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Introduction
From the peculiar rotation of planet Mercury to the unexpected geological activity
of Pluto, the tidal interaction has played an essential role in shaping the present–
day face of the Solar System. Tides affect the spin rate of planetary bodies,
contribute to their thermal budget and internal stress fields, sculpt their orbits,
and—in worlds endowed with an ocean—cause periodic redistribution of the water
masses. For an observer standing on the Earth, the most prominent results of
tidal interaction are, indeed, the daily cycle of high tides and low tides—and the
synchronous rotation of the Moon.

That both phenomena are inherently linked by the force of gravity was first
explained by Sir Isaac Newton in Philosophiæ Naturalis Principia Mathematica
(1687). Newton was aware of the tidal force’s weakness; therefore, he specifi-
cally discussed the tidal effects (caused by the Moon and by the Sun) in fluid
components of the Earth, where even a weak force results in observable motions.
Likewise, concerning the figure of the Moon, Newton proposed that were the lunar
material made of fluid, the tides raised by the Earth would transform its shape to
a prolate spheroid and the Moon would be driven to a synchronous rotation1: the
only stable spin state it can possibly acquire (“In alio enim situ corpus lunare
quiescere non potest, sed ad hunc situm oscillando semper redibit.”). The effect of
tides on the spin state of celestial bodies is and was—even in Newton’s times—
observable not only in the case of the Moon but also in the case of other large
satellites in the Solar System. Starting with the discovery of synchronous rotation
of Saturn’s moon Iapetus by Giovanni Domenico Cassini (in 1671), the equality
of the orbital and the rotational period has been empirically confirmed among all
major moons of Jupiter, Saturn, Uranus, and Neptune. A dynamically–evolved
double–synchronised rotation state, in which both the “planet” and the satellite
keep the same face towards each other, was found about forty years ago in the
Pluto–Charon system (Christy and Harrington, 1978).

Although inevitable for the Moon and the other natural satellites, the syn-
chronous rotation is not the only possible spin state of tidally–evolved bodies. As
revealed by the radio observations of Pettengill and Dyce (1965) and analysed in
an extensive literature (Peale and Gold, 1965; Goldreich and Peale, 1966; Correia
and Laskar, 2009; Noyelles et al., 2014), the innermost planet Mercury rotates
1.5–times faster than is the mean angular velocity of its revolution around the
Sun (the mean motion), and it is thus trapped in a 3:2 spin–orbit resonance.
This super–synchronous resonant rotation can be attributed to a relatively high
eccentricity of Mercury’s orbit and to large variations in the tidal torque over the
course of an orbital period. While unexpected by the observers at the time of the
discovery, the higher–order resonances of celestial bodies on eccentric orbits are

1According to Newton’s reasoning, since the synchronous rotation has already been acquired,
the Moon must have had a prolate shape from earlier times. The synchronisation of lunar
rotation was also studied by Kant, Laplace, Helmholtz, and by Darwin.



6 Introduction

(a) Composite image from Galileo (b) IR image from Juno

Figure 1: Jupiter’s moon Io as an example of strongly tidally heated body. Panel
(a), a composition of images taken in different filters, depicts the moon’s surface,
marked by ongoing volcanic activity. Panel (b) unveils the thermal radiation of
the moon, with multiple active hot spots.
Source of image (a): NASA/JPL/University of Arizona
Source of image (b): NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM

predicted by the tidal theory (e.g., Peale and Gold, 1965; Goldreich, 1966; Correia
and Laskar, 2009; Makarov, 2012; Correia et al., 2014; Ferraz-Mello, 2015); at
extreme orbital eccentricities, the synchronous rotation may even become unstable
(see, e.g., Figue 5 of Ferraz-Mello, 2015).

Tidally–loaded celestial bodies, if rotating nonsynchronously, possessing
nonzero axial tilt or orbiting on eccentric trajectories, are also subjected to
periodic variations in the tidal force and in the interior stress field. The resulting
tidal friction in materials of imperfect elasticity (be it solid or liquid) is not only
the original cause of the above–mentioned synchronisation or resonant locking, but
also a driving mechanism for the orbital evolution. Nonelastic tidal deformation is
accompanied by the dissipation of mechanical energy, and a celestial body, drained
slowly of its vis viva, descends to a lower orbit, in a closer vicinity of its host. Since
the total angular momentum in the system has to be conserved, the migration to
a lower orbit should also be followed by a decrease in the orbital eccentricity and
by a gradual diminishing of the energy dissipation. Nevertheless, the presence of
other effects in the systems of natural satellites—or in the pairs of a planet and
a satellite—may give rise to a different outcome. First, the exchange of angular
momentum and energy between a rapidly rotating planet and a close–in moon
above the corotation radius2 may lead to the orbit’s expansion. This mechanism
is observed in the Earth–Moon system, where it might have played an important
role in past orbital evolution (e.g., Ćuk and Stewart, 2012; Wisdom and Tian,
2015; Ward et al., 2020). Similarly, the tidally–driven orbit expansion presumably

2The corotation radius is the radial distance from the planet’s centre, at which the satellite’s
mean motion equals the planet’s spin rate.
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contributes to the orbital dynamics in the satellite systems of giant planets, where
it is, however, also complemented by another mechanism (e.g., Goldreich, 1965;
Dermott et al., 1988; Neveu and Rhoden, 2019).

An intriguing feature of the Solar System (and also of other planetary systems
in the Universe), is the affinity of its members for commensurabilities (e.g., Peale,
1976; Murray and Dermott, 1999). In addition to the spin–orbit resonances, in
which the rotational frequency equals an integer multiple of half the mean motion,
the moons and planets (and asteroids) are often found in orbit–orbit resonances,
the most notable being the Laplace resonance between the Jovian satellites Io,
Europa, and Ganymede. Systems of satellites with commensurate orbital periods
are able to maintain nonzero orbital eccentricities despite the tidal dissipation, and
their dynamics are thus greatly enhanced by the dissipated mechanical energy. A
particularly extreme case of a tidally–heated body in the Solar System is the moon
Io (Figure 1). Orbiting at only five Jupiter radii above the surface of its enor-
mous host planet, Io experiences surface heat flux that is approximately 25, 000
times higher than the average surface heat flux at the Earth (e.g., Peale et al.,
1979; Segatz et al., 1988; Veeder et al., 1994; Steinke et al., 2020). In icy moons,
tidal heating can provide the energy needed for the maintenance of subsurface
water oceans (e.g., Cassen et al., 1979; Sotin et al., 2009; Hussmann et al., 2010)
and the related tidal stresses in the ice shells can be the process behind their
surface tectonic features (e.g., Matsuyama and Nimmo, 2008; Rhoden et al., 2012).

This brief overview of tidal effects shaping the interiors, orbits, and rotation
states of the Solar System bodies shows us the way to the range of phenomena that
can be acting in other, potentially very different planetary systems. Given the
present count of more than 4,000 confirmed exoplanets3, the methods originally
developed for the study of Solar System bodies can now be also applied to the large
statistical set of these distant, often highly exotic worlds. While the present–day
orbital eccentricities of the Solar System planets and satellites are relatively small,
with the highest value, e = 0.2, exhibited by Mercury, the range of eccentricities
found in exoplanetary systems spans from 0 up to ∼ 1 (e.g., Tamuz et al., 2008;
Blunt et al., 2019; Udry et al., 2019). In contrast to the Solar System, the most
eccentric orbits are being inhabited by giant gaseous planets, with masses of few
to several Jupiters. Such violent worlds, dragged by tides in the pericentre and
freezing in the apocentre, are hardly comparable to the quiescent giants of our
own, loaded by a flock of small icy satellites.

Nevertheless, the primary focus of the present work is the class of terrestrial
exoplanets. Although usually not orbiting on the extreme trajectories described
above, terrestrial exoplanets can also be subjected to exotic environments, very
unlike those encountered in the Solar System. Since the most successful detection
techniques used in exoplanetary science are based on indirect measurements and,
therefore, are most sensitive to close–in exoplanets around low–mass stars, the
statistical set of extrasolar worlds contains many examples of planets orbiting

3As of December 11, 2020, the NASA Exoplanet Archive lists 4,307 confirmed extrasolar
planets, with 716 records having a radius smaller than 1.5 Earth radii (R⊕).
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in the closest vicinity of their hosts. As can be expected, based on the theory
developed originally for the Moon, such exoplanets undergo strong tidal loading
and energy dissipation and their rotation is most probably synchronised. The
orbital eccentricities of close–in terrestrial exoplanets are typically lower than for
the orbits of extrasolar gas giants (Van Eylen and Albrecht, 2015; Van Eylen et al.,
2019). However, although the orbital eccentricities tend to be lower, they are
not always zero, and they may allow for a prolonged tidal activity. Some of the
close–in worlds are found in tightly–packed multi–planetary systems, in which they
may undergo the same (or similar) type of resonant eccentricity forcing as present
in the systems of Jovian or Saturnian satellites. The orbital dynamics might even
drive a system to a long resonant chain, as is the case with TRAPPIST–1 (Luger
et al., 2017), Kepler–80 (Shallue and Vanderburg, 2018) or HD 158259 (Hara
et al., 2020). Even in single–planetary systems, the orbital eccentricities can be
driven to nonzero values either by tidal interaction of the planet with a rapidly
rotating host star (Bolmont and Mathis, 2016; Boué and Efroimsky, 2019) or
they can be maintained on nonzero values, acquired earlier, by processes acting
in the planetary interior and diminishing the tidal response (e.g., Henning et al.,
2009; Shoji and Kurita, 2014; Makarov, 2015; Makarov et al., 2018). This last
type of processes, namely the thermal evolution of planetary interior with partial
melting, will also be considered in the tidal model introduced in the main part of
the present work.

In this thesis, we discuss several topics related to solid–body tides and to their
cooperation with other phenomena. The work is divided into seven chapters and
three thematically distinct parts and is organised as follows:

• The first part covers the theoretical and empirical background of the topic. In
Chapter 1, we overview the basic concepts of celestial mechanics and provide
evolution equations that will be used in the rest of the work. Special attention
is given to two possible sources of orbital evolution: the tidal interaction
and the third–body perturbation, both described by the formalism of the
Darwin–Kaula theory. Chapter 2, on the other hand, deals with the interior
properties of terrestrial worlds. After a discussion of the detection and
characterisation techniques used in exoplanetary science, we explore the
sources of macroscopic deformation in the Earth, along with the possibilities
of their theoretical description. We also introduce the empirically–motivated
models used in modern tidal theories and briefly outline the energy balance
in the interior of terrestrial planets.

• The second part presents a semi–analytical model of coupled thermal–orbital
evolution of tidally–loaded terrestrial exoplanets. Beginning with Chapter
3, which illustrates the parametric dependencies of quantities relevant to
our study (namely, the tidal torque, the stability of super–synchronous
spin–orbit resonances, and the tidal dissipation), the exposition continues
with Chapter 4, in which we discuss the semi–analytical method itself4. The

4Chapters 3 and 4 are adapted from a published paper (Walterová and Běhounková, 2020).
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chapter introduces a standard 1d parameterised model of mantle convection,
the inclusion of an emergent magma ocean to the tidal model, and the
numerical scheme used. After this practically–oriented introduction, we
apply the model to three low–mass exoplanets with potentially nonzero
orbital eccentricity (Proxima Centauri b, GJ 625 b, and GJ 411 b) and
observe the long–term evolution of their orbital elements, spin rate, and
thermal state. In Chapter 5, the model from the previous chapters is
further extended by including a third–body perturbation in the form of a
highly–inclined outer perturber.

• The third part consists of two independent studies that are approaching the
tidal interaction from different perspectives. Chapter 6 shows a variation on
the harmonic expansion of the tidal potential (Kaula, 1961), applied to the
case of tides raised by a planet on another planet in the system. Finally, in
Chapter 7, we provide a numerical treatment of the tidal loading, calculated
in the time domain and presenting an alternative to the semi–analytical
model considered in the second part of the present thesis5.

The seven chapters summarised above are supplemented by four appendices,
which outline the normal mode theory and the calculation of the tidal heating,
provide details of the numerical scheme used in the last chapter, and list the
partial derivatives used in the semi–analytical model of the central chapters. The
main outcomes of our studies are then given in Conclusion.

5Chapter 7 is almost identical to Walterová and Běhounková (2017).
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1. Secular orbital evolution
In this chapter, we are going to introduce two mechanisms governing the orbital
evolution of close–in exoplanets in multi–planetary systems: the tidal interaction
and the third–body perturbation. The tidal interaction with the host star results in
secular shrinking of the orbit and gradual decay of the orbital eccentricity. On the
other hand, the gravitational interaction with other planet(s) in the system may
contribute to secular maintenance of large orbital eccentricities, potentially leading
to prolonged periods of increased tidal activity. After two sections introducing the
set of Keplerian elements and the standard perturbation theory, we dive directly
into the waters of Darwin–Kaula theory, which provides a comprehensive and
intuitive description of the two mechanisms in question. Then, we present a set of
auxiliary orbital elements and, finally, we briefly discuss the evolution of planetary
rotation.

1.1 Orbital elements
Let us assume a simple model system consisting of two point masses. The first
point mass, m∗, will be denoted as a star (or “the primary”), while the second
point mass, m1, will symbolise a planet (or “the secondary”). If we put the two
masses in an otherwise empty Euclidean space and prescribe their initial positions
and velocity vectors, they will start moving under the mutual attraction described
by Newton’s law of universal gravitation

F = Gm∗m1

r2 , (1.1)

where F is the force magnitude, G is Newton’s gravitational constant, and r denotes
the mutual distance between the two point masses. Regarding the evolution of the
model system with known initial conditions, we may ask the following questions:
What are the trajectories of the two masses? How can we express the position
vectors and the instantaneous velocities at an arbitrary time? The presented task,
known as the two–body problem, is the simplest integrable problem of celestial
mechanics and its solution is thoroughly explained in the first chapters of every
introductory textbook on the topic (Brouwer and Clemence, 1961; Kovalevsky,
1967; Murray and Dermott, 1999).

Here, we limit ourselves to a simple statement that the motion of the common
barycentre of the system is uniform and linear and, in barycentric coordinates,
the two point masses follow trajectories described by conic sections. Depending
on the total energy E of the system, the trajectories are either elliptical (E < 0),
parabolical (E = 0) or hyperbolical (E > 0). When finding the solution to the
two–body problem, it is also conventional to substitute the two point masses by
the total mass M = m∗ +m1, concentrated in the barycentre, and by a virtual
particle with the reduced mass µ = m∗m1/(m∗+m1), which orbits around M. This
substitution reduces the two–body problem to a one–body problem. Nevertheless,



12 Orbital elements

if the host star is considerably more massive than the planet (m1 ≪ m∗), it
approximately holds that

M ≈ m∗ and µ ≈ m1 .

Throughout this work, we assume that the condition m1 ≪ m∗ is always satisfied1.
Specifically, the positions of the planets are always referred to the position of the
host star (i.e., we express the equations of motion in asterocentric coordinates).

Keplerian elements According to Kepler’s first law of planetary motion, a
planet moves around its host star on an elliptical orbit, having the star in one
of its foci. The trajectory of a planet on elliptical orbit can be characterised
by six constants, the orbital elements, that enable the prediction of the planet’s
position at an arbitrary time. Figure 1.1 depicts the introduction of Keplerian
elements {a, e, i, ω,Ω, t0}, a set of constants with immediate geometrical meaning.
While the semi–major axis a and the eccentricity e define the shape of the ellipse,
the angular variables, Ω, ω and i, anchor the orbit in space with respect to the
inertial reference frame XY Z. The longitude of the ascending node Ω is measured
in the reference plane, from the reference direction X to the nodal line. The
argument of periapsis ω is measured in the orbital plane, from the nodal line to
the periapsis π, in which the planet gets closest to the host star. Finally, the
inclination i marks the angle between the reference plane and the orbital plane.
To initialise the planet’s position in the orbit, the five introduced elements need
to be complemented by a sixth element, which can be either the time of periapsis
passage t0 or, alternatively, the mean anomaly at epoch, marked as σ. In this
work, we prefer the second option. The mean anomaly M , a linear function of
time defined as the angle delimited by the periapsis, the position of the host star
and the position of a hypothetical body on a circular orbit with the same orbital
period T as the studied planet, is then calculated as

M = n(t− t0) = nt+ σ , (1.2)

with n being the mean motion,

n = 2π
T

=
√︃

G(m∗ +m1)
a3 . (1.3)

Figure 1.1 also introduces the instantaneous distance r of the planet from the
star and the true anomaly v. Both quantities change non-linearly with time and
their values depend on the orbital eccentricity. This observation will result in
the introduction of Hansen coefficients and the eccentricity functions later in this
chapter. On circular orbits, the true anomaly equals the mean anomaly.

1In Chapters 3 to 5, we always consider m1/m∗ ∼ 10−5.
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Figure 1.1: Introduction of the Keplerian orbital elements. (a) The orientation of
the orbital plane with respect to the inertial reference frame XY Z is determined
by the longitude of the ascending node Ω and the inclination i. Additionally, the
position of the orbit’s periapsis (point π) in the orbital plane is specified by the
argument of periapsis ω. (b) The semi–major axis a and the orbital eccentricity e
define the size and the shape of the orbit. The planet’s actual position at time t,
described by the instantaneous distance r and the true anomaly v, requires the
time of periapsis passage t0.

Three names for three angles In the previous paragraph, we mentioned three
distinct terms with the significance of angles measured from different directions:
the longitude, the argument and the anomaly. Here, we will specify the definition of
the three terms. As can be inspected in Figure 1.1, the longitude of the ascending
node Ω is measured from the fixed reference direction, the argument of periapsis
ω is measured from the nodal line and the mean or true anomaly marks an angle
measured from the periapsis in the direction of the planet’s movement. In parallel
to the longitude of the ascending node, we can also introduce other longitudes,
that will be defined with respect to the reference direction. The longitude of
periapsis is an oblique angle given by

ϖ = Ω + ω , (1.4)

the mean longitude is defined similarly as

λ = Ω + ω +M , (1.5)

and the mean longitude at epoch as

ϵ = Ω + ω + σ . (1.6)

The definition of angles related to a reference direction becomes particularly
advantageous in situations where either the nodal line or the periapsis becomes
undefined. Therefore, we will use these coordinates for the introduction of
nonsingular elements, applicable to zero inclination or zero eccentricity cases
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(Section 1.4). The set of Keplerian elements with three longitudes {Ω, ϖ, ϵ} will
also be preferred in the discussion of third–body perturbation.

Other sets of orbital elements Although in the rest of this work, we are going
to study the orbital evolution in terms of the Keplerian elements, it should be
noted that different problems of celestial mechanics may require the introduction
of different, better–suited sets of constants. While the strong suit of the Keplerian
elements is their immediate geometrical meaning, they cannot be directly accom-
modated for problems formulated in the Hamiltonian formalism, since they do not
satisfy Hamilton’s canonical equations (i.e., they are not canonical). Examples
of problems best formulated in the Hamiltonian approach is the derivation of
Lagrange planetary equations, the study of the dynamics of resonance or reso-
nance encounters, and algebraic mappings (e.g., Brouwer and Clemence, 1961;
Kozai, 1962; Peale, 1969, 1976; Murray and Dermott, 1999; Boué, 2020). The
Hamiltonian formulation also facilitates coordinate transformations and—as is
important in the context of our work—it has been successfully employed in the
rigorous re–derivation of tidal equations (Boué and Efroimsky, 2019).

As an example of the canonical orbital elements, we mention the set of Delaunay
variables (Murray and Dermott, 1999), which is, in the scope of tidal dynamics,
often complemented by Andoyer variables for the motion of the rotation axis. The
Delaunay variables consist of three generalised coordinates, {l = M, g = ω, h = Ω}
and their conjugate momenta, which correspond to a rescaled total energy of the
system, the total angular momentum, and the z–component of the total angular
momentum. A similar system of canonical elements, in which the generalised
coordinates are represented by the longitudes defined in the previous paragraph,
is the set of Poincaré variables (Murray and Dermott, 1999).

1.2 Perturbation theory
A point–mass planet orbiting a point–mass star in an idealised, empty space would
retain its initial orbital elements forever. The same would also hold for a system
consisting of a non–deformable spherical star and a non–deformable spherical
planet. However, in all realistic cases found in Nature, the assumptions taken in
the simple two–body problem are generally not satisfied. First, the host star as
well as the planet are rotating extended bodies. Their shape is distorted due to
the rotation, tidal deformation and inherent topography; their gravitational field is
further altered by non–homogeneities in the interior and, potentially, by relativistic
effects (Rubincam, 1977). These phenomena present one of the possible sources of
orbital evolution. Second, the star and the planet are, in reality, never entirely
shielded from the influence of other bodies or other material in the environment.
Be it the multiplicity of the host star, the presence of other companions in the
system, a gas or dust disk, the physical environment always shapes the orbits of
the celestial bodies.

The perturbation theory, which forms the basis of the following derivations,
assumes that the influence of either of the perturbations is small and that the
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trajectory of the studied body can still be described by a Keplerian ellipse2. If
the force generated by the disturbance is conservative, the gravitational effect of
the perturbation can be characterised by the disturbing potential or disturbing
function R. The total potential Φ, governing the motion of the body, is then
written as

Φ = Φ2B + R , (1.7)

where Φ2B signifies the gravitational potential of the host star as sensed by the
planet in the two–body problem,

Φ2B = Gm∗

r
. (1.8)

As we will see in the following section, the exact form of the disturbing function
depends on the nature of the problem. Different perturbations induce different
variations in the orbital elements. For a disturbing function expressed in the
Keplerian elements, the evolution of the shape and the orientation of the orbit
can be described by the set of Lagrange planetary equations (e.g., Brouwer and
Clemence, 1961; Kovalevsky, 1967):

da
dt = 2

na

∂R
∂σ

, (1.9a)

de
dt = 1 − e2

na2e

∂R
∂σ

−
√

1 − e2

na2e

∂R
∂ω

, (1.9b)

di
dt = cot i

na2
√

1 − e2
∂R
∂ω

− 1
na2

√
1 − e2 sin i

∂R
∂Ω , (1.9c)

dΩ
dt = 1

na2
√

1 − e2 sin i
∂R
∂i

, (1.9d)

dω
dt =

√
1 − e2

na2e

∂R
∂e

− cot i
na2

√
1 − e2

∂R
∂i

, (1.9e)

dσ
dt = − 2

na

∂R
∂a

− 1 − e2

na2e

∂R
∂e

. (1.9f)

In equations (1.9), we used the set of osculating orbital elements containing ω
and σ. However, when inspecting the mutual gravitational perturbation of two
or more planets in the system, it might be advantageous to express the angular
variables with respect to a fixed reference direction. Therefore, we also present
the alternative form of the Lagrange planetary equations, with the argument of
periastron (ω) and the mean anomaly at epoch (σ) substituted by the longitude

2Specifically, the orbital elements of the trajectory that would be taken by the planet upon
vanishing of the perturbation at time t are known as osculating elements (e.g., Kovalevsky,
1967).
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of periastron (ϖ) and the mean longitude at epoch (ϵ), respectively (Murray and
Dermott, 1999):

da
dt = 2

na

∂R
∂ϵ

, (1.10a)

de
dt = −

√
1 − e2

na2e
(1 −

√︁
1 − e2)∂R

∂ϵ
−

√
1 − e2

na2e

∂R
∂ϖ

, (1.10b)

di
dt = −

tan i
2

na2
√

1 − e2

(︃
∂R
∂ϵ

+ ∂R
∂ϖ

)︃
− 1
na2

√
1 − e2 sin i

∂R
∂Ω , (1.10c)

dΩ
dt = 1

na2
√

1 − e2 sin i
∂R
∂i

, (1.10d)

dϖ
dt =

√
1 − e2

na2e

∂R
∂e

+
tan i

2
na2

√
1 − e2

∂R
∂i

, (1.10e)

dϵ
dt = − 2

na

∂R
∂a

− 1 − e2

na2e
(1 −

√︁
1 − e2)∂R

∂e
+

tan i
2

na2
√

1 − e2
∂R
∂i

. (1.10f)

1.3 Darwin–Kaula expansion
The rest of our journey through the theoretical foundations of the secular or-
bital evolution focuses on two kinds of periodic perturbations: the third–body
perturbation due to a second planet in the system and the tidal perturbation
due to the finite dimension of the studied body. A classical approach to the
mathematical description of such periodic perturbations to the planet’s orbit is
presented by the Darwin–Kaula expansion. Sir George Howard Darwin, the author
of innumerable scientific essays, with topics ranging from the lunar theory to the
practical aspects of tidal waves in English channels, was the first one to describe
the orbital evolution of a satellite revolving around a tidally deformed planet
(Darwin, 1880). In his analysis, he treats the tidal wave as a degree–2 surface
spherical harmonic and studies in detail the tidal terms corresponding to the
leading frequencies in the Earth–Moon system3. To distinguish between the two
roles of the satellite—as a tide–raising body and as a body whose orbit is disturbed
by the tidal distortion of the planet—he formally introduces two model satellites
(moon and Diana) with two sets of orbital elements. The two satellites and their
respective sets of elements are identified with each other upon the derivation
of the evolution equations. Since no restrictions apply to the character of the
satellites, the theory describes the orbital evolution of the Moon as well as the
“orbital evolution” of the Sun with respect to the Earth—and vice versa.

A similar approach to the derivation of the tidal disturbing function and the
evolution equations was taken by William Mason Kaula. Kaula (1964) (see also

3The use of harmonic analysis in the tidal theory was inaugurated by William Thompson
(Lord Kelvin), a friend, teacher, and inspirer of George Darwin.
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Kaula, 1961) writes the tidal potential, which is raised by the disturbing body,
in the form of a spherical harmonic decomposition and derives Fourier series to
analyse its changes in time. The derivation is, basically, a chain of binomial
expansions, yielding the tidal potential expressible as

Φ =
∑︂
lmpq

Almpq(a, e, i) cosψlmpq(λ,ϖ,Ω) . (1.11)

Here, the indices lm correspond to the spherical harmonic decomposition and the
indices pq to the expansion into Fourier modes. The frequencies of the individual
modes are obtained as linear combinations of the time derivatives λ̇, ϖ̇, Ω̇, and
of the Earth’s spin rate θ̇. Later, Kaula (1964) revives the “double-satellite”
derivation of Darwin (1880) and, after identifying the two satellites with each
other, obtains evolution equations for the individual modes of the series introduced
in expression (1.11). In a similar manner, he also derives the disturbing function
and the evolution equations for a satellite perturbed by another body with the
same primary (Kaula, 1962).

The theory of William Kaula became particularly fruitful in the field of space-
based geodesy and a large volume of classical literature is based on his pioneering
work on this topic. In the scope of planetary science, the Darwin–Kaula expansion
is valued mainly for the feasibility of discerning which modes are important for
a given analysis and which modes can be neglected. The expansion into Fourier
modes also seems advantageous in the case of tides in nonelastic bodies, whose
response to external loading is more easily described in the frequency domain
than in the time domain. The details of the Darwin–Kaula expansion applied to
the two aforementioned problems, namely the third–body perturbation and the
motion around a tidally distorted primary, are given in the next two subsections.

1.3.1 Third–body perturbation
Assumptions First, let us focus on the case of two planets (or satellites)
orbiting the same primary. Let m1 symbolise the inner planet and m2 the outer
one. Correspondingly, the subscripts 1 and 2 of all studied quantities will refer to
the inner and the outer planet, respectively. Specifically, a1 and a2 will symbolise
the semi–major axes of the two planets, defined with respect to the host star.
Since the problem is to be treated in the scope of the perturbation theory, we
assume that the two orbits are non–crossing, thus

a1(1 + e1) < a2(1 − e2) . (1.12)

Condition (1.12) ensures that the periapsis of the outer planet is still further
away from the host star than the apoapsis of the inner planet and that the two
planets never collide4. To remain in the domain of the perturbation theory, we

4The dynamics of planetary systems also enable the existence of collisionless crossing orbits.
A famous example of crossing orbits in the Solar System are Neptune and Pluto: their orbital
configuration is stable thanks to the 3:2 orbit–orbit resonance (Varadi, 1999). Numerous
examples of other stable configurations not fulfilling the condition (1.12) are given in, e.g.,
Murray and Dermott (1999).
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also require that the disturbing function for each of the planets is much smaller
than the Newtonian potential due to the primary,

R1 ≪ Gm∗

r1
and R2 ≪ Gm∗

r2
. (1.13)

In other words, the trajectories of both planets can be at each time t described by
a Keplerian orbit.

Inner planet Under the given conditions, the disturbing function for the inner
planet can be written as (Kaula, 1962)

R1 = Gm2

a2

∞∑︂
l=2

l∑︂
m=0

l∑︂
p,p′=0

∞∑︂
q,q′=−∞

κm
(l −m)!
(l +m)!

(︃
a1

a2

)︃l

Flmp(i1)Flmp′(i2)Hlpq(e1)Glp′q′(e2) cosψ ,

(1.14)
with

ψ = (l− 2p′ + q′)λ2 − (l− 2p+ q)λ1 − q′ϖ2 + qϖ1 + (m− l+ 2p′)Ω2 − (m− l+ 2p)Ω1 (1.15)

and

κm = (2 − δm0) , where δm0 =
{︄

0 for m ̸= 0 ,
1 for m = 0 .

(1.16)

Equation (1.14), in parallel to the general expression for the Darwin–Kaula
expansion of the tidal potential (1.11), characterises each mode of the disturbing
function by six indices. As earlier, the indices pq stand for the Fourier series
expansion of the periodic orbit of the inner planet and the indices p′q′ denote the
same for the outer planet. In equation (1.14), we also see Kaula’s functions of
inclination Flmp(i) and the functions of eccentricity Glpq(e), Hlpq(e) for an inner
and an outer perturbation, respectively. These three kinds of functions arise
during the derivation of the disturbing function (Kaula, 1961, 1962) and will be
further discussed in Subsection 1.3.3. At this point, to estimate the magnitude
of each term in the Darwin–Kaula expansion, it might be instructive to mention
that (Kaula, 1961; Murray and Dermott, 1999)

Glpq(e) = o
(︂
e|q|
)︂

Hlpq(e) = o
(︂
e|q|
)︂

(1.17)

and

Flmp(i) = o

(︃
sin|m−l+2p| i

2

)︃
. (1.18)

Note that, in general, the disturbing function for the inner planet depends on
all orbital parameters of both planetary bodies. We would also point out at the
structure of the argument ψ, a linear combination of the angular variables λi, ϖi,
and Ωi. Interestingly, the sum of the coefficients standing before the individual
variables is identically zero. This, so–called d’Alembert relation (e.g., Murray
and Dermott, 1999), is fulfilled thanks to our choice to describe the orbit by
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the longitudes {λ,ϖ,Ω} in place of the mean anomaly M and the argument of
periapsis ω.

In the above expansion, we neglected the term l = 0. This term does not
depend on the orbital elements of the inner planet m1 and, consequently, it does
not contribute to the orbital evolution. The second term, l = 1, is zero due to
our choice of asterocentric coordinates (e.g., Murray and Dermott, 1999). In the
barycentric coordinate system, with the semi–major axes a1 and a2 defined with
respect to the common barycentre, the term l = 1 would correspond to the motion
of the common barycentre, caused by the orbit of the outer planet m2.

Outer planet Almost identical to the case of the inner planet, the disturbing
function for the outer planet can be written as (Murray and Dermott, 1999)

R2 = Gm1

a2

∑︂
l,m,p,p′,q,q′

κm
(l −m)!
(l +m)!

(︃
a1

a2

)︃l

Flmp(i1)Flmp′(i2)Hlpq(e1)Glp′q′(e2) cosψ + Rac

(1.19)
with

Rac = Gm1

[︄
a1

a2
2

H1pq(e1)G1p′q′(e2) − a2

a2
1

G1pq(e1)H1p′q′(e2)
]︄

×

×
1∑︂

m=0

1∑︂
p,p′=0

∞∑︂
q,q′=−∞

κm
(1 −m)!
(1 +m)!F1mp(i1)F1mp′(i2) cosψ

(1.20)

and with the limits of summations in equation (1.19) same as in equation (1.14).
Here, the term l = 0 is neglected in concordance with convention, although it
depends on a2 and, therefore, contributes to a slow secular variation in the mean
longitude ϵ. The additional term Rac, which we denote as the “asterocentric
correction”, contains the contribution of l = 1 and corresponds, again, to our
choice of the coordinate system.

Secular evolution The disturbing functions for the inner and the outer planet
have the form of a sum of periodic functions with arguments ψ = ψlmpp′qq′ . Each
term of the Darwin-Kaula expansion thus contributes to the resulting behaviour
of the system at a distinct period and with a distinct amplitude. Depending on
their characteristic rates of change, we may divide the individual angular elements
in ψ into “slow” and “fast” variables. The fast variables, λ1 and λ2, characterise
the variations of the disturbing function on the scale of one orbital period. The
remaining, slow variables, on the other hand, determine the secular evolution of
the system under the third–body perturbation. The linear combination of all
angular variables in ψ represents the unique configuration of the planetary system
at a given time.

To filter out the short–scale variations of the disturbing function, we need to
obtain its mean value, averaged over the fast variables. The secular contribution
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to the disturbing function is thus obtained as

⟨Ri⟩sec = 1
4π2

∫︂ 2π

0

∫︂ 2π

0
Ri dλ1 dλ2 =

∑︂
Ai cosψ , (1.21)

where the right–hand side satisfies

(l − 2p+ q) = 0 ∧ (l − 2p′ + q′) = 0 ,

the summation is performed over all lmpp′qq′ modes fulfilling the given condition
and the symbol Ai = Ai,lmpp′qq′(a1, a2, e1, e2, i1, i2) serves as a shorthand for the
amplitude of each mode. Any short–scale variations of Ai, i.e., the variations
of the semi–major axes, the eccentricities, and the inclinations over one orbital
period, were neglected in the averaging. The argument ψ in the secular case
depends only on the slow variables, so that

ψsec = −q′ϖ2 + qϖ1 + (m− l + 2p′)Ω2 − (m− l + 2p)Ω1 . (1.22)

In addition to the contribution indicated in equation (1.21), the secular evolution
of the two–planetary system may also be affected by the presence of orbit–orbit
resonances. In that case, the secular disturbing function ⟨Ri⟩sec would need to be
complemented by additional terms arising due to the resonant behaviour.

Orbit–orbit resonances A resonance between the orbits of two planets in a
system occurs whenever the ratio of their orbital or orbit precession periods equals
a rational number, preferably with small numerator and denominator. By the
orbit precession we understand the precession of the pericentre, quantified by ϖ̇,
or the precession of the nodal line, quantified by Ω̇. The system is said to be in
resonance if the time derivative of the argument ψ,

ψ̇ = (l−2p′ +q′)(n2 + ϵ̇2)−(l−2p+q)(n1 + ϵ̇1)−q′ϖ̇2 +qϖ̇1 +(m− l+2p′)Ω̇2 −(m− l+2p)Ω̇1 ,
(1.23)

equals or closely approaches zero for some combination of the indices. Then, the
corresponding terms in the Darwin–Kaula expansion play the leading role in the
disturbing function and in the evolution equations for the system.

Since the orbit precession frequencies are typically lower, compared to the
mean motions, the most prominent resonances are the mean–motion resonances,
approximately satisfying the criterion

(l − 2p′ + q′)n2 − (l − 2p+ q)n1 ≈ 0 . (1.24)

As n2 denotes the mean motion of the outer planet and n1 the mean motion of
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the inner planet, the ratio between the prefactors of the two mean motions in
(1.24) can be expressed as

l − 2p′ + q′

l − 2p+ q
≈ k + j

k
, (1.25)

where k and j are small integers. Specifically, j is called the order of resonance
and the arguments ψ fulfilling the relation (1.25) are labelled as the resonant argu-
ments. For the sake of illustration, let us write down several resonant arguments
corresponding to the 2 : 1 mean–motion resonance. Along with them, we also
indicate the magnitude of the lowest–order term in the corresponding amplitudes
A, given by the indices lmpp′qq′:

ψres = 2λ2 − λ1 −ϖ1 , A ∝
(︃
a1

a2

)︃2
e1

ψres = 2λ2 − λ1 −ϖ2 , A ∝
(︃
a1

a2

)︃2
e2

ψres = 2λ2 − λ1 −ϖ1 − Ω2 + Ω1 , A ∝
(︃
a1

a2

)︃2
e1 sin i12 sin i22

ψres = 4λ2 − 2λ1 − 2ϖ1 , A ∝
(︃
a1

a2

)︃4
e2

1

(1.26)

The four chosen examples offer several observations: 1) The resonant arguments
must satisfy the d’Alembert relation; therefore, the frequencies of the resonant
terms always contain a contribution from the orbital precession. 2) Generally
speaking, lower coefficients in the resonant arguments indicate higher amplitudes
of the corresponding terms. However, this conclusion depends on the orbital
inclinations and eccentricities. 3) If the resonant argument depends on ϖ but does
not depend on Ω, the amplitude of the term is proportional to e (but not to i).
This kind of resonances is called the eccentricity–type resonance. 4) If the resonant
argument also depends on Ω, the amplitude of the term is also proportional
to i. Resonances in which the argument consists of the mean longitudes and
longitudes of the ascending nodes (not illustrated in this example) are called the
inclination–type resonances.

A system in the proximity of a mean–motion resonance is characterised by
periodic variations in the semi–major axes, the eccentricities, and the inclinations.
The variations may be large and in the case of close–in moons (such as the Jovian or
Saturnian satellites) or close–in exoplanets (such as TRAPPIST-1) they may lead
to alternating periods of increased and decreased tidal heating (e.g., Ojakangas and
Stevenson, 1986; Spohn, 1991; Luger et al., 2017). Due to the oscillatory nature
of the long-term evolution, the changes in the resonant arguments resemble, in a
simplified case5, the motion of a linear harmonic oscillator. Using the pendulum

5The illustrative pendulum model is derived specifically for the circular restricted three–body
problem, where the outer planet possesses a circular orbit, the inner planet is of negligible mass
(and its effect on the outer planet is thus negligible), and both bodies are moving in the reference
plane (Murray and Dermott, 1999).
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model (e.g., Murray and Dermott, 1999), it can be shown that, depending on the
total energy of the system, the angle ψres either librates about a stable point or
it circulates6. The stable point is ψ = 0 for odd–order resonances and ψ = π for
even–order resonances (e.g., Winter and Murray, 1997).

In addition to the secular terms and the terms corresponding to orbit–orbit
resonances (if present), the study of orbital evolution over the entire age of the
system may also require the inclusion of secular resonances. The secular resonances
involve coupling between orbit precessions of the two bodies. In other words, they
consist of resonances between the respective ϖ̇ and/or Ω̇. In the Solar System,
the secular resonances involving Saturn contribute to the present structure of
the asteroid belt (Froeschle and Morbidelli, 1994) and the resonance between
the perihelium precessions of Jupiter and Mercury may be responsible for large
past excursions of the Mercurian eccentricity (Laskar, 2008). A specific type of a
secular resonance, affecting the motion of highly inclined or eccentric asteroids, is
the (von Zeipel–)Kozai–Lidov mechanism (von Zeipel, 1910; Lidov, 1962; Kozai,
1962). This topic will be discussed in more detail in Chapter 5. On extremely
long timescales, comparable to the age of the system, the secular co–evolution
of the planets is also subject to other effects, such as the tidal loading. The
description of this phenomenon in the scope of the Darwin–Kaula theory is given
in the following subsection.

1.3.2 Tidal loading
The tidal loading and the related tidal phenomena result from the gravitational
action on an extended, deformable body. A planet subjected to the gravitational
force exerted by the host star, and to the centrifugal force due to its revolution
around the host star, deforms under the influence of the differential—tidal—force
and assumes the shape of a prolate spheroid. In response to the tidal loading, it
forms two tidal bulges. If the planet were perfectly elastic, the symmetry axis
of the prolate spheroid would be identical to the line connecting the two bodies.
One of the tidal bulges would be raised on the hemisphere facing the host star
and the other on the opposite hemisphere.

However, the response of realistic planets is never perfectly elastic. As a
consequence of the energy dissipation in the planet’s interior, the tidal bulge
forms gradually and the resulting symmetry axis of the deformed planet does
not necessarily coincide with the direction to the host star. Due to the planet’s
rotation and its movement around the star on a potentially eccentric orbit, the
tidal bulge can get carried away from that direction by a small angle. Several
possible definitions of this tidal lag will be given in one of the following paragraphs,
where we will also see that the character of the tidal deformation offers a unique
insight into the structure, composition, and rheological properties of the planet.

The gravitational force acting on the unaligned tidal bulges gives rise to the
6In an extreme case, when the total energy of the system equals the critical energy dividing

the librational and oscillatory regions in the phase space (the separatrix), the resonant angle
undergoes a transitional type of motion with infinite period.
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tidal torque, which is then responsible for the evolution of the planet’s spin rate.
Similarly, the energy dissipation in the planet’s interior results in the long–term
orbital evolution. The secular changes in the spin rate and in the orbital elements
are mutually interconnected due to the dependence of the tidal lag on the frequency
of the planet’s rotation. Since the tidal torque and the evolution equations depend
very steeply on the semi–major axis, the tidal effects are particularly important
in the case of close–in moons and planets. The theory unfolded in this subsection
is later applied to Chapters 3, 4, and 5.

Orientation of the planet Kaula (1961) expresses the position of the secondary
relative to the primary, i.e., using orbital elements defined with respect to the
primary’s equator and its intersection with the orbital plane. Such an approach
is natural to the problem of geometric utilisation of artificial satellites (Kaula,
1961) as well as to the tidal evolution of the lunar orbit (Kaula, 1964), although
it might complicate the assessment of the angular elements’ variation in systems
where both the primary and the secondary are contributing to the tidal evolution
(Chyba et al., 1989; Boué and Efroimsky, 2019). Nevertheless, to characterise
the star’s position relative to the planet, we introduce three angles describing the
planet’s orientation relative to the orbital plane7: α, β, and γ. As indicated in
Figure 1.2, the angle γ sets the position of the vernal point on the celestial equator
and determines at what phase of the orbit the planet experiences vernal equinox.
Angle β is the planet’s obliquity, measured between the normal to the orbit and
the planet’s spin axis. Finally, α determines the initial position of the reference
meridian (or the initial rotation of the planet around its spin axis). Variables
introduced as Ω, i, and ω in the work of Kaula (1961, 1964) are thus substituted
by the three new angles characterising the planet’s orientation.

Tidal potential While the disturbing function in the previous subsection was a
consequence of mere existence of the second planet, the disturbing function due to
tides results from the tidally–induced deformation of the studied planet and from
the changes in the gravitational potential of the deformed body. To determine the
planet’s deformation, we first need to express the tidal potential, under which it
deforms. In our case, the tidal potential is induced by the gravitational action of
the host star and its magnitude in an infinitesimal volume at radius ϱ, colatitude
ϑ, and longitude φ of the studied planet can be decomposed as (Kaula, 1961,
1964)

Φtide,p(ϱ, ϑ, φ) =
∞∑︂

l=0

l∑︂
m=0

l∑︂
p=0

∞∑︂
q=−∞

Φtide,p
lmpq (ϱ, ϑ, φ) , (1.27)

7Note that the frame defined by the orbital plane and its normal is not an inertial reference
frame, since its orientation is subject to evolution. A description using the Euler angles with
respect to the inertial frame is given in Boué and Efroimsky (2019). The counterparts of our
angles {α, β, γ} in their notation are {Ω′, i′, ω′}.
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Figure 1.2: Orientation of the planet and the introduction of angles α, β and
γ. (a) The orientation of the planet with respect to the orbital plane xy can be
described by three consecutive rotations. Let the x-axis represent the direction
towards the star in the pericentre P and let V indicate the position of the vernal
point (the intersection of the equator with the orbit). Angle γ is then defined as
the angular distance from P to V . Angle β characterises the planet’s obliquity
and measures the tilting of the equatorial plane with respect to the orbital plane.
Finally, α defines the initial position of the reference meridian and is measured
from the vernal point in the direction opposite to the planet’s rotation. The star
orbits counterclockwise along the yellow line. The planet rotates so that the point
M , where the reference meridian crosses the equator, moves counterclockwise
along the red line. (b) A close-up of the relevant region in the previous image;
v(t) is the true anomaly of the star. Adapted from Kaula (1961).

where

Φtide,p
lmpq (ϱ, ϑ, φ) = B̃lm C̃lmpq ϱ

l Plm(cosϑ)
{︃

cos
sin

}︃l−m even

l−m odd
[ν̃lmpq −m(φ+ θ̃)] (1.28)

and
B̃lm = Gm∗

(l −m)!
(l +m)! κm ,

C̃lmpq = 1
ãl+1 Flmp(β̃) Glpq(ẽ) .

ν̃lmpq = (l − 2p)γ̃ + (l − 2p+ q)M̃ +mα̃ .

In the above definition, θ symbolises the sidereal time (the rotation angle of the
planet) and the tilde marks variables describing the position of the tide–raising
body relative to the planet’s surface. As explained in the preface to the section
on the Darwin–Kaula expansion, both Darwin (1880) and Kaula (1964) analysed
the tidal evolution by studying the case of the Earth with two satellites. One of
the satellites was thought of as tide–raising, while the other was thought of as
experiencing the orbital evolution due to the tidal deformation of the Earth. Both
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satellites were then identified with each other. Our variables with a tilde are thus
bound to the first satellite in this description.

Tides in the planet The model planet deforms under the influence of the tidal
potential (1.27) and the deformation gives rise to the disturbing potential—or
the disturbing function. In the model of Darwin (1880) and Kaula (1964), the
disturbing function determines the orbital variations of the second satellite. If
we retain the same labelling as above, where the quantities with a tilde mark the
orbital elements of the tide-raising satellite, the disturbing function influencing
the orbital elements of the second satellite (without the tilde) is (Kaula, 1964)

Rtide,p =
∞∑︂

l=0

l∑︂
m=0

l∑︂
p=0

∞∑︂
q=−∞

Rtide,p
lmpq , (1.29)

where8

Rtide,p
lmpq = kl R

2l+1 B̃lm C̃lmpq

l∑︂
p′=0

∞∑︂
q′=−∞

Clmp′q′ cos[ν̃lmpq −εlmpq −mθ̃−(νlmp′q′ −mθ)] . (1.30)

In equation (1.30) we introduced symbol R for the radius of the model planet
and symbols kl and εlmpq for the tidal Love number and the tidal phase lag,
respectively. These two parameters quantify the relative change in the planet’s
gravitational potential resulting from its tidal deformation. The Love number and
the phase lag depend on the interior structure, on the rheological parameters of
the planet, and also on the loading frequency. Traditional as well as rheologically–
motivated prescriptions of the two quantities will be discussed in one of the
following paragraphs.

The argument of cosine in equation (1.30) can be explicitly rewritten as

ψtide = (l− 2p)γ̃ − (l− 2p′)γ + (l− 2p+ q)M̃ − (l− 2p′ + q′)M +m(α̃− α) −m(θ̃− θ) − εlmpq

and if we introduced an analogy of the longitude of pericentre (α+γ) and the true
longitude (α+ γ +M) in the planetocentric elements of the host star {α, β, γ},
the argument would closely resemble the case of the third–body perturbation
(1.15). The only difference would result from the planet’s rotation (the term with
θ) and the lagging of the planet’s deformation.

As was already emphasised, the tidal disturbing function (1.30) is expressed
in elements defined with respect to the planet’s equator. Since both the tide–
raising and the perturbed satellites of Darwin (1880) and Kaula (1964) are, in our
case, represented by the host star, the planetocentric elements of the “satellites”
are equivalent to the angles describing the planet’s orientation relative to the
orbital plane. When studying the orbital evolution of the planet with respect

8This definition already contains the assumption m1 ≪ m∗. A more general expression for
the disturbing function due to tides was presented by Boué and Efroimsky (2019).
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to the (asterocentric) inertial reference frame, it would also be necessary to
correctly convert the planetocentric elements {a, e, β, γ, α, σ} to the asterocentric
elements {a, e, i, ω,Ω, σ} used in the previous sections. The conversion consists
in rotations of a planetocentric reference frame and results in nontrivial changes
in the evolution equations for the angular variables. We will return to this point
later when discussing the derivation of Boué and Efroimsky (2019).

Although the evolution of the angular elements should be treated carefully,
the disturbing function introduced in equation (1.30) can be readily used in the
Lagrange planetary equations for the semi–major axis and the eccentricity. The
differentiation is then performed with respect to the elements without the tilde,
i.e., corresponding to the second, perturbed satellite. After the derivation of the
evolution equations, the two model satellites can be identified with each other, so
that the quantities with a tilde are set equal to the quantities without the tilde.

As in the case of the third–body perturbation, we would like to study the tidal
evolution in the long–term. Upon identifying M with M̃ , γ with γ̃, and averaging
over the mean anomaly and the precession angle9 γ, the only nonzero terms in
the Darwin–Kaula series are p′ = p and q′ = q. Therefore, the argument of the
secular evolution equations due to tidal loading reduces to ψsec,tide = −εlmpq.

Effect of the interior structure We have already introduced the tidal Love
number and the tidal phase lag as the two global parameters quantifying the
planet’s reaction to external loading. On the previous lines, we have also seen
that the secular evolution equations only contain the argument sin εlmpq. The
role of the planet’s interior is thus parameterised by the factor kl sin εlmpq, which
is sometimes called the kvalitet (Makarov, 2015; Makarov et al., 2016; Frouard
et al., 2016). The tidal Love number is defined as the ratio between the amplitude
of the disturbing potential, induced by the tidal deformation of the planet, and
the amplitude of the tidal potential, which is the source of the deformation. For
the purpose of the definition, both potentials are measured at the surface R of
the planet. The phase lag is then defined as the difference in phases of the two
periodically changing potentials. Since the tidal and the disturbing potential can
be decomposed into spherical harmonics, the Love number and the phase lag can
also be defined with respect to a given harmonic. In equation (1.30), we use kl to
symbolise the degree–l Love number and εlmpq to mark lagging of the lm harmonic
in the Fourier mode indexed as pq.

In addition to the Love number and the phase lag, we may also find in literature
the quantity Q, or the tidal quality factor (e.g., MacDonald, 1964; Goldreich,
1966; Goldreich and Soter, 1966; Efroimsky and Lainey, 2007). The quality factor
quantifies the energy dissipation in a planet: the higher it is, the less energy can
be dissipated in each tidal loading cycle. The inverse quality factor is defined as
the ratio between the energy lost (∆E) and the maximum energy deposited (2πE)

9The evolution of angle γ would correspond to the planet’s axial precession. The second
averaging is thus an averaging over the axial precession period.
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during one loading cycle (e.g., Stacey, 1963; Sotin et al., 2009),

Q−1 = ∆E
2πE

, (1.31)

and, in the tidal theory, it is related to the phase lag as (Efroimsky, 2012a)

Q−1
lmpq = sin εlmpq, (1.32)

where Qlmpq is the quality factor of the mode lmpq. In material science, a
corresponding parameter is defined as tangent of the phase lag (Nowick and Berry,
1972). Nevertheless, the two definitions are almost equivalent for small values of
εlmpq. In the Earth, the quality factor is measurable by the methods of seismology,
gravimetry, and geodesy, which offers an insight into the behaviour of planetary
material that should be also considered in tidal theory (Section 2.2).

The quantities kl, εlmpq, and Qlmpq depend on the interior structure and on the
composition of the planet. As mentioned earlier, they also depend on the loading
frequency. In reality, the frequency dependence of the kvalitet (either kl sin εlmpq

or kl/Qlmpq) is closely linked to the planet’s rheology and stratification (e.g.,
Efroimsky and Lainey, 2007; Henning and Hurford, 2014; Tobie et al., 2019) and
the prescription of a given frequency dependence is equivalent to the specification
of a given rheological model for the planet. In the traditional tidal literature using
the Darwin–Kaula expansion, we may find two basic concepts: the phase lags
of the individual modes, εlmpq, are either treated as constant and equal to each
other, or they are considered as linear functions of the loading frequencies

ωlmpq = (l − 2p)γ̇ + (l − 2p+ q)Ṁ +mα̇−mθ̇ ≈ (l − 2p+ q)n−mθ̇ . (1.33)

The first approach is known as the constant phase lag model, the second one as the
constant time lag model. Both are valuable for their simple form, which endows
them with the ability to serve as toy models in the basic considerations of the tidal
evolution path. In certain restricted cases, they are also a good approximation of
the system’s actual behaviour. Nevertheless, neither of them is fully compatible
with the rheology of realistic terrestrial bodies (Makarov and Efroimsky, 2013).

Constant phase lag model Although the constant phase lag model (e.g.,
Goldreich, 1963; Kaula, 1964; Yoder, 1982) is motivated by the negligible frequency
dependence of the Earth’s quality factor Q over a wide range of relevant frequencies,
it leads to physically inappropriate behaviour in the vicinity of zero frequency.
The kvalitet in the constant phase lag model reads as

kl sin εlmpq = kc sin εc Sgn{ωlmpq} , (1.34)

where kc and εc are constants10 and Sgn{·} ∈ {−1, 0, 1} is a function returning
10In the traditional models, the Love number is often treated as constant. As we will see in

Chapter 7, this assumption is in most cases correct: the Love number is approximately constant
in the low–frequency region as well as in the high–frequency region and if all of the relevant tidal
modes fall into one of these regions, the Love number does not necessarily need to be endowed
with a frequency dependence.
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the sign of its argument. Once the frequency of a dominant tidal mode crosses
zero, as is the case for synchronously rotating bodies (θ̇ ≈ n) on eccentric orbits,
the corresponding term in the Darwin–Kaula expansion immediately changes
sign. In other words, the tidal bulge, first lagging behind the maximum of
the tidal potential, immediately switches its position with respect to the radius
vector centred in the star. Such a transition is unphysical and not related to
any particular rheology. Nevertheless, the Darwin–Kaula expansion with the
assumption of constant phase lags leads to qualitatively correct predictions for
the planet’s spin rate (Dobrovolskis, 2007).

Constant time lag model The constant time lag model (e.g., Darwin, 1880;
Alexander, 1973; Hut, 1981; Mignard, 1979) avoids the step function at the zero
frequencies by directly including the frequency dependence of the kvalitet,

kl sin εlmpq = kc sinωlmpq∆t , (1.35)

where ∆t is the time lag. This prescription of the frequency dependence is also
known as the weak friction approximation (Alexander, 1973; Hut, 1981) and the
main area of its application is the study of stellar tides in binary systems11. The
constant time lag model is rheologically justified for planets with negligible rigidity,
low average viscosity and/or planets loaded at very low frequencies (without the
contribution of high–frequency modes). The equilibrium spin rate of such bodies
is either the synchronous rotation on circular orbits or the pseudo–synchronous
rotation on at least slightly eccentric orbits. As a consequence of the pseudo–
synchronisation, the planets with nonzero orbital eccentricity are predicted to
exhibit a rotation rate that is higher than the mean motion (θ̇ > n), approximately
described by the formula12 (e.g., Dobrovolskis, 2007)

θ̇

n
≈ 1 + 6e2 . (1.36)

However, due to the omission of the elastic and anelastic contributions to the
11Despite relatively good applicability to stars, the predictions of the constant time lag model

are not always consistent with observation (e.g. Strassmeier et al., 2011). The tidal response of
stars can be also affected by magnetic “rigidity” (e.g., Williams, 2004). For details and further
discussion, see Makarov and Efroimsky (2013).

12A similar pseudo–synchronisation, characterised by θ̇/n ≈ 1+19/2 e2 (Murray and Dermott,
1999), is also predicted by another class of tidal theories, not based on the Darwin–Kaula
expansion. In this approach, attributed to MacDonald (1964) and dating back to Gerstenkorn
(1955), the tidal lagging of the planet’s reaction is described with respect to the two physical
bulges, and not to the individual modes discussed earlier. The angle between the symmetry axis
of the bulges and the line connecting the planet’s centre with the perturber is then assumed to
be constant: we are thus speaking about the constant geometric/angular lag model. However, the
assumption of a constant geometric lag implies constant lagging in the true anomaly, a behaviour
that cannot be reconciled with any rheological model (Ferraz-Mello, 2013). A corrected version
of the constant angular lag model, introduced by Efroimsky and Williams (2009), corresponds
to the constant time lag model.
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tidal response, the constant time lag model is insufficient to represent the tidal
effects in close–in moons or terrestrial planets (Makarov and Efroimsky, 2013).

Rheologically–motivated models An effort to reconcile the tidal parameters
with the refined rheological models of planetary materials (Efroimsky and Lainey,
2007) can be seen in modern approaches, defining the Love number and the phase
lag as the modulus and the phase of a complex number k̄l(ωlmpq). The kvalitet in
such models is then expressible as

kl sin εlmpq = −Im{k̄l(ωlmpq)} (1.37)

and the functional form of the complex Love number is defined in analogy with the
Love number of an incompressible homogeneous elastic sphere as (Castillo-Rogez
et al., 2011; Makarov and Efroimsky, 2013)

k̄l(ωlmpq) = 3
2(l − 1)

1
1 +Al

, where Al = (2l2 + 4l + 3) µ̄(|ωlmpq|)
lgρR

Sgn{ωlmpq} . (1.38)

In the above expression, g denotes the surface gravity, ρ is the average density,
and µ̄ stands for the complex rigidity, or the inverse of the dynamic compliance J̄ ,
which will be introduced in Section 2.2. The rheologically–motivated tidal models,
derived also in different forms by other authors (Ferraz-Mello, 2013; Correia et al.,
2014; Ferraz-Mello, 2015; Frouard et al., 2016), successfully predict the tidal
locking of close-in moons and planets on eccentric orbits into spin-orbit resonances.
Furthermore, in contrast to the constant phase lag model, the correct prediction
of the stable spin states in the rheologically–motivated models goes together with
a continuous behaviour of the kvalitet around zero frequency. Finally, the complex
Love number also enables a self–consistent calculation of the tidal dissipation.
This topic will be treated in the next chapter.

Tides in the host star In the special cases of either a massive close-in planet
or a highly dissipating primary, it is also necessary to consider the orbital evolution
due to tidal deformation of the host star. The lmpq mode of the corresponding
disturbing function is then

Rtide,∗
lmpq = k∗

l R
2l+1
∗ B̃∗

lm C̃∗
lmpq

l∑︂
p′=0

∞∑︂
q′=−∞

C∗
lmp′q′ cos[ν̃∗

lmpq − ε∗
lmpq −mθ̃

∗ − (ν∗
lmp′q′ −mθ∗)]

(1.39)

with
B∗

lm = Gm1
(l −m)!
(l +m)! κm ,

C∗
lmpq = 1

al+1 Flmp(i) Glpq(e) ,

ν∗
lmpq = (l − 2p)ω + (l − 2p+ q)M +mΩ ,
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where R∗ is the star’s radius. In the above expressions, we assumed that the host
star’s spin axis is stationary and perpendicular to the inertial reference plane. As
a result, the inclination i in the expression for C∗

lmpq is referred to the equatorial
plane of the host star.

The disturbing function due to the tidal deformation of the host star Rtide,∗

and the disturbing function due to the tidal deformation of the planet Rtide,p

are defined in different body–centred frames. Although we do not consider the
contribution of the deformed star to the orbital evolution in this work, we would
like to see how the tidal deformation of the planet affects the “asterocentric”
Keplerian elements, instead of the planet orientation {α, β, γ}. For this reason,
let us finally look at the set of equations considering the difference in the reference
frames.

Complete tidal equations The evolution equations for the semi–major axis,
the eccentricity, and the inclination derived by Kaula (1964, p. 676) include the
tidal contribution from the planet as well as from the satellite (here, the host
star). While the first two equations are correct and they can be readily applied
to the tidal evolution of the orbit, the third equation lacks the consideration of
the non–inertiality of the satellite’s equatorial plane, to which Kaula refers the
relative inclination of the planet’s orbit. Specifically, the equatorial plane and the
orbital plane of the satellite are subject to precession and a proper derivation of
the secular evolution equations should also account for appropriate averaging over
the precession cycle. A straightforward approach to overcoming this difficulty was
taken, e.g., by Chyba et al. (1989) in his analysis of the Neptune–Triton system.
Chyba et al. (1989) derives the secular evolution equation for the inclination
from the conservation of the z–component of the orbital angular momentum. As
a result, he obtains a relation between the three quantities, a, e, and i, which
enables him to derive a self–consistent expression for di/dt in terms of da/dt and
de/dt.

A different approach was taken by Boué and Efroimsky (2019), who chose to
re–derive the equations of Kaula (1964) from scratch, with the help of classical
theoretical mechanics. In their derivation, they strictly refer the position vectors
and the Euler angles to the inertial frame. However, in order to make their results
comparable to the work of Kaula (1964), they also transform their expressions to
the body–centred elements and provide a complete set of Lagrange–type evolution
equations13 for either of the bodies. Since the study of Boué and Efroimsky (2019)
aims to be as general as possible, the two bodies are also allowed to change the
orientation of their spin axes: the obliquities with respect to the inertial frame
are generally nonzero and the spin axes are precessing around the normal to the
orbital plane. The respective body–centred elements are then defined in frames
coprecessing with the planet or with the satellite. The reference directions are
identified with descending nodes of the respective equatorial planes on an inertial

13The equations of Boué and Efroimsky (2019) differ from the Lagrange planetary equations
(1.9) introduced earlier since they also include the effect of different reference frames.
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plane (Boué and Efroimsky, 2019). For the star–planet system considered in
this section of our work and for the angular variables defined with respect to the
equatorial plane of the host star, we may write the evolution equations of Boué
and Efroimsky (2019) as

da
dt = 2

na

∂R∗

∂σ
+ 2
na

∂Rp

∂σ
, (1.40a)

de
dt = 1 − e2

na2e

∂R∗

∂σ
−

√
1 − e2

na2e

∂R∗

∂ω
+ 1 − e2

na2e

∂Rp

∂σ
−

√
1 − e2

na2e

∂Rp

∂γ
, (1.40b)

di
dt = µ

C∗θ̇
∗ sin i

(︃
∂R∗

∂ω
− cos i∂R∗

∂Ω

)︃
− 1
na2

√
1 − e2 sin i

(︃
∂R∗

∂Ω − cos i∂R∗

∂ω

)︃
−

− sin (ω − γ)
na2

√
1 − e2

∂Rp

∂β
− cos (ω − γ)
na2

√
1 − e2 sin β

(︃
∂Rp

∂α
− cosβ ∂Rp

∂γ

)︃
, (1.40c)

dΩ
dt = µ cos i

C∗θ̇
∗ sin i

∂R∗

∂i
+ µ cos δ
C∗θ̇

∗ sin δ

(︃
sin Ω cot i∂R∗

∂Ω − cos Ω∂R∗

∂i
− sin Ω

sin i
∂R∗

∂ω

)︃
+

+ 1
na2

√
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∂R∗

∂i
+ cos (γ − ω)
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√
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∂Rp
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+
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na2

√
1 − e2 sin i sin β

(︃
cosβ ∂Rp

∂γ
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∂α

)︃
, (1.40d)

dω
dt = − µ

C∗θ̇
∗ sin i

∂R∗

∂i
+

√
1 − e2

na2e

∂R∗
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− cos i
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cosβ ∂Rp
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∂α
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, (1.40e)

dσ
dt = − 2

na

∂R∗

∂a
− 1 − e2

na2e

∂R∗

∂e
− 2
na

∂Rp

∂a
− 1 − e2

na2e

∂Rp

∂e
, (1.40f)

where µ is the reduced mass, δ is the obliquity of the star with respect to the
reference plane in the inertial frame, C∗ is the star’s principal moment of inertia
with respect to the spin axis, and the symbols R∗, Rp were used in place of
Rtide,∗, Rtide,p, respectively. The set of equations (1.40) is expressed in the frame
coprecessing with the primary’s equator. Therefore, out of the angles describing
the orientation of the host star, we only need to provide the evolution equation
for δ (Boué and Efroimsky, 2019):

dδ
dt = − µ

C∗θ̇

(︃
cos Ω cot i∂R∗

∂Ω + sin Ω∂R∗

∂i
− cos Ω

sin i
∂R∗

∂ω

)︃
. (1.41)

Finally, the spin rate evolution of the host star is governed by

d2θ∗

dt2 = − µ

C∗

∂R∗

∂Ω . (1.42)

An equivalent set of equations can also be written for the orbital elements of the
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star referred to the frame coprecessing with the planet’s equator. In that case, the
equations for the longitude of the ascending node (1.40d), the inclination (1.40c),
and the argument of pericentre (1.40e) would play the role of the equations for
the evolution of the planet’s orientation {α, β, γ} relative to the orbital plane.
Equation (1.42) would describe the spin rate evolution of the planet, which will
be discussed later.

As can be seen from the set of equations (1.40), the evolution of the asterocentric
orbital elements depends on the contribution of both the deformed host star and
the deformed planet. The relative magnitude of the two contributions can be
deduced from a comparison of the two disturbing functions, Rtide,∗ and Rtide,p.
The main difference between the tidal deformation of the two bodies lies in
different masses, radii, and susceptibilities to tidal dissipation, quantified by the
Love number and the phase lag (or the quality factor). Since the host star in
our study is considerably more massive than the planet and its quality factor is
expected to be higher, relative to the planet (see, e.g., Goldreich and Soter, 1966),
we neglect the terms in (1.40) containing Rtide,∗. Nevertheless, the contribution
of the host star is important in the case of massive exoplanets orbiting close to
swiftly rotating and/or highly dissipative stars (e.g., Bolmont and Mathis, 2016;
Veras et al., 2019).

With this last paragraph, we conclude the overview of the tidal theory in the
Darwin–Kaula formalism and we are ready to go on to the practical aspects of
the calculation.

1.3.3 Eccentricity and inclination functions
As we learned in the previous two subsections, Kaula (1961, 1962, 1964) expands
the tidal potential and the disturbing function into a series, whose coefficients
depend on the orbital eccentricity via the eccentricity functions Glpq(e), Hlpq(e)
and on the inclination (or obliquity) through the inclination functions Flmp(i). The
eccentricity functions, or eccentricity polynomials, arise due to the substitution
of the non–linearly changing quantities (r, v) by the semi–major axis a and the
linearly changing mean anomaly M . The inclination functions, on the other
hand, contain all algebraic factors arising during the derivation of the disturbing
functions, multiplied by the sines and cosines of inclination.

Both the eccentricity and the inclination functions can be calculated directly
from the definition provided in Kaula (1961) or Allan (1965) (as will be introduced
below). Kaula (1964) gives a table of F2mp(i) and G2pq(e), expressed up to the
order |q| = 2 in eccentricity, and refers the reader to the tables of Cayley (1861),
who calculated the coefficients of eccentricity functions up to the order |q| = 7.
Since the precise knowledge of the disturbing function is crucial for the satellite
theory, even higher–order expansions of the eccentricity functions were tabulated
in the following years, such as the |q| = 12 expansion of Izsak et al. (1964) and
Cherniack (1972). Several authors also explored the calculation of eccentricity
functions for extremely elliptical orbits (Szeto and Lambeck, 1982; Wnuk, 1997;
Celletti et al., 2017). As the need for the exact prediction of satellite orbits grew,
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the original analytical formulae derived by the founders of the satellite theory
made way for more practical recurrence relations, which also proved ideal for
the calculation by a digital computer (e.g., Izsak et al., 1964; Cherniack, 1972;
Giacaglia, 1977; Vakhidov, 2001).

Until we proceed to the introduction of one such recurrence formula, let us first
mention the connection of the eccentricity functions to a more general function
used in celestial mechanics. The eccentricity functions of Kaula are a special case
of Hansen coefficients Xn,k

j (e), defined as (e.g., Tisserand, 1889)(︂ r
a

)︂n

exp {ikv} =
∑︂

j

Xn,k
j (e) exp {ijM} , (1.43)

and it holds that (Kaula, 1961, 1962)

Glpq(e) = X−l−1,l−2p
l−2p+q (e) (1.44)

and

Hlpq(e) = X l,l−2p
l−2p+q(e) . (1.45)

An advantageous property of the Hansen coefficients is the possibility to expand
them into a power series in eccentricity (Cherniack, 1972)14,

Xn,k
j (e) =

∑︂
ρ−σ=j−k

ρ,σ≥0

Xn,k
ρ,σ eρ+σ , (1.46)

where Xn,k
ρ,σ are known as Newcomb operators (Newcomb, 1895). Newcomb opera-

tors are algebraic factors and as such, they can be calculated and tabulated in
advance. The eccentricity functions for arbitrary value of eccentricity are then
obtained from equation (1.46).

To obtain Hansen coefficients and, consequently, the eccentricity functions,
we calculate the Newcomb operators using the Von Zeipel–Andoyer method
(VZA; Andoyer, 1903; Von Zeipel, 1912), as described by Izsak et al. (1964) and
Cherniack (1972). The calculation makes use of recurrent relations between the
integer polynomials Jn,k

ρ,σ and, as a result, it can be performed in integer arithmetic.
However, it should be noted that the J–polynomials may rise to extreme values
and the computer–assisted calculation of eccentricity functions for high indices
(|q| ≥ 8) may be corrupted by integer overflow. It is thus advisable to keep this
difficulty in mind when initialising of the computation.

The integer polynomials Jn,k
ρ,σ can be calculated as (Izsak et al., 1964; Cherniack,

1972)

Jn,k
0,0 = 1 , (1.47a)

14Cherniack (1972), in his equation (7), gives the limits of the summation as (ρ− σ) = (j + k).
However, it follows from a comparison with Izsak et al. (1964) that the correct condition should
be (ρ− σ) = (j − k).



34 Darwin–Kaula expansion

Jn,k
1,0 = 2k − n , (1.47b)

Jn,k
ρ,0 = (2k − n)Jn,k+1

ρ−1,0 + (ρ− 1)(k − n)Jn,k+2
ρ−2,0 , (1.47c)

Jn,k
ρ,σ = −(2k + n)Jn,k

ρ,σ−1 − (σ − 1)(k + n)Jn,k−2
ρ,σ−2 − ρ(ρ− 5σ + 4 + 4k + n)Jn,k

ρ−1,σ−1+

+ρ(ρ− σ + k)
min(ρ,σ)∑︂

τ≥2
CρστJ

n,k
ρ−τ,σ−τ , (1.47d)

with

Cρστ = (ρ− 1)(ρ− 2) . . . (ρ− τ + 1)(σ − 1)(σ − 2) . . . (σ − τ + 1)Cτ

and

Cτ = (−1)τ

(︃
3/2

τ

)︃
22τ−1 .

The real–valued Newcomb operators are related to the integer–valued J–polyno-
mials via

Xn,k
ρ,σ =

Jn,k
ρ,σ

2ρ+σρ!σ , (1.48)

which holds for ρ ≥ σ; the remaining operators, with ρ < σ, can be calculated
from the symmetry

Xn,k
ρ,σ = Xn,−k

σ,ρ . (1.49)

Going back to the Lagrange planetary equations (1.10), we see that the evolution
equations for the longitude of periastron (ϖ) and the mean longitude at epoch (ϵ)
also require the knowledge of derivatives of the eccentricity functions. Fortunately,
the derivatives of Hansen coefficients can be easily related to the calculated values
through (Giacaglia, 1977)

dXn,k
j

de = 2k − n

2 Xn−1,k+1
j − 2k + n

2 Xn−1,k−1
j − ke

4(1 − e2)
(︁
Xn,k+2

j −Xn,k−2
j

)︁
. (1.50)

Once we have discussed the calculation of eccentricity functions, it is time
to proceed to the inclination functions. The inclination functions of Kaula were
originally derived using a nontrivial three–sum formula (Kaula, 1961)

Flmp(i) =
t2∑︂

t=0

1
22l−2t

(2l − 2t)!
t!(l − t)!(l −m− 2t)! sinl−m−2t(i)

m∑︂
s=0

(︃
m

s

)︃
coss(i) ×
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×
c2∑︂

c=c1

(︃
l −m− 2t+ s

c

)︃(︃
m− s

p− t− c

)︃
(−1)c−k , (1.51)

where the upper limit for the first summation is t2 = min(p, k) with k being the
integer part of (l−m)/2, the lower limit for the last summation is c1 = max(0, p−
t−m+s), and the upper limit for the last summation is c2 = min(l−m−2t+s, p−t).
The limits of the summations were chosen in order to sum only over the nonzero
terms (i.e., terms with nonzero binomial coefficients).

An alternative definition of the inclination functions, originating in the angular
momentum theory in quantum mechanics, was presented by Allan (1965). Owing
to the sole summation used in their formulation, Allan’s inclination functions are
better suited for numerical computation than the functions of Kaula and they are
widely used in the literature (e.g., Gooding, 1971; Murray and Dermott, 1999).
The functions were originally defined as complex and, in a newer convention, they
require the introduction of the imaginary unit to the corresponding disturbing
function (as is done in Murray and Dermott, 1999). Nevertheless, Allan (1965)
also gives their relation to the classical Kaula’s functions, which are real. Following
the notation of Wnuk (1988), Allan’s inclination functions, redefined to match the
corresponding Kaula’s functions, are

Flmp(i) = (−1)δ (l +m)!
2l p! (l − p)!

j2∑︂
j=j1

(−1)j

(︃
2l − 2p
j

)︃ (︃
2p

l −m− j

)︃
c2l−αsα (1.52)

where δ is the integer part of (l − m + 1)/2, the limits of the summation are
j1 = max(0, l −m− 2p), j2 = min(l −m, 2l − 2p), and the goniometric functions
are shortened as c = cos (i/2) and s = sin (i/2) with α = (m− l+ 2p+ 2j). Allan
also derived a recurrence formula for the inclination functions, which was first
published by Gooding (1971). For the redefined inclination functions (1.52), the
recurrence formula reads as (Wnuk, 1988)

2pFlmp = s2(l +m)(l +m− 1)Fl−1,m−1,p−1 + (1.53)

+ 2(−1)l−mc s (l +m)Fl−1,m,p−1 − c2Fl−1,m+1,p−1

for p ̸= 0 and

2(l − p)Flmp = c2(l +m)(l +m− 1)Fl−1,m−1,p − (1.54)

− 2(−1)l−mc s (l +m)Fl−1,m,p − s2Fl−1,m+1,p

for p ̸= l. The precision of the recurrent computation can be further increased
by summing the two expressions above (Wnuk, 1988). To obtain the analytical
formula for the derivations of inclination functions, which are required by the
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evolution equations for ϖ and ϵ, we need to differentiate the expression (1.52)
with respect to inclination. This results in the relation

dFlmp

di = (−1)δ (l +m)!
2l+1 p! (l − p)!

j2∑︂
j=j1

(−1)j

(︃
2l − 2p
j

)︃ (︃
2p

l −m− j

)︃
c2l−αsα

[︂
α
c

s
− (2l − α)s

c

]︂
.

(1.55)
Alternatively, the recurrence formula for the derivatives can be obtained by
differentiating equations (1.53) and (1.54).

1.4 Nonsingular elements
Coordinate singularities The two sets of Lagrange planetary equations, (1.9)
and (1.10), contain mathematical singularities in the limit cases of e → 0, i → 0
or i → π. As can be shown by expressing the disturbing function R in the form
of the Darwin–Kaula expansion, most of these discontinuities are only apparent.
Focusing now on the second set of Lagrange planetary equations, (1.10), the
only two discontinuities which do not vanish upon the explicit expression of the
disturbing function, are present in equations (1.10d) and (1.10e), that is

dΩ
dt = 1

na2
√

1 − e2 sin i
∂R
∂i

and

dϖ
dt =

√
1 − e2

na2e

∂R
∂e

+
tan i

2
na2

√
1 − e2

∂R
∂i

.

Naturally, this kind of singularities is introduced by the choice of the coordinate
system. The longitude of the ascending node Ω is defined only when the orbital
plane intersects the inertial reference plane. When the two planes coincide, as is
the case for i → 0 or i → π, the introduction of Ω lacks meaning. Similarly, the
longitude of the periapsis ϖ can be found only on an orbit with clearly defined
periapses. On circular orbit (e → 0), where each point is in the same distance
from the host star, the introduction of ϖ is ambiguous.

New set of elements The coordinate singularities in the two aforementioned
equations can be overcome by introducing a new set of nonsingular elements,
which would eliminate the vanishing terms in the denominator. We adopt the
nonsingular elements defined by Nacozy and Dallas (1977) as

ξ = e sinϖ ,

η = e cosϖ ,

ζ = sin i

2 sin Ω ,

ν = sin i

2 cos Ω ,

(1.56)
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with the remaining two elements, a and ε, being the same as in the previous
sections. Then, the evolution equations for the new nonsingular elements can be
written either in the mixed form, using the chain rule,

dξ
dt = de

dt sinϖ + η
dϖ
dt ,

dη
dt = de

dt cosϖ − ξ
dϖ
dt ,

dζ
dt = 1

2
di
dt cos i2 sin Ω + ν

dΩ
dt ,

dν
dt = 1

2
di
dt cos i2 cos Ω − ζ

dΩ
dt ,

(1.57)

or in a self–consistent form, which, however, requires the expression of the dis-
turbing function in the nonsingular elements. Although the desired disturbing
function R(a, ξ, η, ζ, ν, ε) can be analytically derived, as was done by Nacozy and
Dallas (1977) or Giacaglia (1977) in the case of geopotential, we retain the mixed
form of the evolution equations (1.57). This decision enables us to calculate the
eccentricity functions Glpq(e) and Hlpq(e) using the existing recurrence relations.

Nonsingular evolution equations For the sake of clarity, we present here the
complete set of evolution equations used in our calculations for Chapters 4 and 5.
The partial derivatives of the disturbing functions due to due to the third–body
perturbation are listed in Appendix C.2.

da
dt = 2

na

∂R
∂ϵ

(1.58a)

dξ
dt = cosϖ

na2

(︃√︁
1 − e2 ∂R

∂e
+ e√

1 − e2
tan i

2
∂R
∂i

)︃
− sinϖ

na2

√
1 − e2

e

[︃
(1 −

√︁
1 − e2)∂R

∂ϵ
+ ∂R
∂ϖ

]︃
(1.58b)

dη
dt = − sinϖ

na2

(︃√︁
1 − e2 ∂R

∂e
+ e√

1 − e2
tan i

2
∂R
∂i

)︃
− cosϖ

na2

√
1 − e2

e

[︃
(1 −

√︁
1 − e2)∂R

∂ϵ
+ ∂R
∂ϖ

]︃
(1.58c)

dζ
dt = cos Ω

2na2
√

1 − e2 cos i
2

∂R
∂i

− 1
2

sin Ω
na2

√
1 − e2

[︄
sin i

2

(︃
∂R
∂ϵ

+ ∂R
∂ϖ

)︃
+ 1

2 sin i
2

∂R
∂Ω

]︄
(1.58d)

dν
dt = − sin Ω

2na2
√

1 − e2 cos i
2

∂R
∂i

− 1
2

cos Ω
na2

√
1 − e2

[︄
sin i

2

(︃
∂R
∂ϵ

+ ∂R
∂ϖ

)︃
+ 1

2 sin i
2

∂R
∂Ω

]︄
(1.58e)

dϵ
dt = − 2

na

∂R
∂a

−
√

1 − e2

na2e
(1 −

√︁
1 − e2)∂R

∂e
+

tan i
2

na2
√

1 − e2
∂R
∂i

. (1.58f)

A similar set of nonsingular equations can also be derived for the tidally–induced
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orbital evolution. In that case, we transform the Lagrange–type equations (1.40)
to the elements {a, e, i,ϖ,Ω, ϵ} and insert them to the formulas for nonsingular
evolution equations (1.57), with the partial derivatives of the disturbing function
given by Appendix C.1.

Although the set of equations (1.58) is said to be nonsingular, it should be
noted that it still contains apparent singularities. To understand their behaviour
(or vanishing) in the limit cases of e → 0 and sin i → 0, let us briefly discuss the
leading terms in the Darwin–Kaula expansion.

Vanishing of apparent singularities The remaining apparent singularities
in the above set of equations occur in one of the following forms:

√
1 − e2

e

[︃(︂
1 −

√︁
1 − e2

)︂ ∂R
∂ϵ

+ ∂R
∂ϖ

]︃
,

√
1 − e2

e

(︂
1 −

√︁
1 − e2

)︂ ∂R
∂e

, (1.59)

1
sin i

2

∂R
∂Ω .

The critical prefactor √
1 − e2

e

(︂
1 −

√︁
1 − e2

)︂
in the terms containing partial derivatives with respect to ϵ and e becomes e/2
in the limit of e → 0 and does not need to be confronted with the leading terms
(corresponding to q = 0 for small eccentricities) in the expansion. The prefactor
of ∂R/∂ϖ is more delicate. However, remembering that (Subsection 1.3.3 and
Appendix C) (︃

∂R
∂ϖ

)︃
lmpq

∝ q e|q| sin|m−l+2p| i

2 , (1.60)

we may see that the leading term (q = 0) is always zero and the other terms
always depend on e with positive exponents. A similar argument holds in the last
case, that becomes problematic at i → 0. Since(︃

∂R
∂Ω

)︃
lmpq

∝ (m− l + 2p) e|q| sin|m−l+2p| i

2 , (1.61)

the prefactor of the partial derivative with respect to Ω in (1.59) only results in a
mathematical singularity in the case of |m− l + 2p| = 0. The corresponding term
is, however, zero.

1.5 Spin rate evolution
The secular evolution of the orbital elements is naturally interconnected with the
evolution of the planet’s orientation and of the spin rate. Strictly speaking, the
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changes to the planet’s orientation should be modelled by solving the Euler (or
Euler–Liouville) rotation equations (e.g., Munk and MacDonald, 1960), with the
individual components of the torque derived from the tidal disturbing function
Rtide,p and from the disturbing function due to the planet’s permanent deformation
(e.g., its rotational flattening).

Cassini states In the absence of tidal dissipation, the spin axis of the planet
typically tends to one of the four (or less) equilibrium solutions known as the
Cassini states (e.g., Colombo, 1966; Peale, 1969; Ward, 1975; Fabrycky et al., 2007;
Correia, 2015). Cassini states are resonances between the precession frequency
of the planet’s equatorial plane and that of the orbital plane, characterised by
nonzero obliquity of the planet’s spin axis. Derived under the assumption of
uniform orbit precession and constant inclination, the permitted obliquities β of
the equilibrium states are prescribed implicitly by (Fabrycky et al., 2007)

0 = Ω̇ sin (β − i) + α̇ cosβ sin β . (1.62)

Depending on the relative magnitude of the two precession frequencies, equation
(1.62) has either two or four roots.

Conventionally, the Cassini states are numbered as follows (Winn and Holman,
2005): State 1 has a vanishingly small obliquity (β ≪ 1◦) and the normals to the
two precessing planes lie on the same side of the axis of precession. State 2 is
characterised by a greater obliquity (such as that of the Moon, where β = 6.5◦)
and the two normals lie on different sides of the axis of precession. State 3 allows
stable retrograde rotation with obliquity close to 180◦ (as may be the case for
Venus, see Correia and Laskar, 2003). Finally, the unstable state 4 is similar to
state 1 with potentially extreme obliquity (up to 90◦).

If the planet is also subject to tidal dissipation (e.g., Ward, 1975; Fabrycky
et al., 2007), or if it is radially stratified (Boué, 2020), the positions of the
equilibrium states may differ or there may be multiple stationary solutions to the
corresponding equations of motion. While the locking into such generalised Cassini
state may serve as an additional source of tidal dissipation in icy moons or close–
in exoplanets (Chen et al., 2014; Winn and Holman, 2005), the high–obliquity
(and highly dissipative) state 2 might not be stable in the long term (Fabrycky
et al., 2007). Therefore, the most probable obliquities of strongly tidally–loaded
exoplanets are close to zero15.

Tidal locking The secular tidal evolution of the planet’s spin rate is governed
by the equation (Dobrovolskis, 2007; Efroimsky and Williams, 2009)

C
d2θ

dt2 = −m∗
∂Rp

∂α
= T , (1.63)

15In this work, we will always set β = 0◦.
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where

T = Gm2
∗

a

∑︂
lmpq

(︃
R

a

)︃2l+1 (l −m)!
(l +m)! m κm

[︁
Glpq(e)

]︁2 [︁Flmp(β)
]︁2
kl sin εlmpq (1.64)

is the secular tidal torque, C is the principal moment of inertia of the planet with
respect to the spin axis, and symbol Rp is used in place of Rtide,p. The sign of the
tidal torque determines whether the planet’s spin rate accelerates or decelerates.
The magnitude of the tidal torque affects the steepness of the spin rate evolution.
In response to the tidal loading, an initially quickly rotating planet decelerates
until it reaches an equilibrium state, characterised by the vanishing of the secular
tidal torque.

As we can see in equation (1.64), the secular tidal torque depends on the
shape and the orientation of the star’s orbit with respect to the planet’s equatorial
plane, on the stellar mass, and on the rheological parameters of the planet (along
with its size). Specifically, the dependence of the tidal torque on the loading
frequencies is given by the kvalitet kl sin εlmpq. Section 1.3.2 introduced three
distinct assumptions on the frequency dependence of the kvalitet: constant phase
lag (CPL), constant time lag (CTL), and rheologically–motivated models (RHEO).
Recall that the three types of models predict different equilibrium spin rates of
planets on non–circular orbits. The CTL model results in pseudo–synchronous
rotation, while both the CPL and the RHEO models indicate that a tidally–loaded
planet on eccentric orbit should end up in a spin-orbit resonance. For circular
orbits (and low obliquities), the only stable spin state in all three types of models
is the synchronous rotation.

The role of kvalitet The effect of the orbital eccentricity, the planet’s obliquity,
and the assumed frequency (in)dependence on the secular tidal torque is depicted
in Figure 1.3. The x–axis of the individual plots represents the ratio between the
planet’s spin rate and its mean motion. We will call this quantity a spin–orbit
ratio. Note that for planets with nonzero obliquity or orbital eccentricity, the spin–
orbit ratio translates to a number of loading frequencies, whose contributions are
captured by the Darwin–Kaula expansion. The RHEO model in our illustrations
is represented by a differentiated rocky planet, whose mantle is governed by the
Andrade rheology. Additional properties of the model planet are given in Table
3.1 of Chapter 3 (with ηm = 1021 Pa s and µm = 200 GPa); here, we do not reprint
them, since the planet was chosen only for the sake of illustration. The constant
Love numbers of the CPL and the CTL models correspond to the calculated
complex Love number of the RHEO model for the maximum and the minimum
loading frequencies, respectively: As the CTL model, from its definition, describes
the low–frequency, fluid–like behaviour of the planet, its degree–2 Love number
was identified with the Love number of RHEO model at zero frequency (kc = 1.3).
On the other hand, since the CPL model is motivated by the response of the
Earth at seismic frequencies, its degree–2 Love number was identified with the
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high–frequency value for the RHEO model, which is kc = 0.25. The constant
quality factor Q ≈ 100 of the CPL model approximately corresponds to the typical
phase lags of the RHEO model at the orbital frequency, while the constant time
lag ∆t = 100 s of the CTL model was chosen arbitrarily for the sake of illustration.

Figure 1.3: Secular tidal torque T (equation (1.64)) as a function of the spin
rate θ̇/n. Individual panels show the effect of the orbital eccentricity e and the
planet’s obliquity β; different colours indicate three distinct choices of the kvalitet:
constant time lag model (red, kc = 1.3, ∆t = 100 s), constant phase lag model
(black, kc = 0.25, Q ≈ 100), and a rheologically–motivated model (blue, Andrade
rheology, model planet from Chapter 3 with mantle viscosity ηm = 1021 Pa s).
Motivation for different choices of the Love number is explained in the text.

Several features in Figure 1.3 deserve a special mention: 1) The three considered
assumptions for the kvalitet result in a different number of stable spin states.
While the CTL and the CPL models predict a single intersection of the tidal
torque with zero and, therefore, a single permissible equilibrium spin rate of
the planet, the RHEO model shows multiple zero crossings. In other words, it
permits more than one stable spin state for given orbital parameters, typically
associated with spin–orbit resonances16. 2) The three models predict different

16A spin state in Figure 1.3 is stable, if the secular tidal torque crosses zero with a negative
slope. Then, a “quickly–rotating” planet experiences negative secular torque and is dragged
towards the stable point, while a “slowly–rotating” planet experiences positive torque and is
being accelerated until it reaches the stable point.
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functional dependence of the tidal torque on the spin–orbit ratio. The CTL model
is represented by a line intersecting zero at the position of the corresponding
pseudo–synchronous spin–orbit ratio. The CPL, on the other hand, exhibits a
“staircase–like” behaviour, with steps at the positions of spin–orbit resonances.
Finally, the RHEO model shows characteristic “kink-shaped” features around
the stable spin states. The height of the peaks around each equilibrium spin
state affects its stability against random perturbations. 3) Increase in the orbital
eccentricity leads to an increase in the number of steps in the CPL “staircase”
and in the multiplication of stable spin states in the RHEO model. For the CTL
model, it shifts the position of the stable pseudo–synchronous rotation to higher
spin–orbit ratios. 4) Increase in the planet’s obliquity also results in the increased
number of CPL steps and the increased number of stable spin states in the RHEO
model, although with lower amplitude than in the case of nonzero eccentricity.
Interestingly, in contrast to the effect of nonzero eccentricity, the increase in
obliquity shifts the position of the stable pseudo–synchronous rotation in the CTL
model to lower spin-orbit ratios.

1.6 Concluding remarks
The principal topic of Chapter 1 was the orbital evolution of a planet subjected
either to the tidal loading or to the orbit perturbation by another body in the
system. We have introduced two sets of orbital elements, glanced at the basics of
the perturbation theory and at the Lagrange planetary equations, and given an
overview of the Darwin–Kaula expansion. We have also looked at the practical
aspects of the computation, discussing the recurrent relations for the eccentricity
and inclination functions and introducing the nonsingular elements. Finally, the
last section of the chapter illustrated the role of different parameterisations of the
planet’s tidal response in the calculation of the equilibrium spin rate.

In the context of our work, the shape and orientation of the orbit with respect
to the planet’s equatorial plane determine the amplitude and frequency of the tidal
loading. In a broader sense, the planet’s distance from the host star, along with
other orbital elements, affects its surface conditions and the long–term evolution
of its climate, thermal state, and potential habitability. Since the frequency of
the tidal forcing (and, potentially, of a climate forcing) is also strongly influenced
by the planet’s spin rate, we will return to the discussion of the tidal torque and
pay special attention to the stable spin states again in Chapter 3. However, until
we do so, let us first focus on another part of the tidal picture: on the interior
structure, thermal evolution, and rheological properties of rocky exoplanets.



2. Interior structure and
dynamics
The second chapter of our work is dedicated to the other side of planetary dynamics.
While in the first chapter, we gave an overview of the equations governing the
long–term evolution of orbital elements, here we focus on the “inner life” of
terrestrial bodies. To facilitate the transition to the new topic, we begin with
an introductory section summarising current knowledge (or possible sources of
knowledge) about the rocky exoplanets and their interior structure. Then, we step
into the central part of this chapter, which is the discussion of rheological models
and deformation mechanisms acting in planetary materials. Finally, in the last
two sections, we contemplate the thermal evolution of the planet, i.e., the main
heating and cooling mechanisms determining the interior temperature profile.

2.1 Interior structure of terrestrial exoplanets
The inner—or terrestrial—planets of the Solar System share several common
characteristics: they are relatively small, compared to the jovian worlds and ice
giants, they orbit closer to the Sun, they rotate relatively slowly, and their bulk
composition is dominated by refractory elements. Most of these properties are
also shared by large satellites of the gaseous planets, by dwarf planets, and by the
Moon. While each of the celestial bodies is sculpted by the local environment and
its unique dynamical history, a zero–order estimate of the interior properties can be
derived from basic physical characteristics, as is the mean density or the presence
of major heat sources. In the study of low–mass exoplanets—often labelled as
terrestrial exoplanets in parallel to the rocky worlds of the Solar System—we are
often left with very scarce information. For the majority of these objects, only
the radius and the semi–major axis are known. Nevertheless, as we will see, a
global picture of the class of terrestrial worlds can be obtained either by statistical
methods or by theoretical considerations.

2.1.1 Detection and characterisation techniques
Most of the currently known extrasolar planets have been discovered by indirect
detection techniques, which rely on the effects the orbiting planet has on other
bodies in the system. Such methods are, however, highly unfavourable for low–
mass exoplanets for an obvious reason: the smaller the planet, the lower its impact
on the measured quantities. While the first detected exoplanets used to lie on the
high–mass end of the actual exoplanetary statistics, the past fifteen years have
witnessed a steep increase even in the number of known terrestrial worlds. The
search for terrestrial exoplanets is greatly fueled by the desire to understand the
uniqueness of the Earth and, specifically, by the more or less explicit search for
extraterrestrial life.
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Among the most widely used detection methods are the transit photometry and
the radial velocity (RV) measurements (e.g., Santos, 2008; Wright and Scott, 2013;
Santos and Faria, 2018). Each of these techniques assesses different quantities and
makes use of different instrumentation. In addition to the two methods, planets
can also be detected in gravitational microlensing events, by direct imaging, by
astrometry or by analysing their mutual gravitational interaction (in a multiplan-
etary system) (e.g., Holman and Murray, 2005; Santos, 2008; Rice, 2014; Tsapras,
2018). In the following three paragraphs, we will overview the first two and the
last one of the mentioned techniques.

Transit photometry Transit photometry is based on the observation of peri-
odic occultations of a planet–hosting star by its planetary companion. As the
planet moves in front of its host, it blocks part of the stellar flux, leading to a
decrease in the star’s relative magnitude. The shape of the photometric time
series (or “light curve”) is then a footprint of the star–planet system’s condition.
Since the amount of blocked flux depends on the size of the transiting planet, the
relative drop in the observed magnitude is proportional to the relative radius of
the planet with respect to the host star. The period of occultations relates, via
Kepler’s third law, to the semi–major axis of the planet and to the mass of the
star, while the duration of each transit is also determined by the orientation of
the planet’s orbit and by the stellar radius.

It should be stressed that an exoplanet can be detected by transit photometry
only when it is actually transiting: its orbital plane has to be oriented in such a
way that the planet periodically passes in front of the star, as observed from the
Earth, and effectively blocks the stellar flux. The geometric probability that a
transit will occur is (Santos, 2008)

p = R∗

a
, (2.1)

where R∗ is the stellar radius and a is the semi–major axis. Therefore, the
technique strongly favours planets on close–in orbits. Due to the dependence
of the relative drop in magnitude on the relative radius of the planet, it is also
more sensitive to larger planets or to bodies orbiting smaller stars. Nevertheless,
thanks to the space–based missions designed specifically to search for terrestrial
exoplanets, namely the CoRoT (Baglin, 2003), Kepler (Basri et al., 2005), and
TESS (Ricker et al., 2015), even smaller extrasolar worlds are being included in
the continuously expanding statistical set.

While the observation of periodic transits remains an important detection
technique, it can also be an invaluable tool in the characterisation of the planet’s
surface conditions. A transit signal measured in different wavelengths presents a
gateway to the planet’s atmospheric composition, surface temperature, cloud cov-
erage, and possible habitability (e.g., Kreidberg, 2018). This spectroscopic method,
known as the transmission spectroscopy, may also enable the reconstruction of the
planet’s rotation (Brogi et al., 2016) or serve as a complement to the measurements
of thermal spectra, fundamental for the planet surface characterisation (Hu et al.,
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2012). As we have seen in this brief overview, the combination of the transit
light curve retrieval and the transmission spectroscopy is a source of extensive
data. However, despite individual efforts still waiting for full realisation (de Wit
and Seager, 2013), the mentioned techniques are insufficient for the estimation of
the planet mass. For this reason, the transit photometry is often combined with
a historically older detection method, the radial velocity measurement, or with
transit–timing variation (TTV), which will be discussed later.

Radial velocity method The most famous application of the RV measurements
in exoplanetary science was, without a doubt, the detection of the first planetary
companion orbiting a Sun–like star (Mayor and Queloz, 1995; Mayor and Queloz,
1996). Searching for the periodic radial motion of stars orbiting a common
barycentre with hypothetical substellar companions1, the discoverers used a
high–precision echelle spectrograph ELODIE to measure the Doppler shift of
photospheric absorption lines in the stellar spectra. The unexpected discovery
of a close–in Jupiter–mass exoplanet, 51 Pegasi b, not only ignited the scientific
community’s interest in the search for extrasolar worlds, but also raised important
questions concerning the formation of planetary systems (Mayor and Queloz,
1995).

The dynamical effect of a substellar companion on the radial motion of its host
strongly depends on the relative masses of the two bodies. The semi–amplitude ARV
of the varying radial velocity, proportional to the relative shift of the absorption
lines with respect to their nominal wavelengths, is related to the observed system’s
properties by (e.g., Cochran and Hatzes, 1996; Wright, 2018)

ARV =
(︃

2πG
Torb

)︃1/3 1√
1 − e2

mp sin iobs

(m∗ +mp)2/3 , (2.2)

where Torb is the orbital period, e the orbital eccentricity, mp and m∗ denote
the masses of the companion and the star, respectively, and iobs symbolises the
inclination of the orbital plane to the plane of the sky. As an illustration, the case
of iobs = 0◦ would indicate a face-on orbit with no radial component (Wright, 2018).
An orbit perpendicular to the plane of the sky (iobs = 90◦), on the other hand,
presents the best–case scenario with the most precise information on the compan-
ion’s mass. Since the inclination of a newly–detected object is often unknown,
the RV method gives us rather the mass function mp sin iobs, i.e., the minimum
mass of the star’s companion. Nevertheless, if the character of the system also
enables the measurement of the companion’s spectrum, it can be used to determine
the inclination iobs (e.g., Brogi et al., 2012). Alternatively, if the companion is
also transiting, the RV method can be combined with transit photometry and
the orbital elements—including the inclination—can be constrained by Bayesian
analysis (e.g., Gillon et al., 2010; Bonfils et al., 2011) or by approximate analytical
methods (e.g., Carter et al., 2008).

As we can see in equation (2.2), the radial velocity method favours the detection
1By “substellar companions” we mean either brown dwarfs or planets.
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of short–period high–mass exoplanets orbiting around low–mass stars. The effect
of the orbital eccentricity on the semi–amplitude of the varying radial velocity is
relatively weak; however, the ability to determine its value is one of the important
advantages of this method. The orbital eccentricity is imprinted into the shape of
the RV time series and is usually fitted along with other parameters (e.g., Stassun
et al., 2017). Equation (2.2) also indicates that the RV method can be used
for the inference of the minimum mass mp sin iobs only if we already know the
stellar mass. Similarly to the case of transit photometry, a precise characterisation
of the planet (or brown dwarf) requires a precise independent characterisation
of the host star, which can be achieved by a combination of high–resolution
spectroscopy, asteroseismology, and stellar evolution models (for an overview, see,
e.g., Adibekyan et al., 2018).

Transit timing variation Long time series of planetary transits not only
contain the information about the relative radius and orbit orientation of the
planet, but they can also indicate ongoing orbital evolution in the system. The
evolution can be caused by tidal interaction with the star; in that case, the
precise and continual measurements of transit light curves provide an insight
into the dissipation in the two bodies (e.g., Chernov et al., 2017; Maciejewski,
2019; Bolmont et al., 2020). If, on the other hand, the evolution results from
gravitational interaction with other—yet unknown—bodies in the system, the
analysis of transit signal can be used as an additional detection technique: the
transit timing variation (Holman and Murray, 2005; Agol et al., 2005).

Proposed in 2005 as a feasible method for the detection of Earth–sized exo-
planets not producing a detectable transit signal, the TTV became particularly
promising in the era of Kepler. The most notable applications of this method in
the first years of the mission were the confirmation and refined characterisation
of the multi–planetary system Kepler–9 (Holman et al., 2010), the first detec-
tion of a non–transiting companion in the system Kepler–19 with one transiting
planet (Ballard et al., 2011), and the first complete orbital characterisation of a
non–transiting planet Kepler–46 c (Nesvorný et al., 2012). Recently, TTV was
also applied as an auxiliary method for the precise determination of masses and
eccentricities in the seven–planet system TRAPPIST–1 (Gillon et al., 2017).

As the name suggests, the TTV is based on the measurement of variations
in the intervals between successive transits (Holman and Murray, 2005; Agol
et al., 2005). A single planet in a system would orbit its host star with a fixed
period Torb. The photometric signal produced by its passages in front of the star
would be strictly periodic. In the presence of other companions, however, the
transiting planet is subjected to mutual gravitational interaction, resulting in
variations in its orbital elements (Section 1.3.1). As follows from the perturbation
theory, the timing variations become greatly amplified in systems of planets near
mean–motion resonances2. In consequence, the TTV method favours resonant

2Empirically–derived statistics indicate that the members of close–in multiplanetary systems
are more frequently found close to first–order mean–motion resonances than directly in the
resonant locations (Lissauer et al., 2011; Fabrycky et al., 2014; Delisle and Laskar, 2014).
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companions, preferentially around low–mass stars (Holman and Murray, 2005).
The need for long time series also implies that the ideal targets for the timing
variation analysis are short–period (close–in) systems. On the other hand, TTV is
presently the only reliable method linking the transit light curves to the planetary
masses (without the need of RV measurements) and it is also an important source
of information on the orbital eccentricities in multiplanetary systems.

2.1.2 Mass-radius relations
In an ideal case of a transiting exoplanetary system and a well–characterised
host star, the combination of the transit photometry with the RV method or, if
applicable, with the TTV method enables a simultaneous determination of the
masses and radii of the studied exoplanet(s). The mass and radius, combined to
yield the average density, are the basic ingredients of any considerations regarding
the planet’s interior structure and composition. In reality, however, the two
parameters are not always known at the same time and, especially for terrestrial
exoplanets, the masses are often poorly constrained (e.g., Weiss and Marcy, 2014).

The problem of lacking data can be partially solved by resorting to the mass–
radius relations of celestial bodies with already determined properties. Among
such bodies are the Solar System moons, dwarf planets, and planets, as well as
transiting extrasolar worlds with measured RVs or TTVs. Mass–radius relations
can be constructed either by statistical means, based purely on the data (e.g.,
Weiss and Marcy, 2014; Wolfgang et al., 2016; Bashi et al., 2017; Chen and
Kipping, 2017), or with the help of a physically–justified model, based on the
equations of state for the expected planetary constituents3 (e.g., Valencia et al.,
2006; Zeng et al., 2016). Recent scaling laws also consider the scatter in radii
for given masses (or vice versa) and the uncertainty in the measured quantities
(Wolfgang et al., 2016; Chen and Kipping, 2017).

Additionally, the mass–radius relations can provide a basic insight into the
exoplanets’ types and compositions. As illustrated, e.g., in Chen and Kipping
(2017, Figure 3), the slopes of the relation, as well as the variances, substantially
differ between distinct mass intervals. The change of slope is most prominent
around 100M⊕. In this region, the relation is characterised by a plateau, indi-
cating that the radius of extrasolar gas giants is almost independent of their
mass. Nevertheless, the area of our interest lies below ∼ 2M⊕, which was found
by Chen and Kipping (2017) as the upper limit for the “Terran” mass–radius
relation. Translated to radii, the upper limit for exoplanets with undoubtedly
rocky composition should lie around ∼ 1.2R⊕. Less strict estimates predict that
the upper limit in radii is around 1.5R⊕ (Weiss and Marcy, 2014; Rogers, 2015)
and, in a very broad sense, the planet formation theory admits the existence of
terrestrial worlds with masses up to 10M⊕ and corresponding radii up to ∼ 1.9R⊕
(Valencia et al., 2006).

An interesting feature arises when we focus on the dependence of planetary
3In Chapter 4 of this work, we adopt specifically the model of Zeng et al. (2016), which is

based on the Preliminary Reference Earth Model (PREM; Dziewonski and Anderson, 1981).
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radius on a fixed mass. Despite a large scatter of radii in the Neptunian range
of Chen and Kipping (2017), refined exoplanetary statistics suggest that not all
predicted mass–radius pairs are equally probable. Empirical mass–radius diagrams
(e.g., Zeng et al. 2019; see also Fulton et al. 2017) reveal two distinct regions, divided
by a scarcely–populated valley. The population with higher average densities
belongs to super–Earths, or massive terrestrial exoplanets (theoretically, up to
10M⊕). The population with lower average densities consists of mini–Neptunes:
exoplanets with extended water vapour or hydrogen/helium atmospheres. Whether
a newly formed planet remains terrestrial or it evolves to a small Neptunian world
presumably depends on the individual formation history. Similarly, whether a
Neptune–like exoplanet pertains its low–density atmosphere or it loses the volatiles
to space may depend on the levels of instellation4 (Fulton and Petigura, 2018; Swain
et al., 2019). As the mass–radius diagram can be divided into regions inhabited
by planets of different classes, a comparison of a newly–detected exoplanet with
such a diagram permits the estimation of its character even in the absence of
information on the mass (or on the radius, if mass is known).

2.1.3 Composition
The estimation of the average density, possibly with the help of an analytical or
semi–empirical mass–radius relation, is only the first step in the characterisation
of exoplanet interiors. The position of a planet on the mass–radius diagram can
be approximately linked to its composition (see, e.g., Figure 2 in Zeng et al.,
2019); such a characterisation is, however, often ambiguous. While a two–layered
model, in which the planet is composed of a homogeneous core and a homogeneous
mantle (or ocean) provides a unique fit to the planet’s average density, any multi–
layered models or models with more realistic mineralogy are inherently non–unique.
Typically, there is a trade–off between the layers’ compositions and thicknesses.
To constrain the interior models of exoplanets with determined masses and radii,
we would need additional information, coming either from observation or from
numerical modelling.

Observational constraints Among the observational constraints are the spec-
trum of the host star, the spectrum of the planet, and the footprints of the planet’s
shape in the transit light curves or RV measurements. The spectrum of the host
star contains information on the elemental abundances in its photosphere and,
implicitly, on the building blocks of the surrounding planetary system (e.g., Dorn
et al., 2015). The link between the stellar and the planetary composition is based
on the evidence from our closest neighbourhood. Considering only the refractory,
non–volatile elements, the composition of carbonaceous chondrites and the bulk
composition of the Earth closely follow the relative elemental abundances in the
solar photosphere (McDonough, 2003; Lodders, 2003). Specifically, the Mg:Si:Fe
ratio determines the relative core size of the terrestrial planets and, together with

4The word “instellation” is used in parallel to “insolation” and denotes the incident flux at
the planet’s surface (e.g., Dobrovolskis, 2007, 2009).
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the C:O ratio, it co–determines the mantle mineralogy (Thiabaud et al., 2014).
Although the exact planetary composition depends on the processes acting during
the planet formation (Thiabaud et al., 2014) and in the early violent stages of
the planetary system evolution (e.g., Marcus et al., 2010), the stellar abundances
can constrain the composition of planets in a given system at least by statistical
means.

The transmission or emission spectrum of a terrestrial exoplanet’s atmosphere
may provide clues to the planetary water content (Tsiaras et al., 2019) or to
ongoing volcanic activity (e.g., Kaltenegger et al., 2010). In the case of active
silicate volcanism or maintenance of a surface magma ocean, the atmospheric
composition is also linked to the composition of the solid body. On the other
hand, the absence of absorption features in the transmission spectrum can be
explained by the presence of clouds (Fortney, 2005; Kreidberg et al., 2014).

Another promising method probing the interior of close–in exoplanets is the
search for the signal coming from the tidal or rotational deformation in long
photometric or spectrometric time series. The tidal Love number k2, introduced
in the previous chapter, has a direct effect on the planet’s apsidal precession5,
which proceeds on much shorter timescales than the tidal evolution of other orbital
elements. In other words, the measurement of apsidal motion provides information
about the planet’s tidal deformation and, consequently, about its radial structure.
For an elliptic orbit, the changes in the orientation of the periapsis with respect
to the observer result in transit timing variations or radial velocity variations
(Csizmadia et al., 2019). Specifically, Csizmadia et al. (2019) used archival RV
measurements to estimate k2 of the hot Jupiter WASP–18Ab and discussed the
detectability of apsidal motion by TTV. Focusing on the tidal deformation of
terrestrial worlds, Bolmont et al. (2020) analysed the effect of k2 on the TTV of
the innermost planets in the TRAPPIST–1 system. The authors found that the
tidally–induced apsidal precession is comparable to the relativistic precession and
the tidal contribution is potentially detectable, given the planets are covered by
ocean.

In addition to the apsidal precession, the shape of a tidally– or rotationally–
deformed transiting exoplanet also affects the apparent dimming and brightening
of its host star, as observed from the Earth (or from the Earth’s orbit). Analysis
of photometric time series can thus provide clues not only to the dynamical
effect of tides, through the apsidal motion reflected in TTV, but also to the
actual deformation of the planet, through its influence on the shape of the light
curve. Although hardly detectable by current instruments (however, see Hellard
et al., 2020), the measurements of tidal deformation will hopefully become a new
constraint on exoplanetary interiors upon the launch of future missions such as
JWST or PLATO (Hellard et al., 2019). Furthermore, the detection of the planet’s
rotational flattening may give clues to its spin rate and thus constrain the rate of
tidal dissipation in the interior (e.g., Seager and Hui, 2002; Zhu et al., 2014).

5In the context of works dedicated to close binary stars, the tidal Love numbers kl, divided
by two, are referred to as apsidal motion constants (e.g., Russell, 1928; Sterne, 1939; Kopal,
1953; Hut, 1981).
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Constraints from numerical modelling Due to the inherent degeneracy of
physically–motivated interior structure models, the numerical modelling alone
provides only a loose constraint on the possible exoplanetary compositions. Never-
theless, in combination with the measurable parameters, such as the mass, radius,
and distance from the host star, the information coming from theoretical efforts
can help us to qualitatively determine how similar—or how dissimilar—are the
individual exoplanets to the Solar System bodies.

As was said earlier, the planetary composition depends on the individual
formation history, which can be hardly tracked down in a distant exoplanetary
system (e.g., Thiabaud et al., 2014). Theoretical considerations can, however,
set limits on the empirically–obtained mass–radius diagrams. For instance, the
knowledge of the equilibrium surface temperature, based on the measured semi–
major axis and stellar luminosity, indicates whether a planet is able to sustain
an ice crust, a water ocean, or any water reservoirs at all (e.g., Leconte et al.,
2013). Numerical simulations of giant impacts, on the other hand, give constraints
on the maximum core mass fraction (CMF) in terrestrial exoplanets (Marcus
et al., 2010) since a collision never strips a planet from the entire mantle6. Taking
a yet different approach, Suissa et al. (2018) suggest that the maximum and
minimum core size of planets with measured masses and radii can be estimated
from synthetic planet interior models. The authors adopt the model grid of Zeng
and Sasselov (2013), which was calculated using equations of state for iron and
silicates, and use the measured radii as boundary conditions for interior structure
models of planets with a given mass.

The last theoretical constraint that we are going to mention is the planetary
systems’ formation time. In short, younger systems were formed in an older—and
chemically more evolved—Galaxy. The availability of heavy elements in the star–
forming regions affects the initial heat budget of newly–forming terrestrial worlds,
as well as their possible core sizes and mantle mineralogies (Frank et al., 2014;
O’Neill et al., 2020). At the same time, the chemical composition of the interstellar
medium (ISM) is subject to evolution. Material is being recycled in new and new
generations of stars and the ISM is being gradually enriched in metals, including
iron and long–lived radionuclides. Based on the galactic chemical composition
models, Frank et al. (2014) predicts that terrestrial exoplanets formed in the early
Galaxy might be more Lunar–like than Earth–like, that is, they might possess a
smaller iron core. Newer planets, on the other hand, may resemble hypothetical
“super–Mercuries”. The core size, the related surface gravity, and the efficiency of
radiogenic heating have further implications for the thermal and tectonic regime
of a planet (Frank et al., 2014; O’Neill et al., 2020). The formation time may,
therefore, determine whether an Earth–sized planet will be also Earth–like.

6Although the bulk density of terrestrial exoplanets might be constrained by giant–impact
simulations, this lower limit is probably not always determining. Mocquet et al. (2014) point
out at the existence of exotic planetary candidates with densities exceeding the density of iron
and suggest that the objects can be naked cores of former giant planets which have migrated
too close to their host star.
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On the several pages behind us, we have reviewed the most successful detection
and characterisation techniques used in exoplanetary science and we have discussed
the types of information about the interiors of extrasolar worlds that can be
obtained from observation or numerical modelling (with theoretical considerations).
Now, we will briefly return to the Earth and to Earth–based laboratories with a
quest for a rheologically–motivated description of tidal deformation.

2.2 Deformation mechanisms

Realistic parameterisation of the tidal response and of the subsequent tidal
heat production requires a proper understanding of the underlying deformation
mechanisms. Such knowledge can be obtained either by empirical measurements
or by ab initio calculations. In this section, we are going to discuss the microscopic
sources of global–scale deformation and introduce the rheological models used in
planetary science.

The internal friction, or the magnitude of the energy dissipation, is commonly
quantified by the (inverse) quality factor Q−1, defined as (e.g., Stacey, 1963; Sotin
et al., 2009)

Q−1 = ∆E
2πE

, (2.3)

where ∆E/E is the fractional energy loss per loading cycle. In our case, this
quantity presents the link between the internal mechanisms and the tidal response
introduced in the previous chapter. Specifically, the tidal quality factor can be
related to the tidal phase lag7 as (Efroimsky, 2012a,b)

Q−1(ωlmpq) = sin εlmpq(ωlmpq) . (2.4)

Since the difference between the seismic quality factor and the tidal quality
factor of planetary bodies is only produced by the self–gravity (Goldreich, 1963;
Efroimsky and Lainey, 2007), the frequency dependence of the latter quantity can
be reasonably represented by the frequency dependence of the former.

In the following, we are going to use the words anelasticity and viscoelasticity
with the meaning identical to their introduction in Karato and Spetzler (1990).
Anelastic behaviour is thus a relaxation of the material to a uniquely defined
equilibrium state, characterised by the relaxation time τ . Viscoelastic behaviour,
on the other hand, lacks a uniquely defined equilibrium and results in infinite
deformation at an infinite time (given the stress is constant).

7Note that this definition of the quality factor differs from the definition used in geophysics
and material science, which would be Q−1 = tan ε (e.g., Nowick and Berry, 1972). The difference
between the “seismic” and the “tidal” factor is due to the planet’s self–gravity. For a detailed
discussion, see Efroimsky and Lainey (2007) or Efroimsky (2012b).
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2.2.1 Rheological models
The constitutive relation between the applied shear stress σ and the resulting strain
ϵ in the medium is determined by our choice of the rheological model. Specifically,
if the relation between the two quantities is linear, as is the case in geophysically–
relevant materials at low stresses (e.g., Jackson, 2015), the rheological model is
also said to be linear. The use of a linear rheology enables us to perform the
Darwin–Kaula expansion (Section 1.3) as well as the normal mode expansion
presented in Appendix A. In the time domain, we can define the creep function
J(t) (e.g., Nowick and Berry, 1972; Jackson, 2015), which represents the strain
resulting from shear stress applied in the form of a step function at time “zero”,

σ(t) =
{︄

0 for t < 0 ,
1 for t ≥ 0 .

(2.5)

As an example, a purely elastic body would respond by instantaneously occurring
constant deformation (J(t) ∝ 1), while a purely viscous body would respond by
linearly growing deformation (J(t) ∝ t). Nevertheless, since an important class
of laboratory experiments as well as seismological measurements are concerned
with the response of a material subjected to periodic loading, it is advantageous
to express the relation between the strain ϵ̄ and stress σ̄ in the frequency domain,
using the Laplace transform of the creep function,

J̄(ω) = L
{︁
J(t)

}︁
= iω

∫︂ ∞

0
J(ξ)e−iωξ dξ , (2.6)

which is denoted as the dynamic compliance (Jackson, 2015). Alternatively, this
quantity can also be defined as the Fourier transform (e.g., Makris, 2019).

Mechanical circuits In a simplified 1d case, the rheological model of a material
can be represented by a mechanical circuit, in analogy to the alternating current
(AC) circuits of electromagnetics. After substituting the scalar quantities σ and
ϵ by the traceless stress tensor σD and strain tensor ϵD, the outcome of this
analogy is also applicable to the general 3d case. The extension of the illustrated
1d mechanical models to the rheology of 3d continuum will be shown later in
this subsection. A purely elastic response to periodic loading is symbolised by
a Hookean spring with elastic (Young) modulus E. A purely viscous response
is represented by a Newtonian dashpot with viscosity F , as illustrated on the
following lines:

ϵ(t) = σ(t)
E

ϵ̄(ω) = σ̄(ω)
E

(2.7)

ϵ(t) =
∫︂ t

0

σ(t′)
F

dt′ ϵ̄(ω) = σ̄(ω)
iωF (2.8)
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Maxwell and Kelvin–Voigt elements Figure 2.1 shows four linear rheological
models applicable to geophysical phenomena. The first two models, namely
Maxwell and Kelvin–Voigt, represent the simplest possible combinations of viscous
and elastic elements. First, the Maxwell model, depicted as a spring and dashpot
connected in series, describes irrecoverable, viscoelastic deformation. In response
to applied stress, the spring deforms instantaneously, while the dashpot slides
gradually until the stress is removed. Conversely, when a constant strain is
applied to the Maxwellian circuit, the resulting stress decays with relaxation time
τM = F1/E1. Similarly, the Kelvin–Voigt model, a spring and dashpot connected
in parallel, can be characterised by a retardation time8 τKV = F2/E2, which
describes the retardation of strain upon the application of a constant stress. Due
to the parallel connection, the Kelvin–Voigt model represents recoverable, anelastic
deformation in the medium. Note that the elastic moduli and the viscosities of
the two models are marked with different subscripts, since they symbolise different
mechanisms.

Figure 2.1: Overview of the simplest rheological models and their mechanical
circuit analogues. Symbol E stands for the elastic (Young) modulus of a Hookean
spring and F denotes the viscosity of a Newtonean dashpot.

8The relaxation time characterises the stress relaxation under a constant strain. The
retardation time, on the other hand, characterises the strain retardation under a constant stress.
For materials described by complex rheologies, the two timescales are generally different (Nowick
and Berry, 1972).
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Both the Maxwell and the Kelvin–Voigt models contain a contribution which
is nonelastic, leads to a time–dependent behaviour, and in which the strain lags
behind the stress. Such a behaviour results in the dissipation of mechanical energy
in the system. The complex–valued dynamic compliance (2.6) can be divided into
the real and imaginary part as (Nowick and Berry, 1972)

J̄(ω) = J̄1(ω) − iJ̄2(ω) = |J̄(ω)|e−iε , (2.9)

where J̄1(ω) is called the storage compliance, J̄2(ω) the loss compliance, |J̄(ω)|
the absolute dynamic compliance, and the “seismic phase lag” ε is, in this context,
referred to as the loss angle. The energy dissipated in a full cycle of loading is
related to the loss compliance by

∆E = πσ2
0 J̄2(ω) , (2.10)

with σ0 being the amplitude of applied periodic stress.

Standard anelastic solid A combination of the elastic and the anelastic be-
haviour can be most easily represented by the standard anelastic solid (SAS)—a
model introduced by Zener (1948) and originally labelled as the “standard linear
solid” (SLS). Here, we adopt the newer term, as it better captures the essence of
the model: the SAS is required not only to provide a linear relationship between
the strain and stress, but also to relax into a unique equilibrium after sufficient
time. The mechanical analogue of SAS consists of a Hookean spring, representing
the elastic deformation, and a Kelvin–Voigt element, representing the anelastic
deformation. In the material science (e.g., Nowick and Berry, 1972), the creep
function is conventionally divided into the unrelaxed part,

JU = J(t = 0) = 1
E1

, (2.11)

and the relaxed part,

JR = J(t → ∞) = 1
E1

+ 1
E2

, (2.12)

where the former characterises the instantaneous deformation after the exertion
of stress in the circuit, while the latter characterises the equilibrium value of
J(t) after strain relaxation. Another quantity, used in line with the relaxation or
retardation time9 τ (e.g., Karato and Spetzler, 1990), is the relaxation strength

∆ = JR − JU

JU
= δJ

JU
. (2.13)

9Strictly speaking, the timescale used for the characterisation of a material depends on the
type of experiment conducted. The creep function is typically measured at constant stress
(as follows from its definition). Therefore, the quantities JU and JR are used together with
the retardation time. Conversely, the relaxation time is used in combination with the stress
relaxation function M(t) (Nowick and Berry, 1972). The unrelaxed part of this function is equal
to 1/JU. The relaxed part is equal to 1/JR.
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Figure 2.2: Sketch of the Debye peak arising in the relaxation spectrum of an
anelastic material.

Using this notation, the relaxed and unrelaxed compliance can be related via
JR = JU(1 + ∆).

If we rewrite the frequency–domain constitutive relation of SAS (Figure 2.1c)
into these newly introduced variables, we arrive at

J̄(ω) = JU + δJ
1

1 + ω2τ2 − iδJ ωτ

1 + ω2τ2 . (2.14)

Specifically, the imaginary part of equation (2.14), which stands for the dissipation
in the medium, follows a distinct frequency dependence that is characteristic
for the given material. When plotted against logωτ the imaginary part forms a
symmetric peak around ωτ = 1 (Figure 2.2), which is called the Debye peak. The
laboratory measurements and characterisations of Debye peaks paved the way
for advanced rheological models, which will be introduced in one of the following
sections.

Burgers model The addition of a Newtonian dashpot to the mechanical ana-
logue of the SAS model yields the Burgers model (Figure 2.1d). The main strength
of the Burgers model when compared to SAS is, therefore, its ability to capture
the viscous creep, in addition to the anelastic deformation. In analogy to equation
(2.14), we may write the dynamic compliance of this model as

J̄(ω) = JU + δJ
1

1 + ω2τ2 − i
(︃
δJ

ωτ

1 + ω2τ2 + JU

ωτM

)︃
, (2.15)

where τM is the previously mentioned Maxwell time.
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Three–dimensional elastic case Up to now, we have introduced the basic
rheological models using the 1d mechanical circuit analogue. Such toy models are
useful for illustration purposes and they also have a role in laboratory experiments
performed on metal wires (Andrade, 1910). However, in practical applications,
the presented results need to be extended to a general 3d case. On the following
lines, we are going to discuss the relationship between the incremental Cauchy
stress tensor σ and the Eulerian strain tensor ϵ = 1

2

(︂
∇u + ∇tu

)︂
, where u is the

infinitesimal deformation. First, we will focus on the elastic case and then on the
case of linear viscoelasticity or anelasticity.

The constitutive relation for a linear elastic solid can be expressed by the
generalised Hooke’s law (e.g., Martinec, 2019)

σ = C : ϵ , (2.16)

where C is the fourth–order elastic tensor. In a general case of anisotropic solid,
the elastic tensor is specified by 21 independent components (and the stress–strain
relation is further characterised by six components of a reference stress tensor).
In the more specific case of an isotropic solid, the number of independent elastic
constant reduces to two and the generalised Hooke’s law becomes

σ = λ tr(ϵ) I + 2µ ϵ , (2.17)

where tr(·) denotes the trace of a tensor. Constants λ and µ are Lamé’s coefficients.
The second Lamé’s coefficient, µ, is also called the shear modulus or the rigidity,
depending on the context. The strain and the stress tensors can be further split
into the spherical and the deviatoric (·D) parts (Martinec, 2019):

ϵ = 1
3tr(ϵ)I + ϵD , σ = −pI + σD , (2.18)

with p being the mechanical pressure. Specifically, the deviatoric parts of both
tensors are traceless and symmetric from the definition. Upon inserting the
expressions (2.18) into equation (2.17), the generalised Hooke’s law also splits to
the spherical and deviatoric parts as

−p = k tr(ϵ) , σD = 2µϵD . (2.19)

Here, we defined the bulk modulus, or the modulus of hydrostatic compression,
as k = λ+ 2

3µ (Landau et al., 1986; Martinec, 2019). If we continue the descent
from the more general to the less general 3d case, we may further require that the
linear elastic solid be not only isotropic but also incompressible. Then, it holds
that

tr(ϵ) = ∇ · u → 0 , λ → ∞ , k → ∞ ,

σ = −p I + 2µ ϵD ,

(2.20)
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and the mechanical pressure becomes a new unknown function of coordinates,
determined by solving the governing equations of the continuum (Landau et al.,
1986).

Until we proceed to the linear viscoelastic or anelastic solid, it would be
beneficial to contemplate the relationship between the Young modulus, used in
the discussion of the 1d case, and the shear modulus, introduced in this paragraph.
While the Young modulus characterises the stretching of a material subjected to
uniaxial stress, the shear modulus describes the material’s response to shear stress
and it is related also to the forces acting in the direction perpendicular to the
loading. As an example, the stretching of a wire is accompanied by its thinning.
The ratio between the transversal compression and the longitudinal stretching is
called the Poisson ratio ν and the Young modulus can be related to the shear
stress by (Landau et al., 1986)

E = 2µ(1 + ν) . (2.21)

In practice, the Poisson ratio may vary between ν = −1 and ν = 0.5. However,
the idealised mechanical models of Figure 2.1 are devoid of any deformation in
the transversal direction and are considered as having ν := 0.

Three–dimensional nonelastic case The constitutive relation for a linear
viscoelastic or anelastic solid differs from the constitutive relation for an elastic
solid by the dependence of the Cauchy stress tensor on the strain rate ϵ̇ or the
stress rate σ̇. Nevertheless, the linear nonelastic case can be readily rewritten to an
analogue of the generalised Hooke’s law by applying the principle of correspondence
(Peltier, 1974). Therefore, for the Laplace (or Fourier) transform of the incremental
Cauchy stress tensor σ̄ and of the incremental strain tensor ϵ̄ in a linear isotropic
incompressible solid, we may write

σ̄(ω) = −p I + 2µ̄(ω) ϵ̄D(ω) , (2.22)

where µ̄(ω) is the complex rigidity. Taking only the deviatoric part of the Cauchy
stress tensor, the inverse relation reads as

2ϵ̄D(ω) = J̄(ω)σ̄D(ω) . (2.23)

Equation (2.23), in the form stated, is traditionally used in rheologically–justified
models of tidal phenomena (e.g., Castillo-Rogez et al., 2011; Efroimsky, 2012b). In
our case, however, it requires some caution, especially in relation to the factor 2 in
front of the strain tensor and to our previous exposition. The complex compliance
J̄(ω) has been, up to now, defined in the 1d case with the Young modulus E and
the 1d viscosity F . The 3d complex compliance, as introduced in equation (2.23),
has exactly the same form as in Figure 2.1; the symbols E and F only need to be
replaced by the symbols µ and η, where symbol η stands for the dynamic viscosity,



58 Deformation mechanisms

defined for a Newtonian fluid in analogy to the shear stress in a linear elastic
solid. If we, instead, stated equation (2.23) without the factor 2, we would need
to substitute E = 2µ and F = 2η in the compliances given in Figure 2.1.

2.2.2 Microscopic processes as a source of macroscopic
deformation

The global–scale deformation and energy dissipation in planetary bodies are
determined by several distinct microscopic mechanisms, acting with variable im-
portance at different depths of the core and mantle. Among the mechanisms
likely to induce anelastic or viscoelastic deformation are the motion of point
defects or dislocations, grain boundary migration and sliding, redistribution of
intergranular fluids (such as melt or water), and local phase transitions (Jackson,
2015). Different deformation mechanisms are characterised by different character-
istic (relaxation/retardation) times and different relaxation strengths (see, e.g.,
Zener, 1948). According to Karato and Spetzler (1990), the most important
sources of seismic–wave attenuation in the Earth mantle are dislocation sliding
and grain–boundary mechanisms. These two mechanisms can also contribute to
the attenuation at the tidal frequencies and will be specifically reviewed in this
section.

Movement of dislocations The theoretical background of dislocation motion
was developed in the 1930s (e.g., Orowan, 1934; Taylor, 1934), although it was not
earlier than in the 1950s when the dislocations were observed in the laboratory
(Hirsch et al., 1956). The movement of a dislocation under applied stress is
achieved in various ways. As an example, the dislocation climb consists in the
migration of dislocation in a crystal, accompanied by the formation or annihilation
of vacancies. Since the motion of vacancies depends strongly on temperature,
dislocation climb is a thermally–activated mechanism (e.g., Hull and Bacon, 2011).
On the other hand, the dislocation glide takes place without the assistance of
vacancy diffusion and proceeds even at low temperatures.

The rheological properties of real materials are marked by the presence of
multiple dislocations, characterised by the dislocation density. The dislocation
density ϱ is defined as the total length of dislocations in a unit volume and its
magnitude is particularly sensitive to long–term tectonic stresses, that is, to the
past loading of the interior. An intersection of dislocations is one of the possible
mechanisms responsible for the formation of kinks and jogs: the “defects inside a
defect” impeding the movement of a dislocation. Specifically, the presence of jogs
and other impurities in the slip plane may lead to a phenomenon called dislocation
pinning. In a material subjected to forced oscillations, the dislocation usually
moves between pinning points, which can be represented, in addition to jogs, also
by other obstacles, such as impurity atoms or nodes. The material then deforms
anelastically, with relaxation strength and characteristic time given by (Karato
and Spetzler, 1990)
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∆ ∼ ϱl2 , (2.24)

τ ∼ l2

µbB
, (2.25)

where l denotes the average distance between pinning points, b is the magnitude of
Burgers vector10, µ the shear modulus and B the mobility of dislocation. The last
quantity is determined by the resistance to dislocation motion, such as phonon
scattering, impurity or jog drag, the repulsive effect of lattice periodicity or
interaction with other dislocation (Hirth and Lothe, 1992; Karato and Spetzler,
1990)

The anelastic behaviour, which is caused by dislocation pinning, changes at high
temperatures, high stresses or low frequencies. Under such conditions, the pinning
is no longer effective and the pinning agents may either be overcome, or they
move along with dislocations. This phenomenon is called dislocation unpinning
and leads to viscoelastic deformation (Karato and Spetzler, 1990; Karato, 1998).
The frequency at which unpinning occurs is

ωu = ωchar exp
{︃

−Eb − σb2l

RgasT

}︃
, (2.26)

where ωchar symbolises the characteristic vibration frequency of a dislocation, Eb
is the binding energy of a dislocation to a pinning point, Rgas is gas constant, and,
finally, T is the local temperature.

Grain-boundary mechanisms The movement of grain boundaries may pro-
ceed either in the direction perpendicular to its tangent plane, or in the parallel
direction. In the former case, we are speaking about the grain boundary migration,
while the latter case is known as the grain boundary sliding (e.g., Karato and
Spetzler, 1990). The grain boundary migration consists in the emission of near-
boundary atoms from one grain and their absorption by another grain, resulting
in gradual shrinking or growth of the respective neighbouring grains (e.g., Gleiter,
1969). This mechanism, possibly induced by an applied stress and increased
temperature, plays an active role in recrystallisation. However, since it does not
generally cause strain, the grain boundary migration has negligible contribution
to stress relaxation (Karato and Spetzler, 1990). Its action may, nevertheless,
smoothen the boundaries of involved grains and facilitate grain boundary sliding.

Grain boundary sliding is a process consisting of the sliding of flat portions of
the grain boundary and of the accommodation of grain boundary irregularities
(Raj and Ashby, 1971; Karato and Spetzler, 1990). Here, the irregularities are a
direct consequence of the grain shape and the most important of them is due to

10The Burgers vector compares the crystal with a dislocation to an idealised “perfect crystal”.
It can be introduced using the method of the Burgers circuit (Friedel, 2013), that is, by drawing
an oriented curve around the area with dislocation and the same curve around the corresponding
area in the perfect crystal. The difference between the two curves is the Burgers vector.
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the neighbouring grains. Similar to the case of dislocation pinning, the presence
of irregularities may impede the sliding of the boundaries, which can only be
overcome at high temperatures or under low-frequency loading. When the motion
of the grain boundary is restricted, the accommodation of the irregularities is
said to be elastic and the resulting behaviour is anelastic. Interestingly, the
relaxation strength ∆ of grain boundary sliding is independent on the grain size
and, therefore, also on the past stress field and thermochemical conditions. The
characteristic time τ is related to the grain size d as (Nowick and Berry, 1972;
Karato and Spetzler, 1990)

τ = d

BsE
, (2.27)

with Bs being the sliding mobility and E denoting the elastic modulus, as in
the previous subsection. The sliding mobility is sensitive to the temperature
and to the presence of impurities or secondary phases (Raj and Ashby, 1971).
At high temperatures and low frequencies, the deformation accommodation at
irregularities is viscous and results in viscoelastic behaviour. The timescale of
viscous accommodation is then given by diffusion creep and its dependence on
the grain size and temperature is approximately (Karato and Spetzler, 1990)

τvis ∝ d2T . (2.28)

We have seen that the two most important mechanisms responsible for the
nonelastic behaviour of Earth mantle at seismic–wave frequencies depend on the
local thermochemical conditions (through thermal activation) and on the past
stress field (through the dislocation density and grain size). Both mechanisms
also result in the transition between anelastic and viscoelastic deformation at high
temperatures and low frequencies. These features will be reminded in the next
subsection, where we discuss the relationship between the previously introduced
rheological models and the seismological and geodetic measurements.

2.2.3 Empirically–based models
According to seismological and geodetic observations on a variety of timescales,
the response of the Earth to small–strain excitations cannot be described by
a purely elastic behaviour (e.g. Lau and Faul, 2019). The intrinsic friction in
the Earth mantle results in attenuation and velocity dispersion of seismic waves
(Karato and Spetzler, 1990, e.g.,), increase in the period of Chandler wobble
(Anderson and Minster, 1979, e.g.,), and broadening of free–oscillation peaks
(e.g., MacDonald, 1961). The comprehension of the mechanisms lying behind
the observed phenomena is the key to the information on the structure and
composition of the mantle. The investigation of Q−1 in the Earth is, however,
marked by a substantial difficulty: the trade–off between its depth and frequency
dependence. Since the early investigations of the attenuation in the Earth were
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mostly concerned with the depth dependence of the internal friction—and since
the frequency dependence is relatively weak compared to the effect of varying
depth—it became conventional to treat Q−1 as frequency–independent in a broad
range of seismic frequencies.

Absorption band model The gradual increase in the accuracy of measure-
ments required the introduction of frequency–dependent models able to fit the
data more precisely. Building on the observational evidence available in 1970s,
Don L. Anderson and his colleagues (Liu et al., 1976; Anderson and Minster, 1979;
Anderson and Given, 1982) proposed a model in which the internal friction Q−1

exhibits the following dependence on the loading frequency ω (see also Figure
2.3):

• At low frequencies (ω < ω1), the internal friction increases linearly with
increasing frequency

Q−1 ∼ ω

• Inside a distinct absorption band (ω ∈ [ω1, ω2]), the internal friction follows
a weak frequency dependence

Q−1 ∼ ω−α

with α in the range 0.1 − 0.4.

• At high frequencies (ω > ω2), the internal friction decreases with increasing
frequency

Q−1 ∼ ω−1

Specifically, the boundaries of the absorption band (ω1, ω2) depend on the ther-
mochemical conditions in the mantle and they shift with the increasing depth
(Liu et al., 1976; Anderson and Minster, 1979; Anderson and Given, 1982).

Figure 2.3: Schematic depiction of the absorption-band behaviour of the internal
friction Q−1.
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High temperature background Since the attenuation in the Earth is closely
related to the underlying microscopic mechanisms, an analogy of the seismic
absorption band is also known in material science. Samples of various metals,
when heated to sufficiently high temperatures below the melting point, exhibit
exponential dependence of the internal friction on the temperature (e.g., De Batist,
1969; Castillo-Rodríguez et al., 2016). The same is also true for other materials,
such as ceramics, silicates or ices (Schoeck et al., 1964; Lakki and Schaller, 1996;
Farla et al., 2012; Cole, 2020). The full attenuation spectrum, plotted against
the temperature, consists of Debye peaks (e.g., due to the presence of impurities)
superimposed over the high temperature background (h.t.b.). The observations of
h.t.b. in polycrystals can be attributed to the self–diffusion and the motion of
dislocations in the entire sample (De Batist, 1969).

Written as a function of frequency, the internal friction corresponding to the
h.t.b. can be expressed as (De Batist, 1969; Anderson and Minster, 1979)

Q−1(ω) = Q−1
0 (ωτ)−α , (2.29)

where the characteristic time τ follows the Arrhenius–like dependence on temper-
ature T ,

τ = τ0 exp
{︃

E∗

RgasT

}︃
, (2.30)

Rgas is gas constant, and E∗ the activation energy for diffusion. This functional
form of the internal friction corresponds to the transient creep, a phenomenon
observed in microcreep experiments, where the sample is loaded by a constant
(i.e., not periodic) stress (e.g., Andrade, 1910). The transient creep with time–
dependent strain rate occurs in addition to the instantaneous elastic deformation
and the steady–state viscous flow and leads to the following time dependence of
the strain (Anderson and Minster, 1979):

ϵ(t) = ϵ0

(︃
t

τ0

)︃α

exp
{︃

− αE∗

RgasT

}︃
. (2.31)

For the special choice of α = 0.3, equation (2.31) is equivalent to the Andrade
creep equation (Andrade, 1910; Anderson and Minster, 1979).

Viscoelasticity While the attenuation of seismic waves can be well approxi-
mated by the broad anelastic peak introduced in the absorption band model (e.g.,
Liu et al., 1976; Anderson and Minster, 1979; Minster and Anderson, 1981), the
global response of the Earth at very low frequencies points out at the existence of
a transition from the anelastic regime to a purely viscous behaviour (e.g., Yuen
and Peltier, 1982). Among other arguments for the viscous deformation operating
at long timescales, we should mention the maintenance of mantle convection—a
phenomenon which is impossible under the assumption of anelastic rheology (Jef-
freys, 1972, 1973). The transition from the anelastic behaviour to the viscous
creep is also known from laboratory experiments (Nowick and Berry, 1972).
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Yuen and Peltier (1982) note that while the conclusion that the long–term
behaviour of the Earth mantle is viscous has been sufficiently confirmed by
observation, an uncertainty still exists about the timescale of the anelastic–viscous
transition and about the (non)linearity of the rheological law in the viscous regime.
For instance, the characteristic timescale for mantle convection, where the mantle
rheology is mostly viscous, are 1 − 100 Myr (Schubert et al., 2004). On the other
hand, the timescale of global isostatic adjustment, ∼ 103 yr, may be interpreted
either as a manifestation of viscoelasticity or (although only marginally) as a
manifestation of transient anelasticity (Peltier et al., 1980). The Chandler wobble,
with a period of about 435 days, is already governed by the anelastic rheological
law (Peltier et al., 1981; Sabadini and Vermeersen, 2004).

Owing to the enormous regions involved in the global deformation of the Earth
and to the dependence of the relevant microscopic processes on the temperature,
chemistry, and stress field, the viscoelastic behaviour may, in fact, act on all
timescales of interest. Such consideration would soften the low–frequency cut–off
at ω = ω1 prescribed by the absorption band model. As suggested by Karato and
Spetzler (1990), even the absorption band itself can be explained by dislocation
unpinning and grain boundary sliding occurring at various times in the entire
volume of the mantle. Different pinning points and irregularities may be overridden
at different frequencies. Under this consideration, the transition from the anelastic
to viscoelastic effect of grain boundaries and dislocations would be very gradual.

Extended mechanical models As we have seen earlier, the absorption band
model represents the anelastic reaction of the mantle and is justified by the
presence of various relaxation mechanisms with a range of characteristic times.
Specifically, Minster and Anderson (1980) explain the seismic wave attenuation
by the presence of dislocations with different lengths and lying in different depths
(i.e., at different temperatures). To formalise the empirical conclusions, Anderson
and Minster (1979) relates the absorption band model to a generalisation of the
standard anelastic solid (SAS), prescribing an arbitrary distribution of character-
istic times D(τ). In accordance with equation (2.14), the dynamic compliance of
the generalised SAS model is

J̄(ω) = JU + δJ

∫︂ ∞

0
D(τ) 1 − iωτ

1 + ω2τ2 dτ . (2.32)

A reconciliation of the observed absorption–band behaviour with the presumed
viscoelasticity of the Earth at long periods can be achieved by introducing the
generalised (or extended) Burgers model, as was initially done by Peltier et al.
(1981) and Yuen and Peltier (1982). Identically to the “simple” Burgers model
(equation (2.15)), the generalisation predicts a Maxwell–like behaviour at long
timescales (t ≫ τM). The response at short timescales is the same as in the case
of the generalised SAS. The dynamic compliance of the generalised Burgers model
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is thus (Faul and Jackson, 2005)

J̄(ω) = JU − i δJ
ωτM

+ δJ

∫︂ ∞

0
D(τ) 1 − iωτ

1 + ω2τ2 dτ . (2.33)

The strong side of both the generalised SAS and the generalised Burgers model
is the arbitrariness of D(τ). The distribution of relaxation times can be prescribed
to fit the observations or laboratory measurements, which may be composed not
only of the h.t.b. but also from individual Debye peaks. Specifically, a peak
in the distribution may arise due to plastic deformation or due to the presence
of impurities in a sample (e.g., Karato and Wenk, 2018). On the other hand,
owing to the necessity to prescribe the entire distribution, the two models may
prove unwieldy for the application in pure numerical modelling of the global–scale
behaviour of a planetary mantle. An alternative to the description using the
spectrum of relaxation times is the original empirical model of transient creep
introduced by Andrade (1910). In his work, Edward N. da Costa Andrade studied
the stretch of metal wires subjected to constant tensile stress, which transitions
from the instantaneous elastic deformation, through transient creep (labelled as
"β–creep" by the author), to the steady–state viscous flow. He also noted that the
effect of the transient phase is less prominent at higher temperatures (162 ◦C for
a lead wire). The dynamic compliance corresponding to the previously mentioned
Andrade creep equation is (Jackson, 2015)

J̄(ω) = JU − i δJ
ωτM

+ βΓ(1 + α)(iω)−α (2.34)

where α and β are empirical parameters. The value of α used by Andrade (1910)
was 0.3.

While the Andrade model was introduced as purely empirical, its few–parame-
ter approach was also followed by Sundberg and Cooper (2010), who presented a
rheological description of fine–grained peridotite. The authors based the model
both on torsion oscillation and microcreep experiments and on theoretical con-
siderations. Specifically, they included the effect of elastically accommodated
grain boundary sliding and of transient diffusion creep. Sundberg and Cooper
(2010) argue that neither the Andrade model nor the traditionally used version
of generalised Burgers model (e.g., Minster and Anderson, 1981) are capable of
properly describing the diminishing of h.t.b. and the occurrence of an attenuation
peak at high frequencies (ω ≫ 1 Hz) or low temperatures. Although this is usually
not the case for tidal loading of a planetary mantle (however, cf. Renaud and
Henning, 2018), we include the Sundberg–Cooper rheology to our overview of
physically justified models and write its dynamic compliance as (Renaud and
Henning, 2018)

J̄(ω) = JU − i δJ
ωτM

+ βΓ(1 + α)(iω)−α + δJKV
1 − iωτKV

1 + ω2τ2
KV

. (2.35)

As can be seen in equation (2.35), the Sundberg–Cooper model is a superposition of
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the Andrade model and a Kelvin–Voigt element, characterising the high–frequency
Debye peak. In addition to JU, δJ and τM, it is described by four parameters: by
the original α and β of the Andrade rheology and by the compliance defect δJKV
and retardation time τKV of the Kelvin–Voigt component.

2.2.4 Proper description of the tidal response
In the context of celestial mechanics, the tidal evolution of planetary or lunar orbits
has traditionally been described by simplified models based on certain geophysical
assumptions (Section 1.3.2). The fact that the internal friction Q−1 in the Earth
mantle is almost frequency–independent on a wide range of seismic frequencies
served as a justification for the constant phase lag and constant geometric lag
models (e.g., Gerstenkorn, 1955; Goldreich, 1963; MacDonald, 1964; Kaula, 1964;
Goldreich and Soter, 1966; Murray and Dermott, 1999). Similarly, the presumed
inverse dependence of the internal friction on the frequency at long timescales
was consistent with the constant time lag model (e.g., Alexander, 1973; Mignard,
1979; Hut, 1981; Correia and Laskar, 2010), which is otherwise inspired by the
treatment of tides in binary stars. However, as explained in Section 1.3.2, the
applicability of the traditional models is limited and the proper description of tidal
phenomena requires the introduction of a rheologically–motivated tidal theory.

Maxwell model To begin with, a planet loaded at sufficiently low frequencies—
or a body whose mantle viscosity is sufficiently small—can be conveniently charac-
terised by the Maxwell viscoelastic model. Extending the 1d dynamical compliance
from Figure 2.1c) to a 3d case, we arrive at

J̄(ω) = 1
µ

− i

ηω
. (2.36)

Note that we have now parameterised the rheological model by the dynamic
viscosity η and the rigidity µ instead of the Maxwell time τM = η/µ. The present
formalism will be used throughout the rest of this work, if not stated otherwise.
Interestingly, the application of Maxwell rheology to tidal phenomena dates back
to Sir George H. Darwin. Darwin (1879) first derived a viscous counterpart
to the theory developed by Lord Kelvin for the treatment of deformation of
an elastic sphere subjected to a bodily force (Thomson and Tait, 1895). Then,
using an equivalent of the principle of correspondence (considered, however, as a
correspondence between the viscous and the “elasto–viscous” problem), he derived
the yielding of a viscoelastic solid Earth and its implication for the height of the
ocean tide.

Although the linear viscoelastic model of Darwin (1879) was not considered in
later Darwin’s work—and most of the twentieth–century tidal models included
simplified constant–tide–lag assumptions11—the idea of deriving the tidal deforma-
tion from basic rheophysical considerations was revived by Ferraz-Mello (2013). In

11It should be, however, noted that in the studies dedicated solely to tidal heating, the Maxwell
viscoelastic rheology was commonly in use (e.g., Peale and Cassen, 1978; Poirier et al., 1983;
Segatz et al., 1988; Tobie et al., 2005b).
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an approach labelled as the creep tide theory, the author studies the deformation
and spin–orbital evolution of a sphere governed by Newtonian viscosity, and later
superimposes his results over the contribution of elastic tide (Ferraz-Mello, 2013,
2015; Ferraz-Mello et al., 2020). Proceeding in a similar direction, Correia et al.
(2014) apply the aforementioned Darwin’s correspondence principle and consider
the Maxwell model from the beginning. The authors also derive the equations
for time–dependent gravity field coefficients and, similarly to Ferraz-Mello (2015),
explore the stable spin states (resonant or pseudo-synchronous), the orbital evolu-
tion, and the shape of a tidally– and rotationally–deformed planet. The results of
Correia et al. (2014) were later extended to planets with arbitrary obliquity by
Boué et al. (2016).

Earth-like rheology In the context of the Darwin–Kaula theory (Darwin, 1880;
Kaula, 1964, see also Section 1.3), the use of rheologically–motivated models was
pioneered by Efroimsky and Lainey (2007). Efroimsky and Lainey point out at the
parameterisation of seismic wave attenuation based on geophysical observations
and remind the reader that the internal friction Q−1 is no longer considered as
constant in seismological literature, neither is it considered as proportional to ω
at tidal frequencies. The authors also provide arguments for the choice of the law
Q−1 ∼ ω−α at frequencies higher than ∼ 1 yr−1, based on empirical measurements.
Building on the rheologically–motivated description, Castillo-Rogez et al. (2011)
study the despinning of Iapetus assuming a composite model, in which they adopt
Maxwell rheology at loading periods greater than the Maxwell time and Andrade
rheology at shorter periods. Efroimsky (2012b) reparameterises the Andrade
model (2.34) as

J̄(ω) = 1
µ

− i
ηω

+ µα−1

(i ζηω)α
Γ(1 + α) , (2.37)

where ζ is the ratio between the Andrade time τA and the Maxwell time τM, so
that

β = µα−1

(ζη)α
. (2.38)

The magnitude of ζ (or of the Andrade time) depends on the damping mechanisms
involved at given loading frequencies and amplitudes (Efroimsky, 2012b). We will
follow the parameterisation with α and ζ in Chapters 3 to 5 and Chapter 7.

Complex Love numbers While the traditional tidal models (e.g., Kaula, 1964)
assume that the Love number k2 and the quality factor Q (or phase lag) are two
independent quantities, the rheologically–motivated models imply that the height
and the orientation of the tidal bulges are introduced in a consistent way. In
the introduction to this section, we have mentioned that the internal friction
Q−1 presents a link between the tidal response and the underlying microscopical
mechanisms. However, it would be more appropriate to say that the understanding
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of global dynamics of the Earth provides the key to the proper inclusion of the
planet’s reaction to tidal equations—the planet’s reaction being parameterised
by both the Love number and the quality factor (or phase lag). This is most
naturally done by introducing the complex Love numbers (e.g., Castillo-Rogez
et al., 2011, see also Section 1.3.2 around equation (1.38)). For a homogeneous
spherical planet of radius R, surface gravity g, and average density ρ, the degree–l
complex Love number can be calculated as

k̄l(ωlmpq) = 3
2(l − 1)

1
1 +Al

, where Al = (2l2 + 4l + 3) µ̄(|ωlmpq|)
lgρR

Sgn{ωlmpq} . (2.39)

In the above equation, reprinted from Section 1.3.2, we have used the already
introduced complex rigidity µ̄(ω), which is related to the complex compliance by

µ̄(ω) = 1
J̄(ω)

. (2.40)

In the case of radially–stratified spherical bodies, the Love numbers cannot be
calculated by the simple formula (2.39). Even for a two–layered interior model,
we would need to take into account the contribution of both layers and the
corresponding analytical formula would become impractically complex (Henning
and Hurford, 2014). Nevertheless, the deformation and stress field, together
with the additional potential induced by boundary deflections, can be calculated
using the normal–mode theory (Takeuchi and Saito, 1972; Wu and Peltier, 1982;
Sabadini and Vermeersen, 2004; Tobie et al., 2005b). Consequently, the complex
Love number can be constructed from parameters corresponding to the incremental
gravitational potential. A brief overview of this method, which will be also applied
to the problems discussed in Chapters 3 to 5, is given in Appendix A.

2.3 Heat sources
The efficiency of microscopic processes lying behind the global dynamics depends
on the local temperature. Planetary interiors are heated at their birth by the
gravitational energy released upon their formation and differentiation; the remnant
heating is then complemented by other heating mechanisms acting during the
planet’s lifetime. A principal source of energy, competing with the remnant
heating in relevance (e.g., Korenaga, 2008), is the decay of radioactive isotopes.
Additional sources acting in the Earth interior are also the latent heat extracted
at exothermic phase transition and the compositional energy transformed to heat
during the crystallisation and chemical separation of the inner core (Jaupart et al.,
2007). Finally, for strongly tidally–loaded worlds, such as the close–in moons
or exoplanets, the dominant heating mechanism is the tidal dissipation. In the
following two subsections, we will review the calculation of radiogenic and tidal
heating, the latter being of crucial importance in the rest of this work.



68 Heat sources

2.3.1 Radiogenic heating
Mantle convection in terrestrial planets of the Solar System is kept alive by the
radioactive decay of elements and by the secular cooling of the interior12 (Schubert
et al., 2004). According to measurements of elemental abundances in the samples
of CI carbonaceous chondrites and of the upper mantle minerals (Jaupart et al.,
2007), the most important isotopes controlling the present–day radiogenic heating
are 238U, 235U, 232Th, and 40K. Since all of the mentioned radioactive elements
are incompatible, i.e., they resist inclusion into rock–forming minerals and they
readily go into the liquid phase upon partial melting, the highest concentration of
heat–generating radionuclides is found in the crust.

The total volumetric heat rate generated by radioactive decay can be expressed
as (e.g., Schubert et al., 2004)

hrg(ϑ, φ, r) =
∑︂

j

hrg
0,j(ϑ, φ, r) exp{−λj t} , (2.41)

where λj = log 2/τ1/2,j is the decay constant of radionuclide j and τ1/2,j is the
corresponding half–life. Symbol hrg

0,j stands for the volumetric heat rate due to
radionuclide j at time t = 0. The half–lives of uranium, thorium, and potassium
are long enough (∼ 1 Gyr) to contribute to the planet’s thermal evolution billions
of years after its formation. Nevertheless, in the toddler years of the Solar System,
the heat budget of the young planets was probably also controlled by short–lived
isotopes, such as 26Al or 60Fe. The contribution of these elements might have
been especially important for the early melting, differentiation, and outgassing of
the planetary bodies (Lugaro et al., 2018).

2.3.2 Tidal heating
The second heating mechanism to be discussed in this section is the tidal dis-
sipation. Although not relevant for present–day Earth, the importance of tidal
dissipation rises drastically in bodies on close–in eccentric orbits. As an illustra-
tion, the averaged global heat flux from the surface of Jupiter’s moon Io, orbiting
approximately at 6 Jovian radii, is > 2.5 W m−2, as compared to the same quantity
for much bigger Earth, which is 0.09 mW m−2 (Veeder et al., 1994; Davies and
Davies, 2010). Tidal dissipation is presumably also the leading source of energy on
close–in terrestrial exoplanets orbiting on tighter orbits than the innermost Solar
System planet, Mercury. Moreover, while the previously discussed radiogenic
heating dies out with time, as the radioactive isotopes decay into stable isotopes,
tidal heating may prevail even for the entire lifetime of the system, provided the
planet is protected from orbital circularisation, spin–orbit synchronisation, and/or
alignment of its spin axis with the normal to the orbital plane.

Global heat rate The average heat rate produced by the dissipation in the
entire volume of the planet over one orbital period can be written as (Segatz et al.,

12The radiogenic contribution to the heat flux measured at the Earth surface is usually
expressed by the convective Urey ratio Ur (Christensen, 1985).



2. Interior structure and dynamics 69

1988; Efroimsky and Makarov, 2014)

P̄
tide = −

∞∑︂
l=2

(2l + 1)n
8π2GR

∫︂ Torb

0

∫︂
S

δΦl(R,ϑ, φ, t)
∂Φl(R,ϑ, φ, t)

∂t
dS dt , (2.42)

where Φl and δΦl = |k̄l(ω)| Φl,lag are the degree–l tidal and additional potential
evaluated at the planet’s surface13. The subscript "lag" indicates that the argument
of the disturbing potential should be complemented with the tidal phase lag ε. If
we express the two potentials in the form of a Darwin–Kaula expansion, make use
of the orthogonality of associated Legendre polynomials, and average the tidal
heat rate over the precession period of the planet’s spin axis, equation (2.42) can
be rewritten into an analytical form

P̄
tide = −Gm2

∗
a

∑︂
lmpq

(︃
R

a

)︃2l+1
(2 − δm0) (l −m)!

(l +m)!
[︁
Glpq(e)

]︁2 [︁Flmp(β)
]︁2
ωlmpq Im

{︁
k̄l(ωlmpq)

}︁
.

(2.43)

The full derivation of this formula can be found in Efroimsky and Makarov (2014)14.
A special case of l = 2, used in our work, is provided in Appendix B.1. Note that
equation (2.43) holds for an arbitrary obliquity and orbital eccentricity as well as
for an arbitrary spin rate, provided that the overall deformation can be described
by a linear tidal theory.

Heat rate per unit volume A detailed analysis of thermal evolution may
also require the assessment of tidal dissipation in different depths of the planet
(e.g., Tobie et al., 2005a; Beuthe, 2013; Henning and Hurford, 2014) or even on a
computational grid spanning the entire mantle (e.g., Běhounková et al., 2010). For
the sake of completeness, we also discuss here the calculation of volumetric tidal
heating, which is implemented in our numerical model, although not applied to
the studies presented in Chapters 3 through 5. From the definition of volumetric
energy dissipation in viscoelastic continuum (e.g., Schubert et al., 2004), we have
(see also Tobie et al., 2005a; Sotin et al., 2009)

htide(ϑ, φ, r, ω) = Re
{︂

σ̄D(ϑ, φ, r, ω) : ϵ̇̄D(ϑ, φ, r, ω)
}︂
, (2.44)

where σ̄D = 2µ̄ϵ̄D is the deviatoric part of the incremental Cauchy stress tensor
and ϵ̇ is the deviatoric part of the incremental strain rate tensor. The components

13Here, we assume that the degree–l additional potential is proportional to the degree–l tidal
potential (at earlier time t), the coefficient of proportionality being the corresponding Love
number. In other words, we are using the linear tidal theory, as introduced by Darwin (1880)
and Kaula (1964). It should be noted that the assumption of linearity is violated at very high
tidal strains or if the planet’s internal friction depends on the amplitude (Goldreich, 1963).
Furthermore, the Darwin–Kaula expansion cannot be applied to planets with considerable lateral
heterogeneities, which would require the use of 3d interior models. Here, we only consider
homogeneous or radially–stratified bodies, i.e., models of 1d interior structure.

14Specifically, the full derivation is given in the Appendix H of the arXiv version of Efroimsky
and Makarov (2014).
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of the strain tensor can be related to the local tidal potential and to the local
deformations and tractions, calculated with the help of the normal mode theory.
For the sake of clarity, we refer the reader to Appendix B.2, which provides the
details of the calculation. A more elaborate derivation of volumetric heating, also
based on the normal mode theory and applicable mainly to synchronously–rotating
bodies, was presented by Tobie et al. (2005a).

2.4 Mantle convection
In addition to the primordial or externally–induced heating mechanisms, the
planet’s heat budget is controlled by cooling through the surface. Depending
mainly on the planet’s size, presence of heat sources, and on the core–surface tem-
perature contrast, the heat can be carried either by conduction15 or by convection,
with possible contributions from large–scale volcanism and melt migration. Here,
we briefly discuss mantle convection, as it plays a primary role in the thermal
evolution of terrestrial planets and large moons across the Solar System (e.g.,
Schubert et al., 2004).

Stated simply, the global energy balance of the planetary mantle can be
expressed by the equation (e.g., Schubert et al., 2004; Breuer and Spohn, 2006)

ρmcmVm
∂T

∂t
= Vmhm − qmAm + qcAc , (2.45)

where ρm is the average mantle density, cm the specific heat of the mantle, Vm
marks the volume of the mantle, T the volume–averaged mantle temperature, and
hm is the volumetric heat rate of arbitrary origin. Moreover, Ac, Am denote the
outer surface area of the core and the mantle, respectively, and qc, qm are the
corresponding average heat fluxes, the first flowing from the core to the mantle
and the second from the mantle to the planet’s surface. As we can deduce from
equation (2.45), the thermal evolution of a planet depends on a multitude of
factors, including the efficiency of heat transfer through the surface and the core–
mantle boundary (CMB), the temperature– and pressure–dependent mineralogical
composition, the presence and significance of various heating mechanism, and, of
course, the size of the mantle.

The heat transfer from the core into the mantle or from the mantle to the
outer surface is controlled by the thicknesses and conductivities of the thermal
boundary layers (TBLs). Thermal boundary layers, transferring heat mainly
by conduction, are responsible for the steepest changes of temperature in the
system and the analysis of their stability provides a basic insight into the mantle
dynamics. Although the thermal and chemical convection in planetary mantles is
better treated by 3d numerical modelling, the use of parameterised models based
on the boundary layer theory permits the understanding of its main aspects and

15If permitted by the transparency of minerals in the IR, the heat can be also transferred by
radiation. This contribution might be particularly important in the lower mantle (e.g., Matyska
and Yuen, 2005).
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the incorporation of the thermal evolution to coupled simulations (see also the
discussion in Chapter 4). In the parameterised models, the thickness of TBLs can
be related to the Rayleigh number (e.g., Solomatov, 1995), which expresses the
vigour of convection16,

Ra = αmρmg0∆Td3

ηmκm
. (2.46)

In the above definition, αm stands for the thermal expansivity of mantle material,
g0 is the surface gravity, ∆T symbolises the temperature drop across the convecting
layer, d is the convecting layer’s thickness, ηm the mantle viscosity, and κm the
diffusivity.

Mantle convection is enabled by the viscous flow of material under high
pressures and high temperatures. In the upper TBL, where temperature decreases
steeply towards the surface, the material becomes stiff and behaves elastically.
Depending on the level of participation of the upper TBL on the global dynamics,
the convection regime can be divided into stagnant–lid and mobile–lid17 (e.g.,
Weller et al., 2015). In the stagnant–lid regime, which is most common among the
Solar System planets and large moons, only the lowermost parts of the upper TBL
participate in the convection and the surface heat flux is thus strongly controlled
by the conductivity of the “lid”. The stagnant–lid regime arises as a consequence
of strong temperature dependence of the mantle viscosity (e.g., Solomatov, 1995),
that can be described by the Arrhenius law:

ηm = η0 exp
{︃

E∗ + pV ∗

RgasT

}︃
, (2.47)

where η0 is a reference viscosity (a pre–exponential factor), E∗ and V ∗ are activation
energy and volume, respectively, Rgas is universal gas constant, and p denotes
pressure. In the mobile–lid regime, the entire upper TBL participates in the
convection and the thermal evolution of the mantle is also affected by the descent
of the cold slabs formed by the near–surface material. As such, cooling in
the mobile–lid regime is more efficient than cooling in the stagnant–lid regime
(Schubert et al., 2004). Furthermore, the recycling of the entire upper TBL
also guarantees the maintenance of important geochemical cycles, stabilising the
planet’s climate (e.g., Walker et al., 1981).

A manifestation of the mobile–lid convection in the Earth is the plate tectonics:
the upper TBL, i.e., the lithosphere, is broken into a number of plates that are
continuously being created at mid–ocean ridges and consumed by the mantle at

16We note that the given definition of the Rayleigh number characterises a system heated
from below. This definition is also used by the parameterised models that will be adopted in
Chapters 4 and 5. An alternative definition of the internal heating Rayleigh number, which
quantifies the contribution of volumetric heat sources to the vigour of convection, is given, e.g.,
in Schubert et al. (2004).

17In addition to the two regimes, there is the possibility of an episodic or quasi–periodic
character of convection, in which the periods of stagnant–lid are combined with periods of
mantle overturn (Moresi and Solomatov, 1998; Weller et al., 2015).
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subduction zones (Schubert et al., 2004). The motion of the lithospheric plates is—
for most of their life—horizontal. On the other hand, the lowermost continental
lithosphere may be recycled by vertical motion, through delamination.

With respect to terrestrial exoplanets, neither the probability of plate tectonics,
nor the actual mantle convection regime can be uniquely determined. The
dynamical processes in the mantle depend on too many unknowns and it is
not even possible to draw conclusions from the size of the planet. For the simple
parameterised models, the vigour of convection—and the stresses in the lithosphere,
leading to its eventual breaking—can be estimated from the Rayleigh number
(2.46). Such estimates would lead to the assumption, that terrestrial exoplanets
bigger than the Earth should strongly favour plate tectonics (e.g., Valencia et al.,
2007; Valencia and O’Connell, 2009). An opposing view, presented, e.g., by
the numerical simulations of O’Neill and Lenardic (2007), predicts that the low
convective stresses at the upper mantle of large terrestrial bodies decrease the
probability of mobile–lid convection. The mantle dynamics can be also affected by
other factors, such as the interior structure, depth–dependence of viscosity, and
the evolution of volumetric heating (e.g, van Heck and Tackley, 2011; Stamenković
et al., 2012; Noack and Breuer, 2014; Noack et al., 2014). We will thus conclude
that the nature of convection on terrestrial exoplanets is—and most probably also
will be in the near future—an unresolved question.

2.5 Concluding remarks
Although the information about the surface and interior conditions of terrestrial
exoplanets is still very scarce, a combination of promising characterisation tech-
niques and numerical modelling provides an insight into the basic characteristics
of these distant worlds. Since we are particularly interested in the tidal response
of rocky bodies, a large portion of this chapter was dedicated to the deformation
mechanisms acting in the Earth and to their rheological description. We have seen
that the tidal response at the relevant frequencies is weakly frequency–dependent
and out of several rheological models, it is most practically described by the
few–parameter Andrade rheology. In the rest of the chapter, we have discussed the
radiogenic and tidal heating, that enters the simplified equation of energy balance
(2.45) and presents an important driving mechanism for mantle convection. The
overview was then closed by several thoughts about the thermal evolution.

By finishing Chapter 2, we have also come to the end of the theoretical part
of this work. The following chapters are dedicated to the applications of the
theoretical tools introduced up to now. Specifically, the next chapter serves
as a transition between the grey theory and the green tree of thermal–orbital
calculations: We will explore the parameter dependence of the tidal torque and
tidal dissipation. The keywords that will be carried from Chapter 2 to Chapter 3
are the Maxwell and Andrade rheology, the core mass fraction, and the tidal heat
rate.



3. Tidal torque and tidal heat
rate
Interweaving the information given in the first two chapters of this work, we may
slowly approach the exploration of the tidal effects in viscoelastic (and anelastic)
bodies. The first part of the third chapter is dedicated to the analysis of the
secular tidal torque in the Maxwell and the Kelvin–Voigt rheologies. In par-
ticular, we will be interested in the frequency dependence of the tidal torque
and in the effect of the planet’s size and rheological parameters. The second
part then focuses on a model planet described by the Andrade rheology, which
will be explored by a numerical model. The aim of this study is to gain intu-
ition in the parameter space relevant to the tidal evolution of terrestrial exoplanets.

We note that most of Chapter 3 was adapted from Section 6 and Appendix B
of Walterová and Běhounková (2020).

3.1 Parameter dependence of the tidal torque
A degree–2 secular tidal torque acting on a moon or planet with zero obliquity
can be expressed from equation (1.64) as an infinite sum

T2 =
∞∑︂

q=−∞
T220q = −K

∞∑︂
q=−∞

[︂
G20q

]︂2
Im
{︂

k̄220q(ω220q)
}︂
, (3.1)

with
K = 3

2
Gm2

∗R
5

a6 .

On the following lines, we will explore the parameter dependence of the tidal
torque in the most simple rheological models introduced in Section 2.2.1: the
Maxwell model and the Kelvin-Voigt model.

Maxwell rheology In the simplified case of a homogeneous spherical body
governed by the Maxwell rheology, we may write the imaginary part of the
complex Love number as (e.g., Castillo-Rogez et al., 2011)

Im
{︂

k̄2(ω)
}︂

= −57
4

(︃
ρgRηω
µ2 + 19ηω

µ
+ 361

4
ηω

ρgR + ρgR
ηω

)︃−1
, (3.2)

where ω is the tidal frequency of the given mode (equation (1.33)).

To emphasise the frequency dependence of this expression and analyse the
stability of higher spin–orbit resonances, we further simplify the notation of
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Figure 3.1: Frequency dependence of the kink–shaped function f(ω) = 1/(Aω +
ω−1) for four values of A. Note the different y–ranges of the individual panels.

equation (3.2) and rewrite it to the form

Im
{︂

k̄2(ω)
}︂

= −K′ f(ω) = − K′

Aω + 1
ω

, (3.3)

where we substituted

K ′ = 57
4

η

ρgR
and A = η2

µ2

(︃
1 + 19

2
µ

ρgR

)︃2
.

The function f(ω) is responsible for a kink–shaped torque around spin–orbit reso-
nances, which ensures their stability in linear viscoelastic or anelastic rheological
models (Makarov and Efroimsky, 2013; Noyelles et al., 2014). Specifically, the
functional dependence of f(ω) on the frequency ω is given by the coefficient A,
i.e., by a combination of rheological and physical parameters of the planet. An
illustration of the frequency dependence of f(ω) for different values of A is given
in Figure 3.1. Depending on the relative magnitude of these quantities, we may
delimit two regions in the parameter space (see also Efroimsky, 2012b):

19
2

µ

ρgR
≪ 1 self–gravity–dominated regime A ≈ τ2

M ,

19
2

µ

ρgR
≫ 1 rheology–dominated regime A ≈

(︃
19
2

η

ρgR

)︃2
.

For Earth–like planets, the boundary between the self–gravity–dominated and
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Figure 3.2: Estimate of the regions corresponding to different rheological and
frequency regimes for an Earth–sized planet described by the Maxwell model. The
x–range and y–range were chosen to match the ranges of parameters considered in
Figures 3.3 to 3.5. The exact position of the boundary between the low–frequency
and the high–frequency regime depends on the loading frequency.

rheology–dominated regions lies at µ ≈ 1010 Pa. In the rheology–dominated
regime, tidal torque is determined solely by the planet’s viscosity and does not
depend on the rigidity. The same behaviour is also predicted for small bodies,
such as asteroids (Efroimsky, 2015), as long as their reaction can be described by
the Maxwell rheology. In the self–gravity–dominated regime, on the other hand,
the shape of the kink function (3.3) is determined by the Maxwell time τM = η/µ.
While the parameter dependence of A in the two regimes might be different, the
same value of A should always yield the same behaviour of f(ω) around zero.

Depending on the absolute magnitude of A and on the loading frequency ω,
we may also distinguish two limit cases,

Aω2 ≪ 1 ⇒ f(ω) ≈ ω ,

Aω2 ≫ 1 ⇒ f(ω) ≈ 1
Aω

.

The first case, if attained in the self–gravity–dominated regime, corresponds to the
weak friction approximation, used originally for the description of tides in binary
stars (e.g., Alexander, 1973; Hut, 1981), or to the constant time lag model (e.g.,
Mignard, 1979; Correia and Laskar, 2010). A summary of the two rheological
regimes and the two frequency regimes is sketched in Figure 3.2, which indicates
the expected behaviour of the model planet studied later in this chapter (Table 3.1).
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The secular tidal torque (3.1) is, in fact, a weighted sum of the kink–shaped
functions f(ω), centred around frequencies ω220q. Standing alone, each kink would
cross zero exactly at a half–integer spin–orbit resonance, such as 1:1, 3:2, and so on.
However, when multiplied by the coefficients [G20q(e)]2 and summed together, the
positions of their zero crossings get slightly shifted from the exact resonances—and,
in some cases, they do not cross zero at all. Later in this chapter, we will explore
the highest spin–orbit resonances for which the tidal torque for prescribed model
parameters still crosses zero.

For the sake of illustration, let us also derive a stability criterion for the 3:2
resonance. Assuming a homogeneous spherical planet governed by the Maxwell
rheology, we may rewrite the secular tidal torque expanded to the second order in
orbital eccentricity as

T2 = K2

{︃
f(2n− 2θ̇) + e2

[︃
1
4f
(︁
n− 2θ̇

)︁
− 5f

(︁
2n− 2θ̇

)︁
+ 49

4 f
(︁
3n− 2θ̇

)︁]︃}︃
, (3.4)

where
K2 = KK ′ . (3.5)

The frequencies
(︂
n− 2θ̇

)︂
,
(︂
2n− 2θ̇

)︂
and

(︂
3n− 2θ̇

)︂
correspond to the 1:2, 1:1

and 3:2 resonances, respectively. Note that in the low–eccentricity case, when
e ≲ 0.1, the largest term in the expansion is the 1:1 resonance with prefactor
(1 − 5e2). To the right from this resonance, f(2n − 2θ̇) is negative. Since the
stability of the 3:2 resonance requires that T2 crosses zero in its vicinity, we are
seeking the parameters for which the maximum of the 3:2 kink is nonnegative. If
we neglect the contribution of the term corresponding to the 1:2 resonance, the
problem reduces to a comparison between the 1:1 and the 3:2 components. The
maximum of the 3:2 component lies at θ̇ = 3

2n− 1
2

√︂
1
A

. Thus, the 3:2 resonance is
theoretically stable whenever
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1
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)︄
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4 e
2 f
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1
A

)︄
> 0 . (3.6)

If we further require that the maximum of the 3:2 component is positioned to the
right from the 1:1 resonance, the above inequality is solved with

√
A >

29e2 + 4 + 4
√︂

1 − 10e2 − 2001
16 e4

49e2n
≈ 8

49e2n
. (3.7)

We recall that this condition has been derived with the explicit assumption of
small eccentricity (e ≲ 0.1) and holds only for a homogeneous body governed
by the Maxwell rheology. A similar analysis can also be performed for higher
eccentricities and other spin–orbit resonances (with a higher–order expansion of
the secular tidal torque), as well as for different rheological models. Specifically,
the additional terms in the Andrade model, when compared to the Maxwell model,
make the stability criterion stricter and more complex than in this illustrative
case.
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Kelvin–Voigt rheology Although the overall response of planetary bodies is
better described by rheological models accounting for gradual creep, it might be
illustrative to also derive the tidal torque for the Kelvin–Voigt rheology, which
accounts for anelastic attenuation in the medium. In this case, we may write the
imaginary part of the complex Love number as

Im
{︂

k̄2(ω)
}︂

= −K′′ g(ω) = − K′′

ω + B
ω

(3.8)

with
K ′′ = 3

19
ρgR

η
and B = µ2

η2

(︃
2
19
ρgR

µ

)︃2(︃
1 + 19

2
ρgR

µ

)︃2
.

Note that function g(ω) exhibits the same kind of behaviour around zero as
function f(ω) and it contributes to similar stabilisation of the spin–orbit resonances.
However, the two limit cases, corresponding to the self–gravity–dominated and
the rheology–dominated regimes, are quite different. The character of the two
regimes can be deduced from the following expressions:

19
2

µ

ρgR
≪ 1 self–gravity–dominated regime B ≈

(︃
2
19
ρgR

η

)︃2
,

19
2

µ

ρgR
≫ 1 rheology–dominated regime B ≈ τ−2

KV .

Contrary to the Maxwell model, which predicts that the reaction of a body in
the rheology–dominated regime does not depend on the rigidity, the Kelvin–Voigt
model concludes the same for the self–gravity–dominated regime. Moreover, in
the rheology–dominated regime of the Kelvin–Voigt body, the shape of the kink
function g(ω) is determined by the retardation time1 τKV = η/µ. As in the case
of the Maxwell model, the combination of parameters leading to the same value
of B should also result in the same tendency of g(ω) around zero—and in the
stability of the same spin states.

Finally, let us divide the frequency range into two regimes:

ω2

B
≪ 1 ⇒ g(ω) ≈ ω

B
,

ω2

B
≫ 1 ⇒ g(ω) ≈ 1

ω
.

Here, the slope of the linear frequency dependence of g(ω) in the low–frequency
regime is modulated by B, while in the high–frequency regime, the function g(ω)
approximately equals 1/ω. For very high values of B, the planet operates in the

1The relaxation time of the Maxwell model and the retardation time of the Kelvin–Voigt
model were introduced in Chapter 2. Note that although we use the same notation for the
viscosity η and the rigidity µ in the two rheologies, the physical mechanism behind these
quantities differs between the Maxwell and the Kelvin–Voigt model.
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“low–frequency” regime for a wide range of frequencies and the planet is prone to
pseudo–synchronisation.

Although we have only focused on the parameter dependence of the secular
tidal torque, the individual rheological models also imply distinct parameter
dependencies of the tidal heating. A thorough overview of the tidal heating maps
for all relevant rheological models can be found in Henning et al. (2009) and
Renaud and Henning (2018). The specific case of tidal heating and highest stable
spin states in the Andrade rheology will be discussed in the following section.

3.2 Tidal locking and tidal heating
In this section, we are going to investigate the effect of rheological and orbital
parameters on the tidal dissipation and tidal locking of a generic terrestrial
exoplanet hosted by a red dwarf (an M–type star). Planetary systems around M–
type stars are a particularly interesting target, since their conventional habitable
zone lies very close to the primary and, therefore, overlaps with the region of
strong tidal loading (e.g., Běhounková et al., 2011). Knowledge of the thermal and
orbital state of such bodies may serve as additional information for the evaluation
of planetary habitability (e.g., Wandel, 2018; Godolt et al., 2019).

The secular thermal and orbital evolution of close–in exoplanets is determined
by the rate of the energy dissipation and by the planet’s spin rate. Furthermore,
the rotation state in which the planet resides also affects its surface conditions and,
potentially, the evolution of the climate and habitability prospects. Tidal locking
into synchronous rotation with its extreme insolation pattern results in essentially
different climate forcing than faster, nonsynchronous rotation (e.g., Dobrovolskis,
2007, 2013, 2015). To better understand the general parametric dependencies of
the tidal dissipation and of the spin rate, we perform several numerical studies,
in which we only explore the parameter space: therefore, we do not take into
account the planet’s internal dynamics, variations of orbital elements, and changes
of the interior structure (as will be done in Chapter 4). Throughout this section,
the only variables evolving in time are the spin rate and the tidal heating. The
quantities plotted in the subsequent figures are stationary states to which the
model planet evolves.

Our model planet consists of three layers: a liquid core with low, finite viscosity,
a viscoelastic2 mantle governed by the Andrade rheology, and an elastic lithosphere
of constant thickness. The rheological properties of the planet, as well as other
model parameters, are listed in Table 3.1. Among other parameters with obvious
meaning, Table 3.1 includes the core mass fraction CMF, which is defined as the
ratio of the core mass to the total mass of the planet. The top radii of the core
and of the mantle with given densities are chosen to match the total radius and
the given CMF.

2Since the Andrade model also accounts for the steady–state viscous creep, it can be classified
as a viscoelastic rheology.
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Table 3.1: Parameters of the generic terrestrial exoplanet

Parameter Definition Value Unit
m∗ Mass of the host star 0.1 m⊙
a Semi–major axis 0.04 AU
e Eccentricity 0.0 to 0.5 —
ρc Core density 9000 kg m−3

ηc Core viscosity 10−3 Pa s
µc Core rigidity 10−10 Pa
ρm Mantle density 5000 kg m−3

ηm Mantle viscosity 1010 to 1022 Pa s
µm Mantle rigidity 106 to 1015 Pa
ρlid Lithosphere density 3000 kg m−3

µlid Lithosphere rigidity 7 × 1010 Pa
dlid Lithosphere thickness 50 km
CMF Core mass fraction 0.1 to 0.7 —
R Outer radius of the planet 0.2 to 1.5 R⊕
α Parameter of the Andrade model 0.3 —
ζ Parameter of the Andrade model 1 —

Throughout the parametric studies, the planet is first allowed to despin from
an arbitrarily chosen initial spin–orbit ratio θ̇/n = 5.6 to the first (i.e., highest)
stable spin state, in which the derivative θ̈ decreases below a given limit δ = 10−16.
Tidal heating in the equilibrium spin state is then calculated by formula (2.43)
for l = 2. In order to normalise the tidal heat rate to the planet’s surface, we
introduce the average surface tidal heat flux,

Φtide = P̄
tide

4πR2 , (3.9)

which facilitates the comparison with total heat flux at the surface of the Earth
(0.09 mW m−2; Davies and Davies, 2010) or Io (> 2.5 W m−2; Veeder et al., 1994).

3.2.1 Effect of the rheological parameters

In this subsection, we consider an Earth–sized model planet (R = 1R⊕) with
Earth–like core mass fraction (CMF = 0.3) and investigate the effect of varying
mantle rigidity and viscosity for three different orbital eccentricities: 0.05, 0.2
and 0.4. Figures 3.3–3.5 depict the regions of the parametric space with different
highest stable spin states and the corresponding surface tidal heat fluxes. Although
in most of the cases the model planet despins into a spin–orbit resonance, we note
that at very low mantle viscosities, the stable spin state is pseudo–synchronous,
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Figure 3.3: The highest stable spin-state (left) and the surface tidal heat flux
(right) of the model planet with orbital eccentricity e = 0.05. The caption "PSR"
corresponds to pseudo–synchronous rotation with spin-orbit ratio θ̇/n ≈ 1.015.
Triangular region in the lower right corner of both panels indicates combinations
of parameters for which the tidal despinning takes more than 1 Gyr.

with spin–orbit ratio approximately given by (e.g., Dobrovolskis, 2007)

θ̇

n
≈ 1 + 6e2 . (3.10)

Nevertheless, in the illustrations, we include the region of pseudo–synchronous
rotation (“PSR”) into the region of the closest spin–orbit resonance.

A common feature of all the model cases is the complex shape of boundaries
between different stable spin states. While for high mantle rigidities (> 1012 Pa)
the first stable spin state depends almost exclusively on the viscosity, for low
mantle rigidities (< 1010 Pa) it depends on both of the rheological parameters.
If evolving from this region, a planet with initially low mantle rigidity would be
more susceptible to tidal locking into a high spin–orbit resonance, which could be
eventually destabilised by an increase in the rigidity at constant viscosity. The
transition between the two tendencies in tidal locking is characterised by a heap
in the boundary between different high spin–orbit resonances. The behaviour
decribed can be understood by investigating the parameter dependence of tidal
torque (1.64), as we have done earlier for the simplest nonelastic models (see Figure
3.2). Specifically, the low–rigidity case corresponds to a self–gravity–dominated
deformation regime, while the high–viscosity case is governed by the planet’s
rheology.

Another pattern observable in Figures 3.3-3.5 is the eccentricity dependence
of width of the regions with different highest stable spin state. At high orbital
eccentricity (e = 0.4) and for an arbitrarily chosen rigidity of 1012 Pa, the change
in the mantle viscosity from 1018 to 1016 Pa s would result in a steep cascade of
spin state transitions. For less eccentric orbits, on the other hand, the evolution
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Figure 3.4: Same as Figure 3.3, but for orbital eccentricity e = 0.2. PSR
corresponds to θ̇/n ≈ 1.24.

of spin rate would be much more gradual.

The effect of the mantle rigidity and viscosity on the surface tidal heat flux
of synchronously rotating moons and exoplanets has already been discussed
extensively in the literature (e.g., Fischer and Spohn, 1990; Moore, 2003; Henning
et al., 2009; Renaud and Henning, 2018). Here, we only mention that the role
of the mantle rigidity and viscosity is considerably stronger than the effect of
different spin states and orbital eccentricities. However, in the model cases with
low orbital eccentricity, the surface tidal heat flux apparently depends on the
spin–orbit ratio (Figure 3.3). A transition between the 3 : 2 spin–orbit resonance
and the synchronous rotation may result in order of magnitude drop in the surface
tidal heat flux, which would be probably succeeded by a significant change in the
surface and interior conditions.

3.2.2 Effect of the eccentricity
In the second parametric study, we set the mantle rigidity to a constant value of
µm = 200 GPa and vary the mantle viscosity and the orbital eccentricity. The
remaining parameters are the same as in the previous section. To ensure the
precision of the computation, we chose the cut–off degree of the Kaula’s eccentricity
functions Glpq(e) with respect to the actual eccentricity. Specifically, we required
that the truncation error of the disturbing potential and evolution equations be
lower than 10−4 and we continued to increase the upper limit for index q of the
Darwin–Kaula expansion from qmax = 1 for the lowest eccentricities up to qmax = 7
for e = 0.5.

Figure 3.6 unveils two distinct regions, which are characterised by a different
type of stable spin states and a different parameter dependence of the tidal
dissipation. The boundary between these two regions is due to the change in
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Figure 3.5: Same as Figure 3.3, but for orbital eccentricity e = 0.4. PSR
corresponds to θ̇/n ≈ 1.96.

behaviour of the viscoelastic material at different tidal frequencies, which can
be related to its Maxwell time. In general, planets are loaded on a variety of
frequencies; however, for the simplest case of a synchronously rotating body on a
slightly eccentric orbit, the tidal frequency is approximately equal to the orbital
frequency. Since the orbital parameters of our model system yield Torb = 9.24 days,
it follows that planets with mantle viscosity higher than 1017 Pa s are loaded on
periods shorter than their Maxwell time and behave more viscoelastically, while
planets with considerably lower mantle viscosities can be considered as purely
viscous.

The first of the two regions, at low mantle viscosities, is, therefore, characterised
by pseudo–synchronous rotation and by tidal dissipation, which smoothly increases
with increasing orbital eccentricity or proximity to the boundary between the zones
(below ηm ≈ 1016 Pa s). In this region, the surface tidal heat flux is determined
primarily by the mantle viscosity, with a comparably weaker contribution of the
orbital eccentricity. On the contrary, the rotational evolution of a solid body lying
in the second (high–viscosity) region is marked by transitions between stable spin–
orbit resonances. Their stability is given predominantly by the orbital eccentricity,
with more eccentric orbit resulting in higher first stable resonance, but it can also
be affected by changing the viscosity, as was the case in the previous section.

Looking at the tidal dissipation, the average surface tidal heat flux of a planet
locked in a given spin–orbit resonance is only weakly dependent on the orbital
eccentricity and changes mainly due to the variations in the viscosity (see also
Běhounková et al., 2011), with the exception of the transition to synchronous
rotation. This behaviour is very different from the viscous region and can be
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Figure 3.6: The highest stable spin–state (left) and the surface tidal heat flux
(right) for a model planet with mantle rigidity µm = 200 GPa.

derived from the expression for the average tidal heat rate3.

3.2.3 Effect of the core size
In order to investigate the role of the planet’s radius and CMF on the stability of
spin–orbit resonances and on the tidal heating, we again set the mantle rigidity to
a fixed value µm = 200 GPa, as in the previous section. Additionally, we consider
an Earth–like value of the mantle viscosity ηm = 1021 Pa s and two possible values
of the orbital eccentricity, e = 0.05 or e = 0.2. The densities of all interior layers
are considered constant, as listed in Table 3.1.

Figure 3.7 depicts the average surface tidal heat flux with inscribed boundaries
between the different highest stable spin states, as well as a simplified mass–radius
diagram of the model ensemble. Focusing first on the spin rate evolution, we
see that the main feature of the results is the higher susceptibility of planets
with small radii or low core mass fractions to tidal locking into higher spin–orbit
resonances. This observation also means that the lower the planet’s mass for a
given radius, the higher the probability that the planet rotates non–synchronously.
For higher orbital eccentricities, the model planet always gets locked into higher

3The average tidal heat rate (2.43), written in the form of the Darwin–Kaula expansion,
contains products of the eccentricity polynomials Glpq(e) ∈ o(e|q|). Since we restricted our study
to the case of zero obliquity, the only nonzero terms in the expansion are {lmpq} = {220q} and
{lmpq} = {201q}, for which the higher the index q, the weaker the contribution of the term to
the total sum. Specifically, the term with q = 0 is independent of the eccentricity. Each term of
the expression (2.43) is also multiplied by the tidal frequency ωlmpq, which can be in our case
either ω220q = (2 + q)n− 2θ̇ or ω201q = qn. For a synchronously rotating body (θ̇ = n), both
of the considered frequencies are zero for q = 0, and the leading term is, therefore, q = 1. For
a higher spin–orbit resonance, the frequency ω2200 is nonzero and the leading term does not
depend on the eccentricity.
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Figure 3.7: Surface tidal heat flux as a function of the planet’s radius and CMF
(left) and the same figure plotted into a mass–radius graph (right). Dashed line
demarcates the boundaries between regions with different highest stable spin state.
The mantle viscosity was set to ηm = 1021 Pa s and the orbital eccentricity to
e = 0.05 (upper row) or e = 0.2 (lower row).

than synchronous resonances; however, the effect of the small radius or low core
mass fraction on the spin–orbit ratio remains qualitatively the same.

Again, the planet’s spin state cooperates with other model parameters on
determining the rate of energy dissipation. Similarly to the previous results, we
may see that the effect of tidal locking on the tidal heating is most prominent in
the case of planets with low orbital eccentricity (upper row in Figure 3.7), where
trespassing the boundary between the synchronous and nonsynchronous rotation
results in two orders of magnitude change in the surface tidal heat flux. A common
feature of all model cases is increasing surface tidal heat flux with increasing
planetary radius at constant CMF. This pattern is a simple consequence of the
differing volume of the dissipating mantle and of the increase in the tidal force with
R. On the other hand, the effect of increasing CMF is slightly less intuitive. For
higher planetary radii (R > 1R⊕), the surface tidal heat flux typically increases
with decreasing CMF (for a given spin state), in line with the previous result for
increasing planetary radius: lower CMF is equivalent to a larger dissipative mantle.
However, for lower planetary radii (R < 1R⊕), the heat flux slowly decreases
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with decreasing CMF. This feature probably results from the greater flexure of a
thinner mantle above a larger liquid core.

3.3 Concluding remarks
The stability of individual spin–orbit resonances within the Andrade model is a
complex function of the rheological parameters and the eccentricity. The resulting
pattern depends on the interplay between the self–gravity and the rheological
parameters and on the role of viscoelasticity at given tidal frequencies. Especially
at low orbital eccentricities, the despinning from higher spin–orbit resonance to
the synchronous rotation results in a significant drop in the tidal heating. The
secular tidal torque also depends on the planet’s mass and radius. Planets with
smaller radii and/or low core mass fractions (CMF) tend to get locked into higher
spin–orbit resonances than larger and/or more massive planets with the same
rheological and material parameters of the interior layers.

As we have now overviewed the main aspects of the tidal heating and tidal
locking of a generic low–mass exoplanet, we are ready to continue to the central
chapter of this work. Chapter 4 will introduce a coupled model of long–term
thermal–orbital evolution, which will be applied to the case of three model bodies
inspired by three of the currently known close–in terrestrial exoplanets. Among
the results of the next chapter, we will also see the consequence of transitions
between different spin–orbit resonances as well as the effect of an emergent magma
ocean on the thermal and orbital dynamics.



86 Concluding remarks



4. Coupled thermal and orbital
evolution of low–mass exoplanets
The entire chapter was adapted from Walterová and Běhounková (2020).

4.1 Introduction
Internal dynamics of close–in exoplanets and large moons in the Solar System
are closely linked to their tidal interaction with the primary. As an effective heat
source, tidal dissipation can sustain liquid oceans under the surface of large icy
moons (e.g., Hussmann et al., 2010; Chen et al., 2014) or maintain the extreme
volcanic activity of Jupiter’s moon Io (e.g., Peale et al., 1979; Segatz et al., 1988).
Beyond the realms of the Solar System, tidal heating is believed to transform
close–in rocky exoplanets into lava worlds (e.g., Běhounková et al., 2011; Barr et al.,
2018; Henning et al., 2018), influence their tectonic regime (Zanazzi and Triaud,
2019), alter the boundaries of the conventional habitable zone for exoplanets
or exomoons (e.g., Jackson et al., 2008; Heller and Barnes, 2013; Dobos et al.,
2017; Renaud and Henning, 2018), and it is also one of the suggested mechanisms
responsible for the existence of inflated hot Jupiters (e.g., Bodenheimer et al.,
2001; Jermyn et al., 2017).

Tidal loading and the subsequent transfer of angular momentum and orbital
energy are also the cause of long–term orbital evolution, accompanied by the dis-
turbed body’s despinning into spin–orbit synchronisation, pseudo–synchronisation
or a higher spin–orbit resonance (e.g., Ferraz-Mello, 2013; Makarov and Efroimsky,
2013; Correia et al., 2014; Ferraz-Mello, 2015). As a consequence of the spin–
orbital dynamics, close–in moons and exoplanets are expected to tend toward
circular orbit and synchronous rotation, unless they are disturbed by other bodies
in the system or by the tidal response of a rapidly rotating primary (e.g., Bolmont
and Mathis, 2016). The rate of tidally induced orbital evolution depends on
the moon’s or planet’s ability to dissipate mechanical energy. Different interiors
support different dissipation mechanisms. While the dissipation inside terres-
trial bodies or rocky parts of gas giants is dominated by large–scale viscous flow
(Ferraz-Mello, 2013), jovian worlds are typically heated by inertial waves and
turbulent convection in their massive atmospheres (Ogilvie and Lin, 2004). Owing
to their higher tidal quality factor Q, they are also a few orders of magnitude less
susceptible to tidally–induced spin and orbital evolution (Goldreich and Soter,
1966). Since the interior structure and dissipation mechanisms of extremely heated
bodies depend on the varying interior temperature (e.g., Henning et al., 2009;
Renaud and Henning, 2018), the rate of orbital evolution is presumably also a
function of time.

The feedback between the thermal and orbital evolution has been investi-
gated particularly in the context of large Solar System satellites. Ojakangas and
Stevenson (1986) assessed mutual interconnection between the varying interior
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temperature of Jupiter’s moon Io and the evolution of its orbital eccentricity,
which is affected both by tides and by the Laplace resonance with other Galilean
satellites. Assuming heat loss by mantle convection and heat generation by vis-
coelastic tidal dissipation, they described a process of periodic cooling down and
heating up of the satellite, controlled by inverse dependence of the tidal quality
function k/Q on the temperature. Several years later, Fischer and Spohn (1990)
extended the model by considering partial melting of the interior. The presence of
melt decreases the moon’s average rigidity and further reduces the tidal dissipation.
In addition to the oscillatory state described by Ojakangas and Stevenson (1986),
the authors identified an approximate thermal and dynamical equilibrium, in
which the moon can be temporarily stabilised. The equilibrium is characterised
by a very low rate of change in the eccentricity and interior temperature. Further
studies of coupled thermal–orbital evolution with more complex models of the
interior have since then been presented by a number of authors (e.g., Hussmann
and Spohn, 2004; Tobie et al., 2005a; Neveu and Rhoden, 2019).

Partial melting is also likely to be an important regulating mechanism in the
case of close–in terrestrial exoplanets. Identically to the case of Solar System
satellites, the emergence of melt yields an abrupt change of rheological parameters
and decreased tidal dissipation, which prevents runaway heating of the mantle
(Makarov et al., 2018). For multiplanetary systems in mean–motion resonances,
the coupled thermal–orbital evolution follows a pattern similar to the evolution of
large Saturnian or Jovian satellites. In single-planetary systems or systems without
substantial eccentricity forcing, on the other hand, the decreased dissipation may
be reflected in the unexpected orbital parameters. Specifically, it has been argued
(e.g., Henning et al., 2009; Henning and Hurford, 2014; Makarov, 2015) that
partial melting may explain nonzero orbital eccentricities of exoplanets for which
the standard tidal theories predict rapid circularisation.

Shoji and Kurita (2014) and Driscoll and Barnes (2015) investigated the
long–term thermal–orbital evolution of single–planetary systems around low–mass
stars. Both studies focused on small, synchronously rotating exoplanets in the
habitable zone and implemented a combined model of parameterised mantle
convection with global melting, viscoelastic tidal dissipation and simplified orbital
evolution. Shoji and Kurita (2014) assumed a stagnant–lid convection regime and
predicted two possible evolution branches of the planets in question. Depending
on the initial orbital eccentricity and the stellar mass, the planet either undergoes
runaway cooling, with increasing mantle viscosity and gradually terminating
mantle convection, or it is affected by runaway heating, which is eventually
stopped by partial melting. In either of these states, the semi–major axis and
the orbital eccentricity change very slowly over several billions of years and
may allow the planet to remain habitable for a considerable time. In contrast,
Driscoll and Barnes (2015) prescribed a mobile–lid regime, in which the planet’s
lithosphere participates in the convection. As a consequence of more efficient
energy dissipation, they found rapid decay of the eccentricity of close-in exoplanets
and relatively low importance of tidal heating on long timescales. The authors
also performed plenty of parametric studies, in which they illustrated the complex
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dependence of the tidal heat rate and other quantities on the initial orbital
parameters.

While the assumption of synchronous rotation, taken in the cited studies, is
well justified in low eccentricity cases, the evolution of exoplanets on eccentric
orbits is most probably marked by tidal locking into higher than synchronous
resonances or pseudo–synchronous rotation (e.g, Dobrovolskis, 2007; Ferraz-Mello,
2013; Correia et al., 2014). A self–consistent model of an eccentric exoplanetary
system requires not only the coupling between thermal and orbital evolution but
also the simultaneous assessment of the stable spin state. In the specific case of
the multiplanetary system TRAPPIST–1, the influence of a tidally induced change
of interior properties on the stability of higher spin states has been discussed
by Makarov et al. (2018). The authors identified that, as a consequence of an
abrupt change in the mantle’s rheological parameters, the planet might leave its
initially high spin–orbit resonance and evolve toward synchronisation or toward
pseudo–synchronisation, expected for molten rocky worlds on eccentric orbits
(Makarov, 2015). Both the melting and the change of equilibrium spin state result
in substantially decreased tidal dissipation.

In this study, we investigate the coupled thermal and orbital evolution of
model bodies inspired by three currently known low–mass exoplanets with nonzero
eccentricity, namely Proxima Centauri b, GJ 625 b, and GJ 411 b. This goal is
accomplished by implementing a semi–analytical model including spin–orbital
evolution of a layered viscoelastic planet with emerging subsurface magma ocean,
self–consistently calculated tidal heat generation, and a simplified parameterised
mantle convection in the stagnant–lid regime. As in the previous chapter, we
first explore the dependence of tidal heating and highest stable spin states on the
rheological parameters. Then, we analyse the evolution of the three planets in the
coupled thermal–orbital model. Finally, we discuss the model assumptions that
might have affected the results and we conclude the chapter with a summary of
the main implications.

4.2 Orbital evolution
Our model system consists of a spherical star with mass m∗ and a single rocky
planet with mass mp ≪ m∗, whose trajectory is defined by the semi–major
axis a and the eccentricity e. The planet, considered here as an extended body,
deforms in the heterogeneous gravitational field of the host star and its orbital
parameters undergo secular tidal evolution. Additional potential due to the
planet’s deformation, which presents a perturbation to the standard two–body
problem (e.g. Murray and Dermott, 1999), can be expressed in the form of a
disturbing function. Following the linear tidal theory developed by Darwin (1880)
and Kaula (1961), we expand the disturbing function into a Fourier series in space
and time and insert it into Lagrange planetary equations for the semi–major axis
and the eccentricity. The secular evolution equations are then written as a linear
combination of individual tidal modes (Kaula, 1964):
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In the above equations, G is the Newton’s gravitational constant, n stands
for the planet’s mean motion and R symbolises the planet’s outer radius. The
quantities Glpq(e) and Flmp(β) are Kaula’s functions of orbital eccentricity and
inclination relative to the planet’s equator (e.g., Kaula, 1961, 1964; Allan, 1965).
In our case, the “inclination” is equal to the planet’s obliquity β, which we set to
zero. The tidal response of the planet, determined by its rheological properties and
interior structure, is represented by the frequency–dependent tidal Love number
kl = kl(ωlmpq) and by the tidal phase lag εlmpq = εlmpq(ωlmpq). While the former
quantifies the ratio between the amplitude of the additional potential and the
amplitude of the tidal potential, the latter characterises the lagging between the
two potentials in the frequency domain. When working with viscoelastic models of
the interior, it is also appropriate to introduce the complex Love number kl̄(ωlmpq)
(e.g., Castillo-Rogez et al., 2011), whose relation to the two quantities is

kl̄(ωlmpq) = kl exp
{︁

− iεlmpq

}︁
. (4.3)

Finally, the frequencies of the individual modes {l,m, p, q} are

ωlmpq = (l − 2p+ q)n−mθ̇ , (4.4)

where θ̇ stands for the planet’s spin rate. Similarly to the calculation of the
semi–major axis and the eccentricity, the secular evolution of the spin rate can be
also written as a sum of individual modes (e.g., Dobrovolskis, 2007; Efroimsky
and Williams, 2009),
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kl sin εlmpq , (4.5)

with C being the principal moment of inertia with respect to the rotational
axis. For the sake of simplicity, we set C equal to the moment of inertia of a
sphere with the same mass and radius as the planet. While it is also possible
to accommodate the Darwin–Kaula theory for the study of secular evolution
of the planet’s obliquity (Boué and Efroimsky, 2019), we do not include this
effect in our model and consider only the planar case with β = 0◦. A nonzero
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initial obliquity would temporarily affect the stability of higher than synchronous
spin–orbit resonances (Boué et al., 2016) and would be an additional source of
tidal heating, complementing the eccentricity tides (e.g., Peale and Cassen, 1978).
However, when the planet’s spin–orbital evolution is shaped only by tides, the
obliquity in stable spin states usually tends toward zero (Boué et al., 2016).

For the sake of completeness, we note that the spin and orbital evolution might
be also induced by the deformation of the star under the gravitational action of
the planet. However, due to the large difference between masses and to lower
typical dissipation rates in stars, compared to the terrestrial planets (e.g., Hansen,
2010), the star’s contribution to the system’s tidal evolution is neglected in this
study, and we consider only the dissipation in the companion. Nevertheless, tides
raised by the planet on the host star play an important role in the evolution of
hot Jupiters orbiting fast–rotating stars (Bolmont and Mathis, 2016), in which
case they should be taken into account.

4.3 Tidal deformation

The reaction of a tidally loaded exoplanet with a given mass and radius is
determined by its interior structure and rheological properties. The mineralogical
composition of the mantle, as well as the existence of a liquid core or a subsurface
ocean, translates into the previously introduced complex Love numbers kl̄(ωlmpq).
For a homogeneous body with averaged interior properties, the complex Love
numbers can be expressed by a relatively simple analytical formula (Castillo-
Rogez et al., 2011, see also equation 1.38 in Chapter 1 of the present work). This
approach facilitates the qualitative examination of the problem; however, the
assumption of a homogeneous interior might not always be justified. As has been
shown by a number of studies (e.g., Castillo-Rogez et al., 2011; Beuthe, 2013;
Henning and Hurford, 2014; Folonier et al., 2015; Tobie et al., 2019), the tidal
deformation and dissipation vary between different models of interior structure
and the radial stratification cannot be generally neglected.

Here, we focus on planets with a liquid core and emerging magma ocean,
i.e., we are concerned with a layered interior. To calculate the complex Love
numbers of a differentiated planet, we follow in the steps of the previous tidal
studies and adopt the normal mode theory (e.g., Takeuchi and Saito, 1972;
Wu and Peltier, 1982; Sabadini and Vermeersen, 2004; Tobie et al., 2005b). A
draft of the method is presented in Appendix A. This calculation assumes that
each interior layer is endowed with its own material and rheological properties.
Specifically, the mantle is described by linear viscoelastic rheology, which predicts
instantaneous deformation on seismological timescales and gradual creeping on
geological timescales. In the following, we discuss the chosen rheological model
and the calculation of tidal dissipation.
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4.3.1 Rheological models
According to the principle of correspondence, the equations of motion for a linear
viscoelastic continuum in the frequency domain are analogous to the equations
governing the motion of an elastic material. The static rigidity µ only needs to be
rewritten to its complex and frequency–dependent counterpart µ̄(ω). Similarly
to the elastic case, the complex rigidity characterises the relation between the
deviatoric part of the incremental strain tensor ϵ̄D = 1

2

(︂
∇u + ∇tu

)︂
and the

deviatoric part of the incremental Cauchy stress tensor σ̄D,

σ̄D = 2µ̄(ω) ϵ̄D , (4.6)

where u stands for the incremental displacement. Alternatively, we may use the
dynamic compliance J̄(ω), defining the will of a material to deform under applied
stress,

2ϵ̄D = J̄(ω) σ̄D . (4.7)

The simplest viscoelastic model used in the planetary science is the Maxwell
model, represented by a Hookean spring and a Newtonian dashpot connected in
series and accounting for a linear viscoelastic response. However, owing to the
variety of deformation mechanisms observed in real solids, the accurate description
of the planet’s response requires the introduction of more complex, rheologically–
motivated models, consistent with laboratory experiments and seismological or
geodetic measurements (for an overview, see, e.g., Efroimsky and Lainey, 2007;
Henning et al., 2009; Castillo-Rogez et al., 2011, or Section 4.3 of the present
work). The best fit to experimental data for polycrystalline materials is presented
by three rheological models: Andrade (Andrade, 1910), extended Burgers (Faul
and Jackson, 2005), and Sundberg–Cooper (Sundberg and Cooper, 2010), each
of which entails a different anelastic extension to the simple linear viscoelasticity
of the Maxwell model. The desire to keep the number of model parameters at a
minimum while retaining a sufficiently accurate description of the deformation
leads us to prefer the Andrade rheology, whose complex compliance is

J̄(ω) = 1
µ

− i
ηω

+ µα−1

(i ζηω)α
Γ(1 + α) . (4.8)

The last term in equation (4.8) stands for a transient, anelastic creep, which
dominates the material’s response at high1 frequencies. Symbols α and ζ stand
for empirical parameters characterising the duration of transient creep and the
ratio of material’s relaxation time to the Maxwell time η/µ, respectively. Both
parameters depend on the prevalent deformation mechanism at given stresses,

1According to Karato and Spetzler (1990), Andrade rheology is applicable to the Earth’s
response at frequencies higher than ∼ 1 yr−1. However, the exact position of the frequency thresh-
old between the anelastic and viscoelastic regimes depends exponentially on the temperature
and may vary greatly with the thermal state of the mantle.
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temperatures, and chemical compositions (Karato and Spetzler, 1990).

As we have seen in the previous chapters, a characteristic feature of viscoelastic
tidal models is the occurrence of distinct stable spin states, i.e. distinct station-
ary solutions to equation (4.5), associated either with spin–orbit resonances or
with pseudo–synchronous rotation (e.g., Correia et al., 2014; Ferraz-Mello, 2015;
Makarov, 2015). Additionally, complex viscoelastic models are endowed with
increased tidal heating at high frequencies and they enable the planet to remain
tidally active for long periods (Renaud and Henning, 2018).

4.3.2 Tidal heating
Periodic deformation of a viscoelastic body is accompanied by the dissipation of
mechanical energy, which results in tidal heating. The average heat rate produced
by the dissipation in the entire volume of the planet over one orbital is calculated
as (Efroimsky and Makarov, 2014, see also derivation for l = 2 in Appendix B.1)

P̄
tide = −Gm2

∗
a

∑︂
lmpq

(︃
R

a

)︃2l+1
(2 − δm0) (l −m)!

(l +m)!
[︁
Glpq(e)

]︁2 [︁Flmp(β)
]︁2
ωlmpq Im

{︁
k̄l(ωlmpq)

}︁
.

(4.9)

Equation (4.9) holds for an arbitrary obliquity and orbital eccentricity as well as
for arbitrary spin rate, provided that the overall deformation can be described by
a linear tidal theory.

4.4 Thermal evolution
The thermal state of planetary bodies is controlled by a combination of heating
and cooling mechanisms, differing in their significance and in their characteristic
timescales. Internal heat sources include remnant gravitational energy released
at the time of the planet’s formation and differentiation, latent heat extracted
during phase transitions, radiogenic heating of the crust and mantle, and tidal
dissipation. Secular cooling of the planetary interior is realised mainly by mantle
convection and conduction, depending on the size, temperature gradient, and
rheological properties of the mantle.

The following section contains several important assumptions. Keeping in
mind the wealth of possible thermal histories of the exoplanets, including, for
instance, the occurrence of plate tectonics or episodic resurfacing events, we focus
specifically on the stagnant–lid convection. This gives us the advantage of a
relatively simple parametric description, allowing for a systematic parametric
study. Furthermore, given the lack of information on the tectonic regimes of
exoplanets and the scarcity of plate tectonics in the Solar System, the stagnant–lid
convection is often considered as a conservative guess (e.g., Shoji and Kurita, 2014;
Tosi et al., 2017).
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Since the main subject of this work is the evolution of strongly tidally loaded
exoplanets, we also restrict the mantle–heating mechanisms to the initial core–
mantle temperature difference and to the volumetric tidal dissipation. The
contribution of latent heat to the overall energy balance is, however, included in
the adopted equations. Although the radiogenic heating may be an important
source in the elastic lithosphere (and crust) and it might slow down the cooling of
the mantle, its contribution would be most pronounced in the initial stages of the
evolution, which are, however, also dominated by tidal heating.

The last important assumption is the absence of melt extraction from the
mantle. Low efficiency of the heat transport through the stagnant lid, together
with immense heating of planets on eccentric orbits, may lead to partial melting
of the interior and formation of a subsurface magma ocean. Current studies
using parameterised stagnant–lid convection consider either perfect mixing of the
interior (e.g., Henning et al., 2009; Shoji and Kurita, 2014; Driscoll and Barnes,
2015) or instantaneous melt extraction accompanied by crustal production (e.g.,
Breuer and Spohn, 2006; Tosi et al., 2017). Although the subsurface magma can
be extracted from the interior by heat pipe volcanism (Spohn, 1991; Moore et al.,
2017), we do not consider any melt transport mechanisms in this study, and we
instead include the effect of the emerging magma ocean into the tidal model.

4.4.1 Parameterised mantle convection
To inspect the long–term thermal evolution of the planet, we adopt a 1d parame-
terised model of mantle convection in the stagnant–lid regime (e.g., Breuer and
Spohn, 2006; Grott and Breuer, 2008). The evolution of the temperature on the
top of the convecting mantle Tm and at the core–mantle boundary Tc is governed
by the energy balance in the tidally heated planet (Breuer and Spohn, 2006),

ρmcmVm(1 + St)dTm

dt = −qmAm + qcAc + P̄
tide

, (4.10)

ρcccVc
dTc

dt = −qcAc , (4.11)

where ρm and ρc are the mean density in the mantle and in the core, respectively,
and cm and cc are the corresponding specific heat capacities. The symbol St
stands for the Stefan number related to the latent heat Lm consumed or generated
during partial melting or solidification,

St = Lm

cm

dϕm

dTm
, (4.12)

where ϕm signifies the total melt fraction in the mantle. Additionally, Ac, Am, Vc
and Vm are the total surface areas and volumes of the core and the mantle, and qc
and qm are the heat fluxes from the core to the mantle and from the mantle to
the lithosphere, respectively. The last two quantities can be expressed as

qc = km
Tc − Tb

δc
(4.13)

and
qm = km

Tm − Tl

δu
, (4.14)
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where km is the thermal conductivity of the mantle, Tb is the temperature on the
bottom of the convecting mantle, Tl stands for the temperature at the base of
the lithosphere and δc and δu are the thicknesses of the lower and upper thermal
boundary layers (TBLs), given by the boundary layer theory. The temperatures
throughout the convective mantle follow the adiabatic profile. According to the
chosen stagnant–lid parameterisation, the boundary layer thicknesses should be
determined by the ratio of the local Rayleigh number to the critical Rayleigh
number (Tosi et al., 2017). However, as explained in the following section, we
calculate the thickness of the upper TBL using the “mean Rayleigh number”,
corresponding to the average mantle viscosity. This choice enables us to mimic
the role of a magma ocean.

In the presented model, the thermal evolution of the planet affects the interior
structure and the tidal response in three ways. First, the increasing or decreasing
temperature at the top of the mantle regulates the heat flux into the lithosphere
and, as a result, determines the thickness of the stagnant lid Dl (Grott and Breuer,
2008),

ρmcm(Tm − Tl)
dDl

dt = −qm − km
∂T

∂r

⃓⃓⃓⃓
r=Rl

. (4.15)

The second term on the right–hand side, which is being evaluated at the stagnant–
lid base with radius Rl, can be obtained analytically (e.g. Carslaw and Jaeger,
1959) from the heat conduction equation

1
r2

∂

∂r

(︃
r2kl

∂T

∂r

)︃
= 0 , (4.16)

where we have neglected heat sources in the elastic—and thus nondissipative—
lithosphere. The surface temperature Ts of the model planets is held constant.

As the second of the coupling mechanisms, the variations of the interior
temperature influence the rheological properties of mantle minerals. Specifically,
the temperature dependence of the local mantle viscosity η can be expressed by
the Arrhenius law as

η(T ) = η0 exp
(︃

E∗

Rgas

T0 − T

T0T

)︃
, (4.17)

where η0 is the reference viscosity at reference temperature T0 = 1600 K (Grott and
Breuer, 2008), E∗ stands for the activation energy, and Rgas is the gas constant.
In addition to the temperature dependence, mantle rheology should also be
determined by the local pressure, whose role in shallow depths of the mantle is
to increase the viscosity. The effect of extreme pressures in the lower mantle of
massive terrestrial exoplanets is, however, still a question of debate (e.g., Karato,
2011; Stamenković et al., 2012). Here, we do not include the pressure dependence
of the mantle viscosity explicitly, but we instead assume several different values of
the reference viscosity η0 in order to cover all possible viscosity models.
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The third and last of the discussed mechanisms is partial melting in the
shallow regions of the mantle, possibly followed by the formation of a magma
ocean. The presence of melt, associated with an additional change in the local
viscosity and rigidity, alters the planet’s response to external loading and affects
the efficiency of energy dissipation. The melt fraction at a given radius ϕ(r)
depends on the local temperature T (r), given by the mantle temperature profile,
and on the chemical and mineralogical composition, which determines the solidus
and liquidus temperatures throughout the planet,

ϕ(r) = T (r) − Tsol(r)
Tliq(r) − Tsol(r)

. (4.18)

The melting curves of mantle materials at pressures relevant to planetary science
are determined by fitting laboratory data. Here, we follow Monteux et al. (2016),
who use empirical data from two experimental studies performed in two different
pressure ranges and adjust the parameters of the fitted function to avoid disconti-
nuities at the boundary of the two ranges. At pressures lower than P = 20 GPa,
the solidus and liquidus temperatures can be obtained as (Herzberg and Zhang,
1996)

Tsol = 1661.2
(︃

P

1336 × 109 + 1
)︃1/7.437

, (4.19)

Tliq = 1982.1
(︃

P

6.594 × 109 + 1
)︃1/5.374

, (4.20)

while at pressures above P = 20 GPa, deeper in the mantle, the following relations
are used (Andrault et al., 2011):

Tsol = 2081.8
(︃

P

101.69 × 109 + 1
)︃1/1.226

, (4.21)

Tliq = 2006.8
(︃

P

34.65 × 109 + 1
)︃1/1.844

. (4.22)

Once the local temperature exceeds the local solidus, the mantle rocks begin to
melt. The molten material, first encapsulated in isolated cavities, gradually builds
up a system of interconnected channels, and as the local melt fraction reaches
the disaggregation point ϕD (40%-60%; e.g., Moore, 2003), it assumes the leading
role in the rock’s rheology. While the gradual formation of drops of partial melt
in solid material does not substantially affect its rigidity and only accelerates
the Arrhenius–like decrease in viscosity, reaching the disaggregation point is
accompanied by several orders of magnitude drop in both quantities. In order
to characterise the described behaviour by a smooth and qualitatively adequate
function, we adopt the following dependence of the rheological parameters on the
melt fraction

logµ(ϕ) = logµmax − 1
2

(︃
2
π

arctan ϕ− ϕD

∆µ
+ 1
)︃

log µmax

µmin
, (4.23)
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log η(ϕ, T ) = log η(T ) − 1
2

(︃
2
π

arctan ϕ− ϕD

∆η
+ 1
)︃

log η(T )
ηmin

, (4.24)

where µmax and µmin are the rigidity of the solid and entirely molten rock, re-
spectively, η(T ) is the temperature-dependent viscosity given by the Arrhenius
law (4.17), ηmin is the minimum viscosity, were it determined only by the melt
fraction, and ∆j stands for the disaggregation width of quantity j. Relations (4.23)
and (4.24) follow the temperature and melt fraction dependence similar to the
empirically justified expressions used in literature (e.g. Fischer and Spohn, 1990;
Abe, 1997; Moore, 2003), while ensuring relatively steep but smooth parameter
changes.

4.5 Numerical implementation
The long–term evolution of a planet in our model settings consists of processes
with substantially different characteristic timescales. The shortest timescale is
associated with the rotational evolution, and specifically with tidal despinning
from the initial spin state to the closest equilibrium spin state (e.g., a spin–orbit
resonance). Depending on the rate of tidal dissipation, the initial despinning
operates on the scale of thousands or millions of years. On the other hand, the
longest timescale is usually associated with the evolution of the semi–major axis
and the orbital eccentricity. It may span from hundreds of millions to tens of
billions of years. In between these two extreme cases stands the mantle convection
with a characteristic timescale of millions of years.

When choosing the adequate time step for the spin–orbital evolution model,
it is necessary to take into account the precision of the calculation as well as its
speed. The step should be short enough to correctly capture the changes of the
spin rate and long enough to describe the long–scale processes in a reasonable
time. In order to fulfill both of these requirements, we divide the calculation
into two cycles. The short cycle is dedicated to finding the equilibrium spin rate
for a given semi–major axis, orbital eccentricity, and interior structure, which
are—on the short timescale—usually treated as constant. The long cycle, on the
other hand, takes steps in the orbital elements, assuming a temporarily constant
spin–orbit ratio.

The flow of the computation is schematically depicted in Figure 4.1 and
proceeds as follows. In the beginning, we initialise the planetary and stellar
masses, spin and orbital parameters and prescribe the planet’s interior structure.
The computation then starts with the short cycle in a specific despinning mode.
During the despinning, we evolve not only the spin rate but also the semi–major
axis and the eccentricities, following equations (4.1) to (4.5). Although the orbital
parameters change very slowly on the short timescale, we include their evolution
into the despinning mode in order to find the first stable spin state with high
precision. Since the spin rate changes on relatively short timescales, the step size
∆tS in the short cycle is initialised to a few orbital periods. To solve the equations,
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Figure 4.1: Schematic depiction of the computation flow. The short cycle proceeds
with short time steps ∆tS and it is designed to find a stable spin state. During
its first run, it operates in the despinning mode, which allows for the coupled
evolution of the orbital elements and the spin rate. In later calls, it is set to
the relaxation mode, which serves to find the spin rate consistent with a given
(constant) semi–major axis and eccentricity. The long cycle takes long time steps
∆tL and calculates the evolution of the orbital parameters and thermal state for a
constant spin rate. During the computation, we alternate between steps in the
long cycle and runs of the short cycle in the relaxation mode.
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we employ a fourth–order predictor–corrector integration scheme (the Hamming’s
method) with a variable step size controlled by the local error ϵS in the spin rate
θ̇ (see, e.g., Ralston, 1965).

The calculation in the short cycle is performed as long as the derivative θ̈
exceeds a given limit δS × θ̇. When the spin rate reaches the equilibrium value,
we leave the short cycle and take one step in the long cycle. At this stage, the
equilibrium spin–orbit ratio is considered constant, and the step size ∆tL is set
equal to the last step in the despinning mode of the short cycle. After the step in
the long cycle, we recalculate the equilibrium spin rate using the short cycle in a
relaxation mode, in which the semi–major axis and the eccentricity are considered
constant. For the rest of the computation, we alternate between taking one step
in the long cycle and running the short cycle in the relaxation mode. Identically
to the short cycle, the long cycle utilises a predictor–corrector scheme with step
size controlled by the maximum local error in orbital parameters ϵL. Depending
on the planet’s rheology and loading frequency, the long step size may gradually
become several orders of magnitude larger than the step size of the short cycle.
This combined integration scheme allows us to take relatively large steps in the
evolution of orbital parameters while still keeping a precise value of the current
spin state.

During the despinning mode of the short cycle, as well as in each step of the
long cycle, we also evolve the planet’s thermal state and interior structure. For
the sake of clarity, let ∆torb symbolise the current step size in either of the orbital
evolution cycles from which we call the convection module. Equations (4.10) and
(4.11), controlling the interior temperature, and equation (4.15), which describes
the evolution of the stagnant lid, are solved explicitly with a step size equal to
min(∆torb, 104 yr). As the interior temperature evolves, we also actualise the
mantle viscosity and rigidity and inspect whether the planet contains a magma
ocean.

Since our model consists of two parts—a tidal module and a convection
module—we seek the mantle viscosity and rigidity in two different forms. In
order to calculate the mean Rayleigh number, which is used for the calculation of
the upper thermal boundary thickness, we require the mantle viscosity averaged
over the entire mantle. The tidal model, on the other hand, enables us to divide
the planetary mantle into several layers and endow each of them with its own,
locally–averaged rheological parameters. Specifically, in the case of a strongly
tidally heated planet, the mantle can be divided into a solid region, with zero
or relatively low melt fraction (ϕ < ϕD), and a magma ocean, in which the melt
fraction exceeds the disaggregation point (ϕ > ϕD).

The viscosity and the rigidity are calculated in different depths of the mantle,
following relations (4.23) and (4.24) and assuming an adiabatic temperature profile.
The average mantle viscosity η̄m, which enters the convection module, is then
obtained as the geometric mean of the radially dependent values. At the same
time, we inspect the radially dependent melt fraction (4.18). If it never exceeds the
disaggregation point, the mantle is solid and the tidal model consists of a single
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mantle layer, whose viscosity is equal to η̄m. Conversely, if the melt fraction at
any radius r exceeds the disaggregation point, the model should contain a magma
ocean. In this case, we seek the lower boundary of the ocean and divide the mantle
in the tidal model into two layers. The average viscosity and rigidity of these
layers are then calculated from the radially dependent quantities individually.

Although the parameterised mantle convection model includes the evolution of
the stagnant–lid thickness, we do not consider the melting of the planet’s surface.
Once the lid thickness decreases to a prescribed minimum value Dl,min, it is set
constant. The lithosphere is then allowed to evolve only after the planet begins to
cool down. Similarly, in case the temperature at the bottom of the convecting
mantle Tb exceeds the temperature at the core–mantle boundary Tc, we set the
thickness of the lower boundary layer to a constant value δc,par. The heat flux
from the mantle to the core is then calculated using equation (4.13) with the
parameter δc,par instead of δc.

A list of the numerical parameters used in this study is given in Table 4.1.

Table 4.1: Parameters of the numerical scheme

Parameter Definition Value or interval
ϵS Local error in the short cycle [10−12, 10−10] or lower
ϵL Local error in the long cycle [10−10, 10−8]
δS Upper limit on θ̈/θ̇ in the short cycle 10−16

4.6 Application to low-mass exoplanets
Extrasolar planets with radii below 1.5 R⊕ (Weiss and Marcy, 2014) or masses
below 2−4 M⊕ (Chen and Kipping, 2017) are expected to have a rocky composition,
similarly to the terrestrial worlds of the Solar System. At the same time, many of
these terrestrial exoplanets orbit very close to their host star and their thermal
and orbital evolution has been presumably marked by a period of substantial
tidal dissipation. Since the theoretically predicted final state of a tidally evolved
exoplanet is a circular orbit and synchronous rotation, attention has been recently
drawn to the number of bodies whose orbital eccentricity seems to be, despite
their proximity to the host star, still nonzero.

Among other explanations, such as observational bias, low age of the system,
gravitational scattering or eccentricity excitation by mean–motion resonances, it
has been proposed (e.g., Henning et al., 2009; Makarov, 2015) that the nonzero
eccentricities can be maintained by the thermal state of the planet. This mech-
anism has been illustrated in several studies (e.g., Henning et al., 2009; Shoji
and Kurita, 2014; Driscoll and Barnes, 2015) and can be also deduced from
Figures 3.3-3.5 of the previous chapter. If a rocky planet with initial mantle
viscosity 1021 Pa s and rigidity 200 GPa begins to melt, the decrease in viscosity
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leads it close to the region of maximum, runaway heating, which is, in our case,
around 1016 Pa s. As a consequence of the increased heat generation, the lattice
of mantle minerals is disrupted and the mantle begins to melt. At this stage,
the mantle viscosity and rigidity decrease abruptly and terminate the period
of extreme tidal heating. Furthermore, the change in the rheological parame-
ters might also result in the change of the planet’s spin state (Makarov et al., 2018).

In this section, we are going to perform the parametric study of the rheolog-
ical properties for the models of three low–mass exoplanets: GJ 625 b (Suárez
Mascareño et al., 2017), GJ 411 b (Díaz et al., 2019), and Proxima Centauri
b (Anglada-Escudé et al., 2016). As in Chapter 3, we explore here only the
effect of instantaneous rheological and orbital parameters on the tidal locking
and dissipation, i.e., we consider neither the thermal nor the orbital evolution.
The planets have been chosen on the grounds of their masses, proximities to the
host star, nonzero eccentricities, and presumed absence of strong perturbations
by other bodies in the system. Since all of these exoplanets were found by radial
velocity measurements and only their minimum masses are known, we calculate
the (minimum) radii from the mass–radius relation of Zeng et al. (2016),(︃

R

R⊕

)︃
= (1.07 − 0.21 · CMF)

(︃
M

M⊕

)︃1/3.7
(4.25)

and assume that they have an Earth–like core mass fraction CMF = 0.3. The
average core density is set to ρc = 10, 000 kg m−3 in the case of Proxima Centauri
b and to ρc = 12, 000 kg m−3 for the other two exoplanets and the respective
average mantle densities are calculated to match the prescribed masses and radii.
The numerical values of all parameters used for the following study are listed in
Table 4.2.

Table 4.2: Model parameters of the studied exoplanets

Parameter Proxima Centauri b GJ 625 b GJ 411 b
m∗ [m⊙] 0.12 0.30 0.39
a [AU] 0.0485 0.0784 0.0785
mp [m⊕] 1.27 2.82 2.99
R [R⊕] 1.074 1.333 1.354
ρc [kg m−3] 10000 12000 12000
ρm [kg m−3] 4797 5502 5589

4.6.1 GJ 625 b
The exoplanet GJ 625 b is about three times more massive than the Earth and lies
on the inner edge of the habitable zone of its host star (Suárez Mascareño et al.,
2017). Depending on its cloud coverage and albedo, it might or might not be able
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to support the existence of liquid surface water. Although no other planets have
been discovered in the system, the orbital eccentricity of GJ 625 b was estimated
as e = 0.13+0.12

−0.09 (Suárez Mascareño et al., 2017), which may point to the effect of
mechanisms other than eccentricity excitation by mean–motion resonance.

Figure 4.2 shows the effect of the mantle viscosity and rigidity on the planet’s
spin state and surface tidal heat flux. The parametric study is performed for
the mean and limit values of orbital eccentricity, that is, e = 0.04, 0.13, and
0.25. Considering, for the sake of illustration, a reference Earth-like viscosity
ηm = 1021 Pa s and rigidity µm = 200 GPa, we see that the planet always despins
into higher than synchronous spin–orbit resonance and retains significant surface
tidal heat flux. Since the tidal heat flux for all studied values of eccentricity exceeds
the surface heat flux at Io, the planet in this model setting is not expected to be
habitable, independently of the incident flux from the host star. A more favourable
situation would arise if the average mantle viscosity and rigidity were reduced either
due to a different mineralogical composition or due to the presence of subsurface
melt or water. In the case of, e.g., ηm = 1019 Pa s and µm = 100 MPa, the surface
tidal heat flux becomes comparable to the total heat flux at the Earth and the
tidal effects do not present a substantial threat to potential habitability. Only in
the case of the lowest considered eccentricity (e = 0.04) does this combination
of rheological parameters result in tidal locking into the synchronous rotation,
the effect of which on the surface conditions is ambiguous (e.g. Kite et al., 2011;
Checlair et al., 2019).

Figure 4.2: Surface tidal heat flux of a model of GJ 625 b for three plausible
orbital eccentricities. Dashed lines delimit boundaries between the regions with
different highest stable spin state. The solid white lines indicate the total surface
heat flux on the Earth (∼ 0.09 W m−2) and on Io (∼ 2.5 W m−2). The triangular
region in the lower right corners of the panels indicates combinations of parameters
for which the despinning takes more than 10 Gyr.

4.6.2 GJ 411 b
The red dwarf GJ 411 belongs to the closest stars from the Sun, and it is also
one of the brightest M–dwarfs on the Earth sky (Lépine and Gaidos, 2011). As
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for December 2020, it is known to harbour one confirmed exoplanet, whose mass
might be compatible with rocky composition (Díaz et al., 2019). The planet,
GJ 411 b, orbits the star with a 12.95 day period and its equilibrium surface
temperature lies between 256 and 350 K, depending on the albedo. It is, therefore,
not expected to be habitable. Furthermore, its presumably nonzero eccentricity
e ∈ [0.00, 0.44], with most likely value of e = 0.22 ± 0.13, (Díaz et al., 2019) makes
it susceptible to immense tidal loading.

Figure 4.3 depicts the role of rheological parameters in the thermal–rotational
evolution of GJ 411 b. Since the considered eccentricities are relatively high, the
planet with a reference Earth–like composition would be most probably locked in a
spin–orbit resonance between 3 : 2 and 3 : 1. Partial melting, which generally sets
the planet to the central (red) part of the graph, would lead, in the case of small
eccentricity, to pseudo–synchronous rotation. For higher eccentricities, however,
even a molten planet with low mantle rigidity and decreased viscosity keeps a
resonant spin state. The pattern of tidal heating is very similar to the previous
case, and the surface tidal heat flux for realistic combinations of rheological
parameters again exceeds the surface heat flux at Io. Combined with the high
insolation, the tidal dissipation may contribute to transforming GJ 411 b into a
lava planet.

Figure 4.3: Same as Figure 4.2, but for GJ 411 b.

4.6.3 Proxima Centauri b
The discovery of an Earth-mass planet on the orbit around Proxima Centauri
(Anglada-Escudé et al., 2016) has drawn a lot of attention mainly due to its
astrobiological significance. Not only does the planet dwell in the traditional
habitable zone, but its proximity also makes it a suitable target for direct imaging
in the near future (Turbet et al., 2016). The orbit of Proxima Centauri b indicates
a small remnant eccentricity of e = 0.08+0.07

−0.06 (Jenkins et al., 2019) and, depending
on the efficiency of tidal dissipation, the planet is expected to be locked either in
the state of synchronous rotation or in the 3 : 2 spin–orbit resonance (Ribas et al.,
2016). In a recent analysis of new radial velocity data for the system, Damasso
et al. (2020) found that Proxima Centauri may also host another low–mass exo-
planet on a wide orbit. However, since the orbital period of the new exoplanet
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candidate is two orders of magnitude higher than the orbital period of Proxima
Centauri b, it is not expected to affect the dynamics of the latter significantly.

The results of our last parametric study with constant parameters are illustrated
in Figure 4.4. In accordance with the study of Ribas et al. (2016), the planet
on the least eccentric orbit tends to the synchronous rotation for most of the
considered pairs of rheological parameters. Only the combination of Earth–like
viscosity (> 1020 Pa s) and very low (< 108 Pa) or high (> 1012 Pa) rigidity may
allow the preservation of the 3 : 2 spin–orbit resonance even on an almost circular
orbit. In the case of low rigidity, however, the tidal dissipation is almost negligible,
resulting in a rather long period of despinning (on the scale of billions of years) and,
in the most extreme situation, even preventing the planet from reaching stable
spin state during the first 10 Gyr. For the other two considered eccentricities, the
planet with Earth–like parameters despins first into higher spin–orbit resonance
(3 : 2 or 2 : 1) and is able to maintain surface heat flux much higher than Io,
which would later entail its melting and further despinning. In the view of the
parametric study with fixed interior, we conclude that the habitability prospects
of Proxima Centauri b are strongly dependent on the orbital eccentricity and for
even mildly eccentric orbits they may be limited.

Figure 4.4: Same as Figure 4.2, but for Proxima Centauri b.

4.7 Coupled thermal–orbital evolution
Previous sections have shown that tidal heating on the three model planets is
a complex function of various orbital and rheological parameters. The same
complexity is also reflected by other phenomena affected by energy dissipation.
Namely, it marks the rate of orbital evolution and the vigour of mantle convection.
Stepping away from the parametric studies with constant orbital elements and
interior structure, we are ready to discuss the results of the fully coupled model
with an emerging magma ocean.

The following two subsections are dedicated to the long–term evolution of the
exoplanets described in Table 4.2. However, since we are now also considering the
thermal evolution, it is necessary to include several new quantities to the analysis,
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such as the initial temperatures and the parameters of the convection model
(Table 4.3). In all model cases, we assume that the planet’s mantle is initially
solid, and the temperature at the top of the convective layer is Tm,0 = 1500 K.
The tidal evolution of real exoplanets would presumably initiate in the magma
ocean state, when at least part of the planet is still molten due to the heat released
during its formation. The interior temperatures would be, therefore, much higher.
To account for these initial conditions, we also conducted numerical experiments
for initial temperatures Tm,0 = 2000 K and Tm,0 = 2500 K; however, all cases led
to a rapid equilibration of Tm around the same value. The effect of the initial
temperature at the top of the convecting mantle is, in the long term, minimal.
We also tested different values of the disaggregation widths ∆η and ∆µ, which
affect the transition of a partially molten layer from a solid–like behaviour to a
liquid–like behaviour around the disaggregation point ΦD. Higher ∆ corresponds
to a more gradual transition between the two regimes. On the base of these
numerical experiments, we chose the value ∆η = ∆µ = 0.01, since it best describes
the abrupt change considered in other studies (e.g., Fischer and Spohn, 1990) and
since a further decrease in ∆ does not substantially affect the results.

4.7.1 Evolutionary paths of Proxima Centauri b
Figure 4.5 shows the coupled thermal–orbital evolution in the model case of
Proxima Centauri b. For illustration purposes, we assume that the planet begins
on a mildly eccentric orbit (e = 0.2), and its initial semi–major axis is set to its
presently observed value2. To include the unknown effect of pressure on the lower
mantle viscosity, we consider four possible reference viscosities η0 in the range from
1019 to 1022 Pa s. In addition to mimicking different pressure dependencies, the
range of viscosities also accounts for different possible mineralogical compositions
of the mantle. To identify the effect of the evolving interior, we further run two
additional simulations, in which the interior temperature profile and the rheological
properties are held constant while the orbital parameters evolve (dashed lines in
Figure 4.5). The comparison between the coupled model and the constant–interior
model is discussed at the end of this subsection.

In the beginning, the planet despins rapidly into the first stable spin–orbit
resonance. Depending on the reference viscosity, it ends up either in the 2 : 1
resonance (η0 = 1021 or 1022 Pa s) or in the Mercury–like 3 : 2 resonance (η0 =
1019 or 1020 Pa s). The despinning phase is, furthermore, marked by a rapid
increase in the interior temperature—a consequence of the relatively high orbital
eccentricity and nonsynchronous rotation. Due to its orbital configuration, the
planet undergoes considerable tidal loading, and the dissipated heat remains in
the mantle because it cannot be efficiently taken away by the convection. This

2The present–day semi–major axis anow and the present–day eccentricity enow are related to
the initial values by anow(1 − e2

now) = a0(1 − e2
0). Nevertheless, since the present–day eccentricity

of the exoplanets, as well as the age of their host stars, is known with relatively large errors, we
cannot exactly trace back the a0 corresponding to the chosen values of e0. Although it would
be possible to test different initial semi–major axes, we decided to set a0 for all model cases of a
given system to the same value and to vary only the initial eccentricity.
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Table 4.3: Parameters of the mantle convection model

Parameter Definition Value Unit
Tm,0 Initial temperature at the top of

the convecting mantle
1500 K

∆Tcmb,0 Initial temperature drop over the
core–mantle boundary

1500 K

Ts,0 Surface temperature (constant) 500 K
Dl,0 Initial stagnant–lid thickness 50 km
Dl,min Minimum stagnant–lid thickness 1 km
δc,par Lower thermal boundary layer

thickness for the overheated man-
tle

10 km

km Thermal conductivity of the man-
tle

1 W m−1K−1

kl Thermal conductivity of the litho-
sphere

1 W m−1K−1

αm Thermal expansivity of the mantle 2 × 10−5 K−1

cm Specific heat capacity of the man-
tle

1200 J K−1kg−1

cc Specific heat capacity of the core 800 J K−1kg−1

E∗ Activation energy 105 J mol−1

ηmin Minimum mantle viscosity due to
melting

0.1 Pa s

µmax Maximum mantle rigidity 2 × 1011 Pa
µmin Minimum mantle rigidity due to

melting
10−7 Pa

∆η Disaggregation width for viscosity 0.01 —
∆µ Disaggregation width for rigidity 0.01 —
ΦD Disaggregation point 0.4 —

period of overheating is, however, only transient. As can be seen in the lower
row of Figure 4.5, the increase in the interior temperature is accompanied by a
similarly steep decrease in the average mantle viscosity and rigidity. We note that
in these model settings, the top of the mantle melts shortly after the beginning;
the melting temperature at the relevant pressures is around Tm = 1900 K. The
melt is predominantly concentrated below the lid as both solidus and liquidus
temperatures increase considerably with depth.

The increase in the upper mantle temperature and decrease in the average
viscosity and rigidity continues until the mantle reaches an equilibrium state.
Once the viscosity decreases to a value that enables the efficient transport of
the generated heat to the surface, the interior temperature stops rising and—
independently of the reference viscosity—stabilises around 2350 K. Increased
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Figure 4.5: Simultaneous evolution of the spin–orbital parameters (upper row),
thermal state (middle row) and interior properties (lower row) of Proxima Centauri
b. Going from the upper–left corner to the lower–right corner, the individual
panels depict a) the semi–major axis, b) the orbital eccentricity, c) the spin–orbit
ratio, d) the surface tidal heat flux, e) the mantle temperature measured under
the stagnant lid, f) the average mantle viscosity, g) the average mantle rigidity,
and h) the thickness of the magma ocean. The initial eccentricity was set to
e0 = 0.2, and the reference viscosity spans from η0 = 1019 Pa s (darkest colours)
to η0 = 1022 Pa s (lightest colours). For comparison, the dashed lines indicate the
spin–orbital evolution and the surface tidal heat flux for a model with constant
(non–evolving) temperature profile. The dark gray dashed line corresponds to the
reference viscosity η0 = 1014 Pa s and the light gray dashed line to the reference
viscosity η0 = 1019 Pa s.

mantle temperatures also affect the efficiency of heat transfer from the core. As
the mantle reaches thermal equilibrium at high temperatures, such as in this
model case, the cooling rate of the core substantially decreases and the core attains
a quasi-equilibrium. At this moment, the planet possesses a 400 − 500 km thick
magma ocean, and the global melt fraction in the mantle is about 25 %. How
long the interior remains in the equilibrium state depends on the evolution of the
spin–orbital parameters. Decreased mantle viscosity and evolving eccentricity act
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together in destabilising the actual spin–orbit resonance. As was already illustrated
in the previous subsections, the regions of stability for distinct stable spin states
depend on the average mantle viscosity (or rigidity) and on the eccentricity.
Different model cases in Figure 4.5 thus undergo the transition to lower spin–orbit
resonances at different times.

Each transition between stable spin–orbit resonances is accompanied by a
drop in the tidal heat rate. The decreased heat rate results in slower orbital
evolution (noticeable as a change of the slope in the first two panels) and in
the fast cooling of the vigorously convecting mantle. The subsequent fate of
the planet’s interior depends on the new spin state. If the planet despinned
into yet another nonsynchronous spin–orbit resonance, such as 3 : 2 for the
higher considered viscosities, the tidal dissipation remains an important, almost
eccentricity–independent heat source (see Figure 3.6). In this case, the interior
promptly acquires a new equilibrium thermal state at a slightly lower temperature
and higher average viscosity. On the other hand, if the planet despins directly
into the synchronous rotation, the tidal heat rate becomes strongly dependent
on the eccentricity. The interior first cools down to a quasi–equilibrium state, in
which the mantle temperature continues to decrease. The long–term cooling is
then controlled by the decaying eccentricity.

A noteworthy feature of the depicted evolutionary paths is the late thermal
equilibrium of the model case with η0 = 1019 Pa s. The sudden increase in the
surface tidal heat flux, which occurs after 7 Gyr, is associated with the partial
crystallisation of the remnant magma ocean. Once the magma layer begins to
crystallise and the local rigidity in the upper mantle increases, it becomes a
significant source of tidal dissipation, able to counterbalance the gradual cooling.
The period of thermal equilibrium is, however, terminated after 2 Gyr. By the end
of this transient phase, the average melt fraction in the magma layer decreases to
0.4 and the rigidity slowly increases. At 9.2 Gyr, the ocean eventually disappears.
After leaving the equilibrium, the planet follows a path of gradual cooling down
with an even steeper slope.

The presented model of Proxima Centauri b illustrates, in the first place, the
principal role of tidal locking in the long–term thermal and orbital evolution.
Despinning into a new spin–orbit resonance affects all other studied quantities and
enables abrupt changes in the slope of the semi–major axis and the eccentricity.
The eccentricity, in turn, complements the effect of the planet’s rotation in
determining the tidal heat rate.

The combined effect of the two parameters is most prominent in the evolution
of the average surface tidal heat flux (panel “d” in Figure 4.5). In the beginning,
the highest rate of tidal heating is observed in the model case with the lowest
reference viscosity. The highest viscosity case, on the other hand, dissipates the
lowest amount of energy. Since the eccentricity of both cases is comparable and
the rotation is nonsynchronous, the difference lies in the different susceptibility to
tidal deformation. After 5 Gyr, however, the situation almost reverses. While the
highest reference viscosity case remains in the 3 : 2 resonance for a considerable
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time and supports persistent tidal heating, the lowest reference viscosity case
has already despinned into the synchronous rotation and dissipates order of
magnitude less energy. The former case also retains more than two times higher
orbital eccentricity than the latter, which further contributes to the increased
tidal dissipation.

Another interesting observation can be made by comparing the orbital eccen-
tricities over the last 4 Gyr. Independently of the interior properties, the three
highest–viscosity cases end up on very similar orbits. The same tendency was also
observed in additional model runs with different initial eccentricities (e = 0.05,
0.1 or 0.4). The resulting eccentricities after 10 Gyr of evolution tend either to a
similar nonzero value (between 0.03 and 0.05) or—in the lowest reference viscosity
cases—toward circular orbit. However, as was illustrated in this subsection, the
earlier evolution of all model parameters is relatively complex and cannot be
described by a simple rule.

Compared to the model with fixed interior properties (dashed lines in Figure
4.5), the coupled model generally maintains higher orbital eccentricities. To
illustrate this, we first focus on the evolution of the “fixed–interior” model case
with reference viscosity η0 = 1019 Pa s. In the beginning, the chosen model case
is confronted with much higher tidal dissipation than any of the other model
cases. Since it is not moderated by a decrease in the rheological parameters, this
overheating results in the rapid circularisation of the orbit and tidal locking into
synchronous rotation within the first billion of years. The surface tidal heat of
the chosen model case then quickly becomes negligible.

The orbital evolution of the second fixed–interior case, with η0 = 1014 Pa s,
resembles the pattern of the evolving–interior model with η0 = 1019 Pa s. However,
while the latter possesses a relatively stiff mantle, whose average viscosity is
reduced only by the presence of a magma ocean, the former has low mantle
viscosity by definition. Hence, while the evolving-interior model gets locked early
into the 1:1 resonance, which reduces its rate of orbital evolution, the fixed-
interior model remains in stable pseudo–synchronous rotation. Although the two
model cases in question provide similar results for both of the studied orbital
parameters, the difference in the rotation history would yield substantially different
atmospheric forcing and different surface conditions. This example illustrates that,
when studying the spin rate evolution of partially molten bodies, the assumption
of homogeneous versus layered mantle may lead to qualitatively different results.

4.7.2 Thermal and orbital state of evolved low–mass exo-
planets

The long–term evolution of all chosen exoplanets follows similar tendencies. De-
pending on the initial orbital eccentricity, they experience one or more spin–orbit
lockings and possibly also a series of thermal equilibria. In the previous subsection,
we inspected the evolutionary path of Proxima Centauri b over 10 Gyr. The actual
age of the system is, however, much lower. According to asteroseismic observations
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of the α Centauri binary (Thévenin et al., 2002), it originated 4.85 Gyr ago and,
therefore, is only a few hundred million years older than the Sun. Since the age of
the other two exoplanets is—to the best of our knowledge—currently unknown,
we now focus on the evolutionary outcome of several model cases after 5 Gyr.

For each of the three studied exoplanets, we consider four possible initial
eccentricities (e0 = 0.05, 0.1, 0.2, and 0.4) and four reference viscosities identical
to the previous subsection. The tidally evolved eccentricity after 5 Gyr, together
with the spin–orbit ratio and the surface tidal heat flux, is depicted in Figures 4.6
to 4.8. To sort out the model outcomes which do not comply with the eccentricity
derived from current observations, we indicate the plausible eccentricities by a
red line in the colour bar and by the light blue background on the individual panels.

Figure 4.6 illustrates the possible evolution outcomes of GJ 625 b: a planet
that lies on the inner edge of the habitable zone. Its instantaneous, tidally
evolved eccentricity follows a predictable pattern, which is only mildly affected
by the reference viscosity. The higher the initial eccentricity, the higher its value
after 5 Gyr. Since the uncertainty of the empirically determined eccentricity is
relatively high, the majority of the models comply with the observation. Model
cases initialised to the highest considered eccentricity, possibly due to external
excitation, are, however, excluded. The second panel of the figure indicates that
the planet is most probably locked in the synchronous rotation. Only in the
rare case of high–eccentricity start with an Earth–like mantle viscosity does the
planet sustain the 3 : 2 resonance. A consequence of the resonance locking is
further reflected in the nontrivial dependence of the surface tidal heat flux on
the reference viscosity. While in the lower eccentricity cases the resulting heat
flux monotonically increases with decreasing viscosity, for e0 = 0.2 and e0 = 0.4
the rheological parameters play a lesser role than the rotation state. The values
of the tidal heat flux also indicate that the evolved planet is most probably less
volcanically active than Io. If rotating synchronously, its thermal output due to
tides might be hypothetically comparable with other internal sources of heat (e.g.,
radiogenic heating or remnant heat from accretion).

Due to the similar orbital periods and masses, the conclusions given for the
model of GJ 625 b are also applicable to the case of GJ 411 b (Figure 4.7). The
difference, however, lies in the eccentricities. For GJ 411 b, the mean value of the
empirically given eccentricity is higher than 0.2, which points at the currently
high surface tidal heat flux and nonsynchronous rotation. Were the present–day
orbit influenced only by tides, the planet would have to originate on a highly
eccentric trajectory. The evolved spin rate predicted by the coupled model ranges
from the 1 : 1 spin–orbit resonance for low reference viscosities up to the 5 : 2
resonance for higher viscosity values. Accordingly, the surface tidal heat flux is
expected to surpass the activity of Io.

The orbital and physical parameters of the Proxima Centauri system are
rather unlike the two previously described exoplanets. First of all, its lower mass
and lower predicted orbital eccentricity make it akin to the Earth. Figure 4.8
suggests that independently of the initial eccentricity and the reference viscosity,
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Figure 4.6: Orbital and thermal characteristics of GJ 625 b after 5 Gyr of evolution.
Depending on the initial orbital eccentricity e0 (x-axes) and the reference mantle
viscosity η0 (y-axes), the individual panels illustrate the evolved eccentricity (left),
the spin–orbit ratio (middle) and the surface tidal heat flux (right). The light
blue areas correspond to the model parameters for which the evolved eccentricity
complies with the observation (Suárez Mascareño et al., 2017). The range of the
empirically given values is also indicated by the red line in the first colour bar.

the planet’s orbit tends to a relatively low eccentricity below e = 0.1. Hence, the
majority of the cases comply with the current observations. As a consequence of
the low resulting eccentricity, the model predicts the prevalence of synchronous
rotation. The only exception from this pattern is the 3 : 2 resonance expected for a
high reference viscosity model with initial eccentricity of e0 = 0.2 (see also Figure
4.5). As most of the model cases end up in the same rotation state, the thermal
output of Proxima Centauri b is usually determined by the actual eccentricity and
the rheological parameters. Especially for low initial eccentricities, the surface
tidal heat flux is comparable to the total heat flux on the Earth and, depending
on the other heat sources and on the effect of the subsurface magma layer, it
might not present an obstacle for the hypothetical habitability.

In addition to the presented diagrams, it is worth noting that the majority
of the model cases support a long–lived magma ocean. The only case in which
the ocean disappears during the first 5 Gyr is Proxima Centauri b with the lowest
considered initial eccentricity and reference viscosity. However, since the effect of
the subsurface magma ocean on the surface conditions is beyond the scope of this
work, we postpone the discussion of this phenomenon to a more detailed study of
the interior evolution.

4.8 Discussion
The spin–orbital dynamics of a tidally loaded exoplanet interact with its interior
evolution in an intricate way. Throughout the previous section, we attempted
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Figure 4.7: Same as Figure 4.6, but for GJ 411 b. The span of empirically given
eccentricities is taken from Díaz et al. (2019).

to illustrate the complexity of the coupled model, which is given primarily by
the viscoelastic rheology and the evolution of the interior structure. Although
the complexity is inherent to the nature of the problem, the exact results and
predictions depend on the assumptions made. In this section, we focus on the
main features of the model which might have affected its outcome, and we also
discuss the implications of our results.

4.8.1 Stable spin states
The thermal and orbital evolution of viscoelastic planets on eccentric orbits is
interrelated with the evolution of their spin state. As a consequence of the
viscoelastic behaviour, planets with rocky interiors tend to the proximity of spin–
orbit resonances, whose stability is given by the frequency of tidal loading and by
the rheological parameters (e.g., Ferraz-Mello, 2013; Makarov and Efroimsky, 2013;
Correia et al., 2014; Ferraz-Mello, 2015). Different orbital configurations (e.g.,
the eccentricity) yield a different spectrum of loading frequencies and determine
the actual stable spin state. Although the basic aspects of the coupled system’s
dynamics can be captured by models with synchronous rotation (e.g., Henning
et al., 2009), the results of Sections 4.6 to 4.7, as well as Chapter 3, show that
the consideration of higher spin–orbit resonances is important, especially in the
case of planets with low orbital eccentricity. In this case, the eccentricity tides are
already weak, and the tidal dissipation is sustained primarily by nonsynchronous
rotation. The time at which the planet undergoes a transition to the synchronous
rotation determines the values of the terminal, slowly evolving orbital parameters.

The stable spin state of real moons and close-in planets is given not only by the
gravitational tides but also by the thermal atmospheric tides (e.g., Gold and Soter,
1969; Auclair-Desrotour et al., 2019) and/or by their permanent deformation (e.g.,
Goldreich, 1966). In the presence of a significant atmosphere, as is the case for the
planet Venus, the dayside experiences higher temperatures and lower atmospheric
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Figure 4.8: Same as Figure 4.6, but for Proxima Centauri b. The span of
empirically given eccentricities is taken from Jenkins et al. (2019).

pressures than the nightside. As a consequence of the periodic thermal forcing
and the redistribution of atmospheric masses, the planet becomes subjected to
additional tidal torque acting on its atmosphere. The competition between the
gravitational and thermal tidal torques destabilises spin–orbit resonances and
drives the planet to nonsynchronous rotation (e.g., Leconte et al., 2015). Similarly,
in the case of a triaxial planet, the tidal torque is counterbalanced by a torque
acting on the permanent deformation. The inherent triaxiality may either stabilise
the planet in an otherwise unstable synchronous rotation (e.g., Goldreich, 1966;
Goldreich and Peale, 1966) or, conversely, it may prevent the planet from exact
synchronisation by locking it into a higher spin–orbit resonance (e.g., Makarov,
2012; Zanazzi and Lai, 2017).

When calculating the stable spin state, we also assumed that the spin axis is
perpendicular to the orbital plane. The tidal effects in our study were, therefore,
only due to the nonzero eccentricity. In general, the rotation state is determined by
the planet’s figure and interior structure and its equilibrium obliquity corresponds
to one of the Cassini states (e.g., Peale, 1969; Boué, 2020). The stability of
individual Cassini states also depends on the configuration of the planetary
system. A planet with nonzero obliquity might be attracted to different spin–
orbit resonances (Boué et al., 2016), and its thermal budget is then enhanced by
obliquity tides (e.g., Peale and Cassen, 1978). Both of these effects contribute to
long-term evolution. As a first-order approximation, the ratio of the obliquity
heating to the eccentricity heating can be expressed as (e.g., Peale and Cassen,
1978; Chyba et al., 1989; Murray and Dermott, 1999)

P tide
β

P tide
e

≃ sin2 β

7e2 . (4.26)

Stable nonzero obliquity may, therefore, prevent runaway cooling once the orbital
eccentricity decreases to a negligible value. A test calculation with both sources
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of tidal heating and a constant obliquity of 20◦ indicates that increased tidal heat
rate stabilises the interior at a higher temperature, with a thicker magma ocean.
The orbital evolution is marked both by the increased dissipation and by the
earlier destabilisation of higher spin–orbit resonances due to low mantle viscosity.
However, in the long term, the obliquity of strongly tidally loaded exoplanets (e.g.,
Fabrycky et al., 2007) tends to zero.

4.8.2 Sources of orbital eccentricity

The orbital eccentricities of moons and planets in the Solar System are shaped
mainly by mutual interactions between the bodies. A well–known example of
this effect is planet Mercury, whose eccentricity may rise up to 1 due to the
gravitational action of other planets (e.g., Laskar, 1994; Batygin and Laughlin,
2008; Laskar and Gastineau, 2009; Lithwick and Wu, 2011; Boué et al., 2012), and
large satellites of gas giants, with orbital parameters forced by orbital resonances
(e.g., Schubert et al., 2010). A considerable change of the satellites’ orbits might
have also been caused by transient events, such as close encounters of giant planets
during the period of planet migration (e.g., Deienno et al., 2014). In analogy with
the Solar System, the detection of nonzero orbital eccentricities among close–in
exoplanets is often a consequence of ongoing gravitational perturbations by other
bodies (e.g., Takeda and Rasio, 2005; Pu and Lai, 2018; Van Eylen et al., 2019) or
a relic of past catastrophic events, such as planet–planet scattering (e.g., Petrovich
et al., 2014; Huang et al., 2017). In single–planetary systems or systems without
substantial gravitational forcing, the orbital eccentricity can be explained by initial
conditions during planet formation and by subsequent evolution in a gas disk (e.g.,
Kley and Nelson, 2012; Ragusa et al., 2018), as well as by formation in an unstable
multiplanetary system. Another possible source of nonzero orbital eccentricity is
the tidal interaction of a close–in planet with a rapidly rotating host star (Boué
and Efroimsky, 2019, equation (156)). For a detailed overview of the eccentricity
excitation mechanisms, we refer the reader to, e.g., Namouni (2007).

In this chapter, we assumed that the planet begins on an eccentric orbit and
evolves only under the action of tides. The three studied exoplanets, GJ 625 b,
GJ 411 b and Proxima Centauri b, were also chosen on the grounds of absent,
negligible or yet–unknown gravitational forcing by a third body. Applying the
tidal model to such exoplanets may help to shed light on the initial conditions in
the system or constrain the previous gravitational forcing the system underwent.
The results of the parametric study presented in Section 4.7.2 indicate that the
empirically given eccentricities can be reconciled with a wide range of initial
eccentricities and reference viscosities. In the case of exoplanets GJ 625 b and
GJ 411 b, this is mainly due to the large error bars of the current eccentricities.
For Proxima Centauri b, the reason also lies in the similar tendencies of the test
cases, all of which evolve toward a similar, mild eccentricity after 5 Gyr.

The most specific of the studied exoplanets is GJ 411 b. Its high present–day
eccentricity determines it either to a high–eccentricity start or to eccentricity
excitation in the past. An additional constraint on the initial conditions would be
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given by the age of the host star, which is currently unknown. Although GJ 411 b,
discovered in 2019, is the only confirmed exoplanet in the system, the star GJ 411
had been for a long time suspected to host a planetary companion. However, none
of the previously reported detections has been confirmed, and the existence of
other bodies in the system is putative (see also discussion and references in Díaz
et al., 2019). In the presence of strong eccentricity forcing by a second planet,
the thermal evolution of GJ 411 b would be affected by periods of high tidal
dissipation, and its evolution would resemble that of resonant moons in the Solar
System.

4.8.3 Parameterised convection and melting model

In Section 4.7, we observed that the coupled thermal–orbital evolution proceeds as
a sequence of thermal equilibria. In each equilibrium, the heat sources due to the
tidal dissipation are entirely compensated by the heat loss by mantle convection.
However, the heat loss is determined by the selected convection regime. A different
cooling rate would yield different equilibrium states, different temperature profiles
and, most importantly, different rheological properties. Here, we shall discuss our
choice of the convection regime and its impact on the resulting cooling rates.

First of all, we note that the choice of the convection regime is a very complex
problem that should be ideally addressed by numerical modelling. The thermal or
thermo–chemical convection on Earth and other Solar System bodies is discussed in
extensive literature. Despite the scarcity of information on exoplanets, numerical
models are used to investigate the scaling of mantle convection with mass and
radius (including the effect of extreme pressure) and to describe the convection
regimes in massive terrestrial exoplanets ("super-Earths"; e.g., van den Berg et al.,
2010; Čížková et al., 2017). The probability of plate tectonics on super-Earths was
investigated by, e.g., van Heck and Tackley (2011), Foley et al. (2012), and Noack
and Breuer (2014). Van Summeren et al. (2011) studied the mantle convection
in tidally locked terrestrial planets with large surface temperature contrasts.
The presence of huge volumetric heating or hot conditions, as experienced by
close–in planets, brings additional challenges due to large–scale melting and the
emergence of magmatic ponds and oceans. Vilella and Kaminski (2017) used a
systematic approach to build a diagram providing conditions for partial melting
based on the planet size and internal heating. An ideal solution accounting for
substantial internal heating or extreme temperatures on close-in exoplanets is a
3d multiphase convection with tidal dissipation as a source of volumetric energy.
Nevertheless, the inclusion of the melt–solid phase interaction, such as the melt
migration, melt production, and recrystallisation, requires complex description
(e.g., Bercovici et al., 2001) and possibly leads to extremely computationally–
demanding simulations.

Any 3d/2d modelling efforts are thus beyond the scope of this study. In order
to understand the main aspects of secular thermal–orbital coupling, we follow here
a traditional approach of parameterised convection, where we have to account
for possibly significant melting. Depending on the size of the planet and the
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magnitude of internal heating, the incorporation of melt into the model can be
treated in different ways. Parametric studies of mantle convection in Mars or
stagnant–lid Earth (Breuer and Spohn, 2006; Tosi et al., 2017), on which we base
our interior evolution model, assume that the melt with positive buoyancy is
instantaneously extracted from the mantle and becomes a building material for
the crust. This approach might result in the depletion of the mantle material and
in its dehydration (e.g., Plesa and Spohn, 2012), which increases the upper mantle
solidus and regulates the further production of the melt. Coupled thermal–orbital
models focused on small terrestrial exoplanets (Henning et al., 2009; Shoji and
Kurita, 2014; Driscoll and Barnes, 2015), on the other hand, assume a well–mixed
mantle with evenly distributed melt and decreased viscosity and rigidity of the
entire planet. However, the neglection of radial stratification of the planet might
substantially affect the resulting tidal heating pattern (Beuthe, 2013; Henning
and Hurford, 2014).

A realistic parameterisation of the subsurface melt dynamics would take into
account the permeability of the lithosphere (e.g., Spiegelman, 1993, and references
therein) and the melt buoyancy, which is a complex function of the mantle
composition. According to experimental studies with floating olivine in silicate
liquids, the melt becomes neutrally buoyant around 7 − 12 GPa, at the density
crossover of the two phases (e.g., Agee and Walker, 1993; Ohtani et al., 1995;
Agee, 2008). Specifically, in the upper mantle of the Earth, the existence of a
density crossover might enable the formation and maintenance of hydrous melts
above the 410 km discontinuity (Agee, 2008). In a general case, the position
of this transition depends on the water content, the mineralogy of the mantle,
and the local temperature. Since all of these parameters vary with depth, the
realistic incorporation of melt migration would require a much more detailed study.
Another important mechanism, which affects the cooling rate of the planet, is
global–scale volcanism (e.g., O’Neill et al., 2007). As proposed by Moore et al.
(2017), moons and planets with overheated and partially molten mantles might
be effectively cooling down by heat–pipe volcanism, before they transition to
the stagnant–lid or mobile–lid regime. Strongly tidally loaded bodies, such as
Jupiter’s moon Io (Moore, 2003), or large terrestrial exoplanets (Moore et al.,
2017) might remain in the stage of heat pipe for billions of years.

We opted here for parameterised stagnant–lid convection with a very simplistic
treatment of the melt. The model does not consider any melt migration and,
conversely, assumes a stable magma layer in the range of depths where the local
temperature exceeds the disaggregation point. This assumption enables us to
assess the dynamical effect of a liquid, almost nondissipative layer above a much
more viscous lower mantle. The liquid layer also decouples the lithosphere and
the rest of the mantle, which is then more susceptible to tidal deformations.
Nevertheless, while we consider the magma ocean in the tidal model, it is included
only in a simplified manner in the mantle convection. The maintenance of the
magma ocean can be understood as a limit case for interior evolution, maximising
the effect of partial melting. The presence of melt decreases the upper boundary
layer thickness via the geometric average of the mantle viscosity and allows for
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large heat flux into the lithosphere. This results in faster cooling of the mantle,
as expected for any presence of melt. The partial melting and the formation of
magma ocean also help to regulate the thermal runaways through the following
two mechanisms: i) the consumption of a part of the tidal heat by the phase
transitions and ii) the change of the rheological properties. During the cooling part
of the evolution, the magma ocean can delay the cooling due to recrystallisation
and latent heat.

Finally, we should note that our model neglects any circulation in the magma
ocean. The tidal response of fluid is essentially different from the response of
solid layers and should be calculated by a different set of tidal equations (such
as Laplace tidal equations; see, e.g., Tyler et al., 2015). Dissipation in the liquid
layers is directly affected by the rotation rate and is characterised by the formation
of inertial waves (e.g., Rovira-Navarro et al., 2019). Several recent studies have
investigated the tidal response of realistic liquid layers in Io or icy satellites of
Solar System gas giants. The importance of tidal dissipation in subsurface oceans
generally depends on the thickness of the ocean and the thickness of the overlying
shell, which tends to dampen the ocean tides (Beuthe, 2016; Matsuyama et al.,
2018). Additional heat can be also produced by turbulent dissipation, internal
gravity waves in the ocean, and interaction of the fluid with the ocean basin
topography.

4.8.4 Habitability of tidally evolving exoplanets
Two of the planets chosen for our parametric study, namely GJ 625 b and Proxima
Centauri b, are reported to reside in the conventional habitable zone of their
host star (Anglada-Escudé et al., 2016; Suárez Mascareño et al., 2017). The
habitable zone is conventionally defined as the range of orbital distances that allow
the planet to sustain liquid surface water under certain atmospheric conditions
(Kasting et al., 1993). The boundaries of a habitable zone are given by the
incident flux and thus depend on the stellar type. Later refinements of the original
definition relate the boundaries of the habitable zone to additional parameters,
such as the planetary mass, atmosphere, and orbital eccentricity (e.g., Seager,
2013; Kopparapu et al., 2013, 2014; Palubski et al., 2020), or restrict the range of
plausible temperatures to allow for the formation of complex organics (Wandel,
2018; Wandel and Gale, 2020) or even complex life (Schwieterman et al., 2019).
Although the orbit’s location inside the habitable zone may serve as an initial
guess on the surface conditions of an exoplanet, it is not sufficient to determine
its potential to harbour life. Planetary habitability is influenced by a combination
of many effects, some of which are also altered by tides (e.g., Seager, 2013; Kane
and Torres, 2017; Lingam and Loeb, 2018; Del Genio et al., 2019).

Tidal evolution affects habitability in both positive and negative ways. Secular
shrinking and circularisation of the orbit may drive the planet inside or outside the
habitable zone (Barnes et al., 2009; Palubski et al., 2020), and the tidal alignment
of the spin axis may principally influence its climate (Heller et al., 2011). Tidal
strain in the lithosphere can be vital in developing plate tectonics on close–in worlds
(Zanazzi and Triaud, 2019), while strong tidal dissipation is able to transform the
planet into an inferno (Barnes et al., 2013). An essential question determining
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the habitability of tidally evolving exoplanets is the effect of spin–orbit coupling
on the planetary climate and surface conditions. Synchronous rotation, which
is the most probable spin state of planets with low orbital eccentricities, yields
extreme differences in the insolation of the surface and in the surface temperatures
(Dobrovolskis, 2007). Uneven heating of the atmosphere, combined with active
volcanism, may trigger various feedbacks able to destabilise the climate (e.g., Kite
et al., 2011). However, it may also prevent the planet from going through periods
of global glaciation (Checlair et al., 2019).

Another tidal phenomenon able to affect planetary habitability is the over-
heating and melting of the interior. Partial melting and the subsequent volcanic
outgassing can gradually enrich the planetary atmosphere in greenhouse gases,
such as CO2 (Dorn et al., 2018), which may be vital for planets whose atmospheres
were eroded during the early active phase of stellar evolution (e.g., Loyd et al.,
2018). Although secular partial melting also results from radiogenic heating, tidal
dissipation may be an important additional source, especially in the mantles
of higher–mass terrestrial planets (>3 M⊕), whose solidus temperatures are in-
creased due to higher subsurface pressures (Noack et al., 2017; Dorn et al., 2018).
Outgassing and melt extraction also play an important role in the recycling of
planetary material. The carbon–silicate cycle, which contributes to the long-term
climate stability of the Earth, is enabled by the interplay between active volcanism
and temperature-dependent weathering (Walker et al., 1981). Carbon, outgassed
to the atmosphere by volcanism, is later deposited into the crust and returned
to the mantle by subduction. On rocky exoplanets in the stagnant–lid regime,
recycling may be limited by the absence of an efficient mechanism drawing carbon
down from the atmosphere. Nevertheless, the maintenance of the carbon–silicate
cycle on such planets is not completely excluded (Foley and Smye, 2018; Valencia
et al., 2018).

In this study, we assumed that the model planets operate in the stagnant–lid
regime and that the melt is not extracted by volcanism. While the conclusions of
the coupled thermal–orbital model are marked by these assumptions and their
answer to the question of planetary habitability might be limited, the results of
our parametric study with fixed parameters give us some insight into the tidal
effect on the surface conditions of GJ 625 b and Proxima Centauri b. If the melt
was extracted from the upper mantle and the model planets retained Earth-like
rheological parameters (i.e., ηm ≈ 1021 Pa s and µm ≈ 1011 Pa), their surface
would be potentially habitable only for low values of orbital eccentricity. On even
slightly eccentric orbits, consistent with the observation, the surface tidal heat
flux would exceed the values measured for Io. However, it should be noted that
the orbital eccentricity of such strongly dissipating exoplanets would need to be
maintained by external forcing, in order not to disappear during the first 1 Gyr of
tidal evolution. In terms of the present–day surface tidal heat flux, the results of
the coupled thermal–orbital model seem more optimistic than the results of the
model with fixed parameters. For mild initial eccentricities, the surface tidal heat
flux tends to values comparable with the total heat production of the Earth and
tidal dissipation alone does not pose a serious obstacle for potential habitability.
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4.9 Concluding remarks
In this chapter, we investigated the interconnection between the spin–orbital
dynamics and thermal evolution of low–mass exoplanets around M–type stars.
The planets were modeled as differentiated bodies with three or four homogeneous
layers, whose mantle is described by the Andrade viscoelastic model. Consis-
tently with the evolution of the mantle temperature profile, the model bodies
were allowed to build up a stable subsurface magma ocean, which influenced the
effectivity of heat transport as well as the tidal response. In addition to the
coupled model, we also conducted parametric studies with fixed interior structure
(without the magma ocean), exploring the effect of various mantle viscosities and
rigidities on the highest stable spin state and on the surface tidal heat flux of
the three planets. The following summary highlights the main conclusions of this
chapter:

• For the range of eccentricities consistent with observation, the three studied
low–mass exoplanets (GJ 625 b, GJ 411 b, and Proxima Centauri b) are able
to maintain higher than synchronous spin–orbit resonances. Locking into
such a spin state would provide the planetary surface with relatively uniform
insolation, which might have important consequences for the dynamics of
the atmosphere and for the hypothetical habitability of the planet. However,
as far as we consider a model with a homogeneous solid mantle (Section
4.6), this vital effect of the higher spin–orbit resonances may interfere
with the increased tidal dissipation at even mild orbital eccentricities. For
illustration, the model of Proxima Centauri b with a reference Earth-like
rheology (ηm = 1021 Pa s, µm = 200 GPa, no magma ocean) might be
locked into 3:2 resonance for e = 0.08 and into 2:1 resonance for e = 0.15.
Nevertheless, in both cases, the surface tidal heat flux exceeds the values
reached on Io. A more optimistic result is obtained either at the lowest
considered orbital eccentricity e = 0.02 (with 1:1 resonance) or with a
partially molten interior.

• In the coupled thermal–orbital simulations, we do not observe any pseudo–
synchronisation of strongly tidally heated exoplanets with a magma ocean.
Since the solidus temperature increases with pressure, the melt is emerging
only under the lithosphere and—in our model—it remains in the same place
as long as the local temperature exceeds solidus. The zone of substantially
reduced viscosity and rigidity is thus concentrated only in the upper mantle,
while the lower mantle remains solid and maintains a relatively high aver-
age viscosity. As the molten layer is almost nondissipative, its formation
effectively reduces the volume in which the mechanical energy transforms
to heat. This mechanism is then responsible for the reduced rate of tidal
dissipation and orbital evolution (see also Henning and Hurford, 2014).

• The long–term thermal–orbital evolution of tidally loaded rocky exoplanets
is strongly interconnected with the evolution of their spin rate. For higher
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than synchronous spin–orbit resonances, the thermal state promptly evolves
into an equilibrium, which is stable as long as the planet remains in the
same resonance. The equilibrium temperature profile ensures that the heat
sources are effectively compensated by the heat loss. As the tidal dissipation
at higher than synchronous resonances depends mainly on the spin rate
and only weakly on the eccentricity, the thermal equilibria are stable for
a considerable time (∼ Gyr in some cases), almost independently of the
evolving orbital parameters. Each transition between spin–orbit resonances
is then accompanied by a transition between thermal equilibria. Once the
planet despins to synchronous rotation, the tidal heat rate becomes sensitive
to the orbital eccentricity and the planetary mantle cools down gradually.

Understanding the complex relationship between the interior dynamics and the
quantities that can be theoretically measured may help us to better constrain the
conditions on extrasolar worlds. Although the spin rate of the studied low–mass
exoplanets is currently beyond the limits of observational techniques, it might
be measurable by the upcoming ground–based or space-based missions, such as
JWST or E–ELT (see, e.g., Kane et al., 2017, for the discussion of observational
prospects of Proxima Cetauri b). The surface tidal heat flux, which is not directly
measurable, may affect the rate of volcanic activity and outgassing. The footprints
of increased interior heating would then be observable in the planet’s transmission
spectra or, possibly, in the infrared light curves (e.g., Demory et al., 2012; Selsis
et al., 2013; Meadows et al., 2018).

In the following chapter, we are going to complement the model introduced
here with an additional source of orbital perturbation. Returning to the “generic”
terrestrial world from Chapter 3, we will study the orbital evolution in the presence
of a gas giant orbiting on an outer, highly inclined trajectory (with respect to the
orbital plane of the model planet). The thermal evolution, if considered, will be
described by the same parameterisation as in the present chapter.



5. Effect of an inclined outer
perturber
Up to now, we have studied the tidal dynamics of a single terrestrial exoplanet
orbiting a single star. The orbital elements of the planet were evolving due to
the tidal dissipation alone and the efficiency of this process was governed by the
thermal evolution of the mantle. In the present chapter, we add another source of
perturbation to the system: the generic model planet on a close–in orbit, which
served as an illustrative case in the parametric studies of Chapter 3, will be
disturbed by a massive sub–stellar companion on an outer orbit. In the following
exploration of the system’s long–term evolution, special attention will be paid to
secular perturbations and secular orbit–orbit resonances. Namely, we will discuss
the case of large mutual inclinations of the two orbits, which may give rise to the
Kozai–Lidov cycles. The results presented in this chapter were calculated using
strictly Newtonian physics; the contribution of the relativistic precession, which is
a dominant mechanism for close–in eccentric orbits, is only discussed at the end.

5.1 Introduction
Owing to the great variety of orbital configurations found among the exoplanetary
systems, we may expect that some of the close–in rocky exoplanets are subjected
not only to tides but also to periodic perturbations caused by other bodies in the
system. The most commonly considered perturbations with a direct effect on the
tidal dynamics (and vice versa) are mean–motion resonances, such as those existing
between the satellites of giant planets or between the satellites of Pluto. Mean–
motion resonances force the orbital eccentricity to retain nonzero values, causing
the planet to remain tidally active in the long term. The feedback between the
forced eccentricity and the tidal dissipation results in varying episodes of increased
and decreased melt production in icy satellites as well as to periodic variations
in the surface heat flow of Io (e.g., Ojakangas and Stevenson, 1986; Fischer and
Spohn, 1990; Hussmann and Spohn, 2004). Among close–in exoplanetary systems,
the tidal heating resulting from nonzero forced eccentricities may greatly influence
the internal dynamics as well as the atmospheric evolution and, similarly to
the case of Solar System satellites, it may determine the surface conditions and
habitability prospects of the individual planets (e.g., Dobos et al., 2017; Barr
et al., 2018). On the other hand, the tidal evolution might also have had an
important role in the past orbital dynamics of the satellite or planetary system,
which eventually resulted in the observed configuration (e.g., Goldreich, 1965;
Makarov et al., 2018; Papaloizou et al., 2018).

The proximity of the planet’s orbit to a mean–motion resonance results in
potentially large–amplitude oscillations in the eccentricity and the semi–major axis.
The period of these oscillations is few orders of magnitude longer than the orbital
period (e.g., Murray and Dermott, 1999); nevertheless, it is still considerably
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shorter than the typical timescale of tidal evolution. The study of a coupled
thermal–orbital evolution in the long term, accounting for such large–amplitude
short–scale effects, requires the use of relatively short time steps and becomes very
challenging. Therefore, for practical reasons, we do not consider mean–motion
resonances in this work, but we instead study the interconnection between tidal
evolution and third–body perturbation in the secular approximation: considering
a disturbing function averaged over the mean longitudes λ1 and λ2. Specifically,
we treat the case of large mutual inclinations between the two orbits.

As was recently rediscovered by Ito and Ohtsuka (2019), the dynamics of
bodies at high mutual inclinations were first analysed by Hugo von Zeipel in 1910
(von Zeipel, 1910). Nevertheless, all of the present theoretical work builds on
the independent derivations of Lidov (1962) and Kozai (1962), who approached
the problem in two different contexts1. Lidov (1962), motivated by consider-
able orbital evolution of three artificial satellites influenced by the gravitational
attraction of the Moon, derived Gauss’s planetary equations for the satellite’s
orbit, averaged them over the satellite’s and the Moon’s orbital period, and found
three constants of motion, defining the dynamical state of the system. Depending
on the initial orbital elements, he analysed the satellite’s dynamics and derived,
inter alia, a condition for its collision with the Earth. Kozai (1962), on the
other hand, studied the orbital evolution of asteroids under the gravitational
influence of Jupiter. Working in Hamiltonian formalism, he found that the as-
teroid’s orbital variations may operate in two regimes; the actual regime being
determined by the z–component of the angular momentum, or by the constant of
motion Θ = (1 − e2) cos2 i, where e is the orbital eccentricity and i is the orbital
inclination relative to Jupiter’s orbital plane. Depending on the ratio between the
semi–major axes of the asteroid and the semi–major axis of Jupiter, Kozai (1962)
derived the limit values of the constant, Θ0. Below the critical value, the system
librates about a stationary solution and is said to be in a resonance (Thomas
and Morbidelli, 1996): the perihelium precession of the asteroid ceases and the
orbital eccentricity and inclination undergo large–amplitude oscillations. Above
the critical value, the perihelium precesses uniformly and the oscillations are
small. Specifically, for an asteroid with an initially circular orbit and short semi–
major axis, the critical initial inclination needed to enter the resonant regime is 39◦.

The discoveries of exoplanets orbiting widely–separated binary stars or dwelling
in multi–planetary systems raised the questions about the stability of exotic orbital
configurations under the described Kozai–Lidov mechanism (for an overview of the
topic, see, e.g., Naoz, 2016). Funk et al. (2011) explored the effect of inclined jovian
worlds on the dynamical stability of inner low–mass exoplanets and characterised
the dynamical state of the system by the maximum eccentricity (ME) and a
chaos indicator2. The authors studied the role of different quantities, such as the

1A thorough overview of the starting positions, motivations, and results of von Zeipel’s,
Lidov’s, and Kozai’s work can be found in Ito and Ohtsuka (2019).

2In general, low–eccentricity orbits (ME < 0.2) tend to be stable, while high–eccentricity
orbits (ME > 0.8) tend to be unstable, or chaotic. The range of intermediate maximum
eccentricities permits the existence of both stable and unstable orbits (Funk et al., 2011).
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orbital eccentricity of the perturber, perturber–star mass ratio, ratio of semi–major
axes, and the mutual inclination of the two planets. They found that for higher
eccentricity or higher mass of the perturber, a smaller portion of the inclination—
semi–major axis parameter space permits the existence of low-eccentricity orbits
and, consequently, a smaller region of the parameter space is expected to be stable.
The conclusion drawn for systems with an eccentric perturber from the numerical
simulations of Funk et al. (2011) were later derived analytically and discussed by
Libert and Delsate (2012). Libert and Tsiganis (2009) explored the stability of
several systems under possible Kozai–Lidov resonance and reported high sensitivity
of the systems’ dynamics to a change in the initial orbital parameters (illustrating
the role of observational uncertainties).

A number of studies have also focused on the combined effect of resonant
eccentricity excitation and tidal damping. This mechanism, called the Kozai–
Lidov migration (e.g., Wu and Murray, 2003), has been proposed as one of
the explanations for the formation of close binaries in triple–star systems (e.g.,
Fabrycky and Tremaine, 2007; Naoz and Fabrycky, 2014; Bataille et al., 2018)
or hot Jupiters, possibly on highly eccentric orbits (e.g., Wu and Murray, 2003;
Socrates et al., 2012; Petrovich et al., 2014; Wang et al., 2017). The idea of the
Kozai–Lidov migration is based on extreme eccentricity excitation, complemented
by strong tidal dissipation during periastron passages. The effect of oscillating
eccentricity on the tidal evolution depends on the relative timescales of the two
processes (Petrovich, 2015; Wang et al., 2019). If the tidal timescale is much
longer than the period of Kozai–Lidov oscillations, and if the amplitude of the
oscillations is large, the tidal evolution is slowed down: the episodes of high
dissipation are confined to small time windows around the maxima of mean
eccentricity (Petrovich, 2015). If, on the contrary, the timescales are comparable—
or the tidal timescale is relatively shorter than the oscillation period—the planet
evolves quickly to a close–in circular orbit. As the most efficient tidal dissipation
operates when the orbital eccentricity attains its maximum and the inclination is
at its minimum value, the Kozai–Lidov tidal migration also results in damping
the mutual inclination and equilibrating it around its minimum (Fabrycky and
Tremaine, 2007; Correia et al., 2013).

Since the models of Kozai–Lidov migration are usually applied to stars or
gaseous giants, they mostly utilise the constant time lag model (CTL) of tidal
response, in which the tidal lag is proportional to the tidal frequency. However,
there are exceptions to this rule. In works dedicated to the high–eccentricity
migration of jovian worlds, Storch and Lai (2014) and Storch and Lai (2015)
consider the tidal dissipation in a viscoelastic core of the planet (see also Remus
et al., 2012) and prescribe the rheology via the imaginary part of the Love number.
The authors show that the inclusion of a core described by the Maxwell model
may speed up the tidal circularisation of highly eccentric orbits and better explain
the number of observed hot Jupiters. In addition, the authors also discuss the
existence of multiple stable spin states of such planets.
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In this chapter, we first briefly introduce the circular restricted three–body
problem, in which a massive outer perturber orbits on a circular trajectory and
only the orbit of the inner planet is permitted to evolve. Then we present
several additions to the numerical model of Chapter 4 and, finally, we explore the
effect of an inclined Jupiter–mass perturber on the tidal evolution of a terrestrial
planet. As in the previous two chapters, the terrestrial planet is assumed to be
fully differentiated and its interior dynamics are coupled to the orbital evolution
through the temperature dependence of rheological parameters.

Finally, we should note that the resonant motion and the stability of planetary
systems is traditionally treated in the Hamiltonian formalism (using canonical
orbital elements), which provides an invaluable insight into the dynamics of the
system (e.g., Kozai, 1962; Thomas and Morbidelli, 1996; Murray and Dermott,
1999; Bataille et al., 2018). Although such an approach is, in most cases, preferable,
in this study we solve the non–singular evolution equations (1.58) derived from the
Lagrange planetary equations for the set of Keplerian elements with longitudes,
{a, e, i,ϖ,Ω, ϵ}. This option was chosen for the sake of consistency with the rest
of this work, especially with Chapter 4.

5.2 Secular resonances at high mutual inclina-
tions

Let us consider a system consisting of a host star with mass m∗, a giant outer
planet with mass m2, and a small inner planet with mass m1. Let the outer planet
orbit in the reference plane (i2 ≈ 0) on a nearly circular orbit (e2 ≈ 0). As in the
previous chapter, we expand the disturbing function for the inner planet into the
Darwin–Kaula series (Kaula, 1962), that we introduced in Section 1.3.1, as

R1 = Gm2

a2

∞∑︂
l=2

l∑︂
m=0

l∑︂
p,p′=0

∞∑︂
q,q′=−∞

κm
(l −m)!
(l +m)!

(︃
a1

a2

)︃l

Flmp(i1)Flmp′(i2)Hlpq(e1)Glp′q′(e2) cosψ ,

(5.1)
with argument

ψ = (l− 2p′ + q′)λ2 − (l− 2p+ q)λ1 − q′ϖ2 + qϖ1 + (m− l+ 2p′)Ω2 − (m− l+ 2p)Ω1 . (5.2)

Before we proceed to the details of the implementation and to the results of our
model, let us stop for a while to discuss the secular resonances in the circular
restricted three–body problem.

Away from mean–motion resonances, and after double averaging over quickly–
changing variables λ1 and λ2, the condition for a secular resonance is

ψ̇sec = −q′ϖ̇2 + qϖ̇1 + (m+ q′)Ω̇2 − (m+ q)Ω̇1 ≈ 0 . (5.3)

As the outer planet revolves around the star on a nearly circular orbit in the
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reference plane, the contribution of the terms corresponding to q′ ̸= 0 and
(m+ q′) ̸= 0 becomes negligible. Therefore, the condition of resonance in our case
turns to

ψ̇sec = q(ϖ̇1 − Ω̇1) = qω̇1 ≈ 0 (5.4)

with ψsec = qω1 being the resonant argument. We may expect that the dynamics
of a system locked into this type of secular resonances will be characterised by
libration around a distinct argument of periapsis. The doubly–averaged disturbing
function reads as

⟨R1⟩ = Gm2

a2

∞∑︂
l=2

∞∑︂
q=−∞

(︃
a1

a2

)︃l

Fl0p(i1)Fl0p′(0)Hlpq(e1) cos qω1 , (5.5)

where we already set e2 = 0 and i2 = 0 for illustration purposes. In the above
expression, the values of (non–negative) indices p and p′ are given by 2p = l + q
and 2p′ = l. These constraints require that l and q be even. A direct implication
of the constraints given by double averaging is, therefore, the necessity to expand
the disturbing function at least to e2

1 in order to encounter the secular resonance.
Since the argument of the averaged disturbing function (5.5) only depends on
the argument of periapsis ω1, the orbital evolution of the inner planet can be
obtained from the first set of Lagrange planetary equations (1.9). Upon rewriting
the relevant equations for the circular restricted three–body problem, we obtain

da1

dt = 0 , (5.6a)

de1

dt = −
√︁

1 − e2
1

n1a2
1e1

∂⟨R1⟩
∂ω1

, (5.6b)

di1
dt = cot i1

n1a2
1
√︁

1 − e2
1

∂⟨R1⟩
∂ω1

, (5.6c)

dΩ1

dt = 1
n1a2

1
√︁

1 − e2
1 sin i1

∂⟨R1⟩
∂i1

, (5.6d)

dω1

dt =
√︁

1 − e2
1

n1a2
1e1

∂⟨R1⟩
∂e1

− cot i1
n1a2

1
√︁

1 − e2
1

∂⟨R1⟩
∂i1

. (5.6e)

Obviously, the mean semi–major axis remains constant under the influence of a
secular perturbation, while the mean orbital eccentricity and mean inclination
evolve in a synchronised way. The relation between the mean eccentricity and
mean inclination can be obtained by dividing equation (5.6b) by equation (5.6c),
which yields

de1

di1
= −1 − e2

1
e1

tan i1 . (5.7)
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Integrating (5.7), we get the constraint√︂
1 − e2

1 cos i1 = const. (5.8)

This constraint is equivalent to the conservation of z–component of the inner
orbit’s angular momentum, given the semi–major axis is constant (as guaranteed
by equation (5.6a)). The square of expression (5.8) is equal to Kozai’s parameter
Θ, mentioned in the introduction.

For the circular restricted three–body problem, the dynamics of the system
can be well represented in the (e cosω, e sinω) plane (e.g., Thomas and Morbidelli,
1996; Funk et al., 2011) or in the (2ω, 1 − e2) plane, as was originally done by
Kozai (1962). Here, we choose the first option. In this representation, the distance
from the origin denotes the mean eccentricity of the inner planet, while the angle
between the x–axis and the radius vector marks the mean argument of periapsis.
An illustration3 of possible trajectories in the (e cosω, e sinω) for different values
of the initial eccentricity and of the z–component of the angular momentum is
presented in Figure 5.1 (see also Thomas and Morbidelli, 1996).

5.3 Implementation
The tidal effects on the two planets’ orbital elements are calculated using the full
set of tidal equations (1.40), derived in Boué and Efroimsky (2019), where we
neglected the contribution due to the tidal dissipation in the host star. The set
of equations describing the third body perturbation is given by (1.58), with the
derivatives of the disturbing function written explicitly in Appendix C.2. The
accuracy of the implemented model for orbital evolution under the third–body
perturbation was tested against the symplectic N–body integrator Rebound (Rein
and Liu, 2012).

In contrast to the calculation of the tidal evolution, where the character of
the problem permitted the neglection of degrees other than l = 2, the present
problem may require the consideration of several more terms in the Darwin–Kaula
expansion. As was outlined in Chapter 1, the magnitudes of the individual terms
in the disturbing function are given by (see also Murray and Dermott, 1999)

Rlmpp′qq′ ∼
(︃
a1

a2

)︃l

e
|q|
1 e

|q′|
2

(︃
sin i12

)︃|m−l+2p|(︃
sin i22

)︃|m−l+2p′|

, (5.9)

where a1 and a2 are the semi–major axes of the inner and the outer planet,
respectively, and e1, e2, i1, i2 symbolise the orbital eccentricities and inclinations.
Hence, the maximum degree l of the expansion needed to achieve the required
precision depends on the ratio of the semi–major axes and on the inclinations of
the two planets. Although our present work focuses on systems with relatively

3The illustration was calculated using the same semi–analytical model as in the rest of this
chapter (and in Chapters 3 and 4). Only the tidal terms in the evolution equations were set the
zero.
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Figure 5.1: Isolines of Kozai’s parameter Θ for our model system with outer
Jupiter–mass companion at a2 = 1 AU. Individual plots correspond to different
initial inclinations i1. The orange line indicates the trajectory which would be
taken by the system used in our calculations (initial conditions: e1 = 0.01, ω1 = 0◦)
in the absence of tides. Note the different ranges of x–axes and y–axes.

large distances between the planets—and we expand the evolution equations only
up to degree l = 5—a desire to implement the method in a more general manner
(e.g., to also enable the consideration of low–order mean–motion resonances in
future studies) prompted us to modify the scheme used in the previous chapter
and to facilitate the computation of higher–degree (l > 10) expansion.

The computation of the Darwin–Kaula series for high degrees becomes increas-
ingly time–demanding. Therefore, to accelerate the program runs, we calculate
the tables of inclination and eccentricity functions and their derivatives for various
values of i and e in advance. During the individual steps of the model runs,
the functions for the actual elements are obtained by polynomial interpolation
(using a fourth–order polynomial). As in the previous chapter, we integrate the
spin–orbital evolution equations using two computational cycles with different
time steps: the short cycle and the long cycle. However, contrary to the previous
chapter, we use the predictor–corrector scheme only in the short cycle, while
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the long cycle is integrated using the fourth–order Runge–Kutta algorithm with
variable step size, as implemented by Press et al. (1992).

5.4 Results

5.4.1 Model parameters

In the following, we study the evolution of a system consisting of an M–type star
with mass m∗ = 0.1 m⊙, an Earth–mass inner planet and a Jupiter–mass outer
planet (m2 = 10−3 m⊙). The interior structure of the inner planet is identical
to Chapter 3 and the model parameters are given in Table 3.1. For the model
runs with mantle convection, we use the parameters from Table 4.3. Although the
model settings permit the calculation of full orbital evolution of the system, we
set the time derivatives of the exo–Jupiter’s orbital elements to zero and mimic
the dynamics of almost circular restricted three–body problem. Note that the
restriction of the outer planet’s evolution breaks the conservation of total angular
momentum in the system. Have we chosen to calculate the full orbital evolution,
the angular momentum would be exchanged between the two orbits.

For the outer planet, we prescribe a small, arbitrarily chosen constant orbital
eccentricity e2 = 10−4 and zero inclination with respect to the inertial reference
plane. In other words, the inertial reference plane and the outer planet’s orbital
plane are identical. The initial orbital eccentricity of the inner planet is e1 = 0.01.
The initial values of the longitudes of periapsis (ϖ1, ϖ2) and the longitude of the
inner orbit’s ascending node (Ω1) are zero for simplicity. The longitude of the
outer orbit’s ascending node is undefined. We consider three possible values of
the outer orbit’s semi–major axis (a2 = 1 AU, 5 AU or 10 AU) and two values of
the inner orbit’s inclination with respect to the reference plane (40◦ or 50◦). Note
that the former of the chosen inclinations marks a system just below the critical
value of Θ for a possible resonant state.

A model planet at initially almost circular orbit, perturbed by a highly–inclined
companion, will experience large synchronised oscillations in the orbital eccentricity
(Figure 5.1) and inclination. Before we proceed to the presentation of the results,
let us again note that the increase in the orbital eccentricity is a consequence of
the decrease in the model planet’s orbital angular momentum. In a two–planetary
system, the total angular momentum would be periodically exchanged between
the inner and the outer orbit; in the restricted three–body problem, the angular
momentum is periodically removed and returned to the system. At the same
time, the tidal evolution alone proceeds at constant angular momentum. In
the combined problem of tidal and third–body perturbation, the tidal evolution
becomes most effective at the periods of highest eccentricity—and lowest orbital
angular momentum (see also Socrates et al., 2012). An important consequence of
these facts will be illustrated in Figure 5.4.
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5.4.2 Close perturber: tidal contribution to secular reso-
nance

First, we will concentrate on a system with a close perturber: The Earth–mass
model planet, orbiting on a mildly eccentric orbit with semi–major axis a1 =
0.04 AU, will be perturbed by a Jupiter–mass companion at 1 AU. In the case
of the higher initial mutual inclination (i1 = 50◦), the period of Kozai–Lidov
oscillations is ∼ 50, 000 yr, and since the model planet orbits very close to its host
star, this timescale is also shared by the tidal despinning4. For the lower mutual
inclination (i1 = 40◦), the period of Kozai–Lidov oscillations is ∼ 100, 000 yr
and the concurrence of this mechanism with the tidal despinning is even more
significant. On the other hand, the typical timescale of the orbital evolution
induced by the third–body perturbation is orders of magnitude lower than the
timescale for tidal evolution of a1 and e1. We should, therefore, expect that in
the system with a close perturber, the orbital evolution will be governed mainly
by the third–body perturbation, the effect of tides being only secondary.

Figures 5.2–5.5 confirm this expectation. In the beginning, the model planet’s
evolutionary path in the (e cosω, e sinω) plane approximately follows the isolines
of Kozai’s parameter Θ (i.e., of the z–component of the orbital angular momentum,
represented by the thin black lines) corresponding to the initial mutual inclination
between its orbital plane and the orbital plane of the perturber. Since the angular
momentum is slowly drained from the system, the trajectories taken by the planet
in later stages of the evolution do not follow the thin black lines exactly, but the
change is relatively slow, compared to the timescale of the eccentricity oscillations.
Each triplet of panels in Figures 5.2 and 5.3 is plotted for the time range which
captures the entire orbital evolution of the model case with the lowest mantle
viscosity (and fastest tidal decay). Figure 5.5 shows the evolution over an arbi-
trarily5 chosen time interval of 1 Gyr. Therefore, the colour–coded time ranges
are different for different Figures.

Figure 5.2 depicts the trajectory of a model planet with initial inclination
i1 = 40◦ and constant mantle structure and rheological properties. In this case,
we do not consider the thermal evolution of the interior. As a consequence of the
outer planet’s gravitational action, the model planet’s initially low eccentricity
increases to e1 ∼ 0.15 and the planet becomes subjected to tidal dissipation. Tidal
dissipation then acts to reduce the orbital eccentricity and “pushes” gradually
the plotted trajectory closer to the centre of the panel. The combined tidally–
and externally–induced orbital evolution is, therefore, marked by Kozai–Lidov
oscillations in the orbital eccentricity and inclination with gradually decreasing
amplitude. Since the third–body perturbation forces the inclination to evolve

4The period of Kozai–Lidov oscillations, as well as the timescale of tidal despinning, was
obtained “empirically” from our numerical results. Furthermore, the period of Kozai–Lidov
oscillations was also compared with the N–body integrator Rebound (Rein and Liu, 2012).

5The choice of the relatively short interval (1 Gyr) was also motivated by practical reasons.
The calculation of the coupled evolution with short–scale eccentricity forcing is highly time–
demanding.
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Figure 5.2: Evolutionary paths of a system with close perturber (a2 = 1 AU) for
three reference viscosities (η0 = 1019 Pa s, 1020 Pa s and 1021 Pa s). Model with
non–evolving interior and initial mutual inclination i1 = 40◦. Thin black lines
correspond to isolines of Kozai’s parameter Θ.

together with the decaying eccentricity, the mutual inclination decreases as well
and the system no longer follows the isolines corresponding to the initial state,
as was said earlier. A final state of the combined evolution is a model planet on
a circular orbit with i1 < 40◦. The efficiency of tidal dissipation increases with
decreasing viscosity; thus, the lowest–viscosity case undergoes complete decay of
orbital eccentricity on a much shorter scale than the highest–viscosity case.

Focusing now on the dynamically more interesting case with initial mutual
inclination i1 = 50◦, we may turn to the evolutionary paths depicted on Figure 5.3.
As in the previous case, we are considering a model without the thermal evolution
of the interior. The basic interpretation of the depicted trajectories is similar to
the previous illustration, with two important differences: the amplitudes of the
eccentricity and inclination oscillations are now considerably higher than in the case
with i1 = 40◦ and the tidal dissipation at the periods of high orbital eccentricity
results in the system’s locking into the Kozai–Lidov resonance. Depending on the
model planet’s viscosity (i.e., on the efficiency of tidal dissipation), the crossing
of the separatrix and the resonant locking happens at different times. Since our
initial condition for the argument of periapsis is ω1 = 0◦ and the orbit in these
model cases precesses (ω1 increases with time), the lowest–viscosity case gets
locked into the resonance associated with ω1 = 90◦. The other two cases, where
the tidal decay of eccentricity proceeds more slowly, get locked into the resonance
associated with ω1 = 270◦.

Once locked in the resonance, the model planet’s orbit undergoes large–
amplitude oscillations in eccentricity and inclination, while the argument of
periapsis librates around the resonant location. Nevertheless, the planet is still
subjected to immense tidal loading and the orbital evolution continues. The
gradual decrease in the eccentricity is accompanied by the gradual decrease in the
inclination (the latter being induced by the third–body perturbation, not by tides),
and as the inclination decreases to ∼ 40◦, the system crosses the separatrix once
again, leaving the Kozai–Lidov resonance. The subsequent evolution is identical
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Figure 5.3: As in Figure 5.2, but for initial mutual inclination i1 = 50◦.

to the case with lower initial inclination.
Now, we can go back to the discussion about the system’s angular momentum.

Since the tidal evolution acts most effectively at the periods of increased orbital
eccentricity—and the tidal evolution proceeds at constant angular momentum—the
system is gradually subjected to the loss of angular momentum. In the absence of
the third–body forcing, the tidal evolution would lead the model planet to a circular
orbit with semi–major axis a1,fin = a1,ini(1 − e2

1,ini). As the initial eccentricity in
our models is very low, e1,ini = 0.01, the shrinking of the semi–major axis would
be only mild. However, once we also consider the third–body perturbation at
high mutual inclinations, the semi–major axis tends to a considerably lower value,
approximately given by a1,fin = a1,emax(1 − e2

1,max), where e1,max is the maximum
value of the oscillating eccentricity and a1,emax is the corresponding semi–major
axis. This mechanism lies behind the Kozai–Lidov migration, mentioned in the
introduction (e.g., Wu and Murray, 2003).

The orbital evolution of the particular model case with initial mutual inclina-
tion i1 = 50◦ and reference viscosity is also depicted in Figure 5.4. We may see the
tidally–decaying short–period oscillations of e1 and i1, as well as the gradual migra-
tion of the model planet towards the host star. On the lowermost panel, we see the
rapid locking into the Kozai–Lidov resonance, with the argument of periapsis librat-
ing around 90◦. Once the eccentricity and the inclination decrease to sufficiently
low values, the argument ω1 begins to precess. However, at almost zero orbital
eccentricity and at mutual inclination just above 39◦, the system returns to a
resonant state, alternating between the two resonant positions (ω1 = 90◦ and 270◦).

Finally, to appreciate the role of the interior evolution in this combined problem,
let us briefly comment on Figure 5.5. The three panels of this figure illustrate
the evolution paths of the system with initial mutual inclination i1 = 50◦, as in
Figure 5.3, but now including the thermal evolution of the interior. Recall that
the increased tidal heating of planets on eccentric orbits (Chapter 4) results in
partial melting of the interior, the formation of a subsurface magma ocean, and,
effectively, a tidal shutdown. The same behaviour can be also seen in this model
case. The planet starts as a tidally active body and, under the influence of the
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Figure 5.4: Orbital evolution of the model planet subjected to tides and third–
body perturbation by a close perturber (a2 = 1 AU) at high mutual inclination
(i1 = 50◦). Model with non–evolving interior and reference mantle viscosity
η0 = 1019 Pa s (as on the left panel of Figure 5.3). Over the span of 1 Gyr, we
may see, from top to bottom, the evolution of the semi–major axis, the orbital
eccentricity, the inclination, and the argument of periapsis.
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Figure 5.5: As in Figure 5.3 (i1 = 50◦), but for evolving interior.

Kozai–Lidov mechanism, it gets locked to the resonant state (as in the previous
example). However, due to the high amplitude of the eccentricity oscillations, the
temperature at the top of the planet’s mantle promptly exceeds the solidus and
the mantle begins to melt. As a result, the orbit remains confined to the resonant
state. The orbital eccentricity (as well as the inclination) keeps its high–amplitude
oscillations and the tidal evolution becomes negligible, compared to the evolution
induced by the third–body perturbation.

5.4.3 Distant perturber: tidal breaking of secular reso-
nance

On the previous images, we have seen the orbital evolution in the regime with
prevailing third–body perturbation. In this regime, the tidal decay of the orbital
eccentricity acts as a secondary effect, possibly leading the planetary orbit to a
resonant state. Increasing the semi–major axis of the perturber unveils another
type of the combined model’s behaviour. As the timescale of eccentricity forcing
gets closer to the tidal timescale, the influence of tides on the orbital dynamics
becomes quite intricate. To capture the main aspects of the orbital evolution
at different relative timescales, we will now discuss only the lowest–viscosity
and highest–inclination case (η0 = 1019 Pa s, i1 = 50◦). Changing the reference
viscosity affects the efficiency of tidal dissipation; therefore, it determines the exact
time when the tidally–induced eccentricity decay quenches the Kozai-Lidov cycles.
Decreasing the initial mutual inclination affects the maximum and minimum
eccentricities reached.

Let us first discuss the model case with constant interior structure (i.e., with-
out the thermal evolution of the planet). Figure 5.6 depicts the model planet’s
trajectory in the (e cosω, e sinω) plane for three considered values of the outer
planet’s semi–major axis: 1 AU, 5 AU, and 10 AU. The left panel is identical to
Figure 5.3 and, as on the previous images, it also contains a “grid” of trajectories
with constant Θ. On the middle and right panels, the grid is omitted for the sake
of clarity. A glance at the triplet of panels reveals an expectable rule: increasing
the distance of the perturber decreases the importance of Kozai–Lidov mechanism
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Figure 5.6: Evolutionary paths of a model planet with reference mantle viscosity
η0 = 1019 Pa s for different semi–major axes of the outer perturber (a2 = 1 AU,
5 AU, and 10 AU). Model with non–evolving interior and with initial mutual
inclination i1 = 50◦. Thin black lines on the first panel correspond to isolines of
Kozai’s parameter Θ.

in driving the system’s orbital dynamics. The further the perturber, the stronger
the relative effect of tides.

The beginning of the trajectory in the middle panel of Figure 5.6 (a2 = 5 AU)
resembles the behaviour of the model case on the left (a2 = 1 AU). The orbital
eccentricity increases under the action of the perturber, until the planet becomes
subjected to strong tidal dissipation. Then, the tidal decay of eccentricity “flicks”
the system to a Kozai-Lidov resonance around ω1 = 90◦. While in the case with
a2 = 1 AU, we observed a gradual, synchronised decrease in the eccentricity and
inclination, in the present case with a2 = 5 AU, we can see quite different evolution.
The eccentricity decay is extremely fast, relative to the Kozai–Lidov cycles, and
the system quickly converges to the resonance still corresponding to the initial
inclination (and initial value of Θ). However, as the stable point in this case
corresponds to extremely high eccentricity (∼ 0.5), the system is soon destabilised
by the immense tidal dissipation and the planet embarks on a journey of tidal
circularisation. Note that the argument of periapsis at this stage recedes and
the evolution is very rapid, compared to the other two model cases. Only at
very low orbital eccentricity, when the planet despins to synchronous rotation,
does the apsidal motion change again in a prograde direction. The entire tidal
circularisation proceeds in less than 50 Myr.

On the right panel, depicting the case with a2 = 10 AU, we may see a simplified
version of the evolution described in the previous paragraph. In this case, the
tidal dissipation prevails even earlier and the system does not even tend to the
Kozai–Lidov resonance. However, due to lower eccentricities attained, the tidal
circularisation takes more than 100 Myr.

To understand the intricate case of a2 = 5 AU better, we also plot a close–up
on the inner planet’s orbital evolution over the first 50 Myr (Figure 5.7). This
figure can also be compared with Figure 5.4, which shows the evolution of the
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same model planet, but for a closer perturber. The dynamics depicted on the four
panels of Figure 5.7 can be divided into three stages. During the first ∼ 15 Myr,
the system slowly librates around the Kozai–Lidov resonance at ω1 = 90◦. The
maxima of the inner planet’s eccentricity at this stage are approximately constant,
while the minima become higher and higher. This phenomenon, accompanied
by a gradual decrease in the mutual inclination, is a consequence of the loss of
angular momentum. Once the inclination becomes too low, the system leaves
the resonance. The escape from resonance is marked by a further increase in the
eccentricity and a steep decrease in the inclination: the system is now far away
from the region relevant to Kozai-Lidov dynamics. It is subjected to non-resonant
secular perturbation and tides.

In the second stage of evolution, the system undergoes rapid tidal circularisa-
tion and migration to the host star. The inner planet’s semi–major axis decreases
to less than 50% of its initial value. As we have noted in Figure 5.6, the argument
of periapsis now recedes and the rate of its recession increases with decreasing
eccentricity. The eccentricity decay also affects the planet’s spin rate. While the
millions of years spent on the eccentric orbit locked the planet’s spin state to
the 2 : 1 resonance, the decrease in the eccentricity below e1 = 0.2 despins it
first to the 3 : 2, which is later lost in favour of the synchronous rotation6 (at
e1 = 0.05). The despinning marks a transition to the third stage of the orbital
evolution. A planet locked in the synchronous rotation dissipates much less energy
and, therefore, the tidal circularisation becomes very gradual. The sudden change
in the dissipation is also visible in the evolution of the semi–major axis and it
translates to the apsidal motion as well. Upon the despinning, the argument of
periapsis begins to precess at a decreased rate. The system slowly tends to a final,
stationary state at zero eccentricity.

Moving on to the model with ongoing thermal evolution (Figure 5.8), we
may notice a surprising difference between the cases with different distance of
the perturber. While the a2 = 1 AU and a2 = 10 AU panels correspond to the
expected conclusion that thermal evolution and formation of a magma ocean leads
to a tidal shutdown, the a2 = 5 AU panel seems to negate this expectation. The
orbit in this case undergoes full tidal circularisation in ∼ 4 Gyr. The first hint of
an explanation can be obtained from comparing Figure 5.8 with Figure 5.6: note
that even in the case without thermal evolution, the orbital circularisation on the
middle panel proceeds on a considerably shorter timescale than in the other cases.
To shed light on this difference, Figure 5.9 shows the evolution of tidal heating over

6Since we are studying the evolution of the same model planet as in Chapter 3, the stability
of individual spin states—and the corresponding tidal heating—can also be compared with
Figure 3.6. Note, however, that Figure 3.6 depicts the highest stable spin state attained by a
planet despinning from θ̇/n = 5.6 at a fixed orbital eccentricity. In the present example, the
planet despins from its initial spin state at a time when the eccentricity is close to 0 and its
later spinning–up is a consequence of the increase in the eccentricity and destabilisation of the
lower–order resonance. In other words, the higher–order spin–orbit resonances are now reached
“from below”. Therefore, even though the actual eccentricity may enable much higher stable
spin states, the planet spins up only to the lowest stable spin state.
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Figure 5.7: Orbital evolution of the model planet subjected to tides and third–body
perturbation by a perturber at a2 = 5 AU and i1 = 50◦. Model with non–evolving
interior and reference mantle viscosity η0 = 1019 Pa s (as on the middle panel of
Figure 5.6). The individual panels illustrate, from top to bottom, the evolution of
the semi–major axis, the orbital eccentricity and spin–orbit ratio (black line), the
inclination, and the argument of periapsis.
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Figure 5.8: As in Figure 5.6 (i1 = 50◦), but for evolving interior.

a timescale relevant to each individual case. As the eccentricity in the a2 = 1 AU
case oscillates with a large amplitude and the minima are below e1 = 0.1, the tidal
dissipation is not efficient enough to overcome the effect of the partial melting
(after ∼ 250 kyr) and the tidally–induced evolution is effectively stopped. On the
other hand, in the a2 = 5 AU case, both the maxima and minima of eccentricity
are not only higher but also maintained for a longer period of time (note the
different timescales of the individual panels). Therefore, the tidal dissipation in
the solid part of the planet is still efficient enough to induce considerable tidal
evolution even after the formation of a magma ocean. Finally, in the a2 = 10 AU
case, the maxima of eccentricity are maintained for a long period of time, but
they are few orders of magnitude lower than in the previous two cases. Although
the tidal evolution is still more efficient than in the a2 = 1 AU case, it cannot
compete with the a2 = 5 AU case in the rate of orbital circularisation.

Another interesting phenomenon illustrated on the middle panel of Figure
5.8 is a phase shift in the e1–i1–ω1 oscillations, compared to the standard Kozai–
Lidov mechanism without tides (Figure 5.1). While in the standard case, the
maxima of the eccentricity (and the minima of the inclination) are reached at the
same time when ω1 goes through 90◦ or 270◦, in the system with tidally evolving
semi–molten planet, the same is true for ω1 = 0◦ or ω1 = 180◦. Furthermore, the
maxima of eccentricity are higher (and the corresponding minima of inclination
are lower) than in the standard case. The same “phase shift” can be also seen in
the a2 = 10 AU case with or without thermal evolution. In contrast to Figure 5.6,
the initial trajectory that would correspond to the evolution without tides in the
middle and right panels of Figure 5.6 is left much earlier. The escape from this
trajectory—and the change from apsidal precession to apsidal recession—occurs
at the same time as the formation of a subsurface magma ocean. Therefore,
the sudden change in trajectory results from the sudden change in the rate of
tidally-induced orbital evolution.
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Figure 5.9: Initial evolution of the eccentricity (red), the surface tidal heat flux
(blue), and the spin–orbit ratio (black) for the three considered semi–major axes
of the perturber. Model with evolving interior and mutual inclination i1 = 50◦

(as in Figure 5.8). Note the different timescales of the three cases.

5.5 Discussion

The combined calculation of the tidally– and externally–induced orbital evolution,
including possibly also the thermal evolution of the planet, is a very challenging
problem. To facilitate the implementation of this model, we have made several
assumptions that reduced the number of degrees of freedom present in the actual
physical system. The simplifications introduced to the thermal evolution part
have been already discussed in Chapter 4. Here, we mainly focus on the orbital
and rotational evolution.

As in the previous two chapters, the spin axis of the planet was assumed to be
always perpendicular to the orbital plane. Therefore, we implicitly neglected any
dissipation resulting from obliquity tides. In reality, the high inclination of the
model planet’s orbit with respect to the reference plane, and the vivid dynamics
of the system as well, would make the spin axis susceptible to large obliquity
excursions (e.g., Wang et al., 2019). Non–zero obliquity would not only directly
increase the total tidal dissipation, but it would also permit tidal locking of the
planet to different spin–orbit resonances (Boué et al., 2016). In consequence, the
inclusion of the obliquity evolution might have an effect on all the phenomena
linked to tidal synchronisation; namely, on the sharp change in the slope of a1
and e1 evolution and on the direction of apsidal motion depicted in Figure 5.7.

While we attempted to include the self–consistent evolution of the spin rate
into the model, the orbital evolution was still calculated using the two–cycle
scheme from Chapter 4. In this scheme, we assume that the timescale of spin
rate evolution is substantially shorter than the timescale of orbital evolution.
After the initial “despinning mode”, during which we calculate both the evolution
of θ̇ and the evolution of the orbital elements, the short cycle is being called
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in the “relaxation mode”, which finds the equilibrium spin state for the actual
orbital elements. The orbital elements in the relaxation mode are considered
constant and the finding of the corresponding stable spin state is achieved without
advancing in time. The time only runs in the despinning mode and in the long
cycle. Although this computational scheme is justifiable when the evolution is
solely due to tides, it might not be sufficient in the context of externally–induced
eccentricity oscillations. In particular, when the spin evolution timescale becomes
comparable to the period of oscillations (as in the a2 = 1 AU case), the alternation
of the spin rate between different resonances should be more gradual. Therefore,
in place of the “square wave” shown in the lower–left panel of Figure 5.9 for the
first ∼ 250 kyr, we should see a slightly smoother picture, possibly resembling a
sinusoidal wave.

Another couple of problems stems from the model planet’s vicinity to the
host star. At small semi–major axes and large orbital eccentricities, the apsidal
motion contains a contribution from the relativistic precession, which is given by
(Eggleton and Kiseleva-Eggleton, 2001)

dω1,GR

dt = 3Gm∗n1

a1c2(1 − e2
1) , (5.10)

where c is the speed of light. In our case, the rate of relativistic precession for
the most extreme eccentricities (e1 = 0.7, a1 = 0.04 AU) would be ∼ 10−12 s−1.
This value is comparable to the precession induced by the second planet in the
a2 = 1 AU case and few orders of magnitude higher than the precession rate in
a system with a more distant perturber. Therefore, the relativistic precession,
although not included in our study, should be considered as a dominant effect,
possibly quenching the Kozai–Lidov oscillations and further increasing the rate of
tidally–induced orbital evolution (see also Naoz et al., 2013; Petrovich, 2015).

An additional contribution to the apsidal motion would also result from the
tidal deformation of the host star and from the rotational flattening of both the
star and model planet. However, since the planet–star mass ratio is ∼ 10−5, the
tidal effect of the model planet on the host star can be neglected. The apsidal
motion induced by the host star’s flattening is, in our case, ∼ J2,∗ × 10−9 s−1,
where J2,∗ is the second gravitational moment of the host star (e.g., Murray and
Dermott, 1999). The gravitational moment depends on the stellar spin rate and
interior structure and its typical values range from ∼ 10−7 for Sun–like stars to
∼ 10−4 for rapid rotators (e.g., Spalding and Millholland, 2020, and references
therein). For very young stars, this value can be even higher, up to ∼ 10−2. Since
the spins of low–mass stars (below 0.35 m⊙) span a broad range of periods (Irwin
et al., 2011), we can conclude that the precession induced by stellar J2 might be
important in the case of rapidly rotating host star and distant perturber (see also
Spalding and Millholland, 2020). Likewise, the contribution of the model planet’s
rotational flattening to apsidal motion would be ∼ J2,p × 10−11 s−1, where J2,p is
the second gravitational moment of the planet. For the Earth, the gravitational
moment is ∼ 10−3 (Petit and Luzum, 2010); however, for a tidally locked planet,
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it can be expected to be lower. The effect of the planet’s rotational flattening is
thus potentially important only in the case of a distant perturber.

The close approaches to the host star during periastron passages may also
raise questions regarding the planet’s integrity under the extreme tidal forces
endured. The theoretical distance to the host star below which the planet begins
to disintegrate, is given by the Roche limit, defined as (e.g., Murray and Dermott,
1999)

rRoche =
(︃

9m∗

4πρ̄

)︃1/3
, (5.11)

with ρ̄ being the planet’s mean density. In our case, the Roche limit is ∼ 0.002 AU
and it is reached neither during periastron passages nor after the Kozai–Lidov
migration. Although the planet should not be subjected to disintegration, the
close approaches to the host star may lead to extreme tidal deformation, possibly
violating the assumption of linearity taken in the Darwin–Kaula theory. If this is
the case, the orbital evolution might be better described by an alternative approach,
for example by a mass–spring N–body model of the planet (e.g., Frouard et al.,
2016).

5.6 Concluding remarks
In this chapter, we have explored the combined effect of tides and of the Kozai–
Lidov mechanism, which occurs in systems with high mutual orbital inclinations
(> 39◦). Depending on the relative timescale of the two phenomena, the tidal
evolution may either contribute as a minor effect to the Kozai–Lidov dynamics,
or it can substantially alter the trajectory of the system, compared to a model
without tides. Furthermore, the tidal evolution of a planet subjected to external
eccentricity forcing leads to migration to the vicinity of the host star and to
more or less gradual decrease in the mutual inclination in the system. As in the
previous chapter, we have also seen the consequence of the model planet’s thermal
evolution. In a system with a close perturber (a2 = 1 AU), the formation of a
subsurface magma ocean results in a decrease in the tidal dissipation and in a
“tidal shutdown”. The variations in the planet’s orbital elements are then governed
almost exclusively by the third–body perturbation and, in the absence of other
mechanisms, the planet may remain in a secular resonance for billions of years.
In a system with a distant perturber, the feedback between the thermal evolution,
the tidal effects, and the eccentricity forcing becomes much more complex.

The end of this chapter marks a transition from the semi–analytical studies
of the thermal–orbital evolution of exoplanets to two additional independent
analyses. First, we will follow in the steps of Kaula (1961) and derive an analytical
expression for the tidal potential induced between individual planets in tightly–
packed systems. Then, we will present an alternative study of tidal torques and
tidal heating, using a fully numerical model. The relation of the following two
chapters to the previous work is very loose and they are only included for the
sake of completeness.



6. Planet–planet tides in tightly
packed systems

The dynamics of tightly packed systems, such as is the planetary system around
TRAPPIST–1 (Gillon et al., 2017) or the satellite systems around giant planets,
may be affected not only by tides raised by the host star—and by the third–body
perturbation—but also by tidal interaction between the individual secondaries.
The possible importance of planet–planet tides was first discussed by Lingam
and Loeb (2018), who pointed out at the astrobiological implications of this phe-
nomenon. According to their estimations, the tidal elevation on the TRAPPIST–1
planets, caused by planet–planet tides, should be comparable to the elevation
caused on the Earth by the tidal action of the Moon. Moreover, this effect would
be greatly enhanced during multiple conjunctions, since the TRAPPIST–1 system
constitutes a resonant chain. Were the planets’ surfaces partially covered by ocean,
the complex tidal modulation caused by the conjunctions would have interesting
consequences for abiogenesis and further evolution of life (Lingam and Loeb, 2018).

In a context that is more related to the topic of our work, the role of planet–
planet tides in the TRAPPIST–1 system was estimated by Wright (2018). Wright
(2018) argues that the tidal strain and the tidal heat rate produced in planet g
due to the action of planet f may, in fact, be even greater than the deformation
and dissipation induced by the tidal interaction with the host star. For the
other planets (except b), according to the estimates, the ratio between the strain
due to planet–planet tides and the star–planet tides is always higher than 10%;
the same ratio for the tidal dissipation being above 1%. A detailed study of
the planet–planet tidal loading in the TRAPPIST–1 system was conducted by
Hay and Matsuyama (2019). The authors discussed the role of viscosity and
orbital eccentricity on the relative effect of planet–planet tides (compared to
the star–planet tides) and reported lower values for the contribution to overall
heating than estimated by Wright (2018). Nevertheless, for planet g, they still
predicted that planet–planet tidal heating may participate by up to 20% to the
total tidal heating. In a recent study, focused on the Galilean satellites, Hay
et al. (2020) suggest that planet–planet (or moon–moon) tides may be particularly
important in ocean worlds, where they can excite resonant response and thus alter
the system’s dynamics.

The main purpose of this chapter is to provide the tidal potential due to
planet–planet loading, transformed to a planetocentric coordinate system and
expressed by means of Keplerian elements. Derivation of the tidal potential
(Section 6.1) follows the steps of Kaula (1961) and could be understood as a
Fourier decomposition. In Section 6.2, we further derive the tidal torque resulting
from planet–planet tides and potentially contributing to physical libration of the
planets. Finally, Section 6.3 includes an illustration of the problem.
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6.1 Derivation of the tidal potential
Consider a system consisting of a host star and two planets, denoted as planet
A and planet B. Each of the planets orbits the star on a Keplerian trajectory
described by a set of six elements {a, e, i, ω,Ω, σ}: the semi–major axis, the orbital
eccentricity, the inclination of the orbit to a reference plane, the argument of
the periapsis, the longitude of ascending node and the mean anomaly at epoch,
respectively. Although we have also derived a general form of the planet–planet
tidal potential, with arbitrary orientation of both orbits and arbitrary obliquities
of the planets’ spin axes, the complexity of the resulting formula is extremely
high. Here, for the sake of illustration, we restrict our attention to a simple yet
meaningful case of coplanar orbits and zero obliquity and we present the main
steps of the derivation.

Let A be the planet of our interest, whose deformation is to be studied, and
let B be the perturber. The instantaneous position of the two bodies in their
respective orbits is described by the radial distance from the host star, rA and
rB, and by the true anomaly, vA and vB. The angle between position vectors of
their periapses—or the relative longitude of B’s pericentre—will be denoted by
ϖ = (ωA − ωB) + (ΩA − ΩB). Our goal is to express the external potential sensed
at any point of A due to the presence of B as a function of the orbital elements
aA, aB, eA, eB, ϖ, the mean anomalies MA = nAt+ σA and MB = nBt+ σB, and
time t. Symbols nA and nB stand for the mean motions of the two planets.

We begin with expressing the external potential acting on infinitesimal volume
of planet A as a linear combination of spherical harmonics (Kaula, 1961)

U =
∞∑︂

l=0

1
rl+1

l∑︂
m=0

Plm(cosϑ)
(︂

Alm cosmφ+ Blm sinmφ
)︂
, (6.1)

where (r, ϑ, φ) are planetocentric equatorial coordinates of the perturber referred
to the centre of planet A, functions Plm(cosϑ) are the associated Legendre poly-
nomials of degree l and order m, which can be defined by the following formula
(e.g., Kaula, 1961; Novotný, 1998),

Plm(x) = (1 − x2) m
2

2ll!

l−m
2∑︂

t=0

(2l − 2t)!
(l −m− 2t)!

(︃
l

t

)︃
(−1)txl−m−2t , (6.2)

and Alm and Blm stand for a combination of physical parameters and algebraic
terms arising from the addition theorem,

Alm = (2 − δm0) (l −m)!
(l +m)! GmB(r′)l Plm(cosϑ′) cosmφ′ ,

Blm = (2 − δm0) (l −m)!
(l +m)! GmB(r′)l Plm(cosϑ′) sinmφ′ .

In the last two expressions, G is Newton’s gravitational constant, mB mass of
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the perturber and (r′, ϑ′, φ′) coordinates of the “observer” (i.e., of the perturbed
infinitesimal volume). Following Kaula (1961), we now rewrite the planetographic
longitude of the sub–perturber point in terms of three new angles: the initial
angular distance α0 of planet A’s zero meridian from the reference direction1,
the instantaneous angular distance α of planet B from the reference direction as
observed from planet A (the “right ascension”) and the sidereal time θ,

φ = α− α0 + α0 − θ . (6.3)

It follows that the goniometric functions in (6.1) can be rewritten as

cosmφ = cosm(α− α0) cosm(α0 − θ) − sinm(α− α0) sinm(α0 − θ) ,

sinmφ = sinm(α− α0) cosm(α0 − θ) + cosm(α− α0) sinm(α0 − θ)
(6.4)

and with the help of trigonometric identities (3) and (4) of Kaula (1961),

cosmx = ℜ

{︄
m∑︂

s=0

(︃
m

s

)︃
is cosm−s x sins x

}︄
,

sinmx = ℜ

{︄
m∑︂

s=0

(︃
m

s

)︃
is−1 cosm−s x sins x

}︄
,

(6.5)

we can write

Alm cosmφ+ Blm sinmφ = ℜ

{︄
m∑︂

s=0

(︃
m

s

)︃
is cosm−s(α− α0) sins(α− α0) ×

×
(︁
Alm − iBlm

)︁
exp

[︁
im(α0 − θ)

]︁}︄
, (6.6)

where ℜ symbolises the real part. As a consequence of the coplanarity of both
orbits and the zero obliquity of A’s spin axis, planet B is always located above a
point with colatitude ϑ = π

2 , while the longitude of sub–B point depends only on
the two true anomalies and the instantaneous mutual distances between the three
bodies (two planets and a star) in the system. The goniometric functions of planet
B’s position above A’s surface can be rewritten in the terms of asterocentric polar
coordinates as

cos(α− α0) = rA cos vA − rB cos(vB +ϖ)
r sinϑ

sin(α− α0) = rA sin vA − rB sin(vB +ϖ)
r sinϑ

cosϑ = 0 sinϑ = 1

(6.7)

1The quantity α0 is equal to (α+ γ) from Chapter 1. The reference direction is the direction
from the centre of planet A towards the host star in the periapsis.
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where r is the instantaneous distance between the two planets, or

r =
√︂
r2

A + r2
B − 2 rA rB cos(vB − vA +ϖ) . (6.8)

The only non–zero terms in the explicit definition of associated Legendre polyno-
mials (6.2) are those with t = l−m

2 , where t is an integer. This condition implies
that polynomials with odd (l −m) are identically zero,

Plm(cosϑ = 0) = 0 ⇐⇒ (l −m) odd , (6.9)

while polynomials with even (l −m) simplify to

Plm(cosϑ = 0) = 1
2l

(l +m)!
l!

(︃
l

l−m
2

)︃
(−1)

l−m
2 ⇐⇒ (l −m) even . (6.10)

In the next step, we further expand equation (6.6), which includes expressions
cosm−s(α − α0) and sins(α − α0). Applying binomial theorem on the first two
equations of (6.7) and setting sinϑ = 1, we obtain

cosm−s(α− α0) = 1
rm−s

m−s∑︂
c1=0

(−1)c1

(︃
m− s

c1

)︃
rm−s−c1

A rc1
B cosm−s−c1 vA cosc1(vB +ϖ)

sins(α− α0) = 1
rs

s∑︂
d1=0

(−1)d1

(︃
s

d1

)︃
rs−d1

A rd1
B sins−d1 vA sind1(vB +ϖ)

(6.11)

Product of the two terms expanded in (6.11) contains products of goniometric
functions with the same argument: vA or (vB +ϖ). This kind of expressions can
be rewritten with the help of another goniometric identity, namely equation (5) of
Kaula (1961),

sina x cosb x = (−i)a

2a+b

a∑︂
c=0

b∑︂
d=0

(︃
a

c

)︃(︃
b

d

)︃
(−1)c

[︁
cos(a+b−2c−2d)x+i sin(a+b−2c−2d)x

]︁
. (6.12)

The resulting products of goniometric functions are

cosc1(vB +ϖ) sind1(vB +ϖ) = (−i)d1

2c1+d1

d1∑︂
h1=0

c1∑︂
h2=0

(︃
d1

h1

)︃ (︃
c1

h2

)︃
×

× (−1)h1 exp
[︂
i (c1 + d1 − 2h1 − 2h2)(vB +ϖ)

]︂

cosm−s−c1 vA sins−d1 vA = (−i)s−d1

2m−c1−d1

s−d1∑︂
k1=0

m−s−c1∑︂
k2=0

(︃
s− d1

k1

)︃ (︃
m− s− c1

k2

)︃
×

× (−1)k1 exp
[︂
i (m− c1 − d1 − 2k1 − 2k2)vA

]︂
(6.13)
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Including both of these expansions into (6.6 and consequently into (6.1) leads us
to a preliminary form of the tidal potential,

Ulm = 1
rl+m+1

(l +m)!
2l+m l!

(︃
l

l−m
2

)︃
(−1)

l−m
2

m∑︂
s=0

(︃
m

s

)︃ m−s∑︂
c1=0

s∑︂
d1=0

(︃
m− s

c1

)︃ (︃
s

d1

)︃
rc1+d1

B rm−c1−d1
A ×

× (−1)c1+d1

d1∑︂
h1=0

c1∑︂
h2=0

(︃
d1

h1

)︃ (︃
c1

h2

)︃
(−1)h1

s−d1∑︂
k1=0

m−s−c1∑︂
k2=0

(︃
s− d1

k1

)︃ (︃
m− s− c1

k2

)︃
(−1)k1 ×

×

{︄
Alm cos

[︂
(c1 + d1 − 2h1 − 2h2)(vB +ϖ) + (m− c1 − d1 − 2k1 − 2k2)vA +m(α− θ)

]︂
+

+ Blm sin
[︂
(c1 + d1 − 2h1 − 2h2)(vB +ϖ) + (m− c1 − d1 − 2k1 − 2k2)vA +m(α− θ)

]︂}︄
.

(6.14)

In the following, we intent to simplify the above expression by changing the
indices:

c1 = p1 − d1 , p1 ∈ [0,m] ,

h2 = p2 − h1 , p2 ∈ [0, p1] ,

k2 = p3 − k1 , p3 ∈ [0,m− p1] .

(6.15)

Together with setting the limits for the new indices p1, p2 and p3, we shall also
update the limits for the old indices d1, h1 and k1, because some combinations of
the new and the old indices result in zero binomial coefficients in (6.14). Updated
intervals of the old indices’ values are

max(0, p1 −m+ s) ≤ d1 ≤ min(s, p1) ,

max(0, p2 − p1 + d1) ≤ h1 ≤ min(d1, p2) ,

max(0, p3 + p1 −m+ s− d1) ≤ k1 ≤ min(s− d1, p3) .

(6.16)

Up to now, we have succeeded in rewriting the planetographic longitude and
latitude of the sub–perturber point in terms of the desired variables related to
the instantaneous position of both planets and the orientation of planet A. The
last term to be transformed is the mutual distance between the two bodies r,
introduced by equation (6.8). Specifically, we are seeking a serie expansion of
the function r−λ, which is equivalent to the generating function of Gegenbauer
polynomials (e.g., Reimer, 2003),

1(︁√
1 + t2 − 2xt

)︁λ
=

∞∑︂
n=0

tn C( λ
2 )

n (x) (6.17)
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with λ ∈ R, λ > −1 and λ ̸= 0. Gegenbauer polynomials are defined as

C( λ
2 )

n (x) =
[ n

2 ]∑︂
u=0

(−1)u Γ
(︁
n− u+ λ

2
)︁

Γ
(︁

λ
2
)︁
u!(n− 2u)!

(2x)n−2u . (6.18)

Applying expansions (6.17) and (6.18) to our case, we obtain the following equality

1
rl+m+1 = 1

rl+m+1
>

∞∑︂
n=0

(︃
r<

r>

)︃n [ n
2 ]∑︂

u=0
(−1)u Γ

(︁
n− u+ l+m+1

2
)︁

Γ
(︁

l+m+1
2

)︁
u!(n− 2u)!

[︁
2 cos(vB − vA +ϖ)

]︁n−2u
,

(6.19)

where r> and r< indicate the larger and the smaller of the two instantaneous
distances between each planet and the host star. Once again, we apply the
trigonometric identity (6.12) on the function

[︂
cos(vB − vA +ϖ)

]︂n−2u
and obtain

the final expansion of (6.19),

1
rl+m+1 = 1

rl+m+1
>

∞∑︂
n=0

(︃
r<

r>

)︃n [ n
2 ]∑︂

u=0
(−1)u Γ

(︁
n− u+ l+m+1

2
)︁

Γ
(︁

l+m+1
2

)︁
u!(n− 2u)!

×

×
n−2u∑︂
j=0

(︃
n− 2u
j

)︃
exp

[︂
i (n− 2u− 2j)(vB − vA +ϖ)

]︂
.

(6.20)

Similarly to the previous expansion, it is convenient to introduce a new index, p4,
and to update the limits for the summation over u:

j = p4 − u , p4 ∈ [0, n] ,

0 ≤ u ≤ min
(︂[︂n

2

]︂
, p4, n− p4

)︂
.

(6.21)

Finally, we insert (6.20) into the preliminary form of the tidal potential (6.14) and
gather all algebraic prefactors into an analogy of Kaula’s functions of inclination,
F0

lmnp̄, where the superscript 0 indicates that we are in the limit of coplanar orbits
and zero obliquities and p̄ stands for the multiindex {p1, p2, p3, p4}. The tidal
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potential can then be rewritten as

Ulm =
∞∑︂

n=0

m∑︂
p1=0

m−p1∑︂
p2=0

p1∑︂
p3=0

n∑︂
p4=0

rp1
B rm−p1

A

rl+m+1
>

(︃
r<

r>

)︃n

F0
lmnp̄ ×

×

[︄{︃
Alm

−Blm

}︃l−m even

l−m odd
cos
[︂
(m− p1 − 2p3 − n+ 2p4)vA + (p1 − 2p2 + n− 2p4)(vB +ϖ) +m(α− θ)

]︂
+

+
{︃

Blm

Alm

}︃l−m even

l−m odd
sin
[︂
(m− p1 − 2p3 − n+ 2p4)vA + (p1 − 2p2 + n− 2p4)(vB +ϖ) +m(α− θ)

]︂]︄
(6.22)

with

F0
lmnp̄ = 1

2l+m

(l +m)!
l!

(︃
l

l−m
2

)︃
(−1)

l−m
2

m∑︂
s=0

(︃
m

s

)︃∑︂
d1

(︃
m− s

p1 − d1

)︃(︃
s

d1

)︃
(−1)p1 ×

×
∑︂
h1

∑︂
k1

(−1)h1+k1

(︃
d1

h1

)︃(︃
p1 − d1

p2 − h1

)︃(︃
s− d1

k1

)︃(︃
m− s− p1 + d1

p3 − k1

)︃
×

×
∑︂

u

(−1)u Γ
(︁
n− u+ l+m+1

2
)︁

Γ
(︁

l+m+1
2

)︁
u! (n− 2u)!

(︃
n− 2u
p4 − u

)︃
(6.23)

and limits of summation over d1, h1, k1 and u given by (6.16) and (6.21), respec-
tively. We also note that the above expression holds only for (l −m) even, as the
terms Ulm for odd (l −m) equal zero.

Equation (6.22) can be readily used for the computation of planet–planet tidal
potential in the case of circular orbits. For general eccentric orbits, we need to
expand the instantaneous distances of both planets from the host star and the true
anomalies into series containing the respective semi–major axes ai and the mean
anomalies Mi. Let Xb,c

k denote Hansen’s coefficients (e.g., Murray and Dermott,
1999). Then, (︃

ri

ai

)︃b

eicvi =
∞∑︂

k=−∞

Xb,c
k (ei)eikMi . (6.24)

Here, the Hansen’s coefficients play the role of Kaula’s short-period functions
of eccentricity Glpq(e). In order to assign correct values to the exponent b, it is
necessary to distinguish two particular cases. The instantaneous distance of planet
B from the host star is either always larger than the distance of planet A,

aB > aA
1 + eA

1 − eB
, (6.25)

or it is always smaller, hence

aA > aB
1 + eB

1 − eA
. (6.26)
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In the first case, we may substitute

bA = m+ n− p1 bB = −m− n+ p1 − l − 1

and in the second case

bA = −n− p1 − l − 1 bB = n+ p1 .

The other two indices are

cA = m− p1 − 2p3 − n+ 2p4 cB = p1 − 2p2 + n− 2p4

kA = m− p1 − 2p3 − n+ 2p4 + q1 kB = p1 − 2p2 + n− 2p4 + q2 .

Introducing functions of eccentricity GA
lmnp̄q̄(eA) = XbA,cA

kA
(eA) and GB

lmnp̄q̄(eB) =
XbB ,cB

kB
(eB), we may write down the final form of the tidal potential due to

planet–planet tides as

Ulm =
∞∑︂

n=0

m∑︂
p1=0

m−p1∑︂
p2=0

p1∑︂
p3=0

n∑︂
p4=0

∞∑︂
q1=−∞

∞∑︂
q2=−∞

1
al+1

>

(︃
a<

a>

)︃ϱ

F0
lmnp̄ GA

lmnp̄q̄(eA) GB
lmnp̄q̄(eB)×

×

[︄{︃
Alm

−Blm

}︃l−m even

l−m odd
cos
[︂
(m− p1 − 2p3 − n+ 2p4 + q1)MA + (p1 − 2p2 + n− 2p4 + q2)MB+

+(p1 − 2p2 + n− 2p4)ϖ +m(α− θ)
]︂

+

+
{︃

Blm

Alm

}︃l−m even

l−m odd
sin
[︂
(m− p1 − 2p3 − n+ 2p4 + q1)MA + (p1 − 2p2 + n− 2p4 + q2)MB+

+(p1 − 2p2 + n− 2p4)ϖ +m(α− θ)
]︂]︄

(6.27)

with the algebraic prefactors F0
lmnp̄ given by (6.23). The exponent ϱ depends on

geometry of the two orbits. If A is the inner planet, perturbed by outer B, then
ϱ = m+ n− p1. In the opposite case of outer A, we have ϱ = n+ p1.

6.2 Tidal torque
Equation (6.27) presents harmonic expansion of the tidal potential acting on
infinitesimal volume of planet A due to the presence of planet B. As a consequence
of nonhomogeneity of the tidal potential, planet A deforms and its departure
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from a perfectly spherical shape gives rise to disturbing potential δU , whose value
exterior to the body reads as (Kaula, 1964)

δUB
lmnp̄q̄(r′) =

(︃
RA

r′

)︃l+1
kl(ωlmnp̄q̄)

[︂
Ulmnp̄q̄(RA)

]︂
lag

= kl(ωlmnp̄q̄) R
2l+1
A

(r′)l+1 B
B
lm CB

lmnp̄q̄ Plm(cosϑ′)
{︃

cos
sin

}︃l−m even

l−m odd

[︂
νlmnpq − εlmnpq −m(φ′ + θ)

]︂
(6.28)

where the subscript “lag” reminds us that in order to compute the disturbing
potential of non–elastic body at time t, we need to express the tidal potential
at time t− ∆tlmnp̄q̄, where ∆tlmnp̄q̄ = εlmnp̄q̄/ωlmnp̄q̄ is a mode–specific tidal time
lag. Parameters kl and εlmnp̄q̄ are, respectively, the tidal Love number and the
tidal phase lag: two quantities, whose magnitude and frequency dependence
characterises the internal structure and the rheology of the planet. In (6.28), we
also introduced the traditional notation for the non–rotational part of signed tidal
frequency,

νlmnp̄q̄ = mα+ (m− p1 − 2p3 − n+ 2p4 + q1)MA + (p1 − 2p2 + n− 2p4 + q2)MB+

+ (p1 − 2p2 + n− 2p4)ϖ ,
(6.29)

and the two prefactors,

BB
lm = GmB

(l −m)!
(l +m)! (2 − δm0) (6.30)

CB
lmnp̄q̄ = 1

al+1
>

(︃
a<

a>

)︃ϱ

F0
lmnp̄ GA

lmnp̄q̄(eA) GB
lmnp̄q̄(eB) (6.31)

Planet A is also deformed by its tidal interaction with the host star, in which case
we express the disturbing potential as

δU∗
lm(r′) =

l∑︂
p=0

∞∑︂
q=−∞

kl(ωlmpq) R
2l+1
A

(r′)l+1 B
∗
lm C∗

lmpq Plm(cosϑ′) ×

×
{︃

cos
sin

}︃l−m even

l−m odd

[︂
νlmpq − εlmpq −m(φ′ + θ)

]︂
(6.32)

with
νlmpq = mα+ (l − 2p+ q)MA + (l − 2p)ϖ , (6.33)

B∗
lm = Gm∗

(l −m)!
(l +m)! (2 − δm0) (6.34)
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and
C∗

lmpq = 1
al+1

A

Flmp(0) Glpq(eA) . (6.35)

where Flmp and Glpq are Kaula’s functions of inclination and eccentricity and m∗
is the stellar mass.

In the model system consisting of three bodies—the host star and the two
planets—we may think of four components to the tidal torque influencing planet
A’s spin rate. The leading component is obviously the torque raised by the host
star on the deformation induced by the star itself, which leads the planet either
into a spin–orbit resonance or toward pseudo–synchronisation. Second, there are
two “cross components”: planet B acting on the tidal bulge raised by the host
star, and vice versa. These two terms are presumably non–negligible only around
the mutual conjunctions of the two planets. Last, there is also a tiny component
due to planet B’s action on the deformation caused by the planet–planet tides.

The tidal torque acting on a planet with zero obliquity due to the host star
or due to another body in the same orbital plane is orthogonal to the planetary
equator. It induces changes in the spin rate (including physical libration) but has
no effect on the axial tilt. Each term Tlm of the torque’s harmonic expansion can
be computed as (Efroimsky and Williams, 2009)

Tlm = m′ ∂

∂θ

[︂
δUlm(r′)

]︂
, (6.36)

where m′ is mass of the spin–perturbing body located at r′.
On our way towards the derivation of all planetary contributions to the total

tidal torque, we will begin with the cross components. In order to express the
disturbing potential sensed at the instantaneous position of planet B due to the
deformation of planet A induced by stellar tides, we apply the harmonic expansion
derived in the previous section on the terms of (6.32) containing r′, ϑ′ and φ′.
This results in

δU∗
lm(r′)

⃓⃓⃓⃓
r′=r

=
l∑︂

h=0

∞∑︂
j=−∞

kl(ωlmhj)R2l+1
A B∗

lm C∗
lmhj ×

×
∑︂

n

∑︂
p̄

∑︂
q̄

CB
lmnp̄q̄ cos

[︂
(νlmhj −mθ) − (νlmnp̄q̄ −mθ̃) − εlmhj

]︂
, (6.37)

where θ̃ is the sidereal time with respect to the rotation of perturbed planet A.
Note that θ and θ̃ are essentially the same quantity and here (as well as in Kaula,
1964) they are labelled separately only for the sake of the following derivations.
Now, we may differentiate (6.37) with respect to θ̃, multiply the result by m′ = mB

and then set θ = θ̃. The general form of the additional tidal torque becomes

T ∗B
lm = −mB m

l∑︂
h=0

∞∑︂
j=−∞

kl(ωlmhj)R2l+1
A B∗

lm C∗
lmhj ×
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×
∑︂

n

∑︂
p̄

∑︂
q̄

CB
lmnp̄q̄ sin

[︂
νlmhj − νlmnp̄q̄ − εlmhj

]︂
. (6.38)

Equation (6.38) can be further split into a secular term, which affects the evolution
of planet A’s spin rate over hundreds of orbital periods, and a periodic term,
responsible for the physical libration. The secular term, which would remain
non–zero after averaging over the orbital periods of the two planets as well as over
the period of apsidal precession, is characterised by the condition νlmpq = νlmnp̄q̄,
that leads to four sub–conditions:

q2 = 0 ,

h = l

2 ,

j = m− 2p2 − 2p3 + q1 ,

p4 = n+ p1

2 − p2 .

(6.39)

Focusing only on the terms with l = 2 and inspecting the quantity C∗
lmhj in (6.38),

we see that the secular term of tidal torque contains

C∗
2m1j = 1

al+1
A

F2m1(0) G21j(eA) , j = m− 2p2 − 2p3 + q1 . (6.40)

However, according to Kaula (1964), the only nonzero functions of inclination
are those with indices {201} and {220}, where the former one, containing m = 0
and present in (6.40), does not contribute to the tidal torque. Similar derivation
can be performed for the torque raised by the host star on the tidal bulge due to
planet–planet tides. The cross components to the tidal torque are therefore only
periodic, with no secular part.

The remaining, planet–planet component can be derived from the disturbing
potential

δUB
lm(r′)

⃓⃓⃓⃓
r′=r

=
∑︂

n

∑︂
p̄

∑︂
q̄

kl(ωlmnp̄q̄)R2l+1
A BB

lm CB
lmnp̄q̄ ×

×
∑︂

w

∑︂
h̄

∑︂
j̄

CB
lmwh̄j̄

cos
[︂
(νlmnp̄q̄ −mθ) − (νlmwh̄j̄ −mθ̃) − εlmnp̄q̄

]︂
. (6.41)

in the same manner. Here, the multiindices h̄ and j̄ are defined similarly to p̄ and
q̄ as h̄ = {h1, h2, h3, h4} and j̄ = {j1, j2}. We obtain the additional tidal torque

T BB
lm = −mB m

∑︂
n

∑︂
p̄

∑︂
q̄

kl(ωlmnp̄q̄)R2l+1
A BB

lm CB
lmnp̄q̄ ×

×
∑︂

w

∑︂
h̄

∑︂
j̄

CB
lmwh̄j̄

sin
[︂
νlmnp̄q̄ − νlmwh̄j̄ − εlmnp̄q̄

]︂
, (6.42)
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whose secular term satisfies the following conditions

j2 = q2 ,

j1 = q1 + 2(h2 + h3 − p2 − p3) ,

h4 = p2 + p4 − h2 + h1 + w − p1 − n

2 .

(6.43)

In this case, the secular term is not necessarily zero and it may contribute to the
long–term evolution of planet A’s rotation.

6.3 Illustration: planet–planet tidal heating in
the TRAPPIST-1 system

Although it is, in principle, possible to calculate the heat rate generated by planet–
planet tides analytically, from the tidal potential given in equation (6.27) and using
either equation (2.43) or equation (2.44) from Chapter 2, the method is extremely
computationally challenging. The importance of planet–planet tides increases
greatly with decreasing relative distance between the two bodies. Unfortunately,
a direct consequence of this fact is a very high ratio between the semi–major axes
(a</a>) in the relevant cases and a need for series expansion to high degrees n
(see the example in Figure 6.1, calculated by the derived method). The most
challenging step in this procedure is the precise evaluation of the prefactor emerging
in the definition of Gegenbauer polynomials (equation (6.18)).

Given the limited applicability of the analytical formula for planet–planet tidal
heating, especially in comparison with the extreme complexity of such calculation,
we do not present results of the analytical method here. Nevertheless, to illustrate
the effect of planet–planet heating in the TRAPPIST–1 system (also studied
by Hay and Matsuyama, 2019), we implement the loading by a second planet
to the numerical model presented later in Chapter 7. The illustration given in
Figures 6.2 is calculated for the same2 model parameters as considered by Hay
and Matsuyama (2019) in the low–viscosity regime: the planets are considered
as homogeneous spheres governed by the Maxwell rheology, with average rigidity
µ = 50 GPa and average viscosity η = 1014 Pa s. The colour scale of the graph
corresponds to the logarithm of the average heat rate due to planet–planet tides,
compared to the heat generated by star–planet tides. Averaging in the numerical
model was performed over the last orbital period for the star–planet tides and
over the last conjunction period for the planet–planet tides.

The main feature that we may notice in Figures 6.2 is the relatively higher
importance of tidal heating induced by an inner perturber, than the dissipation
caused by an outer perturber. The relative effect of mutual tides between pairs of
neighbouring planets is comparable among the two bodies. As was also observed

2However, contrary to Hay and Matsuyama (2019), we also include the effect of orbital
eccentricity in planet–planet tidal loading.
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Figure 6.1: Tidal potential sensed by TRAPPIST–1 b due to the gravitational
action of planet c, as calculated by the derived method. The period of mutual
conjunctions is ∼ 2.65 orbital periods of the inner planet. Different colours
correspond to different cutoff values N of the index n in the expansion (6.27).
Note the artificial maxima at half the conjunction periods, emerging at lower–
degree expansions.

by Hay and Matsuyama (2019) and pointed out by Wright (2018), the greatest
role is played by planet–planet tides on planet g, especially due to the action of
planet f . Given the relatively low orbital eccentricity eg = 0.002, this result is
not unexpected. In concordance with the results of Hay and Matsuyama (2019),
the planet–planet tidal heating in this low–viscosity case is 19% of the heating
induced by the host star, and it may present relatively important contribution to
the planet’s heat budget (∼ 1 TW).

6.4 Concluding remarks
The tidal interaction between neighbouring planets in tightly packed systems may
play an important, yet not fully understood role in the dynamics of planetary
interiors and surface or subsurface oceans. Specifically, in the case of subsurface
oceans, the tidal response may depend strongly on the loading frequencies (Hay
et al., 2020). In this chapter, we tried to find a link between the traditional Darwin–
Kaula expansion for the tidal potential (Kaula, 1961, 1964, or Section 1.3.2) and
an accordingly derived expansion for the planet–planet tidal potential. On the one
hand, such a derivation provides an insight into the parameter dependencies of the
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Figure 6.2: The magnitude of planet–planet tidal heating in the TRAPPIST–1
planets, compared to the tidal heating induced by the host star. Mantle viscosity
of all planets was set to 1014 Pa s. Tidal heating was calculated by the numerical
model Andy, assuming Maxwell rheology (see Chapter 7).

potential and provides us with the coefficients and frequencies of the Fourier modes
without having to calculate the Fourier transform numerically. On the other hand,
the resulting expression for the tidal potential (equation (6.27)) as well as for the
algebraic prefactors F0

lmnp̄ (equation (6.23)) is extremely complex—even in the
simple, coplanar case considered here. The same is also true for the planet–planet
tidal torque, that can potentially contribute to the planet’s physical libration.
Therefore, in most practical cases, it is more convenient to prefer numerical models
of these phenomena.



7. Tidal effects in differentiated
viscoelastic bodies: a numerical
approach

The entire chapter was adapted from Walterová and Běhounková (2017). Notation
introduced in the text may differ from the convention used in the rest of the work.

In the previous chapters, we have studied the thermal and orbital evolution of
viscoelastic planets using analytical or semi–analytical methods. Now, in the last
chapter of this work, we will discuss an alternative approach, making use of the
spherical harmonic decomposition and of the finite differences for the numerical
calculation of the deformations and tidal heating in a viscoelastic continuum. As
was the case with Chapter 6, the present study also constitutes an independent
piece of work and it should be understood as an alternative—rather than a
complement—to the previously discussed analytical approach.

The importance of analytical models lies in their ability to effectively pa-
rameterise and explore the main features of tidal evolution. Appropriate pa-
rameterisation enables utilisation of effective and precise time schemes for the
computation of long–term processes, including the secular variations in orbital
parameters. Most analytical models of tides are, however, describing the planet
as a homogeneous or only radially–stratified sphere. If we are interested in the
effects of possibly laterally–stratified internal structure on the tidal deformation
and internal heating, it is necessary to proceed to numerical simulations. As a
recent example, Frouard et al. (2016) presented a general numerical model of tides
on viscoelastic bodies described by the Kelvin–Voigt rheology. Their approach is
based on an N–body simulation of gravitating particles connected together in a
spring–dashpod network, and therefore represents an alternative to our method.

In this chapter, we introduce a numerical model enabling the computation of
the tidal torque and the tidal heating inside of a possibly nonhomogeneous mantle
of rocky exoplanets. The model of a viscoelastic mantle governed by either the
Maxwell or the Andrade rheology is described in Section 7.1, with further details
on the numerical scheme provided in Appendix D.1. Section 7.2 is dedicated to
the parameter dependence of tidal torque, with qualitative comparison of our
results for the Maxwell model with the work of Correia et al. (2014). In Section
7.3 we present a parameter study of tidal heating, showing a substantial difference
between the predictions of both rheological models (the Maxwell and the Andrade
model). Finally, the two traditional tidal parameters—the Love number k and
the phase lag ε—are discussed in Section 7.4.
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7.1 Model
The model planet is a spherical body composed of a solid inner core, liquid outer
core and a viscoelastic mantle, described either by the Maxwell or the Andrade
rheology. We compute the deformation and stress field solely inside of the mantle,
which is assumed to be incompressible and hydrostatically prestressed, and neglect
the deformations and dissipation in the core, as well as the core–mantle friction.
For the sake of simplicity, we also neglect the tides raised by the planet on the
host star.

If the deformations are small compared to the overall size of the body, we may
use the linear approximation and write the Eulerian governing equations, repre-
senting the mass conservation and the linear momentum conservation (neglecting
inertia), as (Tobie et al., 2008; Běhounková et al., 2015; Souček et al., 2016)

∇ · u = 0 , (7.1)

−∇π + ∇ · D = −ρM f , (7.2)

with a constitutive equation

2ε = 1
µ

D +
∫︂ t

0

1
η

D(t′) dt′ +
∫︂ t

0
µα−1

(︃
t− t′

ζη

)︃α

Ḋ(t′) dt′ (7.3)

and linearised boundary conditions expressing the force equillibrium on the unde-
formed boundaries (e.g. Souček et al., 2016)

(−πI + D) · er + ur ρM gs er = 0 on the upper boundary (7.4)

and

(−πI + D) · er − ur (ρC − ρM) gb er = −ρC U er (7.5)

on the lower boundary.

Here, u is the displacement vector, ε = 1
2(∇u + ∇T u) stands for the incremental

strain tensor, π and D are the isotropic and the deviatoric parts of the incremental
Cauchy stress tensor, f = ∇U represents the body force per unit mass, η and
µ are the viscosity and the rigidity (shear modulus) of the mantle, respectively,
and α and ζ are empirically given parameters of the Andrade rheology. For the
boundary conditions, ρC is the density of the liquid outer core, ρM denotes the
density of the mantle, gs and gb are the mean gravity accelerations on the upper
and the lower boundary, I is the identity matrix, er is the radial unit vector and
ur = u · er represents the radial component of the displacement.

Equation (7.3) in general holds for the Andrade rheology: its first term
represents the instantaneous elastic reaction, while the other two terms account
for the viscous and the anelastic creep, respectively. A constitutive equation for
the linear Maxwell rheology can be obtained by excluding the last term, that is

2ε = 1
µ

D +
∫︂ t

0

1
η

D(t′) dt′ . (7.6)
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The body force f (and accordingly the potential U) in our model consists of
three parts: the tidal force ft due to the host star, the centrifugal force fcf due to
planet rotation and the self–gravity fself induced by the tidal deformation. First,
we will focus on the tidal force. The model planet with mass m orbits a star with
mass m∗ and its orbit is described by the semi–major axis a and the eccentricity
e. The star is considered spherical and the planet’s obliquity is, for the sake of
simplicity, assumed to be zero. At each instant of time, the tidal force acting on a
unit volume with planetocentric coordinates r′ = (r′, ϑ′, φ′) due to a disturbing
body at coordinates r = (r, ϑ∗, φ∗) can be written as

ft(r′, ϑ′, φ′) =
∑︂
lm

f l−1
lm (r′)Yl−1

lm (ϑ′, φ′) , (7.7)

where Yl−1
lm are vector spherical harmonics (see Appendix D.2 or e.g. Varshalovich

et al., 1988) and coefficients f l−1
lm are given by

f l−1
lm (r′) = Gm∗

r2 4π
√︃

l

2l + 1

(︂r′

r

)︂l−1
Ȳ lm(ϑ∗, φ∗) , (7.8)

with G being Newton’s gravitational constant and bar above Ylm symbolising
complex conjugation. The instantaneous distance of the planet from the star is
r = a(1−e cosE(t)) and the eccentric anomaly E(t) is obtained from the iteratively
solved Kepler equation. Similarly, the tidal potential can be decomposed into
spherical harmonics as

Ut(r′, ϑ′, φ′) =
∑︂
lm

vlm(r′)Ylm(ϑ′, φ′) (7.9)

with coefficients
vlm(r′) = Gm∗

r

4π
2l + 1

(︃
r′

r

)︃l

Ȳ lm(ϑ∗, φ∗) . (7.10)

The centrifugal force and the centrifugal potential depend on the rotational
frequency of the planet Ωrot through

fcf(r′, ϑ′, φ′) =
√

16π
3 Ω2

rotr
′ Y1

00(ϑ′, φ′) +
√

8π
3 Ω2

rotr
′ Y1

20(ϑ′, φ′) (7.11)

and
Ucf(r′, ϑ′, φ′) = −

√︃
4π
9 Ω2

rot(r′)2 Y00(ϑ′, φ′) +
√︃

4π
45 Ω2

rot(r′)2 Y20(ϑ′, φ′). (7.12)

Finally, using the Helmert’s method of condensation (Helmert, 1884), the effect of
self–gravity inside of the homogeneous mantle is introduced by

fself(r′, ϑ′, φ′) = 4πG
∑︂
lm

{︃√︃
l + 1
2l + 1

(︁
ρC − ρM

)︁
(ub

r )lm

(︃
rb

r′

)︃l+2
Yl+1

lm (ϑ′, φ′) +

+
√︃

l

2l + 1 ρM (us
r)lm

(︃
r′

rs

)︃l−1
Yl−1

lm (ϑ′, φ′)
}︃
, (7.13)
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where indices "b" and "s" denote the lower and the upper boundary, respectively,
and (ur)lm are spherical harmonic coefficients of the radial component of displace-
ment, related to the coefficients of displacement vector un

lm at any radius r′ by

(ur)lm =
√︃

l

2l + 1 ul−1
lm (r′) −

√︃
l + 1
2l + 1 ul+1

lm (r′) . (7.14)

For the corresponding additional potential, we have

Uself(r′, ϑ′, φ′) = (7.15)

=4πG
∑︂
lm

1
2l + 1

{︃
rb
(︁
ρC − ρM

)︁
(ub

r )lm

(︃
rb

r′

)︃l+1
+ rs ρM (us

r)lm

(︃
r′

rs

)︃l+1}︃
Ylm(ϑ′, φ′) .

The set of partial differential equations (7.1)—(7.3) is solved directly in the
time domain. We use an extension of the tool described and employed in Tobie
et al. (2008) and Běhounková et al. (2015) and implemented by prof. Ondřej
Čadek. For the spatial discretisation, we use a spherical harmonic decomposition
in the lateral directions and a staggered finite difference scheme in the radial
direction. The mantle is decomposed into 95 layers and the maximum degree of
spherical harmonic decomposition is set to l = 5. For an evaluation of the tidal
torque alone it would be sufficient to assume l = 2; the numerical computation
of the tidal heating, however, requires higher values of l. In order to include
the self–gravity term correctly, we calculate the memory terms of constitutive
equation (7.3) or (7.6), and thus the coefficients of ur as well, iteratively in each
time step. The time scheme is described in Appendix D.1. Depending on the
considered viscosity, we evaluate the tidal torque and the tidal dissipation hundred
or thousand times per orbit. Typical timestep for the model planet described in
Table 7.1 is therefore ∆t = 10−3 or ∆t = 10−4 years.

Additionally, before we start the computation itself, it is necessary to choose
appropriate set of initial conditions. The time integration is then performed from
these conditions until a relaxed solution is found. We consider the solution as
relaxed when the changes in the average tidal dissipation or tidal torque over
one orbital period become negligible (see Běhounková et al., 2010). Naturally,
our desire is to choose such set of initial strains and stresses, from which the
relaxed solution is found as fast as possible. We seek the suitable initial conditions
by analyzing the tidal potential. Each mode of the tidal potential consists of
two parts: the first, which is constant in time, and the second, with short–term
or long–term variations in the orbit (compare with the Fourier series of Kaula,
1964). Under our assumption of zero obliquity, the zonal modes (m = 0) always
involve a nonzero constant term due to the gravitational field of the host star
and the centrifugal acceleration caused by the planetary rotation. The sectoral
modes (m = l), on the other hand, are generally strictly time dependent and their
constant term only becomes nonzero in the spin–orbit resonances.

For this reason and in order to improve the rate of convergence of the solution,
two kinds of initial conditions were used for our computations. Outside of the
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spin-orbit resonances we assume that the coefficients of sectoral modes for both
the deformation and the internal stresses are initially zero. When considering
a tidally locked planet or the zonal modes, however, we first precompute a fast
converging “fluid limit”, i.e. the relaxed shape and stresses corresponding to a
low–viscosity body influenced solely by the constant part of the tidal potential.
The computation for the actual viscosity then proceeds from these results, which
naturally include nonspherical shape of the body—a hydrostatical shape acquired
under the constant part of the potential.

With the stress and strain tensors converged and given, we may proceed to
the computation of tidal heating and tidal torque. The average rate of tidal
dissipation over a time interval T is computed as

P = 1
T

∫︂
V

∫︂ t+T

t

ε̇(τ) : D(τ) dτ dV , (7.16)

where V represents the volume of the planetary mantle and ε̇ is the strain rate
tensor. Only in a special case of the Maxwell rheology we may compute the
dissipation rate directly as (see e.g. Hanyk et al., 2005)

P = 1
T

∫︂
V

∫︂ t+T

t

D(τ) : D(τ)
2η dτ dV . (7.17)

To compare the shape of our numerical results with a semi–analytical solution,
we re–derive a formula for the tidal heating of a homogeneous spherical body based
on the equations (10)—(12) of Segatz et al. (1988). Discretising the time integral
and using the Parseval’s theorem for the discrete Fourier transform (DFT), one
gets

P = 5
8π2

norb∆t
G rs N

∫︂
S

N−1∑︂
i=0

Im{k̄2(ωi)}
ωi

|ξi|2 dS , (7.18)

where norb is the mean motion, ωi are tidal frequencies, k̄2 is a frequency–dependent
complex Love number of degree 2 and ξi are DFT coefficients of ∂Ut

∂t
. Time

derivatives of the tidal potential are computed numerically with a timestep ∆t at
N points in the orbit. The complex Love number is defined e.g. in Castillo-Rogez
et al. (2011) in correspondence with the static Love number as

k̄2(ω) = 3
2

J̄(ω)
J̄(ω) + 57

8πGρ2r2
s

, (7.19)

where ρ is the mean density of the planet and J̄(ω) signifies the complex compliance.
Relation (7.19) is valid as long as we remain in the linear approximation. The
compliance of a material described by the Andrade rheology can be expressed as
(Castillo-Rogez et al., 2011)

J̄(ω) = 1
µ

− i
ηω

+ 1
µ(iζτMω)α

Γ(1 + α) , (7.20)
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with τM = η
µ

representing the Maxwell time and Γ(x) being the Gamma function.
The compliance of the Maxwell model is obtained by dropping the last term in
the expression.

In order to assess the tidal torque acting on the model planet, we first need to
evaluate the disturbing force due to the tidal bulge, i.e. due to the deformation of
both upper and lower boundary. At the position of the host star, the disturbing
force is given by

fdist(r, ϑ∗, φ∗) =
∑︂
lm

[︃
ζb

lm

(︃
rb

r

)︃l+2
+ ζs

lm

(︃
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r

)︃l+2]︃
Yl+1

lm (ϑ∗, φ∗) , (7.21)

with coefficients
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The tidal torque acting on a unit mass of the planet due to the star at a distance
r is then

T = r × fdist . (7.23)

We apply the model on an Earth–size terrestrial planet orbiting a low–mass star
(see Table 7.1) and study the tidal effects as a function of the eccentricity, the
mantle viscosity, the spin-orbit ratio and the rheological model.

Table 7.1: Model parameters

Parameter Definition Value
a Semi-major axis 0.1 AU
e Eccentricity 0.0 to 0.5
m∗ Mass of the host star 0.1 m⊙
ρM Density of the mantle 5000 kg · m−3

ρC Density of the liquid outer core 9000 kg · m−3

ρI Density of the inner core 12000 kg · m−3

rs Planetary radius 6370 km
rb Radius of the core–mantle boundary 3890 km
rI Inner core radius 1200 km
µ Mantle rigidity 200 GPa
η Mantle viscosity 1014 to 1024 Pa s
α Parameter of the Andrade model 0.3
ζ Parameter of the Andrade model 1
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7.2 Tidal torque
Evolution of the planetary spin rate is driven by the tidal torque, given by the
equation (7.23). This torque causes the planet rotation to decelerate when negative
and to accelerate when positive. A long–term stability of the spin state requires
zero average tidal torque and a distinct shape of its dependence on the spin-orbit
ratio (see Figures 7.1 and 7.2): the function is above zero to the left from the
stable state and below zero to the right. We employ the numerical model to
compute the secular tidal torque acting on a deformed planetary body with a
highly eccentric orbit (e = 0.4). The choice of this particular eccentricity is
motivated by a qualitative comparison of our results with the analytical study of
Correia et al. (2014).

Figure 7.1 shows the frequency dependence of the average tidal torque for
a body described by the Maxwell rheology, Figure 7.2 is the average torque for
the Andrade rheology. Individual plots illustrate distinct rheological regimes of
the planet, given by the mantle viscosity and the orbital period, which is held
constant at Torb = 0.1 yrs. The two different sets of viscosities were chosen in order
to evaluate the tidal effects in a broad range of realistic terrestrial exoplanets.
While the tidal viscosity in the Andrade model could be identified with the same
parameter in the mantle convection problems, the viscosity in the Maxwell model
should be understood rather as an effective value for the tidal deformation, which
correctly predicts the tidal heating in rocky bodies, mimicking the dissipation in
the Andrade model (Běhounková et al., 2010, 2013). The effective tidal viscosity
is introduced as a frequency–dependent quantity and in the case of terrestrial
planets loaded at high frequencies is up to few orders lower than the standard
viscosity. Here, we neglect its frequency dependence and consider it a parameter.

The first picture (upper left corner on both figures) represents the low–viscosity
regime (η = 1.4 × 1016 Pa s) with only one stable spin state. Such a system would
evolve toward pseudo–synchronisation, as predicted by the constant time lag
theories (Darwin, 1880; Alexander, 1973; Mignard, 1979; Ferraz-Mello et al., 2008),
with spin-orbit ratio given by Ω/n = 1 + 6e2 + O(e4). When we increase the
viscosity of the mantle, the shape of the function becomes more complex and
multiple stable spin states arise, associated with the spin-orbit resonances. This
pattern is consistent with predictions of rheologically–motivated analytical studies,
such as Ferraz-Mello (2013), Correia et al. (2014) and Ferraz-Mello (2015). Finally,
in a purely elastic case, the average tidal torque would be zero for every rotational
frequency.

7.3 Tidal heating
Conclusions of the previous section can be compared with the spin–orbit ratio
dependence of average tidal heat rate, depicted in Figures 7.3 and 7.4. For the
sake of consistency, we keep the high eccentricity of the orbit, i.e. e = 0.4,
constant orbital period, Torb = 0.1 yrs, and the same range of viscosities for
both models. The most striking feature of the figures is a significant difference
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Figure 7.1: Average tidal torque as a function of the spin–orbit ratio for six
different viscosities in the Maxwell rheological model. The orbital eccentricity was
set to e = 0.4 (cf. Correia et al., 2014).

between the magnitude of tidal heating in the Maxwell and the Andrade model at
high frequencies (high spin–orbit ratios). Specifically, the power produced in the
Andrade model increases with higher spin–orbit ratios and acquires values much
higher than observed around the synchronous rotation (Ω/n = 1). The overall
shape of the spin–orbit ratio dependence of tidal heating in the Andrade case
remains similar for all mantle viscosities.

Another distinction between the two models lies in the shape of local minima.
Similarly to the tidal torque with its sole stable spin state at low viscosity, there
is only one local minimum in the viscous regime (η = 1.4 × 1016 Pa s) and multiple
minima elsewhere, typically associated with low spin–orbit resonances. The local
minima of the Maxwell model get gradually deeper and narrower as we increase
the viscosity of the mantle and their depths differ, depending on the orbital
eccentricity (Figure 7.5). In the Andrade model, on the other hand, local minima
remain shallow and broad, disappearing eventually at high mantle viscosities
(η > 1.4 × 1019 Pa s). Further increase in viscosity (η = 1.4 × 1022 Pa s) leads the
planet close to the elastic regime with only one global minimum, similar to the
global minimum in viscous regime.

At this point we should note that the planet on eccentric orbit is tidally loaded
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Figure 7.2: Average tidal torque in the Andrade rheological model. The orbital
eccentricity was set to e = 0.4.

at a range of frequencies, and while it responds as an elastic body at one frequency,
it can still be far from elasticity at another frequency. The terms “elastic” or
“viscous” regime, which we use throughout this study, refer to the highest or the
lowest value of considered mantle viscosities (see Table 7.1). A purely elastic body
would, in reality, dissipate no energy, independently of the spin–orbit ratio.

A detailed picture of the tidal heating at low spin-orbit ratios (bounded by
the 1:1 and the 5:2 spin-orbit resonance) is presented in Figures 7.5 and 7.6. Here,
we compare the results for six orbital eccentricities ranging from e = 0 to e = 0.5
and three different viscosities in both rheological models: 1016, 1018 and 1020 Pa s
in the Maxwell model and 1016, 1020 and 1024 Pa s in the Andrade model. In the
viscous regime (η = 1016 Pa s) and at low spin–orbit ratios, the Andrade rheology
is well approximated by the Maxwell model and the results therefore coincide.
Here, we see that the position of the sole local minimum depends on the orbital
eccentricity—it tends to higher spin–orbit ratios with more eccentric orbit.

As was mentioned before, the multiple local minima of Maxwell model occur
around the spin–orbit resonances. The relative depths of these minima depend on
the orbital eccentricity, with the deepest minimum located at the 1:1 spin–orbit
resonance of a circular orbit. It is clear that the synchronously rotating, zero
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Figure 7.3: Average tidal heating of the model planet presented in Figure 7.1,
Maxwell model, e = 0.4.

eccentricity planet exhibits no tidal heating, independently on the viscosity, as it
remains locked in its sole stable spin state. Generally, the depth of the minima at
higher spin–orbit resonances (2:1, 5:2) increases with increasing eccentricity, while
the depth of the minima associated with lower resonances (1:1, 3:2) decreases.
The tidal heating computed for the Andrade model with higher viscosities follows
a functional dependence on the spin–orbit ratio that is very similar to the viscous
regime, including the position of the global minimum. The local minima remain
broad and shallow for each of the considered eccentricities.

7.4 Love numbers

The additional potential δU due to tidal distortions is related to the tide–raising
potential U via Love number k. In a static case, which is treated as fiducial in
the standard theories (Kaula, 1964; Mignard, 1979), the Love number of the l-th
mode is a real number, defined as

kl = δUl

Ul
, (7.24)
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Figure 7.4: Average tidal heating of the model planet presented in Figure 7.2,
Andrade model, e = 0.4.

where both potentials are evaluated at the surface of non–rotating planet. Each
Love number could be equipped with a phase lag or a time lag, mimicking the
overall lagging of the rotating physical body. Choice of a particular frequency de-
pendence (or independence) of the phase lag determines the rheology of the planet.

Here, we compute the Love numbers in the time domain as

klm(t) = δvlm(t)
vlm(t) = |klm(t)|e−iεlm(t) , (7.25)

with vlm(t) and δvlm(t) being the spherical harmonic coefficients of the overall
potential U and of the additional potential Uself , respectively, both evaluated at
the surface. The phase εlm(t) is an angle between the symmetry axes of the two
potentials in the time domain. When the order m is nonzero, the coefficients of
the potentials are complex, rendering a complex–valued klm(t) as well. In this
special case and considering loading of the mode (l,m) only on one frequency
(e.g. a nonsynchronously rotating planet on a circular orbit), the phase εlm(t)
coincides with the phase lag between the tidal and the additional potential, as
traditionally defined in the frequency domain (e.g. Kaula, 1964). To illustrate the
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Figure 7.5: Average tidal heating as a function of the spin–orbit ratio computed for
the Maxwell rheology. Comparison of tidal heat flow for three different viscosities
and six eccentricities.

Figure 7.6: Average tidal heating as a function of the spin–orbit ratio computed for
the Andrade rheology. Comparison of tidal heat flow for three different viscosities
and six eccentricities.

tidal deformation in the two rheological models considered here, we plot the Love
numbers k22(t) and k20(t) for two different orbital eccentricities and spin states.

Our first toy–model is a synchronously rotating planet on an eccentric orbit
with e = 0.4. We evaluate the quantities mentioned above, assuming that the
planet behaves either as a Maxwell body with effective viscosities between 1015

and 1018 Pa s or as an Andrade body with viscosities ranging from 1015 to 1024 Pa s.
Other parameters, including the rigidity of the mantle, are kept constant. Figure
7.7 shows time variations of the tidal phase lag ε22. The tidal deformation in a
viscous regime (η = 1015 Pa s) is properly described by a constant time lag model
(e.g. Darwin, 1880; Mignard, 1979; Correia and Laskar, 2010), which prescribes
the phase lag as a linear function of the loading frequency. The instantaneous
angular velocity of the disturbing body on the planet’s sky, in our case, is related
to the time derivative of the true anomaly v,

freq. = Ωrot − dv
dt , (7.26)
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Figure 7.7: Variations of the tidal phase lag ε22(t) as a function of the mantle
viscosity for a model with fixed orbital eccentricity e = 0.4. Dashed line indicates
planetographic longitude of substellar point.

and this gives the low–viscosity phase lag the shape of its time dependence (black
curve in Figure 7.7).

A characteristic feature also arises in the high–viscosity regime, where the
relaxation time gets long compared to the orbital period. Here, we initiate
the computations in a “fluid limit”. The “fluid” tidal bulge, corresponding to
the constant part of the tidal potential, virtually freezes at the zero longitude,
resulting in a periodically changing nonzero tidal lag (and nonzero instantaneous
tidal torque), which follows the geometric libration of the planet. The phase lag is
therefore zero, when the planet resides in the periapsis or apoapsis, and—if there
were no other components to the tidal bulge—would attain a maximum value of
approximately 2 arcsin e (that is ≈ 0.8 in our case, dashed line in Figure 7.7) at a
planet–star distance r = a 4

√︂
(1 − e2) (Dobrovolskis, 2007). Another, nonconstant

parts of the tidal potential excite the mantle on a variety of frequencies, resulting
in an overall tidal lag which differs from the prescribed value and which is here
plotted in tan colour.

Figure 7.8 presents the time variations of the magnitudes of the Love numbers
k20(t) and k22(t) for the Maxwell (left column) and the Andrade (right column)
rheology. Again, we may see that the time variations are small for the viscous
limit, when the planet almost perfectly complies with the changing tidal potential,
and are large in the high–viscosity regime, when the planet acts like a rigid
body. Furthermore, we may see that the mean value of both Love numbers in
the low–viscosity case is close to the fluid limit k = 1.5. When we increase the
viscosity, the relaxation time of the mantle increases as well and it becomes longer
than the loading period. The planet then keeps a permanent shape corresponding
to the constant part of the potential. In the periapsis, its deformation is smaller
than that of a fluid body subjected to the same tidal potential, and the value of
k20(t) and k22(t) is substantially lower than 1.5. In the apoapsis, on the other
side, the acquired permanent deformation is larger than would correspond to
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Figure 7.8: Variations of the magnitude of potential Love numbers |k20(t)| and
|k22(t)| as a function of mantle viscosity.

the tidal potential, and the Love numbers exceed 1.5. The highest viscosity case
(η = 1018 Pa s in the Maxwell model or η = 1024 Pa s in the Andrade model),
plotted in light green and light blue in Figure 7.8, confronts us with a time
dependence of Love numbers that is driven essentially by the variations of the
denominator in (7.24).

Our second toy–model is a nonsynchronously rotating planet on a circular
orbit. In this case, the magnitude of the Love numbers k20(t) and k22(t) as well as
the phase lag ε22(t) attain a constant value, which is, among other parameters, a
function of the tidal frequency and the viscosity. Here, we set the tidal frequency
constant (Ω/n = 2.1) and explore the viscosity dependence of the Love number
k22. As depicted in Figure 7.9, tidal loading may operate in two extreme regimes,
characterising the elastic and the viscous limit with a negligible tidal lag, and
in a transitional regime, where the tidal lag attains its maximal value (cf. Love
numbers in the analytical model of Correia et al., 2014). At higher viscosities
the Love numbers, and especially their phase lags, differ substantially for the
two rheologies under considerations. The decrease in the phase lag toward the
elastic limit is much more gradual in the case of the Andrade rheology than for
the Maxwell rheology. Differences in the magnitude of the Love number are less
pronounced.
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Figure 7.9: The phase lag ε22 and the Love number |k22| as a function of the
mantle viscosity for a planet on circular orbit rotating nonsynchronously with
spin-orbit ratio Ω/n = 2.1. Red dots indicate the Maxwell rheology, blue squares
stand for the Andrade rheology.

7.5 Discussion
The thermal and rotational state of close–in exoplanets subjected to significant
tidal dissipation is dictated by their orbital elements and the rheological regime.
Increase of the orbital eccentricity may enhance the tidal heating by an order
of magnitude. Different frequency dependencies of the tidal response in both
rheological models in question may lead to a completely different thermal evolution.
While a planet governed by the Maxwell rheology attains deep local minima of the
tidal heating, associated with the lower spin-orbit resonances, and the dissipation
undergone by its interior diminishes as we proceed to higher spin rates, the
heat production of a body described by the Andrade model increases with faster
rotation and the local minima are observed rather at high spin–orbit resonances.
We note that the location and depth of the local minima, as well as the occurence
of other tidal effects (e.g. locking into stable spin states), depend not only on
the mantle viscosity, but rather on a combination of the viscosity and the tidal
frequency. These two parameters together determine the rheological regime of the
planet.

The tidal heating depicted in Figures 7.3 to 7.6 would be, in extreme cases, able
to melt the entire planetary mantle, leading eventually to a fluid–like behaviour.
Furthermore, even in a less extreme scenario, the enhanced heat production
combined with possible tidal locking and resulting uneven insolation may alter
the planet’s rheological regime (due to the temperature dependence of viscosity
or due to different deformation mechanisms involved in the mantle dynamics) and
lead to decrease or further increase in the tidal dissipation. The tidal evolution of
a close–in rocky exoplanet, e.g. its despinning, its thermal history or the rate of
orbital evolution, is therefore closely related to its rheological regime, which may,
on the contrary, vary with the instantaneous orbital or rotational parameters.
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As the tidal heating and the insolation pattern depend on the exact orbital
parameters (e.g. Beuthe, 2013; Dobrovolskis, 2013), the rheological structure
of realistic close–in exoplanets may become considerably heterogeneous. Tidal
locking into a spin–orbit resonance or, specifically, into the synchronous spin
state, also leads to a distinct convection pattern (Běhounková et al., 2010; Gelman
et al., 2011; van Summeren et al., 2011). The numerical model described here
also enables computation of tidal effects in a planet with generally 3d viscosity
structure and with possibly radially dependent rigidity. However, in the present
parametric studies, we held the mantle viscosity homogeneous and only studied the
effects of its varying magnitude, so that the numerical model could be compared
with existing analytical tidal theories. Figure 7.1, depicting the spin–orbit ratio
dependence of tidal torque in the Maxwell model, was intended to be compared
qualitatively with Figure 4 of Correia et al. (2014). Similarly, Figure 7.9 could
be identified with Figure 2 of the same paper or with any plot of the dissipation
spectrum for the Maxwell and the Andrade rheology (e.g. Castillo-Rogez et al.,
2011; Efroimsky, 2012b; Běhounková et al., 2013).

The characteristic pattern of the average tidal torque and the existence of
two distinct regimes—a sole pseudo–synchronous rotation of low–viscosity bodies
versus multiple stable spin states of high–viscosity spheres—has already been
explored and discussed by the authors of recent analytical tidal models (Correia
et al., 2014; Ferraz-Mello, 2015). It is worth noting that the rheological regime of
the planet is determined not only by its viscosity, but rather by a combination of
the viscosity and the excitation frequency. Therefore, even a terrestrial planet may
behave as a “fluid” body and a close–in gas giant (a “hot Jupiter”) on eccentric
orbit may become locked into a nonsynchronous spin–orbit resonance. Both
Correia et al. (2014) and Ferraz-Mello (2015) take this into account by introducing
a combination of the mean motion and the relaxation time or relaxation factor,
which could be related to the mean viscosity of the planet.

Moreover, the number and exact positions of zero points of the average tidal
torque are a function of eccentricity. We have particularly presented the case of a
highly eccentric orbit with e = 0.4. Several other cases, however, can be found
in Ferraz-Mello (2015), who studies the stationary spin states for eccentricities
ranging from e = 0 to e = 0.5. The author shows that increase in the eccentricity
causes shifting of the sole solution in the low–viscosity case (in concordance
with constant time lag models) and increase in the number of solutions in the
high–viscosity case. The relative stabilities of particular solutions are affected as
well, enabling the prediction of rotation states of moons and planets on eccentric
orbits. Ferraz-Mello (2015) also shows that spin-orbit resonances, in contrast to
pseudo–synchronous rotation, are not stationary solutions but periodic attractors:
a planet on eccentric orbit undergoes physical libration.

In order to compare the numerically obtained tidal heating with a semi–
analytical solution, we evaluated the dissipation in a homogeneous sphere subjected
to the same tidal potential as in the numerical model. The average heat production
due to the tidal dissipation was computed in correspondence with Segatz et al.
(1988), where we substituted the frequency independent static Love number k2
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with a set of frequency (and rheology) dependent complex Love numbers, described
e.g. in Castillo-Rogez et al. (2011). This was done for both the Maxwell and
the Andrade rheology. Resulting tidal heating of a body with η = 1018 Pa s is
shown in Figure 7.10. For the sake of comparison, we also replot Figure 7.9 with
the addition of semi–analytically obtained Love numbers |k2| and phase lags ε2.
Here, it is necessary to point out that the planet in the semi–analytical model
is considered a homogeneous sphere, dissipating the energy in the entire volume,
whereas our numerical model computes the dissipation solely in the mantle. The
tidal heating obtained semi–analytically is therefore several times higher than
the numerical predictions. The overall shape of the spin rate dependence of tidal
heating is, nevertheless, very similar in both approaches, verifying the applicability
of our model.

Similarly, the semi–analytical and the numerical Love numbers (Figure 7.11)
tend to different values at the limits of the viscosity scale. This is naturally
caused by the presence of a planetary core. Folonier et al. (2015) and Wahl et al.
(2017) predict that for a two–layer core–shell model of a fluid planet the surface
flattening is always smaller than would correspond to a homogeneous body. Using
the equation (41) of Folonier et al. (2015) and approximating our solid-liquid
core by a single fluid sphere (as we do not consider the deformation of the inner
core), we find the theoretical value of the fluid Love number to be kf ≈ 1.349.
This is close to our numerical result, giving kf ≈ 1.346 in the lowest viscosity
case (η = 1014 Pa s). The slight discrepancy can be attributed to different density
structure of the core in our study and to the fact that our “lowest viscosity case”
is still only an approximation to the real fluid limit.

Figure 7.10: Average tidal heating computed semi–analytically for η = 1018 Pa s
and both rheological models.
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Figure 7.11: Comparison of semi–analytical (solid line) and numerical (dashed
line) phase lags and Love numbers for a planet on circular orbit with spin–orbit
ratio Ω/n = 2.1.

7.6 Concluding remarks
In this chapter, we presented a numerical model of tides based on the direct
solution of the continuum mechanics equations for a disturbed planetary mantle.
The model enables computation of tidal deformation and dissipation for generally
nonhomogeneous planets governed either by the Maxwell or the Andrade rheology.
We then performed a series of calculations, studying the parameter dependence of
the tidal heating, the tidal torque and the complex Love numbers. The results
for the Maxwell rheology were qualitatively compared to the analytical model of
Correia et al. (2014). We also computed the tidal heating semi–analytically, by a
method based on Segatz et al. (1988) and Castillo-Rogez et al. (2011).

When describing the tidal response of terrestrial bodies, the Maxwell model is
often utilised as a practical substitute for the more complex and more accurate
Andrade rheology. Indeed, the two models almost coincide at low viscosities (or
low frequencies) and their predictions for the tidal torque and the Love numbers
are very similar also in the higher viscosity regimes, as long as we keep the
notion of effective tidal viscosities, which can be up to few orders lower than
the “standard” viscosities utilised e.g. in the mantle convection models. The
crucial difference between the two rheological models arises in the comparison
of spin–orbit ratio dependence of the tidal heating. However, even in this case
the Andrade model can be approximated by the Maxwell model—the concept of
frequency–dependent effective viscosity remains valid. When computing the tidal
evolution or the tidal heating of terrestrial exoplanets, we must remember that
only a planet on circular orbit is excited at one sole frequency. Hence, only the
dissipation inside planets on circular orbits would be consistently approximated by
a single–viscosity Maxwell model. For the eccentric orbits, it would be necessary
to find all present frequencies and to sum the tidal heating over multiple Maxwell
models, with a variety of effective viscosities. Only after this procedure, we would
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be able to get Figure 7.4 or 7.6 without using the Andrade model directly.
As was already pointed out by Frouard et al. (2016), the place of numerical

models among analytical theories is irreplaceable when dealing with complex
rheologies, planets with nontrivial internal structure or nonspherical shape, and
with analytically–challenging phenomena. While the analytical models provide us
with general predictions for the tidal evolution of terrestrial bodies, semi–analytical
or numerical models may help us to understand subtle details, given for example by
coupling of the orbital (or rotational) and the internal dynamics or by sensitivity
of the tidal heating to the chosen rheology.
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Conclusion
Looking back at the seven chapters behind us, we may now summarise the main
messages and conclusions of our journey. The thesis has discussed several aspects
of the tidally–induced orbital evolution, from the theoretical foundations of the
desired methods through semi–analytical exploration of the thermal–orbital cou-
pling to two independent studies.

Theoretical background In Chapter 1, we introduced the Keplerian elements,
presented several sets of equations governing the orbital evolution, and we also
tried to explain the main aspects of the Darwin–Kaula expansion. In particular,
the exposition focused on two of the mechanisms affecting the orbital dynamics of
moons and planets: the tidal loading and the third–body perturbation. Chapter 2
opened several topics related to the interior properties of terrestrial worlds. We dis-
cussed the detection and characterisation techniques used in exoplanetary science,
as well as the additional sources of information that may be helpful in reducing
the degeneracy of interior models based on the measurements of mass and radius.
With respect to the tidal models, the chapter also dealt with the mechanisms of
seismic–wave attenuation in the Earth and with empirically–motivated rheological
models used in modern tidal theories. The theoretical part of the work was then
concluded by a brief overview of heating mechanisms and of the mantle convection.

Parametric studies The subsequent three chapters, constituting the principal
part of the thesis, were dedicated to the coupled thermal and spin–orbital evolution
of strongly tidally–loaded exoplanets. In Chapter 3, we first explored the tidal
response of a planet described by the simplest rheological models. Specifically,
the analysis focused on the parameter dependence of the tidal torque under the
Maxwell or the Kelvin–Voigt rheology and only later transitioned to a semi–
numerical parametric study of the tidal locking and tidal heating of a generic
terrestrial exoplanet governed by the Andrade rheology. Apart from illustrating
the regions of stability for the higher–order (i.e., super–synchronous) resonances,
the parametric study provided us with the following observations:

• For moderate eccentricities (e < 0.4), the tidal heating in higher–order
spin–orbit resonances only weakly depends on the orbital eccentricity and is
mainly dictated by the rheological parameters and the spin rate.

• The contribution of super–synchronous resonant rotation to the tidal dis-
sipation is most prominent at relatively low orbital eccentricities, where it
may even exceed the contribution from the eccentricity tides.

• Decreasing the radius and/or the core–mass fraction (CMF) of the model
planet increases the susceptibility to locking into a higher–order spin–orbit
resonance. Moreover, at relatively small planetary radii (R < 0.8R⊕), the
average surface tidal heat flux slowly increases with increasing CMF (i.e.,
with a thinner mantle). At larger radii (R > 0.8R⊕) the surface tidal heat
flux decreases with increasing CMF.
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Coupled thermal–orbital evolution Endowed with an intuition for the para-
metric dependencies of the tidal phenomena, we continued to Chapter 4, which
covered a more advanced problem: the coupling between the thermal, orbital,
and rotational dynamics of tidally–loaded exoplanets in single–planetary systems.
This chapter also introduced a two–cycle computational scheme, required by the
substantial difference between the time scales of the orbital and the rotational
evolution, and a 1d parameterised model of mantle convection with a simplified
treatment of mantle melting. The developed semi–analytical tool for the computa-
tion of coupled thermal–orbital evolution was applied to three low–mass exoplanets
(Proxima Centauri b, GJ 625 b, and GJ 411 b) with presumably non–zero orbital
eccentricities and with absent—or very weak—eccentricity forcing by other bodies
in the system. Regarding the coupled thermal–orbital evolution, we may highlight
the following results:

• The tidal dissipation—and subsequently the rate of orbital evolution—is
mainly affected by two effects. At high orbital eccentricities, the magnitude
of tidal dissipation may drop due to the formation of a magma ocean. At
low orbital eccentricities, the most important mechanism, reducing the
tidal dissipation considerably, is despinning into the synchronous rotation.
The decrease in tidal dissipation induced by these two effects may enable
the planet to maintain high orbital eccentricity for a long period of time
(> 10 Gyr)

• The thermal evolution of planets on initially eccentric orbits proceeds as
a sequence of equilibria. Depending on the rate of tidal dissipation, the
planet quickly attains an equilibrium temperature profile, ensuring that
the convective heat transfer fully compensates the tidal heat generation.
Each drop in the tidal dissipation, e.g. due to the despinning into a lower
spin–orbit resonance, is also accompanied by a transition to a new thermal
equilibrium (at lower temperatures).

• Since the tidal dissipation at higher–order spin–orbit resonances only weakly
depends on the orbital eccentricity, the aforementioned thermal equilibria are
stable as long as the planet maintains a super–synchronous resonant rotation.
Upon despinning to the synchronous rotation, the dissipation becomes clearly
eccentricity–dependent and the interior temperatures gradually decrease
with decaying eccentricity.

Kozai–Lidov mechanism with viscoelastic tides In Chapter 5, the coupled
thermal–orbital model was further extended by adding a second planet to the
system. In particular, we explored the orbital dynamics of the generic terrestrial
exoplanet from Chapter 3, subjected to third–body perturbation by a giant planet
on a highly–inclined outer orbit. The orbital parameters of the perturber were
intentionally chosen to give rise to the Kozai–Lidov mechanism, which was then
studied in combination with viscoelastic tides. Assuming three different radii of
the giant planet’s circular orbit, we observed two modes of orbital evolution:
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• In a system with a close perturber (a2 = 1 AU), the relatively slow tidal
evolution of the model planet does not break the secular resonance. Tidally–
induced eccentricity decay, combined with the resonant eccentricity forcing,
contributes to a gradual loss of angular momentum, to a slow decrease in the
mutual inclination (due to a e–i–ω coupling), and to the planet’s migration
towards the host star.

• In a system with a more distant perturber (a2 = 5 AU or a2 = 10 AU),
the tidal evolution proceeds on timescales comparable to the period of the
Kozai–Lidov cycles. Therefore, the tidally–induced eccentricity decay may
eventually break the secular resonance and the dynamics of the system
can change considerably. The orbital evolution is then dominated by tidal
circularisation.

The above–mentioned behaviour was mainly observed in model cases with constant
interior properties (i.e., without the thermal evolution). In models with coupled
thermal–orbital evolution, the model planet exhibited a tendency analogical to
Chapter 4:

• Once the increased upper–mantle temperature triggers the formation of
a magma ocean, the tidal dissipation drops substantially and the tidal
evolution is effectively inhibited. In the model system with a close perturber,
this phenomenon, preceded by a short period of tidally–induced eccentricity
decay, may lead to locking into the secular resonance. However, the feedback
between the tides, the eccentricity forcing, and the thermal evolution is, in
general, extremely complex.

Additional studies Not related to the coupled models of thermal–orbital evo-
lution, the last two chapters discussed two independent studies of tidal phenomena.
Chapter 6 dealt with tidal loading between moons or planets orbiting the same
primary: a mechanism that may be potentially important in tightly–packed multi-
planetary systems. The tidal potential between two planets was expressed in the
form of a Darwin–Kaula expansion. However, given the high complexity of such
an expression, the numerical treatment of this topic is often preferable. Finally,
in Chapter 7, we included a numerical approach to the analysis of tidal effects,
based on the spherical harmonic decomposition of the governing equations and
calculating the tidal deformation and subsequent energy dissipation in the time
domain. We note that the numerical model was also used for the testing of the
semi–analytical model’s accuracy, and although it is only included at the end of
the seven chapters, it played an irreplaceable role in our understanding of the
tidal phenomena in viscoelastic bodies1.

1As we saw in Chapter 6, the numerical model can also be applied to the study of planet–planet
tides.
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CMB core–mantle boundary
CMF core mass fraction
h.t.b. high temperature background
PSR pseudo–synchronous rotation
RV radial velocity
SAS standard anelastic solid
SLS standard linear solid
TBL thermal boundary layer
TTV transit–timing variation
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List of Symbols
Listed are only symbols relevant to the discussed models and derivations. Auxiliary
symbols introduced in the text (e.g., the total mass M in the two–body problem)
are not included.

Universal constants and variables
Orbital elements are often used with subscripts.

c speed of light
G universal gravitational constant
m⊕ Earth mass
m⊙ solar mass
Rgas universal gas constant

Flmp(i) Kaula’s inclination functions
Glpq(e) eccentricity functions for an inner perturber
Γ(x) gamma function
Hlpq(e) eccentricity functions for an outer perturber
Plm(x) associated Legendre polynomials
Xn,k

j (e) Hansen’s coefficients

a semi–major axis
e orbital eccentricity
E energy
E∗ activation energy
g gravitational acceleration (typically on the surface)
i orbital inclination
kl tidal Love number (real)
k̄l(ω) tidal Love number (complex)
m∗ stellar mass
n mean motion axis
Q quality factor
R planetary radius
v true anomaly

Chapter 1: Secular orbital evolution

C principal moment of inertia
ϵ mean longitude at epoch
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εlmpq, εc phase lag (mode–dependent or constant)
Φ potential
Jn,k

ρ,σ integer–valued polynomials
λ mean longitude
M mean anomaly
m1 mass of the inner planet
m2 mass of the outer planet
µ reduced mass
ω argument of periapsis
ωlmpq loading frequency (signed)
Ω longitude of the ascending node
ϖ longitude of periapsis
r instantaneous star–planet distance
R disturbing function
ϱ, ϑ, φ planetocentric equatorial spherical coordinates (radius,

colatitude, longitude)
σ mean anomaly at epoch
t0 time of periapsis passage
∆t time lag
T orbital period
T secular tidal torque
θ sidereal time
Xn,k

ρ,σ Newcomb’s operators
ξ, η, ζ, ν nonsingular elements

Chapter 2: Interior structure and dynamics

∆ relaxation strength
E Young modulus
ϵ, ϵ̄ strain (1d, time domain or frequency domain)
ϵ Eulerian strain tensor
ϵD deviatoric part of ϵ
ε phase lag (loss angle)
η dynamic viscosity (3d)
F Newtonian viscosity (1d)
h volumetric heat rate
J(t) creep function
JR relaxed compliance
JU unrelaxed compliance
J̄(ω) dynamic compliance
J̄1(ω) storage compliance
J̄2(ω) loss compliance
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|J̄(ω)| absolute dynamic compliance
δJ relaxation of the compliance
µ rigidity (shear modulus)
ω angular frequency
p mechanical pressure
σ, σ̄ stress (1d, time domain or frequency domain)
σ incremental Cauchy stress tensor
σD deviatoric part of σ
T temperature
τM relaxation time of Maxwell model
τKV retardation time of Kelvin–Voigt model
τ characteristic time in general
u infinitesimal deformation

Chapter 3: Tidal torque and tidal heat rate

A coefficient in the Maxwell model
α parameter of the Andrade model
B coefficient in the Kelvin–Voigt model
η dynamic viscosity
Φtide average surface tidal heat flux
g surface gravity
µ rigidity (shear modulus)
ω angular frequency
P̄

tide orbit–averaged tidal heat rate (summed over the entire
volume of the planet)

ρ average density
T2 degree–2 secular tidal torque
τM Maxwell (relaxation) time
τKV Kelvin–Voigt (retardation) time
θ̇ spin rate
ζ parameter of the Andrade model

Chapter 4: Coupled thermal and orbital evolu-
tion of low–mass exoplanets

Am, Ac surface area of the mantle and of the core
α parameter of the Andrade model
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αm thermal expansivity of the mantle
β planet’s obliquity
C principal moment of inertia with respect to the rotational

axis
cm, cc specific heat capacity of the mantle and of the core
Dl thickness of the stagnant lid
δS upper limit on θ̈/θ̇ in the short cycle
δc,δu thicknesses of the lower and upper thermal boundary

layers
∆µ, ∆η disaggregation widths
∆tS step size in the short cycle
∆tL step size in the long cycle
εlmpq phase lag at mode {lmpq}
ϵD deviatoric part of the Eulerian strain tensor
ϵS maximum local error of the short cycle
ϵL maximum local error of the long cycle
η dynamic viscosity
ηm (average) mantle viscosity
η0 reference viscosity
η(T ) viscosity at temperature T
ηmax, ηmin parameters of the melting model
ϕm total melt fraction in the mantle
ϕ(r) melt fraction at radius r
ϕD disaggregation point
J̄(ω) dynamic compliance
km, kl thermal conductivity of the mantle and of the lithosphere
Lm latent heat
mp mass of the model planet
µ rigidity (shear modulus)
µm (average) mantle rigidity
µmax, µmin parameters of the melting model
ωlmpq loading frequency at mode {lmpq} (signed)
P pressure
P̄

tide orbit–averaged tidal heat rate (summed over the entire
volume of the planet)

qc heat flux from the core to the mantle
qm heat flux from the mantle to the lithosphere
Rl outer radius of the mantle (lithosphere base)
ρm,ρc mean density of the mantle and of the core
St Stefan number
σD deviatoric part of the incremental Cauchy stress tensor
T0 reference temperature
T (r) local temperature at radius r
Tb temperature on the bottom of the convecting mantle
Tc temperature at the core–mantle boundary
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Tl temperature at the base of the lithosphere
Tm temperature at the top of the convecting mantle
Ts surface temperature
Tsol, Tliq solidus and liquidus temperature
θ̇ spin rate
u infinitesimal deformation
Vm, Vc volume of the mantle and of the core
ζ parameter of the Andrade model

Chapter 5: Effect of an inclined outer perturber

η0 reference viscosity
J2 the second gravitational moment
λ1, λ2 mean longitudes
m1 mass of the model (inner) planet
m2 mass of the outer perturber
ω1 inner orbit’s argument of periapsis
Ω1, Ω2 arguments of the ascending nodes
ϖ1, ϖ2 longitudes of periapses
ψ argument of the disturbing function
R1 disturbing function for the inner planet due to third–body

perturbation
ρ̄ mean density of the planet
Θ Kozai’s parameter
Θ0 limit value of Kozai’s parameter

Chapter 6: Planet–planet tides in tightly packed
systems

α right ascension of planet B, as observed from planet A
α0 initial rotation of planet A
εlmnp̄q̄ tidal phase lag
F0

lmnp̄ algebraic prefactor
mA, mB masses
MA, MB mean anomalies
ϖ relative longitude of the perturber’s pericentre
r, ϑ, φ planetocentric equatorial coordinates of the disturber
r′, ϑ′, φ′ planetocentric equatorial coordinates of the disturbed

unit volume
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rA, rB instantaneous distances
r<, r> instantaneous distances of the inner and the outer planet

from the host star
σA, σB mean anomalies at epoch
θ sidereal time
U tidal potential

Chapter 7: Tidal effects in differentiated viscoe-
lastic bodies, a numerical approach

α parameter of the Andrade model
D deviatoric part of the incremental Cauchy stress tensor
E(t) eccentric anomaly
er radial unit vector
εlm(t) phase lag between vlm(t) and δvlm(t)
ε incremental strain tensor
ε̇ strain rate tensor
η mantle viscosity
f body force per unit mass
ft tidal force
fcf centrifugal force
fself self–gravity
fk

lm SH coefficients of the force
gs, gb mean gravity accelerations on the upper and the lower

boundary of the mantle
I identity matrix
J̄(ω) dynamic compliance
klm(t) ratio of δvlm(t) and vlm(t) (Love number)
kf fluid Love number
m mass of the model planet
µ mantle rigidity (shear modulus)
Ωrot planet’s spin rate
π isotropic part of the incremental Cauchy stress tensor
r′, ϑ′, φ′ planetocentric coordinates of a disturbed volume
r, ϑ∗, φ∗ planetocentric coordinates of the host star
rs planetary radius
rb radius of the core–mantle boundary
rI inner core radius
ρ mean density of the planet
ρC density of the (liquid) outer core
ρI density of the inner core
ρM density of the mantle
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∆t timestep
T period for the heat rate averaging
T tidal torque
τM Maxwell time
u displacement vector
ur radial component of displacement
(ur)lm SH coefficients of the radial component of displacement
U potential
Ut tidal potential
Ucf centrifugal potential
Uself self–gravitational potential
vlm(t) SH coefficients of U
δvlm(t) SH coefficients of Uself
V volume of the planetary mantle
ζ parameters of the Andrade model
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A. Outline of the normal mode
theory
This appendix is almost identical1 to Appendix A of Walterová and Běhounková
(2020).

Assuming an incompressible, elastic and layered spherical planet subjected to
external body force, the incremental deformation can be expressed as a sum of
radial and lateral terms,

u =
∞∑︂

n=0

[︃
Un(r) Pn(cos θ) er + Vn(r) ∂

∂θ
Pn(cos θ) eθ

]︃
, (A.1)

the additional potential induced by the deformation can be decomposed into

δϕ =
∞∑︂

n=0
Φn(r) Pn(cos θ) (A.2)

and the incremental pressure is

δp =
∞∑︂

n=0
Πn(r) Pn(cos θ) . (A.3)

In the above expressions, Pn(cos θ) are Legendre polynomials and er, eθ are
unit vectors in the radial and lateral (eastward) directions, respectively. As
a consequence of the spherical harmonic decomposition, the set of governing
equations (e.g., Sabadini and Vermeersen, 2004), which ensures the conservation
of mass and momentum in the continuum, as well as the constitutive equation for
an elastic material, can be rewritten into a set of ordinary differential equations
of the form

Ẏ = AY, (A.4)

where

Y =
(︂
Un, Vn, Trn, Tθn,Φn, Qn

)︂t

(A.5)

with Un, Vn and Φn introduced above and the other variables defined as

Trn(r) = −Πn + 2µU̇n , (A.6)

Tθn(r) = µ

(︃
V̇ n − 1

r
Vn + 1

r
Un

)︃
, (A.7)

1Here, we have corrected a mistake in equation (A10) of the cited paper. Equation (A.10)
now correctly represents the interior boundary conditions used in the semi–analytical model.
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Qn(r) = Φ̇n + n+ 1
r

Φn + 4πGρUn . (A.8)

Here, ρ is the mean density at radius r and symbol µ stands for static rigidity.
The set of governing equations is constrained by boundary conditions prescribed
at each interior interface, at the surface, and in the centre. Specifically, in the
case of tidal loading, the boundary conditions at the surface are (Takeuchi et al.,
1962; Sabadini and Vermeersen, 2004)

Trn(R) = 0 ,
Tθn(R) = 0 ,

Qn(R) = −2n+ 1
R

.

(A.9)

In the centre, we only require regularity of the solution. The interior boundary
conditions depend on the type of interfaces between the layers. Here, we consider
each transition between layers as a solid-solid interface, which yields continuity of
all components of the vector (A.5), i.e.,[︁

Un

]︁+
− =

[︁
Vn

]︁+
− =

[︁
Trn

]︁+
− =

[︁
Tθn

]︁+
− =

[︁
Φn

]︁+
− =

[︁
Qn

]︁+
− = 0 . (A.10)

When applying the correspondence principle and shifting from the elastic to the
viscoelastic problem, this choice of boundary conditions also means that each
liquid layer needs to be considered as viscous. The incorporation of inviscid layers
is, however, straightforward (Wu and Peltier, 1982).

The general solution to the set of ordinary differential equations (A.4) in layer
j ∈ [1, N ] is a superposition of six linearly independent solutions,

Y(r) =
6∑︂

i=1
C

(j)
i yi(r) , (A.11)

where C(j)
i are layer-dependent constants given by the boundary conditions. Both

the constants C(j)
i and the individual solutions yi(r) of the viscoelastic prob-

lem attain complex values, which contain the information on the amplitude of
deformations, stresses and potential, alike with the physical lagging caused by
attenuation in the medium. While the phase lag between the strain and stress
enables us to enumerate the energy dissipation anywhere inside the planet, the
lagging between the external and additional gravitational potential presents a
key parameter entering the spin and orbital evolution equations. Specifically, the
complex tidal Love number k̄l(ω) is related to the constants C(j)

i by

k̄n(ω) = −C(N)
3 Rn − C

(N)
6 R−n−1 − 1 . (A.12)
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the tidal heat rate for a stratified
body

B.1 Global tidal heat rate
In the derivation of the global tidal heat rate, we restrict ourselves to the case of
l = 2, which is used in this work. A detailed derivation of the expression for the
tidal heating, based on continuum mechanics and paying special attention to the
degeneracy of tidal modes, is presented in Efroimsky and Makarov (2014). The
average heat rate produced by the dissipation in the entire volume of the planet
over one orbital period can be written as (Segatz et al., 1988)

P̄
tide = − 5n

8π2GR

∫︂ Torb

0

∫︂
S

δΦ2(R,ϑ, φ, t) ∂Φ2(R,ϑ, φ, t)
∂t

dS dt , (B.1)

where Φ2 and δΦ2 = |k̄2(ω)| Φ2,lag are the degree–2 tidal and additional potential
evaluated at the planet’s surface. The subscript “lag” indicates that the argument
of the disturbing potential should be complemented with the tidal phase lag. Using
the traditional notation of Kaula (1964), the {2,m, p, q} mode of the disturbing
potential at the planet’s surface can be expressed as

δΦ2mpq(R,ϑ, φ, t) = k2(ω2mpq)R2 B2m C2mpq P2m(cosϑ) ×

×
{︃

cos
sin

}︃2−m even

2−m odd

[︂
ν2mpq − ε2mpq −m(φ+ θ)

]︂
(B.2)

with
ν2mpq = mα+ (2 − 2p+ q)M + (2 − 2p) γ , (B.3)

B2m = Gm∗
(2 −m)!
(2 +m)! (2 − δm0) (B.4)

and
C2mpq = 1

a3 F2mp(β) G2pq(e) . (B.5)

Similarly, we may write the time derivative of the tidal potential experienced at
the planet’s surface as

(︃
∂Φ
∂t

)︃
2mpq

= ω2mpq R
2 B2m C2mpq P2m(cosϑ)

{︃
− sin
cos

}︃2−m even

2−m odd

[︂
ν2mpq −m(φ+ θ)

]︂
. (B.6)
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In both of the above expressions, ω2mpq symbolises the tidal frequency, namely

ω2mpq = mα̇+ (2 − 2p+ q)n+ (2 − 2p) γ̇ −mθ̇ ≈ (2 − 2p+ q)n−mθ̇ , (B.7)

where the approximate value corresponds to a planet whose orbital and axial
precession timescales are much longer than the orbital period.

To express the average tidal heat rate generated by the entire planet in the
form of a sum, we need to substitute equations (B.2) and (B.6) to definition (B.1).
When evaluating the integrals, we make use of the orthogonality of associated
Legendre polynomials∫︂ π

0
Plm(cosϑ)Pl′m(cosϑ) sinϑdϑ = 2(l +m)!

(2l + 1)(l −m)! δll′ (B.8)

and of the following identities∫︂ 2π

0

{︃
− cos (ψ1 −mφ) sin (ψ2 −mφ)
sin (ψ1 −mφ) cos (ψ2 −mφ)

}︃
dφ = −2π cosψ1 sinψ2 (B.9)

for m = 0 and∫︂ 2π

0

{︃
− cos (ψ1 −mφ) sin (ψ2 −m′φ)
sin (ψ1 −mφ) cos (ψ2 −m′φ)

}︃
dφ = π sin (ψ1 − ψ2) δmm′ (B.10)

for m ̸= 0. For the sake of clarity, we substituted ψ1 and ψ2 for the parts of the
respective arguments that do not depend on the longitude φ, i.e.,

ψ1 = mα+ (2 − 2p+ q)M + (2 − 2p) γ −mθ − ε2mpq ,

ψ2 = m′α+ (2 − 2p′ + q′)M + (2 − 2p′) γ −m′θ .

Specifically, for m = m′, we have

ψ1 − ψ2 = [2(p′ − p) − (q′ − q)]M + 2(p′ − p)γ − ε2mpq . (B.11)

At this step, we may rewrite the definition (B.1) with evaluated integrals over ϑ
and φ as

P̄
tide = R

2πG
∑︂

pqp′q′

∫︂ 2π

0
k2(ω20pq)ω20p′q′R4B2

20C20pqC20p′q′ cosψ1 sinψ2 dM (B.12)

for m = 0 and

P̄
tide = − R

4πG
∑︂

mpqp′q′

∫︂ 2π

0
k2(ω2mpq)ω2mp′q′R4B2

2mC2mpqC2mp′q′
(2 +m)!
(2 −m)! sin (ψ1 − ψ2) dM

(B.13)
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for m ̸= 0. The remaining integral over the mean anomaly M can be evaluated
similarly. If we substitute

b = 2 − 2p+ q

and
b′ = 2 − 2p′ + q′ ,

we may write the integral of expression (B.9), which holds for m = 0, as

∫︂ 2π

0
cosψ1 sinψ2 dM = − π sin [2(p′ − p)γ − ε2mpq] δbb′+

+ π sin [2(2 − p′ − p)γ − ε2mpq] δb,−b′ (B.14)

for b ̸= 0 ∨ b′ ̸= 0 and∫︂ 2π

0
cosψ1 sinψ2 dM = −2π cos (qγ + ε2mpq) sin q′γ (B.15)

for b = b′ = 0. Note, however, that the expression evaluated in equation (B.15)
corresponds to zero frequency and does not contribute to the total tidal heat rate.
Finally, the integral of expression (B.10), which holds for m ̸= 0, is∫︂ 2π

0
sin (ψ1 − ψ2) dM = 2π sin [2(p′ − p)γ − ε2mpq] δbb′ . (B.16)

In the next step, we are going to contemplate the terms with m = 0. Substi-
tuting expression (B.14) into the equation (B.12) and retaining only the non–zero
terms, we obtain

P̄
tide = − R5

2Ga6

∑︂
pqp′

ω20pq k2(ω20pq) B2
20F20p(β) G2pq(e) ×

×
{︂

F20p′(β) G2,p′,q+2(p′−p)(e) sin [2(p′ − p)γ − ε20pq]+ (B.17)

+ F20p′(β) G2,p′,−q−2(2−p′−p)(e) sin [2(2 − p′ − p)γ − ε20pq]
}︂

where we used the identities (see equation (B.7))

ω2,0,p′,q+2(p′−p) = ω2,0,p,q ,

ω2,0,p′,−q−2(l−p′−p) = −ω2,0,p,q .

The curly brackets in equation (B.17) contain two terms that can be rewritten
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to the same form. Following Efroimsky and Makarov (2014), we reformulate the
second term by performing the reindexing

p̄ = 2 − p′ and q̄ = −q′

and immediately changing the notation, so that p̄ → p′ and q̄ → q′. Since the
values attained by p̄ and q̄ are identical to the values attained by the former p′

and q′, this reindexing and renaming presents only a cosmetic change, which has
no effect on the actual terms entering the summation. Now, the second term in
the curly brackets of equation (B.17) reads as

F2,0,2−p′(β) G2,2−p′,−q′(e) sin [2(p′ − p)γ − ε20pq] , (B.18)

where q′ = q + 2(p′ − p). Therefore, in the last step, we apply the symmetries
(Giacaglia, 1976; Wnuk, 1988)

Glpq = Gl,l−p,−q

and

Fl,−m,p(i) = (−1)l (l −m)!
(l +m)!Fl,m,l−p(i) ,

which, in our case of l = 2 and m = 0, enable us to rewrite the term (B.18) as

F2,0,2−p′(β) G2,2−p′,−q′(e) sin [2(p′ − p)γ − ε20pq] =
= F2,0,p′(β) G2,p′,q′(e) sin [2(p′ − p)γ − ε20pq] . (B.19)

After this reformulation, both terms in the curly brackets of equation (B.17) are
the same.

Putting together equations (B.12) and (B.13) with the substitutions (B.14)
and (B.16), and making use of the reformulation from the previous paragraph, we
may write

P̄
tide = −Gm2

∗
a

(︃
R

a

)︃5 ∑︂
mpqp′

(2 − δm0) (2 −m)!
(2 +m)! F2mp(β) F2mp′(β) G2pq(e) G2p′q′(e) ×

× ω2mpq

[︂
Re
{︁
k̄2(ω2mpq)

}︁
sin 2(p′ − p)γ + Im

{︁
k̄2(ω2mpq)

}︁
cos 2(p′ − p)γ

]︂
,

(B.20)

where q′ = q + 2(p′ − p). Additionally, averaging expression (B.20) over the
period of axial precession, and thus eliminating terms with γ, results in even more
compact formula,

P̄
tide = −Gm2

∗
a

(︃
R

a

)︃5 ∑︂
mpq

(2 − δm0) (2 −m)!
(2 +m)!

[︁
G2pq(e)

]︁2 [︁F2mp(β)
]︁2
ω2mpq Im

{︁
k̄2(ω2mpq)

}︁
.

(B.21)
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B.2 Tidal dissipation in a unit volume
The volumetric energy dissipation in an incompressible viscoelastic continuum
can be expressed as

htide(r, ϑ, φ, ω) = Re
{︂

σ̄(r, ϑ, φ, ω) : ϵ̇̄(r, ϑ, φ, ω)
}︂
, (B.22)

with σ̄ being the incremental Cauchy stress tensor and ϵ̇ symbolising the incre-
mental strain rate tensor. At an arbitrary time and in an arbitrary point of
the layered planet, the components of the displacement are related to the tidal
potential Φlm = ∑︁

pq Φlmpq by (e.g., Tobie et al., 2005a)

ur(r, ϑ, φ) =
∑︂
lm

Ul(r)Φlm(ϑ, φ) , (B.23a)

uϑ(r, ϑ, φ) =
∑︂
lm

Vl(r)
∂Φlm(ϑ, φ)

∂ϑ
, (B.23b)

uφ(r, ϑ, φ) =
∑︂
lm

Vl(r)
sinϑ

∂Φlm(ϑ, φ)
∂φ

, (B.23c)

where Ul and Vl are complex–valued coefficients of the spherical harmonic (SH)
decomposition carried out in the overview of the normal mode theory (Appendix
A). Since the incremental strain tensor is defined as

ϵ̄ = 1
2
(︁
∇u + ∇Tu

)︁
, (B.24)

we may write down its components as (e.g., Sokolnikoff, 1956)

ϵ̄rr =
∑︂
lmpq

∂Un(ωlmpq)
∂r

Φlmpq , (B.25a)

ϵ̄ϑϑ = 1
r

∑︂
lmpq

[︃
Vn(ωlmpq) ∂

2Φlmpq

∂ϑ2 + Un(ωlmpq)Φlmpq

]︃
, (B.25b)

ϵ̄φφ = 1
r

∑︂
lmpq

[︃
Vn(ωlmpq) 1

sin2 ϑ

∂2Φlmpq

∂φ2 + Vn(ωlmpq) cotϑ∂Φlmpq

∂ϑ
+ Un(ωlmpq)Φlmpq

]︃
,

(B.25c)

ϵ̄rϑ = ϵ̄ϑr =
∑︂
lmpq

Tϑn(ωlmpq)
2µ̄(ωlmpq)

∂Φlmpq

∂ϑ
, (B.25d)

ϵ̄rφ = ϵ̄φr =
∑︂
lmpq

Tϑn(ωlmpq)
2µ̄(ωlmpq)

1
sinϑ

∂Φlmpq

∂φ
, (B.25e)

ϵ̄ϑφ = ϵ̄φϑ = 1
r

∑︂
lmpq

Vn(ωlmpq)
[︃

1
sinϑ

∂2Φlm

∂ϑ∂φ
− cosϑ

sin2 ϑ

∂Φlmpq

∂φ

]︃
. (B.25f)
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where µ̄ is complex rigidity and Tϑn are the complex–valued coefficients of the
SH decomposition of normal traction. The corresponding components of the
incremental stress tensor are expressed accordingly, following the constitutive
relation

σ̄ = −p I + 2µ̄(ω) ϵ̄ . (B.26)

Since we are assuming an incompressible medium, the incremental pressure is
identically zero. The energy stored or dissipated per unit volume, averaged over
one orbital period, is then evaluated for each component as

⟨h̄ij⟩ = 1
2π

∫︂ 2π

0
σ̄ij ϵ̇̄ij dM , (B.27)

where M stands for the mean anomaly. Finally, the average rate of energy
dissipation in a unit volume is obtained from

⟨htide⟩(r, ϑ, φ) = Re

⎧⎨⎩∑︂
ij

⟨h̄ij⟩

⎫⎬⎭ . (B.28)

In this work, we only calculate degree–2 tidal dissipation. To ensure the
correctness of the calculation at this degree, the implementations of the two
analytical methods described in the present appendix were tested against each
other, as well as against the numerical model of Chapter 7.



C. Partial derivatives of the
disturbing function
The partial derivatives listed in this appendix are provided in the same functional
form as in the implemented model, the results of which are presented in Chapters
3 to 5. Specifically, the partial derivatives from Section C.1 are inserted into the
set of tidal evolution equations (1.40), while the partial derivatives from Section
C.2 are used with the second set of Lagrange’s planetary equations (1.10). The
time derivatives of Keplerian elements, obtained from the mentioned sets, enable
us to calculate the time derivatives of the nonsingular elements (1.58).

C.1 Tidal loading
Using the notation

Alm = (l −m)!
(l +m)! κm ,

and

ωlmpq = (l − 2p)γ̇ + (l − 2p+ q)(n+ σ̇) +m(α̇− θ̇) ≈ (l − 2p+ q)n−mθ̇ ,

and defining the disturbing function as (Boué and Efroimsky, 2019, with different
signing convention and in neglection of the dissipation in the host star)

R = m1 +m∗

m1
Φtide

the partial derivatives of the disturbing function used in the equations for the
secular orbital evolution can be written as (see also Boué and Efroimsky, 2019)

(︃
∂R
∂σ

)︃
lmpq

= (l − 2p+ q) Alm n2a2 m∗

m1

(︃
R

a

)︃2l+1 [︁
Flmp(β)

]︁2 [︁Glpq(e)
]︁2 Im{k̄l(ωlmpq)}

(C.1a)(︃
∂R
∂γ

)︃
lmpq

= (l − 2p) Alm n2a2 m∗

m1

(︃
R

a

)︃2l+1 [︁
Flmp(β)

]︁2 [︁Glpq(e)
]︁2 Im{k̄l(ωlmpq)} (C.1b)

(︃
∂R
∂α

)︃
lmpq

= m Alm n2a2 m∗

m1

(︃
R

a

)︃2l+1 [︁
Flmp(β)

]︁2 [︁Glpq(e)
]︁2 Im{k̄l(ωlmpq)} (C.1c)

(︃
∂R
∂β

)︃
lmpq

= Alm n2a2 m∗

m1

(︃
R

a

)︃2l+1
Flmp(β) dFlmp(β)

dβ
[︁
Glpq(e)

]︁2 Re{k̄l(ωlmpq)} (C.1d)

(︃
∂R
∂e

)︃
lmpq

= Alm n2a2 m∗

m1

(︃
R

a

)︃2l+1 [︁
Flmp(β)

]︁2 Glpq(e) dGlpq(e)
de Re{k̄l(ωlmpq)} (C.1e)
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(︃
∂R
∂a

)︃
lmpq

= −(l + 1) Alm n2a
m∗

m1

(︃
R

a

)︃2l+1 [︁
Flmp(β)

]︁2 [︁Glpq(e)
]︁2 Re{k̄l(ωlmpq)} (C.1f)

C.2 Third–body perturbation
In this subsection, we are going to use the following notation:

Bi
lm = Gm2

(l −m)!
(l +m)! (2 − δm0) (C.2)

Bo
lm = Gm1

(l −m)!
(l +m)! (2 − δm0) (C.3)

ψ = (l − 2p′ + q′)λ′ − (l − 2p+ q)λ− q′ϖ′ + qϖ + (m− l + 2p′)Ω′ − (m− l + 2p)Ω (C.4)

Substituting the multiindex of each mode by α = {lmpp′qq′}, where l ≥ 2, the
derivatives of the disturbing function for the inner planet can be written as

(︃
∂R1

∂ϵ1

)︃
α

= −(l − 2p+ q) al
1

al+1
2

Bi
lm Flmp(i1) Flmp′(i2) Hlpq(e1) Glp′q′(e2) sinψ (C.5a)

(︃
∂R1

∂ϖ1

)︃
α

= q
al

1

al+1
2

Bi
lm Flmp(i1) Flmp′(i2) Hlpq(e1) Glp′q′(e2) sinψ (C.5b)

(︃
∂R1

∂Ω1

)︃
α

= −(m− l + 2p) al
1

al+1
2

Bi
lm Flmp(i1) Flmp′(i2) Hlpq(e1) Glp′q′(e2) sinψ (C.5c)

(︃
∂R1

∂i1

)︃
α

= al
1

al+1
2

Bi
lm

dFlmp(i1)
di1

Flmp′(i2) Hlpq(e1) Glp′q′(e2) cosψ (C.5d)

(︃
∂R1

∂e1

)︃
α

= al
1

al+1
2

Bi
lm Flmp(i1) Flmp′(i2) dHlpq(e1)

de1
Glp′q′(e2) cosψ (C.5e)

(︃
∂R1

∂a1

)︃
α

= l
al−1

1

al+1
2

Bi
lm Flmp(i1) Flmp′(i2) Hlpq(e1) Glp′q′(e2) cosψ (C.5f)

and for the outer planet as

(︃
∂R2

∂ϵ2

)︃
α

= (l − 2p′ + q′) al
1

al+1
2

Bo
lm Flmp(i1) Flmp′(i2) Hlpq(e1) Glp′q′(e2) sinψ (C.6a)(︃

∂R2

∂ϖ2

)︃
α

= −q′ al
1

al+1
2

Bo
lm Flmp(i1) Flmp′(i2) Hlpq(e1) Glp′q′(e2) sinψ (C.6b)

(︃
∂R2

∂Ω2

)︃
α

= (m− l + 2p′) al
1

al+1
2

Bo
lm Flmp(i1) Flmp′(i2) Hlpq(e1) Glp′q′(e2) sinψ (C.6c)
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(︃
∂R2

∂i2

)︃
α

= al
1

al+1
2

Bo
lm Flmp(i1) dFlmp′(i2)

di2
Hlpq(e1) Glp′q′(e2) cosψ (C.6d)

(︃
∂R2

∂e2

)︃
α

= al
1

al+1
2

Bo
lm Flmp(i1) Flmp′(i2) Hlpq(e1) dGlp′q′(e2)

de1
cosψ (C.6e)

(︃
∂R2

∂a2

)︃
α

= −(l + 1) al
1

al+2
2

Bo
lm Flmp(i1) Flmp′(i2) Hlpq(e1) Glp′q′(e2) cosψ (C.6f)

Furthermore, the partial derivatives of the degree-1 terms (α = {1mpp′qq′}) with
the asterocentric correction (1.20), specific for the outer planet, are

(︃
∂R2

∂ϵ2

)︃
α

= (1 − 2p′ + q′) Bo
1m ×

×

[︄
a1

a2
2

H1pq(e1)G1p′q′(e2) − a2

a2
1

G1pq(e1)H1p′q′(e2)
]︄

F1mp(i1)F1mp′(i2) sinψ (C.7a)

(︃
∂R2

∂ϖ2

)︃
α

= −q′ Bo
1m

[︄
a1

a2
2

H1pq(e1)G1p′q′(e2) − a2

a2
1

G1pq(e1)H1p′q′(e2)
]︄

F1mp(i1)F1mp′(i2) sinψ

(C.7b)(︃
∂R2

∂Ω2

)︃
α

= (m− 1 + 2p′) Bo
1m ×

×

[︄
a1

a2
2

H1pq(e1)G1p′q′(e2) − a2

a2
1

G1pq(e1)H1p′q′(e2)
]︄

F1mp(i1)F1mp′(i2) sinψ (C.7c)

(︃
∂R2

∂i2

)︃
α

= Bo
1m

[︄
a1

a2
2

H1pq(e1)G1p′q′(e2) − a2

a2
1

G1pq(e1)H1p′q′(e2)
]︄

F1mp(i1)dFlmp′(i2)
di2

cosψ

(C.7d)(︃
∂R2

∂e2

)︃
α

= Bo
1m

[︄
a1

a2
2

H1pq(e1)dG1p′q′(e2)
de2

− a2

a2
1

G1pq(e1)dH1p′q′(e2)
de2

]︄
F1mp(i1)Flmp′(i2) cosψ

(C.7e)(︃
∂R2

∂a2

)︃
α

= Bo
1m

[︄
− 2a1

a3
2

H1pq(e1)G1p′q′(e2) − 1
a2

1
G1pq(e1)H1p′q′(e2)

]︄
F1mp(i1)F1mp′(i2) cosψ

(C.7f)
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D. Details of the numerical
approach

D.1 Iterative time scheme
To find the numerical solution of the governing equations, we use and further
develop a tool employed in Tobie et al. (2008) and Běhounková et al. (2015),
implemented by Ondřej Čadek. We have extended this code to account for a
general tidal potential, rotational deformation and self-gravity. In order to evaluate
the tidal torque correctly, we have updated originally explicit time scheme to
include the self-gravity and the memory term implicitly.

For the (i+ 1)-th time step and the explicit time scheme, considering constant
time step ∆t, the equations (7.1) – (7.5) are discretised as follows (Běhounková
et al., 2015):

Governing equations:
∇ · ui+1 = 0 (D.1)

−∇πi+1 + ∇ · Di+1 = ρM

[︃
(ft)i+1 + (fcf)i+1 + (fself)i

]︃
. (D.2)

Constitutive equation:

2εi+1 − Di+1

µ
=

Mi⏟ ⏞⏞ ⏟
1
2

D0

η
∆t+

j=i∑︂
j=1

Dj

η
∆t+ (D.3)

+ 1
2w(i+1)0

(︃
D1

(ζη)α − D0

(ζη)α

)︃
+

j=i−1∑︂
j=1

1
2w(i+1)j

(︃
Dj+1

(ζη)α − Dj−1

(ζη)α

)︃
⏞ ⏟⏟ ⏞

Ai

,

where wij are weights,

w(i+1)j = (i+ 1 − j)α∆tαµα−1 , (D.4)

Mi is the explicit memory term for the Maxwell rheology and Ai is the additional
explicit memory term describing the Andrade rheology.

Boundary conditions:
(−πi+1I + Di+1) · er − (us

r)i+1 ρM gs = 0, (D.5)

(−πi+1I + Di+1) · er +
(︁
ub

r
)︁

i+1 (ρC − ρM) gb = −ρC

[︃
(Ut)i+1 + (Ucf)i+1 + (Uself)i

]︃
er.

(D.6)

The initial step (l = 0) in the iterative scheme is determined explicitly. For the
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lth (l ≥ 1) iteration, we then have

Governing equations:

∇ · ui+1 = 0 (D.7)

−∇πi+1 + ∇ · Di+1 = ρM

[︃
(ft)i+1 + (fcf)i+1 + (fself)l−1

i+1

]︃
. (D.8)

Constitutive equation:

2εi+1 − Di+1

µ
= Mi + 1

2
Dl−1

i+1
η

∆t+Ai + 1
4w(i+1)i

(︄
Dl−1

i+1
(ζη)α − Di−1

(ζη)α

)︄
. (D.9)

Boundary conditions:

(−πi+1I + Di+1) · er − (us
r)i+1 ρM gs = 0, (D.10)

(−πi+1I + Di+1) · er +
(︁
ub

r
)︁

i+1 (ρC − ρM) gb = −ρC

[︃
(Ut)i+1 + (Ucf)i+1 + (Uself)l−1

i+1

]︃
er.

(D.11)

The iteration is repeated until |Dl
II−Dl−1

II |
Dl

II
< ϵ, where we usually assume ϵ = 10−4.

D.2 Spherical harmonics
Any quadratically integrable scalar function f of spherical coordinates ϑ and φ
can be expressed as a linear combination of surface spherical harmonics Ylm (see
e.g. Varshalovich et al., 1988)

f(ϑ, φ) =
∞∑︂

l=0

l∑︂
m=−l

flmYlm(ϑ, φ) (D.12)

with coefficients

flm =
2π∫︂

0

π∫︂
0

f(ϑ, φ)Ȳ lm(ϑ, φ) sinϑdϑ dφ . (D.13)

We introduce the spherical harmonics as

Ylm(ϑ, φ) = (−1)mNlmPlm(cosϑ)eimφ , (D.14)

where Nlm is the normalisation factor

Nlm =

√︄
(2l + 1)(l −m)!

4π(l +m)! , (D.15)
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and Plm(cosϑ) are fully normalised associated Legendre polynomials of degree
l and order m. Spherical harmonics represent a complete set of orthonormal
functions on the surface of a sphere, with the orthonormality relation given by

2π∫︂
0

π∫︂
0

Yl1m1(ϑ, φ)Ȳ l2m2(ϑ, φ) sinϑdϑ dφ = δl1l2δm1m2 . (D.16)

The notion of spherical harmonic decomposition can be generalised to account for
the vector and tensor functions as well. Vector spherical harmonics are introduced
as

Yk
lm(ϑ, φ) =

+1∑︂
µ=−1

k∑︂
ν=−k

Clm
kν1µYkν eµ , (D.17)

with Clm
kν1µ being the Clebsch-Gordan coefficients and eµ being the components of

a basis which appropriately follows the pattern of Ylm under rotations. They are
related to the cartesian basis vectors {ex, ey, ez} by

e−1 = 1√
2
(︁
ex − iey

)︁
,

e0 = ez , (D.18)

e1 = − 1√
2
(︁
ex + iey

)︁
.

Finally, we define the tensor spherical harmonics

Ykn
lm(ϑ, φ) =

+1∑︂
µ=−1

k∑︂
ν=−k

Clm
kνnµYkν enµ , (D.19)

with a basis

ejλ =
∑︂
ν,µ

Cjλ
1ν1µ eν ⊗ eµ , (D.20)

where ⊗ symbolises a dyadic product.
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