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Abstract: Visual inspection of fuel assemblies is necessary to identify potential
anomalies in their behaviour associated with their condition and their future
usage. One of the possible findings are foreign objects caught on the fuel spacer
grid which can disrupt the cladding of fuel rods during the operation. The goal
of this thesis is to accurately segment the spacer grid from an image, which
is a task dual to the foreign object detection, and therefore to automate visual
inspection process in this area. We created new datasets covering typical problems
appearing on the fuel assembly. To perform the segmentation, we employed
neural networks. We increased performance by data augmentation techniques
and domain-specific output post-processing. We also measured the algorithm’s
performance by a newly introduced Line Distance metric, computing the size of
the maximum uncertain area between the actual and the predicted transition
between grids and rods. In the experiments, we found the best hyperparameters
and reached very good results, outperforming our predecessor’s algorithm by
having three times lower Line Distance metric.
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Introduction
Visual nuclear fuel inspection is necessary in order to ensure reliable performance
of the fuel design and the facility in which it operates. The subject of such
inspection is a fuel assembly.

The fuel assembly consists of spacer grids and fuel rods. The purpose of the
grids is to hold the fuel rods in a specific shape, where any two neighbouring rods
have equal distance between one another.

In this thesis, we work with a fuel assembly of VVER-1000 design. Such design
is selected because CVR, in whose direct cooperation this thesis is created, has
its mock-up available in their laboratory and it is widely used in eastern types of
power reactors. To simplify our nomenclature in the rest of the text, we use the
term fuel assembly synonymously with the term mock-up unless stated otherwise.

Figure 1: Fuel assembly. The picture shows the subjects of the visual inspection:
fuel rods and spacer grids. Some of the rods are extracted to reveal the assembly’s
inner structure. The assembly in the picture is a mock-up of VVER-1000 fuel
assembly [7].

The visual inspection of the fuel assembly in CVR is performed using a
radiation-resistant camera controlled by operators. They scan the assembly look-
ing for defects that could disrupt reliable operation of the fuel [7]. During the
inspection, only a sample of fuel assemblies are inspected due to the limited time
reserved for them (between 70 and 120 hours yearly) [9]. An automation of the
inspection using Digital Image Processing methods could

• reduce a human error caused by subjectivity or fatigue,

• reduce the necessary time to perform such inspection [7].
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One of the goals of the visual inspection is to detect anomalies on the fuel
assembly. An example of such an anomaly could be a foreign object caught on the
spacer grid. This object could cause fretting which could subsequently damage
the cladding of the rods.

Figure 2: An example of a defect: a foreign object caught on the spacer grid.

The first step towards the detection was done by Knotek [7]. His efforts were
successful in the rods area but had difficulties in the transition area between the
grid and the rods. In order to perform detection there, he attempted to segment
the grid’s mask. This proved to be difficult due to e.g. irregular lighting [7, §4.5].

The goal of this thesis is to continue the efforts of Knotek and accurately
segment the spacer grids from an image.
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(a) The spacer grid and the rods screened from the front.

(b) Segmented mask of the grid. White pixels indicate where
the grid is.

Figure 3: The fuel assembly screened from the front and its segmentation.

Chapters
This thesis comprises of five chapters:

• Problem analysis: the goal of this chapter is to analyse the problem of
segmenting spacer grids and select the best method to solve it.

• Related work: in the second chapter, we describe related work important
for this thesis.

• Method: the third chapter describes our contribution, specifically the data
augmentation, used models and the prediction’s post-processing.

• Experiments: in the fourth chapter, we analyse importance of individual
hyperparameters, attempt to find the best model and evaluate it.

• Discussion and future work: in the last chapter, we discuss our findings,
outline our algorithm’s future usage in the CVR framework and suggest a
promising way of increasing its performance.

5



1. Problem analysis
This chapter describes visual conditions of screening the fuel assembly and its
possible difficulties. Lastly, it specifies our goal and outlines our method reaching
it.

1.1 Description of the fuel assembly
The fuel assembly consists of fuel rods and hexagonally-shaped spacer grids. Both
are made of zirconium alloy resembling stainless steel. The surface of the grid is
flat, except for possible scratches and engraved text [7]. The grids are placed on
top of each other with a specific distance between them. The rods are inserted
into the grids. Each of the six sides of the fuel assembly has 11 rods. There
are usually 10 grid’s teeth separating the rods, see figure 3. The fuel assembly,
however, have a special side excepting this rule. The two rods in the middle have
no grid tooth between them, as seen in figure 1.1, resulting in this side having
only 9 teeth.

Figure 1.1: The special side of the fuel assembly. It has 11 rods but only 9 teeth
because there is a groove in the middle and hence there is no tooth between the
sixth and the seventh rod.

In the nuclear power plant, the fuel assembly is inspected by CVR operators
using a radiation-resistant camera. The only illumination source is point lights
placed around the camera. The camera is remotely controlled by an operator
during the inspection, allowing him to focus on various problematic parts. The
fuel assembly is submerged into water. It is approximately 4.5 m tall with grids
being placed every 0.5 m. They limit the bend of the rods.

Our screening was done in CVR laboratory, where our main goal was to
simulate the power plant screening conditions using available tools. This allowed
us to have a better control of the environment. We could have inserted foreign
objects more easily and also progressively increased the difficulty of our screening
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conditions. This method also allowed us to verify that our algorithm worked
on the easier data at start while being able to gradually make the data more
challenging and closer to the real power plant data. Instead of the nuclear power
plant fuel assembly, we used a shortened fuel assembly’s mock-up without the
fuel. It was 1.25 m tall with 3 spacer grids.

1.2 Difficulties
A simple separation of the grid and rods is complicated by many difficulties.
All of them suggest that the grid pixels cannot be simply inferred using their
close neighbours, but they need a larger context to be able to perform a precise
segmentation.

Lighting Lighting, especially using point lights, can be irregular and create
glares or shades. These effects can confuse a simple edge detector, or even hide
part of the transition between the grid and the rods.

(a) Tube-light illumination. (b) Point-light illumination.

Figure 1.2: Example of tube-light and point-light illumination. The former has
slightly lighter grid’s teeth, the latter has a big glare in the grid part.

Debris A foreign object can be found usually caught on the spacer grid. This
can cover part of the transition between the grid and the rods and also potentially
create new edges in a simple edge detector.
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(a) Washer debris. (b) Wire debris.

(c) Silicone debris. (d) Plastic debris.

Figure 1.3: Example of debris that can occur caught on the grid. The silicone
and plastic bags do not appear in the power plant, we added them to increase
the difficulty of our data.

Damaged grid The grid can have its teeth bent or broken off. This results in
the grid having an irregular shape. The grid and rods can be also scratched.

(a) Bent grid’s tooth. (b) Grid scratch.

Figure 1.4: Examples of a damaged grid.

Oxide A surface-level oxide on a rod manifests itself as a dark part of the rod.
The rod loses its reflective visual properties and has a dark gritty look. A deep
oxide looks like a white spot on the rod.
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(a) Surface-level oxide. (b) Deep oxide.

Figure 1.5: Examples of oxide manifestation on the rods.

1.3 Datasets
We created three datasets distinguished by their screening visual conditions:
Easy, Medium and Hard. Every subsequent dataset built upon the difficulty
of the previous one, adding new problems needed to be solved.

The precise screening procedure is described in appendix A. The manual pre-
processing is discussed in appendix B.

Easy dataset The first dataset was taken using a professional photographic
equipment. The lighting was done from one side using a photographic lamp and
from the other side using a light reflector. Every other light source was covered.
The photos were taken by Canon EOS D500 (appendix C).

Figure 1.6: Schema showing the screening setup from above. The hexagon rep-
resents the fuel assembly, the lighbulb represents the photographic lamp and the
circle shape represents the light reflector. There is a big angle between the camera
and the lamp and the camera and the reflector to eliminate glares. Consequently,
it also highlights scratches.
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Figure 1.7: Example of a photograph from Easy dataset.

The dataset is the easiest because it allows us to illuminate arbitrary part of
grids or rods as well as we can.

To be able to solve it, our algorithm needs to be able to ignore grid scratches
and handle bent grid’s teeth. Therefore, it cannot completely rely on smootheness
of the grid and regularity of the grid’s teeth.

Medium dataset Medium dataset was taken using Olympus TG-5 (appendix C).
The only illumination source were the tube lights on the ceiling of the laboratory
room. The screened parts of the fuel assembly and the camera were submerged in
the water. The debris was also added, potentially covering part of the transition
between the grids and the rods.

Figure 1.8: Diagram of screening Medium dataset from above. The rectangle
with blue filling represents the water tank, the hexagon is the fuel assembly.
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Figure 1.9: Example from Medium dataset.

Figure 1.10: The water tank and the fuel assembly in CVR laboratory room [7].

The added difficulty of the dataset is following:

• Upper grid’s teeth are more illuminated because the light source is above
the fuel assembly.

• The underwater screening adds a blur effect.

• The debris adds another layer of difficulty because the model needs to learn
to ignore it.

Hard dataset This dataset was taken in the water tank using the Olympus
camera, too (appendix C). However, instead of the tube lights, we used point
lights attached to the camera stand.
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Figure 1.11: Example of a photograph from Hard dataset.

Upon the previous dataset difficulties, Hard dataset adds the intricacy of
irregular lighting, converging much closer to the visual conditions of nuclear power
plant data.

1.4 Choosing the approach
Our goal is to segment the grid’s mask. This is a task dual to detecting the
defects in the transition area between the grids and the rods.

Classical digital image processing methods have shown to have problems es-
pecially with irregular lighting. This has already been explored by Knotek [7].
He took a pre-defined mask and attempted to fit it onto the image so that it filled
out missing edges.

The method worked with limited accuracy on the images illuminated by tube
lights but failed completely on the images illuminated by point lights. This
happened due to many anomaly edges caused by irregularity of point lights.
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Figure 1.12: Example of Knotek’s segmentation. The red coloured curve indicates
the predicted boundary between rods and the grid, the blue curve is the true
boundary. The tooth is missing between the fifth and the sixth rod. This does
not occur in our datasets, we flipped the image along the vertical axis due to
requirements of Knotek’s to have the groove between the fifth and the sixth
rod. The prediction is not very accurate because it relies on a pre-defined mask
universal for all images.

We choose a different approach. We use artificial neural networks to perform
semantic segmentation and thus predict the grid’s mask. This can help us solve
difficulties mentioned in section 1.2, which previously proved to be hard to tackle.

One of the disadvantages of neural networks is their lack of interpretability.
We cannot decide, whether an obscure prediction is caused by the neural network
making an error or e.g. by a deformed grid. To solve this, we employ a post-
processing of the network’s predictions using our domain knowledge. It attempts
to either fix the network’s prediction, if it is sure the anomaly is an error, or wrap
the problematic part into a bounding box.
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Figure 1.13: Problematic input with a bounding box surrounding the problem.
The red coloured curve denotes the predicted boundary between rods and the
grid, the blue curve is the true boundary and the bounding box is coloured in
green.

Another problem that arises is small amount of data. This stems from two
sources:

1. The laboratory we cooperated with has only one fuel assembly mock-up.
This leads to us having at most 18 different grid photos because the hexagonally-
shaped fuel assembly has 6 sides with 3 grids each. Unfortunately, the num-
ber of rods is limited. We have enough of them to only fill at most 3 sides
out of the total 6. Hence, we can have at most 9 images. The rods could
be moved to screen other sides too, but it is very time-consuming and it
further damages the fuel assembly by scratching it.

2. Setting up the scene, screening and creating the labels is also very time-
consuming.

We try to overcome this obstacle by using data augmentation.
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2. Related work
This chapter discusses previous attempts to segment the grid and relevant deep
learning semantic segmentation architectures.

2.1 Previous grid segmentation attempts
Knotek [7] attempted to extract grid’s mask. He assumed all grids’ masks were
identical and prepared one mask. Then he attempted to fit it onto the new grid
and refined the fit using Canny Edge Detector. Unfortunately, as mentioned in
section 1.4, this method did not succeed on point-light illuminated images.

2.2 Relevant architectures
We considered the following four architectures: U-Net, ResU-Net, ResU-Net++
and DeepLab V3+. U-Net [10] achieved state of the art results in medical seman-
tic segmentation using only few image inputs. ResU-Net [12] improved U-Net’s
training speed while not hindering its accuracy. It also tackled the problem of
high resolution images. ResU-Net++ [5] followed up on the recent successes of the
attention modules and used it to improve performance of the network. Finally,
DeepLab V3+ [2] has been a state of the art semantic segmentation architecture
on high resolution real-life images from streets.
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3. Method
In this chapter, we describe our solutions to the problems introduced in chapter 1.
In the first section, we describe our data augmentation. The second section
looks into the model. The third section explains post-processing of the model’s
prediction.

3.1 Data augmentation
To compensate for our very limited number of data, we employed data augmen-
tation. We used the following techniques: cropping, mirroring, noise addition,
rotation, zooming and cutout.

3.1.1 Cropping
Instead of using whole image as an input of the model, we split the image into
many square-shaped sub-images (crops) of the same size and performed predic-
tions on them. Then, we combined those small predictions into a whole image-
level prediction.
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(a) Whole image with a highlighted sub-image: a crop.

(b) Extracted crop.

Figure 3.1: Example of a whole image and one of its possible crops.

Note that the cropping was the only augmentation technique performed on
the evaluation data as well. Since the model is trained on the crops, it also needs
to be evaluated on them.

Deterministic cropping In this thesis, we used Deterministic cropping method [12].
It splits the whole image into square-shaped crops. The overlay parameter o is the
length of the overlapping region between two subsequent crops. We can observe
from figure 3.2 that larger o leads to more crops obtained from the image.
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Figure 3.2: The two crops are denoted as the blue and green squares. They have
identical sizes sc. Their centers cc1 and cc2 are depicted as the blue and green
dots. The overlay of the length o is shown as the black line.

This approach works better for semantic segmentation task than Random
cropping [8] because it covers the image (roughly) uniformly and does not force
our model to train on many crops from the same area while omitting other regions
entirely.
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(a) Deterministic crop. The crops are organised with equal distances between
one another. The edge areas are less covered, but there is always at least one
crop intersecting every pixel.

(b) Random crop. The crops randomly cover some areas more and some less.
The edge areas are less covered because the probability of selecting them is
lower. Many of the pixels on the border of the image are not covered at all.

Figure 3.3: Coverage of the whole image by crops using the two methods. Lighter
pixels mean that more crops intersect them. Both coverages have been made using
the same number of crops.

Suppose we have overlay o = 1. This means that two subsequent crops overlap
by one pixel. If we wanted to infer pixel in the overlapping area, the prediction
would only have context from the one side because the crops are given to our
model independently. Therefore, it could have been easily missclassified.

To solve this, we introduce a term sub-crop s: a smaller crop cut from the
crop c. The sub-crop represents the minimum context for its center pixel needed
to perform the prediction. We want every pixel to be a center of a sub-crop,
whose all pixels are entirely covered by one crop. We denote the sub-crop’s size
as ss.

We can enforce this property by setting up the overlay o. To establish its lower
boundary, imagine the worst-case scenario: inferring the pixel p right between
two subsequent crops. If o < ss, then pixels of sub-crop with center p are not all
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covered by the same crop. This problem is depicted in figure 3.4. Therefore, we
want the following inequality to hold:

o ≥ ss . (3.1)

Figure 3.4: Crops are denoted as the blue and green coloured squares with their
centers being the blue and green dots. The yellow squares are sub-crops entirely
covered by one of the crops. The red square is a sub-crop that is not entirely
covered by one of the crops. Such sub-crop can exist because size of the sub-crop
is larger than the size of the overlay.

However, often it is useful to set o to a higher value because higher overlay
leads to more data for the model training. This results in some p’s sub-crop to
be entirely contained by multiple crops. In such cases, we need to determine,
which one of those crops should handle the prediction. In other words, we need
to decide how to combine the crops’ predictions into the whole image prediction.

Zhang et al. [12] computed the value of pixel p by averaging all of the crop’s
predictions intersecting p. In our experience, if the average is unweighted, this
does not yield the best results. The crops, where p is close to their edge, have a
same impact as those, where p is in their center. Such p can have context mainly
from one side. We believe that having context from all sides equally is generally
better, if we do not know which side is more important. Therefore, we choose to
use such crop for prediction of p, whose center c is closest to p.1

3.1.2 Mirroring
We performed mirroring by flipping the crop along the width axis, the height
axis and both the width and the height axes, making three new images out of the
original one. This is demonstrated by the example in figure 3.5. The mirroring
is performed both on the crops and their masks.

1The distance between the points is measured in Euclidean metric.
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The flipping operation modifies position of the light source in the crops. This
can be helpful in making the model more robust to changes in lighting, especially
in case of Hard dataset.

(a) Original crop. (b) Crop flipped along the
height axis.

(c) Crop flipped along the
width axis.

(d) Crop flipped along the
height and the width axis.

Figure 3.5: Mirror operation performed on the original crop. The original crop
comes from Medium dataset. The light source is above the assembly, which can
be noticed on the teeth’s light intensity. Flipping it along the width axis results in
seemingly changing position of the light source to being below the fuel assembly.

3.1.3 Noise addition
We randomly added noise to some crops to make the model more resilient. We
decided to use Gaussian noise because it frequently emerges due to bad illumi-
nation or high temperatures [1]. The noise addition only influences the crop, not
its mask.
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(a) Original crop. (b) Crop with added noise.

Figure 3.6: Adding noise to a crop.

3.1.4 Rotation and zoom
To tackle the possibility of some images being slightly rotated, we added rotation
augmentation. With a certain probability, it changes the original crop, rotating it
by an angle uniformly sampled from [−7°, 7°], the minimum and maximum angles
allowed by the assembly’s construction. We selected nearest neighbour method
to fill in the invalid pixels.
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(a) Original crop. (b) Original crop’s mask.

(c) Rotated crop with no fill-
ing.

(d) Rotated crop’s mask with
no filling.

(e) Rotated crop with nearest
neighbour filling.

(f) Rotated crop’s mask with
nearest neighbour filling.

Figure 3.7: Rotating crop and its mask with and without filling invalid pixels.
The crop is rotated by 45° to highlight the filling effect.

Similarly, we also employed random zooming with filling in invalid pixels using
nearest neighbour method. The filling is needed only in case of zooming out.
When zooming in, no invalid pixels are created.
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(a) Original crop. (b) Original crop’s mask.

(c) Zoomed crop with no fill-
ing.

(d) Zoomed crop’s mask with
no filling.

(e) Zoomed crop with nearest
neighbour filling.

(f) Zoomed crop’s mask with
nearest neighbour filling.

Figure 3.8: Zooming of a crop and its mask with and without filling invalid pixels.

3.1.5 Cutout
The last performed augmentation was Cutout [3]. It randomly selects a pixel in
the crop and marks it as a center of a square of a defined size. Then it recolours
the square’s pixels as black. Note that part of the cutout’s area can be outside of
the crop’s borders. We hoped that it would simulate part of the grid’s and rods’
transition being covered by debris and thus help the model to ignore the debris
more easily. The crop’s mask was left unchanged by the cutout.
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(a) Original crop. (b) Crop with part of it being
cut out.

Figure 3.9: A crop with and without part of it being cut out.

3.2 Model
We selected U-Net [10] and ResU-Net [12] architectures.

Input The input of the model is expected to be a gray-scale crop of a shape
(H, W, 1), where H is the height of the crop and W is the width of the crop. Its
values should be normalised in the interval [0, 1].

Output Output of the model has shape (H, W, C), where C is the number of
output channels, H and W are the height and the width of the input crop. We
used C = 2 with softmax instead of C = 1 with sigmoid due to technical reasons.
The first output channel corresponds to the segmented rods, the second output
channel corresponds to the segmented grids. All output values are also in the
interval [0, 1] and sum up to 1 over C, giving them interpretation as a probability
that given prediction’s pixel is a grid.

Training To train the model, we used categorical cross-entropy loss. We took
only pixels that had ratio of the white pixels between 0.2 and 0.8, ensuring that
we only used crops containing the transition of the grids and rods. The idea
is that this greatly reduces the training time while not sacrificing any accuracy
thanks to the post-processing.

3.3 Post-processing
The goal of the post-processing is to try to polish the network’s prediction. If
the polishing is too dificult in that particular instance, then to at least highlight
the problematic areas. We call the former process Prediction cleaning, the latter
Problem detection.

All Prediction cleaning and Problem detection methods work by slicing up
the prediction horizontally in the middle, performing the operations on the two
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halves separately and joining them back in the end. When we explain any post-
processing bellow, to simplify it, we deal only with the upper half. Processing
the lower half is equivalent after flipping it along the horizontal axis.

3.3.1 Prediction cleaning
Prediction cleaning has two phases: Stain removal and Bridge removal.

Stain removal A white stain, resp. black stain, is a small independent white
component, resp. black component. The goal of Stain removal is to remove it.
We do this by finding two largest components in the image and removing all other
smaller components.

(a) Mask with black and white stains.

(b) Mask with removed black and white stains.

Figure 3.10: Example of mask with stains and its cleaned counterpart.

Bridge removal Imagine we have a black stain that is connected by a thin
black line, where the width of this line is one pixel. We call such a stain a
connected stain and such a line a bridge. The stain cannot be removed by Stain
removal because it is connected. We need to remove the bridge first.
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(a) Example of predicted mask
containing a bridge.

(b) The bridge and a few
other connected stain pixels
are highlighted by red colour.
Removing the red pixels cre-
ates a new black stain.

Figure 3.11: Example of a bridge.

We can identify such bridges by walking over the black part of black and white
components’ boundary. If such walk is forced to go over the same pixel twice, the
walk encountered a bridge.

Imagine we stand on the border black pixel and have a current direction vec-
tor pointing along the border to the right. Assume we have θ ∈ [−179°, 179°]
representing the angle between the current direction and the direction to a neigh-
bouring black pixel. If we ignore the pixel that leads us backwards, we have up
to eight possible directions and therefore eight angles (including the direction
right ahead with angle 0°). The relative left neighbours have positive angles, the
relative right neighbours have negative angles.

Assume we start on the leftest border black pixel. Then, the walk is realised
by following these rules in the specific order:

1. If you reach the right border of the prediction, quit.

2. Find a neighbouring not-yet visited black border pixel with minimum θ.
Update your current direction to be heading towards the chosen neighbour.
Move to the pixel, updating your current position.

3. If there is no such pixel, go back to the last visited pixel. This step is called
backtracking.

If there is a bridge, then it is part of a detour. Step 2 ensures that we go over
all detours because it prioritizes neighbouring not-yet visited black border pixels
that are the rightest, relatively to the current direction. Assume a detour goes
over a bridge. An example of such bridge is depicted in figure 3.11. When we
go over the detour, we eventually stumble into a pixel we have already visited.
This happens because there is no other way to return from the detour other than
going through the narrowest part of the protrusion: the bridge. Step 3 then forces
us to backtrack until there is another black pixel on the border that it has not
visited yet. Such pixel is always before the bridge because all border pixels of the
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connected stain have already been visited. Therefore, if there is any bridge, the
algorithm backtracks over it.

Removing the backtrack pixels removes some of the connected stain’s pixels
and the bridge and it can create new stains. Therefore, after Bridge removal, we
need to perform Stain removal once more. Figure 3.12 shows the example from
figure 3.11 after removing the bridge and subsequent Stain removal.

Figure 3.12: Image from figure 3.11 after removing the bridge and the stain.

3.3.2 Problem detection
Sometimes we cannot fix the prediction. In such cases, we want to at least detect
if there is a problem in it. We implemented three methods of Problem detection:
Frequency analysis, Value analysis and Shape analysis. All three methods detect
problem intervals: intervals in which a problem was found. In the end, the
intersecting intervals found by all the methods are merged.

Frequency analysis The first approach assumes and utilises the periodicity
of the masks. We can observe that the rods and the grid’s teeth have similar
distances between one another. We can detect lower peaks, which are the rods’
middle parts and upper peaks, which are the grid’s teeth. By joining all those
peaks and sorting them by their width coordinate, we get all peaks.

The peaks can be computed from the function given by the average number
of white pixels in each column. We filter out peaks whose height difference be-
tween the peak and its lowest contour line is too low. This difference is called
prominence.

More formally, the average number of pixels in the column j is given by the
following function:

µ(j) = 1
H

H∑︂
i=1

xi,j , (3.2)

where

• H is the height of the prediction,

• xi,j is the value of the pixel on the coordinates (i, j), where i is the row
coordinate and j is the column coordinate or in other words i is the height
coordinate and j is the width coordinate.
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The upper peaks U are peaks of minimum prominence r found on the function
given by equation 3.2, whose distance between one another is at least n. The lower
peaks L are defined similarly, but they are found on function −µ(j). All peaks
A are defined as

A = {j ∈ L ∪ U |all j values are sorted} . (3.3)

Let D be a sorted set of A’s differentials. If we view A and D as functions of
indices, then

D(i) := A(i + 1) − A(i) . (3.4)
We expect the values of D to be similar, formally for all j

D(j) ≈ med
i

D(i) . (3.5)

All j’s, for which equation 3.5 does not hold, are problem points. Their com-
plement are valid peaks. If we detect problem at the column j, we can compute
nearest left and right valid peak and claim the problem is between them. This is
useful because the problem point tends to indicate a larger problem in that area,
rather than only one column being predicted wrongly.

However, there can be a peak missing in the middle because the fuel assembly
has a special side with the groove, where the grid’s tooth is missing. This can be
seen in figure 1.1. Hence, we ignore problem points found in the area of the sixth
and the seventh rod.
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(a) Example of predicted mask. The seventh grid’s tooth is smoothened out
in the prediction. This type of an error can happen for example if the area is
covered by debris.
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(b) The blue curve shows the average number of white pixels for each column,
the green peaks are all valid peaks.

Figure 3.13: Frequency analysis performed on a prediction.

The weakness of this method is that there can be an issue that is not related
to the peaks, as shown in figure 3.14. It also assumes that the prediction’s shape
visually resembles a grid. For example, if there are no white grid’s teeth in the
prediction, the method fails.
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(a) A problematic protrusion is between the fourth and the fifth rod. Frequency
analysis cannot detect this problem because it does not relate to peaks.
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(b) The blue curve is the average number of white pixels for each columns, the
orange peaks are upper peaks, the green peaks are lower peaks. In this image,
the lower peak on the hasn’t been filtered out, yet.

Figure 3.14: Example of problems that cannot be detected by Frequency analysis.

Value analysis Value analysis partially solves the main weakness of Frequency
analysis. It computes the average number of white pixels for each column and
detects outliers using these values directly. Then they are matched to their cor-
responding problem intervals using valid peaks from Frequency analysis.

Formally, we expect the following formula to hold for all width coordinates:

∀w1 ∈ [1, W ] : med
w2∈[1,W ]

(µ(w2)) ≈ µ(w1) , (3.6)

where W is the width of the prediction.
This method only detects big problems such as a large unexpected mass of

black or white pixels. It fails if the prediction has a lot of such masses because it
ruins the median value in equation 3.6.
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(a) A prediction with a large mass in-between the peaks.
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(b) The blue curve is a mean of white pixels for each column of the prediction,
red lines demarcate valid values.

Figure 3.15: Visualised Value analysis on a flawed prediction.

Shape analysis The last method of Problem detection is Shape analysis. It
utilises the following property given by the shape of the true masks: if we perform
a border-walk (section 3.3.1) over the true masks, every step on average increases
the width coordinate by 1. The same, however, cannot sometimes be said about
the prediction. The walk on the border of the prediction can go over many
detours, performing many steps while not increasing the width coordinate at all.

Formally, suppose we have a border-walk e = ((h1, w1), ..., (hk, wk)). If we
take any slice of the length n, denoted as ei:i+n = ((hi, wi), ..., (hi+n, wi+n)), then
we expect the following formula to hold true:

∀i ∈ [1, W − n] : wi+n − wi ≈ n , (3.7)

where W is the width of the prediction.
If equation 3.7 does not hold for some i, then we discovered a problem interval

[i, i + n].
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The weak spot of this approach is that erroneous shapes that more remind
standard shape of the grid, even though they may be faulty, are not detected by
this approach.

(a) Prediction with an erroneous shape in the middle and one missing grid’s
tooth in the right area.
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(b) The blue curve is coordinates of the border-walk. The problem in the
middle part is detected because there are many steps that do not change the
width coordinate but change the height coordinate. However, the error on the
right is not detected because its shape is not anomalous. This can be detected
by Frequency analysis.

Figure 3.16: Visualised Shape analysis on a flawed prediction.

3.4 Metrics
We categorise the metrics by the measured subject: whole image metric and crops
metric. Whole image metric is measured on combined predictions as described
in section 3.1.1, whereas crops metric is measured on the individual crops.

Unfortunately, even though we ultimately want to optimise the whole image
metric, computing it is significantly slower than crops metrics due to our inability
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to evaluate it quickly on the GPU. However, we discovered a strong Pearson’s
correlation [4] between whole image metrics and crops metrics. Hence, we only
use the crops metrics during the training and the whole metrics are used during
the evaluation.

Metric Correlation

Mean IoU 0.994
Mean Absolute Error 0.975

Table 3.1: Pearson’s correlation between crop and whole metrics. All correlations
were found statistically significantly different than 0 with the significance level
α = 0.05.

To evaluate the model, we used three metrics: Mean IoU, Mean Absolute
Error and Line Distance.

Mean IoU Mean IoU [11] computes, what percentage of the correctly predicted
pixels overlap both true and predicted pixels. Formally, IoU is defined as

IoU = |T ∩ P |
|T ∪ P |

, (3.8)

where P is the set of predicted pixels and T is the set of true pixels, and Mean
IoU is created by averaging IoU over all channels.

Mean Absolute Error Mean Absolute Error tells us, what percentage of pixels
per image (or crop) our model predicted incorrectly.

Line Distance Line Distance metric computes the maximum absolute distance
between two border-walks performed on true masks and predictions for each width
coordinate. It indicates, how inaccurate the model is at its worst, or in other
words, the size of the maximum uncertain area between the true and the predicted
transition between grids and rods. It requires the prediction to be aliased and
cleaned (section 3.3.1), which is making this metric even slower to compute than
the other whole image metrics.

Formally, suppose we have a true walk (gold) eg = ((h1g, w1g), ..., (hkg, wkg))
and a predicted walk ep = ((h1p, w1p), ..., (hkp, wkp)). May Hi(w) be the set of all
height coordinates of the walk i for given width coordinate w, formally

Hi(w) = {h|(h, w) ∈ ei} . (3.9)
Then the Line Distance between two walks ep and eg is defined as

dl(ep, eg) := max
w

( max
hp∈Hp(w),hg∈Hg(w)

|hp − hg|) . (3.10)

Line Distance highly penalises model’s inconsistent performance. If the model
utterly fails at prediction in one area in the image, the metric value is high no
matter how accurate it is in other areas.
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Even though we compute Line Distance metric as the maximum error for
each sample individually, we average it over all samples. We think the average
encapsulates model’s performance better than the maximum because high Line
Distance in one sample does not totally ruin the metric’s value of all the samples
while still highly influencing it. Furthermore, a metric computed as a mean allows
us to perform hypothesis tests because their random variables are estimates of a
mean.

Figure 3.17: Line Distance. The predicted walk is shown as the red curve and the
true walk as the blue curve. Line Distance computes the maximum (absolute)
height distance of the predicted and the true walk. We show only part of the
entire grid for the demonstration purposes, the metric is in fact computed on the
whole prediction and mask.
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4. Experiments
In this chapter, we initially describe our data split strategy into training, valida-
tion and testing groups. Then, we analyse relevant hyperparameters and their
relation to model’s performance. This gives us insight into their importance and
possibly allows us to train better models much faster. Lastly, we attempt to find
the best model and evaluate it.

When we perform hypothesis tests in this chapter, we set the significance level
to α = 0.05. To ensure correctness for a testing with multiple groups, we divide
the level by the number of groups. When we say that a result is statistically
significant, we make such claim for an already properly divided significance level.
Furthermore, the correlation computed in this chapter is Pearson’s correlation
[4]. We denote H0 as the null hypothesis and Ha as the alternative hypothesis.
For purposes of this chapter, we also modify the terminology used to describe the
datasets. Instead of the three datasets, we define five out of the original ones:
Easy, Medium, Medium with debris, Hard and Hard with debris. More precisely,
we denote the datasets with debris as the ones having images both with and
without the debris. This division allows us to better understand the influence of
the debris on model’s performance.

4.1 The splitting problem
To be able to select the best model and later evaluate it, we need to divide each
dataset into three subsets: training, validation and test. This is usually done by
randomly splitting the data in a desired ratio. If we choose this approach and
do this with our input crops (small sub-images cut out of the whole images), it
creates a bias because close crops can appear in different sets. Such crops have a
very similar lighting, leading our model to have seemingly better performance.

To combat this, instead of splitting the crops, we decided to split the whole
images. We split the photos without debris and their variations with the debris
the same way. For example, if a grid photograph appears in the training set, then
all of its versions with the debris also appear in the training set. This eliminates
possible bias resulting from the same grid being both in the training and the
testing data. We performed one deterministic split in which we attempted to
cover most of the defects in the training sets while still leaving enough of them
for the validation and the testing sets.
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(a) Image of the grid.

(b) A variation of the image.

Figure 4.1: Photograph of a grid and its variation. The variant depicts the same
grid, but it can have various debris added. The photograph and its variations
appear in the same split to prevent bias.

4.2 Hyperparameter analysis
In this section, we analyse hyperparameters, trying to get knowledge to narrow-
down the search for their optimal values.

4.2.1 Setup
During the experiments, we varied a subset of hyperparameters while leaving the
others as reasonable constants.1 We experimented only on Hard dataset with

1The reasonable constants were chosen by us before the training. Their exact values are
listed in appendix D.
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debris to reduce the number of training runs. We used the most difficult dataset
in order to be able to see a significant difference in performance and also to be
as close as possible to the real power plant’s images. The best model for each
training run was chosen as the one with the best performance metrics on the
validation crops. We did not evaluate validation metrics on the whole images
during the training due to its time complexity described in section 3.4. After
choosing the best model for the run, its result performance was evaluated on the
validation whole images.

The best model for each training run was selected as the one with the mini-
mum Mean Absolute Error on the validation crops. We found Mean IoU to be
inappropriate because its values are unstable for crop masks with only a small
number of pixels of one of the classes.

To evaluate the selected model, we mainly used Cleaned Mean IoU (sec-
tion 3.4). Mean IoU, unlike Mean Absolute Error, is not biased when the model
overfits on one class. This property is useful because in our masks, more pixels
can potentially be black than white (or reversely) depending on the particular
whole image. We used primarily the cleaned metric to more accurately reflect per-
formance of our entire algorithm (including the post-processing), rather than fo-
cusing only on performance of the model. For further analysis, we also computed
Line Distance and Mean IoU. Line Distance allowed us to inspect the model’s
stability as stated in section 3.4 and Mean IoU improved our understanding of
the model.

For our experiments, we set the following hard limits:

1. maximum allowed time limit: almost 24 hours,

2. maximum 300 epochs,

3. maximum allowed memory: 80 GB.

Additionally, if Mean Absolute Error of the validation crops had not improved
over 80 epochs, we stopped the training. The number (80) was chosen this high to
stabilise model’s performance. Lastly, if the time limit was surpassed, we selected
and evaluated the best model out of last 80 epochs. If memory was surpassed,
we could not perform the training and ignored these hyperparameters.

Overlay, step and crop size We inspect performance for crop sizes 64, 128
and 256, and overlay sizes ranging from 20 up to 240.2 Since the overlay describes
the number of pixels shared by two subsequent crops, having different overlays
leads to a different number of crops for different crop sizes. Therefore we anal-
yse the relation between the overlay and model’s performance for all crop sizes
individually.

To further examine this phenomenon, we introduce a derived parameter called
step, denoted as ∆. It represents a distance between two subsequent crops’ start-
ing coordinates and allows us to analyse the relation between overlay and crop
size for all crop sizes at the same time. Formally

∆ = sc − o , (4.1)

where
2Invalid combinations of crop sizes and overlay were skipped.
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• sc is the size of the crop,

• o is the overlay,

• ∆ is the size of the step.

Furthermore, we try to find out, which crop size leads to better model’s per-
formance. We split our data points by the crop sizes into three categories and
compare them.

We hypothesise that smaller step (or larger overlay for crop sizes individually)
and larger crop sizes lead to better performance.

Border crops In section 3.2, we claim that we only use such crops for the
training that have ratio of black pixels in [0.2, 0.8]. Since such crops are located
only at the border of grids and rods, we call them a border crops. The main
idea is following: if we correctly predict the transition between grids and rods,
the cleaning (section 3.3.1) fixes the problematic grid-only and rod-only areas.
Additionally, this approach solves a potential problem of imbalanced classes in
the dataset (e.g. more black pixels than white) and saves us a lot of training
time.

We hypothesise that border-only crops do not worsen the cleaned metrics but
only Mean IoU metric.

Cutout We explore Cutout augmentation as a method to help the network to
learn to ignore debris. We perform experiments for a crop of size 128 with cutout
probability ranging from 0.1 up to 1 and cutout size from 16 up to 96. We use
cutout only on the training crops, the validation crops are left unchanged. Using
cutout on the validation data would have added an unwanted randomness to the
selection of the best model due to cutout’s stochastic nature.

We hypothesise that cutout helps the model up to a certain threshold proba-
bility and size, we do not expect any direct correlation showing that larger cutout
probability and size leads to better performance.

Model We inspect, whether model’s performance depends on its architecture
and size. The size is regulated by two parameters:

1. Root’s filters: this parameter regulates the model’s width. It specifies the
number of filters in the root convolutional layer.

2. Layer depth: specifies, how many blocks the encoder part of the network
has.

We try U-Net [10] and ResU-Net [12] architectures, and root’s filters varying from
8 up to 64 and layer depth from 2 up to 8. To be able to compare two different
architectures, we also compute the number of parameters of the model.

We hypothesise that ResU-Net is better than U-Net and increasing the number
of model’s parameters up to a certain point improves its performance.
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4.2.2 Results
Overlay and step For the crop sizes individually, we found a statistically
significant correlation between overlay and Cleaned Mean IoU.
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Figure 4.2: Scatter plot depicting dependency between overlay and Cleaned Mean
IoU for crop size 64. Increasing overlay leads to an increase in Cleaned Mean IoU.
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Figure 4.3: Scatter plot depicting dependency between overlay and Cleaned Mean
IoU for crop size 128. Increasing overlay leads to an increase in Cleaned Mean
IoU, though not as strongly as in the case of crop size 64.
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Figure 4.4: Scatter plot depicting dependency between overlay and Cleaned Mean
IoU for crop size 256. There seems to be a correlation between overlay and
Cleaned Mean IoU. Lower values of overlay seem to have bigger variability.

According to section 4.2.1, step enables us to aggregate results of overlays of
different crop sizes into one value. Hence, we analysed dependency between step
and Clean Mean IoU for all crops at the same time.
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Figure 4.5: Scatter plot of step and Cleaned Mean IoU. Smaller step generally
leads to better Cleaned Mean IoU. Additionally, larger step seems to lead to
bigger performance variance.

We found a statistically significant negative correlation between the size of
the step and Cleaned Mean IoU. These results make an intuitive sense, since the
smaller step (or larger overlay) leads to more crops and therefore more training
data.
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Crop size Correlation r p-value

64 -0.807 0.000
128 -0.55 0.000
256 -0.478 0.000
all -0.638 0.000

Table 4.1: Correlation r between step and Cleaned Mean IoU and its p-value for
H0 : r = 0, Ha : r ̸= 0. Note that for crop sizes individually, the correlation
between step and Cleaned Mean IoU is equal to the negative correlation between
overlay and Cleaned Mean IoU.

Crop size We examine our hypothesis that larger crop leads to better perfor-
mance. Unfortunately, during the experiments, crop size 256 and overlays 230
and 240, or steps 26 and 16 respectively, surpassed our memory limit. Since
smaller step leads to better performance, this puts crop size 256 into a disadvan-
tage. Furthermore, larger crop size can have steps of a larger size, e.g. crop size
128 can have step 100, whereas crop size 64 cannot. To prevent potential bias
resulting from this, we only compare crop sizes 64 and 128 in more detail and we
only take steps in the interval [10, 50]. The data shows that there is no evidence
of a difference between Cleaned Mean IoU of crops size 64 and 128.
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Figure 4.6: Violin plot of Cleaned Mean IoU for crop size 64 and 128. The two
groups seem to have very similar performance.

Border crops Next, we inspect, whether taking border-only crops hinders per-
formance.

Figures 4.7 and 4.8 indicate that taking border-only crops does not affect
Cleaned Mean IoU. The results are similar for Line Distance.
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Figure 4.7: Violin plot of Cleaned Mean IoU for all crop sizes for two groups:
all crops (0) and border-only crops (1). The two groups seem to have similar
performance.
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(a) Crop size 64.
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(b) Crop size 128.

Figure 4.8: Violin plot of Cleaned Mean IoU for multiple crop sizes for two
groups: all crops (0) and border-only crops (1). The two groups seem to have
similar performance.

However, if we look at Mean IoU in figure 4.9, performance of model trained
on all crops appears to be significantly better.
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Figure 4.9: Comparison of all (0) and border-only crops’ (1) Mean IoU. Mean
IoU of all crops (0) is significantly better and has significantly smaller variability.

To explore this further, we analysed relation between Mean IoU and Cleaned
Mean IoU. Figure 4.10 suggests that models trained on all and border-only crops
have different relation between the two metrics.
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(a) All.
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(b) Border-only.

Figure 4.10: Scatter plot depicting Mean IoU and Cleaned Mean IoU values for
all (a) and border-only (b) crops.

To inspect this in more detail, we computed correlations between Mean IoU
and Cleaned Mean IoU for relevant hyperparameters. The results can be found
in table 4.2.
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Crop size Correlation r p-value

Non border-only:
64 0.437 0.016
128 0.373 0.001
Border-only:
64 -0.084 0.624
128 0.413 0.0003

Table 4.2: Correlations r between Mean IoU and Cleaned Mean IoU with its
p-values for H0 : r = 0, Ha : r ̸= 0.

We suspect that the model trained on border-only crops is unable to accurately
predict the grid-only and the rod-only part of the data. We can see this in
figure 4.11. Models trained on crops with lower sizes are especially sensitive to
this effect because their border-only training crops do not reach far to the grid-
only or rod-only area during the training. This phenomenon does not influence
the cleaned metrics because the cleaning polishes this kind of an error.
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(a) Border-only.

(b) All.

Figure 4.11: Non-cleaned aliased prediction of model that has been trained on
border-only images and model that has been trained on all images.

Cutout Surprisingly, cutout probability does not seem to affect Cleaned Mean
IoU (see figure 4.12), it only affects Line Distance. This hints that it reduces
the maximum error, making the prediction more reliable, but it also seems to
distribute the error across the whole image because Cleaned Mean IoU is the
same.

Figure 4.13 suggests that some form of cutout helps the model to have smaller
Line Distance. We found that models with cutout probability larger than zero
are significantly better than models with no cutout.
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Figure 4.12: Scatter plot between cutout probability and Cleaned Mean IoU.
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(a) Scatter plot of cutout probability and
Line Distance.
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(b) Violin plot of Line Distance for two
groups: cutout probability equal to zero
(False) and cutout probability larger than
zero (True).

Figure 4.13: Plots of cutout probability and Line Distance.

Furthermore, we explored the size of the cutout. Figure 4.14b suggests larger
cutout size leads to smaller Line Distance.
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(a) Scatter plot of cutout size and Cleaned
Mean IoU.
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(b) Scatter plot of cutout size and Line
Distance.

Figure 4.14: Dependency between cutout size and model’s performance.
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Even cutout probability 1 and cutout mean 96 does not hinder performance
at all. This is surprising because it covers up to 75% of the crop’s area in all
training inputs. In fact, it is one of the best performing configurations.

Model First, we analyse dependency between the number of parameters and
Cleaned Mean IoU. We examine the two architectures separately. In figure 4.15,
we can see that increasing the number of parameters generally leads to better
performance of the model.
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(a) U-Net.
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(b) ResU-Net.

Figure 4.15: Scatter plots depicting dependency of the number of model’s param-
eters and Cleaned Mean IoU. The number of model’s parameters is shown on a
logarithmic scale.

This can be further supported by its correlations in table 4.3.

Model architecture Correlation r p-value

U-Net 0.368 0.000
ResU-Net 0.532 0.000
All 0.359 0.000

Table 4.3: Correlations r between the number of parameters and Cleaned Mean
IoU with its p-values for H0 : r = 0, Ha : r ̸= 0.

Figure 4.16 seems to suggest that ResU-Net has better performance than U-
Net. To be able to more formally compare the two architectures, we need to
make sure that we compare them on roughly the same number of parameters.
Therefore, we remove the leftest points of U-Net and the rightest points of ResU-
Net from figure 4.16. We can look at 4.17 to better visualise this comparison.
We found ResU-Net to have statistically significantly higher Cleaned Mean IoU
than U-Net.
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Figure 4.16: Scatter plot of the number of model’s parameters and Cleaned Mean
IoU. The number of model’s parameters is shown on a logarithmic scale.
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Figure 4.17: Violin plot demonstrating difference in performance between the two
architectures.

Furthermore, we inspect the architecture’s behaviour in relation to layer depth
parameter. In case of U-Net, there seems to be much weaker correlation between
the number of layers and Cleaned Mean IoU than in case of ResU-Net. This
supports the basic idea of residual networks: greater network’s depth does not
lead to a performance degradation because the model can mimic simpler models
by using the residual connections.
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Figure 4.18: Scatter plot of layer depth and Cleaned Mean IoU for the two
explored architectures.

4.3 Best model search
In this section, we attempt to find the best model for each dataset and evaluate
it.

4.3.1 Setup
We use the same hard limits and selection of the best model as in the hyperpa-
rameter analysis experiments. We train the models for all the datasets separately.

We use our knowledge obtained from the hyperparameter analysis and reduce
the number of necessary training run. We fixate the size of the crop to 128, since
crop size 64 does not offer any performance improvements and we also believe
that size 64 is insufficient for handling debris of larger size. We set overlay as
110 and use border-only crops to fit into our time limit. We employ only ResU-
Net model because it proved to be better. We vary multiple cutout and model
hyperparameters. All hyperparameter values for Best model search can be seen
in appendix E.

To select the best model, we combine the following three metrics: Cleaned
Mean IoU, Line Distance and Mean IoU. Cleaned Mean IoU expresses well over-
all performance of our algorithm. Line Distance highly penalises the algorithm’s
inconsistencies, as described in section 3.4. Finally, Mean IoU notices improve-
ments in model’s predictions, even though they are smoothed by the cleaning
process and therefore are not reflected in the cleaned metrics.

To be able to aggregate the three metrics, we need them to have comparable
scales. Since Line Distance can have values from [0, H], where H is the height
of the whole image, but the other two metrics take values from [0, 1], we need
to rescale them. To achieve that, we decided to transform all metrics into their
z-scores and combine them by their weighted average.

score = wcmmcm − wlml + wmmm , (4.2)
where

• mcm is the z-score of Cleaned Mean IoU metric and wcm is its weight,
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• ml is the z-score of Line Distance metric and wl is its weight,

• mm is the z-score of Mean IoU metric and wm is its weight, and

• the weights sum up to one.
The weights denote the importance of the given metric. Using the reasoning

above, we formalise the weights by the following formula:

wcm ≫ wl ≫ wm . (4.3)

To reflect the fact that we minimise the Line Distance (not like the other two
metrics), we use a negative value for its weight. Furthermore, we compute the
z-scores separately for each dataset because the datasets separately seem to form
a normal distribution.

4.3.2 Results
We found the best models for each dataset separately and evaluated them on the
training, validation and test sets. The results are shown in table 4.4.

Dataset Cleaned Mean IoU Mean IoU Line Distance

Training dataset:
Easy 0.9997 0.9997 2.2
Medium 0.9991 0.9995 2.2
Medium + debris 0.9956 0.9964 3.15
Hard 0.9962 0.9978 3.4
Hard + debris 0.9962 0.9969 2.93
Validation dataset:
Easy 0.9957 0.9973 2.5
Medium 0.9961 0.9978 3
Medium + debris 0.9952 0.9919 3.25
Hard 0.9908 0.9944 4
Hard + debris 0.9906 0.9924 5
Test dataset:
Easy 0.9949 0.9969 2.5
Medium 0.9959 0.9971 2
Medium + debris 0.9936 0.9950 6.625
Hard 0.9911 0.9951 8.5
Hard + debris 0.9886 0.9939 7.83

Table 4.4: Table showing performance of the best models on the training, valida-
tion and test sets. A model that has Line Distance approximately 3 and Cleaned
Mean IoU 0.9960 has perfect performance because the masks were labelled by a
human hand (and therefore are not 100% accurate) and the pixels on the border
of the grid and the rods are slightly blurred, making the true border inaccurate.

Even though the Easy and Medium dataset models have near perfect test
performance, the same does not hold for the Hard dataset model. Its error is
located in a seemingly easily segmentable part.
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Figure 4.19: A problem in a prediction of the Hard dataset’s model. The predic-
tion is denoted as the red curve, the true mask as the blue curve. The problem
is surrounded by a green bounding box. Easy and Medium models do not make
the same mistake in that area.

Interestingly, the Hard with debris model predicted this area perfectly. We
hypothesise that this is due to more training data with more variability in the
lighting.

Unfortunately, the Hard with debris model made mistakes in a different area.
We can see it in figure 4.20. There are two problems: the first is located directly
on the silicone and the second is right from it. Both, however, relate to the silicone
because even the second one has it in its prediction context (see figure 4.21). We
believe that this inaccuracy is caused by the fact that there is no silicone or a
similarly looking debris in the training data and therefore it confuses the network.
Note that the Medium with debris model also made a very similar mistake.

Figure 4.20: A problematic input for the Hard + debris dataset’s model. The
prediction is denoted as the red curve, the true mask as the blue curve. The
problem was not recognized by our Problem detection.
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Figure 4.21: A problematic input for the Hard + debris dataset’s model. The
image is made of three sub-images: the left is the input, the middle is the expected
mask and the right is the prediction.
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5. Discussion and future work
This chapter discusses our results, outlines the future usage of our algorithm and
suggests how to further improve it.

5.1 Comparison to previous work
We compare our segmentation to Knotek’s segmentation. Unfortunately, his algo-
rithm only works on Medium dataset for the side with the groove. Furthermore,
he expects the grid to have the groove between the fifth and the sixth rod, even
though our images have the groove between the sixth and the seventh rod. To
remove this difference, we flip our data along the vertical axis. This operation
does not hinder our model’s performance due to the cropping and mirroring data
augmentation.

We compare our segmentation to Knotek’s on three grids of the grooved side.
In each case, our model outperformed its predecessor significantly. Note that the
first two images appear in our model’s training set, only the third image is from
the test set.

Image name Knotek’s Ours

Cleaned Mean IoU:
1 0.9481 0.9954
2 0.9256 0.9969
3 0.9475 0.9940
Line Distance:
1 20 3
2 30 3
3 17 6

Table 5.1: Table showing performance comparison of our method to Knotek’s
method. Note that the first two inputs are in the training dataset of our model.
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Figure 5.1: Comparison of Knotek’s and our prediction on the third sample. The
red curve is the predicted boundary between grids and rods of Knotek’s algorithm,
the blue curve is ours.

5.2 Integration to the framework
Our method remains to be tried on the nuclear power plant data. The nuclear
power plant data can differ in the following ways:

1. There are more types of fuel assemblies.

2. The lighting conditions are various. Some images have very poor illumina-
tion, but later captured images have it close to our Hard dataset.

Our hypothesis is that on images with lighting of a similar quality, our models
could perform very well after retraining with modified hyperparameters. Our
algorithm could help to detect defects. Currently, the defect detection in the grid
part is done by finding a sharp uncontinuous light transition. The defect could
then be highlighted to help the operator to speed up his work. The problem
previously lied in finding the grid accurately. Our thesis could solve that part.

5.3 Future work
Even though we reached very good results in the experiments, we realise a few
things could be further improved.

5.3.1 Model selection
We selected the best model as the one with the lowest Mean Absolute Error in
300 epochs on the validation crops. If we had not improved over 80 epochs, we
finished the training and selected the best model.
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We can see from the metric curves in figure 5.2 that this can lead to selecting
a high peak with big gaps around it. Such behaviour can cause unstable model’s
test performance.

We propose to solve this by selecting the best model from the smoothed metric
over last n values, where higher n leads to prioritizing more stable model.
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Figure 5.2: Mean Absolute Error for the validation data on the logarithmic y
scale. The unsmoothed curve is the one with the lower opacity. The training
ended preemptively because the lowest value on the unsmoothed curve was found
very early.

5.3.2 Post-processing improvements
Although we implemented a basic post-processing, it does not cover all the prob-
lems that could arise. In our opinion, the most promising way to continue this
effort is to improve Shape analysis.

The border-walk gives us a lot of insight. We can transform it from list of
coordinates to list of angles and use it to create e.g. if-then rules to find invalid
shapes or a machine learning model. This method could be much more sensitive
than the current approach.
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Conclusion
Our goal was to segment out the spacer grid of the nuclear fuel assembly. To
achieve that, we prepared new datasets covering typical problems of the fuel.

To perform the segmentation, we used a deep neural network. We increased
its performance by data augmentation techniques. We used two techniques suit-
able for segmentation: Deterministic cropping and Cutout. By Deterministic
cropping, we increased the number of data substantially by splitting every image
into sub-images. We introduced a new approach of combining the sub-images’
predictions. Cutout augmentation covered part of the input image and this way
increased network’s robustness to debris.

We employed post-processing methods to increase the reliability of our al-
gorithm: Prediction cleaning and Problem detection. The former polished the
network’s output and the latter wrapped anomalies into bounding boxes.

To measure our algorithm’s performance, we proposed Line Distance metric,
computing the size of the maximum uncertain area between the actual and the
predicted transition between grids and rods. This metric is crucial to minimise
to enable an automated evaluation.

In the experiments, we analysed the hyperparameters and verified our aug-
mentation’s effectiveness. Then, we found and evaluated the best model for each
dataset. We reached very accurate segmentations and outperformed Knotek’s
algorithm by having three times lower Line Distance. Finally, we outlined, how
this thesis will be used on the real power plant data.
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Appendices

A Data screening protocol
All three datasets are created by the following procedure:

1. Position the fuel assembly in front of the camera from one of the six sides.

2. Point the camera at the highest grid, move it closer or further from the fuel
assembly.

3. Sharpen the image and take the photo.

4. Move to the lower grid and repeat the previous step. Repeat this until all
grids of this side have been screened.

5. Turn the fuel assembly to another side and continue with step 2. Repeat
this until all sides have been screened.

B Manual data pre-processing
Although our input was specified as a camera shot of the relevant side of the
spacer grid, in reality, the camera usually depicts its surroundings, too.

Figure B.1: The original input before manual pre-processing.

We used manual pre-processing to select the relevant part. We could have
used the algorithm implemented by Knotek [7], but this approach saved us de-
velopment time.
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After cropping, we manually rescaled the image to have a width of 1000 pixels.
This particular number of pixels was selected using the following reasoning:

1. The tool we used to create grid’s mask [6] has a performance limitation given
by the tool’s algorithm and our hardware. If too large mask is submitted,
then the tool gets stuck during the evaluation and the process of creating
mask becomes even more time-consuming.

2. The camera used in the nuclear power plant can have significantly lower
resolution than cameras used in the laboratory.

3. We want to fixate the size of the spacer grid in the image because it helps
the neural network.

C Cameras parameters
The table below lists cameras that were used during the screening.

Canon EOS D500 Olympus IM005

Product type SLR camera Digital camera
Image resolution Up to 4752 x 3168 Up to 4000 x 3000
Lens 17 to 55 mm 4.5 to 18.00 mm
Shutter speed 30 to 1/4000 sec. 4 to 1/2000 sec.
Waterproof no yes

Table C.1: Cameras. We use Canon EFS 17-55mm f/2.8 IS USM lens in the
Canon camera.

D Default experiment hyperparameters
In order to be able to analyse only a subset of the hyperparameters, we need to
make others constant, since we do not have enough computing power to be able
to perform the full grid search.
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Hyperparameter Value

Crop size 128
Overlay 110
Border-only crops Yes
Cutout probability 0
Cutout size 0
Model name ResU-Net
Root’s filters 1 32
Layer depth 2 4
Learning rate 0.001
Beta 1 3 0.9
Beta 2 4 0.999
Rotation probability 0.3
Zoom probability 0.15
Noise probability 0.15
Seed 70, 700, 7000, 8, 18, 180, 42, 142, 1142

Table D.2: Default hyperparameter values for the experiments.

E Best model search hyperparameters
The table below specifies the tested hyperparameters in our search for the best
model for each dataset. Many hyperparameters are constant to reduce the size
of the search.

1The number of filters in the root convolutional layer.
2The number of blocks in the encoding part of the neural network. The number of blocks

in the decoding part is the same.
3Parameter of Adam optimizer.
4Parameter of Adam optimizer.
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Hyperparameter Value

Crop size 128
Overlay 110
Border-only crops Yes
Cutout probability 0.5, 0.9
Cutout size 0, 48, 80
Model name ResU-Net
Root’s filters 8, 16, 32
Layer depth 4, 5, 7
Learning rate 0.001
Beta 1 0.9
Beta 2 0.999
Rotation probability 0.3
Zoom probability 0.15
Noise probability 0.15
Seed 700, 7000

Table E.3: Hyperparameters for the best model search.
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