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1 INTRODUCTION 

Injuries to the brain belong to one of the leading causes of death worldwide, affecting a 

great number of people in developed countries and thus imposing a considerable 

economic burden on the society (Rajsic et al., 2019). Insufficient blood flow during 

cerebral ischemia, with resultant cell death, adds to neurological disorders that torment 

human race (Verma et al., 2018; Tannenberg et al., 2004). 

Therefore, regenerative medicine looks up to new strategies for treatment or 

replacement of diminishing numbers of neural cells. A good example of such strategies 

could be the potential utilization of precursor cells, naturally residing in the brain (Groves 

et al., 2019; Ravanelli et al., 2018), and capable of differentiating to other cell types 

(Vancamp et al., 2019; Honsa et al., 2016; Kriska et al., 2016). Additionally, the proteins 

of the Wnt (Wingless/Integrated) and Shh (Sonic hedgehog) families regulate a number of 

cellular processes during embryonic development (Borday et al., 2018; Carballo et al., 

2018), but they also play important roles in the cell cycle progression, differentiation of 

precursors, establishment of neurogenic niches, and programmed cell death after birth 

(Marinaro et al., 2012; Zhang et al., 1998). 

The goal of the thesis was to analyze the role of cellular signaling pathways in 

gliogenesis and neurogenesis in the postnatal central nervous system. These signaling 

pathways may refine and boost the differentiation potential of precursor cells during 

ischemia and subsequent reperfusion, and thus enhance the regeneration of affected 

nervous tissue. 

 

1.1 Ischemic brain injury 

The chapters about ischemia have been already published (Belov Kirdajova et al., 2020), 

and the text is adapted to the nature of this thesis. 

Stroke, or cerebral infarction, is one of the most common causes of mortality 

worldwide, as it is responsible for approximately six million deaths every year, with the 

lifetime risk for stroke estimated at around 9% (Woodruff et al., 2011; Seshadri et al., 

2006), and ~15% mortality (Marini et al., 1999). Aging, genetic polymorphisms, and 

presentations of unhealthy lifestyle, such as hypertension, obesity, smoking, or shift work, 

are all among risk factors (Boehme et al., 2017; Brown et al., 2009). It has been reported 

that age-specific stroke rates are higher in men; however, women suffer from higher total 

number of stroke events due to their longer life expectancy and overall higher incidence 
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at greater age. Additionally, it has been proven that women have worse post-stroke 

outcomes than their male counterparts (Etherton et al., 2017; Reeves et al., 2008). 

Characteristic symptoms of stroke range from mild to severe and may encompass 

dizziness, impairments in vision or body movement, difficulty speaking, and 

unconsciousness (Nadarajan et al., 2014). 

Ischemic stroke due to a blocked artery comprises more than 85% of all stroke 

incidents, while cerebral hemorrhage accounts for the rest (Woodruff et al., 2011). The 

most frequently affected vessel of the brain is the middle cerebral artery and its occlusion 

causes poor blood flow, followed by glucose and oxygen deprivation resulting in cell 

death, in a large lateral surface area of the brain (Puig et al., 2018) (Figure 1). 

 

 

Figure 1. Ischemic stroke. Local cerebral ischemia occurs when the blood flow to the brain is 

restricted because of a blood clot, typically thrombus or embolus. The most frequently occluded 

artery is the middle cerebral artery, causing ischemic stroke, with symptoms such as sensory loss, 

ataxia, or speech impairments (adapted from http://brainmind.com/Stroke.html). 

 

An apparent fall in the number of cells in the brain parenchyma is caused by its 

high demand of aerobic metabolism. The adult human brain represents a relatively small 

proportion of the body weight (only ~2%); however, it accounts for more than 20% of the 

whole-body energy budget (Doyle et al., 2008). Physiological cerebral blood flow (CBF) 

is at ~50 ml/100 g/minute and ischemic injury occurs once the CBF drops to less than 

40% of its normal values (Baron, 2001; Heiss et al., 2004). As the CBF gets below 10 

ml/100 g/minute, rapid irreversible damage to neurons ensues (Matsumoto et al., 1990). 

These irreversible changes involve a decrease in oxidative phosphorylation, adenosine 

triphosphate (ATP) depletion, and homeostatic imbalance of intracellular and 
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extracellular molecules (Figure 2), which results in excitotoxicity, oxidative stress, 

acidification, inflammatory response and apoptosis. 

 

 

 

Based on the duration of ischemia, neuronal cells die first, followed by glial cells 

– oligodendrocytes, astrocytes, and polydendrocytes (Caltana et al., 2009; Doyle et al., 

2008; White et al., 2000). Ischemic brain injury leads to motoric, sensoric, and cognitive 

dysfunctions and it is accompanied by elevated neurogenesis in the hippocampus and the 

subventricular zone (SVZ) of the lateral ventricles (LV). Glial cells also react to ischemic 

injury. Astrocytes and polydendrocytes undergo reactive gliosis, which is characterized 

by higher proliferation rate and hypertrophy, followed by glial scar formation, which 

impedes regenerative axonal growth in the central nervous system (CNS), but also 

prevents detrimental factors from entering the compromised area (Anderova et al., 2011; 

Pivonkova et al., 2010; Komitova et al., 2006). Moreover, microglial cells activate and 

transform into phagocytic cytotoxic cells. Oligodendrocytes undergo degenerative 

Figure 2. Ischemic cascade. 

Compromised blood flow to the brain 

causes a decrease in the adenosine 

triphosphate (ATP) production. Low 

concentration of ATP in turn negatively 

influences the activity of sodium-

potassium (Na
+
/K

+
) pump, which leads to 

depolarization due to ionic imbalance in 

the intra- and extracellular space. As a 

result, high concentration of calcium 

(Ca
2+

) triggers glutamate release and 

glutamate activates calcium-transmitting 

channels, forming thus a vicious circle of 

excitotoxicity. This results in the 

activation of downstream Ca
2+

-dependent 

enzymes that are involved in processes 

such as inflammation and apoptosis 

(adapted from Rama and García (2016)). 
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changes that result in the degradation of the myelin sheath covering axons (Bu et al., 

2004). 

Immediate restoration of blood flow with clot-dissolving (thrombolytic) drugs 

remains the most utilized approach trying to limit the extent of brain injury after stroke 

(Wardlaw et al., 2014). Nevertheless, recent studies attempt to take advantage of cell 

therapy, in which stem cells from various sources are used to replace damaged or dead 

cells in the neural tissue (Ruzicka et al., 2017). It is worth mentioning that the study of 

multipotent precursor cells, namely neural stem/progenitor cells (NS/PCs) and neuron-

glial antigen 2 (NG2)-positive glia (also called polydendrocytes), that give rise to other 

cell types in the mature CNS, may provide new data on the role of these cells in the 

regeneration after ischemic injury of nervous tissue. 

 

1.1.1 Focal cerebral ischemia 

Based on the extent and localization, ischemic injury can be divided into two subtypes: 

focal and global ischemia. While global cerebral ischemia (GCI) stems from an overall 

decrease in blood flow in the whole parenchyma of the brain due to transient cardiac 

arrest, focal cerebral ischemia (FCI) is a result of an occlusion of specific arteries that 

supply the brain with oxygen and glucose (Yao et al., 2018). 

As the name implies, FCI, or stroke, is confined to a locally defined region of the 

brain. This type of ischemia is usually a result of thrombosis (caused by a blood clot) or 

embolism (caused by a dislodged and relocated thrombus) (VanGilder et al., 2012; Figure 

1). Focal cerebral ischemia may be either transient (CBF reestablished) or permanent; 

nevertheless, both types cause only a local decrease in the CBF. In the vicinity of the 

occluded vessel, two distinct zones can be distinguished: a zone of severe ischemia – the 

infarction core, and a zone of moderate ischemia – the penumbra (Rossi et al., 2007). 

While at the onset of ischemia, the size of both zones is almost equivalent (Ginsberg, 

2003), the ischemic core spreads at the expense of penumbra as the ischemic injury 

progresses (Zhao et al., 1997). 

On the one hand, the infarction core is characterized by insufficient amounts of 

ATP, pathological concentrations of ions, increased concentrations of glutamate, and 

tissue acidosis – all features typical of excitotoxicity (Figures 3 and 4). Cell death already 

occurs within the first minutes after the onset of ischemic injury (Wetterling et al., 2016). 

 



25 

 

Figure 3. Focal cerebral ischemia. There are two distinguishable zones in the close vicinity of 

an occluded artery – infarction core and penumbra. The infarction core is characterized by high 

concentrations of extracellular potassium (K
+
) and glutamate (Glu), and intracellular calcium 

(Ca
2+

) as well as low values of extracellular sodium concentration (Na
+
), stored adenosine 

triphosphate (ATP), or pH. The farther from the ischemic core, the more physiological values of 

above-mention variables are observed, while the penumbra serves as a transition zone between the 

ischemic core, with necrotic tissue, and intact, healthy tissue (author's own scheme; drawn 

according to information from Rossi et al. (2007)). 

 

 

Figure 4. Core of focal cerebral ischemia. A 

scheme depicting events that occur in the 

ischemic core. Similar actions may be 

observed also during global ischemia. A 

decrease in the adenosine triphosphate (ATP) 

production inhibits sodium-potassium 

(Na
+
/K

+
) ATPase, which changes the 

transmembrane ion gradients. This causes 

depolarization and glutamate (Glu) release 

into the extracellular space. Ischemic injury as 

well results in extracellular acidification. 

Abbreviations: Ca
2+

 – calcium; Vm – 

membrane potential (Rossi et al., 2007). 
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On the other hand, there is a residual blood flow in the penumbra because of the 

presence of collateral arteries (Harukuni and Bhardwaj, 2006; Jung et al., 2017), with 

decreased but still sufficient ATP concentrations, only marginally shifted ionic 

concentrations and recurrent episodes of cortical spreading depression also called peri-

infarct depolarization (Hinzman et al., 2015; Oliveira-Ferreira et al., 2019; Figure 3 and 

5), and apoptosis as typical cellular death (Doyle et al., 2008; Rossi et al., 2007). 

 

 

 

Another factor that may add to the spared nervous tissue in the penumbral region 

of focal ischemia is the presence of the circle of Willis that creates a sort of redundancy 

for collateral circulation in the brain (Figure 6). It has been reported that abnormalities in 

the circle of Willis are often present in ischemic stroke localized in the middle cerebral 

artery territory (Husson et al., 2016; Du et al., 2011). 

 

Figure 5. Penumbra of focal cerebral 

ischemia. A scheme showing events in 

the penumbral region of focal brain 

injury. A decrease in adenosine 

triphosphate (ATP) is less severe; 

nevertheless, it triggers recurrent 

transient depolarizations coupled with 

ion shifts, while glutamate (Glu) 

concentrations rise slowly but steadily. 

Upon early reperfusion, penumbral tissue 

may be spared. However, during longer-

lasting ischemia, the penumbra is 

'devoured' by the ischemic core and 

necrosis occurs also in this region. 

Abbreviations: Ca
2+

 – calcium; K
+
 – 

potassium; Na
+
 – sodium; Vm – 

membrane potential (Rossi et al., 2007). 
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Figure 6. Anatomy of the circle of Willis. Schematic illustration of blood vessels supplying the 

rodent brain, where the posterior cerebral artery, posterior communicating artery, internal carotid 

artery, middle cerebral artery, anterior cerebral artery, and anterior communicating artery form the 

circle of Willis. This structure is named after Thomas Willis, who believed that it was 

a compensatory mechanism for a blocked brain vessel. The middle cerebral artery is prone to the 

occlusion, and together with variations in the circle of Willis, focal ischemia may occur to various 

extents (Vrselja et al., 2014). 

 

The penumbra also draws attention of regenerative medicine, since it is believed 

that normal functions might be restored especially in this zone (Jung et al., 2017). 
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Nevertheless, residual or even newly formed viable neurons have been also detected in 

the ischemic core (Jiang et al., 2017). 

All the processes listed before take place at the site of injury – in the cerebral 

cortex; however, in our experiments on NS/PCs, we focused on a region distant from the 

cortex, specifically on the SVZ. This zone is localized around the LV in the medial region 

of the brain. It has been documented that the induction of focal ischemia has a consistent 

impact also on the physiological functions of cells residing there (Ginsberg, 2003). 

 

1.2 Postnatal neurogenesis 

The process of transition from NS/PCs to matured neurons and glial cells is called 

neurogenesis and gliogenesis, respectively. Neurogenesis occurs predominantly at 

embryonic stages of the mammalian ontogenetic development. During embryogenesis, 

neurons are produced from embryonic neural stem cells (NSCs) in the neural tube, while 

gliogenesis is suppressed and increases at the perinatal stage and continues postnatally 

(Miller and Gauthier, 2007). Over the course of neurogenesis, radial glial cells in the 

ventricular zone (VZ) act as primary NSCs and are the main source of newly formed 

neuronal cells in many CNS regions (Lui et al., 2011). Another source of neurons is a 

pool of radial-glia-derived intermediate progenitors, also termed basal progenitor cells, 

occupying the SVZ (Noctor et al., 2004; Haubensak et al., 2004). After several waves of 

symmetric and asymmetric divisions, NSCs differentiate to neurons. However, neurons 

do not form neural circuits immediately as they first migrate relatively long distances to 

the forming cortex and mature there (Rakic, 1995). 

Nerve cells are post-mitotic, which means that they do not divide, and for many 

years, a premise saying that neurogenesis ceases after birth was set. However, not all 

neurons are generated during embryogenesis, since there are precursor cells that 

proliferate in the postnatal CNS and might potentially differentiate and mature into 

functional neurons and glial cells (Gage et al., 1995; Ramasamy et al., 2013). These two 

main endogenous sources of new neurons in the mammalian brain are NS/PCs (Butti et 

al., 2019) and polydendrocytes (also named NG2 glia) (Kirdajova and Anderova, 2019; 

Tsoa et al., 2014; Belachew et al., 2003). 
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1.2.1 Neural stem/progenitor cells 

In 1960s, postnatal neurogenesis in the CNS was documented for the first time (Altman 

and Das, 1965). Under physiological conditions, adult neurogenesis takes place in two 

distinct regions of the mammalian brain – the subgranular zone (SGZ) of the dentate 

gyrus in the hippocampus, and the SVZ of the LV, which is adjacent to the striatum 

(Figure 7) (Vukovic et al., 2011; Ihrie and Alvarez-Buylla, 2008; Doetsch et al., 1999). 

These two regions are considered bona fide neurogenic zones of the adult brain, as they 

have been shown to comprise NS/PCs that possess the trait of generating distinct cell 

types in vitro as well as in vivo (Lie et al., 2005; Bizen et al., 2014). These NS/PCs also 

self-renew in vitro and in vivo indefinitely, and thus meeting the definition of “stem cells” 

(Malatesta et al., 2008). However, they proliferate at a much slower pace than during 

embryogenesis (Furutachi et al., 2013). Besides the two neurogenic regions of the adult 

CNS, there is a body of evidence that during ischemia, multiple neurogenic sites within 

the brain parenchyma are activated, lasting for more than one month after the induction of 

ischemic injury (Kokaia et al., 2006). 

 

 

Figure 7. Neurogenic niches of the mature mouse brain. The illustrations depicting sagittal 

(top) and coronal (bottom) sections of the brain. There are two distinct regions of the rodent 

brain where adult neurogenesis takes place (depicted in blue) – the subgranular zone (SGZ) of the 

dentate gyrus in the hippocampus, and the subventricular zone (SVZ) of the lateral ventricles 

(LV). The SGZ produces neurons that incorporate in the hippocampus, while the neurons derived 
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from the SVZ migrate along the so-called rostral migratory stream (RMS) to the olfactory bulb 

(OB) and mature there (adapted from Vukovic et al. (2011)). 

 

Adult NS/PCs share some common properties with astrocytes, which could be a 

reason why they were discovered just recently. Both cell types express glial fibrillary 

acidic protein (GFAP) and vimentin (Vim), are interconnected with gap junctions, and 

their membranes possess glutamate transporters. Moreover, they also resemble each other 

morphologically (Namba et al., 2005; Doetsch, 2003). Despite these similarities between 

astrocytes and stem cells, adult neurogenesis is presumably maintained by the local 

microenvironment, or niche, and the presence of specific factors and molecules is the 

most crucial difference separating NS/PCs from astrocytes (Lee et al., 2012). 

In our study, we focused on NS/PCs residing in the SVZ, of which the architecture 

is well described in mice (Figure 8). This region contains three main cell types (A-, B-, 

and C-type cells): astrocytes (B-type), being bona fide stem cells, and giving rise to 

highly proliferative transient amplifying cells (C-type) that, in turn, generate migratory 

neuroblasts (A-type). These neuroblasts eventually differentiate to mature neurons in the 

olfactory bulb (OB), where they incorporate into the existing neuronal circuit (Ihrie and 

Alvarez-Buylla, 2008; Gil-Perotin et al., 2013). 

 

 

Figure 8. Architecture of the subventricular zone (SVZ) in mice. The illustration showing 

coronal section of the brain (left) and the cellular composition of the neurogenic niche (right). 

This region is adjacent to the walls of the lateral ventricles (LV) and is composed of B-type cells, 

corresponding to bona fide astrocytic stem/progenitor cells, rapidly dividing C-type cells, derived 

from the B-type cells, and their progeny – A-type cells that represent neuroblasts migrating to the 

olfactory bulb where they differentiate to neurons. The SVZ cells contact ependymal cells (E), the 
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basal lamina (BL), and microglia (M) and are in the vicinity of blood vessels (BV) (Ihrie and 

Alvarez-Buylla, 2008). 

 

However, adult neurogenesis in humans is rather disputable, since no significant 

presence of postnatally generated neurons has been observed in many studies (Sorrells et 

al., 2018; Coletti et al., 2018). This could be due to the fact that in humans, newly 

generated neuronal precursors from the SVZ do not migrate to the olfactory bulb unlike in 

rodents (Bergmann et al., 2012). On the other hand, there is evidence of neurogenesis in 

the striatum of the postnatal human brain (Ernst et al., 2014). 

In the adult brain, a subpopulation of NS/PCs at neurogenic niches expresses 

mouse homologue of drosophila dachshund gene (mDach1) that is also expressed in the 

embryo (Machon et al., 2002). In the experimental setting, these stem cells differentiated 

under physiological conditions only to glial cell types. However, after FCI, enhanced 

neurogenesis was observed and newly-derived neuronal precursors migrated to the OB, 

where they matured (Honsa et al., 2013). When mDach1-expressing NS/PCs were 

transplanted into the lesioned brain, they also differentiated to neurons with 

characteristics similar to those found in the intact brain. This might favour this type of 

stem cells to replace lost cells in the damaged or diseased brain in regenerative therapies 

(Prajerova et al., 2010a). 

 

1.2.2 NG2 glia 

At the beginning of 1980s, the very first reference to NG2 glia was made. These cells 

were described in immunofluorescent double-labeling experiments as a cell type that has 

some properties associated with neuronal cells and some characteristics common with 

glia (Stallcup, 1981). Presumably, their name stems from this discovery, as it is an 

abbreviation of neuron-glial antigen 2. This antigen is also called chondroitin sulfate 

proteoglycan 4 and is encoded by the Cspg4 gene. Additionally, these cells can be also 

identified by the expression of platelet-derived growth factor alpha receptor (PDGFαR), 

of which ligand is responsible for their survival and proliferation (Rivers et al., 2008; 

Calver et al., 1998). 

NG2 cells enjoy various pseudonyms as they exercise many functions in the CNS. 

They are oligodendrocyte precursor cells (OPCs) because their subpopulation gives rise 

to oligodendrocytes under physiological conditions (Boshans et al., 2019; Figure 9). They 

are also termed polydendrocytes because they possess many elaborate, highly branched 
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processes (Chittajallu et al., 2004). Especially in grey matter they thus resemble 

astrocytes; however, the processes of NG2 cells are not that well-developed and bushy. 

Last but not least, they are also termed synantocytes because they often contact neurons at 

their synapses and nodes of Ranvier (Serwanski et al., 2017; Bergles et al., 2000). 

 

 

Figure 9. NG2 cells in the oligodendrocyte lineage. A scheme depicting development of 

polydendrocytes (top) with markers characterizing different developmental stages (bottom). 

There are two markers, neuron-glial antigen 2 (NG2) and platelet-derived growth factor alpha 

receptor (PDGFαR), that are expressed only in polydendrocytes and not in neural stem cells or 

oligodendrocytes. As NG2 cells differentiate to myelinating cells, the expression of specific 

proteins commences. Abbreviations: MBP – myelin basic protein; O4 – oligodendrocyte antigen 

O4; OLIG2 – oligodendrocyte transcription factor OLIG2; SOX10 – transcription factor SOX10 

(Nishiyama et al., 2009). 

 

Synantocytes also display a complex membrane current pattern composed of 

passive potassium (K
+
) conductance, with inwardly and outwardly rectifying K

+
 currents 

(Lin and Bergles, 2002). During development, NG2 cells are densely packed at 

neurogenic areas occupied by stem cells (Spassky et al., 1998). Conversely, 

polydendrocytes in the adult CNS are spread within both white and grey matter and are 

almost as numerous as astrocytes. They form 8-9% of all cells in white matter, while they 

comprise only 2-3% of all cells in grey matter (Dawson et al., 2003). Especially in grey 

matter, they populate the nervous tissue in territories, meaning that every single NG2 cell 

has its own space and 'monitors' the neighboring tissue with its processes (Nakano et al., 

2017). 

It is now well established that NG2 glia is a mature macroglial cell type in the 

adult CNS, distinct from astrocytes and oligodendrocytes. Polydendrocytes persist 

throughout the postnatal CNS and proliferate slowly. Nevertheless, they are considered 

the most proliferative glial cell type in the adult mammalian brain (Dawson et al., 2000). 
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NG2 cells that express the gene 2',3'-cyclic nucleotide 3'-phosphodiesterase 

(Cnp), also known as CNPase, were shown to differentiate also to neurons in vitro. The 

same was also confirmed in in vivo experiments, where these proliferative precursors of 

the adult CNS gave rise to functional neurons that propagated action potentials (Belachew 

et al., 2003). Moreover, postnatal NG2 cells from the SVZ migrated to the OB and 

differentiated to interneurons or oligodendrocytes. On the other hand, polydendrocytes 

from the cortex differentiated to oligodendrocytes or astrocytes. This diverse 

differentiation potential of NG2 cells from various regions of the postnatal brain implies a 

region-specific variance within this cell type (Aguirre and Gallo, 2004), which has also 

been confirmed by the finding that grey and white matter NG2 cells show distinct 

membrane properties (Chittajallu et al., 2004). It has been demonstrated that early 

postnatal NG2 cells from the SVZ show characteristics similar to those of transient 

amplifying multipotent cells of C-type (Aguirre et al., 2004), while another study claimed 

that NG2 cells definitely represent a cell population that is distinct from NS/PCs in the 

postnatal SVZ (Komitova et al., 2009). Moreover, similarly to the moot point in NS/PCs, 

there is also a strong disagreement about the neurogenic potential of NG2 cells (Kang et 

al., 2010). 

Although NG2 cells are known to provide the CNS with oligodendrocytes during 

development and normal functioning of the mature CNS, or with remyelinating cells in 

demyelinated lesions, the situation is completely different after ischemia (Valny et al., 

2017). A proportion of the resident NG2-expressing cell population in the vicinity of the 

lesion promptly responds to ischemic injury, which includes migration towards the site of 

injury, cell proliferation and reactive gliosis (Bonfanti et al., 2017; Tanaka et al., 2001). 

The alteration in the differentiation potential of NG2 cells induced by CNS injury is also 

a subject for discussion. Recent fate-mapping experiments showed that NG2 glia acquire 

a multipotent phenotype after the occlusion of the middle cerebral artery. These 

precursors differentiated to reactive astrocytes (Valny et al., 2018; Honsa et al., 2016; 

Honsa et al., 2012). Differentiation to this cell type may promote the survival of spared 

neurons as GFAP-positive reactive astrocytes contribute to the formation of glial scar and 

thus prevent detrimental substances from entering the affected tissue. Nevertheless, glial 

scar can act as a double-edged weapon, since in later stages of ischemic injury, it inhibits 

neurite outgrowth and CNS regeneration (Pekny et al., 2014). However, despite the 

findings that the NG2 molecule inhibits the growth of axons, some studies indicated that 

NG2 cells provide an adhesive substrate and facilitate axonal growth (Yang et al., 2006). 
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Additionally, there is some evidence that NG2 glial cells isolated from adult rodents are 

progenitors of newly derived doublecortin (DCX)-positive neuronal cells (Honsa et al., 

2012). Neuronal fate of polydendrocytes after CNS injury had been already challenged. 

However, the experiments were performed in a model of amyotrophic lateral sclerosis 

rather than in a model of FCI (Kang et al., 2010). And since the fact that polydendrocytes 

react differently to various types of CNS injuries is well-accepted, the results from the 

above-mentioned publications do not contradict each other. For example, after a stab 

wound injury, only a small subpopulation of reactive astrocytes was generated from NG2 

glia (Komitova et al., 2011), which was not the case in the ischemic brain (Honsa et al., 

2012). 

The reported neurogenic potential of NG2 cells after ischemia or in other CNS 

pathologies might increase the recuperation of the damaged tissue and thus better the 

overall outcome. 

 

1.3 Cellular signaling pathways 

Neurogenesis, hand in hand with gliogenesis, largely depends on molecular and genetic 

inputs such as growth factors and cellular signaling pathways, but these processes are also 

modulated during pathological states (Lamus et al., 2020; O'Keeffe et al., 2009). 

In our study, we focused on two highly influential signaling cascades that 

modulate the fate of cells from the embryo, throughout the life of an organism until its 

demise. These two cellular pathways are called the Wnt and the Shh signaling pathway. 

Their role in the development of the brain has been well established, since both of them 

were identified as survival factors for embryonic NS/PCs (Kalani et al., 2008; Komada et 

al., 2008). Nevertheless, recent research riveted its attention more on the function of these 

morphogens in neurogenesis and in the modulation of progenitor cells properties after 

birth (Lie et al., 2005; Lai et al., 2003). 

 

1.3.1 Wnt signaling pathway 

Neural progenitors are strongly influenced by their microenvironment. Among many 

transcription factors, growth factors and small molecules affecting the regulation of cell 

precursors, it is Wnt signaling that steps into the limelight (Bowman et al., 2013; Bonnert 

et al., 2006). 
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The Wnt ligands belong to a large group of secreted cysteine-rich glycosylated 

proteins that are involved in many cellular processes, such as embryonic cell patterning, 

cell proliferation and differentiation, synaptic plasticity, or programmed cell death 

(Chodelkova et al., 2018; Clevers et al., 2014; Lim and Nusse, 2013; Alvarez et al., 

2004). There are 19 distinct Wnt genes in the mammalian genome and three major Wnt 

signaling pathways have been identified: the canonical Wnt (β-catenin) pathway and two 

non-canonical pathways – the planar cell polarity and Wnt/calcium (Ca
2+

) pathways. 

Since in our experiments, we focused on canonical Wnt signaling, non-canonical 

pathways are only briefly described in this literary review. The planar cell polarity 

pathway orchestrates the orientation of the cells that reside in the tissue. It does not 

involve β-catenin and signals through the frizzled receptor and activates small proteins 

and kinases that regulate cytoskeleton. In the Wnt/Ca
2+

 pathway, the signal is relayed 

through phospholipase C, which triggers the Ca
2+

 release from the endoplasmic 

reticulum. Elevated intracellular Ca
2+

 concentration activates Ca
2+

-dependent enzymes 

that regulate cell adhesion and migration (van Amerongen, 2012). 

The signaling relay of the canonical Wnt (β-catenin) pathway starts at the 

cytoplasmic membrane and ends in the nucleus. In the absence of a Wnt signal, the multi-

protein destruction complex is formed in the cytoplasm. Kinases of this complex put a 

molecular tag on β-catenin, the key factor of the whole cascade, and thus mark it for 

degradation in the proteasome. Nevertheless, activation of the canonical Wnt pathway 

stabilizes β-catenin. This stabilization is achieved via a negative regulation of glycogen 

synthase kinase 3β (GSK-3β), followed by accumulation of β-catenin in the cytoplasm 

and its subsequent translocation to the nucleus, where it binds to the transcription factors 

T-cell factor/lymphoid enhancer factor (TCF/LEF), and thus influences the expression of 

Wnt target genes (Wiese et al., 2018; Nusse, 2008; Hamada et al., 1999; Figure 10). 

Many of these genes are implicated in proliferation and differentiation of neural 

precursors, or in self-regulation of the pathway, with its numerous negative feedback 

loops (ten Berge et al., 2008; Mikels and Nusse, 2006). 
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Figure 10. Canonical Wnt signaling pathway. In the absence of wingless and integrated (Wnt) 

ligand, the so-called destruction complex is formed in the cytoplasm, consisting of axin, casein 

kinase 1 (Ck1), dishevelled (Dvl), adenomatous polyposis coli (APC), and glycogen synthase 

kinase 3 (Gsk3), which marks β-catenin, the key protein of the pathway, for degradation in the 

proteasome. However, once the Wnt signal binds the receptors frizzled and low density 

lipoprotein receptor-related protein (Lrp), no destruction complex is formed, β-catenin 

accumulates in the cytoplasm and subsequently translocates to the nucleus where it binds to 

transcription factors T-cell factor/lymphoid enhancer factor (Tcf/Lef), which activates Wnt target 

genes such as leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) and Axin2 

(adapted from Wiese et al. (2018)). 

 

As it was already indicated above, the Wnt pathway exercises a plethora of 

functions during embryogenesis. As an example, in mice with disrupted Wnt signaling, a 

part of the midbrain did not develop, indicating that the Wnt cellular relay is essential for 

the survival of stem cells that form this part of the brain, as well as for their 

differentiation (Brault et al., 2001). Conversely, stabilized β-catenin protein in NS/PCs 

led to enlarged brains with enlarged lateral ventricles, which was caused by higher 

numbers of precursor cells in this region (Chenn and Walsh, 2002). The key element of 

canonical Wnt signaling, β-catenin, plays a crucial role in gene transcription and cell 

adhesion (Mosimann et al., 2009; Nelson and Nusse, 2004). All these data support the 

notion that the Wnt signaling pathway regulates the activity of stem cells in 

embryogenesis. 
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However, the role of Wnt signaling is indisputable also in the postnatal stages of 

ontogenesis. Activation of β-catenin-dependent signaling promoted proliferation of 

precursor cells in the SVZ, while its inhibition reduced the number of newly generated 

cells (Adachi et al., 2007). Similar effects of Wnts were observed also in the other 

neurogenic niche of the adult brain, the SGZ, where the Wnt3 ligand was specifically 

responsible for an increase in neurogenesis in vitro as well as in vivo, while in the 

presence of Wnt inhibitors, neurogenesis was almost extinguished (Lie et al., 2005). 

Moreover, components of Wnt signaling have been shown to interact with a variety of 

other molecules such as fibroblast growth factor (FGF) or retinoic acid and influence thus 

the pool of NS/PCs (ten Berge et al., 2008; Jacobs et al., 2006). 

Additionally, it has been shown that hypoxia and FCI increase the number of 

NS/PCs in the hippocampus and GFAP-positive neural progenitors in the SVZ, 

respectively, and also promote the expansion of neuroblasts one month after middle 

cerebral artery occlusion (MCAO), and canonical Wnt signaling is involved in this 

process (Zhang et al., 2014a; Cui et al., 2011). Similarly, the impact of β-catenin on the 

ability of NS/PCs to give rise to neurons, as well as to oligodendrocytes, in ischemic 

conditions was confirmed also in another study (Zhang et al., 2016). Moreover, Wnt 

signaling contributed to functional recovery following focal ischemia in mice (Shruster et 

al., 2012). 

The output of the Wnt pathway can be regulated in many ways and at many 

subcellular levels. For example, the activity of Wnt signaling can be attenuated by 

ribonucleic acid interference (RNAi). Small interfering RNA (siRNA), inhibiting the 

related to receptor tyrosine kinase (Ryk), caused a significant decrease in TCF-driven 

transcription (Lu et al., 2004). Another approach may be the addition of small molecules, 

since this has been shown to either inhibit or activate Wnt signaling to various degrees. 

Pai et al. (2004) used deoxycholic acid that induced stabilization of β-catenin and its 

subsequent translocation to the nucleus, which, in turn, led to a higher expression of 

cyclin D1, one of the Wnt signaling target genes. Others utilized purified natural 

compounds, or their synthetically developed derivates, to disrupt the β-catenin/Tcf 

protein-protein interaction, and thus inhibit the Wnt pathway (Chen et al., 2009; 

Lepourcelet et al., 2004). Moreover, treatment with andrographolide, a competitive 

inhibitor of GSK-3β, increased NS/PCs proliferation and the number of newborn neurons 

in the hippocampus (Varela-Nallar et al., 2015). Another way of manipulating Wnt 

signaling at different subcellular levels could represent microinjections of messenger 
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ribonucleic acid (mRNA) into the blastomeres of an embryo (Glinka et al., 1998; 

Molenaar et al., 1996). However, the current method of choice is employing animal 

models, especially various transgenic mouse strains (Kriska et al., 2016; Korinek et al., 

1998). 

All the above-described findings show the importance of the Wnt/β-catenin 

pathway in proliferation and differentiation of NS/PCs in the adult brain, especially 

during different pathophysiological conditions involving ischemia. Additionally, knowing 

that neural progenitors have the capacity to differentiate to other cell types of the CNS, 

altering this signaling may ameliorate or even overcome the difficulties associated with 

the diseased CNS. 

  

1.3.2 Sonic hedgehog signaling pathway 

Another cellular pathway that affects neurogenesis and gliogenesis is Shh signaling. This 

pleiotropic secreted protein, which acts as morphogen and mitogen in embryogenesis, 

belongs to the hedgehog family, together with two other ligands – indian hedgehog and 

desert hedgehog (Xia et al., 2019). Nevertheless, our work was dedicated only to Shh, 

major activating ligand in the brain, which has an irreplaceable role in the organization of 

the developing brain and is required for the formation of precursor cells (Merkle et al., 

2014; Rash and Grove, 2011). 

In the absence of a Shh signal, protein kinase A (PKA) phosphorylates 

transcription factors glioma-associated oncogenes (GLIs) that are subsequently 

proteolytically processed by the proteasome and act as transcriptional repressors. 

However, once a Shh ligand is attached to its receptor patched (Ptch), abolishing thus its 

inhibiting modulation on the transmembrane receptor smoothened (Smo), the expression 

of Smo is increased and the protein starts to accumulate at the primary cilium of the cell. 

This in turn causes a decrease in the activity of PKA (Callejo et al., 2007). Downstream 

GLI proteins can be then modified and translocated to the nucleus where they activate so-

far inhibited target genes (Ho and Scott, 2002; Figure 11). 
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Figure 11. Sonic hedgehog (Shh) signaling pathway. Once the Shh ligand binds to the patched 

(Ptch) receptor at the cell membrane, the signaling pathway is activated. The receptor no longer 

inhibits smoothened (Smo) as this protein accumulates at the primary cilium, a microtubule-based 

organelle, and promotes the downstream relay of signals. Smo activates glioma-associated 

oncogene (Gli), which enters the nucleus and binds to the Shh target genes. Abbreviations: Kif7 – 

kinesin-4 family protein 7; SUFU – supressor of fused (Carballo et al., 2018). 

 

The Shh pathway promotes NS/PCs survival and proliferation, since its disruption 

caused deficient formation of the telencephalon (Komada et al., 2008). Studies also 

revealed that Shh is necessary for the production of oligodendrocytes from neural 

progenitors during embryogenesis, while a decrease in the population of oligodendrocytes 

after the deletion of the Shh signaling effector Smo was compensated by increased 

proliferation of NG2 cells (Winkler and Franco, 2019). 

This signaling is active also postnatally, especially in the neurogenic niches, 

where its activation resulted in enhanced proliferation of precursor cells in these regions 

(Lai et al., 2003). The experiments performed in the SVZ indicated that B-cells (stem 

cells), followed by C-cells (transient amplifying cells), were the major Shh-responding 

populations, and that inhibition of this pathway led to decreased numbers of new neurons 

(Palma et al., 2005). 

Moreover, higher activity of Shh signaling has been also observed during acute 

brain injury, in which this ligand promoted reactive gliosis and cell proliferation 
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(Amankulor et al., 2009). Similar upregulation of Shh signaling was also identified during 

brain ischemia, while this mitogen was found to be a mediator contributing to ischemia-

induced expansion of NS/PCs in vitro and in vivo (Androutsellis-Theotokis et al., 2006). 

Additionally, it was shown that in cerebral ischemia, Shh is necessary and sufficient to 

trigger the 'multipotency mode' of reactive glia that then acquire the characteristics of 

stem cells (Sirko et al., 2013). On the other hand, under physiological conditions, neuron-

derived Shh had an opposite effect and prevented astrocytes from the transformation to 

their reactive form (Garcia et al., 2010). Interestingly, it has been proven that the SVZ is 

organized in microdomains of NS/PCs that differentiate to distinct types of neurons, 

while various components of the Shh pathway are specifically expressed in these 

microdomains (Ihrie et al., 2011). 

Another work on Wnt as well as Shh signaling showed that these pathways altered 

the differentiation potential of neonatal NS/PCs, as they both increased neurogenesis and 

suppressed gliogenesis. Moreover, these two signaling relays influenced proliferation and 

differentiation of stem cells differently. Only Wnt enhanced the formation of cellular 

processes and increased proliferation at the early stage of in vitro differentiation, while 

Shh had no effect on the development of the processes and maintained higher 

proliferation rate of cells during the entire course of differentiation (Prajerova et al., 

2010b). Additionally, a new role of these two signaling pathways emerged recently. They 

interact with the receptor for activated C kinase (Rack1) to control the accurate 

mammalian cerebellar morphogenesis (Yang et al., 2019). 
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2 AIMS OF THE STUDY 

The purpose of this study was to elucidate the role of cellular signaling pathways 

(canonical Wnt signaling and Shh signaling) in gliogenesis and neurogenesis utilizing 

precursor cells (NS/PCs from the SVZ or NG2 glia from the cortex) isolated from 

neonatal (up to postnatal day 2) as well as adult (2-month-old and older) transgenic mice 

with tamoxifen (TAM)-inducible Cre-mediated recombination of deoxyribonucleic acid 

(DNA). 

We assessed the effect of signaling pathways under physiological conditions as 

well as after the induction of FCI. The phenotype of cells derived from the precursor cells 

was identified using the patch-clamp technique in the whole-cell configuration, 

immunochemical analysis, reverse transcription quantitative polymerase chain reaction 

(RT-qPCR), and Western blotting. For this study, we put together our principal 

hypothesis saying that the manipulation (either inhibition or activation) of canonical Wnt 

signaling after FCI may change the differentiation potential of precursor cells and thus 

ameliorate the negative effects of ischemic brain injury. This hypothesis was 

subsequently divided into three partial hypotheses and four associated specific aims as 

follow: 

 

Hypothesis 1: The differentiation potential of NS/PCs isolated from neonatal and adult 

mice is influenced by Wnt signaling manipulation. 

 

Aim 1: To evaluate three transgenic mouse models that enable Wnt signaling 

manipulation in in vitro experiments employing RT-qPCR, immunocytochemical 

analysis, and Western blotting. 

 

Aim 2: To assess neonatal and adult NS/PCs under physiological conditions utilizing 

electrophysiological analyses, immunocyto/histochemical analyses, Western blotting, and 

RT-qPCR. 

 

Hypothesis 2: Ischemic injury itself triggers proliferation and differentiation of NS/PCs. 

We assume that the differentiation potential of NS/PCs isolated from the SVZ following 

permanent FCI is modulated by Wnt signaling manipulation. 
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Aim 3: To disclose the differentiation potential of adult NS/PCs after ischemic brain 

injury using electrophysiological and immunohistochemical analyses, RT-qPCR, and 

Western blotting. 

 

Hypothesis 3: The differentiation potential of polydendrocytes (NG2 glia) isolated from 

adult mice can be modulated by FCI, and Wnt and Shh signaling pathways. 

 

Aim 4: To evaluate adult NG2 glia after ischemic brain injury employing FACS, single-

cell RT-qPCR, immunohistochemical and electrophysiological analyses, and the 

administration of Shh signaling activators and blockers. 
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3 MATERIALS AND METHODS 

To fulfil the set goals, we employed transgenic mouse strains as a source of neural 

progenitors (NS/PCs and NG2 glia) and as a tool for manipulating the canonical Wnt 

signaling pathway, MCAO as a means of inducing FCI, and a series of experimental 

procedures to prepare the specimens for analyses and to assess the changes in the 

differentiation potential of NS/PCs and NG2 cells under various experimental conditions. 

 

3.1 Transgenic animal models 

In our experiments, we employed transgenic mouse strains that enabled us to alter the 

activity of cellular signaling pathways in distinct cell types or to track the fate of neural 

progenitors derived from various regions of the rodent brain. The procedures that 

involved the employment of laboratory animals were carried out in accordance with the 

European Communities Council Directive from November 24, 1986 (86/609/EEC) and 

with the guidelines of the Institute of Experimental Medicine, Czech Academy of 

Sciences, which was approved by the Animal Care Committee (approval numbers 

18/2011, 146/2013, and 2/2017). Additionally, all efforts were made to minimize both the 

suffering and the numbers of mice assigned to the individual experiments. 

 

3.1.1 Mouse strains for experiments on neural stem/progenitor cells 

In our experiments on NS/PCs, neonatal (postnatal day 0-3) mice or adult (postnatal day 

50-56) male mice were employed, and three different transgenic mouse strains were 

utilized. These animals facilitated the manipulation of the canonical Wnt signaling 

pathway at different subcellular levels, specifically at the nuclear, membrane, or 

cytoplasmic levels. First, we employed the Rosa26-Dkk1 mice (Wu et al., 2008), in which 

after Cre-mediated excision of a transcriptional blocker, the mice produced the 

extracellular Wnt pathway inhibitor Dickkopf 1 (Dkk1) from the ubiquitous Rosa26 locus 

(Figure 12), blocking membrane receptors of the pathway. Next, the Catnb
lox(ex3)

 mice 

harbored the floxed allele of the Ctnnb1 gene (the gene that encodes protein β-catenin; 

Harada et al., 1999). In these mice the allele enabled conditional stabilization of β-catenin 

(Figure 12). Lastly, the Rosa26-tdTomato-EGFP/dnTCF4 mice (Janeckova et al., 2016) 

produced dominant negative (dn)TCF4 protein from the Rosa26 locus and this protein 

acted as a nuclear Wnt pathway inhibitor (similarly to the Rosa26-Dkk1 strain, dnTCF4 
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expression was triggered upon Cre-mediated excision of a transcriptional blocker that was 

located upstream of dnTCF4 complementary DNA (cDNA); Figure 12). Moreover, this 

strain was designed to produce tandem dimeric (td) red fluorescent protein Tomato 

(Tom), which was replaced by enhanced green fluorescent protein (EGFP) after Cre-

mediated DNA excision. All these mouse strains were individually crossbred with the 

general Cre deletor mouse Rosa26-CreERT2 that possessed TAM-inducible Cre 

recombinase fused with a mutant form of estrogen receptor (ERT2) (Ventura et al., 2007; 

Figure 12). According to the resulting genotype, the mice enabled inhibition of Wnt 

signaling either at the nuclear level (genotype Rosa26
dnTCF4/CreERT2

; further termed 

'dnTCF4' mice/cells), or at the membrane level (genotype Rosa26
Dkk1/CreERT2

; further 

termed 'Dkk1' mice/cells). Moreover, Ctnnb1
del(ex3)/+

Rosa26
+/CreERT2

 mice (where 'del' 

stands for deletion; further termed 'Ex3' mice/cells), produced a stable form of β-catenin 

protein that hyper-activated the canonical Wnt signaling pathway upon Cre-mediated 

excision of the DNA sequence for exon 3 of the Ctnnb1 gene. 

 

 

Figure 12. Modulation of the Wnt signaling pathway in transgenic mice. (Left) Schemes 

depicting genetic modifications present in the mouse strains used in the study of neural 

stem/progenitor cells. Suppression of Wnt signaling at the membrane level, due to the over-

expression of a secreted Wnt inhibitor Dickkopf 1 (Dkk1). Activation of the pathway caused by 

the production of a stable variant of β-catenin. Cre-mediated excision of exon 3 (E3 or Ex3, red 

rectangle) removes the amino acid sequence involved in the degradation of the protein, and thus 

stable β-catenin aberrantly activates Wnt target genes. The Wnt-responsive transcription in the 
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nucleus is blocked by dominant negative T-Cell factor 4 (dnTCF4). Cre deletor mouse, Rosa26-

CreERT2, carries the gene encoding tamoxifen-inducible Cre recombinase, fused with a mutated 

form of the estrogen receptor (CreERT2). (Right) Simplified scheme of the canonical Wnt 

signaling pathway that shows where the alterations take place. Red arrows point to the 

interference site affected in the transgenic mice used in the study. Abbreviations: APC – 

adenomatous polyposis coli; Cre – Cre recombinase; Dvl – dishevelled; E2-10 – exon 2-10; EGFP 

– enhanced green fluorescent protein; GSK-3β – glycogen synthase kinase 3β; LRP5/6 – low-

density lipoprotein 5/6; P – phosphorylated site; pA – polyadenylation site; PGK-Neo – neomycin 

resistance cassette; TCF/LEF – T-Cell Factor/Lymphoid Enhancer Factor; td – tandem dimer; 

Wnt – Wingless/Integrated (adapted from Kriska et al. (2016)). 

 

The Cre-recombination-mediated manipulation of Wnt signaling was achieved 

either by addition of 1 μM (Z)-4-hydroxytamoxifen (4OHT; dissolved in ethanol (EtOH); 

Sigma-Aldrich, St. Louis, MO, USA) into the differentiation medium, or by 

intraperitoneal (i.p.) injections of TAM (200 mg/kg of the animal's body weight; Toronto 

Research Chemicals, Toronto, Ontario, Canada) dissolved in corn oil (CO; Sigma-

Aldrich, St. Louis, MO, USA). Mice/cells treated only with the vehicle (EtOH or CO) 

were considered as controls and labeled as 'EtOH' and 'CO', respectively, while mice/cells 

with manipulated Wnt signaling were labeled as '4OHT' or 'TAM'. Intraperitoneal (i.p.) 

injections of TAM were delivered in two doses, each once a day of two consecutive days 

and experiments (MCAO or tissue collection) were performed on the third day after the 

last TAM injection. 

 

3.1.2 Mouse strain for experiments on NG2 glia 

Our experiments on NG2 cells (also termed polydendrocytes) were performed in 3-

month-old offspring of B6.Cg-Tg(Cspg4-cre/Esr1*)BAkik/J mice crossbred with mice of 

the strain B6;129S6-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J (further termed 'Cspg4-

Tom' mice/cells; Jackson Laboratory, Bar Harbor, ME, USA; Figure 13). In these mice, 

the expression of TAM-inducible Cre recombinase was controlled by the Cspg4 promoter 

(Zhu et al., 2011). After TAM administration, tdTomato red fluorescent protein was 

expressed in Cspg4-positive (or Cspg4
+
) mice/cells, which included mainly NG2 cells 

and their progeny. 

 



46 

 

Figure 13. Scheme showing genetic modifications present in the mouse strain used for 

experiments on NG2 cells. These mice possess deoxyribonucleic acid (DNA) for red fluorescent 

protein tdTomato, which is blocked by transcriptional blocker (STOP), in all cells of the organism 

(Rosa26 locus). At the same time, their genome comprises DNA for Cre recombinase fused with a 

mutated form of estrogen receptor (CreEsr1) that is expressed in all cells with active Cspg4 

promoter, a hallmark of NG2 cells. However, this fused protein cannot enter the cell nucleus 

because of its conformation. Nevertheless, upon tamoxifen administration, the protein changes its 

conformation, allowing thus translocation to the nucleus where it cuts out the STOP sequence. 

The expression of the fluorescent protein is no longer blocked and Cspg4-positive cells turn red. 

This procedure creates mice/cells that are further called 'Cspg4-Tom'. Abbreviations: Cre – Cre 

recombinase; Cspg4 – chondroitin sulfate proteoglycan 4; Esr1 – estrogen receptor 1; pA – 

polyadenylation site; td – tandem dimer (author's own scheme). 

 

Tamoxifen was administered in a form of i.p. injections for two consecutive days 

(200 mg/kg, Sigma-Aldrich, St. Louis, MO, USA) and experiments were carried out 14 

days after the last TAM injection, unless stated otherwise. In order to inhibit or activate 

Shh signaling in these mice, i.p. injections of either specific antagonist cyclopamine (Cyc, 

25 mg/kg, LKT Laboratories, St. Paul, MN, USA; Chen et al., 2002) or selective Smo 

agonist (SAG, 20 mg/kg, VDM Biochemicals, Bedford Heights, OH, USA; Lewis and 

Krieg, 2014) were administered for 7 consecutive days. 

 

3.2 Induction of focal cerebral ischemia 

Adult mice underwent permanent MCAO, a procedure which has become a conventional 

model of FCI. Mice were anesthetized with 2% isoflurane (Abbot, IL, USA) and 

maintained at 1% isoflurane using a vaporizer (Tec-3, Cyprane Ltd., Keighley, UK). An 

incision in the skin between the orbit and the external auditory meatus was made and the 

temporal muscle was retracted. Afterwards, a ~1.5 mm hole was drilled through the 



47 

frontal bone, ~1.0 mm rostrally to the fusion of the zygoma and the squamosal bone, and 

~3.5 mm ventrally to the dorsal surface of the brain. After the dura mater was opened and 

removed, the middle cerebral artery (MCA; Figure 14) was exposed and cauterized with a 

pair of bipolar tweezers (SMT, Czech Republic) at a proximal location. 

 

 

 

Body temperature of the mouse was maintained at 37 ± 1 °C using a heating pad 

during the surgery (Honsa et al., 2012). After the operation, the mice were injected 0.5 ml 

of saline solution subcutaneously. Analgesics were also administered when necessary. 

Operated mice were labeled as 'MCAO', while non-operated animals were considered as 

controls and labeled as 'CTRL'. This distal model of MCAO has a high survival rate 

(>95%) and a good reproducibility, as it typically yields an infarct lesion of a relatively 

small volume only in the cortical region (Honsa et al., 2013). 

For the visualization of ischemic region, we performed staining with 2% 2,3,5-

triphenyltetrazolium chloride (TTC; Sigma-Aldrich, St. Louis, MO, USA) at room 

temperature for 20 minutes (Figure 15). 

 

 

Figure 14. Middle cerebral artery occlusion. 

The 'Y'-shaped middle cerebral artery (MCA; 

black arrow) of the left hemisphere is exposed 

and will be cauterized with a pair of bipolar 

tweezers, which induces focal cerebral ischemia. 

Note the retracted temporal muscle to the left to 

the MCA (photograph by courtesy of author's 

trainee Hana Bernhardová). 

Figure 15. Staining with 2,3,5-

triphenyltetrazolium chloride. Coronal section 

of the mouse brain after middle cerebral artery 

occlusion. The occluded artery was in the left 

hemisphere (right side of the photograph), 

causing focal cerebral ischemia. White area 

represents tissue of the cortex that was affected 

by ischemia (photograph by courtesy of author's 

colleague Zuzana Heřmanová). 
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3.3 Tissue isolation and cell cultures preparation 

To prepare tissue or cell culture specimens for our analyses, we isolated the frontal lobe 

of neonatal mice or cut coronal sections of the adult mouse brain and cut out specific 

brain regions for further processing. 

 

3.3.1 Isolation and processing of tissue for cultures of neural 

stem/progenitor cells 

Primary cultures were prepared from NS/PCs isolated from neonatal or adult mouse 

brains. Neonatal mice were hypothermed, while adult animals were deeply anesthetized 

first with 4% isoflurane (Abbot, IL, USA) and subsequently with pentobarbital solution 

(PTB; 100 mg/kg, i.p.; Sigma-Aldrich, St. Louis, MO, USA), and perfused transcardially 

with ice-cold isolation buffer containing (in mM): 110 N-Methyl-D-glucamine (NMDG)-

Cl, 2.5 KCl, 24.5 NaHCO3, 1.25 Na2HPO4, 0.5 CaCl2, 7 MgCl2, 20 glucose, osmolality 

290 ± 3 mOsmol/kg. 

After decapitation, the brains were quickly dissected out and a part of the frontal 

lobe of the neonatal brain (with the presumptive SVZ region) or the SVZ derived from 

coronal sections of adult mice was isolated. 

Neonatal brain tissue was further processed using a 1 ml pipette. The tissue was 

mechanically dissociated in a 2-ml-Eppendorf tube with 1 ml of proliferation medium 

containing Neurobasal-A medium (Life Technologies, Waltham, MA, USA), 

supplemented with the B27 supplement (B27; 2%; Life Technologies, Waltham, MA, 

USA), L-glutamine (2 mM; Sigma-Aldrich, St. Louis, MO, USA), antimicrobial reagent 

primocin (100 µg/ml; Invivogen, Toulouse, France), fibroblast growth factor-basic 

(bFGF; 10 ng/ml) and epidermal growth factor (EGF; 20 ng/ml; both were purchased 

from PeproTech, Rocky Hill, NJ, USA). The cells were subsequently filtered through a 

70 µm cell strainer, into a 100 mm-diameter Petri dish containing additional 9 ml of 

proliferation medium. The cells were cultured as neurospheres, at 37 °C and 5% carbon 

dioxide (CO2). 

After seven days of in vitro proliferation, the formed neurospheres (Figure 16, 

left) were collected and transferred into a 12 ml Falcon tube, and centrifuged at 1020×g 

for 3 minutes. The supernatant was discarded, and 1 ml of protease trypsin (Sigma-

Aldrich, St. Louis, MO, USA) was added to the pelleted neurospheres. After 3 minutes of 
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trypsin incubation, 1 ml of trypsin inhibitor (Sigma-Aldrich, St. Louis, MO, USA) was 

added to the dissociated cells, to block the proteolytic effect of trypsin. Subsequently, a 

negligible portion (~100 µl) of the cell suspension was used to count cells in the 

hemocytometer. The rest of the cell suspension was centrifuged at 1020×g for 3 minutes. 

The cells were plated on poly-L-lysine (PLL)-coated (Sigma-Aldrich, St. Louis, MO, 

USA) coverslips placed in a 24-well plastic plate, at the cell density of 6×10
4
 cells/cm

2
. 

The cultures were treated with differentiation medium, which had the same composition 

as the proliferation medium, but it was devoid of EGF, and with higher (20 ng/ml) 

concentration of bFGF. The cultivation conditions were maintained at 37 °C and 5% CO2, 

with medium exchange on every third day. After 8-9 days of in vitro differentiation 

(Figure 16, right), the cells were used for electrophysiological measurements, 

immunocytochemistry, Western blotting analysis, and RT-qPCR. To estimate the impact 

of Wnt signaling inhibition or activation during differentiation of NS/PCs, 4OHT and 

EtOH cultures were compared. 

 

 

Figure 16. Cultivation of neural stem/progenitor cells in vitro. (Left) Neural stem/progenitor 

cells form neurospsheres during the proliferation stage of in vitro cultivation. (Right) Neural 

stem/progenitor cells after 8-9 days of differentiation form relatively highly confluent cell cultures 

(author's own photographs). 

 

Primary cultures of adult NS/PCs were derived from the SVZ of the LV; from 

both right and left SVZs from CTRL mice, while only from the SVZ ipsilateral to the site 

of injury in mice three days after MCAO (Figure 17). After decapitation, brains were 

quickly removed from the skull and sliced into ~500 µm coronal slices using vibratomes 

HM 650 V (MICROM International GmbH, Walldorf, Germany) or Leica VT 1200S 

(Baria s.r.o., Czech Republic), and the SVZs were carefully dissected out and cut into 
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smaller pieces using a razor. To obtain a single-cell suspension, the tissue was first 

incubated with continuous shaking at 37 °C for 45 minutes in 1 ml of papain solution (20 

U/mL) with 0.2 ml of deoxyribonuclease (DNase; both from Worthington, Lakewood, 

NJ, USA). After papain treatment, the activity of the enzyme was inhibited with 1 ml of 

trypsin inhibitor (Sigma-Aldrich, St. Louis, MO, USA), and the tissue was afterwards 

mechanically dissociated by gentle trituration using a 1 ml pipette and centrifuged at 

1020×g for 3 minutes. After centrifugation, the supernatant was discarded and the cells 

were resuspended in 1 ml of proliferation medium, of which composition was equal to the 

one used for the cultures derived from neonatal mice; however, the concentration of EGF 

was higher, at 30 ng/ml. The rest of the procedure was the same as for neonatal mice, 

with one exception – the cells were cultured as neurospheres for longer period of time to 

secure enough cells for further analyses, which required ~12 days of in vitro proliferation. 

 

 

Figure 17. Isolation of the subventricular zone. For the experiments on adult neural 

stem/progenitor cells, the tissue around the subventricular zones was isolated (red solid lines). 

After the induction of focal cerebral ischemia (red dashed line), only the subventricular zone 

ipsilateral to the site of injury was isolated. Some of the major brain structures are labeled in the 

scheme (author's own scheme). 

 

Tissue for Western blotting or RT-qPCR was also isolated from the SVZs of adult 

CTRL and MCAO animals. Mice were anesthetized with 4% isoflurane (Abbot, IL, USA) 

and subsequently with 1% PTB and perfused transcardially with ice-cold isolation buffer. 

After decapitation, brains were quickly removed from the skull and cut into ~500 µm 

coronal sections using the vibrating microtome. The SVZs were dissected out and cut into 
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smaller pieces using a razor. Afterwards, the tissue was transferred into empty 2 ml 

Eppendorf tubes or tubes containing TRI Reagent (Sigma-Aldrich, St. Louis, MO, USA) 

for further Western blotting and RT-qPCR analyses, respectively. The tubes containing 

tissue were immediately placed on dry ice and subsequently stored at -80 °C. 

 

3.3.2 Isolation and processing of tissue for cultures of NG2 glia 

Control mice or mice three, four, seven, or fourteen days after FCI were deeply 

anesthetized with PTB (100 mg/kg, i.p.), and perfused transcardially with ice-cold 

isolation buffer. The cerebral cortex was cut into ~600 µm coronal sections using the 

vibratome and the region around the ischemic lesion was carefully dissected out from the 

white matter tracks. The tissue from CTRL animals was isolated from the same regions. 

The tissue was incubated with continuous shaking at 37 °C for 45 minutes in 1 ml of 

papain solution supplemented with DNase. After the incubation in papain, the tissue was 

gently mechanically dissociated with a 1 ml pipette. Dissociated cells were subsequently 

layered on top of 5 ml of ovomucoid inhibitor solution (Worthington, Lakewood, NJ, 

USA) and harvested by low-speed centrifugation (140×g for 6 minutes), with subsequent 

filtration through a 70 µm cell filter. At this stage, the resulting single-cell suspension 

could be kept on ice and used for cell counting or fluorescence-activated cell sorting 

(FACS; BD Influx, San Jose, CA, USA). To prepare primary cell cultures, the cells were 

plated at the same cell density as NS/PCs and maintained in Dulbecco's Modified Eagle 

Medium/Nutrient Mixture F12 (DMEM/F12) with antibiotics 

penicillin/streptomycin/amphotericin (PSA; all from Invitrogen, Carlsbad, CA, USA), 20 

ng/ml platelet-derived growth factor alpha (PDGFα; Peprotech, Rocky Hill, NJ) and 4 

mM glutamine (Sigma–Aldrich, St. Louis, MO, USA). This DMEM/F12-based medium 

is further referred to as 'basal medium'. For the first 24 hours of in vitro cultivation, the 

basal medium was supplemented with 15% fetal bovine serum (FBS; HyClone, Thermo 

Scientific, Waltham, MA, USA). Then, the cell cultures were transferred to the 

differentiation medium consisting of basal medium with B27 supplement (Invitrogen, 

Carlsbad, CA, USA). To activate Shh signaling in NG2 cells, Shh (20 ng/ml; Peprotech, 

Rocky Hill, NJ, USA) or SAG (300 ng/ml, VDM Biochemicals, Bedford Heights, OH, 

USA) were added, and to block Shh signaling, Cyc (4 mg/ml, LKT Laboratories, St. Paul, 

MN, USA) was added. Seven days after the onset of in vitro differentiation, the 
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phenotype of differentiated Tom-positive NG2 glia was analyzed using the patch-clamp 

technique in the whole-cell configuration and immunochemical staining. 

 

3.4 Preparation of coronal tissue sections for 

immunohistochemical staining 

Adult mice were deeply anesthetized with PTB (100 mg/kg, i.p.; Sigma-Aldrich, St. 

Louis, MO, USA) and perfused transcardially using saline solution (ArdeaPharma, a.s., 

Sevetin, Czech Republic) with 0.65% heparin (Zentiva Group, a.s., Prague, Czech 

Republic) at room temperature and subsequently with ice-cold 4% paraformaldehyde 

(PFA; Sigma-Aldrich, St. Louis, MO, USA). The brain was then left in PFA for 3 more 

hours for thorough fixation, with subsequent transfer to the sucrose gradient for 

cryoprotection. The tissue was incubated in 10% sucrose for 12 hours, then in 20% 

sucrose for 24 hours, followed by 30% sucrose incubation for further 72 hours. Thirty-

µm-thick coronal sections were prepared using a cryostat (Leica CM1850, Leica 

Microsystems, Wetzlar, Germany) and subsequently stored at -20 °C in a 

cryopreservation solution prepared in the laboratory. 

 

3.5 Patch-clamp measurements 

The electrophysiological properties of in vitro differentiated cells were recorded using the 

patch-clamp technique in the whole-cell configuration. Recording micropipettes with a tip 

resistance of ~10 MΩ were made from capillaries of borosilicate glass (Sutter 

Instruments, Novato, CA, USA) using a P-97 Brown-Flaming puller (Sutter Instruments, 

Novato, CA, USA) and subsequently filled with artificial intracellular solution containing 

(in mM): 10 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 130 KCl, 0.5 

CaCl2, 2 MgCl2, 5 ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid 

(EGTA), with pH 7.2, and in some cases also mixed with Alexa Fluor hydrazide 488 

(A488; Molecular Probes, Carlsbad, CA, USA) for visualization of recorded cells. The 

measurements were made in artificial cerebrospinal fluid (aCSF) containing (in mM): 122 

NaCl, 3 KCl, 1.5 CaCl2, 1.3 MgCl2, 1.25 Na2HPO4, 28 NaHCO3, and 10 D-glucose 

(osmolality 300 ± 5 mmol/kg) and this solution was continuously gassed with 5% CO2 to 

maintain a final pH of 7.4. All recordings were made at room temperature on coverslips 

perfused with aCSF in the recording chamber of an upright Axioscop microscope (Zeiss, 

Gottingen, Germany) equipped with 2 electronic micromanipulators (Luigs & Neumann, 
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Ratingen, Germany) and a high-resolution AxioCam HR digital camera (Zeiss, Gottingen, 

Germany). Electrophysiological data were measured with a 10 kHz sample frequency 

using EPC9/10 amplifiers controlled by the PatchMaster software (HEKA Elektronik, 

Lambrecht/Pfalz, Germany) and filtered using a Bessel filter. 

The value of the membrane potential (Vm) was measured by switching the 

EPC9/10 amplifiers to the current-clamp mode. Using the FitMaster software (HEKA 

Elektronik, Lambrecht/Pfalz, Germany), input resistance (IR) was calculated from the 

current value at 40 ms after the onset of the depolarizing 10 mV pulse from the holding 

potential of -70 mV. Membrane capacitance (Cm) was determined automatically from the 

Lock-in protocol by the software. Current patterns were obtained by hyperpolarizing and 

depolarizing the cell membrane from the holding potential of -70 mV to the values 

ranging from -160 mV to 40 mV in 10 mV steps, while the duration of each pulse was 50 

ms. The inwardly rectifying K
+
 (KIR), the fast activating and inactivating outwardly 

rectifying K
+
 (KA), and the delayed outwardly rectifying K

+
 (KDR) current components 

were determined as follows. In order to isolate the KDR current components, a voltage 

step from -70 to -60 mV was used to subtract the time- and voltage-independent currents. 

To activate the KDR currents only, the cells were held at -50 mV, and the amplitude of the 

KDR currents was measured at 40 mV, 40 ms after the onset of the pulse. The KIR currents 

were determined analogously at -140 mV, also 40 ms after the onset of the pulse, while 

the cells were held at -70 mV. The KA currents were measured at 40 mV and were 

isolated by subtracting the current traces, clamped at -110 mV from those clamped at -50 

mV, and its amplitude was measured at the peak value. While measuring tetrodotoxin 

(TTX)-sensitive sodium (Na
+
) currents, the cells were held at -70 mV and the current 

amplitudes were isolated by subtracting the current traces measured in solution containing 

1 µM TTX (Alomone Labs, Jerusalem, Israel) from those measured in the absence of 

TTX in aCSF. The Na
+
 current amplitudes were measured at the peak value. The current 

densities were calculated by dividing the maximum current amplitudes by the 

corresponding Cm values for each individual cell. The action potentials were obtained in 

the current-clamp mode. The current values in the protocol ranged from 50 to 1000 pA, at 

50 pA increments, and the pulse duration was 300 ms. A more detailed description can be 

found in the publications of our department (Anderová et al., 2006; Neprasova et al., 

2007). 

After recording, the cells on the coverslips were fixed in 4% PFA dissolved in 0.2 

M phosphate buffer (PB; pH 7.4) for 9 minutes, then transferred to 10 mM phosphate-
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buffered saline (PBS; pH 7.2) and stored at 4 °C for post-recording identification using 

immunofluorescence staining. 

 

3.6 Immunocyto/histochemistry and confocal microscopy 

The primary cultures on coverslips or 30-µm-thick coronal brain slices (in this section 

both further referred to as 'specimens') were washed 3 times for 10 minutes in PBS. 

Afterwards, they were rinsed for 2 hours and at 4 °C in blocking solution containing 5% 

Chemiblocker (Millipore, Billerica, MA, USA) and 0.5% Triton X-100 (Sigma-Aldrich, 

St. Louis, MO, USA) diluted in 10 mM PBS. The same blocking solution was also used 

as the diluent for all primary and secondary antibodies. The specimens were incubated 

overnight at 4 °C with primary antibodies. The following primary antibodies were used: 

rabbit polyclonal anti-GFAP (1:800; Sigma-Aldrich, St. Louis, MO, USA), mouse 

monoclonal anti-GFAP conjugated to A488 (1:300; Thermo Fisher Scientific, Waltham, 

MA, USA), mouse monoclonal anti-GFAP (1:800; Sigma-Aldrich, St. Louis, MO, USA) 

conjugated to cyanine dye 3 (Cy3), rabbit polyclonal anti-PDGFαR (1:200; Santa Cruz 

Biotechnology, Dallas, TX, USA), rabbit polyclonal anti-DCX (1:1000; Abcam, 

Cambridge, UK), rabbit polyclonal anti-DCX (1:500; Santa Cruz Biotechnology, Dallas, 

TX, USA), mouse monoclonal anti-microtubule-associated protein 2 (MAP2; 1:800; 

Merck Millipore, Billerica, MA, USA), mouse monoclonal anti-proliferating cell nuclear 

antigen (PCNA; 1:1000; Abcam, Cambridge, UK), mouse anti-adenomatous polyposis 

coli clone CC1 (CC1; 1:200; Merck, Frankfurt, Germany), rabbit anti-Ki67, a marker of 

proliferation (1:1000; Abcam, Cambridge, UK), rabbit anti-CNPase (1:100; Sigma-

Aldrich, St. Louis, MO, USA), mouse anti-myelin/oligodendrocyte-specific protein 

(MOSP; 1:400; Merck Millipore, Billerica, MA, USA), rabbit anti-NG2 (1:400; Merck 

Millipore, Billerica, MA, USA), rabbit anti-platelet-derived growth factor β receptor 

(PDGFβR; 1:200; Santa Cruz, Dallas, TX, USA). On the following day, the specimens 

were washed 3 times for 10 minutes with PBS, which was followed by incubation with 

secondary antibodies for two more hours at 4 °C. The secondary antibodies were goat 

polyclonal anti-rabbit/mouse immunoglobulin G (IgG) conjugated to A488, or Alexa 

Fluor 594 or 660 (A594/660; 1:200; Molecular Probes, Carlsbad, CA, USA). The 

specimens were afterwards again washed 3 times for 10 minutes in PBS and rinsed for 5 

more minutes, this time at room temperature, in 300 nM 4′,6-diamidino-2-phenylindole 

(DAPI; Molecular Probes, Carlsbad, CA, USA) diluted in PBS for cell nuclei 
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visualization. At the end of the procedure, the specimens were mounted onto microscope 

slides using Aqua Poly/Mount (Polysciences Inc., Eppelheim, Germany). Once the 

mounting medium solidified, the specimens were ready to be analyzed by confocal 

microscopy. 

To evaluate the proliferation rate of precursor cells, 5-ethynyl-2´-deoxyuridine 

(EdU; 0.2 mg/ml; Sigma-Aldrich, St. Louis, MO, USA) or 5-bromo-2'-deoxyuridine 

(BrdU; 1 mg/ml; Sigma-Aldrich, St. Louis, MO, USA) were added to the drinking water 

and administered to the mice for three or seven days. For EdU visualization, we used the 

AlexaFluor-647 Click-iTEdU Cell Proliferation Assay Kit (Sigma-Aldrich, St. Louis, 

MO, USA) and then washed the specimens in PBS. The mouse anti-BrdU primary 

antibody (1:200, Abcam, Cambridge, UK), in the combination with one of the secondary 

antibodies mentioned above, was utilized for BrdU visualization. 

An LSM 5 DUO confocal fluorescence microscope (Zeiss, Gottingen, Germany) 

equipped with an Arg/HeNe laser was used for immunofluorescence analysis and, 

furthermore, the fluorescence signals were analyzed using the ImageJ software (NIH, 

Bethesda, MD, USA). For NS/PCs analysis, superimposed images of GFAP, PDGFαR, 

DCX or MAP2 stainings were obtained by overlaying several individual confocal planes. 

The images were subsequently digitally filtered and the immunopositive areas were used 

for quantification. The areas corresponding to the immunoreactivity of the cells were 

calculated in random regions of interest and divided by DAPI-positive area to normalize 

them to the cell number. At least six random regions of interest (ROIs) from two 

independent cultures with similar confluence were used for the quantification of each 

immunostaining. An example of such ROI that corresponds to DCX staining is shown in 

Figure 18. 

 

 

Figure 18. Quantification of immunopositive areas. (A) Superimposed image of doublecortin 

(DCX) staining, obtained by overlaying 4 individual confocal planes (each 318.2 µm x 318.2 µm 
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large). (B, C) Digitally filtered image (red area) outlined in yellow was used for the quantification 

of the fluorescent signal (Kriska et al., 2016). 

 

Immunocytochemical staining against β-catenin was similar to the previous 

staining and more detailed description may be found elsewhere (Doubravska et al., 2011). 

In short, cells were fixed for 10 minutes in 4% PFA, permeabilized with 0.25% Triton X-

100 for another 10 minutes and washed in PBS. Overnight incubation with primary 

mouse monoclonal antibody (1:2000; BD Transduction Laboratories, San Jose, CA, 

USA) at 4 °C was followed by incubation with goat anti-mouse secondary antibody 

conjugated to A488 dye for 1 hour at room temperature. Finally, DAPI (Sigma-Aldrich, 

St. Louis, MO, USA) was used for counterstaining. Fluorescent microscopy images 

(n=12) were taken from EtOH and 4OHT cultures. The A488 and DAPI fluorescence 

signals were analyzed with the ImageJ software and the intensity of β-catenin staining 

was normalized to the cell number in every image. Obtained data were evaluated by 

Student's t-test. 

To assess the differentiation potential of progenitor cells of the SVZ in situ in 

coronal sections, we utilized a spinning disc confocal fluorescent microscope Dragonfly 

530 Andor (Oxford Instruments, Oxford, UK), equipped with Zyla 4.2 PLUS sCMOS 

camera and Fusion acquisition system. Superimposed images of GFAP, DCX, and PCNA 

stainings were obtained by overlaying 6-12 individual confocal planes that were 

beforehand digitally fused using the Fusion stitching tool. Obtained images were 

processed in the Imaris visualization software (Oxford Instruments, Oxford, UK). The 

immunopositive SVZ areas were dissected and quantified using the Fiji ImageJ software 

(NIH, Bethesda, MD, USA). The areas corresponding to immunopositive cells of the SVZ 

were calculated and normalized to DAPI-positive area. Together six SVZ sections from 

two biological replicates were analyzed in each immunostaining data set. 

The LSM 5 DUO confocal microscope with 40× oil objective was also used for 

immunochemical analysis of NG2 glia. Stacks of consecutive confocal images at the 

thickness of 3 µm were acquired sequentially with two lasers to avoid any crosstalk 

between the channels. The background noise of each confocal image was reduced by 

averaging four input images. The co-localization of fluorescence signals was assessed by 

employing the maximum Z-projection feature in the Zeiss LSM Image Browser (Zeiss, 

Gottingen, Germany). The assessment of the cells in the glial scar was performed in 

confocal images of coronal brain sections of at least three mice and the cell counts were 
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estimated from superimposed images generated in the GSA Image Analyzer (Bansemer & 

Scheel GbR, Rostock, Germany). 

 

3.7 Reverse transcription quantitative polymerase chain 

reaction 

For the NS/PCs experiments, the tissue was isolated and stored as described at the end of 

section 3.3.1. Furthermore, RNA was purified using TRI Reagent (Sigma-Aldrich, St. 

Louis, MO, USA) or RNA Blue (Top-Bio, Prague, Czech Republic) according to the 

manufacturers’ protocols. The reverse transcription of RNA and RT-qPCR were 

performed using LightCycler® 480 SYBR Green I Master (Roche Diagnostics, 

Indianapolis, IN, USA; Lukas et al., 2009). The primers for RT-qPCR are listed in Table 

1. 

Since the RT-qPCR analysis was performed on Tom-expressing NG2 glia, we 

were able to take advantage of the single-cell approach. A negligible amount of the 

fluorescent dye Hoechst 33258 (Life Technologies, Carlsbad, CA, USA) was added to the 

cell suspension to identify and subsequently discard damaged or dead cells. Individual 

cells were collected employing FACS (BD Influx, San Jose, CA, USA). The cell sorter 

was set to place one cell in each well of 96-well microtiter plates (Life Technologies, 

Carlsbad, CA, USA) filled with 5 µl of nuclease-free water mixed with bovine serum 

albumin (BSA; 1 mg/ml; Fermentas, Rockford, IL, USA) and RNaseOut (20 U; Life 

Technologies, Carlsbad, CA, USA). The expression of almost one hundred genes was 

assessed and the lists of primers for RT-qPCR can be found in Honsa et al. (2016) and 

Valny et al. (2018). The mRNA was reverse-transcribed into cDNA with SuperScript III 

(ThermoFisher Scientific, Waltham, MA, USA), with further pre-amplification and 

analysis in the BioMark platform (Fluidigm, San Francisco, CA, USA). The data were 

analyzed using the GenEx 6 software (MultiD, Sweden). 

Self-organizing maps (SOM) that divided Tom-positive cells into four subpopulations 

were trained in the GenEx 6 software (MultiD, Sweden), while 0.60 learning rate, 4 

neighbors, and 5,000 iterations were all used as the settings. The subpopulations were 

expressed as groups of cells in the principal component analysis (PCA). 
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Table 1. Sequences of primers used for reverse transcription quantitative polymerase chain 

reaction experiments. 

Gene symbol Sequence 

Actb FP: 5'-GATCTGGCACCACACCTTCT-3' 

RP: 5'-GGGGTGTTGAAGGTCTCAAA-3' 

Axin2 FP: 5'-TAGGCGGAATGAAGATGGAC-3' 

RP: 5'-CTGGTCACCCAACAAGGAGT-3' 

Ccnd1 FP: 5'-AGTGCGTGCAGAAGGAGATT-3' 

RP: 5'-CTCTTCGCACTTCTGCTCCT-3' 

GAPDH FP: 5'-AACTTTGGCATTGTGGAAGG-3' 

RP: 5'-ATCCACAGTCTTCTGGGTGG-3' 

Nkd1 FP: 5'-AGGACGACTTCCCCCTAGAA-3' 

RP: 5'-TGCAGCAAGCTGGTAATGTC-3' 

Sp5 FP: 5'-GGACAGGAAACTGGGTCGTA-3' 

RP: 5'-AATCGGGCCTAGCAAAAACT-3' 

Troy FP: 5'-GCTCAGGATGCTCAAAGGAC-3' 

RP: 5'-CCAGACACCAAGACTGCTCA-3' 

Ubb FP: 5'-ATGTGAAGGCCAAGATCCAG-3' 

RP: 5'-TAATAGCCACCCCTCAGACG-3' 

Wnt4 FP: 5'-AACGGAACCTTGAGGTGATG-3' 

RP: 5'-TCACAGCCACACTTCTCCAG-3' 

Wnt5a FP: 5'-AGGAGTTCGTGGACGCTAGA-3' 

RP: 5'-ACTTCTCCTTGAGGGCATCG-3' 

Wnt5b FP: 5'-CGCTTTGGAAGATGTTGGTC-3' 

RP: 5'-ACATCTCCGGTCTCTGCACT-3' 

Wnt7a FP: 5'-GCCTGGACGAGTGTCAGTTT-3' 

RP: 5'-TGGTACTGGCCTTGCTTCTC-3' 

Wnt7b FP: 5'-AGTGCCAGCACCAGTTCC-3' 

RP: 5'-CCTTCCGCCTGGTTGTAGTA-3' 

Wnt9a FP: 5'-TCGTGGGTGTGAAGGTGATA-3' 

RP: 5'-TGGCTTCATTGGTAGTGCTG-3' 

Wnt10b FP: 5'-CTTCGACATGCTGGAGGAG-3' 

RP: 5'-CCCAGCTGTCGCTTACTCAG-3' 

Abbreviations: Actb – β-actin; Ccnd1 – cyclin D1; FP – forward primer; GAPDH – 

glyceraldehyde-3-phosphate dehydrogenase; Nkd1 – naked cuticle homolog 1; RP – reverse 

primer; Sp5 – SP5 transcription factor; Troy – tumor necrosis factor receptor superfamily, 

member 19; Ubb – ubiquitin; Wnt4-10b – Wingless/Integrated 4-10b (adapted from Kriska et al. 

(2016)). 
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3.8 Western blotting 

Protein analysis employing Western blotting was performed by two different approaches, 

depending on whether cell cultures or tissue specimens were analyzed. If cell cultures 

cultivated in vitro on plastic dishes were assessed, cells were lysed in standard 1x radio 

immunoprecipitation assay (RIPA) buffer, containing 25 mM Tris-HCl, pH 8.0; 150 mM 

NaCl; 1% NP-40; 1% sodium deoxycholate; 0.1% sodium dodecyl sulfate (SDS); 1 mM 

ethylenediaminetetraacetic acid (EDTA), and supplemented with inhibitors of proteases 

(Roche, Basel, Switzerland) and phosphatases (20 mM NaF; 1 mM Na3VO4). The total 

protein content in the homogenates was determined using the Pierce BCA™ protein assay 

kit (Thermo Fisher Scientific, Waltham, MA, USA). Equal amounts of proteins, 

supplemented with 100 mM dithiothreitol, were subjected to SDS-polyacrylamide gel 

electrophoresis (PAGE; 10 – 15%). The proteins were then transferred onto nitrocellulose 

membrane (Hybond ECL 0.45 μM; Little Chalfont, Amersham, UK) and detected by 

specific primary antibodies as follows: anti-β-actin (1:1000; Santa Cruz Biotechnology), 

anti-β-catenin (1:2000; BD Biosciences), anti-phosphorylated (p)β-catenin (1:300; Cell 

Signaling), anti-β III tubulin (1:400; Sigma-Aldrich). The primary antibodies were 

combined with horseradish peroxidase-conjugated secondary antibodies (1:5000; Jackson 

Immunoresearch, West Grove, PA, USA). Peroxidase activity was detected using 

enhanced chemiluminescence (ECL) detection reagents (Little Chalfont, Amersham, 

UK). 

Tissue was isolated and stored as described at the end of section 3.3.1. Frozen 

tissue specimens were homogenized with steel balls (Quiagen, Germantown, MD, USA) 

in 10 µl/mg of ice-cold lysis buffer (50 mM HEPES/KOH, pH 7.4, 1% Triton X-100, 50 

mM NaF, 5 mM Na2H2P2O7, 400 mM NaCl, 40 mM β-glycerophosphate, 12.5 mM 

EGTA, 1.5 mM MgCl2, 1 mM Na3VO4, 0.5 mM serine protease inhibitor 

phenylmethylsulfonyl fluoride (PMSF) and 10 µl/ml of protease inhibitor cocktail 

containing 1 mM benzamidin, 0.28 mM leupeptin, 0.2 mM pepstatin, 0.22 mM antipain). 

The lysates were cleared by high-speed centrifugation (30000×g, 30 minutes), combined 

with Laemmli sample buffer and the samples were incubated for 20 minutes at 70 °C. 

Total amount of 50 µg of proteins were loaded per lane. The proteins were separated on 

SDS-PAGE (8.2% acrylamide (AA) with 0.2% bisacrylamide (BIS), or 6% AA with 

0.2% BIS for MAP2 protein) and transferred to Immobilon-P
SQ

 membrane (Millipore, 

Billerica, MA, USA) using Trans-Blot SD Semi-dry Transfer Cell (BioRad, Hercules, 
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CA, USA). The usual Towbin transfer buffer was used with the exception of the 6% gel 

for MAP2 protein for which the Bjerrum-Schaffer-Nielsen buffer (48 mM Tris, 39 mM 

glycine, 0.0375% SDS, pH 9.2.) was used. Samples were blocked for 1 hour with 5% 

non-fat milk and then incubated with following primary antibodies: mouse monoclonal 

anti-β-catenin (1:2000; ExBio), rabbit anti-non-phospho (active) β-catenin (1:500; Cell 

Signaling), rabbit monoclonal anti-GFAP (1:500; Cell Signaling), rabbit anti-DCX 

(1:500; Cell Signaling), rabbit monoclonal anti-MAP2 (1:500; Cell Signaling), mouse 

monoclonal anti-β III tubulin (1:400; Sigma-Aldrich), and rabbit monoclonal anti-heat 

shock protein 90 (Hsp90) (1:1500; Cell Signaling). After one hour of incubation with the 

primary antibodies (diluted in 5% BSA in PBS with 0.2% Tween 20) at room 

temperature, the membranes were washed five times for 15 minutes with PBS with 0.2% 

Tween 20, and incubated with either anti-rabbit IgG or anti-mouse horseradish 

peroxidase-conjugated antibody (1:3500; Cell Signaling) for one hour at room 

temperature. Peroxidase activity was detected using ECL detection reagent LumiGlo 

(Cell Signaling, Leiden, The Netherlands). 

 

3.9 Calcium imaging measurements 

Coverslips with cell cultures were incubated for 45 minutes in 0.5 ml of differentiation 

medium containing 4.5 µM Oregon-Green Bapta-1, AM (OGB-1) and 0.09% Pluronic F-

127 (Life Technologies, Waltham, MA, USA) in an incubator at 37 °C and 5% CO2. The 

coverslips were then transferred to the microscope superfusion chamber and three 

measurements were made on each coverslip with a sufficient distance between the 

measurement regions. During the measurements, the microscope superfusion chamber 

was continually perfused at room temperature at a flow rate of 2.5 ml/minute with 

HEPES-based aCSF containing (in mM): 135 NaCl, 2.7 KCl, 1 MgCl2, 2.5 CaCl2, 1 

Na2HPO4, 10 glucose, 10 HEPES (pH 7.4, osmolality 305 mOsm/kg, equilibrated with 

O2). The solutions of ATP, L-glutamic acid (glutamate) (both from Sigma-Aldrich, St. 

Louis, MO, USA) and HEPES-based aCSF, in which part of NaCl was replaced for KCl 

to reach 50 mM concentration of K
+
 (H-aCSF50K+), were applied through a capillary 

(internal diameter of 250 µm) located 0.5-1 mm from the measurement region and 

connected to a Perfusion Pressure Kit pressurized application system (flow rate 600 

µl/minute) controlled by a ValveBank II controller (AutoMate Scientific, Inc. Berkeley, 

CA, USA). The HEPES-based aCSF was applied before and after the applications with 
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the same flow rate so that the responses were not influenced by the application itself. The 

OGB-1 fluorescence was detected with a TILL Photonics Imaging System installed on a 

Zeiss Axioskop 2 FS Plus microscope equipped with a long-distance 40x lens (IR 

Achroplan 0.8 W, Zeiss, Gottingen, Germany). A digital camera (PCO Sensicam, 

Kelheim, Germany) was controlled by the TILLvisION software. The excitation light 

(484 nm) was generated by a Polychrome V (TILL Photonics GmbH, Grafelfing, 

Germany), filtered by a band-pass (BP) 450-490 excitation filter, reflected by a FT 510 

beam splitter and the emitted light was filtered by a long-pass (LP) 515 filter (Filter Set 

09, Zeiss, Gottingen, Germany). Images were acquired at 0.83 Hz and were analyzed 

offline. Fluorescence intensity (F) was measured in the cell bodies and expressed as 

ΔF/F0, where F0 is the baseline fluorescence intensity before drug application. The 

threshold for Ca
2+

 responses was 110% of the baseline fluorescence and the maximum 

intensity, which occurred within 1 minute from the onset of application, was taken into 

account. After the measurements, immunocytochemical stainings for GFAP, DCX, 

MAP2, and PDGFαR were performed to confirm the identity of the measured cells. 

 

3.10 Data analysis 

The data are presented as means ± standard error of the mean (S.E.M.) or as means ± 

standard deviation (S.D.) for a number (n) of cells. Student’s t-test was used to determine 

significant differences between two experimental groups, and one-way or two-way 

ANOVA with Tukey’s post hoc test was performed to determine significant differences 

among more experimental groups, unless indicated otherwise. The significance was 

calculated in the GraphPad Prism software (San Diego, CA, USA), and the values of p < 

0.05 were considered significant (*/
#
/°, one asterisk, hashtag, or circle), p < 0.01 very 

significant (**/
##

/°°, two asterisks, hashtags, or circles), and p < 0.001 extremely 

significant (***/
###

/°°°, three or more asterisks, hashtags, or circles). 
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4 RESULTS 

In the present work, we assessed the differentiation potential of precursor cells. The 

gathered results are divided into three more or less successive chapters. Initially, we 

performed experiments on NS/PCs derived from neonatal mice. Further, we carried out 

similar experiments on adult animals, in which we also looked into the impact of Wnt 

signaling on the differentiation potential of NS/PCs following the induction of FCI. 

Finally, we aimed to elucidate the effects of cellular signaling pathways (Wnt and Shh) 

and ischemia on the differentiation potential of NG2 glia. The chapters treating NS/PCs 

were composed of the results published in Kriska et al. (2016) together with so far 

unpublished data, while the chapters about NG2 cells were compiled based on two other 

publications (Valny et al., 2018; Honsa et al., 2016) on which the author collaborated. 

 

4.1 The differentiation potential of neonatal neural 

stem/progenitor cells 

Initial experiments on NS/PCs were commenced in neonatal mice since young animals 

are more easily available, the processing of the tissue is less time-consuming and, most 

importantly, they enable higher yields of cells. Moreover, our goal was to compare three 

transgenic mouse strains in our hands and decide which ones would be employed in 

further experiments on adult NS/PCs. We utilized several approaches evaluating cellular 

changes at mRNA, protein, and functional levels. 

 

4.1.1 Expression of Wnt signaling pathway components 

Since all the experiments on NS/PCs derived from neonatal mice were conducted in vitro, 

we first analyzed which of the 19 identified mammalian Wnt ligands were present in our 

cultures. The RT-qPCR analysis revealed the presence of Wnt4, Wnt5a, Wnt5b, Wnt7a, 

Wnt7b, Wnt9a and Wnt10b ligands, while the expression of the other Wnt ligands was 

very low or they were not expressed at all. The most abundant ligands were Wnt5a, 

Wnt7a, and Wnt7b and we observed no differences in the expression pattern among 

mouse strains (Figure 19). 
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Figure 19. Expression of Wnt ligands in in vitro cultures. For each neonatal mouse strain, the 

expression of Wnt ligands was analyzed in two independent control samples (each performed in 

technical triplicates) that were void of 4OHT treatment. Four founder mice were used to derive 

NS/PCs for each mouse strain and the analysis was performed in technical triplicates. The average 

cycle threshold (Ct) values were normalized to the ubiquitin and β-actin housekeeping genes. The 

cells were analyzed eight days after the onset of in vitro differentiation. Abbreviations: 4OHT – 

(Z)-4-hydroxytamoxifen; Dkk1 – Dickkopf 1; dnTCF4 – dominant negative T-cell factor 4; Ex3 – 

exon 3; Wnt4-10b – Wnt signaling ligands (Kriska et al., 2016). 

 

Furthermore, we analyzed several Wnt signaling pathway components in order to 

confirm that our in vitro setting with three distinct transgenic mouse strains (Figure 12) 

represents a suitable tool for manipulating the Wnt signaling pathway. We carried out 

immunocytochemical staining (Figure 20) and Western blotting analysis (Figure 21) of β-

catenin, the main effector of the canonical Wnt pathway. After inhibiting the signaling in 

the nucleus via the production of dnTCF4, there was no significant difference in the 

levels of β-catenin protein (Figure 20A, D). Nevertheless, suppression of Wnt signaling 

by Dkk1 resulted in a marked decrease in the amount of β-catenin (Figure 20B, D). 

Conversely, the expression of the stabilized β-catenin form led to its higher abundance in 

Ex3 cells (Figure 20C, D). 
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Figure 20. Immunocytochemical staining of β-catenin. (A-C) Representative fluorescent 

images of DAPI and β-catenin staining in differentiated neonatal neural stem/progenitor cells with 

inhibited (dnTCF4, Dkk1), or activated (Ex3) Wnt signaling. Cells were treated either with 

ethanol (EtOH) or with (Z)-4-hydroxytamoxifen (4OHT) and analyzed eight days after the onset 

of in vitro differentiation. (D) Quantification of β-catenin expression, showing the proportion of 

the area of positively-stained cells to the DAPI-positive area (n=12). The area of β-catenin 

fluorescence in control cells (EtOH) was arbitrarily set to 1. The values are represented as mean ± 

S.D. (standard deviation). Statistical significance was calculated using t-test; ***, p ˂ 0.001. 

Abbreviations: DAPI – 4',6-diamidino-2-phenylindole; Dkk1 – Dickkopf 1; dnTCF4 – dominant 

negative T-cell factor 4; Ex3 – exon 3; n – number (adapted from Kriska et al. (2016)). 

 

This stabilized, truncated β-catenin protein in Ex3 cells was also detected on 

Western blots (Figure 21A, B). Note that β-catenin in Ex3 cultures migrates as a doubled 

band because of the fact that the mutated variant lacks amino acids encoded by exon 3. 

As we expected, lower quantity of the N-terminally phosphorylated protein was also 

observed in these cultures. 

Using Quantity One software (Bio-Rad, Hercules, CA, USA), we estimated the β-

catenin-to-phosphorylated-β-catenin ratio of the peak heights in control EtOH- and 

4OHT-treated cells. In differentiated NS/PCs derived from dnTCF4 and Dkk1 strains, the 

ratio lowered only negligibly (from 1.27 to 0.84 in Dkk1, and from 1.00 to 0.85 in 
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dnTCF4 mice). On the contrary, in Ex3 cells the ratio increased considerably from 0.90 in 

EtOH to 7.46 in 4OHT. Additionally, we performed the densitometric analysis (Figure 

21B), which confirmed the changes in the β-catenin expression that corresponded to 

inhibition or activation of the pathway. 

 

 

Figure 21. Levels of β-catenin protein in differentiated neonatal neural stem/progenitor 

cells. (A) Western blotting analysis of total (β-cat) and phosphorylated (pβ-cat) β-catenin, with 

intensity profiles representing the number and size of the respective bands. Arrowheads mark the 

molecular weight of β-catenin, which is 92 kDa. Together, four founder mice were used to derive 

NS/PCs for each mouse strain, and the analysis was performed in technical triplicates. The cells 

were analyzed eight days after the onset of in vitro differentiation. (B) Densitometric analysis 

representing quantification of the Western blots shown in (A). The diagrams show the average 

optical density (OD) of detected β-catenin and phosphorylated β-catenin bands. Values obtained 

from cells in controls (EtOH) were arbitrarily set to 100%. The levels of the individual proteins, 

or their forms, were normalized to the β-actin (β-act) signal. Error bars represent S.D. (standard 

deviation). Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Dkk1 – Dickkopf 1; dnTCF4 – 

dominant negative T-cell factor 4; Ex3 – exon 3 (adapted from Kriska et al. (2016)). 

 

Additionally, we analyzed the expression of three Wnt signaling target genes, 

namely Axin2, SP5 transcription factor (Sp5), and tumor necrosis factor receptor 

superfamily member 19 (Troy; Figure 22). Suppression of Wnt signaling in the nucleus 

led to lower expression of Sp5 (average cycle threshold (Ct) value of 34.23 ± 0.37 in 

EtOH changed to average Ct value of 36.13 ± 0.13 in 4OHT-treated cultures) and Troy 

(28.11 ± 0.06 to 28.47 ± 0.11), while no changes in the expression of Wnt target genes 

were detected after inhibiting the pathway at the membrane level. Hyper-activation of the 

Wnt/β-catenin pathway resulted in markedly higher expression of all examined target 
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genes (32.74 ± 0.14 to 27.49 ± 0.10 in Axin2, 35.88 ± 0.17 to 26.55 ± 0.10 in Sp5, and 

28.86 ± 0.42 to 23.75 ± 0.21 in Troy). 

 

 

Figure 22. Expression of Wnt target genes in differentiated neonatal neural stem/progenitor 

cells. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis of Wnt 

signaling target genes was employed. Together, four founder mice were used to derive NS/PCs 

for each mouse strain and the analysis was performed in technical triplicates. The average cycle 

threshold (Ct) values were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

and two other housekeeping genes (ubiquitin (Ubb) and β-actin (β-act)) are shown in the graph. 

Axin2, Sp5 and Troy are Wnt target genes. The expression level of a given gene in control cells 

(EtOH) was arbitrarily set to 1. The cells were analyzed eight days after the onset of in vitro 

differentiation. Statistical significance was calculated using t-test; *, p ˂ 0.05; **, p ˂ 0.01; ***, p 

˂ 0.001. Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Dkk1 – Dickkopf 1; dnTCF4 – 

dominant negative T-cell factor 4; Ex3 – exon 3; NS/PCs – neural stem/progenitor cells; Sp5 – 

SP5 transcription factor; Troy – tumor necrosis factor receptor superfamily member 19 (adapted 

from Kriska et al. (2016)). 

 

Collectively, the analysis of the components of the Wnt pathway described above 

indicate that employing NS/PCs from the neonatal brain of the three transgenic mouse 

strains may represent a suitable in vitro system for manipulating Wnt signaling. In these 

experiments, we showed that activation of the pathway resulted in higher amounts of β-

catenin protein with a consequent increase in the expression of Wnt target genes in 

differentiated NS/PCs. The analysis of inhibited pathway at the membrane level or in the 

nucleus revealed lower quantities of β-catenin protein and decreased expression of Wnt 

target genes, respectively. 

 

4.1.2 Cell types generated from neonatal NS/PCs and their incidence 

In the following series of experiments, we first aimed to identify cellular types generated 

from NS/PCs in our in vitro system, and then to evaluate their incidence in EtOH- and 
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4OHT-treated cultures. In order to estimate the impact of Wnt signaling inhibition or 

activation on neonatal NS/PCs differentiation, we employed the patch-clamp technique in 

the whole-cell configuration and with this approach, we assessed the current profiles of 

cells differentiated in vitro. The measurement of electrophysiological properties was 

supplemented with immunocytochemical staining. Together, we identified three distinct 

subpopulations of cells in EtOH- (n=347) and 4OHT-treated (n=380) cultures. These cell 

types were subsequently divided into three groups according to their electrophysiological 

and immunochemical properties (Figure 23A-G). Flat-shaped GFAP-positive cells 

(n=242; Figure 23D) predominantly displayed passive time- and voltage-independent K
+
 

currents (Figure 23A), their average Vm was -86.38 ± 0.26 mV, and their IR was 81.62 ± 

1.91 MΩ. Round DCX/MAP2-positive cells (n=289; Figure 23F, G), expressing KA and 

KDR currents (Figure 23C), were characterized by Vm of -72.04 ± 0.90 mV, and high 

values of IR (1649.79 ± 44.05 MΩ). Branched PDGFαR-positive cells (n=196; Figure 

23E), with a complex current pattern, expressed KIR currents, in addition to KDR and KA 

currents (Figure 23B), their Vm was -85.78 ± 0.45 mV, and IR was 218.56 ± 8.24 MΩ. 

Additionally, we took advantage of A488-filled glass capillaries and performed post-

recording immunocytochemical identification that revealed that the majority of cells 

expressing passive currents were GFAP-positive, while most of the cells displaying 

outwardly rectifying currents were positive to DCX or MAP2. Complex currents were 

associated mainly with PDGFαR-positive cells. 
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Figure 23. Characterization of cell types identified in the cultures of differentiated neural 

stem/progenitor cells. Together, three distinct cell types were found in the in vitro cultures. Cells 

with a passive current pattern (A) are mostly GFAP-positive and flat-shaped (D). They display 

predominantly time- and voltage-independent K
+
 currents, together with small amplitudes of 

delayed outwardly rectifying K
+
 currents (KDR) and inwardly rectifying K

+
 currents (KIR). The 

majority of cells displaying a complex current profile (B) are branched or bipolar, and PDGFαR-

positive (E). They express fast activating and inactivating outwardly rectifying K
+
 currents (KA), 

as well as KDR and KIR currents. Cells with an outwardly rectifying current pattern (C) are 

DCX/MAP2-positive, with a round shape (F, G), and express KA and KDR currents. Current 

patterns were obtained by hyper- and depolarizing the cell membrane from the holding potential 

of -70 mV to the values ranging from -160 mV to 40 mV, at 10 mV increments. Scale bar = 50 

µm. Abbreviations: DCX – doublecortin; GFAP – glial fibrillary acidic protein; MAP2 – 

microtubule-associated protein 2; PDGFαR – platelet-derived growth factor alpha receptor 

(Kriska et al., 2016). 

 

The electrophysiological analyses also showed that Wnt signaling inhibition in 

both dnTCF4 and Dkk1 cultures markedly lowered the incidence of cells displaying 

outwardly rectifying currents, and also marginally raised the incidence of cells with a 

passive current profile (Figure 24). On the other hand, activation of the pathway (Ex3) led 

to decreased numbers of cells with a passive current profile, and to increased numbers of 

cells with an outwardly rectifying current pattern. However, neither of these changes in 

the cell incidence was significant (Figure 24). Any manipulation of the pathway caused 
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an increase in the incidence of cells displaying complex currents. Nevertheless, such 

increase was statistically significant only in dnTCF4 cells (Figure 24). 

 

 

Figure 24. Alterations in the incidence of distinct cell types after Wnt signaling 

manipulation. The incidence of cells displaying passive (pas), complex (com) or outwardly 

rectifying (out) current profiles in neonatal cell cultures was assessed. Four (Dkk1 mice) or three 

(dnTCF4 and Ex3 mice) founder mice were used to derive NS/PCs, and the incidence was 

quantified from the following total number of cells (in brackets): dnTCF4-EtOH (149), dnTCF4-

4OHT (184), Dkk1-EtOH (97), Dkk1-4OHT (101), Ex3-EtOH (101), and Ex3-4OHT (95). The 

relative incidence of cells in controls (EtOH) was arbitrarily set to 1; *, p ˂ 0.05; **, p ˂ 0.01. 

Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Dkk1 – Dickkopf 1; dnTCF4 – dominant 

negative T-cell factor 4; Ex3 – exon 3; NS/PCs – neural stem/progenitor cells (adapted from 

Kriska et al. (2016)). 

 

Immunocytochemical analysis confirmed lower expressions of DCX and MAP2 in 

the cultures with suppressed Wnt signaling and decreased expression of GFAP in the 

cultures with activated Wnt signaling (Figure 25A, B). Furthermore, Western blotting 

revealed higher β III tubulin expression in the cultures with hyper-activated pathway 

(Figure 25B, inset). 
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Figure 25. Immunocytochemical staining of cell-type-specific proteins. (A) Representative 

images of stainings against glial fibrillary acidic protein (GFAP; top), doublecortin (DCX; 

middle) and microtubule-associated protein 2 (MAP2; bottom). Scale = 50 µm. (B) 

Quantification of GFAP, DCX and MAP2 expression showing the area of positively stained cells 

within 318.2 µm x 318.2 µm large inspected region (n=6). The area of immunopositive 

fluorescence in control cells (EtOH) was arbitrarily set to 1. Western blotting analysis of β III 

tubulin (βIIItub; see inset); **, p ˂ 0.01; ***, p ˂ 0.001. Abbreviations: 4OHT – (Z)-4-

hydroxytamoxifen; β-act – β-actin; Dkk1 – Dickkopf 1; dnTCF4 – dominant negative T-cell 

factor 4; Ex3 – exon 3; n – number (adapted from Kriska et al. (2016)). 

 

Hence, activation of the Wnt signaling pathway increases the expression of β III 

tubulin, a neuronal marker, and decreases the incidence of GFAP-positive glial cells 

displaying passive time- and voltage-independent K
+
 currents. In contrast, upon 

suppression of the Wnt pathway, the incidence of GFAP-positive cells is increased. At the 

same time, the number of DCX/MAP2-positive neuronal cells showing outwardly 

rectifying K
+
 currents is decreased. Taken together, all these findings imply that our in 

vitro approach may serve as a suitable tool to study the role of Wnt signaling in neonatal 

neurogenesis and gliogenesis. 
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4.1.3 Properties of differentiated neonatal neural stem/progenitor cells 

Finally, we tried to characterize the three identified cell types after Wnt signaling 

manipulation. For this reason, we assessed the membrane properties of differentiated 

neonatal NS/PCs using the patch-clamp technique in the whole-cell configuration and 

calcium imaging. 

The electrophysiological membrane properties of 1245 differentiated cells were 

analyzed by the patch-clamp technique. In the cells displaying a passive current pattern, 

the impact of Wnt signaling pathway manipulation on their electrophysiological 

properties was minimal (Table 2). Inhibited Wnt signaling affected mainly passive 

electrophysiological properties (Vm, Cm), as we found that dnTCF4 and Dkk1 expression 

resulted in hyperpolarized cell membrane, and lower Cm values. However, Wnt/β-catenin 

signaling had a more profound effect on electrophysiological properties of differentiated 

progenitors showing a complex current pattern (Table 3). Their Cm decreased after Wnt 

signaling inhibition, while it was marginally elevated after its activation. Interestingly, 

current densities of KIR currents were higher regardless of Wnt signaling 

inhibition/activation. Wnt signaling manipulation also affected electrophysiological 

properties of cells expressing outwardly rectifying currents (Table 4). Both inhibition and 

activation of the Wnt pathway caused hyperpolarization of the cell membrane, but only 

Wnt signaling inhibition resulted in lower Cm values. Current densities of KDR currents 

were higher in cells with inhibited Wnt signaling. 
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Table 2. Membrane properties of differentiated neonatal NS/PCs displaying a passive 

current pattern. 

 
dnTCF4 Dkk1 Ex3 

 
EtOH 4OHT EtOH 4OHT EtOH 4OHT 

Vm [mV] -83.3±0.6 -86.2±0.4** -85.2±0.4 -87.0±0.3* -85.7±0.3 -87.0±0.4 

IR [MΩ] 73.6±3.1 73.2±2.3 71.2±2.3 71.6±1.8 69.8±3.2 83.8±5.5 

Cm [pF] 34.4±2.2 31.3±1.6 36.7±2.0 28.2±1.2* 35.4±2.4 32.1±2.2 

KIR [pA] 74.1±7.6 77.2±5.4 58.0±4.6 56.3±3.3 71.4±6.1 86.7±6.5 

KIR/Cm [pA/pF] 2.3±0.2 3.9±0.3** 2.3±0.2 2.7±0.2 2.7±0.2 4.2±0.3** 

KDR [pA] 127.0±17.1 119.4±11.4 82.3±7.5 78.6±8.1 116.4±12.2 156.5±18.6 

KDR/Cm [pA/pF] 3.8±0.5 4.3±0.4 3.2±0.3 3.9±0.5 4.1±0.4 5.3±0.6 

n 74 92 76 110 89 65 

Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Cm – membrane capacitance; Dkk1 – Dickkopf 

1; dnTCF4 – dominant negative T-cell factor 4; EtOH – ethanol; Ex3 – exon 3; IR – input 

resistance; KDR – delayed outwardly rectifying K
+
 currents; KIR – inwardly rectifying K

+
 currents; 

KIR/Cm, KDR/Cm – current densities; n – number of cells; Vm – membrane potential. Values in bold 

indicate significant differences between EtOH- and 4OHT-treated cultures; *, p ˂ 0.05; **, p ˂ 

0.01 (adapted from Kriska et al. (2016)). 
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Table 3. Membrane properties of differentiated neonatal NS/PCs displaying a complex 

current pattern. 

 
dnTCF4 Dkk1 Ex3 

 
EtOH 4OHT EtOH 4OHT EtOH 4OHT 

Vm [mV] -83.6±1.3 -84.1±0.7 -85.2±0.9 -86.3±0.7 -86.2±1.0 -87.5±0.7 

IR [MΩ] 202.9±18.0 214.2±11.4 185.6±15.2 135.8±8.4*** 231.4±27.9 164.3±15.2 

Cm [pF] 21.9±1.7 13.7±0.7*** 22.4±1.2 16.7±0.8** 17.4±1.8 23.5±1.8 

KIR [pA] 81.2±6.6 87.4±4.7 83.0±6.6 106.7±4.9* 74.2±8.2 141.2±11.2** 

KIR/Cm [pA/pF] 4.2±0.3 7.4±0.4*** 4.0±0.3 7.8±0.5*** 4.3±0.4 7.4±0.6** 

KDR [pA] 514.9±44.2 463.0±29.4 659.8±59.3 434.6±38.7* 618.5±61.2 605.8±40.9 

KDR/Cm [pA/pF] 33.7±4.3 46.9±3.4 38.0±4.4 38.3±4.2 43.3±4.4 36.0±3.5 

KA [pA] 290.3±35.5 205.0±12.4* 369.4±62.3 278.4±22.3 229.8±24.0 275.6±38.3 

KA/Cm [pA/pF] 23.2±4.0 23.1±1.6 28.5±6.1 22.0±2.0 20.5±3.5 13.4±1.6 

n 35 95 31 58 19 40 

Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Cm – membrane capacitance; Dkk1 – Dickkopf 

1; dnTCF4 – dominant negative T-cell factor 4; EtOH – ethanol; Ex3 – exon 3; IR – input 

resistance; KA – fast activating and inactivating outwardly rectifying K
+
 currents; KDR – delayed 

outwardly rectifying K
+
 currents; KIR – inwardly rectifying K

+
 currents; KIR/Cm, KDR/Cm, KA/Cm – 

current densities; n – number of cells; Vm – membrane potential. Values in bold indicate 

significant differences between EtOH- and 4OHT-treated cultures; *, p ˂ 0.05; **, p ˂ 0.01; ***, 

p ˂ 0.001 (adapted from Kriska et al. (2016)). 
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Table 4. Membrane properties of differentiated neonatal NS/PCs displaying an outwardly 

rectifying current pattern. 

 
dnTCF4 Dkk1 Ex3 

 
EtOH 4OHT EtOH 4OHT EtOH 4OHT 

Vm [mV] -69.1±1.3 -70.7±1.7 -63.6±1.7 -74.9±2.9** -67.0±2.1 -78.7±1.6*** 

IR [MΩ] 1856.0±78.0 1817.7±98.8 1797.7±95.6 1514.3±181.8 1924.7±82.1 1434.3±115.9** 

Cm [pF] 10.6±0.4 7.5±0.3*** 11.3±0.5 7.7±0.4** 10.3±0.4 9.9±0.5 

KDR [pA] 691.0±23.2 637.3±26.0 830.1±34.6 881.1±79.0 652.7±25.3 695.6±42.1 

KDR/Cm [pA/pF] 72.1±2.2 101.0±5.1*** 87.4±3.8 132.3±14.3** 71.2±3.1 75.9±3.6 

KA [pA] 634.5±27.5 479.2±27.7** 795.1±38.5 524.0±49.5** 675.9±37.6 441.8±37.1*** 

KA/Cm [pA/pF] 68.7±3.1 78.9±5.1 92.7±5.1 79.0±9.7 80.3±5.2 55.9±5.0* 

n 128 78 90 25 77 63 

Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Cm – membrane capacitance; Dkk1 – Dickkopf 

1; dnTCF4 – dominant negative T-cell factor 4; EtOH – ethanol; Ex3 – exon 3; IR – input 

resistance; KA – fast activating and inactivating outwardly rectifying K
+
 currents; KDR – delayed 

outwardly rectifying K
+
 currents; KDR/Cm, KA/Cm – current densities; n – number of cells; Vm – 

membrane potential. Values in bold indicate significant differences between EtOH- and 4OHT-

treated cultures; *, p ˂ 0.05; **, p ˂ 0.01; ***, p ˂ 0.001 (adapted from Kriska et al. (2016)). 

 

Besides the differences in the passive membrane properties, and the expression of 

K
+
 channels, we also identified changes in the expression of voltage-dependent Na

+
 

channels in DCX/MAP2-positive neuron-like cells that expressed an outwardly rectifying 

current pattern (Figure 26A). Moreover, we detected changes in the incidence of such 

cells (Figure 26B), which were also capable of generating action potentials (Figure 26C). 

Inhibition of the Wnt signaling pathway at the membrane and nuclear level led to the 

absence of cells expressing Na
+
 channels (Figure 26B), while activation of the pathway 

caused an increase in both the Na
+
 current densities and the cell incidence (Figure 26B). 
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Figure 26. Voltage-gated Na
+
 channels in cells with an outwardly rectifying current profile. 

(A) A typical current pattern of a cell expressing outwardly rectifying K
+
 currents, together with 

inwardly rectifying Na
+
 currents. (B) After Wnt signaling inhibition (dnTCF4 or Dkk1), the 

incidence of cells expressing Na
+
 channels decreased. Conversely, Wnt pathway activation (Ex3) 

increased the incidence as well as the current densities of voltage-dependent Na
+
 channels. The 

numbers of cells with Na
+
 currents identified in the individual cultures were as follow (in 

brackets): dnTCF4-EtOH (4), dnTCF4-4OHT (0), Dkk1-EtOH (4), Dkk1-4OHT (0), Ex3-EtOH 

(1), and Ex3-4OHT (3). (C) A trace that represents action potentials generated by some of the 

cells. Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Cm – membrane capacitance; Dkk1 – 

Dickkopf 1; dnTCF4 – dominant negative T-cell factor 4; EtOH – ethanol; Ex3 – exon 3; Na/Cm, 

current densities of Na
+
 currents (adapted from Kriska et al. (2016)). 

 

Finally, measurements of intracellular calcium revealed that after inhibition of the 

pathway at the cell membrane level, the percentage of MAP2/DCX-positive cells 

responding to 100 µM glutamate decreased significantly, from ~90% in EtOH to ~20%, 

and the average amplitude of the glutamate-evoked response decreased by ~66% (Figure 

27A). Additionally, Dkk1 over-expression also resulted in a higher response to 50 µM 

ATP application, when compared to the controls (Figure 27A); however, the average 

amplitude of responding cells remained unchanged. On the other hand, activation of the 

pathway led to the lower average amplitude in response to ATP application (Figure 27B), 

while the Ca
2+

 elevations in response to glutamate application were comparable with 

those observed in controls (Figure 27B). Inhibition of the pathway in the nucleus 

(dnTCF4) showed no significant changes in the cell response to glutamate or ATP 

application. 
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Figure 27. Calcium responses evoked by glutamate and ATP in DCX/MAP2-positive cells. 

(A) Inhibition of Wnt signaling at the membrane level (Dkk1) significantly lowered Ca
2+

 

responses (% of responding cells and their average amplitude) to 100 µM glutamate (glu) 

application, and increased the response rate to 50 µM adenosine triphosphate (ATP) application. 

(B) Activation of the pathway (Ex3) resulted in lower average amplitudes of ATP-responding 

cells. The number of cells used in this analysis was as follows (in brackets): Dkk1-EtOH (9), 

Dkk1-4OHT (6), Ex3-EtOH (7), and Ex3-4OHT (7); 
*/#

, p ˂ 0.05; 
***/###

, p ˂ 0.001. Abbreviations: 

4OHT – (Z)-4-hydroxytamoxifen; DCX – doublecortin; Dkk1 – Dickkopf 1; EtOH – ethanol; Ex3 

– exon 3; F0 – baseline fluorescence intensity; MAP2 – microtubule-associated protein 2 (adapted 

from Kriska et al. (2016)). 

 

These results show that the alterations in β-catenin signaling influence the 

distribution of distinct K
+
 channels as well as the ability of cells to transport Ca

2+
 after the 

application of glutamate and ATP. Furthermore, the activation of the Wnt signaling 

pathway increases the incidence of cells expressing outwardly rectifying K
+
 currents 

together with inwardly rectifying Na
+
 currents. 

 

Taken together, the data from our in vitro systems modulating the output of the canonical 

Wnt signaling pathway suggest that hyper-activation of the pathway leads to higher 

neurogenesis, while gliogenesis is suppressed. Conversely, inhibition of the pathway at 
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both membrane receptor and nuclear levels showed comparable results and promoted 

gliogenesis at the expense of neurogenesis. These findings are summarized in the 

following diagram (Figure 28). 

 

 

Figure 28. Graphical representation of the changes observed in neonatal mice. According to 

our analyses, Wnt signaling inhibition (dnTCF4 or Dkk1) led to the differentiation of NS/PCs to 

the glial phenotype, while activation of the pathway by the stabilization of protein β-catenin (Ex3) 

promoted neurogenesis. Abbreviations: Dkk1 – Dickkopf 1; dnTCF4 – dominant negative T-cell 

factor 4; Ex3 – exon 3; NS/PCs – neural stem/progenitor cells (Kriska et al., 2016). 

 

4.2 The differentiation potential of adult neural 

stem/progenitor cells 

The analysis of various Wnt pathway components in neonatal animals taught us that we 

cannot leave out any of the three mouse strains because each of them behaves slightly 

differently. Therefore, after we assessed the effect of canonical Wnt signaling on cell 

cultures derived from neonatal mice, we went on to the experiments on NS/PCs isolated 

from adult (two-month-old) animals of the same transgenic strains. The purpose of these 

experiments was to disclose the differentiation potential of NS/PCs also in a model that 

resembles more the processes occurring in the mature age. To elucidate the impact of the 

Wnt/β-catenin pathway on the differentiation potential of NS/PCs in non-operated 

(CTRL) mice and mice after the induction of permanent FCI (MCAO), we compared 

either in vitro cultures treated with 4OHT to their respective controls (EtOH) or tissue 

specimens from mice with manipulated Wnt signaling (TAM) to control mice with intact 

Wnt signaling (CO). We employed almost identical set of experiments as in neonatal 

mice. 
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4.2.1 Expression of Wnt signaling pathway components 

Similarly to the experiments on cells derived from neonatal mice, we aimed to determine 

the extent to which the components of the canonical Wnt pathway are altered in our 

models. Initially, we utilized immunocytochemical staining against the principal element 

of the signaling, i.e. β-catenin (Figure 29). Although we did not detect any changes in the 

expression of the protein after Wnt signaling inhibition in the cell nucleus (Figure 29A, 

D), we identified decreased amounts of β-catenin after Wnt signaling inhibition at the 

membrane receptor level (Figure 29B, D). In cells with hyper-activated Wnt signaling 

(Ex3), the expression of the protein was increased (Figure 29C, D). All these results 

correlate well with the findings in neonatal cultures (Figure 20). 

 

 

Figure 29. Immunocytochemical staining of β-catenin. (A-C) Representative fluorescent 

images of DAPI and β-catenin staining in differentiated adult neural stem/progenitor cells with 

inhibited (dnTCF4, Dkk1), or activated (Ex3) Wnt signaling. Cells were treated either only with 

ethanol (EtOH) or with (Z)-4-hydroxytamoxifen (4OHT) dissolved in ethanol, and analyzed eight 

days after the onset of in vitro differentiation. (D) Quantification of β-catenin expression, showing 

the proportion of the area of positively-stained cells to the DAPI-positive area (n=12). The area of 

β-catenin fluorescence in control cells (EtOH) was arbitrarily set to 1. The values are represented 

as mean ± S.D. (standard deviation). Statistical significance was calculated using t-test; **, p ˂ 
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0.01. Abbreviations: DAPI – 4',6-diamidino-2-phenylindole; Dkk1 – Dickkopf 1; dnTCF4 – 

dominant negative T-cell factor 4; Ex3 – exon 3; n – number (unpublished data). 

 

In the following experiments, we evaluated the effect of Wnt signaling 

manipulation in tissue slices or their lysates. The incentive behind using tissue specimens 

was the low yield of cells that were derived from adult mice and cultured in vitro. First, 

we assessed the quantities of total β-catenin protein and its non-phosphorylated, active 

form (Figure 30). However, the results from Western blotting did not correspond well 

with the findings from immunocytochemistry (Figure 29). We were not able to detect any 

differences in the expression of total β-catenin. Moreover, the expression of active β-

catenin showed no changes in CTRL animals, but we observed significant alterations 

after the induction of FCI (Figure 30). We identified decreased amounts of this protein 

after Wnt signaling inhibition in the nucleus (from 6.56 ± 0.56 to 2.70 ± 0.38) and Wnt 

signaling hyper-activation (from 2.93 ± 0.19 to 1.62 ± 0.16), while inhibition at the 

cellular membrane increased the expression of active β-catenin (from 2.30 ± 0.07 to 3.93 

± 0.02). 

Next, to estimate the activity of β-catenin, we calculated the non-phosphorylated-

β-catenin-to-β-catenin ratio. In cells with inhibited Wnt signaling in the nucleus, the ratio 

decreased from 1.15 to 0.89 in controls and it decreased almost to the half, from 1.01 to 

0.52 after FCI. The data from controls correlated well with our findings in neonatal mice 

and the results from MCAO mice showed that ischemia increased the effect of Wnt 

signaling. Inhibition at the membrane level led to a slight decrease from 0.42 to 0.31 in 

CTRL mice, while after FCI, the ratio raised two-fold, from 0.12 to 0.24. The overall low 

values in Dkk1 cultures were caused by relatively high expression of total β-catenin. 

Surprisingly, activation of the Wnt pathway resulted in a lower non-phosphorylated-β-

catenin-to-β-catenin ratio (from 1.12 to 0.69 in CTRL cells and from 1.02 to 0.88 in 

MCAO cells). This decrease in the proportion of active protein after Wnt signaling hyper-

activation is in a stark contrast to the findings in neonatal cultures, where we detected its 

eight-fold increase. 
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Figure 30. Levels of β-catenin protein 

in differentiated adult neural 

stem/progenitor cells. Densitometric 

analysis of Western blots assessing total 

(β-cat) and active, non-phosphorylated 

(non-P β-cat) β-catenin. Together, eight 

founder mice were used to isolate the 

subventricular zones from each mouse 

strain. The tissues were analyzed either  

in non-operated, control mice (CTRL) or mice after middle cerebral artery occlusion (MCAO), 

with Wnt signaling either non-manipulated (CO) or manipulated (TAM). Error bars represent 

S.E.M. (standard error of the mean). Abbreviations: CO – corn oil; Dkk1 – Dickkopf 1; 

dnTCF4 – dominant negative T-cell factor 4; Ex3 – exon 3; TAM – tamoxifen (unpublished 

data). 
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Additionally, we analyzed the expression of Wnt target genes using RT-qPCR 

(Figure 31). In adult NS/PCs, four different target genes were examined, namely Axin2, 

naked cuticle homolog 1 (Nkd1), Sp5, and Troy. Their expression was either 

downregulated or not changed in CTRL mice of all strains. There was one exception, the 

Sp5 gene, which was always upregulated. The expression pattern was similar in MCAO 

mice; however, a striking increase in the expression of Wnt target genes was observed 

(Figure 31). Interestingly, the expression of the Sp5 gene was dramatically decreased after 

the induction of FCI. 

Thus, the analysis of the expression of Wnt signaling pathway components 

revealed several similarities with neonatal cell cultures. The system worked very well in 

vitro. We detected the same expression pattern of β-catenin protein, but different 

expression of its active form, especially after Wnt signaling hyper-activation. Moreover, 

the expression of the Wnt target genes was influenced by Wnt signaling manipulation and 

enhanced following the induction of FCI. 
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Figure 31. Expression of Wnt target 

genes in differentiated adult neural 

stem/progenitor cells. Reverse 

transcription quantitative polymerase 

chain reaction (RT-qPCR) analysis was 

used to assess the mRNA abundance of 

Wnt target genes. Together, eight founder 

mice were used to isolate the 

subventricular zones from each mouse 

strain, and the analysis was performed in 

technical triplicates. The average cycle 

threshold (Ct) values were normalized to 

glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH). Axin2, Nkd1, 

Sp5, and Troy are Wnt target genes. The 

expression levels of a given gene in 

control cells (CTRL+CO) were arbitrarily 

set to 1. The tissues were analyzed either 

in non-operated control mice (CTRL) or 

mice after middle cerebral artery occlusion 

(MCAO), with Wnt signaling either non-

manipulated (CO) or manipulated (TAM). 

Statistical significance was calculated 

using t-test; *, p ˂ 0.05; **, p ˂ 0.01; ***, 

p ˂ 0.001. Abbreviations: CO – corn oil; 

Dkk1 – Dickkopf 1; dnTCF4 – dominant 

negative T-cell factor 4; Ex3 – exon 3; 

mRNA – messenger RNA; Nkd1 – naked 

cuticle homolog 1; Sp5 – SP5 transcription 

factor; TAM – tamoxifen; Troy – tumor 

necrosis factor receptor superfamily 

member 19 (unpublished data). 
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4.2.2 Cell types derived from adult NS/PCs and their incidence 

In accordance with the study in neonatal mice, we identified the same three cell types that 

represent differentiated adult NS/PCs (Figure 23). The division into the three groups was 

based on the electrophysiological and immunocytochemical properties of the cells. Their 

incidence in in vitro cultures derived from adult mice was calculated from the patch-

clamp experiments. With this technique, we analyzed the properties of 413 EtOH- and 

452 4OHT-treated cells from CTRL mice. In MCAO mice, we assessed 230 EtOH- and 

231 4OHT-treated cells. Initially, we failed to identify any alterations in the cell incidence 

caused by Wnt signaling pathway manipulation in CTRL cells (Figure 32A). This is in 

contrast with neonatal mice, where we disclosed suppressed neurogenesis after Wnt 

signaling inhibition. Interestingly, the trend in the incidence of differentiated cells after 

MCAO resembled the results from neonatal mice. However, significant changes were 

found only in the cultures with inhibited Wnt signaling at the membrane level (Dkk1 

mice; Figure 32B). In these cultures, we observed decreased numbers of cells showing an 

outwardly rectifying current pattern (from 49.17 ± 3.61% in EtOH to 16.91 ± 5.11% in 

4OHT) and increased counts of cells with a complex current profile (from 20.42 ± 3.25% 

in EtOH to 42.35 ± 4.93% in 4OHT). 
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Figure 32. Changes in the incidence of distinct cell types after Wnt signaling manipulation 

in intact and ischemic mice. The incidence of cells showing passive (pas; in green), complex 

(com; in blue) or outwardly rectifying (out; in red) current patterns was examined in neural 

stem/progenitor cell (NS/PC) cultures derived from adult control, non-operated (CTRL) as well as 

operated (MCAO) mice. Eight founder mice were used to derive NS/PCs from each mouse strain. 

The incidence was quantified from the following total number of cells (in brackets): CTRL-

dnTCF4-EtOH (145), CTRL-dnTCF4-4OHT (141), CTRL-Dkk1-EtOH (116), CTRL-Dkk1-

4OHT (114), CTRL-Ex3-EtOH (152), CTRL-Ex3-4OHT (197), MCAO-dnTCF4-EtOH (75), 

MCAO-dnTCF4-4OHT (72), MCAO-Dkk1-EtOH (75), MCAO-Dkk1-4OHT (79), MCAO-Ex3-

EtOH (80), and MCAO-Ex3-4OHT (80). The incidence of cells in controls (EtOH) was compared 

to the incidence of the same cell types in cells with manipulated Wnt signaling (4OHT) with 

Student’s t-test. **, p ˂ 0.01. Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Dkk1 – Dickkopf 

1; dnTCF4 – dominant negative T-cell factor 4; EtOH – ethanol; Ex3 – exon 3; MCAO – middle 

cerebral artery occlusion (unpublished data). 

 

Next, we analyzed the expression of cell-type-specific proteins utilizing Western 

blotting (Figure 33). We evaluated the proteins characteristic of astrocytes (GFAP), 

neuroblasts (DCX) and mature neurons (MAP2 and β III tubulin) in tissue lysates; 

however, changes in their expression caused by Wnt signaling manipulation were rare. 
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After inhibition of the Wnt pathway in the nucleus (dnTCF4), we detected lower 

expression of β III tubulin in mice after FCI (MCAO). The trend of decreased numbers of 

neuron-like cells was observed also in the experiments analyzing the incidence of distinct 

cell types. Surprisingly, after Wnt signaling inhibition due to the over-expression of Dkk1 

protein, cells displayed higher expression of MAP2 only after ischemia. Finally, hyper-

activated Wnt signaling led to lower expression of DCX in CTRL mice, while the 

expression of MAP2 increased after FCI. Increased expression of neuronal markers after 

Wnt signaling activation was identified also in neonatal mice, while together with the 

induction of FCI, they may have a synergistic effect on the expression of cell-type-

specific proteins. 

 

 

Figure 33. Expression of cell-type-

specific proteins in differentiated 

adult neural stem/progenitor cells. 

Densitometric analysis of Western 

blots assessing the abundance of 

proteins GFAP (marker of 

astrocytes), DCX (neuroblasts), 

MAP2, and β3-tubulin (both 

neurons). The tissues were analyzed 

either in non-operated, control mice 

(CTRL) or mice after middle cerebral 

artery occlusion (MCAO), with Wnt 

signaling either non-manipulated 

(CO) or manipulated (TAM). Error 

bars represent S.E.M. (standard error 

of the mean); *, p ˂ 0.05; **, p ˂ 

0.01. Abbreviations: CO – corn oil; 

DCX – doublecortin; Dkk1 – 

Dickkopf 1; dnTCF4 – dominant 

negative T-cell factor 4; Ex3 – exon 

3; GFAP – glial fibrillary acidic 

protein; MAP2 – microtubule-

associated protein 2; TAM – 

tamoxifen (unpublished data). 
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Additionally, we performed immunohistochemical analysis in situ in coronal brain 

sections where we analyzed the expression of DCX (marker of neuroblasts), GFAP 

(marker of astrocytes), and PCNA (marker of dividing cells) in the SVZ (Figure 34). We 

observed higher overall immunopositivity after the induction of FCI (Figure 34A, B, C, 

D), which is a hallmark of ischemia-induced changes in the brain and corresponds well 

with the results obtained from RT-qPCR analysis (Figure 31) and to some extent also 

with the data from Western blotting experiments (Figure 33). Furthermore, Wnt signaling 

inhibition caused higher expression of GFAP and lower expression of DCX in both 

CTRL and MCAO mice, while the immunopositivity of PCNA was decreased only in 

MCAO mice. These observations were more significant after Wnt signaling inhibition in 

the cell nucleus (Figure 34B, C). Conversely, Wnt signaling hyper-activation resulted in 

the overexpression of PCNA and DCX in CTRL mice, while this effect was diminished 

after FCI. Moreover, activation of the pathway resulted in the decreased expression of 

GFAP only after the induction of FCI (Figure 34D). 
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Figure 34. Immunohistochemical analysis of the subventricular zone of adult mice. Inhibition 

or activation of the canonical Wnt signaling pathway changes the incidence of cell types in the 
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adult mouse subventricular zone (SVZ) under control, physiological conditions (CTRL) as well as 

upon focal cerebral ischemia induced by middle cerebral artery occlusion (MCAO). (A) 

Representative images of the SVZ isolated from CTRL and MCAO mice. Increased stainings of 

neuroblasts marked by doublecortin (DCX), glial fibrillary acidic protein (GFAP)-positive 

astrocytes, and dividing cells harboring proliferating cell nuclear antigen (PCNA) were recorded 3 

days after the induction of ischemia. Scale bar = 0.2 mm. (B-D) Quantification of 

immunohistochemical staining in the SVZ of CTRL and MCAO mice treated either with 

tamoxifen (TAM) or vehicle, corn oil only (CO). Tamoxifen-induced production of dominant 

negative human TCF4 protein (dnTCF4; B) and Dickkopf-1 Wnt inhibitory protein (Dkk1; C) 

were used to achieve Wnt signaling inhibition and, conversely, production of constitutively active 

β-catenin (Ex3; D) was initiated in order to obtain Wnt pathway activation. Experiments were 

performed using two biological replicates and three technical replicates for each treatment (n = 6). 

Average values of the control mice (CTRL CO) were arbitrary set to 100% of immunogenic 

signal. Error bars represent standard deviation (S.D.) and one-way ANOVA was used to 

determine significant differences among the experimental groups; *, p < 0.05; **, p < 0.01; ***, p 

< 0.001; ****, p < 0.0001. Abbreviations: DAPI – 4',6-diamidino-2-phenylindole; Ex3 – exon 3; 

n – number; TCF4 – T-cell factor (unpublished data). 

 

Taken together, our data showed that Wnt signaling influences the incidence of 

distinct cell types; however, various experimental approaches proved this to various 

extents. Electrophysiological measurements revealed alterations in the incidence only 

after FCI induction (Figure 32), while the immunohistochemical analysis showed a wide 

variety of changes caused by Wnt signaling manipulation in both non-ischemic and 

ischemic tissue (Figure 34). 

 

4.2.3 Properties of differentiated adult neural stem/progenitor cells 

The electrophysiological characterization of membrane properties was conducted also in 

adult mice as we utilized the patch-clamp technique measurements on in vitro 

differentiated NS/PCs. Together 1,355 cells were analyzed and the effect of Wnt 

signaling manipulation in CTRL and MCAO mice was investigated in cells with a 

passive, complex and outwardly rectifying current profile (Tables 5-10). 

 

Cells with a passive current profile 

In cells with a passive current pattern, the changes in the membrane properties were 

sporadic (Tables 5 and 6). Wnt signaling manipulation affected only the passive 

electrophysiological properties and the strongest effect was identified in the Vm after the 

induction of FCI. We found that after Wnt signaling inhibition, the cells became 

hyperpolarized. In dnTCF4 mice, the Vm changed from -84.9 ± 0.7 mV in EtOH to -87.1 
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± 0.4 mV in 4OHT, while in Dkk1 mice, its value changed from -86.0 ± 0.6 mV in EtOH 

to -89.1 ± 0.3 mV in 4OHT. Such hyperpolarization under ischemic conditions was 

observed in all analyzed cell types. 

 

Table 5. Membrane properties of differentiated adult NS/PCs isolated from CTRL mice, 

and showing a passive current profile. 

 
dnTCF4 Dkk1 Ex3 

 
EtOH 4OHT EtOH 4OHT EtOH 4OHT 

Vm [mV] -84.5±0.7 -83.0±1.0 -86.8±0.9 -85.5±1.0 -85.4±0.7 -87.6±0.6* 

IR [MΩ] 67.6±4.2 66.7±2.8 49.1±3.1 75.3±4.5*** 89.4±5.0 79.2±4.0 

Cm [pF] 27.1±2.3 30.4±2.9 31.4±2.8 21.7±1.7** 22.6±1.8 20.7±1.4 

KIR [pA] 59.4±5.0 56.1±6.3 62.2±14.0 63.9±8.3 57.0±12.8 45.8±4.6 

KIR/Cm [pA/pF] 2.9±0.3 2.5±0.4 2.4±0.7 3.2±0.4 3.5±0.9 2.7±0.3 

KDR [pA] 75.9±18.4 126.8±26.9 166.2±39.1 144.0±31.9 116.7±20.4 74.9±11.8 

KDR/Cm [pA/pF] 4.0±0.8 6.3±1.5 7.4±2.3 8.7±3.0 5.8±1.0 3.9±0.6 

n 62 55 25 25 61 63 

Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Cm – membrane capacitance; Dkk1 – Dickkopf 

1; dnTCF4 – dominant negative T-cell factor 4; EtOH – ethanol; Ex3 – exon 3; IR – input 

resistance; KDR – delayed outwardly rectifying K
+
 currents; KIR – inwardly rectifying K

+
 currents; 

KIR/Cm, KDR/Cm – current densities; n – number of cells; Vm – membrane potential. Values in bold 

indicate significant differences between EtOH- and 4OHT-treated cultures; *, p ˂ 0.05; **, p ˂ 

0.01 (unpublished data). 
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Table 6. Membrane properties of differentiated adult NS/PCs isolated from MCAO mice, 

and showing a passive current profile. 

 
dnTCF4 Dkk1 Ex3 

 
EtOH 4OHT EtOH 4OHT EtOH 4OHT 

Vm [mV] -84.9±0.7 -87.1±0.4** -86.0±0.6 -89.1±0.3*** -86.1±0.3 -85.5±0.6 

IR [MΩ] 50.1±3.6 47.2±1.9 44.4±3.5 46.3±2.5 45.9±2.1 48.3±2.8 

Cm [pF] 40.6±5.0 36.3±2.4 46.6±4.7 36.5±3.5 53.5±9.5 51.4±10.6 

KIR [pA] 91.7±10.6 67.6±13.3 109.0±27.0 113.3±14.8 77.9±13.1 70.7±9.0 

KIR/Cm [pA/pF] 2.4±0.4 1.9±0.3 2.9±0.6 4.2±0.6 2.0±0.3 2.1±0.3 

KDR [pA] 151.1±20.6 133.1±16.8 227.6±48.1 180.4±28.5 218.0±29.4 173.2±26.5 

KDR/Cm [pA/pF] 5.9±1.1 4.2±0.5 5.6±1.0 4.6±0.7 5.8±0.7 4.7±0.7 

n 25 40 23 32 39 30 

Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Cm – membrane capacitance; Dkk1 – Dickkopf 

1; dnTCF4 – dominant negative T-cell factor 4; EtOH – ethanol; Ex3 – exon 3; IR – input 

resistance; KDR – delayed outwardly rectifying K
+
 currents; KIR – inwardly rectifying K

+
 currents; 

KIR/Cm, KDR/Cm – current densities; n – number of cells; Vm – membrane potential. Values in bold 

indicate significant differences between EtOH- and 4OHT-treated cultures; *, p ˂ 0.05; **, p ˂ 

0.01 (unpublished data). 

 

Cells with a complex current profile 

In cells with a complex current pattern, we observed opposite effects of Wnt signaling 

inhibition and activation on the values of Vm (Tables 7 and 8). Inhibition of the pathway 

resulted in hyperpolarization, while Wnt signaling activation led to depolarization of the 

membrane. Besides the passive membrane properties, Wnt signaling manipulation 

influenced also the expression of voltage-gated K
+
 channels in this cell type. After Wnt 

signaling activation in CTRL mice, the densities of all examined K
+
 currents decreased. 

This effect of Wnt signaling subsided after the induction of FCI, which is in accordance 

with our observation that under ischemic conditions, the majority of K
+
 currents were 

upregulated, independently on the Wnt signaling inhibition/activation. 
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Table 7. Membrane properties of differentiated adult NS/PCs isolated from CTRL mice, 

and showing a complex current profile. 

 
dnTCF4 Dkk1 Ex3 

 
EtOH 4OHT EtOH 4OHT EtOH 4OHT 

Vm [mV] -82.9±1.0 -88.6±0.7*** -89.0±0.9 -86.9±0.9 -88.8±0.8 -86.5±0.7* 

IR [MΩ] 138.2±12.8 153.0±13.8 136.4±9.7 136.3±9.0 175.6±14.0 138.6±7.7* 

Cm [pF] 16.9±1.6 12.7±0.8* 14.5±1.1 15.2±1.3 15.7±1.2 16.6±1.1 

KIR [pA] 85.9±8.4 85.5±9.2 106.7±9.6 119.4±10.0 105.4±9.4 61.1±5.9*** 

KIR/Cm [pA/pF] 6.1±0.6 7.7±0.9 8.3±0.8 10.7±1.2 7.9±0.7 4.5±0.5*** 

KDR [pA] 489.7±65.6 517.5±64.7 708.2±80.3 881.1±73.3 545.4±59.9 377.4±38.5* 

KDR/Cm [pA/pF] 34.9±5.1 52.8±9.0 54.1±6.3 76.0±9.6 42.1±5.5 25.6±2.9** 

KA [pA] 331.9±84.4 200.4±21.3 507.2±62.3 302.4±24.9* 253.9±50.1 143.6±26.6 

KA/Cm [pA/pF] 22.3±4.3 20.8±3.7 45.4±6.3 25.1±2.7* 19.2±4.3 11.4±2.4 

n 43 45 39 38 45 58 

Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Cm – membrane capacitance; Dkk1 – Dickkopf 

1; dnTCF4 – dominant negative T-cell factor 4; EtOH – ethanol; Ex3 – exon 3; IR – input 

resistance; KA – fast activating and inactivating outwardly rectifying K
+
 currents; KDR – delayed 

outwardly rectifying K
+
 currents; KIR – inwardly rectifying K

+
 currents; KIR/Cm, KDR/Cm, KA/Cm – 

current densities; n – number of cells; Vm – membrane potential. Values in bold indicate 

significant differences between EtOH- and 4OHT-treated cultures; *, p ˂ 0.05; **, p ˂ 0.01; ***, 

p ˂ 0.001 (unpublished data). 
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Table 8. Membrane properties of differentiated adult NS/PCs isolated from MCAO mice, 

and showing a complex current profile. 

 
dnTCF4 Dkk1 Ex3 

 
EtOH 4OHT EtOH 4OHT EtOH 4OHT 

Vm [mV] -84.7±1.3 -88.2±0.7* -87.2±0.7 -89.4±0.6* -86.0±0.5 -85.2±1.3 

IR [MΩ] 171.9±33.5 120.7±16.3 115.4±26.3 111.8±10.6 93.1±11.4 110.6±11.9 

Cm [pF] 21.4±3.5 20.3±3.3 23.3±2.4 15.2±1.2** 34.5±13.8 18.9±2.9 

KIR [pA] 98.1±13.2 91.6±11.0 111.0±13.3 135.8±11.6 83.4±8.8 122.1±13.7* 

KIR/Cm [pA/pF] 6.1±1.0 6.3±1.2 6.3±1.4 11.7±1.6* 5.1±0.9 9.0±1.4* 

KDR [pA] 953.6±115.6 761.0±129.3 578.5±94.8 739.5±95.4 735.1±119.8 643.6±103.2 

KDR/Cm [pA/pF] 61.3±9.4 52.4±10.7 32.7±8.0 79.6±16.7 59.4±15.1 54.0±12.0 

KA [pA] 246.7±27.8 404.8±91.1 408.6±93.9 444.6±68.4 421.0±120.0 302.1±123.1 

KA/Cm [pA/pF] 15.9±4.9 27.2±8.7 26.5±9.5 39.0±7.9 38.7±13.5 26.3±11.7 

n 15 13 15 34 23 23 

Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Cm – membrane capacitance; Dkk1 – Dickkopf 

1; dnTCF4 – dominant negative T-cell factor 4; EtOH – ethanol; Ex3 – exon 3; IR – input 

resistance; KA – fast activating and inactivating outwardly rectifying K
+
 currents; KDR – delayed 

outwardly rectifying K
+
 currents; KIR – inwardly rectifying K

+
 currents; KIR/Cm, KDR/Cm, KA/Cm – 

current densities; n – number of cells; Vm – membrane potential. Values in bold indicate 

significant differences between EtOH- and 4OHT-treated cultures; *, p ˂ 0.05; **, p ˂ 0.01; ***, 

p ˂ 0.001 (unpublished data). 

 

Cells with an outwardly rectifying current profile 

In cells displaying an outwardly rectifying current pattern, the effect of Wnt signaling 

inhibition on the Vm was reverse in CTRL and MCAO mice (Tables 9 and 10). In CTRL 

mice, the membrane was depolarized and conversely, after the induction of FCI, the cells 

became hyperpolarized, which was observed in all three cell types. The opposite impact 

of the Wnt signaling pathway on the Vm coincides well with the expression of K
+
 

channels mediating outward currents. After Wnt signaling inhibition, the current densities 

of KDR and KA were decreased or increased only negligibly in CTRL mice while in 

MCAO mice, their current densities increased significantly. Higher efflux of K
+
 ions out 

of the cell could potentially explain hyperpolarization observed after the induction of FCI 

in cells with a complex and outwardly rectifying current profile. 
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Table 9. Membrane properties of differentiated adult NS/PCs isolated from CTRL mice, 

and showing an outwardly rectifying current profile. 

 
dnTCF4 Dkk1 Ex3 

 
EtOH 4OHT EtOH 4OHT EtOH 4OHT 

Vm [mV] -85.5±1.6 -79.4±1.8* -86.9±1.3 -81.8±1.2** -86.2±1.5 -77.8±1.8*** 

IR [MΩ] 997.1±97.3 887.5±96.0 959.7±97.2 352.4±30.2*** 1217.6±134.3 877.8±91.9* 

Cm [pF] 8.4±0.8 9.5±0.6 9.1±0.5 16.1±1.2*** 9.1±0.6 11.1±0.8* 

KDR [pA] 816.5±45.6 1024.3±70.0* 1149.2±65.4 1656.5±79.2*** 853.4±45.0 852.9±50.8 

KDR/Cm [pA/pF] 112.2±7.1 118.3±9.0 139.6±8.9 150.5±14.1 101.2±4.7 88.5±5.8 

KA [pA] 605.7±53.8 489.7±54.2 859.7±60.4 352.1±36.2*** 675.3±64.8 320.4±35.7*** 

KA/Cm [pA/pF] 84.5±7.6 75.5±12.3 110.9±9.8 40.1±7.2*** 80.6±7.3 44.0±7.1*** 

n 47 47 65 57 62 61 

Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Cm – membrane capacitance; Dkk1 – Dickkopf 

1; dnTCF4 – dominant negative T-cell factor 4; EtOH – ethanol; Ex3 – exon 3; IR – input 

resistance; KA – fast activating and inactivating outwardly rectifying K
+
 currents; KDR – delayed 

outwardly rectifying K
+
 currents; KDR/Cm, KA/Cm – current densities; n – number of cells; Vm – 

membrane potential. Values in bold indicate significant differences between EtOH- and 4OHT-

treated cultures; *, p ˂ 0.05; **, p ˂ 0.01; ***, p ˂ 0.001 (unpublished data). 

 

Table 10. Membrane properties of differentiated adult NS/PCs isolated from MCAO mice, 

and showing an outwardly rectifying current profile. 

 
dnTCF4 Dkk1 Ex3 

 
EtOH 4OHT EtOH 4OHT EtOH 4OHT 

Vm [mV] -77.4±2.4 -85.7±1.4* -78.1±2.3 -84.3±2.1 -80.1±2.5 -67.0±3.4** 

IR [MΩ] 1112.2±132.8 1028.2±123.1 1166.2±157.2 741.8±132.1 1230.8±228.2 1018.7±156.6 

Cm [pF] 8.9±0.4 8.8±0.3 9.0±0.4 7.9±1.3 10.2±1.1 9.1±0.8 

KDR [pA] 880.5±57.6 1296.0±156.5** 945.8±56.8 854.6±65.3 960.6±90.6 968.8±87.9 

KDR/Cm [pA/pF] 100.4±5.3 149.3±19.5** 109.5±6.7 137.1±17.1 99.3±6.6 114.6±10.9 

KA [pA] 647.0±42.8 826.3±95.9 879.1±82.3 924.1±108.3 785.4±98.2 746.5±152.4 

KA/Cm [pA/pF] 80.8±6.2 95.5±12.1 103.7±10.1 180.3±30.1** 87.5±12.3 94.9±19.4 

n 34 19 37 13 18 24 

Abbreviations: 4OHT – (Z)-4-hydroxytamoxifen; Cm – membrane capacitance; Dkk1 – Dickkopf 

1; dnTCF4 – dominant negative T-cell factor 4; EtOH – ethanol; Ex3 – exon 3; IR – input 

resistance; KA – fast activating and inactivating outwardly rectifying K
+
 currents; KDR – delayed 
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outwardly rectifying K
+
 currents; KDR/Cm, KA/Cm – current densities; n – number of cells; Vm – 

membrane potential. Values in bold indicate significant differences between EtOH- and 4OHT-

treated cultures; *, p ˂ 0.05; **, p ˂ 0.01; ***, p ˂ 0.001 (unpublished data). 

 

Additionally, we identified changes in the incidence of neuron-like cells 

expressing voltage-dependent Na
+
 channels (data not shown). Their counts increased both 

after Wnt signaling activation (from 3 to 11; total numbers in both CTRL and MCAO 

cultures) and its inhibition in the cell nucleus (from 3 to 9). On the other hand, the 

attenuation of the Wnt pathway at the membrane receptor level resulted in a smaller 

number of these cells (from 10 to 7). Interestingly, the same trends were found in in vitro 

cultures derived from CTRL as well as MCAO mice. Finally, the density of Na
+
 currents 

was significantly changed only in non-operated Dkk1 mice. We identified its increase 

(from 9.8 ± 1.1 pA/pF in EtOH to 19.1 ± 4.3 pA/pF in 4OHT) in cells with an outwardly 

rectifying current pattern, which could add to depolarization we observed in this cell type. 

The electrophysiological analysis gave us an outline of the effect of Wnt signaling 

on the functional properties of differentiated NS/PCs. Similar to neonatal mice, Wnt 

manipulation had a minimal impact on the electrophysiological properties of cells with a 

passive current pattern. Conversely, the most significant changes were identified after 

FCI in cells with a complex and outwardly rectifying current profile. We observed 

hyperpolarized cells especially after Wnt signaling inhibition, which can be explained by 

higher current densities of KDR and KA. Moreover, we detected only a few cells with 

voltage-dependent Na
+
 channels, corroborating our findings in neonatal cultures. These 

results imply that Wnt signaling affects the distribution of K
+
 and Na

+
 channels and thus 

influences the membrane properties of differentiated cells. 

 

To summarize, the above-described experiments indicate that we were able to influence 

the output of the canonical Wnt signaling also in NS/PCs derived from adult animals. 

This was clearly documented in the experiments in vitro. When we utilized tissue lysates, 

the differences between the experimental groups became less significant. Nevertheless, 

the immunohistochemical analysis in coronal slices provided results that correspond with 

our findings in neonatal animals. Together, we found that Wnt signaling inhibition 

promotes gliogenesis and attenuates neurogenesis, while Wnt signaling activation exerts 

opposite effects. Moreover, the effects of Wnt signaling were enhanced following the 

induction of FCI. These findings are recapitulated in the following scheme (Figure 35). 
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Figure 35. Graphical representation of the changes observed in adult mice. According to our 

immunohistochemical staining analyses, Wnt signaling inhibition (dnTCF4 or Dkk1) led to the 

differentiation of NS/PCs to astrocytes, while activation of the pathway (Ex3) promoted 

neurogenesis. Similar impact of Wnt signaling manipulation after ischemia was confirmed also by 

the patch-clamp technique. Larger cells represent a greater effect of Wnt signaling after ischemia. 

Abbreviations: Dkk1 – Dickkopf 1; dnTCF4 – dominant negative T-cell factor 4; Ex3 – exon 3; 

NS/PCs – neural stem/progenitor cells (unpublished data). 

 

4.3 The differentiation potential of adult NG2 glia 

Following the experiments on NS/PCs, we turned our attention to NG2 glial cells, also 

called polydendrocytes. These cells are considered the most mitotically active glia in the 

postnatal brain (Dawson et al., 2000), which makes them a promising source of various 

newly derived cell types in the adult CNS (Kirdajova and Anderova, 2019). Here we 

analyzed the effect of cellular signaling pathways as well as the impact of FCI on the 

differentiation potential of these ubiquitous progenitors spread throughout the adult 

mammalian brain. To achieve this, we employed a transgenic mouse strain in which NG2 

cells expressed red fluorescent protein tdTomato, and thus facilitated their 'fate mapping'. 

 

4.3.1 Cell types and their incidence 

NG2 cells are restricted to the oligodendrocyte lineage under physiological conditions; 

nevertheless, ischemic injury turns them into multipotent progenitors. In this study, we 

assessed the differentiation potential of NG2 cells surrounding the ischemic lesion three, 

seven, and fourteen days after the induction of FCI by MCAO, and compared it with non-

operated controls (Figure 36A). In the CTRL cortex, we identified three distinct Tom-
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positive cell populations. One population expressed high levels of platelet-derived growth 

factor beta receptor (Pdgfrb), which is characteristic of pericytes. As this cell type does 

not belong to the oligodendrocyte lineage, it was from now on omitted. Employing the 

PCA analysis, comparing the expression profiles of cell-type-specific genes, we further 

identified two more Tom-positive cell types – oligodendrocytes and NG2 cells (Figures 

36A-C and 37). Oligodendrocytes (n = 46 cells and 8 mice) were characterized by the 

expression of Mbp and claudin-11 (Cldn11), while NG2 glia (n = 21 cells and 6 mice) 

expressed Cspg4 and platelet-derived growth factor α receptor (Pdgfra; Figure 36B). 

Surprisingly, Cnp, which is a marker of oligodendrocytes, was found in 90.5 ± 6.7% of 

NG2 glia. Nonetheless, its expression was 60.9 ± 1.2-fold higher in oligodendrocytes 

(Figure 36C). Besides the cell-type-specific genes, there were several other genes 

differently expressed in these two Tom-positive populations. Among others, typical 

astrocytic genes solute carrier family 1 member 2 (Slc1a2) and solute carrier family 1 

member 3 (Slc1a3), encoding excitatory amino acid transporter 2 (EAAT2; also known as 

glutamate transporter 1 (GLT-1) in mice) and excitatory amino acid transporter 1 in 

humans (EAAT1; also known as glutamate aspartate transporter 1 (GLAST-1) in mice), 

respectively, were both identified in all NG2 cells. Slc1a2 was detected in 17.4 ± 4.5% 

and Slc1a3 in 35.1 ± 5.6% of oligodendrocytes (Figure 36B). Also the expression of these 

two genes was higher in NG2 cells (Figure 36C). Another typical astroglial marker, 

glutamate-ammonia ligase (Glul), encoding glutamine synthetase (GS), was identified in 

96.6 ± 3.4% of oligodendrocytes and 61.9 ± 10.7% of NG2 glia, and its expression was 

5.7 ± 1.3-fold higher in the former (Figure 36C). Furthermore, it is known that the 

canonical Wnt signaling pathway orchestrates the regulation of oligodendrocytic 

maturation (Guo et al., 2015). For this reason, we analyzed two components of this 

pathway, Axin2 and low density lipoprotein receptor-related protein 5 (Lrp5), and found 

out that the expression of these genes varied in NG2 glia and oligodendrocytes (Figure 

36B). 
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Figure 36. Cortical region of interest and cell types in non-operated mice. (A) Coronal brain 

slices showing the distribution of Tom-positive cells in the intact, control (CTRL) and ischemic 

(FCI) brain, and the respective cortical regions (dashed lines) isolated for experiments. (B, C) 

NG2 cells and oligodendrocytes derived from CTRL mice can be distinguished according to the 

different percentage of cells expressing various genes (B) as well as their distinct expression 

levels (C). All changes in (B) are statistically significant; ***, p ˂ 0.001. Abbreviations: Cldn11 – 

claudin-11; Cnp – 2',3'-cyclic-nucleotide 3'-phosphodiesterase; Cspg4 – chondroitin sulfate 

proteoglycan 4; Dcx – doublecortin; FCI – focal cerebral ischemia; Glul – glutamate-ammonia 

ligase; Gria2/3 – glutamate ionotropic receptor AMPA type subunit 2/3; Grik1/3 – glutamate 

ionotropic receptor kainate type subunit 1/3; Grin1/2d/3a – glutamate ionotropic receptor NMDA 

type subunit 1/2d/3; Grm3/5 – glutamate metabotropic receptor 3/5; Lrp5 – low density 

lipoprotein receptor-related protein 5; Mbp – myelin basic protein; Pdgfra – platelet-derived 

growth factor alpha receptor; Slc1a2 – solute carrier family 1 member 2; Slc1a3 – solute carrier 

family 1 member 3; Tom – tomato (Valny et al., 2018). 
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Figure 37. Principal component analysis of cells derived from non-operated mice. Two 

distinct Tom-positive populations of cells of the oligodendrocytal lineage, separated based on 

their gene expression profiles, were identified as NG2 glia and oligodendrocytes. Abbreviations: 

PC – principal component; Tom – tomato (Valny et al., 2018). 

 

Following MCAO, the separation of NG2 glial (n = 199 cells and 8 mice) as well 

as oligodendroglial (n = 62 cells and 8mice) clusters became less apparent in the PCA 

analysis (Figure 38). Nevertheless, as the individual populations still expressed the cell-

type-specific genes, we were able to distinguish between them. Since the aim of this study 

was to elucidate the properties of precursor cells, we further dealt only with NG2 glia. 

After FCI induction, the expression profiles of NG2 cells became more complex and 

heterogenous and as a consequence, we merged CTRL NG2 cells with those isolated from 

MCAO mice. Subsequently, we performed SOM analysis, which divided Tom-positive 

NG2 cells into four distinct subpopulations (Figure 38). 
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Figure 38. Principal component analysis of cells derived from operated mice. (A) Scheme 

showing the principle of the SOM analysis. (B) Principal component analysis identified four 

distinct Tom-positive NG2 cells populations, defined by the SOM analysis and separated 

according to their gene expression profiles. The four violet/pink-ish cell subpopulations in the 

upper part of the figure represent oligodendrocytic cells, and were not incorporated in this thesis. 

Abbreviations: OL – oligodendrocyte; PC – principal component; SOM – self-organizing maps; 

td – tandem dimer; Tom – tomato (adapted from Valny et al. (2018)). 

 

One subpopulation resembled the population of NG2 cells from CTRL mice. 

These cells were further called bona fide NG2 cells (BF-NG2 cells). The other three 

subpopulations emerged after MCAO (Figure 39). One of them was characterized by a 

high incidence of cells expressing oligodendroglial markers such as Mbp (42.3 ± 9.5%), 

Cldn11 (84.6 ± 6.3%), and transcription factor 7-like 2 (Tcf7l2) (94.2 ± 4.9%), encoding 

the Tcf4 protein, which acts as a Wnt signaling component important for the maturation 

of oligodendrocytes (Guo et al., 2015). This subpopulation was termed oligodendrocyte-

like NG2 glia (OL-NG2 cells; Figure 39A) and also expressed high levels of Cldn11 and 
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Cnp, while Pdgfra was low when compared to BF-NG2 cells (Figure 39B). Another 

subpopulation, termed astrocyte-like NG2 glia (A-NG2 cells), predominantly expressed 

astrocytic genes Gfap (43.2 ± 6.0%) and aquaporin-4 (Aqp4; 51.6 ± 9.9%; Figure 39A), 

while Gfap levels were the highest among all subpopulations (Figure 39B). The third 

“ischemia-induced” subpopulation was composed of cells expressing the marker of 

proliferation, Mki67 (84.1 ± 8.3%) and nestin (Nes; 86.4 ± 8.7%; Figure 39A), a marker 

of precursor cells in the adult CNS. This subpopulation was named proliferating NG2 glia 

(P-NG2 cells) and was further characterized by high expression of Pcna (Figure 39B). 

Another typical feature of P-NG2 cells was high expression of Nes and Vim, while the 

latter is an intermediate filament commonly found in reactive glia (Figure 39B). 

Interestingly, the Shh signaling components Ptch1 and Smo were predominantly 

expressed in the P-NG2 cells subpopulation (81.8 ± 10.3% for Ptch1; 40.9 ± 4.0% for 

Smo; Figure 39A). 

According to our observations, the incidence of the NG2 glia subpopulations was 

distributed differently in the course of ischemia (Figure 39C). The highest incidence of P- 

and A-NG2 cells was detected three days after MCAO (31.5 ± 8.8% for P-NG2 cells; 

26.0 ± 3.9% for A-NG2 cells), while OL-NG2 cells predominated seven days after 

MCAO (34.4 ± 4.1%). At fourteen days after MCAO, the cell distribution started to 

resemble that observed in CTRL. Additionally, TAM administration on the second day 

after FCI induction resulted in a significant increase in the incidence of P-NG2 cells three 

days after MCAO, while the numbers of A-NG2 cells were entirely diminished (Figure 

39C). 
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Figure 39. Distinct cell types in operated mice. (A, B) Together four distinct subpopulations of 

Tom-positive NG2 cells derived from MCAO mice were identified according to the different 
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percentage of cells expressing various genes (A) and their distinct expression levels (B). 

Background colors in (A) highlight genes that represent markers of individual subpopulations. (C) 

In the progression of ischemia, the incidence of individual subpopulations changed. Gray 

background indicates tamoxifen administration after the onset of FCI. Scheme of tamoxifen 

administration is shown under the graph. Significance in (B) was calculated relative to the “Bona 

fide NG2 cells” subpopulation, while in (C), asterisks show significance compared to controls 

("CTRL"), hashtags show significance compared to "FCI D3", and circles show significance 

relative to "FCI D7"; *
/#/°

, p ˂ 0.05; **
/##/°°

, p ˂ 0.01; ***
/###/°°°

, p ˂ 0.001. Abbreviations: Aqp4 – 

aquaporin-4; Cldn11 – claudin-11; Cnp – 2',3'-cyclic-nucleotide 3'-phosphodiesterase; Cspg4 – 

chondroitin sulfate proteoglycan 4; D3/7/14 – day 3/7/14; Dcx – doublecortin; FCI – focal 

cerebral ischemia; Gfap – glial fibrillary acidic protein; Grin1/2d – glutamate ionotropic receptor 

NMDA type subunit 1/2d; Grm5/7 – glutamate metabotropic receptor 5/7; Mbp – myelin basic 

protein; MCAO – middle cerebral artery occlusion; Mki67 – marker of proliferation; Nes – nestin; 

Pcna – proliferating cell nuclear antigen; Pdgfra – platelet-derived growth factor alpha receptor; 

Ptch1 – patched 1; Smo – smoothened; Tcf7l2 – transcription factor 7-like 2; Tom – tomato; 

Trpv4 – transient receptor potential cation channel subfamily V member 4; Vim – vimentin 

(adapted from Valny et al. (2018)). 

 

To second our RT-qPCR data with an analysis at the protein level, we performed 

immunohistochemical stainings against markers of reactive astrocytes (GFAP), 

proliferating cells (Ki67), and oligodendrocytes (CC1). We found out that GFAP was 

expressed in 19.7 ± 3.5% of Tom-positive cells. Additionally, 10.6 ± 0.9% of Tom-

positive cells was Ki67-positive and 9.8 ± 0.8% was CC1-positive (Figure 40A-C). 

Moreover, polydendrocytes are capable of symmetric as well as asymmetric division. To 

investigate how reactive astrocytes were generated from NG2 cells, we performed EdU 

staining (Figure 41). We identified 73.1 ± 4.9% of GFAP- and Tom-positive cells as 

EdU-positive, suggesting that the rest differentiated without preceding cell division. 

Nevertheless, we were able to identify also EdU- and Tom-positive recently divided 

daughter cells, with GFAP-positive either only one cell (Figure 41A) or both cells (Figure 

41B). 
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Figure 40. Immunohistochemical staining in operated mice. (A, B, C) Representative images 

showing the heterogeneity of NG2 glia close to the ischemic lesion seven days after MCAO. (A) 

Tom-positive NG2 glia express astroglial marker GFAP and the marker of proliferating cells, 

Ki67. (B) Tom-positive NG2 cells express GFAP together with CC1, a marker of 

oligodendrocytes. (C) Tomato-positive NG2 glia express CC1 and Ki67. Arrows signify the co-

localization of green and red signals, while arrowheads show the co-localization of red and blue 

signals. Abbreviations: CC1 – APC clone CC1; GFAP – glial fibrillary acidic protein; Ki67 – 

marker of proliferation; MCAO – middle cerebral artery occlusion; td – tandem dimer; Tom – 

tomato (Valny et al., 2018). 

 

 

Figure 41. Immunohistochemical staining of NG2-derived reactive astrocytes in operated 

mice. (A, B) Representative images show asymmetric (A) or symmetric (B) division of Tom-

positive dividing NG2 glia close to the ischemic lesion seven days after MCAO. Filled 
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arrowheads point at GFAP-negative cells, while empty arrowheads show GFAP-positive cells. 

Abbreviations: EdU – 5-ethynyl-2´-deoxyuridine; GFAP – glial fibrillary acidic protein; MCAO – 

middle cerebral artery occlusion; td – tandem dimer; Tom – tomato (adapted from Valny et al. 

(2018)). 

 

Our results show that NG2 glia under physiological conditions give rise to 

oligodendrocytes. During this process, they down-regulate the expression of Wnt pathway 

components such as Axin2 and Lrp5 (Figure 36B). Nevertheless, FCI induces the 

multipotent differentiation potential of polydendrocytes, as they are able to differentiate 

to OL-, A-, or P-NG2 cells, with their specific expression of Wnt signaling components 

and cell-type-specific genes, while the expression of Shh-associated genes was highest in 

the P-NG2 cells subpopulation. Differentiation to oligodendrocytes, reactive astrocytes, 

or proliferating cells was documented also at the protein level. Finally, we proved that 

NG2-derived GFAP-positive reactive astrocytes (A-NG2 cells) can be generated 

symmetrically as well as asymmetrically. 

 

4.3.2 Reactive astrocytes and Shh signaling 

Previously, we confirmed that NG2 cells are able to differentiate to reactive astrocytes 

characterized by high expression of Gfap. This subpopulation of NG2 cells appears after 

FCI induction and harbors certain mRNA levels of Wnt and Shh signaling components. In 

this study, we concentrated on the effect of the Shh signaling pathway on the 

differentiation potential of NG2 glia, with a particular focus on reactive astrocytes. 

Here, we researched NG2 cells under physiological as well as ischemic 

conditions, while the role of Shh inhibition/activation was assessed at the mRNA, protein, 

and functional levels, both in vitro and in vivo. First, we inspected whether Shh signaling 

is responsible for differentiation of Tom-positive NG2 cells, derived from CTRL mice, in 

vitro. Seven days after the onset of differentiation, the vast majority of analyzed cells 

(68.6 ± 6.4%) expressed NG2 proteoglycan, a marker typical of NG2 cells (Figure 42A, 

B). Approximately one third (34.5 ± 8.7%) of Tom-positive cells expressed MOSP, which 

categorized them into the oligodendroglial cell type. Additionally, 6.3 ± 2.4% of cells was 

positive to the astrocytic marker GFAP (Figure 42A, E). NG2-positive cells isolated four 

days after MCAO and cultured for another seven days constituted only 30.9 ± 3.0% of all 

Tom-positive cells (Figure 42A, C). Nevertheless, a strong impact of FCI resulted also in 

an increase in numbers of GFAP-positive cells (22.6 ± 3.4%) when compared to CTRLs 

(Figure 42A, F). To evaluate the effect of Shh signaling on the differentiation potential of 
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NG2 cells, we added the Shh blocker Cyc to differentiation medium and found out that it 

led to the higher number of NG2-expressing cells (87.6 ± 2.5%), while the counts of 

GFAP-positive cells decreased (3.6 ± 1.5%; Figure 42A,). Cultivation with the activator 

Shh increased the numbers of GFAP-positive cells (21.5 ± 6.4%) but in contrast to 

ischemic cells, it did not lower the proportion of NG2-positive precursors. Adding Cyc 

abolished the effect of Shh. We also assessed the effect of the potent Shh signaling 

activator SAG, which reproduced the phenotype observed after Shh treatment. However, 

we detected even more GFAP-positive cells (52.4 ± 7.7%; Figure 42A, D, and G). 

Interestingly, we did not observe any significant changes in the expression of 

oligodendrocytic markers under various in vitro conditions (data not shown), which 

suggests that activated Shh pathway promotes the differentiation of NG2 cells towards the 

astrocytic phenotype, while mimicking the impact of FCI. 

 

 

Figure 42. Ischemia and Shh signaling change the differentiation potential of Tom-positive 

cells in vitro. (A) Quantification of NG2 proteoglycan (NG2) and glial fibrillary acidic protein 
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(GFAP) expression in Tom-positive cells derived from CTRL and MCAO (FCI) mice. The 

signaling pathway was either inhibited (Cyc) or activated (Shh, SAG). (B-G) Representative 

immunofluorescence images of NG2 proteoglycan and GFAP in Tom-positive cells. The data are 

represented as means ± standard error of the mean (S.E.M.) and asterisks indicate significant 

differences when compared to CTRLs, while hashtags indicate differences when compared to the 

FCI groups. Scale bars = 50 µm. Abbreviations: CTRL – control, non-operated; Cyc – 

cyclopamine; DAPI – 4′,6-diamidino-2-phenylindole; FCI – focal cerebral ischemia; MCAO – 

middle cerebral artery occlusion; SAG – Smo agonist; Shh – Sonic hedgehog; Tom – tomato 

(Honsa et al., 2016). 

 

Employing the electrophysiological analysis, we identified five distinct Tom-

positive populations (Figure 43) with their characteristic membrane properties (Table 11). 

The prevalent cell type (42.7 ± 5.5%; Figure 43D) showed a complex current pattern, and 

these NG2 cells were mainly NG2- and PDGFαR-positive (Figure 43A). The GFAP-

positive cells displaying a non-decaying passive current profile (22.0 ± 4.1%; Figure 

43D) were considered astrocytes under control conditions (Figure 43B). The third most 

common subpopulation of Tom-positive cells (18.7 ± 5.0%; Figure 43D) showed a 

decaying passive current profile, and these oligodendrocytes were CNP- or MOSP-

positive (Figure 43C). The other two remaining cell types represented a minority of Tom-

positive cells. Whereas the PDGFβR-positive subpopulation of pericytes was detected 

also in our previous experiments with NG2 cells, DCX-positive neuroblasts/neuron-like 

cells formed only ~3% of all Tom-positive cells. 

The incidence of these identified subpopulations was influenced by ischemia as 

well as Shh signaling manipulation (Figure 43D). The incidence of astrocytes after FCI 

increased to 74.1 ± 5.4%, while only 14.9 ± 3.9% of NG2 cells was detected. This 

confirms the previous immunocytochemical analysis (Figure 42A). Furthermore, the Cyc 

blocker elevated the percentage of NG2 cells in ischemic cultures, while the number of 

astrocytes dropped. The presence of Shh and SAG activators resulted in increased 

incidence of astrocytes (43.2 ± 7.8% for Shh and 66.7 ± 12.2% for SAG), whereas Cyc 

treatment abrogated this effect and even decreased the number of cells with a non-

decaying passive current pattern. Thus, we demonstrated that changes in the cell 

incidence caused by FCI or/and Shh signaling manipulation, and confirmed at the protein 

level, are also translated into the functional level. 

 



107 

 

Figure 43. Alterations in the incidence of distinct Tom-positive cell types after ischemia and 

Shh signaling manipulation in vitro. (A) Polydendrocytes (NG2 cells) displayed a complex 

current pattern and were positive to NG2 proteoglycan (A1-4). (B) Astrocytes showed a non-

decaying passive current profile, while they were glial fibrillary acidic protein (GFAP)-positive 

(B1-4). (C) Oligodendrocytes were characterized by their decaying passive current profiles, while 

showing myelin/oligodendrocyte-specific protein (MOSP) positivity (C1-4). (D) Graph shows the 

incidence of Tom-positive cells based on their current patterns. The cells were isolated from 

CTRL as well as MCAO (FCI) animals, and Shh signaling was either activated (Shh, SAG) or 

inhibited (Cyc). The data are represented as means ± standard error of the mean (S.E.M.) and 

asterisks indicate significant differences when compared to CTRLs, while hashtags indicate 

differences when compared to the FCI groups. Scale bars = 50 µm. Abbreviations: AF488 – 

Alexa Fluor 488 hydrazide; c.p. – current pattern; CTRL – control, non-operated; Cyc – 

cyclopamine; FCI – focal cerebral ischemia; MCAO – middle cerebral artery occlusion; SAG – 

Smo agonist; Shh – Sonic hedgehog; Tom – tomato (Honsa et al., 2016). 
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Table 11. Membrane properties of Tom-positive cells isolated from CTRL mice. 

 
NG2 cells astrocytes oligodendrocytes pericytes neuroblasts 

Vm [mV] -78.0±2.2 -83.1±1.8 -41.7±3.9* -50.0±6.2** -82.3±1.5 

IR [MΩ] 124.6±11.3 85.9±7.3 694.1±196.4 2329.0±746.9* 654.8±247.8 

Cm [pF] 23.8±2.6 21.2±3.8 32.6±4.2 17.7±2.5 14.2±1.7 

KIR/Cm [pA/pF] 7.7±0.7 4.1±0.8* 3.4±1.0** 2.3±1.5** 2.4±1.3 

KDR/Cm [pA/pF] 19.8±2.3 1.9±0.8*** 6.0±1.6*** 2.1±0.9*** 97.6±11.4*** 

KA/Cm [pA/pF] 19.1±2.3 0.1±0.1*** 0.2±0.2*** 0.0±0.0*** 40.2±6.3*** 

Na/Cm [pA/pF] 4.9±1.4 0.0±0.0* 0.4±0.4 0.0±0.0 21.3±9.7*** 

n 56 35 28 16 6 

incidence  [%] 42.7±5.5 22.0±4.1 18.7±5.0 13.3±3.8 3.3±1.3 

Abbreviations: Cm – membrane capacitance; CTRL – control, non-operated; IR – input resistance; 

KA – fast activating and inactivating outwardly rectifying K
+
 currents; KDR – delayed outwardly 

rectifying K
+
 currents; KIR – inwardly rectifying K

+
 currents; KIR/Cm, KDR/Cm, KA/Cm, Na/Cm – 

current densities; n – number of cells; Na – Na
+
 current; Tom – tomato; Vm – membrane potential. 

Values in bold indicate significant differences when compared to NG2 cells; *, p ˂ 0.05; **, p ˂ 

0.01; ***, p ˂ 0.001 (adapted from Honsa et al. (2016)). 

 

To complement our data with the evaluation of mRNA expression in vivo, we 

employed the single-cell RT-qPCR analysis. We compared the gene expression of several 

genes in cells isolated from CTRL mice as well as from mice three, seven, and fourteen 

days after MCAO (FCI D3/7/14; Figure 44A). First, we excluded the aforementioned 

Pdgfrb-positive pericytes from our analyses. Then, we observed increased numbers of 

Tom-positive cells expressing Ki67 three and seven days after MCAO (Figure 44B). We 

also detected higher numbers of cells expressing Gfap, a marker of astrocytes and reactive 

astrocytes, after the induction of FCI, while the expression of Dcx was more abundant in 

the later phases of ischemia. Moreover, mRNA of the Shh signaling receptor Smo was 

found in Tom-positive cells mainly on the third day and roughly copied the gene 

expression of Ki67 and Gfap during the progression of ischemic injury. This analysis 

showed that Shh signaling has a role in post-ischemic differentiation of NG2 cells. 
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Figure 44. Gene expression in Tom-positive cells after ischemia. (A) Coronal brain slices 

showing the distribution of Tom-positive cells in the intact, control (CTRL) and ischemic (FCI) 

brain, and the respective cortical regions (dashed lines) isolated for the experiments. (B) 

Percentage of Tom-positive cells in CTRL mice as well as in mice three, seven, and fourteen days 

after MCAO (FCI D3/7/14) expressing Ki67, Gfap, Dcx, and Smo genes. We analyzed 65 CTRL 

cells, 95 FCI D3 cells, 133 FCI D7 cells, and 54 FCI D14 cells. Data represent means ± standard 

error of the mean (S.E.M.) and asterisks indicate significant differences when compared to 

CTRLs; *, p ˂ 0.05; **, p ˂ 0.01; ***, p ˂ 0.001. Abbreviations: Dcx – doublecortin; FCI – focal 

cerebral ischemia; Gfap – glial fibrillary acidic protein; Ki67 – marker of proliferation; MCAO – 

middle cerebral artery occlusion; Smo – smoothened; Tom – tomato (Honsa et al., 2016). 

 

As our previous data suggest, Shh shifts the differentiation potential of NG2 cells 

after FCI towards the phenotype of reactive astrocytes. We inhibited Shh signaling by i.p. 

injections of Cyc after FCI, and compared the gene expression of several genes with the 

Cyc-untreated counterparts seven days after MCAO (Figure 45). Inhibition of the 

pathway led to a decrease in the counts of cells expressing astrocytic genes Gfap, 10-

formyltetrahydrofolate dehydrogenase (Aldh1l1), and Vim (Figure 45A), while it 

stimulated the expression of Cspg4 and Pdgfra (Figure 45B). Additionally, a significant 

decrease in the incidence of Dcx-expressing cells was observed after inhibition of the 

pathway (from 60.1 ± 2.4% to 35.0 ± 7.0%). Manipulation of the pathway did not alter 

the expression of Ki67, which may imply that Shh did not influence proliferation of Tom-

positive cells. Moreover, it is worth pointing out that Shh signaling inhibition suppressed 

the expression of genes associated with reactive astrocytes. 
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Figure 45. Differentiation of Tom-positive cells is influenced by Shh signaling. (A) Proportion 

of Tom-positive cells expressing genes specific for astrocytes (Gfap, Gfap delta, Aqp4, Aldh1l1, 

Vim) seven days after focal cerebral ischemia (FCI D7) in non-treated and cyclopamine (Cyc)-

treated mice. (B) Expression of several other genes was either unchanged (Ki67, Smo) or altered 

(Cspg4, Pdgfra, Dcx). We analyzed 133 non-treated FCI D7 cells and 65 Cyc-treated cells. Data 

represent means ± standard error of the mean (S.E.M.) and asterisks indicate significant changes 

when compared to FCI D7 cells; *, p ˂ 0.05; **, p ˂ 0.01. Abbreviations: Aldh1l1 – 10-

formyltetrahydrofolate dehydrogenase; Aqp4 – aquaporin-4; Cspg4 – chondroitin sulfate 

proteoglycan 4; Dcx – doublecortin; Gfap – glial fibrillary acidic protein; Ki67 – marker of 

proliferation; Pdgfra – platelet-derived growth factor alpha receptor; Smo – smoothened; Tom – 

tomato; Vim – vimentin (Honsa et al., 2016). 

 

Finally, we analyzed the effect of Shh signaling inhibition/activation after MCAO 

utilizing immunohistochemical staining against GFAP and DCX (Figure 46). This 

analysis was supplemented with the BrdU assay that detects proliferating cells. In 

untreated mice, with non-manipulated Shh signaling, 32.0 ± 2.6% of Tom-positive cells 

was also GFAP-positive (Figure 46A, B). It is worth mentioning that these cells were 

identified mainly in the penumbra, close to the ischemic core. Inhibition by Cyc resulted 

in decreased numbers of GFAP-positive cells (16.0 ± 1.4%), while SAG had the opposite 

effect (49.1 ± 2.7%). Furthermore, also the incidence of DCX-positive cells (Figure 46C, 

D) was lowered after Shh signaling inhibition. To eliminate the possibility that distinct 
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counts of GFAP-positive cells after Shh pathway manipulation were caused by altered 

proliferation of Tom-positive cells, we assessed BrdU incorporation in proliferating cells 

after different treatments (Figure 46E, F). We observed that 34.8 ± 2.3% of Tom-positive 

cells was BrdU-positive seven days after MCAO, and that this number was not markedly 

altered after Shh signaling manipulation. Altogether, this may signify that Shh signaling 

influences the differentiation potential of Tom-positive cells following FCI, and that the 

activated Shh pathway directly promotes differentiation of NG2 cells to reactive 

astrocytes (Figure 47). 

 

 

Figure 46. Shh signaling manipulation changes the differentaition potential of Tom-positive 

cells after ischemia. We employed immunohistochemical staining in mice with non-manipulated 

(FCI), inhibited (Cyc), or activated (SAG) Shh signaling seven days after focal cerebral ischemia 

(FCI). (A, B) Graph and representative images show the proportion of Tom-positive cells that are 

also GFAP-positive. Dashed curves mark the border between the ischemic core and the glial scar. 

(C, D) Graph and representative images show the proportion of Tom-positive cells that also 

express doublecortin (DCX). (E, F) Graph and representative images show unchanged numbers of 

dividing (BrdU) Tom-positive cells. Scale bars = 50 µm. Data represent means ± standard error of 

the mean (S.E.M.) and asterisks indicate significant alterations when compared to FCI treatment; 

*, p ˂ 0.05; ***, p ˂ 0.001. Abbreviations: BrdU – 5-bromo-2'-deoxyuridine; Cyc – cyclopamine; 

DCX – doublecortin; GFAP – glial fibrillary acidic protein; SAG – Smo agonist; Shh – Sonic 

hedgehog; Tom – tomato (Honsa et al., 2016). 
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Figure 47. Graphical representation of observed and possible differentiation scenarios of 

NG2 cells. Polydendrocytes (NG2 glia) can proliferate and give rise to more NG2 cells, or they 

can differentiate to other cell types. They generate oligodendrocytes mainly under physiological 

conditions, astrocytes during development or after severe CNS injuries (reactive astrocytes), and 

neuroblasts, probably only in in vitro conditions. The differentiation potential of NG2 cells is 

regulated by Shh signaling and ischemia. Ischemic injury or Shh signaling activation (SAG, Shh) 

both promote differentiation to astrocytes, while Shh signaling inhibition (cyclopamine) rises the 

counts of NG2 glial cells. Pericytes do not belong to the oligodendroglial lineage and 

preferentially give rise to the same cell type. Abbreviations: CNS – central nervous system; SAG 

– Smo agonist; Shh – Sonic hedgehog (Honsa et al., 2016). 
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5 DISCUSSION 

Although the role of canonical Wnt and Shh signalings in neural development has been a 

main subject of countless studies, relatively little is known about their functions in 

postnatal neurogenesis and gliogenesis. The lack of information may stem from the fact 

that severe dysregulations of these pathways result in embryonic lethality (van 

Amerongen and Berns, 2006; Kietzman et al., 2014). In this study, we employed 

transgenic mouse strains that allowed TAM-induced, conditional inhibition or activation 

of Wnt signaling, thus circumventing the issue of prenatal CNS malformations that cause 

mortality. Employing neonatal as well as adult transgenic mouse strains together with the 

series of aforementioned laboratory approaches, we demonstrated that, in our hands, 

Wnt/β-catenin signaling has an impact on the differentiation potential of NS/PCs. 

Moreover, we also showed that Wnt signaling is also active in NG2 cells, as we identified 

components of the pathway in this cell type of high differentiation potential, while NG2 

differentiation to astrocytes after FCI is regulated by Shh. 

 

5.1 Wnt signaling manipulation in neonatal cell cultures 

In the first part of our research work, we found out that the expression of Wnt signaling 

blocker Dkk1 resulted in decreased amounts of β-catenin, while the stabilization of the 

pathway, accompanied by higher quantities of β-catenin, was detected in Ex3 cells 

producing a stable, truncated variant of the protein. Wnt/β-catenin signaling activation 

enhanced the expression of the neuronal marker β III tubulin and decreased the incidence 

of GFAP-positive cells displaying passive time- and voltage-independent K
+
 currents. On 

the contrary, Wnt pathway suppression led to a marginal increase in the incidence of 

GFAP-positive cells, while the number of DCX/MAP2-positive cells expressing 

outwardly rectifying K
+
 currents decreased significantly. Furthermore, Wnt signaling 

activation increased the counts of cells showing outwardly rectifying K
+
 currents together 

with inwardly rectifying Na
+
 currents, and also influenced the ability of cells to transport 

Ca
2+

 after the application of glutamate and ATP. 

We employed three different strains of genetically manipulated mice, enabling 

tamoxifen-inducible Cre-mediated DNA recombination (Figure 12). They facilitated 

inhibition of Wnt signaling either at the nuclear or membrane receptor level or, 

alternatively, activation of the Wnt pathway via the production of a stable form of β-

catenin protein. Wnt pathway manipulation at various points of the signaling relay gave 
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us a better insight into the possible molecular mechanisms underlying NS/PCs 

differentiation in the neonatal mouse brain. In contrast to our study, other authors opted 

for different approaches. For example, Hirsch et al. (2007) added recombinant Wnt3a 

ligand to differentiation medium and Prajerova et al. (2010b) used NS/PCs that were 

transduced with Wnt7a. It is worth mentioning that this ligand was one of the highly 

expressed ligands in our in vitro cultures together with Wnt5a and Wnt7b (Figure 19). 

Additionally, Meyers et al. (2012) employed pharmacological and heat-shock-inducible 

genetic manipulation of the Wnt signaling pathway. However, none of the studies listed 

above combined all the approaches and methods utilized in the present study, where we 

carried out immunofluorescence analyses as well as functional studies (patch-clamp 

technique, Ca
2+

 imaging) on NS/PCs derived from the neonatal mouse brain. All this 

allowed us to perform a comprehensive analysis of effects caused by either activation or 

inhibition of the Wnt signaling pathway at different subcellular levels. Nonetheless, we 

obtained similar results as the above-mentioned authors. Inhibition of the pathway in the 

nucleus (dnTCF4 mice) did not affect the levels of β-catenin expression. This accords 

well with the fact that this alteration in the pathway occurs downstream of the β-catenin 

destruction complex, so that it should not influence the expression of β-catenin directly 

(Figures 20 and 21). This was not the case in Dkk1 and Ex3 mice, where the alterations 

occurred at the membrane and in the protein itself, respectively. Next, we assessed the 

expression of putative Wnt signaling target genes, namely Axin 2, Sp5 and Troy (Figure 

22). These genes should be correlated positively with Wnt/β-catenin signaling as shown 

previously (Buttitta et al., 2003; Fujimura et al., 2007; Jho et al., 2002). In our hands, Wnt 

signaling hyper-activation led to a markedly higher expression of all analyzed genes, 

which goes along with the findings of Fafilek et al. (2013), Fujimura et al. (2007) and 

Hirsch et al. (2007). These groups found that after Wnt stimulation, stem cells express 

higher levels of inhibitory components of the Wnt pathway. Examples of such 

components are the aforementioned genes – Axin 2, Sp5 and Troy. Surprisingly, the 

expression of Axin 2 was not altered after Wnt signaling inhibition. This inconsistency 

might be due to overall low expression of Axin 2 (Ct values ~32) in our dnTCF4 and 

Dkk1 cultures, which might imply that in these two models, the Wnt signaling pathway is 

prevented from activation, rather than being inhibited after its activation, while Wnt 

signaling is still able to affect the cell fate. On the other hand, after Wnt signaling 

activation, the expression of Axin 2 was much higher (Ct values ~27), and thus the protein 

was able to act as a negative feedback loop that controls Wnt signaling activity (Lustig et 
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al., 2002). Additionally, we analyzed mRNA levels of Wnt ligands and found out that 

Wnt4, Wnt5a, Wnt5b, Wnt7a, Wnt7b, Wnt9a, and Wnt10b are present in all control in vitro 

cultures (Figure 19), while these signals are typical of both canonical and non-canonical 

Wnt pathways. This correlates, to some extent, with the data from Hirsch et al. (2007), as 

they found Wnt3, Wnt4, Wnt5a, Wnt7a, Wnt7b and Wnt11 genes to be expressed in 

NS/PCs. For example, non-canonical Wnt5a enhances neurogenesis and improves 

functional integration of newly derived neurons in vivo (Parish et al., 2008). Similar 

functions are also exercised by Wnt7a, since this Wnt ligand stimulates NS/PCs 

proliferation and promotes neuronal differentiation and maturation (Qu et al., 2013). 

Interestingly, over-expression of Wnt7b impairs neuronal differentiation of neural 

progenitors, and thus antagonizes the effect of Wnt5a and Wnt7a ligands (Papachristou et 

al., 2014). However, other functions may also be performed by these ligands according to 

the developmental stages of experimental animals, as presented by Hirabayashi et al. 

(2004) and reviewed by Inestrosa and Varela-Nallar (2015). Moreover, it could be fairly 

challenging to determine the function of a Wnt ligand, as the very same ligand is able to 

activate both β-catenin-dependent and non-canonical pathways (Nalesso et al., 2011). 

Next, we showed that hyper-activated Wnt signaling increases the abundance of 

neuronal marker β III tubulin and decreases the expression of GFAP (Figure 25). This 

suggests a tendency towards neurogenesis after Wnt signaling activation. Hirsch et al. 

(2007) demonstrated similar effects of Wnt signaling on the expression of β III tubulin, 

although the numbers of GFAP-positive cells remained unchanged. This discrepancy 

might be explained by differences in Wnt pathway activation between our and their study. 

We took advantage of employing transgenic mouse models and activated the pathway in 

NS/PCs using the “general” intracellular signal mediator β-catenin, whereas Hirsch et al. 

(2007) applied specifically only Wnt3a ligand to their differentiation media. 

Furthermore, we observed that Wnt signaling causes higher incidence of 

DCX/MAP2-positive cells that display branched processes (this can be partially seen in 

Figure 25A), indicating a more advanced developmental stage. These branched and 

overlayed processes could be responsible for the fact that we were not able to identify 

significant changes in the levels of DCX and MAP2 (Figure 24). Our observations are in 

concordance with previously published data from the in vitro experiments by Kunke et al. 

(2009). These authors transduced mouse NS/PCs with constructs producing Wnt7a or 

Dkk1 and showed that those molecules influenced cell fate during differentiation. 

Expression of Wnt7a, which activates Wnt signaling, led to an increase in the incidence 
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of MAP2-positive cells, while the numbers of GFAP-positive cells decreased. In contrast, 

Dkk1, i.e. inhibiting Wnt signaling, significantly increased gliogenesis at the expense of 

neurogenesis. In the above mentioned study, the authors incubated single cells derived 

from trypsinized neurospheres for only four days. In the present study, we employed the 

same approach but analyzed differentiated cells after eight days of in vitro differentiation. 

Therefore, our results complement those of Kunke et al. (2009) and show that after Wnt 

signaling inhibition or activation, differentiated cells preserve similar characteristics for a 

longer period of time. Mardones et al. (2016) showed that Wnt signaling inhibition by 

retrovirus-mediated RNAi, causing knockdown of Frizzled-1 receptor, though in the adult 

hippocampus, resulted in a decrease in the percentage of cells expressing DCX and 

concomitantly, in increased differentiation to astrocytes. Independently of the Wnt 

signaling inhibition or activation, the incidence of PDGFαR-positive precursors showing 

a complex current pattern was increased. This phenotype might be attributed to the fact 

that any intervention in the homeostasis of the CNS (either artificial, non-physiological 

Wnt signaling manipulation or ischemia) can “activate” precursor cells and alter the 

expression of cell-type-specific proteins or ion channels. In summary, from our results 

(Figures 24 and 25) and previously published studies it is evident that Wnt signaling plays 

a crucial role in the control of the differentiation potential of neuronal progenitors. 

Relatively recently, it has been shown that Wnt signaling activation affects the 

electrophysiological properties of differentiated neural precursors (Prajerova et al., 

2010b). Activated Wnt signaling caused a higher incidence of cells expressing outwardly 

rectifying K
+
 currents together with TTX-sensitive inwardly rectifying Na

+
 currents and 

generating action potentials. This neuron-like current pattern with outward currents also 

prevailed in our experiments (Figure 26). In our work, we further disclosed that MAP2-

positive cells displayed large KA and KDR current amplitudes (Table 4), which agrees with 

previous studies in neonatal NS/PCs transduced with Wnt7a (Prajerova et al., 2010b). 

Concurrently, in differentiated NS/PCs upon Wnt signaling inhibition, we found that the 

response of MAP2/DCX-positive cells to glutamate application decreased (Figure 27A). 

These data based on calcium imaging analyses support the presence of glutamate 

receptors on neural progenitors. As suggested by Deisseroth et al. (2004), glutamate 

receptors mediate excitation-induced neurogenesis by inhibiting the expression of the 

glial transcription factor hairy and enhancer of split-1 (Hes1) and inhibitor of DNA 

binding 2 (Id2), and by promoting expression of the pro-neuronal transcription factor 

neuronal differentiation (NeuroD). Using retrovirus-mediated gene knock-out in mice, 
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Tashiro et al. (2006) showed that the survival of maturing neurons is competitively 

regulated by their own N-methyl-D-aspartate (NMDA) receptors, which was observed 

during a short period after neuronal birth. Following this, we found that inhibition of the 

Wnt pathway led to increased numbers of cells responding to the ATP application (Figure 

27A) but nevertheless, elevated Wnt/β-catenin signaling resulted in a lower average 

response amplitude (Figure 27B). This is in contrast with the observations that ATP 

upregulates the expression of neuronal markers, such as neuron-specific class III β-

tubulin (Tuj1), neuronal nuclei (NeuN) and β-catenin expression, and thus promotes 

neuronal differentiation of stem cells (Tu et al., 2014). This discrepancy might be related 

to the use of different cells. Whereas we utilized NS/PCs, Tu et al. (2014) employed 

mesenchymal stem cells in their study. 

In summary, Wnt signaling regulates neurogenesis, as its hyper-activation drives 

neonatal NS/PCs differentiation to the DCX/MAP2-positive cells that express outwardly 

rectifying K
+
 currents and inwardly rectifying Na

+
 currents. Importantly, our results 

indicate that the manipulation of Wnt/β-catenin signaling in NS/PCs might provide novel 

approaches for the treatment of neurological disorders. For instance, studies of progenitor 

cells in the olfactory epithelium performed in neonatal as well as adult mice suggested a 

key role of Wnt signaling in progenitor cells proliferation and neuroregeneration after 

epithelial lesion (Chen et al., 2014). Moreover, a connection between Alzheimer’s disease 

and Wnt signaling pathway impairments has also been suggested (Inestrosa and Varela-

Nallar, 2015; Inestrosa et al., 2002). 

 

5.2 Effect of Wnt pathway on adult NS/PCs 

Having assessed the effect of Wnt signaling on the differentiation potential of NS/PCs 

isolated from adult non-operated mice as well as from those that had undergone MCAO, 

we observed alterations in the expression of various cell-type-specific markers. Wnt 

signaling inhibition by Dkk1 caused lower immunopositivity of NS/PCs cultures for β-

catenin, while higher immunoreactivity was identified after the hyper-activation of the 

pathway. The expression of several Wnt target genes was also affected by our TAM-

induced animal model. However, these changes were not translated into any alterations in 

the incidence of distinct cell types in CTRL mice, based on electrophysiological 

measurements. Interestingly, a neonatal-like pattern of the shifts in the incidence was 

recovered after the induction of ischemia. Our immunohistochemical analysis revealed 
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similar effects of Wnt signaling on the expression of PCNA, GFAP, and DCX in CTRL 

and MCAO mice. Nonetheless, the expression of all markers was upregulated three days 

after the induction of FCI, which represents earlier phases of ischemia, while in later 

phases, the expression of cell-type specific proteins may be different. Wnt signaling 

manipulation also affected passive electrophysiological properties (Vm, IR, Cm) of all cell 

types found in our in vitro cultures, while it had no effect on the expression of voltage-

dependent K
+
 channels in cells with a passive current profile. 

In our experiments on NS/PCs derived from the adult SVZ, we employed the 

same three mouse strains as in the study on neonatal mice (Figure 12) so that we could 

take advantage of these convenient means of either Wnt/β-catenin pathway activation or 

inhibition at two different subcellular levels. This TAM-induced and Cre-mediated 

system, together with the high reproducibility of well-defined in vitro conditions, was 

probably the strong point of our research. Here, we assessed CTRL mice as well as 

MCAO mice. Nevertheless, there were a few main differences in utilizing neonatal and 

adult NS/PCs. Some of them were only minor matters for consideration, while the other 

ones represented setbacks in our experiments. 

A variety of factors may influence the differentiation potential of NS/PCs as well 

as the outcome of FCI in the adult mouse. Among others, the differences in gender, age, 

region of the brain, or even the circadian system are probably the most important players 

in these processes (Vancamp et al., 2019; Lembach et al., 2018). A lot of publications 

have emerged in the last years particularly on the topic of sex-specific differences 

impeding the interpretation of experiments. These publications declare that high amount 

of estrogen in females acts as an endogenous neuroprotectant after the induction of 

cerebral ischemia, which was confirmed in clinical observations as well as in 

experimental stroke (Hurn and Macrae, 2000). Since the comparison between males and 

females was not the aim of this study, we had to choose whether we would work only on 

female mice or only on male mice and because a stronger impact of ischemia is usually 

seen in males, we decided to employ male animals. The use of female mice would 

otherwise contradict our effort to induce focal ischemic injury in the brain. In our 

experiments on neonatal mice, we did not distinguish between male and female pups 

because it is not easy to determine the gender in neonatal mice (Wolterink-Donselaar et 

al., 2009) and, above all, in newborns, estrogen levels are relatively low as well as the 

quantities of estradiol, the most potent and prevalent estrogen, are similar in males and 

females (Konkle and McCarthy, 2011). Nevertheless, once the pups are weaned, which is 
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around postnatal day 21 in mice, establishing the gender can be easily carried out 

(Wolterink-Donselaar et al., 2009). Taken together, to avoid any gender-, age-, region-of-

the-brain-, or circadian-system-related disturbances in our experiments, we used only 

male mice, with a strictly defined time window when we sacrificed them, and only one 

experimenter isolated all the SVZs at the specific time of the day. 

Another difference between neonatal and adult mice was that in the former, we 

isolated a presumptive SVZ region (a part of the frontal lobe) while in the latter, we cut 

out a specified region of the brain – the SVZ (Figure 17). There is a slim chance that this 

could lead to lower yields of differentiated cells for our further experiments, 

a phenomenon that was not improved even by a longer incubation of highly proliferative 

NS/PCs in proliferation medium. A more probable explanation of the lower numbers of 

cells derived from adult mice would be the fact that adult NS/PCs are normally found in a 

quiescent state (Urbán and Guillemot, 2014). Bone morphogenetic protein (BMP), which 

was identified in non-dividing cells of the adult hippocampus, is responsible for this 

behavior of precursor cells. Active BMP signaling reversibly diminished the proliferation 

of NS/PCs, while its inactivation enhanced proliferation only transiently, with a 

subsequent reduction in the numbers of precursors (Mira et al., 2010). However, once 

activated, young and old NS/PCs exhibit similar proliferation and differentiation capacity 

(Kalamakis et al., 2019). Activated NS/PCs are characterized by the expression of 

epidermal growth factor receptor (EGFR; Codega et al., 2014). Since EGF is required for 

increased proliferation of SVZ-derived cells (O'Keeffe et al., 2009) and, at the same time, 

NS/PCs can interconvert between the quiescent and activated state (Codega et al., 2014; 

Lugert et al., 2010), we increased the concentration of EGF in proliferation media by 50% 

(from 20 ng/ml in neonatal cultures to 30 ng/ml in adult cultures) in an attempt to enhance 

the yield of cells. Nevertheless, to initiate differentiation of expanded NS/PCs, we had to 

withdraw this mitogenic agent from differentiation medium (Johe et al., 1996). 

Unfortunately, much fewer cells were retrieved from neurospheres after two weeks of in 

vitro proliferation (~500,000 cells from an adult mouse versus several millions of cells 

from a single neonatal mouse). Together with a worse survival of adult cells, this resulted 

in insufficient material for our experiments. As a consequence, only electrophysiological 

measurements and immunocytochemical staining against β-catenin were performed in 

vitro. After those, we switched from cell cultures to the utilization of brain tissue in our 

next experiments, specifically Western blotting, RT-qPCR analysis, and 

immunohistochemical staining. The use of tissue specimens from the SVZ on the one 
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hand guaranteed the enrichment in NS/PCs but on the other hand, it could result in a sort 

of dilution of NS/PCs by other cell types in the brain tissue. As a result, this might also 

interfere with the composition of the niche, with a subsequent impact on the 

differentiation potential of NS/PCs. This is in contrast with our in vitro experiments, 

where only cells derived from NS/PCs were present in a well-defined environment of 

culture media, while they spent 8-9 days in differentiation medium. In tissue specimens, 

cells had only 3 days to differentiate after i.p. TAM injections or after MCAO. However, 

this amount of time should be sufficient for their differentiation (Honsa et al., 2013; Zhao 

et al., 2009), which was, after all, shown also in our study (Figure 34). The fact that the 

microenvironment around NS/PCs in the tissue specimens was not thoroughly defined 

might be considered a weakness of our study. Nevertheless, as we had controls for each 

mouse strain and for each treatment, this should not have a big impact on the assessment 

of the effect of Wnt signaling on differentiation of neural precursors in our mouse 

models. 

Our results from immunocytochemical staining against β-catenin in adult CTRL 

cell cultures (Figure 29) resembled those obtained in young animals (Figure 20), showing 

elevated expression of the protein after Wnt signaling activation and decreased expression 

of β-catenin only after inhibition by Dkk1. Nevertheless, the results from adult mice were 

less significant, which could be partially attributed to the transition from neonatal to adult 

NS/PCs niche, with possible changes in the responsiveness to intrinsic or extrinsic stimuli 

(Urbán and Guillemot, 2014; Morrison and Spradling, 2008). The exact moment when the 

switch from embryonic to adult neurogenesis occurs is elusive but it has been suggested 

that it is between the first and the third postnatal week in the rodent dentate gyrus 

(Pleasure et al., 2000). 

In the rest of our experiments, except for the electrophysiological analysis, we 

assessed the impact of the Wnt pathway in CTRL as well as MCAO mice. The 

differentiated NS/PCs were evaluated three days after MCAO. This time period 

represents earlier phases of ischemia and differentiation of precursor cells probably has 

different outcome in the later phases. Additionally, we utilized tissue specimens of the 

SVZ, as explained and discussed earlier in this chapter. Here, it is worth mentioning that 

in our in vitro cultures, bFGF was present, which was not the case in the directly 

dissected, non-cultured tissue specimens. It was reported that this growth factor increases 

the activity of the Wnt/β-catenin pathway and, which is more important, overexpression 

of β-catenin in the presence of bFGF promotes the proliferative state of NS/PCs, while in 
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its absence, neuronal differentiation is enhanced (Israsena et al., 2004). This could be at 

the root of the discrepancies detected between in vitro and in situ experiments. 

The Western blotting analysis of β-catenin protein in differentiated adult NS/PCs 

(Figure 30) only partly corresponded with immunocytochemical staining of the protein. 

This inconsistency might be caused by the presence of other cell types in the tissue and 

the finding that Wnt/b-catenin responses can be cell-type-specific (Wallmen et al., 2012). 

The expression of Wnt target genes was similarly influenced by Wnt signaling in both 

CTRL and MCAO mice (Figure 31) but we detected higher mRNA levels of the studied 

targets after ischemia. This observation coincided well with our immunohistochemical 

analysis, where we found that after FCI, all analyzed proteins were upregulated (Figure 

34). Otherwise, the changes in the expression of the Wnt target genes corresponded with 

those identified in neonatal mice (Figure 22), with few exceptions. In neonatal mice, least 

responsive strain appeared to be Dkk1, while in adult mice, it was Ex3. This could be a 

result of an overall reduction in the activity of Wnt signaling, which increases with age 

and may compensate the hyper-activation of the pathway by Ex3. It was found that with 

age, various components of the pathway are downregulated, while levels of Wnt 

antagonists Dkk1 and secreted frizzled-related proteins (sFRPs) as well as niche-derived 

inflammatory signals are increased. The combination of these processes might induce 

quiescence of NS/PCs and at least partly interfere with the mouse model (Kalamakis et 

al., 2019; Kase et al., 2019; Seib et al., 2013). The expression pattern of one target gene, 

Sp5, was distinct from the others (Figure 31). In CTRL mice, it was always overexpressed 

after Wnt signaling manipulation, while its expression dropped after MCAO. This target 

gene is positively regulated by Wnt signaling and acts as a transcriptional repressor of 

another protein from the same family, Sp1 (Fujimura et al., 2007), while the latter is a 

transcription factor that probably plays a role in protecting cells against oxidative stress 

following brain injury (https://www.uniprot.org/uniprot/P08047#function). We deem that 

after ischemic injury, Sp5 is downregulated, which releases Sp1 from its inhibition. 

Subsequently, Sp1 can perform its function in the tissue affected by ischemia and add to 

its recovery. 

Our primary cultures consisted of the same three cell types that were identified 

within neonatal cell cultures. These cell types comprised GFAP-positive astrocytes, 

DCX/MAP2-positive neuron-like cells, and PDGFαR-positive precursors, all with their 

specific electrophysiological properties (Figure 23). The incidence of these cell types 

after Wnt signaling manipulation was not changed in intact (CTRL) mice. Nonetheless, 
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the effect of Wnt signaling manipulation observed in neonatal cultures was partially 

recovered in MCAO mice, especially in the Dkk1 strain (Figure 32). The reason why we 

did not detect any changes in the incidence in CTRL cultures might be the continuous, 

age-related depletion of the NS/PCs pool (Encinas et al., 2011). Another feature of the 

adult mammalian brain is that quiescent NS/PCs prevail (Codega et al., 2014), and while 

Wnt inhibition (dnTCF4 and Dkk1) adds to this BMP- and Notch-induced quiescence, its 

activation in Ex3 mice may only ineffectively go against this state of NS/PCs (Urbán and 

Guillemot, 2014). Moreover, majority of cells differentiated from NS/PCs undergo 

apoptosis and are rapidly phagocytized by resident microglia in the niche (Sierra et al., 

2010). Interestingly, subpopulations of microglia have distinct effects on the 

differentiation potential of NS/PCs, as one subpopulation promotes astrogliogenesis, 

while the other supports neurogenesis, while both inhibit NS/PCs proliferation (Vay et al., 

2018). On the other hand, we detected alterations in the incidence of distinct cell types 

among differentiated cells that were isolated from MCAO animals. This corresponds with 

our observations from Western blotting experiments, where the majority of identified 

changes in the expression of cell-type-specific proteins occurred after ischemia (Figure 

33). As we mentioned, Notch signaling as well as its transcriptional target Shh perform 

the same function as BMP in the CTRL CNS. However, they are upregulated after 

MCAO and both increase cell proliferation in the adult SVZ and may be thus involved in 

ischemia-induced neurogenesis (Wang et al., 2009). Another study corroborated the 

previous one with the finding that CNS injury induces proliferation of NS/PCs, while 

over-expression of Notch1 and nestin was observed. Although CNS injury is known to 

activate primary astrogliosis, their results suggested that NS/PCs preferentially gave rise 

to gamma-aminobutyric acid (GABA)ergic neurons (Anderson et al., 2020). This might 

be resolved by the observation that transplantation of NS/PCs early after hypoxia–

ischemia leads to greater differentiation into astrocytes, whereas transplantation at later 

time points leads to preferential differentiation into neurons (Rosenblum et al., 2012). 

The Western blotting experiments on the expression of cell-type-specific proteins 

in differentiated adult NS/PCs from tissue specimens were mostly inconclusive (Figure 

33). For this reason, we performed an exhaustive immunohistochemical analysis of 

coronal slices with the SVZ region (Figure 34). This approach revealed overall increased 

immunoreactivity after FCI. This ischemia-triggered upregulation of cell-type-specific 

proteins was observed also in our experiments analyzing Cspg4
+
 precursors, where a 

steep rise in the expression of GFAP and PCNA was detected three as well as seven days 
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after MCAO (data not shown). Also Shruster et al. (2012) showed that stroke potently 

stimulates cell proliferation in the neurogenic niches and that newly generated cells 

migrate to the injured striatum and cortex, while Wnt signaling promotes the survival of 

differentiated cells. Furthermore, in the present work we documented that Wnt signaling 

inhibition results in the abundance of GFAP in the SVZ, while, conversely, Wnt pathway 

hyper-activation leads to overexpression of PCNA and DCX in CTRL mice. This finding 

corresponds well with the data obtained from neonatal animals, where Wnt signaling 

activation promoted neurogenesis at the expense of gliogenesis (Figures 24 and 25). The 

neurogenic effect of the Wnt pathway was seconded also by others (Kase et al., 2019; 

Mastrodonato et al., 2018). 

Wnt signaling in adult NS/PCs influenced also their membrane properties, while 

its manipulation resulted in complex changes in their passive membrane properties as 

well as in the expression of K
+
 channels. We identified three distinct cell types and 

characterized their expression of voltage-dependent K
+
 channels, which were manifested 

as distinct combinations of K
+
 currents, and their different cell densities. Our data accord 

with other authors that also measured electrophysiological properties of these cell types. 

For example, we identified DCX/MAP2-positive neuron-like cells that showed highest 

KA and KDR current densities (Tables 9 and 10) which were comparable with previous 

studies from our laboratory (Prajerova et al., 2010b). Moreover, we characterized GFAP-

positive astrocytes with only very low densities of K
+
 currents (Tables 5 and 6), and 

PDGFαR-positive precursors that were defined by moderate values of KA, KDR, and KIR, 

with sporadic expression of voltage-gated Na
+
 channels (Tables 7 and 8). Similar 

membrane properties were observed and discussed also by others (Walz, 2000). 

Additionally, we identified significant changes in the density of Na
+
 currents of neuron-

like cells only in CTRL mice. The inability to detect any significant changes in the 

cultures derived from MCAO mice could be caused by overall decreased expression of 

voltage-dependent Na
+
 channels after ischemia (Yao et al., 2002). However, another 

group identified exactly opposite effects of ischemia on ion channels expression 

(Hernandez-Encarnacion et al., 2017). Regardless of the downregulation or upregulation, 

the effect of ischemic injury could overwhelm the effect of Wnt signaling in our model. 

All in all, canonical Wnt signaling has a specific impact also on the differentiation 

potential of NS/PCs in adult mice. Nevertheless, our data suggest that it takes effect to a 

greater extent in cells affected by ischemia. As in some of our experiments we were not 

able to distinguish NS/PCs from other cell types in the SVZ and the surrounding nervous 
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tissue, this study would probably deserve a deeper molecular analysis of intra- and 

extracellular processes specifically in this cell type. For example, utilizing the state-of-

the-art approaches such as RNA sequencing (RNA-Seq) could afford another view on the 

brain cells affected by Wnt signaling manipulation or by ischemia. Another strategy could 

be employing single-cell RT-qPCR analysis on FACS-sorted cells isolated from the SVZ. 

However, it is arduous to find a set of high-quality, working fluorescent antibodies 

against NS/PCs. This issue could be overcome by a method, in which a researcher pulls 

the cells after patch-clamp measurement out of the tissue for further single-cell RT-qPCR 

analysis. However, this method would be challenging and time-consuming since our 

study comprised many experimental groups of cells. This is the reason why the method of 

our choice was to use tissue specimens. 

It seems that, at least in our hands, ageing takes its toll on the regenerative 

potential of NS/PCs since in adult mice, the differentiation potential of these cells was 

reduced to that extent that we were not able to identify any changes in the cell incidence 

caused by Wnt signaling manipulation. In our experiments, we analyzed the effect of 

ischemia only as a catalyst, modulator of Wnt-signaling-dependent alterations. As it can 

be seen in the immunohistochemical stainings of the SVZ (Figure 34), the expression of 

all studied proteins was elevated after MCAO. For this reason, we assessed the effect of 

Wnt signaling in CTRL mice and, in a similar way, the effect of Wnt signaling in MCAO 

mice, while keeping the controls for all the experimental groups. 

Researchers as well as clinicians have high hopes for postnatal endogenous 

NS/PCs, or for induced pluripotent stem cells (iPSC), to be utilized in regenerative 

medicine after decline in numbers of neural cells caused by ischemia, traumatic injury, or 

neurodegenerative diseases. Hopefully, our findings add to the knowledge of the 

processes that are necessary for the proper guidance of stem cells to the desired cell types. 

 

5.3 Differentiation potential of NG2 glia 

In the experiments on NG2 cells, we employed the fate-mapping analysis, tracking the 

fluorescence of Tom-positive polydendrocytes and their progeny. Here we utilized the 

single-cell RT-qPCR analysis, supplemented with immunohistochemical staining and 

electrophysiological recordings, to assess the influence of cellular signaling pathways as 

well as ischemia on the differentiation potential of NG2 glia. To induce ischemia, we 

used the MCAO model in 3-month-old mice. This model of FCI in rodents is well 
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established and highly reproducible, as it was reported that in ~80% of animals, the 

cerebral cortex is affected (Ginsberg, 2003). Nevertheless, our own experience says that 

the infarct lesion in the cortical region occurs more frequently, in more than 90% of cases 

(data not shown). To evaluate the impact of the progression of ischemic injury, we 

collected tissue after three, seven, and fourteen days upon its induction. The tissue was 

isolated from the cortex surrounding the ischemic lesion, the site where the penumbra 

occurs. 

At the beginning, we looked into the NG2 cells differentiation under physiological 

conditions and detected three Tom-positive populations – pericytes, oligodendrocytes, 

and NG2 glia. Pericytes were identified because of their relatively high expression of 

NG2 proteoglycan (Smyth et al., 2018). In later phases of brain injury, these cells are 

essential for tissue scarring, blood–brain barrier (BBB) repair, and angiogenesis in the 

CNS. However, as they do not belong to the oligodendroglial lineage, they were excluded 

from further analyses. This was possible due to their expression of Pdgfrb (Roth et al., 

2019; Zehendner et al., 2015). The presence of the other two populations clearly 

confirmed that NG2 cells are oligodendrocyte precursor cells (Figures 36 and 37), which 

has already been shown (Butt et al., 2019; Chen et al., 2018). Besides the markers typical 

of individual cell types, we assessed also several other genes. Among others, we detected 

higher expression of astroglial Slc1a2 and Slc1a3 in NG2 cells and, conversely, higher 

levels of Glul in oligodendrocytes. Similar expression patterns were also observed by 

others (Marques et al., 2016; Zhang et al., 2014b; Liu et al., 2013). The presence of 

glutamate transporters was found to support oligodendrocyte maturation (Martinez-

Lozada et al., 2014), while GS in myelinating cells may regulate cell differentiation and 

promote myelination (Saitoh and Araki, 2010). Furthermore, we identified components of 

the canonical Wnt signaling pathway in Tom-positive cells. Axin2 was expressed 

predominantly by NG2 cells, while no levels of Lrp5 were identified in oligodendrocytes. 

This corresponds well with the finding that Wnt signaling regulates the differentiation of 

OPCs to oligodendrocytes, as well as their subsequent maturation (Guo et al., 2015). It 

was suggested that the Wnt pathway inhibits the development of oligodendrocytes in the 

spinal cord, as it prevents OPCs from differentiation to immature oligodendrocytes 

(Shimizu et al., 2005). Another study showed that active Wnt signaling inhibits the 

differentiation of OPCs and delays oligodendrocyte development in vivo, while it does 

not interfere with OPCs proliferation (Feigenson et al., 2009). On the contrary, inhibition 
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of Wnt signaling by dnLRP6 co-receptor resulted in hypomyelination in another in vivo 

study; however, this study was conducted in zebrafish embryos (Tawk et al., 2011). 

Brain ischemia triggered the expanded differentiation potential of NG2 cells. After 

MCAO, we identified together four distinct Tom-positive cell subpopulations – BF-, OL-, 

A-, and P-NG2 cells (Figures 38 and 39), while the heterogeneity of NG2 cells after FCI 

was supported by the immunohistochemical analysis (Figure 40). The BF-NG2 cells 

subpopulation resembled NG2 cells identified in CTRL mice, while OL-NG2 cells 

expressed oligodendrocyte-commited genes. Moreover, mRNA of Tcf7l2 gene, encoding 

the Wnt-associated transcription factor Tcf4, was identified in all cells of this 

subpopulation. This finding is quite surprising and unexpected as we mentioned earlier 

that Wnt signaling probably hinders the differentiation of OPCs to oligodendrocytes 

(Shimizu et al., 2005). As a consequence, its components should not be present in OL-

NG2 cells, at least not in all cells. Nevertheless, this discrepancy can be also found in the 

literature, showing that it is still not well established whether Tcf7l2 is more highly 

expressed in NG2 cells or in differentiated oligodendrocytes during distinct 

developmental stages. For example, one work showed that Tcf7l2 is expressed in OPCs, 

but not in mature oligodendrocytes (Fancy et al., 2009), while another publication from 

the same group revealed the presence of this transcription factor in a subpopulation of 

oligodendrocytes (Fancy et al., 2011). These incompatible results might lead to a 

hypothesis that Tcf4 has also another role in oligodendroglial lineage cells. This idea can 

be supported by the fact that its role in the Wnt signaling relay can adapt another protein 

called B cell lymphoma 9 (BCL9), which is highly expressed in tumors (Takada et al., 

2012). Moreover, the impact of FCI may be another explanation of the the ubiquitous 

expression of Tcf7l2 in OL-NG2 cells. This opinion is based on the findings that OPCs 

transplanted after MCAO promoted neurological recovery via increased β-catenin 

expression (Wang et al., 2020) and that Tcf4 was not detected in normal adult white 

matter, but it was found after artificially induced demyelination in the mouse CNS (Fancy 

et al., 2009). 

The subpopulation defined by high expression of Mki67, Nes, Vim, and Pcna was 

formed by P-NG2 cells. This cell type typically arises after FCI (Honsa et al., 2012; 

Anderova et al., 2011), which was probably also the case in our experiments on NS/PCs 

in MCAO mice (Figures 32 and 34). It is worth mentioning that a large proportion of 

these cells expressed Ptch1 and Smo. Overall spread expression of these genes in the 

subpopulation may result from the need to rapidly replace lost oligodendrocytes after 
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ischemic injury, since the Shh pathway was identified as an essential factor for 

oligodendrocyte lineage development (Shimizu et al., 2005). 

The A-NG2 cells subpopulation was characterized by the highest levels of Gfap 

mRNA, while this gene was here expressed also by the highest proportion of cells among 

all Tom-positive subpopulations. Such expression pattern is a hallmark of reactive 

astrocytes (Hara et al., 2017), confirming thus that NG2 cells are able to differentiate to 

reactive astrocytes after a CNS insult (Honsa et al., 2012; Zhao et al., 2009). 

Nevertheless, their differentiation to GFAP-positive cells strongly depends on the nature 

of the injury and the ontogenetic stage (Dimou and Gallo, 2015). Additionally, we 

examined whether NG2 glia give rise to GFAP-positive cells by symmetric or asymmetric 

division, and found out that both processes occur in the ischemic CNS. This result is 

concomitant with the findings of Boda et al. (2015), who furthermore revealed that both 

intrinsic and extrinsic factors influence the heterogeneity of daughter cells. 

The distribution of the four Tom-positive NG2-glia-derived subpopulations was 

unequal at different time points after MCAO (Figure 39C). Three days after FCI, P- and 

A-NG2 cells reached their maximal incidence, while OL-NG2 cells were most abundant 

later, seven days after FCI. The BF-NG2 cells subpopulation became prevalent two weeks 

after MCAO. Tamoxifen administration just after the induction of FCI resulted in 

dominant P-NG2 cells three days after MCAO, while no A-NG2 cells were detected. 

Such a steep rise in the counts of P-NG2 cells in the early phases of ischemia was 

observed also by Honsa et al. (2012), and could signify the need for subsequent prompt 

glial scarring by A-NG2 cells to prevent ischemia-associated detrimental factors from 

entering the spared penumbral regions. The transition from P-NG2 cells to their A-NG2 

counterparts may be regulated by Shh. This hypothesis stems from our observation that 

the expression of Shh components was found predominantly in P-NG2 cells, and from the 

work of others, localizing this pathway specifically to astrocytes under physiological as 

well as pathophysiological conditions (Ugbode et al., 2017). 

For this reason, we utilized the very same transgenic mouse strain in the following 

in vitro and in vivo experiments, where we analyzed the effect of Shh signaling on the 

differentiation potential of Tom-positive NG2 glia after FCI. We observed increased 

numbers of reactive astrocytes after Shh signaling activation, while its inhibition resulted 

in the reverse effect. 

Previously, it was reported that following severe brain injury, Shh has a key role 

in the signaling among reactive glia and is probably responsible for their multipotency 
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(Sirko et al., 2013). Interestingly, this ligand is under physiological conditions released by 

neurons and maintains the non-reactive phenotypes of astrocytes (Garcia et al., 2010). 

Nevertheless, following injury to the cerebral cortex, it is reactive astrocytes what 

produces Shh, while astrocytic Shh probably promotes NG2 proliferation and the 

transition into, and maintenance of, the reactive status (Amankulor et al., 2009). To 

investigate the effect of Shh signaling in more detail, we first analyzed NG2 cells under 

physiological conditions in vitro. We observed that the majority of Tom-positive cells 

were NG2-positive (Figure 42A, B), while we also identified a relatively large population 

of oligodendrocytes and a small proportion of GFAP-positive cells (Figure 42A, E). After 

ischemia, the number of NG2 cells decreased, while the counts of GFAP-positive cells 

increased (Figure 42A, C, F). In the spinal cord, the effect of injury was similar, as 

enhanced proliferation of precursor cells was accompanied with higher incidence of 

GFAP-positive cells. Only a very few astrocytes in the cultures from uninjured animals 

were observed, while increased numbers of GFAP-positive cells were identified after 

spinal cord injury as well as after longer in vitro cultivation (Yoo and Wrathall, 2007). 

The Shh blocker Cyc increased the numbers of NG2 cells and, at the same time, the 

counts of astrocytes decreased (Figure 42A,). Conversely, the activator Shh enhanced 

differentiation to GFAP-positive cells; however, the proportion of NG2 cells remained the 

same, unlike after ischemia, which could indicate a more complex role of ischemic injury, 

perhaps due to some factors present at the site of injury. This could be manifested by the 

treatment of OPCs with neuroinflammatory interferon γ, which led to downregulation of 

PDGFαR and to the simultaneous increased generation of GFAP-positive astrocytes from 

NG2 cells (Tanner et al., 2011). The blocker Cyc suppressed the effect of Shh. The 

activator SAG had a similar effect on the differentiation as Shh (Figure 42A, D, and G). 

Next, we detected five Tom-positive subpopulations in our CTRL cultures. These 

populations were distinguished by their specific membrane properties (Table 11) and 

markers (Figure 43). We detected NG2 cells, astrocytes, oligodendrocytes, pericytes, and 

neuroblasts (or immature neurons). Their incidence was affected by ischemia and Shh 

signaling manipulation, while it copied the trends from our immunochemical analyses. 

The analysis of mRNA levels in Tom-positive cells revealed higher expression of 

Ki67, Gfap, Dcx, and Smo after FCI, mainly three and seven days after its induction 

(Figure 44B). These results might again signify that ischemia has its role in proliferation 

and differentiation of NG2 cells. Increased proliferation of NG2 cells after FCI was 

observed also in our previous experiments (Figure 39), where we also indicated, based on 
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elevated levels of Gfap, that this cell type may serve as a source for reactive astrocytes 

(Figures 39 and 41), while others reported a shortened cell cycle in NG2 cells also after 

stab wound injury (Simon et al., 2011). Moreover, the increase in Smo expression can 

indicate a role of Shh signaling in the process of polydendrocyte-to-reactive-astrocyte 

transition. Higher Smo expression was confirmed also after cortical stab wound injury 

(Sirko et al., 2013). Next, we assessed the effect of Shh signaling on polydendrocytes in 

vivo. Our belief that Shh influences differentiation of polydendrocytes preferentially to 

reactive astrocytes was nourished also in these experiments, while its role in proliferation 

of NG2 glia was rejected (Figures 45 and 46). The application of SAG to the injured 

cortex resulted in higher counts of astrocytes also in another study (Sirko et al., 2013). 

Moreover, Shh signaling was identified as a factor responsible for proliferation of 

NS/PCs and DCX-positive cells; nevertheless, its effect on NG2 cells after traumatic 

brain injury was null (Mierzwa et al., 2014). This was supported by our BrdU assay that 

revealed no Shh-signaling-induced cell proliferation in ischemic tissue (Figure 46E, F). 

Finally, in our studies on NG2 cells, we failed to identify mature neuronal cells. This is in 

agreement with some other studies (Kang et al., 2010), while there is also evidence of 

development to neurons (Geha et al., 2010). This may indicate that NG2 cells are void of 

the ability to generate this cell type, or that a synergic effect of more factors that normally 

do not coincide in vivo is required to promote the neurogenic potential of NG2 cells 

(Heinrich et al., 2014). 

Taken together, we documented that the generation of reactive astrocytes from 

NG2 cells is regulated by Shh signaling. Since reactive astrocytes form the glial scar, Shh 

may shape its composition and thus have a beneficial impact on the extent of ischemic 

injury as well as on the resulting consequences. 
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6 CONCLUSIONS 

In the present work, we assessed the differentiation potential of NS/PCs and NG2 glia. To 

follow the fate of these precursor cells under various conditions, we employed transgenic 

mice and took advantage of several laboratory methods that helped us identify changes at 

the mRNA, protein, or functional level. 

First, we analyzed the impact of Wnt signaling manipulation on differentiation of 

NS/PCs derived from neonatal mice. Since Wnt signaling was manipulated in each of the 

mouse strains slightly differently and evaluating its effect at several points of the 

signaling relay would give us a better insight into the possible molecular mechanisms 

underlying NS/PCs differentiation, we could not exclude any of them from further 

experiments (Hypothesis 1, Aim 1). Furthermore, our results showed that canonical Wnt 

signaling affects the fate of neonatal NS/PCs, as it influenced the incidence of distinct cell 

types differentiated from NS/PCs, as well as their electrophysiological properties. We 

concluded that Wnt signaling in neonatal mice promotes neurogenesis at the expense of 

gliogenesis (Hypothesis 1, Aim 2). 

Next, we assessed NS/PCs isolated from the adult mouse brain and found out that 

under physiological conditions, the Wnt/β-catenin pathway influences differentiation of 

these cells to a lesser extent as we failed to detect any changes in the cell incidence. 

Nevertheless, we observed alterations in the expression of cell-type-specific proteins 

(Hypothesis 1, Aim 2). On the other hand, the effect of Wnt signaling was stronger after 

the induction of FCI. The alterations in the incidence of distinct cell types resembled the 

changes we identified in neonatal mice, while the effect of the Wnt pathway was 

particularly evident in Dkk1 mice. Our immunohistochemical analysis revealed overall 

higher expression of cell-type-specific markers after MCAO, together with the abundance 

of proliferating and neuron-like precursors after Wnt signaling hyper-activation 

(Hypothesis 2, Aim 3). 

Finally, we evaluated the differentiation potential of NG2 glia and confirmed that 

under physiological conditions, they give rise predominantly to oligodendrocytes, and 

that this transition is probably inhibited by Wnt signaling. However, after the induction of 

ischemia, NG2 cells started to proliferate and acquired a multipotent phenotype. As a 

result, they differentiated mainly to astrocytes and oligodendrocytes. Moreover, we found 

that the generation of reactive astrocytes from NG2 glia is regulated by Shh signaling 

(Hypothesis 3, Aim 4). 
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Taken together, cellular signaling pathways have a substantial impact on the fate 

of neural precursor cells in the postnatal mouse brain. In healthy tissue, they exert their 

functions in proliferation and differentiation. Additionally, ischemic injury also affects 

the differentiation potential of NS/PCs and NG2 cells, as it induces their multipotency. 

All these findings might be helpful in developing new strategies for therapy of the 

diseased CNS. 
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