

Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Larysa Aharkava

External environment for Soar

Department of Software and Computer Science Education

Bachelor thesis supervisor: Mgr. Cyril Brom

Study field: Informatics

2007

 2

I would like to gratefully acknowledge the supervision of Mgr. Cyril Brom during this

work. I thank for the technical discussions to the Victorstar and Delyn D. Watling for his

language prompting.

Prohlašuji, že jsem svou bakalářskou práci napsala samostatně a výhradně s použitím

citovaných pramenů. Souhlasím se zapůjčováním práce.

V Praze dne 30.7.2007 Larysa Aharkava

 3

Content

1. Introduction ... 6

2.Initial theory ... 8

2.1 What is Soar... 8

2.2 How Soar works .. 8

2.3 Soar and external environments communication facilities .. 11

2.4 Related works .. 12

2.4.1 dTank .. 12

2.4.2 TacAir-Soar .. 14

2.4.3 Soar Eaters .. 16

2.4.4 TankSoar ... 17

2.4.5 Soar Quakebot .. 18

2.4.6 EES and other environments .. 19

3. EES architecture ... 21

3.1 Introduction ... 21

3.2 Loose coupling conception in EES .. 22

3.2.1 Kernel, Modules and Objects ... 22

3.2.2 Kernel and Modules (detailed) ... 25

3.2.3 Modules and Objects (detailed) .. 27

3.3 Subsidiary classes .. 28

3.4 Communication with Soar ... 28

3.4.1 EES and Soar .. 29

3.5 Implementation problems during EES creation ... 29

3.5.1 XML binding .. 29

3.5.2 XML parsing .. 30

3.5.3 Acquiring class fields during the runtime... 31

3.5.4 Saving EES actual state or why EES has no ‘Save’ and ‘Load’ properties 31

4. EES implementation ... 33

4.1 Input Data .. 33

4.2 EES main classes ... 34

4.3 Main GUI window and EES features .. 34

4.3.1 EES features ... 35

4.4 Using Soar debugger with external environment .. 36

5. Conclusion .. 37

5.1 Summary .. 37

5.2 Future work.. 38

A. Programmer’s guide... 39

A.1 Input Data ... 39

A.1.1 Requirements to the class structure ... 39

A.1.2 Requirements to the configuration XML file .. 40

A.1.3 Module and Object configuration files .. 42

A.2 How to create new classes .. 42

A.2.1 How to create new module .. 42

A.2.2 How to create new object .. 44

A.2.3 How to create new Soar agent ... 44

A.2.4 How to register new module or object in EES .. 45

 4

A.3 How to create new environment ... 46

B. User’s guide ... 47

B.1. EES Main Window .. 47

B.2. EES features ... 50

B.2.1 Configuring new environment ... 50

B.2.2 Changing module’s properties during runtime .. 53

B.2.3 Changing object’s properties during runtime .. 54

B.2.4 Module’s runtime vizualization ... 55

B.2.5 Creating stop condition .. 56

B.2.6 Selected properties tracing ... 58

B.2.7 XML Editor ... 60

B.2.8 Settings ... 61

Bibliography .. 63

 5

Thesis title: External environment for Soar

Author: Larysa Aharkava

Department: Department of Software and Computer Science Education

Thesis supervisor: Mgr. Cyril Brom

Supervisor’s e-mail address: Brom@ksvi.mff.cuni.cz

Abstract: The aim of that work is to implement external environment for cognitive

architecture Soar that can be used for testing Soar agents. That environment should be

flexible enough to render research testing for different types of Soar agents. The program

should also allow the researcher to combine new environments from already existing

objects and environments without any modifications of code. An inseparable part of such

an environment is communication between the environmental kernel and the Soar kernel.

The work also contains theoretical principles of Soar, description of some similar

programs and comparison with them.

Keywords: artificial intelligence, Soar, external environment

Název práce: Externí prostředí pro Soar

Autor: Larysa Aharkava

Katedra (ústav): Katedra softwarového inženýrství

Vedoucí bakalářské práce: Mgr. Cyril Brom

e-mail vedoucího: Brom@ksvi.mff.cuni.cz

Abstrakt: Cílem této práce je vyvinout vnější prostředí pro implementaci kognitivní

architektury Soar, jenž by umožňovalo testování Soar agentů. Navržené prostředí by

mělo vykazovat dostatečnou flexibilitu k testování různorodých Soar agentů. Program by

měl uživateli také umožňovat tvorbu kombinací testovacích prostředí z již existujících

objektů a modulů. Nedílnou součástí vyvinutého prostředí tvoří možnost jeho

komunikace s jádrem Soaru.

Práce se taktéž zabývá nástinem teoretických principů Soaru, deskripcí podobných

prostředí a jejich srovnáním.

Klíčová slova: umělá inteligence, Soar, vnější prostředí

 6

Chapter 1

1. Introduction

Artificial Intelligence (AI) is increasingly being used in transportation, the

armaments industry, corporative business, interactive computer games and many other

branches of science and technology.

The idea of an intelligent machine is old but the thoughts were crystallized in 1950

when Alan Turing wrote his science fiction article «Computing Machinery and

Intelligence» (Turing, 1950). In an almost simultaneous publication by Claude E.

Shannon's (1950) discussion of how a machine might be programmed to play chess.

Since that time scientist and engineers have been writing more complex and

sophisticated AI programs to solve many classes of problems that would give humans

intellectual difficulty like solving championship chess problems, transforming one

symbolic expression into another by given rules, proving mathematical theorems and

many others. Today AI has numerous and very broad applications in such fields as space

exploration, the transportation industry, and all phases of manufacture, chemistry, and

mathematics. Numerous applications are becoming commonplace in aeronautics,

automotive diagnostics, monitoring and automatically adjusting for important variables.

The part of AI research is creating external environments of all kinds where agents
1

can interact. Results of such environment interaction with the agent is usually

1
 Intelligent agent (IA) is a software agent that assists users and will act on their behalf, in performing

non-repetitive computer-related tasks. Source: Wikipedie

 7

modification of state of the environment - based on specified parameters, these AI agents

then act to modify its certain states.

Some examples of using such environments include computer games (Unreal

Tournament, [1]), in some parts of common life simulations (the ENTs project, [2]), and

in the air pilot training program that is linked to a simulator (Strategic simulator for

military pilots or TacAir-Soar, [3]).

The purpose of this work is the creation of external environmental framework for

Soar – general cognitive architecture for developing systems that exhibit intelligent

behavior – EES(from External Environment over Soar). That environment should be

flexible enough to render research testing for different types of Soar agents(agents that

move in 2D worlds or agents that play tic-tac-toe and similar games). The program

should also allow the researcher to combine new environments from already existing

objects without any modifications of code. An inseparable part of such an environment

should be communication between the EES kernel and the Soar kernel.

In first chapter I introduce the problem to the reader. Second chapter describes

theoty besides Soar, explains how Soar works, cites several Soar external environments

as an example and compares them with my bachelor thesis environment. Ideas behind the

architecture and problems I’ve solved during my working on the software can be found in

the Chapter 3. Chapter 4 brings a shallow description of the my environment

implementation and Chapter 5 sums up done work and cites as an examples of future

work some possible widenings.

 8

Chapter 2

2.Initial theory

 2.1 What is Soar

Soar employs a general cognitive architecture for developing systems that exhibit

intelligent behavior. Per se, Soar is a computer program for creating agents that stores all

available knowledge
2
 for use with every task on any given problem that the system

encounters.

Traditionally Soar is connected with Allan Newell’s name who in 1987 wrote in his

book “Unified Theories of Cognition”([4]) wherein he defined intelligence as the ability

to use ones knowledge to achieve ones goals. Soar was designed to enable access to all

knowledge for use on any given problem or set.

It is important that we distinguish notion Unified Theory of Cognition (UTC) and

Soar. Normally a UTC must explain how intelligent organisms react to stimuli from the

environment, how they exhibit goal-directed behavior, acquire goals rationally, how they

represent knowledge (or which symbols they use), and learning. Soar is an architecture
3
 –

an implementation of a UTC that was developed by Allen Newell, John Laird and Paul

Rosenbloom at the University of Michigan.

2.2 How Soar works

2
 Soar architecture represents and uses appropriate forms of knowledge, such as procedural, declarative,

episodic, and possibly iconic. Detailed description of the knowledge representation in Soar follows.
3
 Cognitive architecture - an implementation, as a computer program, of the fixed set of behavior-

independent mechanisms that define a specific UTC. The result is a programmable system that allows a

modeler to specify the knowledge or parameters required for producing behavior. Source: Wikipedie

 9

The design of Soar (Fig. 2.2.1) is based on the hypothesis that all deliberate goal-

oriented behavior can be cast as the selection and application of operators to a state. A

state is a

representation of the current problem-solving situation; an operator transforms a state

(makes changes to the representation); and a goal is a desired outcome of the problem-

solving activity. As Soar runs, it is continually trying to apply the current operator and

select the next operator, until the goal has been achieved.

Soar has two types of memory – long term memory and short term memory or so-

called Working Memory (WM). Soar's working memory consists of a set of <object

^attribute value> elements and short term memories are stored here. Value may describe

any sub-object, making hierarchical organization possible (examples can be found in [5]).

WM also includes data from sensors like input-link and output-link
4
, active goals and

active operators.

Soar’s long term memory specifies how to respond to different situations in

working memory. The Soar agent cannot solve any problem without the addition of long-

term memory. Soar represents long-term memory as productions
5
. Each production has a

set of conditions and a set of actions. If the conditions of the production match working

memory, the production fires and the actions are performed.

Figure 2.2.1 Soar architecture, [6]

4
 Sensors used for communication with the external environments

5
 Production rule – a representation of knowledge in the following form: if <condition> then

<action>. The <condition> portion of a rule is called the “left-hand side.” The <action>

portion of the rule is called the “right-hand side.”

 10

All of Soar’s long-term knowledge is organized like functions of operator selection

and application. The knowledge can be of four types:

Knowledge to select an operator:

1. Operator Proposal: Knowledge which operator is appropriate in current situation

2. Operator Comparison: Knowledge to compare candidate operators.

3. Operator Selection: Knowledge to select single operator, bases on the comparisons

Knowledge that applies to an operator:

4. Knowledge of how a specific operator modifies the state.

Figure 2.2.2: Soar is continually trying to select and apply operator, [6].

State elaborations indirectly affect operator selection and application by creating

new descriptions of the current situation that can cue the selection and application of

operators.

These problem-solving functions are the primitives for generating behavior in Soar.

They require retrieving long-term knowledge that is relevant to the current situation and

function by elaborating the state, proposing candidate operators, comparing the

candidates, and applying the operator by modifying the state (Fig. 2.2.2). These functions

are driven by the knowledge encoded in a Soar program. Soar represents such knowledge

as production rules.

The “if” part of the production is called its conditions and the “then” part of the

production is called its actions. When the conditions are met in the current situation as

defined by working memory, the production is matched and it will fire, which means that

its actions are executed, making changes to working memory. Some productions retract

their actions when the conditions are no longer met.

The other function, selecting the current operator, involves making a decision once

sufficient knowledge has been retrieved. This is performed by Soar’s decision procedure

 11

that is a fixed procedure that interprets preferences that have been created by the retrieval

functions. The knowledge-retrieval and decision-making functions combine to form

Soar’s decision cycle.

When the knowledge to perform the problem-solving functions is not directly

available in productions, Soar is unable to make progress and reaches an impasse. There

are three types of possible impasses in Soar:

1. An operator cannot be selected because none are proposed.

2. An operator cannot be selected because multiple operators are proposed and the

comparisons are insufficient to determine which one should be selected.

3. An operator has been selected, but there is insufficient knowledge to apply it.

In response to an impasse, the Soar architecture creates a substate. The goal of the

substate is to resolve the impasse. During the impasse, operators can be selected and

applied to generate or deliberately retrieve the knowledge that was not directly available.

For example, during a substate, a Soar program may do a look-ahead search to compare

candidate operators if comparison knowledge is not directly available.

2.3 Soar and external environments communication facilities

Soar has its own mechanisms to allow agents to receive input from the environment

and effect changes in that environments. These mechanisms provided in Soar are called

input functions and output functions or collectively I/O functions:

Input functions add/delete elements to/from working memory in response to

changes in the external environment.

Output functions attempt to effect changes in the external environment.

Every Soar’s program contain so-called initial structure in its working memory, that

creates automatically before agent initialization (Fig. 2.3.1).

 12

Fig. 2.3.1: Soar’s initial structure, [6]

There are two attributes of I/O: input-link and output-link. The input-link is where

an agent’s sensory information is available in working memory. The output-link is where

action commands must be created for the agent to move in its world.

Also Soar provides special APIs for binding together Soar and some widely

distributed languages like Java, C++ or Tcl.

2.4 Related works

2.4.1 dTank

dTank ([7]) is a Java-based simulation game, where a user's tank wages battle with

one to many agent-controlled tanks or other users, that was inspired by TankSoar and

developed for architectural comparisons of competitive agents and human and agent

behavior. dTank offers examination of agents that are built in different architectures as

well as humans in the same environment (Fig. 2.4.1). It uses socket communication to

provide uniform connections to all models.

Another advantage of dTank is to provide a lightweight alternative to Modular

Semi-Automated Forces (ModSAF
6
).

For implementation a client-server architecture and a socket-based interface was

chosen. A server is started up using a Java based program. The server displays

everything, and runs the simulation. A human user can choose to enter the environment

from the server menu, and then the user interface displays only the limited view parallel

to agent vision. Agents, models, or humans that connect to the server are all given a tank

on the board, and can then send commands to move the tank. The clients are given

6
 The goal of ModSAF is to replicate the outward behavior of simulated units and their

component vehicles and weapons systems to a level of realism sufficient training and combat

behavior. In essence, ModSAF is a set of software modules and applications used to construct

specialized applications.

 13

updates every 2 seconds of what is visible to them on the board. Models receive

information and pass commands in the form of text-strings that are converted into state

representations conforming to the needs of the architecture.

Models can use this state-representation differently, either acting directly on

information as it is made available, or building internal state-representations. Models use

this state information, and then decide upon an action that affects the environment. This

action is sent to dTank in a formatted string and held in a buffer for time-synchronization

purposes. Aside from state information, which is sent at regular intervals, software agents

are also informed of important events, such as being hit, ‘dying’, and ‘health-low’. This is

to allow modelers some flexibility in the behaviors of models in difficult situations.

To compare different agents, dTank models in several different architectures were

created ([8]):

1. JavaTank

Java has no implicit theory of cognition, perception, or action. However, Java

agent, JavaTank, takes a small step towards cognitive plausibility by waiting 50

ms before it will consider the environment or implement an action. JavaTank is

capable of moving forward, turning, rotating its turret, aiming at a target, and

firing.

2. JessTank

 Jess (Java Expert Systems Shell) is a Java-based rule engine derived from the

CLIPS
7
 expert systems shell created and distributed by NASA. The Jess agent,

JessTank, also requires 50 ms before it will consider the environment or

implement an action. It is only capable of moving forward, turning, rotating its

turret in the cardinal directions, and firing. Unlike JavaTank or SoarTank,

JessTank does not perform the required trigonometric equations to aim the turret

at any enemy that can be seen.

3. SoarTank

The SoarTank model included in the dTank distribution was

the first model developed. It is capable of moving forward, turning, rotating its

turret, aiming at a target, and firing. SoarTank relies on a directed form of

7
 The software CLIPS is a computer program that contains some of the subject-specific

knowledge of one or more human experts. CLIPS is an acronym for "C Language Integrated

Production System".

 14

wandering that prevents it from merely rotating in place. After it has spotted an

enemy, it begins attacking.

Perhaps its greatest is a training environment for cognitive modelers. The

environment is simple enough to work with, yet complex enough to provide some

challenges. More importantly, dTank provides tools to support the analysis of

information gathered in its environment.

Figure 2.4.1. dTank 2D environment screenshot, [8]

2.4.2 TacAir-Soar

TacAir-Soar (Jones et al., 1999) was developed from Soar using C to provide virtual

partners in military training simulations using the Soar architecture with added knowledge about

the tactical air-combat domain and interfaces that allow TacAir-Soar pilots to fly in the US

military simulation environment and reducing the need for expert human role-players during

training exercises.

TacAir Soar is a dynamic real-time simulation of a battlefield. Time in the

simulation corresponds to time in the real world, so both humans and computer forces

must react in real time. Some aspects of the terrain are also dynamic, such as destructible

buildings and bridges. Further, weather servers simulated meteorological features such as

 15

clouds, rain, tides, and daylight, sometimes using live feeds from the area of the world in

which the simulation took place.

Communication between TacAir-Soar agents takes the form of message templates.

These are fixed messages that resemble the 70 most commonly used conversations

between pilots. Future development aims at introducing natural language into the

communication.

TacAir-Soar participates in the simulation environment by interfacing with

ModSAF. ModSAF includes all the necessary software for interacting over the network

with other entities in the simulation as well as simulations of the vehicle dynamics,

weapons, and sensors.

TacAir-Soar connects to ModSAF with the Soar-ModSAF interface (SMI). SMI

translates simulated sensor and vehicle information into the symbolic representation used

by Soar and translates Soar's action representation into ModSAF function calls. One

example would be the control and manipulation of a vehicle’s information(speed,

direction, weapons, sensors, and radios).

The SMI attempts to organize data so that TacAir-Soar has available the same

information a pilot would have, including data from radar and vision sensors as well as

data on the status of the aircraft and messages received on its radios. This information is

added directly to the working memory of each entity and is updated each cycle of the

simulation. For a single entity, there are over 200 input and over 30 different types of

output for controlling the plane. Each entity’s access is limited to information from its

own sensors, thereby eliminating the possibility of cheating.

The whole environment (i.e. human and automated agents) is bound by distributed

interactive simulation (DIS) network as shown on Fig. 2.4.2.

 16

Figure 2.4.2. Human and automated pilots interact with the DIS environment, [10]

2.4.3 Soar Eaters

Eaters is a Pacman-like eaters compete to consume food in a simple grid world. The

Eaters world consists of a rectangular grid, 15 squares wide by 15 squares high (Fig.

2.4.3). Walls bound all four sides. Interior wall sections are randomly generated for each

new game. No two walls will touch, so there are no corners, except for exterior walls and

no “dead ends” anywhere on the board. Each eater starts at a random location. Food

pellets are in all other squares of the grid. There are two kinds of food: normal food (blue

circles and worth 5 points) and bonus food (red squares and worth 10 points). An eater

consumes food by moving into a square. When an eater moves out of a square it will be

empty (unless another eater moves into it).

An eater can sense the contents of cells (eater, normal food, bonus food, and empty)

up to 2 squares away in all directions. On each turn, an eater can move one square north,

south, east, or west. An eater can also jump two squares north, south, east, or west. An

eater can jump over a wall or another eater. An eater does not consume any food in the

space it jumps over. A jump costs the eater 5 points. Whenever two eaters try to occupy

the same cell at the same time, they collide. As a result of the collision, their scores are

averaged and they are teleported to new, random locations on the board.

The GUI of the environment was realized in Tcl/Tk, connection between agents and

the environment uses Soar I/O links.

 17

Figure 2.4.3. Eaters Environment, [6]

Futher information can be found in [6].

2.4.4 TankSoar

TankSoar is similar to Eaters in that the Soar program controls a tank in a grid-

based world with walls and the same as Eaters can be found in Soar’s installation

package. However, in the TankSoar game, a tank has many more sensors and many more

actions than in the SoarEaters game. The tanks also shoot at one another. These

additional actions mean that the programming for TankSoar if much more complicated

than for the Eaters game.

The TankSoar game consists of a rectangular grid, 14 squares wide by 14 squares

high. All four sides are bounded by walls made of rock. Interior walls are made of trees.

There are a variety of maps that can be used, with different layouts of walls (Fig. 2.4.4).

Each TankSoar agent controls one tank. Each tank occupies one square in the

playing field. A tank has actions it can take, resources it carries, and sensors with which it

observes its environment.

 18

Figure 2.4.4. TankSoar Enviroment, [6]

Futher information can be found in [6].

2.4.5 Soar Quakebot

Soar has also been interfaced to Quake II game by J.E.Laird
8
.

In that project Soar bots were located on the separated computer and use socket

communication with the game engine through C-code in a DLL. Bots were given the

same information to that available to human players (limited vision, no seeing through

obstacles, limited hearing, no initial map, etc.) and were meant to behave themselves in

similarly way like human players do (e.g., ambush opponents coming out of a room

where they reloaded).

The main idea was to enable Quake bot to predict enemies behavior and to take

advantage of that. That’s why Soar bot used three additional (besides opponents

evaluation finctions rules) sets of rules:

8
 Quake II is not the only one popular game that Soar AI architecture was built to – the other one is

Descent 3.

 19

1) For deciding when to start predicting

2) For generating expected opponent behavior

3) For proposing how to take advantage of the prediction (e.g. ambush)

Figure 2.4.5. Soar Quakebot, [11]I

2.4.6 EES and other environments

All environments listed above are purposed for specific intents (tank field for

TankSoar and dTank, air battle field for TacAir-Soar, food field for Eaters). That

environments allow the user to achieve more detailed developmental work for the

concrete environment (better design, for example). A drawback to the the environments is

that modification of any environment is limited by type of the environment. For example,

in Eaters one is limited to the creation of a rectangular field and placing here some

predefined elements (for Eaters - borders, walls, bonus and normal food pellets, eaters

and empty squares).

In contrast to other environments, EES is a framework-like environment. It means

that it is not concrete environment but set of tools for creating new environment.

Modules
9
 can be independent part of the EES. Every module can be stored as xml-file

and loaded anytime.

9
 Here module may have two meanings

 20

EES allows to load several modules at the same time and switch between them.

EES also allows the user to configure by dint of xml files new modules from already

created objects and environmental templates by entering new file properties of the

module and it’s objects. The results of such configuration could be two versions of the

same environment but with absolutely different objects and properties.

Also, unlike other environments, the user can directly participate in EES

development by adding new functionality – writing new components of different

kinds(modules and objects) that can be used by other users.

1) template of the environment, i.e. we may say “module binary tree” or “module 2D

plane”, but we dont care about objects that it may content or even concrete properties of

that module

2) concrete module with defined properties and objects

 21

Chapter 3

3. EES architecture

3.1 Introduction

EES architecture design was suggested under the influence of the program

requirements – form followed function.

The most important requirement that distinguish EES from other environments is its

flexibility. The main requirement was enable the user configuring new environments in a

‘Lego-like’ manner – creating new ones from already existing parts. The other

requirements are:

1) extensibility – user must be able to extend EES functionality by adding

new standardized code

2) universality – user must be able to configure differen types of

environments, from 2D environments to binary tree envitonments

3) usability – EES must give the user possibilities for analizyng runtime,

vizualizing environments etc.

Using EES the user can configure new environments from existing parts with no

change of the code and can add new modules and objects. Simply stated, where the

overriding factor in program selection is the need to replace independent component parts

of the program, EES is the architecture of choice because it can do this very easily.

 22

Soar gives an opportunity for programmer to use one of three languages for making

external tools (like external environment) – Java, C++ and Tcl. Java was chosen as the

most corresponding to the problem:

 Java is a cross-platform language and gives more flexibility

 Java naturally supports any Object Oriented Paradigm (that is foundation of EES)

and is more intuitive for the programmer

 Java has well-engineered tools like Reflection (that enables dynamic retrieval of

classes and data structures by name) or Spring Framework (that provides a lot of

functionality including working with XML format and XML data binding
10

) as

external project that were extremely useful while creating EES

3.2 Loose coupling conception in EES

3.2.1 Kernel, Modules and Objects

EES holds three levels of abstraction – kernel, modules and objects(Fig. 3.1)

Figure 3.1Three levels of EES

Kernel is responsible for the whole runtime – it registers new modules, reacts on

changes(deleting modules from the kernel, adding modules to the kernel, acting as a

conduit between modules and the GUI for posting messages to the user and works as ‘go-

10

 XML data binding is the binding of XML documents to objects designed especially for the data

in those documents.

 23

between’ GUI settings and modules). Kernel also houses the dynamic map of modules

(where modules can be added or deleted during runtime).

Module is an environmental template that contains properties and methods that

must be supported by the objects of that module. Module also holds the dynamic map of

registered objects.

Example: Module Plane2D

 Properties – gravitation constant g

 Methods required from object – move up, move down, move left,

 move right

Module is just a template until it is registered by kernel. While registering module is

initialized with name, properties values and objects.

Example: Module Plane2D can be initialized as module “Earth” (by setting value of

g = 9.81) or as module “Moon” (e.g., by setting value of g = 1.62 in XML file). We can

register in that modules object “Animal” that support all the methods move up, move

down, move left, move right but can’t register object “Binary tree searcher” that normally

contains search methods but none of the mentioned methods.

Kernel has only initialized modules
11

 in its map. Module must have default values

of it’s parameters and some of them can be changed by users request. One module can be

registered several times with different name and parameters – for the Kernel that modules

will be different.

Objects – objects are created for concrete modules (like objects “Animal” for

module “Earth”) and must support properties that are compatible with the ‘parent’

module. One object can support several modules.

There are two types of objects. 1) Dynamic (runnable, that can ‘decide’ and modify

their state by itself) objects
12

 and 2) Static (unrunnable, that cannot decide for itself and

11

 Inicialized module is instanted module class, that contains instanted objects in it’s map.
12

 Soar agent is an example of the dynamic object, but dynamic object not necessarily must be Soar – Java

object can be dynamic too.

 24

modify the module state
13

. Static module’s state can be changed only by module or by a

runnable object) objects.

Soar indication can be used to differentiate whether or not an object is Soar. Soar

object is recognizable by module only by some boolean flag value (set as true if the

object is Soar agent and false if not a Soar agent).

Example: Lets we have object(as class) “Animal”, we may derive from it as object

“Cat” (by setting properties ‘predator’ and ‘meow’ values as true) as object

“Camel”(by setting property ‘hump’ as true).

Every object must have default values included in its parameters and some of them

can be changed by initiation of user’s request.

GUI - for greater flexibility of the EES program GUI is also produced as an

external class that supports some interface and grants functionality(like vizualization.

settings etc.). Isolation of GUI components as separated subsystem allows it’s changing

without effecting the rest parts of the program. The format of the GUI is not so important

– it could be Windows Forms, Web Application or utility for Dos. At the current version

(Java Swing windows) GUI interface consists of functions that write out some runtime

routine (like soar agent, debug information or some events from modules) and represents

current EES state as drawing objects. EES GUI also provides some additional

functionality(see later).

Figure 3.2 Connection between EES components

13

 Soar object can also be static in spite of the fact that there is no point in that.

 25

3.2.2 Kernel and Modules (detailed)

As I mentioned above, Kernel is the ‘heart’ of the environment. Nevertheless it

contains particulat code for manipulating modules only – considerable proportion of the

functionality is implemented on the Module-Object level.

For the kernel all modules are the same – it doesn’t matter if it is module Plane2D

or Binary Tree. For that ‘similarity’ purpose it is important for modules to support some

universal interface that contains all the functions necessary for cooperation of the module

and kernel. The most important of functions are:

 Every module must have a pointer to the kernel – for example for using if

necessary functions that are rendered by a kernel for working with a GUI.

Interactions between the kernel and module are implemented as an Inversion of

the Control pattern
14

 . Kernel initializes(creates) module and immediately sets that

module’s ‘parent’ kernel pointer
15

 on itself.

The EES kernel doesn’t work with the module directly, but it takes that module as

some universal interface. That module must support all the methods that are listed

in that interfaces to interact with the kernel.

Implementations of like sort help avoid strong binding together between modules

and kernel and makes EES more light-weight.

14 Inversion of Control, also known as IOC, is an important object-oriented programming

principle that can be used to reduce coupling inherent in computer programs. More in Wikipedie,

[12]
15

 Every module conteins pointer on ‘parent’ kernel

 26

Fig 3.3 Schema of IoC application

 Every module should register objects that are sent to it from the kernel

 Every module should delete objects from it’s dynamic map on kernels request
16

 Every module should print its actual state for users purposes (may be in several

forms)

 Every module should commit iterations when in every iteration module allow

runnable objects to make one decision.

Example: We have two objects in module Earth – Bone and Dog. Bone is un-

runnable and has set static properties (as coordinates). Dog is runnable and may

accomplish a decision cycle. For example, in every step Dog objects changes its

16

 This property is important for situations where several modules are cooperating and can affect

each other (like deleting objects from other module). Then, all the communications are housed in

kernel. In the current version (ver 1.0) this feature is not implemented but will appear in some of

future versions.

 27

coordinates
17

 to move closer to the Bone. So iteration in such module is doing one

decision step for the Dog (or for more runnable objects if present).

An advanced description of the module must be prepared by the user in special-

formatted xml file, where the user indicates module’s class, module’s name, module’s

properties (if some) and objects map file (more in Chapter 4 and documentation).

3.2.3 Modules and Objects (detailed)

Module-object level is on a similar level to the kernel-module. In the kernel,

modules do not differentiate between objects and the only requirement for any object is to

support some pre-defined interface. Also, in the kernel, module consists of a dynamic

map of it’s objects where objects can be added and deleted during runtime (by the

module or by the user).

The module automatically registers objects according to the objects map (also as

xml file) where must be indicated every object name, every object class and objects

properties (if some).

The module creates all objects from the map
18

, examines every object for specific

interface support, and uses Inversion of Control (IoC) patterns to register every object for

support of the “specific” interface.

Every object residing in the module has to:

 Be able to report to the module if it’s runnable or not

 If runnable be able to make a decision cycle by steps (one step – one decision).

 Be able to report to the module if it’s Soar agent or not

 Print it’s state

The advantages of the above are:

17

 More precisely, an object cannot automatically change its ‘external’ properties (like coordinates

for Earth module). An object may, however, submit a request to change its external properties and

the module, if allowable, will then allow object to change its property.
18

 Map is stored as XML file with the objects description

 28

1) independency of single parts from one another – user can change logics of any

module or GUI and it will not change the kernel and other parts of the program

2) the possibility of configuring a new module without any source code changes

3.3 Subsidiary classes

EES holds three types of classes:

1) classes that are responsible for the runtime, for example kernel class, GUI class,

common module abstract class(that provides realization of most of the module

functionality), common object abstract class(that provides realization of some of

the object functionality) - so called working classes

2) classes that implement environmental templates (specific modules are created

during the runtime)

3) classes that implement objects templates

Expansibility of EES by writing code is realized by adding classes of types 2 and 3.

As runtime classes EES houses three important subsidiary classes that implements

basic functionality. These classes are class for common module, class for common object

and class for common Soar object. Supposed that many case interfaces will be

implemented in some standard way (for example registering object or deleting object in

module, connecting to the Soar kernel, creating agent and loading productions in Soar

object agent) and that the user wants to implement a unique module or object. The user

can use these classes as templates and derive the desired modules/objects from these

classes. If desired, further refinements can then be implemented for more specific

purpose. More information can be found in tutorial.

3.4 Communication with Soar

In last version of Soar, creators provided a new way for communication between

Soar and other languages (like Java). It’s called SML (Soar Markup Language) and it was

directly used for creation of EES.

 29

In SML, sending and receiving commands are packaged as XML packets. If the

user desires to use SML, then the library sml.jar and Java_sml_ClientInterface.dll
19

,

must be copied to the desired project directory.

Using SML, users can perform all necessary functions from a position external of

Soar. These functions include:

 create a Soar kernel and allows for communication directly with kernel

 create a Soar agent and associate that agent with soar productions file

 send information to the input-link

 receive information from the output-link

 run agent for decision, run agent till output, run agent forever, run all agents

 etc

 Soar does not make calls to the environment; it simply responds to commands

from it. The environment does all the pushing and pulling of io-link WME
20

s.

3.4.1 EES and Soar

 EES doesn’t need Soar to be installed because it works directly with the Soar kernel

(added as .dll and .jar libraries). So EES Soar agents are per se wrappers for the Soar Kernel that

send some information to the agent input-link and grab and interpret the information from the

output-link.

3.5 Implementation problems during EES creation

3.5.1 XML binding

As written earlier, all the modules and objects are initialized during the runtime and

without any need to change code. The main objective was to create objects during the

runtime from some text (xml in EES case) file and then have the ability to manipulate the

newly created objects. This problem is called data binding. In Java there are many data

binding solutions such as JAXB, Castor, Digester and Spring Bean Factory. All of the

tools are for restoring objects from the xml to objects in code.

As in EES:

19

 In Java
20

 Working memory elements

 30

1) objects are not created before initializing (the kernel cannot predict the number

and quality of the objects)

2) reconfiguration of the xml parser for every input configuration file is inadmissible

– the user must not be obliged to change the code manually before

3) initializationcreating new files in like classes and interfaces by a data binding tool

is extremely undesirable.

In contrast to other data binding tools, Spring Bean Factory (the part of Spring

Framework) is a tool that meets all of the above criteria. In order to use Spring Bean

Factory, every module and object must have set and get methods for all the properties

(that can be set by beans) that are corresponding to the property names
21

.

3.5.2 XML parsing

As previously written, initialization of objects and modules is the result of data

binding from a xml file. This data binding is performed by the Spring Framework XML

Bean Factory.

In EES, the complete process requires unique objects IDs
22

 that are written in xml

binding file. IDs are then collected for the creation of objects in XML and Bean Factory

must locate the specific ID for any object in the file. There are two ways that Bean

Factory uses to locate an ID from the file – SAX
23

 parsing and DOM
24

 parsing.

SAX and DOM were both designed to allow programmers to access information

stored as xml without having to write a parser. Java was designed with and uses SAX and

DOM via its JAXP library to implement these two methods.

SAX parser is event based. SAX works like a scanner in that it takes fields that the

user wants. It’s quicker then DOM parsing but it stores nothing in memory.

DOM parser creates a tree structure of the document and stores this information in

memory. It is not as fast as SAX but allows the user to work with the whole structure at

once.

Because of its speed, SAX was chosen as the data binding parser.

21 For example for property ‘name’ class must have methods setName and getName
22

 If using EES tool, unique IDs are gerenated automatically
23

 Simple API for XML
24

 Document Object Model

 31

3.5.3 Acquiring class fields during the runtime

Existing EES GUI has the possibility to represent a current module’s state as an

object tree that contains the object’s names, the objects properties and these properties

values. While this is all good, there still was the need for a universal code that could

represent a module’s state without the need to be re-written with the addition of a new

class. This need was met by Reflection.

Reflection is a process by which a computer program can be modified in the

process of being executed - thus dynamic modification. Restated another way, reflection

allows an object to have information about the structure of the project (classes, fields and

the field’s values that project contains) and this information is accessible during its

runtime. Java has Reflection API
25

 as a part of it’s programming.

3.5.4 Saving EES actual state or why EES has no ‘Save’ and ‘Load’ properties

 Initially I planned to implement ‘Save’ and ‘Load’ options for the EES that would

be implemented as making copy of the saved module and saving that copy on disk with

the possibility of following loading .

Java provides two ways of how to copy(for saving purposes) its objects – shallow

and deep copying(or cloning in Java terms). Shallow clone of the object is easy to

implement but it provides copying of the objects’ shell only – so when one of the

objects(parent or clone) manipulates with its inner state, the inner state of the another

object changes too.

 Deep cloning can be implemented by cloning module’s objects recursively(idea

similar to DFS) and the problem occurs when I try to copy Soar object(Agent, Kernel,

Identifier etc.). Java has no native mechanism for copying foreign classes like these

ones(i.e., they are not serializable) so the other possibility is to clone that objects using

reflection by copying actual fields values manually. Nevertheless that method fails too.

As I found out, Soar's Java classes are wrappers around underlying C++ objects so

saving and recreating the Java objects (or cloning them) wouldn't trigger the C++

objects to be copied or recreated. Soar isn't directly implemented in Java, it's actually

all in C++ with a Java interface.

25

 When program source code is compiled, information about the structure of the program is

normally lost when lower level code (typically assembly language code) is produced. If a system

supports Reflection, the structure is preserved as metadata with the emitted code.

 32

 Something like saving were implemented in TacAir-Soar using special methods,

but Soar’s authors didn’t come with a general solution that can be used.

 33

Chapter 4

4. EES implementation

4.1 Input Data

EES uses configuration XML files to input data that describes modules and objects.

This process is carried out during runtime when all objects are created using these files

and then the Kernel processes them.

Configuration XML files can be divided into two types:

1) module configuration file

2) module map or objects configuration file

Module configuration files have their own peculiar properties. Every module

configuration file must contain:

1) only one element(co called ‘bean’) with ID value “module”

2) a property ‘objectMap’ where the user sets the path in the XML configuration file

with objects

3) a property ‘name’ that is necessary for the kernel to use when processing modules

(sending to the modules map and receiving from the modules map).

 34

Module map configuration file contains list of objects for the current module. Every

object initialization must contain:

1) unique ID

2) object’s instantiation class (including package, e.g.,

com.larrr.project.objects.soarwrappers.SoarRandomMover)

3) a property ‘name’ that is necessary for the module to use when processing objects

Names of modules and objects (in the context of the same module) must be unique.

4.2 EES main classes

EES contains several classes essential for the environment
26

:

1) Kernel class (EESKernel.java class) – class that implements environmental kernel

2) Common module template (CommonModulee.java class) – class that implements most

of the module routines. The goal of that class is to minimize programmer’s work while

adding new functionality.

3) Common object and Common Soar templates(CommonObject.java and

CommonSoar.java classes) – classes that implement most of the object(or Soar object)

rutines.

4) GUI class (GUI.java class) – responds for the communication between user and EES.

More information about these classes can be found in the Programmer’s guide (Appendix A).

4.3 Main GUI window and EES features

As was mentioned in chapter three, EES GUI is not a direct part of the program – it is

implemented as an external module. As an external module, it can be easily be interchanged for

another GUI.

Current EES GUI is implemented as Java Swing GUI application (Fig 4.3.1).

26

 All these classes can be found directly in com.larrr.project package.

 35

Figure 4.3.1. EES GUI

EES GUI allows the user to manipulate the program by adding new modules, switching

between already added modules, selecting modules, perform iteration within the chosen module,

manipulating modules , creating stop conditions, generating new modules and using some other

settings.

4.3.1 EES features

 EES allows user to
27

:

27

 See user documentation for details

 36

1) Load environments from the XML configure files. EES allows simultaneous working

with several modules and renders possible to switch

2) Visualize module objects map as tree

3) Delete module from the kernel during runtime

4) Delete objects from the module during runtime

5) Edit objects values during runtime

6) Configure new environments from the already registered modules and objects

7) Do iterations(one or several) in selected module

8) Visualize progress in selected module

9) Track selected module and its inner objects parameters

10) Edit XML configures (using Xerlin XML editor, [13])

11) Create debug conditions – so called ‘Stop conditions’

More information about the features can be found in User’s guide (Appendix B).

4.4 Using Soar debugger with external environment

The new version of Soar Debugger (SDB) is implemented in Java. It has control

over breakpoints and allows the user wide functionality - in SDB user can debug agents,

examine their working memory step by step, and observe which operators were proposed,

selected and applied in several modes. The interacting window(part of SDB GUI) allows

user to trace the execution of Soar at many different levels such as decisions, phases,

production firings, working memory changes. Debugger also has additional windows that

display common structures, such as the current state, the current operator, etc.

SDB is very useful for debugging the interaction of a Soar agent with an external

environment. SBD uses special tools for connecting the remote Soar to port 12121. For

this purpose, the user can trace his Java environment (program) in debug mode (that also

uses port 12121) and after creating a Soar kernel program in Java, SDB connects with

that kernel and executes the necessary changes for debugging.

SBD can be used as external tool from the Eclipse IDE and being delivered with the

Soar software.

 37

Chapter 5

5. Conclusion

5.1 Summary

The aim of this research paper was to investigate how to create an external

environment for cognitive architecture Soar that in terms of configuring new modules is

easily distensible and that does not require the writing of new code.

Upon investigating the EES architecture it was found that EES is based on loose

coupling architecture. This loose coupling allows the user to separate different parts of

the program, and to manipulate any it without affecting other parts of the program.

The results of this investigation also show that it is possible to divide EES in two

levels of abstraction: kernel-module and module-object.

Another important requirement was that the programs commands would be easy

and intuitive for the user. Upon investigating this aspect it was found that EES allows the

user to configure modules while observing a short list of simple rules.

A very important finding was that it is possible to manipulate with EES during

runtime easily using a GUI interface.

 38

To sum up the results of this investigation are that the EES program matches the

requirement of a universal source code that requires modification only for cases were

new functions are added.

5.2 Future work

Current version of EES can be widen in several meanings: functional(adding new

functionality to the EES) and user(making GUI more user friendly).

Functional widening:

 Adding modules cooperation: in current version every module loaded to kernel is a

separated unit that has no possibility co communicate and with other modules. That

widening needs modification of the EES kernel code.

 Adding possibility of the simultaneous running of the several modules for the purpose of

comparing them.

 Adding statistics that will allow to summarize module’s work or compare several

modules after making iterations

 Adding more modules and objects templates

 39

Appendix A

A. Programmer’s guide

A.1 Input Data

EES uses configuration XML files to input data that describes modules and objects.

This process is carried out during runtime when all objects are created using these files

and then the Kernel processes them.

As previously noted, EES uses the part of Spring Framework for data binding –

XML Bean Factory. This factory creates objects during the runtime from the predefined

XML-file, and stores it in the so-called Bean Container that instigates, configures, and

manages a number of created objects
28

. Bean Container has some requirements like

 Requirements to the class structure from which object is created

 Requirement to the configuration of a XML file

Data binding with XML Bean Factory involves two steps: 1) creating all beans from

the configuration file and storing these files in the container 2) getting objects from the

container by ID and processing them.

For the user’s comfort EES contains utility that ease creation of the input XML

files
29

.

A.1.1 Requirements to the class structure

Class must be an actual implementation of bean that is described in the definition.

That means that class must contain all the properties that are described in the XML

descriptions. Unlike XML Bean Factory, EES does not use complex pointing for creating

sub-objects from other objects. When creating any new object or module class it is

enough for the writer to obey the so-called bean class structure. In bean class structure,

28

 Objects created with XML Bean Factory from configuration XML file are called ‘beans’
29

 Details can be found in user documentation

 40

every class that is instigated from the bean must be setter-based. This means that every

property in class must have a set method with a name that corresponds to that property

name
30

. Although not required by XML Bean Factory, when data binding, the ‘intelligent

programmer’ should implement to every set method a corresponding get method. In bean,

the writer is not required to describe all the properties but any property may be required

by the kernel or module. This is why it is very important to set default property values

that may be reset while bean is created.

Example: Assume EES contains class Chair. Every object that is instigated from

that class has properties ‘height’ and ‘typeOfWood’. Then the class Chair must look

like that
31

:

Class Chair

{

 //default values are important!

 private int height = 70;

 private String typeOfWood = “Red Wood”;

 private String name = “some chair”;

/* draw attention on corresponding between property name and

method name */

public void setHeigth(int height){…}

public int getHeigth(){…}

public void setTypeOfWood(String wood){…}

public String getTypeOfWood(){…}

public void setName(int name){…}

public String getName(){…}

//other methods

}

A.1.2 Requirements to the configuration XML file

Configuration XML file must have a special format

32
. For EES purposes that format

has rather stringent restrictions but its scope is more than ample.

30

 Uppercase first letter of the priperty name and add set or get to the beginning
31

 That example is very rough – of course user may use his own units (like meters,kilometers for int

value). But module and object must use the same units, of course(if you has object’s height in

meters , don’t forget about that when you are programming module and don’t use kilometers or

centimeters).
32

 Viz http://www.springframework.org/dtd/spring-beans.dtd

 41

1. For validation purposes, user must indicate where the Data Type Definition is

placed. This is usually at the top of the file.

For users that are connected to the internet it is enough to validate their

configuration file online. For this the user must add at the beginning of the file

following lines:

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

Otherwise user needs to download that file from the internet, save it on the local

disc and then load validator from that file:

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"file:///X:\somepath\spring-beans.dtd">

2. Every configuration file must start and end with <beans> tag. Every bean that is

described must start and end with <bean> tag.

3. Every bean has one or more IDs (also called identifiers, or names). These IDs

must be unique within the XML Bean Factory where the bean is hosted. In EES a bean

will always have only one ID.

Every bean in the configuration file must have the following fields:

 At bean: id and class as attributes

 At property: property name (the same name as in class) as attribute, value as

subitem

4. Every configuration file must start and end with <beans> tag. Every bean that is

described in must start and end with <bean> tag.

Example: For the aforesaid class Chair, bean configuration may looks like:

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "file:///D:\spring-

beans.dtd">

<beans>

 <bean id="chair" class="com.larrr.project.modules.ObjectChair">

 <property name="height">

 <value>100</value>

 </property>

 <property name="typeOfWood">

 <value>oak</value>

 </property>

 </bean>

</beans>

 42

During the process of creating bean, types of properties are recognized by XML

Bean. This cancels the need for writing these properties in the configuration file. But in

EES user will need “beans”, “bean”, “property” and “value” tags and it’s attributes only.

As noted earlier, XML Bean Factory has a broad range of uses.

A.1.3 Module and Object configuration files

Module configuration files have their own peculiar properties. Every module

configuration file must contain:

4) only one bean with ID value “module”

5) a property ‘objectMap’ where the user sets the path in the XML configuration file

with the objects

6) a property ‘name’ that is necessary for the kernel to use when processing modules

(sending to the modules map and receiving from the modules map).

Example: Typical module configuration file looks like that:

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "file:///D:\spring-

beans.dtd">

<beans>

 <bean id="module" class="com.larrr.project.modules.ModuleBinaryTree">

 <property name="objectMap">

 <value>D:\Rocnikac_add\Config\ObjectsBinaryTree.xml</value>

 </property>

 <property name="name">

 <value>BinaryTreeTest</value>

 </property>

 </bean>

</beans>

Object configuration file must also contain a name field.

Names of modules and objects (in the context of the same module) must be unique.

A.2 How to create new classes

A.2.1 How to create new module

 43

1. EES consists interface IKernelModule
33

 that is important for communication

between the Kernel and every module. For communications with its objects, every

module uses its own unique interface. Most methods of the interface

communication (like setting and getting name and registering objects are usually

implemented in the same way. EES uses the abstract class ‘CommonModulee’

that implements the ‘IKerneModule’ interface and executes all that routines.

2. ‘CommonModulee’ class consists of the abstract method ‘printMyself’. Common

Module must be implemented in a unique way for every module. For example the

print state for module ‘Plane2D’ and the print state for module ‘BinaryTree’ are

absolutely different. Print state for Plane2D must have similar to co-ordinates and

prints objects as they are found in respect to these coordinates. Binary Tree is

different and requires something similar to a tree-structure and prints

dependencies (parent-child scenario) between objects.

3. For loose coupling, every module has a unique interface that it implements. For

example, interface IModuleBinaryTree for BinaryTree). When calling its module,

objects do not interact directly with the module class, but with the interface of that

module. This configuration is not obligatory, but is very desirable because writing

the interface of the module before the module is created delineates clear

requirements to the module while maintaining the loose coupling conception of

EES.

Noting the requirements above, the procedure of creating any new module is as follows:

1) Creation of the interface of the module – that interface must consist of all the

methods that are significant to any future objects of that module.

2) Creation the class of the module. That class must implement the already created

interface for the level module-object (module, that specify functions for working

with objects but never for working with the kernel) – that’s ‘the job’ of the

IKernelModule interface) and interface IKernelModule. For simplification, it is

recommended to extend new module class from CommonModule class.

CommonModulee class implements all the methods of the IKernelModule

33

 For more details see the programmer documentation

 44

interface except ‘printMyself’ which that must be implemented by the user. User

can redefine some of the CommonModule methods.

A.2.2 How to create new object

Creating new object is similar to creating new module:

 1. EES includes the interface IModuleObject that every object must implement.

2. EES includes the abstract class ‘CommonObject’ that implements IModuleObject

interface for execution of all routines. That class is not as functional as

‘CommonModule’ class – it names and retrieves the name of the objects and sets

some other important parameters such as soar and runnable flag.

3. ‘CommonObject’ class consists of the abstract methods ‘printMyState’ and

‘runMe’. The ‘printMyState’ method is identical to that found in the module, is

specific for every object and must be implemented by the user while taking into

consideration that object’s particular qualities. The ‘runMe’ method must be

implemented in objects that are ‘runnable’. The function of the ‘runMe’ method is

making one decisional iteration. For example with the runnable object “Dog” on

the “Plane2D” module it can be the decisional iteration on where to move (up,

down, left or right).

4. For loose coupling, every object has an interface that it implements (for example

interface IObjectBinaryTreeNode for BinaryTreeNode). While retrieving objects

from its object map, module works with that interface and all objects of that type

look the same. This point is also not obligatory, but very desirable.

A.2.3 How to create new Soar agent

EES doesn’t differentiate between Soar object and normal object written in Java.

The only way how to determine the difference is examination by the getSoar() method.

The results of getSoar will return a ‘true’ value for Soar object and a ‘false’ value for

otherwise.

 45

For Soar objects, EES consists of the class ‘CommonSoar’ that extends the class

‘CommonObject’ (for more information see programmer’s documentation). User may

extend from that class or use the ‘CommonObject’ class for extension.

Information concerning the communicating with Soar kernel is found in “SML

Quick Start Guide” or in examples that are the part of EES and programmers

documentation.

A.2.4 How to register new module or object in EES

 After creating new EES item(module or object), the one has to register it for the

purpose of subsequent usage.

 New module must be registered in modules.xml configuration file, that can be

found in ./config folder. In order to register the module, programmer must add to the

configuration module description, i.e.,:

 1) module class

 2) module parameters

 in special format.

 Example: Module 2D can be registered in the following way

<module class="com.larrr.project.modules.Module2D">

 <param name="name"></param>

 <param name="objectMap"></param>

 <param name="maxX"></param>

 <param name="maxY"></param>

</module>

Draw attention on the fact that properties are given as attributes, not values.

Object must be registered in the same way in objects.xml configuration file.

Example:

<object class="com.larrr.project.objects.object2d.StaticObject">

 <param name="name"></param>

 <param name="type"></param>

 <param name="x"></param>

 <param name="y"></param>

 <param name="icon"></param>

</object>

 46

A.3 How to create new environment

After writing or adding new code for module and objects for the module the last step

is to configuration – writing XML configuration files. A detailed explanation on how to

write XML configuration files is found in 1.1. For the reader’s convenience, a quick

check list of several of the most important rules for successful configuring are listed

below.

Quick check list of important rules

 Every object’s must have default ‘runnable’ and ‘soar’ values set as false. Don’t

forget to change them if there is another type of object. Take into account that

soar objects are usually also runnable.

 Every object (in the context of the module) and every module (in the context of

the kernel) must have a unique name.

 In the configuration file every object must have a unique ID and that ID must be

the same as found in the ”module”

 Every module must contain absolute path to the XML file with objects description

in property “objectMap”

Concrete example of the EES widening can be found in tutorial.

 47

Appendix B

B. User’s guide

B.1. EES Main Window

Current EES GUI is implemented as Java Swing GUI application (Fig. B.1).

 48

Figure B.1. EES GUI

EES GUI allows the user to manipulate the program by adding new modules, switching

between already added modules, selecting modules, perform iteration within the chosen module,

manipulating modules , creating stop conditions, generating new modules and using some other

settings.

For these manipulations GUI contains the following elements:

Load environment button Allows user to add new environments to

the EES. EES loads only the module configuration file. The objects file is read

automatically from a newly created module.

Do Iteration button Allows user to make one iteration on the selected

module.

Run button Allows user to define the desired number of interactions

to be performed in any selected module. In contrast to the Do Iteration button,

that is limited to one iteration.

Soar Agent Iteration button Allows user to make one iteration of all

Soar agents on the selected module.

Run Soar button Similar to Run button, but iterations are made with

Soar objects only.

Visualize module button Prints selected module in some graphic

mode.

Exit button closes EES.

Common window Prints all information and errors that are relative to loading

new modules and objects.

 49

The state of every running objects iteration is printed to the Runtime window.

Modules window Shows all the modules that are loaded to the kernel and allows

to the user to delete modules during the runtime.

Objects window When a module is selected it appears as a tree-representation on

the module map. User can also delete objects from the selected module map

during runtime (Fig. B.2).

Menu gains access to some other EES features.

 50

Figure B.2. EES runtime.

B.2. EES features

B.2.1 Configuring new environment

For configuring new environment user need to define two environmental constituents:

1) module – initialization of module properties, i.e., module’s name, module’s objects

map(as absolute path to XML file)

2) module objects map – initializing of module objects and it’s properties

There are two ways how to create that configure: manually or using EES configure tool.

Manual method is rather labour-intensive and fraught with lots of errors, so I’d advise usage of

the tool.

Step 1. Call configuring tool from the menu (Fig. B.2.1.1)

Figure B.2.1.1

Step 2. Select module type you want to configure (Fig. B.2.1.2)

 51

Figure B.2.1.2

Step 3. Enter module properties. ‘Name’ and ‘Object Map’ are required fields (Fig.

B.2.1.3).

Figure B.2.1.3

After clicking ‘Next’ button you will be asked to save module file.

 52

Step 4. Select objects you want to configure for that module. Remember that objects must

support certain interface, defined for your module (Fig. B.2.1.4). Every object may be used

several times.

Example: Every object added to Module2D module must support interface IObject2D.

Fig. B.2.1.4

Step 5. Set objects values. ‘Name’ field is required and must be unique (Fig. B.2.1.5).

 53

Fig. B.2.1.5

After that step you can load your module.

NB
34

: Before configuring new environments make sure you have DTD file(spring-

beans.dtd) set. That file is used for configuring and further evaluation of the XML files and need

to be set in order to configure new environments. DTD file can be set using EES menu: Menu ->

Settings -> DTDSettings.

B.2.2 Changing module’s properties during runtime

 Module properties can’t be changed after creation, but user can change objects

map by deleting objects during runtime (Fig. B.2.2.1).

34

 Nota Bene is a Latin phrase meaning "Note Well".

 54

Figure B.2.2.1

 Also user can delete modules from the kernel during runtime (Fig. B.2.2.2).

Figure B.2.2.2

B.2.3 Changing object’s properties during runtime

You can change objects values during runtime by right mouse click and entering new value

(Fig. B.2.3.1). Changed object must be:

1) one of the primitive type (String, Boolean, Character, Long, Integer, Short. Byte,

Double, Float)

2) non-Soar

3) must have setProperty and getProperty to the changed property (because only that kind

of properties can be restored from the XML definition of the environment)

 55

Figure. B.2.3.1

B.2.4 Module’s runtime visualization

Because EES makes possible to configure a lot of module types(e.g., binary tree, plane 2D

etc.), there is hardly possible to make common runtime visualizer and every module must

implement its own visualization tool. Nevertheless EES has it’s own preprepared 2D visualizer

(Fig. B.2.4.1).

2D visualizer

Visualizer defines three pictures by default:

1) Soar object ()

2) Non-Soar object ()

3) Empty field ()

 56

User can change default picture by redefinition of the “icon” property in the XML

configure objects file.

Visualizer is called by pressing Visualize module button.

Figure B.2.4.1. Example of the default 2d EES visualization.

B.2.5 Creating stop condition

EES allows user to define so-called stop condition – set of properties to stop iterations

when achieved.

Step 1. Select module and select “Create/Edit stop condition” popup menu item (Fig.

B.2.5.1)

 57

Figure. B.2.5.1

Step 2. Set stop condition values and press “Save condition” button (Fig. B.2.5.2).

Figure B.2.5.2

When stop condition is achieved, EES informs the user by showing simple Message box:

 58

Figure B.2.5.3

B.2.6 Selected properties tracing

 EES allows tracing objects properties changes in the Objects window (Fig. B.2.6.1), but

sometimes that way is not comfortable enough(e.g. when module has large objects tree). If that's

the case the user can use EES tracing tool.

Figure 2.6.1. Objects window

 Step 1. Select the module you want to create tracing for and then select “Set trace

properties” popup menu item (Fig. B.2.6.2).

 59

Figure B.2.6.2

 Step 2. Select properties you want to trace and press “Save” button (Fig. B.2.6.3).

Figure 2.6.3

 Step 3. Call tracing window by selecting “Show trace properties” popup menu item (Fig.

B.2.6.4).

 60

Figure B.2.6.4

Figure B.2.6.5

When trace window is opened you can follow changes of the objects properties in every

step.

B.2.7 XML Editor

 EES contains its own built-in XML editor that makes editing XML configure files more

handy. For editing your file call the editor by calling Menu -> Settings -> Edit XML file menu

item, select file you want to edit and after editing it press “Save” button (Fig. B.2.7.1).

 61

Figure B.2.7.1

B.2.8 Settings

EES contains additional settings that allow save runtime EES information to the file (Fig.

B.2.8.1):

1) Saving logs

2) Saving traces (runtime)

The last one setting makes visualization and avaliable tracing during multi-iteration process, i.e.

that user can see that process changes on the visualizer and in the trace window.

 62

Figure B.2.8.1

 63

Bibliography

[1] Unofficial Guide to: Unreal Tournament, http://guidesarchive.ign.com

[2] MFF UK, Prague: Project Ents, http://ufal.mff.cuni.cz/~bojar/enti/

[3] Laird, J. E., Coulter, K. J., Jones, R. M., Kenny, P. G., Koss, F. V., Nielsen, P. E.:

“Integrating intelligent computer generated forces in distributed simulation: TacAir-Soar in

STOW-97.”, Proceedings of the 1998 Simulation Interoperability Workshop, 1998

[4] Newell, A.: Unified Theories of Cognition, Harvard University Press, 1990

[5] Soar homepage, http://sitemaker.umich.edu/soar/home

[6] Laird, J. E.: The Soar 8 Tutorial, University of Michigan, 2006

[7] dTank homepage: http://ritter.ist.psu.edu/dTank/

[8] Morgan, G. P., Ritter F. E., Stevenson W. E., Schenck I. N.: dTank: An Environment for

Architectural Comparisons of Competitive Agents, The Pennsylvania State University, 2005

[9] CLIPS: A Tool for Building Expert Systems, http://www.ghg.net/clips/CLIPS.html

[10] Wallace, S. A., Laird J. E.: Behavior Bounding: Toward Effective Comparisons of Agents &

Humans, University of Michigan

[11] International game developers association: http://www.igda.org/

[12] Wikipedie: http://en.wikipedia.org/wiki/Main_Page

[13] Xerlin homepage: http://www.xerlin.org/

[14] Java homepage: http://java.sun.com/

http://guidesarchive.ign.com/
http://ufal.mff.cuni.cz/~bojar/enti/
http://sitemaker.umich.edu/soar/home
http://ritter.ist.psu.edu/dTank/
http://www.ghg.net/clips/CLIPS.html
http://www.igda.org/
http://en.wikipedia.org/wiki/Main_Page
http://www.xerlin.org/
http://java.sun.com/

