the

81

APPENDIX A. PLUGIN DEVELOPERS MANUAL

object of class implementing SelectionBuilder interface. When the selection is
created, the object of the class SelectionManipulator can be obtained.

Setting the default method of creating selections

The object of SelectionBuilder class that is used to create new selections in
viewing window is stored in ActSelection class. Plugins can change the process
of creating new selections in viewing window by setting new object instead of
this.

Manipulating with selections

Created selections are represented by objects implementing interface Selection-
Manipulator. This objects handles the manipulation with the selection and offers
method for obtaining image region selected by the selection. Either the manip-
ulation can be driven by mouse events on the image, or it can be necessary to
apply some geometrical transformation on the selection.

The object implementing SelectionManipulator interface can be created
directly or by objects implementing SelectionBuilder interface.

Selections and image regions

In fact, image regions in ImageRegions class are represented by objects imple-
menting SelectionManipulator interface. Consequently, it is possible to trans-
form image regions in the image and manipulate with them.

In spite of that, new image region can be added to an image simply by calling
method add(Shape) of the object of the class ImageRegions stored in the image.
In this case, it will be created object of class ArbitrarySelectionManipulator
from given shape and this object will represent the given image region. However,
this object only handles geometrical transformations of image regions. It doesn’t
enable user manipulation with given image region.

To enable user to manipulate the image region, fitting image manipulator
object must be added using method add(ImageManipulator).

Observing selection manipulator

The class SelectionManipulator is observable. Observing selections is presently
used for example in the implementation of the Cropping plugin to change the
cropping parameters of the selection representing cropping area moves.

Observing ImageRegions

It is also possible to observe whole ImageRegions object. Observers can register
to be notified either when some image selection manipulator was changed or when
some selection manipulator was added or deleted.

82

APPENDIX A. PLUGIN DEVELOPERS MANUAL

A.13 Using Batch Processing

Batch processing enables to apply given processing plugin to all images in given
directory.

This can do built in worker plugin BatchProcessing. This plugin accepts in
the argument the identifier of processing plugin which will be applied in batch,
parameters of this plugin and object of the class BatchSettings in which the
settings of batch processing and the parameters of given processing plugin are
stored.

Getting batch processing settings from standard dialogs

Dialog plugins that serve for obtaining general input from the user often offer
getting the batch processing settings. The example of such dialog is TwoLin-

kedNumberSpinnersDialog.

Getting batch processing settings in custom dialogs

Factory plugin BatchSettingsPanel provides a panel which can be added to any
swing container and which enables user to enter the batch processing settings.
This panel is also used in implementation of general-purpose dialogs mentioned
earlier.

Calling plugin which enables batch processing from Brows-
ing and Viewing window

Action plugins that enable batch processing are usually applicable also to the
single image and are placed in a menu of a viewing window. It is also good to
place such plugins to the menu of the browsing window to the sub-menu called
batch processing.

The appearance of such plugin should little vary according to what window
is actually active. This can be detected by using method getState() of a class
ViewingWindowProperties.

If viewing window is active, user should choose whether he wants to do batch
processing or not. If browsing window is active, the batch processing should
be enabled and user shouldn’t have the possibility to disable batch process-
ing. Next, the batch processing must be disabled, when the ActDirectory is
in DirectoryStates.NO T BROWSABLE state.

The panel obtained by plugin BatchSettingsPanel do this two things auto-
matically.

Next, if the plugin offers the preview of processing operation, it must be
disabled when the viewing window is not active.

The example of action plugin runnable from both processing and viewing
window is in Listing A.12

83

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Listing A.12: Example of the the action plugin which enables batch processing

1 package p lug in s . a c t i on ;
2
3 /∗∗
4 ∗ Rotat ion o f image wi th a r b i t r a r y ang le .
5 ∗ Supports mass p roce s s ing .
6 ∗/
7 public class Rotate extends AbstractPlug inAct ion {
8
9 @Override

10 public void run (Object [] a rgs) throws
11 PluginNotSucceededException {
12
13 // Prepare arguments o f the d i a l o g
14 DialogParametres d i a l o g = new DialogParametres (”Rotation ” ,
15 ”Rotation ang le ”) ;
16 // the d i a l o g w i l l enab l e user to en ter batch s e t t i n g s
17 d i a l o g . s e tBat chSe t t i ng sS ta t e (BatchSet t ing sSta t e s .ENABLE) ;
18 Sl iderParameter s s l i d e r = new Sl iderParameter s (
19 new NumberIntervalWithValue<Integer >(0 , 360 , 0)) ;
20 s l i d e r . s e tTextF i e ldSta t e (TextF ie ldState s .DISPLAY) ;
21 // enab l e prev iew only i f the v iewing window i s v i s i b l e
22 i f (ViewingWindowProperties . g e tS ta t e () ==
23 ViewingWindowState . VISIBLE) {
24 enablePreview (s l i d e r) ;
25 }
26
27 // Obtain user input
28 Arguments r o t S e t t i n g s = UI . c a l lD i a l o gP lug i n (” S l i d e r ” ,
29 ViewingWindowProperties . getViewingWindowContainer () ,
30 dia log , new Sl iderParameter s [] { s l i d e r }) ;
31
32 // Cancel bu t ton was pres sed
33 i f (r o t S e t t i n g s == Arguments .NOARGUMENTS) {
34 i f (ViewingWindowProperties . g e tS ta t e () ==
35 ViewingWindowState . VISIBLE) {
36 // r e s t o r e the changes caused by prev iew
37 ActImage . getActImage () . se tDisp layImageFi t (
38 ActImage . getActImage () . getProcess ingImage ()) ;
39 }
40 return ;
41 }
42
43 // Get the parameters o f r o t a t i on
44 int [] va lue s = (int []) r o t S e t t i n g s . get (” va lue s ”) ;
45 f loat ro tat ionAng le = ((In t eg e r) va lue s [0]) . f l o a tVa lue () ;
46 // Get the parameters o f ba tch proce s s ing
47 BatchSett ings batchGeneral = (BatchSett ings) r o t S e t t i n g s

84

APPENDIX A. PLUGIN DEVELOPERS MANUAL

48 . get (” batchSe t t ing s ”) ;
49
50 // Process the image
51 i f (batchGeneral == BatchSett ings .NO MASS PROCESSING) {
52 // wi thout batch proce s s ing
53 // . . . p roces s the image , update ActImage
54 } else {
55 // do batch proce s s ing
56 Worker . c a l lP l u g i n (” BatchProcess ing ” , ”RotateAuto” ,
57 batchGeneral , rotat ionAngle ,
58 I n t e r p o l a t i o n . getPermanentInterpo lat ion ()) ;
59
60 }
61 }
62
63 private void enablePreview (S l iderParameter s s l i d e rArg) {
64 // changes d i s p l a y image when the s l i d e r moves
65 ChangeListener s l i d e rChangeL i s t ene r =
66 new ChangeListener () {
67 public void stateChanged (ChangeEvent e) {
68 // . . .
69 }
70 }
71 } ;
72
73 s l i d e rArg . s e tS l i d e rChangeL i s t ene r (
74 s l i d e rChangeL i s t ene r) ;
75 }
76
77 public St r ing getName () {
78 return Loc a l i s a t i o n . g e tS t r i ng (” r o t a t e ”) ;
79 }
80
81 }

A.14 Other Advanced Issues

Using actual directory

The images in the directory that is user currently browsing and the information
about this directory are accessible via static methods of the class ActDirectory.

The list of static methods of the class ActDirectory is in Table A.12.

The images in the actual directory are stored as an object of CachedImages
class. This class provides loading images of given files and caching it. This class

85

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Method Description

void changeActDirectory(File) Changes actual directory and initialise
the image cache.

File getDirectoryFile() Gets the file of the actual directory.
void recache() Gets images from actual directory and

creates new caches from this images.
CachedImages getCachedImages() Gets the object which stores images

from actual directory.

Table A.12: Selected static methods of the class ActDirectory.

is Observable. Observers can register to be notified when the cache is changed.
The list of most frequently used methods of CachedImages is in Table A.13.

Method Description

ImagePlus getImage(int) Loads image with given index to
the cache and returns it.

ImagePlus getImage(File) Loads image with given File to
the cache and returns it.

ImagePlus geImageStartCaching(int) Gets image with given index and
starts new thread which will be
caching images around this im-
age.

ImagePlus geImageStartCaching(File) Gets image with given file and
starts new thread which will be
caching images around this im-
age.

ImagePlus getNextImageCacheAlong() Gets next image from the cache
and cache image along this image.

boolean isNextImage() Indicates whether there is stored
next image in the cache list.

ImagePlus getPrevImageCacheAlong() Gets next image from the cache
and cache image before this im-
age.

boolean isPrevImage() Indicates whether there is stored
previous image in the cache list.

Table A.13: Most frequently used methods of the class CachedImages

Using I/O

I/O module serves to reading and writing images.

86

APPENDIX A. PLUGIN DEVELOPERS MANUAL

In the table A.14 is the list of most frequently used static methods of the IO

class.

Method Description

void saveActualImage() Saves actual image to the
disk. Updates ActImage

and ActDirectory to be
in proper state.

void write(PlanarImage, String, Object...) Writes the image to the
disk.

PlanarImage read(String filename) Reads the image from
disk.

boolean isReadSupported(String) Returns true if reading of
the format format is sup-
ported.

boolean isWriteSupported(String) Returns true if writing of
the format format is sup-
ported.

Table A.14: Most frequently used static methods of the class IO.

Advanced use of the status

The class Status class is observable. Hence, observers can register to be noticed
when the status was changed.

Consequently, custom component that automatically displays the status of
the tool can be created. Such component offers factory plugin AutoStatusPanel.

Getting plugins objects via the plugin manager

Typically, plugins are not used directly. One pre-defined method of the plugin’s
class given by the type of the plugin is called via static classes in the kernel. This
makes using and writing of plugins unified and simple.

However, sometimes is the possibility of calling only one pre-defined method
of the plugin limiting. It is therefore possible to get the object of given plugin
and call some its method via Reflection API.

Note that it is not guaranteed, that all versions of the plugin have the meth-
ods that are not specified in the contract of the plugin. Consequently, only the
methods given by the interface of given plugin type and methods specified in the
contract of the plugin should be called.

Getting the object of the plugin provides the object of PluginManager class.
Classes processing.Processing, worker.Worker, actions.Actions, UI, io.IO
enables to get such object.

87

APPENDIX A. PLUGIN DEVELOPERS MANUAL

Using classes defined in the plugin

Plugin can return object of class defined inside it. If it is necessary to use specific
methods of this class, plugin must specify such methods in its contract and other
callers can use this methods via Reflection API.

Next, plugin can provide Class objects of classes defined inside the plugin
via method getAdditionalInnerClasses(). Via Reflection API it is possible to
create instances of such classes and call methods of such classes.

A.15 Licence

PhotoJ is distributed under GNU Lesser General Public Licence (LGPL) [16].
Runnable scripts for Windows and Linux (photoj.vbs and photoj.sh) are

distributed under GNU General Public License [17].

88

Bibliography

[1] HubbleSite: The Telescope - Nuts & Bolts - COSTAR,
http://hubblesite.org/the telescope/nuts .and. bolts/optics/costar/

[2] Molecular Expressions Microscopy Primer: Digital Image Processing - Focus
Limitations,
http://micro.magnet.fsu.edu/primer/digitalimaging/russ/focuslimitations.html

[3] Wikipedia, the free encyclopedia: Deconvolution,
http://en.wikipedia.org/wiki/Deconvolution

[4] Quarktet SeDDaRA: SeDDaRA blind deconvolution,
http://www.quarktet.com/

[5] ImageJ, Image Processing and Analysis in Java,
http://rsb.info.nih.gov/ij/

[6] JPlugin: Java plugin framework,
https://jplugin.dev.java.net/

[7] JPF: Java Plugin Framework,
http://jpf.sourceforge.net/

[8] EXIF.org: unofficial site dedicated to Exchangeable Image File Format
(EXIF)
http://www.exif.org

[9] William K. Pratt: Digital image processing, John Wiley & Sons, Inc., 2001

[10] HDRsoft SARL: FAQ – HDR images for Photography,
http://www.hdrsoft.com/resources/dri.html

[11] Sun Microsystems, Inc: Java Runtime Environment: download,
http://www.java.com/en/download/manual.jsp

[12] Apache Ant: Java-based build tool,
http://ant.apache.org/

[13] Sun Microsystems, Inc: The Java Advanced Imaging API (JAI),
http://java.sun.com/javase/technologies/desktop/media/jai/

89

BIBLIOGRAPHY

[14] Sun Microsystems, Inc: JAI manual,
http://java.sun.com/products/java-media/jai/forDevelopers/jai1 0 1guide-unc/

[15] Java Advanced Imaging Stuff (jaistuff): JAI tutorial and many examples,
https://jaistuff.dev.java.net/

[16] GNU Lesser General Public Licence (LGPL)
http://www.gnu.org/licenses/lgpl.html

[17] GNU General Public License (GPL)
http://www.gnu.org/licenses/gpl.html

[18] XnView: multimedia viewer, browser, and converter,
http://perso.orange.fr/pierre.g/

[19] Gwenview: image viewer,
http://gwenview.sourceforge.net/

[20] Almara: photo album viewer,
http://almara.sourceforge.net/www/

[21] Ekspos: platform independent Java image viewer program,
http://www.kiyut.com/products/ekspos/index.html

[22] Fotox: Linux program for improving digital photographs,
http://kornelix.squarespace.com/fotox/

[23] Google Picasa: image viewer, browser, and organiser,
http://picasa.google.co.uk/

[24] IrfanView: graphic viewer,
http://www.irfanview.com/

[25] Cygwin: Linux-like envinronment for Windows,
http://www.cygwin.com/

[26] Wine HQ: an Open Source implementation of the Windows API
http://www.winehq.org/

90

