
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

BAKALÁŘSKÁ PRÁCE

Michal Marek

Automatické čǐstěńı HTML dokument̊u
Automatic cleaning of HTML documents

Ústav formálńı a aplikované lingvistiky

Vedoućı bakalářské práce: Mgr. Pavel Pecina

Studijńı program: Informatika, programováńı

2007

Chtěl bych poděkovat svému vedoućımu Pavlovi Pecinovi za vypsáńı zaj́ı-
mavého tématu, rady k implementaci programu a výběr literatury. Jemu i
jeho kolegovi Mirkovi Spoustovi také děkuji za připomı́nky ke článku a práci.
Na závěr chci poděkovat své ženě Petře za pomoc při př́ıpravě trénovaćıch
dat a za podporu.

Prohlašuji, že jsem svou bakalářskou práci napsal samostatně a výhradně
s použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce a jej́ım
zveřejňováńım.

V Praze dne 8. srpna 2007 Michal Marek

2

Obsah

1 Introduction 5
1.1 Related Work . 6

2 User documentation 7
2.1 Installation . 7
2.2 Configuration . 8
2.3 Usage . 8

3 System Overview 12
3.1 Standardizing HTML code 12
3.2 Precleaning . 13
3.3 Parsing Precleaned HTML 13
3.4 Feature extraction . 14
3.5 Learning And Cleaning . 15

4 Features 17
4.1 Markup-based Features . 17
4.2 Content-based Features . 18
4.3 Document-related features 20

5 Data and Evaluation 21

6 Experiments and Results 23

7 Conclusions 25
7.1 Future Ideas . 26

3

Název práce: Automatické čǐstěńı HTML dokument̊u
Autor: Michal Marek
Katedra (ústav): Ústav formálńı a aplikované lingvistiky
Vedoućı bakalářské práce: Mgr. Pavel Pecina
e-mail vedoućıho: pecina@ufal.mff.cuni.cz

Abstrakt: Tato práce popisuje systém pro automatické čǐstěńı HTML do-
kument̊u, který byl použit při účasti Univerzity Karlovy v soutěži CLEAN-
EVAL 2007. CLEANEVAL je sd́ılená úloha (shared task) a soutěž automa-
tických systémů pro čǐstěńı libovolných stránek s ćılem použ́ıt webová data
jako korpus v poč́ıtačové lingvistice a zpracováńı přirozeného jazyka. Tuto
úlohu řeš́ıme jako problém značkováńı sekvenćı (sequence labeling) a náš
experimentálńı systém je založen na algoritmu Conditional Random Fields,
použ́ıvaj́ıćım vlastnosti (features) blok̊u textu odvozené z textového obsahu
a HTML struktury analyzovaných webových stránek.
Kĺıčová slova: Čǐstěńı webových stránek, Sequence labeling, Conditional ran-
dom fields

Title: Automatic cleaning of HTML documents
Author: Michal Marek
Department: Institute of Formal and Applied Linguistics
Supervisor: Mgr. Pavel Pecina
Supervisor’s e-mail address: pecina@ufal.mff.cuni.cz

Abstract: This paper describes a system for automatic cleaning of HTML
documents, which was used in the participation of the Charles University in
CLEANEVAL 2007. CLEANEVAL is a shared task and competitive eval-
uation of automatic systems for cleaning arbitrary web pages with the goal
of preparing web data for use as a corpus in the area of computational lin-
guistics and natural language processing. We try to solve this task as a
sequence-labeling problem and our experimental system is based on Con-
ditional Random Fields exploiting a set of features extracted from textual
content and HTML structure of analyzed web pages for each block of text.
Keywords: Web page cleaning, Sequence labeling, Conditional random fields

4

Chapter 1

Introduction

The web with its enormous amounts of textual materials is a rich and easily
accessible source of linguistic data that can be used to create extremely large
corpora with relatively low cost and within a short period of time (compared
to the traditional way of building text corpora which is an expensive and
time-consuming process). The idea of having a corpus “as large as the web”
recently attracted attention of many researchers in computational linguistics,
natural language processing, and related areas, who would greatly benefit
from such amount of data. Creating such a corpus comprises two steps: a)
web crawling - automatic browsing the web and keeping a copy of visited
pages and b) cleaning the pages to be included in the corpus. In this work
we focus on the latter.

Apart from the main content, a typical web page contains other material
of no linguistic interest, such as navigation bars, panels, and frames, page
headers and footers, copyright and privacy notices, advertisements and other
data (often called boilerplate). The goal is to detect and remove such parts
from an arbitrary web page.

Although this task might seem too heterogeneous to be appropriate for
methods based on supervised training, we solve it as a sequence-labeling
problem with Conditional Random Fields trained on a manually cleaned set
of web pages. Our primary goal is an attempt to explore whether supervised
training methods can perform well enough to be successfully used in this
task.

5

1.1 Related Work

Although web page cleaning is a crucial step in the procedure of building a
web corpus, only a relatively little work has been done in this area. Most
of it originated in the area of web mining and search engines, e.g. [3] or [5].
In [1], a notion of pagelet determined by the number of hyperlinks in the
HTML element is employed to segment a web page; pagelets whose frequency
of hyperlinks exceeds a threshold are removed. [6] extract keywords from
each block content to compute its entropy, and blocks with small entropy
are identified and removed. In [8] and [7], a tree structure is introduced
to capture the common presentation style of web pages and entropy of its
elements is computed to determine which element should be removed. In
[2], a two-stage web page cleaning method is proposed. First, web pages are
segmented into blocks and blocks are clustered according to their style fea-
tures. Second, the blocks with similar layout style and content are identified
and deleted. As far as the authors know, none of the published method was
based on sequence labeling or a similar learning algorithm.

6

Chapter 2

User documentation

The system we developed is called Victor and is distributed along with this
paper. Following are instructions on installing, optionally configuring and
using Victor.

2.1 Installation

Being still somewhat experimental, the package does not have any install
script. The suggested usage for now is running the scripts from the un-
packed source directory. Following Perl modules are required (available from
CPAN):

• Curses (for the annotation tool only)

• HTML::Entities

• HTML::Parser

• HTML::Tidy (optional)

And the following programs:

• CRF++, available from http://crfpp.sourceforge.net/

• HTML Tidy, available from http://tidy.sourceforge.net/

The included check-deps.pl script can be used to check if all the re-
quired packages are installed.

7

http://crfpp.sourceforge.net/
http://tidy.sourceforge.net/

2.2 Configuration

There are two sources of configuration in Victor. The so called config file,
placed in the configs sub-directory, and the CRF++ template file, placed
in the templates sub-directory. All Victor scripts accept the --config

<name> command line option to switch between configs. There is a preset
config for use in the CLEANEVAL shared task in configs/cleaneval.conf

(the command line option then reads --config cleaneval). The config file
has a simple format:

variable: value

Where value can be either a single token or an array of these, depending
on the type of the variable. In case of an array, the definition can be split
into multiple lines:

variable: value1

variable: value2

is equivalent to

variable: value1 value2

The meaning of the individual variables is discussed throughout the text.

2.3 Usage

To use Victor for cleaning web pages, a set of annotated HTML files for
training is needed. Victor comes with files from the CLEANEVAL develop-
ment set, converted to the Victor annotation format. These files are found in
cleaneval/*.anno. The cleaneval-extra/ directory contains additional
training data prepared by us. To annotate own files, run the following com-
mand in the unpacked source directory:

./annotate.pl --config cleaneval file.html file.anno

This will launch a full-screen terminal application that allows you to as-
sign an annotation tag to each segment of text by pressing one of the keys
displayed on the bottom. Besides the paragraph, header and list tags
specified by the CLEANEVAL task, there is the other tag for marking text

8

that should be cleaned away, and the continuation tag, denoting text seg-
ments that connect to the last segment marked as paragraph, header or list.
The continuation tag is needed, because Victor splits the input on HTML
tags, but paragraphs, headers or list items can span multiple segments, for
example

<p> See our website

for more details.</p>

would be annotated as (assuming the text is to be annotated as a single
paragraph)

[p] See

[c] our website

[c] for more details.

Training the CRF++ engine on the annotated data is done by running
the learn.pl script:

./learn.pl --config cleaneval file1 file2 ...

This will store the results in a “model” file in the models sub-directory. To
train on the included CLEANEVAL development dataset, run

./learn.pl --config cleaneval cleaneval/*.anno

Finally cleaning web pages is done using the clean.pl script. By default,
its output is the same as that of the annotation tool. This can either be con-
verted to the CLEANEVAL annotation format by the victor2cleaneval

script, or by running clean.pl with the --format cleaneval parameter:

./clean.pl --config cleaneval --format cleaneval files ...

The advantage of the latter method is that it supports the special <text
id="..."> tag and adds the URL: ... line to the output file, as required
by CLEANEVAL.

9

Figure 2.1: SIGWAC website as rendered by a web browser. Text that
should be extracted is marked red.

10

<h> SIGWAC

<p> SIGWAC is the Special Interest Group of the

Association for Computational Linguistics (ACL)

on Web as Corpus

<p> Its objectives are

<l> to promote interest in the use of the web as a

source of linguistic data , and as an object of study

in its own right;

<l> to provide members of the ACL with a special

interest in the web -as -corpus with a means of

exchanging news of recent research developments

and other matters of interest;

<l> to sponsor meetings and workshops on the web as

corpus that appear to be timely and worthwhile.

<p> More info on

Figure 2.2: The same page as cleaned by Victor, with line breaks added.
Except for the stray “More info on” paragraph, the result looks promising.

11

Chapter 3

System Overview

The system is based on sequence labeling with CRF++1, an implementation
of Conditional Random Fields [4]. It is aimed at cleaning arbitrary web pages
as specified in the CLEANEVAL shared task description2. Processing the
HTML input consists of several steps:

3.1 Standardizing HTML code

The raw HTML input is passed through Tidy3 (either via pipes to the
tidy binary, or using the HTML::Tidy Perl module), in order to get a valid
and parsable HTML tree. During development, we found only one sig-
nificant problem with Tidy, namely that it does not interpret code inside
the <script> element, which means that it will be confused by JavaScript
strings containing <script> or </script>. We employed a simple work-
around for it in the preclean module. Except for this particular problem
which occurred only once in our training data, Tidy has proved to be a good
choice.

1http://crfpp.sourceforge.net/
2http://cleaneval.sigwac.org.uk/
3http://tidy.sourceforge.net/

12

http://crfpp.sourceforge.net/
http://cleaneval.sigwac.org.uk/
http://tidy.sourceforge.net/

3.2 Precleaning

Afterwards, the HTML text “precleaned”: It is parsed4 and some elements
(like scripts, style definitions, embedded objects, etc) are already deleted.
The exact list of elements to delete is specified by the tag-delete configu-
ration variable. Remaining text is split by HTML tags into a sequence of so
called text blocks. For example, the snippet

<p>Hello <i>world</i>!</p>

would be split into three blocks, “Hello”, “world”, and “!”. The rest of the
system then views the document as a series of blocks. This approach has
two potential problems:

• A given block is classified as whole, there is no way to classify a part
of a block differently that the rest. In practice, this turned out to be a
significant problem only for text inside the <pre> element. Therefore,
inside the <pre> element, each line of text is separated with a

tag, splitting the content into multiple blocks. This allows each line
to be classified separately.

• Some text rendered on web pages is contained in tag attributes, which
are ignored by the parser. This is especially true for the alt attribute
of the tag and the value attribute of the <input> tag. For
, this is solved by copying the alternative text into an artificial
text child the of element in the preclean stage. We believe that
most <input> tags on the Web do not carry any useful information in
their value attributes, therefore we ignore them (although the work-
around would be the same).

3.3 Parsing Precleaned HTML

In this step, the precleaned HTML text is again parsed with HTML::Parser
and the blocks identified in the previous stage are loaded into memory. Each
block is internally stored as a Perl hash with these fields:

id

The number of the block (first block in the document has id 0).

4Using the HTML::Parser Perl module, which provides an easy-to-use SAX-like API.

13

text

Text of the block, with HTML entities decoded.

containers

An array of parent elements, from outermost to innermost.

distance

An array of tags seen since last block, "x" stands for opening tag <x>

and "/x" stands for closing tag </x>.

td group, div group

Reference to an array of numbers of blocks that belong to the same
td group or div group. The meaning of these fields is explained in 4.2.

fv

The feature vector of this block. This field created in the next stage.

class

For annotated HTML, this field stores the assigned result tag.

These fields are then used by the feature extraction modules to compute
the feature vector of each block. Currently, these fields are always generated,
even when running the annotation tool (which does not need any feature
vectors)5.

3.4 Feature extraction

In this step, a feature vector is generated for each block and stored in the
fv field. The list of features and their detailed description is presented in
the next chapter. The features must have a finite set of values6. The map-
ping of integers and real numbers into finite sets was chosen empirically and
is specified in the configuration. Possible values for feature X are specified
in the variable feature-X-values, the mapping is “largest less-or-equal”.

5On a 2.40GHz Pentium 4 machine, not generating these fields would save only about
0.06 seconds when parsing a 150 Kb HTML file, so optimizing here is not worth it.

6This is a limitation of the CRF tool used.

14

Features that are based on a percentage (e.g. relative position in the docu-
ment) are scaled in a similar way: The number of possible values for feature
Y is specified in the variable feature-Y-scale.

Most features are generated separately by independent modules. This
allows for adding other features and switching between them for different
tasks easily.

Not all features that are generated in this stage are actually used for
learning and cleaning, the idea is that the feature modules should be as sim-
ple as possible and fill the feature vector with all features they can generate
and that the next phase then picks those features that are wanted. This is
a memory waste, but so far it does not seem to be a problem.

3.5 Learning And Cleaning

The CRF++ tool expects the document to have the following tabular for-
mat:

feature1 feature2 ... featureN tag

feature1 feature2 ... featureN tag

that is one row for each “word” (a text block in our case), one column
for each feature and the result tag in the last column (the input of the
cleaning tool does not have the last column of course). Furthermore, the
learning tool needs a so called “template”, that defines actual features used
by CRF++. A feature in CRF++ is one expanded line in the template, with
each line being a reference into the document table, relative to the current
line7. Victor does not use the CRF++ template directly, it generates the
templates from its own format. See the templates/cleaneval.tpl file for
an example.

The crf-features configuration variable defines, which features are out-
put into the document table. Its purpose is also to provide a stable mapping
of feature names to column numbers8.

To be able to map rows in the document table back to the text blocks,
the first column is not a real feature, but the id of the text block. The

7In fact, this is more complicated. CRF++ defines a binary feature for each unique
string the line can expand to, and the line can be composed of multiple references into
the document table. See CRF++ documentation for details.

8Feature vectors are stored as Perl hashes, which do not have any defined sorting.

15

template file never references the first row, so the block ids do not influence
the learning and cleaning.

The output format of the CRF++ cleaning tool crf test is the same
as the input format of the learning tool. When cleaning, Victor dumps the
document table without the last columns, runs crf test, and set the class

field of each block according to the last column. The array of blocks is then
passed to one of the output handlers Victor::Output::*.

16

Chapter 4

Features

Features recognized by Victor can be divided by their scope into three sub-
sets: features of individual text blocks, features of groups of blocks and
features of the whole document. Furthermore, features can be divided by
their source into features based on the HTML markup and features based
on the text content of the blocks.

4.1 Markup-based Features

container.p, container.a, container.u, container.img,
container.class-header, container.class-bold, container.class-italic,
container.class-list, container.class-form

For each parent element of a block, a corresponding container.* feature
will be set to 1, e.g. a hyperlink inside a paragraph will have the
features container.p and container.a set to 1. This feature is especially
useful for classifying blocks: For instance a block contained in one
of the <hx > elements is likely to be a header, a container.li feature
suggests a list item, etc. The container.class-* features refer to classes
of similar elements rather than to elements themselves. This grouping
is done in order to reduce the length of the feature vector1.

split.p, split.br, split.hr, split.class-inline, split.class-block

For each opening or closing tag encountered since the last block, we
generate a corresponding split.* feature. This is needed to decide,

1and therefore be able to train on a smaller set of documents.

17

whether a given block connects to the text of the previous block (clas-
sified as continuation) or not. Also, the number of encountered tags of
the same kind is recorded in the feature. This is mainly because of the

 tag; a single line break does not usually split a paragraph, while
two or more
 tags usually do. The split.class-* features again refer
to classes of similar elements.

4.2 Content-based Features

char.alpha-rel, char.num-rel, char.punct-rel, char.white-rel,
char.other-rel

These features represent the absolute and relative counts of characters
of different classes (letters, digits, punctuation, whitespace and other)
in the block.

token.alpha-rel, token.num-rel, token.mix-rel, token.other-rel,
token.alpha-abs, token.num-abs, token.mix-abs, token.other-abs

These features reflect distribution of individual classes of tokens2. The
classes are words, numbers, mixture of letters and digits, and other.

sentence.count

Number of sentences in a block. For English, we use a naive algorithm
basically counting periods, exclamation marks and question marks,
without trying to detect abbreviations. Given that the actual count is
mapped into a small set of values anyway, this does not seem to be a
problem. For Czech language, we use a module, developed by one of
our colleagues, that also detects abbreviations. But we did not think
it is worth the effort creating a new module for English.

sentence.avg-length

Average length of a sentence, in words.

sentence-begin, sentence-end

2In this context, tokens are sequences of arbitrary characters separated by whitespace.

18

These features identify text blocks that start or end a sentence. This
helps recognizing headers and list items (as these usually do not end
with a period) as well as continuation blocks (sentence-end=0 in the
previous blocks and sentence-start=0 in the current block suggest a
continuation).

first-duplicate, duplicate-count

The duplicate-count feature counts the number of blocks with the same
content (ignoring white space and non-letters). The first block of a
group of duplicates is then marked with first-duplicate. This feature
serves two purposes: On pages where valid text interleaves with noise
(blogs, news frontpages, etc), the noise often consists of some phrases
like “read more...”, “comments”, “permalink”, etc, that repeat multi-
ple times on the page. The second purpose of this feature is to identify
quotes in discussions, which are deleted in the CLEANEVAL devel-
opment set. The first-duplicate feature is then used to recognize the
original post. Especially for the second use case, there is room for
improvement in being able to express different levels of text similar-
ity among the blocks, to be able to also detect quotes of parts of the
original text.

regexp.url, regexp.date, regexp.time

While we try to develop a tool that works independently of the human
language of the text, some language-specific features are needed nev-
ertheless. The configuration defines each regexp.* feature as an array
of regular expressions. The value of the feature is the number of the
first matching expression (or zero for no match). We use three sets
of regular expressions: to identify times and dates (lines with creation
date/time are marked as header in CLEANEVAL data) and URLs
(these are usually cleaned away in the CLEANEVAL data).

bullet

This is a specialized version of the regexp.* features, matching differ-
ent patterns that suggest a list item (number or a single letter, closing
parenthesis, dash, etc). Each combination of matches results in a dif-
ferent value of the feature, so that lists can be recognized as a sequence
of blocks with the same bullet value.

19

div-group.word-ratio, td-group.word-ratio

The layout of many web pages follows a similar pattern: The main
content is enclosed in one big <div> or <td> element, as are the menu
bars, advertisements etc. To recognize this feature and express it as
a number, the parser groups blocks that are direct descendants of the
same <div> element (<td> element respectively). A direct descendant
in this context means that there is no other <div> element (<td>
element respectively) in the tree hierarchy between the parent and the
descendant. For example in this markup
<div> a <div> b c </div> d <div> e f </div> g </div>

the div-groups would be (a, d, g), (b,c) and (e, f). The div-group.word-
ratio and td-group.word-ratio features express the relative size of the
group in number of words. To better distinguish between groups with
noise (e.g. menus) and groups with text, only words not enclosed in
<a> tags are considered.

4.3 Document-related features

position

This feature reflects a relative position of the block in the document
(counted in blocks, not bytes). The rationale behind this feature is
that parts close to the beginning and the end of documents usually
contain noise.

document.word-count, document.sentence-count,
document.block-count

This feature represents the number of words, sentences and text blocks
in the document.

document.max-div-group, document.max-td-group

The maximum over all div-group.word-ratio and a maximum over all
td-group.word-ratio features. This allows us to express “fragmenta-
tion” of the document – documents with a low value of one of these fea-
tures are composed of small chunks of text (e.g. web bulletin boards).

20

Chapter 5

Data and Evaluation

For our development purposes we had 104 manually cleaned HTML docu-
ments available: 51 of them were provided by CLEANEVAL and the rest was
randomly selected, downloaded, and cleaned following the same guidelines
by a volunteer. In this development data set, 22 501 blocks were identified
and assigned appropriate labels. Their distribution is shown in the following
table.

label count
header 1 996
list 1 149
paragraph 3 419
continuation 3 380
total (content) 9 944
other (noise) 12 557

Table 5.1: Labels distribution in the development data set.

The data set was randomly split into six subsets and for better estima-
tion of performance measures used in a six-fold cross-validation. Evaluation
measures were of two types:

1. labeling accuracy – the ratio of correctly assigned block labels (1)
from the full label set and (2) distinguishing only between content and
noisy blocks;

2. cleaning performance – the official CLEANEVAL scoring measures
based on (3) edit distance and the extent to which the markup tags

21

indicate blocks of text starting and ending in the same place and (4)
alignment of text alone, ignoring the markup tags plus (5) a combina-
tion of the latter two referred as the total score.

22

Chapter 6

Experiments and Results

First, we have performed a series of experiments where we disabled each of
the 46 features one by one with the following observations:

The variance among the results on the six cross-validation subsets was
relatively high in all experiments; the total score ranged from 66% to 80%.
This is partially caused by the relatively small amount of training and test
data in each run but it also proves the heterogeneous character of the task.

In contrast, the difference among the results of all experiments was rel-
atively low. The total scores ranged from 71.9% to 74.5%. A possible
explanation is a certain redundancy in the feature set.

Disabling some of the features slightly improved the results. The total
score with all features enabled was 73.9%, while disabling the document.-
word-count feature resulted in a score of 74.6%. Although this difference
is probably not statistically significant we used this criterion and disabled
some features for cleaning the evaluation data.

We also performed two other experiments: one with only the content-
based features enabled and one with only the markup-based features en-
abled. Surprisingly, the results only dropped to 65.3% for markup-only and
66.5% for content-only features. This gives us an idea how much information
is taken from these two types of features and how much we gain from their
combination.

For the CLEANEVAL evaluation, we have chosen three experimental
settings: Exp-1 with all features enabled, Exp-2 with the features word-
ratio, numeric-count, mixed-count and nonword-count disabled, and Exp-3
with two more additionally disabled features regexp.url and document.word-
count. The cross-validated results on the development data set for these

23

experiments are displayed in Table 6.1.

labeling accuracy (%) cleaning performance (%)
full set content-noise markup-only text-only total

Exp-1 74.45 82.60 66.71 81.11 73.92
Exp-2 75.09 83.09 67.31 81.68 74.50
Exp-3 75.01 82.88 68.46 81.83 75.15

Table 6.1: Labeling accuracy and cleaning performance on the development
data.

24

Chapter 7

Conclusions

We proposed a method for web page cleaning based on sequence labeling
with Conditional Random Fields and presented a few initial experiments
evaluated on the development data for CLEANEVAL 2007. With very lim-
ited costs and manual work we were able to achieve encouraging results1.
Using supervised training methods seems as a reasonable approach and we
believe that a better set of features and a larger collection of training data
can bring additional performance improvement. Nevertheless, we are aware
of some weaknesses of our system:

• There is no natural language detection. Therefore, it is also very easy
to “trick” Victor into accepting something that is no valid text at all
– any longer sequence of random characters with enough spaces and
full stops enclosed in the <p> element is very likely to be labeled as
a paragraph. While we agree that a rudimentary natural language
detection is necessary in order not to pollute the corpus with texts
in foreign languages, it could be easily implemented outside of the
system. Recognizing intentionally mangled content would be harder.
Theoretically, some spam detection software could be used for that.

• Currently, Victor does not perform very well on pages where valid
text is split up into small pieces, such as bulletin boards. While the
document.max-div-group and document.max-td-group features might
help recognizing such pages, the actual cleaning performance on such

1Unfortunately, we have not received results from the CLEANEVAL shared task as of
writing this paper. Therefore, our conclusions are backed up only by the results of the
cross-validation experiments.

25

pages is still far from being optimal. Depending on the task however,
it could be acceptable discard pages that are known to cause problems,
preferring quality of the cleaned text over quantity.

7.1 Future Ideas

Below are some ideas for additional features and other improvements.

Extract features from CSS style rules

Currently, the only meta data Victor uses is the HTML tree. A challenging
task would be to implement parsing CSS style rules and extract features
such as font sizes or even positioning. We believe that this would improve
performance on many web pages that use or similar tags with style
rules instead of “semantic” tags.

Recognize common Content Management Systems

It should not be difficult to recognize popular Content Management Systems
(CMS), such as Drupal or MediaWiki. This would mainly allow to hint the
CRF algorithm by marking blocks that are part of the main content and are
therefore more likely to contain valid text.

26

Bibliography

[1] Ziv Bar-Yossef and Sridhar Rajagopalan. Template detection via data
mining and its applications. In WWW ’02: Proceedings of the 11th
international conference on World Wide Web, 2002.

[2] Liang Chen, Shaozhi Ye, and Xing Li. Template detection for large scale
search engines. In SAC ’06: Proceedings of the 2006 ACM symposium
on Applied computing, Dijon, France, 2006.

[3] Robert Cooley, Bamshad Mobasher, and Jaideep Srivastava. Data prepa-
ration for mining world wide web browsing patterns. Knowledge and
Information Systems, 1(1), 1999.

[4] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence
data. In Proc. 18th International Conf. on Machine Learning. Morgan
Kaufmann, San Francisco, CA, USA, 2001.

[5] Mong-Li Lee, Tok Wang Ling, and Wai Lup Low. Intelliclean: a
knowledge-based intelligent data cleaner. In Knowledge Discovery and
Data Mining, 2000.

[6] Shian-Hua Lin and Jan-Ming Ho. Discovering informative content blocks
from web documents. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-2002), Ed-
monton, Alberta, Canada, 2002.

[7] Lan Yi and Bing Liu. Web page cleaning for web mining through feature
weighting. In Proceedings of Eighteenth International Joint Conference
on Artificial Intelligence (IJCAI-03), Acapulco, Mexico, 2003.

27

[8] Lan Yi, Bing Liu, and Xiaoli Li. Eliminating noisy information in web
pages for data mining. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD-
2003), Washington, DC, USA, 2003.

28

	Introduction
	Related Work

	User documentation
	Installation
	Configuration
	Usage

	System Overview
	Standardizing HTML code
	Precleaning
	Parsing Precleaned HTML
	Feature extraction
	Learning And Cleaning

	Features
	Markup-based Features
	Content-based Features
	Document-related features

	Data and Evaluation
	Experiments and Results
	Conclusions
	Future Ideas

