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Abstract

The thesis investigates the effectiveness of several hedging strategies and

inspects whether advanced econometric models contribute to lower portfolio

risk and offer advantages over simple constant hedges. Focused on the

German bond market, Euro-Bund and Euro-Bobl futures traded at Eurex

are employed to determine which hedging strategy performs best in the

fixed-income framework. The hedge ratio is estimated with the OLS, VAR,

VECM, and GARCH models, as well as with the duration-based approach.

The hedging effectiveness is subsequently measured in terms of percentage

variance reduction of a portfolio’s returns relative to an unhedged bond, while

also considering risk-return trade-off. The analysis showed that the hedging

strategies are, in almost all cases, effective in risk minimization though the

degree of variance reduction does differ. The duration method decreases the

variance by as much as 99% while mostly resulting in low or negative returns.

Relative to other constant strategies, the time-varying hedge ratio, estimated

by the GARCH, limits the variance least, nonetheless, mostly it provided a

variance reduction of at least 65% while also delivering one of the highest

returns. Whereas the dynamic strategy did not outperform constant hedges

in terms of risk protection, the choice of hedge ratio eventually depends on

an investor’s risk appetite and potential costs of portfolio rebalancing when

employing a dynamic approach.
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Abstrakt

Práce se zabývá efektivitou několika konkrétńıch hedgingových strategíı a

zkoumá, zda pokročilé ekonometrické modely přisṕıvaj́ı k nižš́ımu riziku port-

folia a nab́ızej́ı výhody oproti jednoduchým konstantńım metodám. Práce se

zaměřuje na německý dluhopisový trh, přičemž termı́nové kontrakty Euro-

Bund a Euro-Bobl, které jsou obchodovány na Eurexu, jsou použity k určeńı

nejvhodněǰśı hedgingové strategie k zajǐstěńı dluhopisového portfolia. Hedgin-

gový poměr je odhadnutý pomoćı model̊u OLS, VAR, VECM a GARCH a

také podle př́ıstupu založeného na duraci dluhopisu. Efektivita strategie je

následně měřěna pomoćı procentuálńıho sńıžeńı variance výnos̊u portfolia

oproti nezajǐstěnému dluhopisu, přičemž se také bere v úvahu výše výnosu.

Analýza ukázala, že hedgingové strategie jsou téměř ve všech př́ıpadech

účinné v minimalizaci rizika, i když se mı́ra redukce variance lǐśı. Metoda

využ́ıvaj́ıćı duraci dluhopisu snižuje varianci až o 99%, přičemž většinou

vede k ńızkým nebo negativńım výnos̊um. V porovnáńı s konstantńımi

metodami omezuje varianci nejméně časově variabilńı hedgingový poměr

odhadnutý pomoćı modelu GARCH. Na druhou stranu ve většině př́ıpad̊u

přináš́ı jeden z nejvyšš́ıch výnos̊u při redukci variance nejméně 65%. Zat́ımco

dynamická strategie nepřekonala konstantńı hedgingové strategie z hlediska

rizika, volba hedgingového poměru nakonec záviśı na averzi investora v̊uči

riziku a potenciálńıch nákladech na změny vyvážeńı portfolia při použit́ı

dynamického př́ıstupu.

JEL klasifikace C13, C22, G11, G23
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Motivation

Interest rate risk is one of the most significant risks market participants face

in the contemporary financial marketplace. One of the options to protect

the value of a fixed-income portfolio is with interest rate futures contracts.

When combining cash assets with futures contracts to offset the change in the

asset’s price it is crucial to determine a suitable number of futures contracts

that should be held for each unit of a cash asset, specifically it is important

to determine an appropriate hedge ratio.

Ederington (1979) applies portfolio theory to derive the minimum-variance

hedge ratio that minimizes the variance of the cash portfolio of an investor.

Such a hedge ratio is considered as optimal and can be estimated by standard

OLS regression. When hedging bond portfolios specifically, another risk

minimization technique that has its advocates uses the concept of duration

where the hedge ratio is determined based on the relative durations of the

bond and futures contract as per Pepić (2014).

Over the years the development of time-series models gave rise to more



advanced methods for hedge ratio estimation with the aim to provide the

gain in risk reduction over simple constant hedges. Designed to overcome the

drawbacks of the OLS estimation, the more advanced methods aim to capture

the time-varying nature of the relationships among financial time-series,

the crucial notion that OLS-based methods fail to capture as per Hatemi-

J & El-Khatib (2012). With an aim to determine the most effective hedging

strategy, several authors employed methodologies involving GARCH-type

models (Park & Jei (2010), Caporin, Jimenez-Martin & Gonzalez-Serrano

(2014)), ECM (Kenourgios, Samitas & Drosos (2008)), VECM (Li (2010))

and wild bootstrap (Nguyen, Kim & Henry (2017)) among others. While

some approaches provided portfolio’s variance reduction, others failed to

supply any evidence of the superiority of advanced methods over the simple

OLS.

Despite academics and practitioners have been searching for an optimal

hedge ratio over the last years, the superiority of one method over the other

has not been fully confirmed. The purpose of this thesis is to evaluate the

hedging effectiveness of various hedging approaches when applied on interest

rate futures. While examining both constant minimum variance and time-

varying hedge ratios from various econometric models the aim is to identify

which method provides the best hedging performance.

Hypotheses

1. Advanced econometric methods provide a greater risk reduction over

simple constant hedges.

2. The minimum-variance hedge ratio and duration-based hedge ratio lead

to a similar hedging performance.

Methodology

The data employed in the analysis are daily prices of German government

bonds and mid- and long-term interest rate futures contracts traded on Eurex

Exchange. More specifically, Euro-Bund futures and Euro-Bobl futures are



chosen for hedging because of their liquidity characteristics.

To address the hypotheses the first part of the analysis is focused on the

estimation of hedge ratios. While employing several methodologies, hedge

ratio is evaluated by both standard OLS regression and more advanced

time-series econometric methods.

The second part is dedicated to evaluating hedging effectiveness of afore-

mentioned methods and subsequent comparison. It is assumed that an

investor holds a particular amount of a bond that he or she wishes to hedge

with an interest rate futures contract over a specific time period. Both

in-sample and out-of-sample performance of the hedge is evaluated to also

see the hedging performance in a future time period.

Following Ederington (1979) the hedging effectiveness is calculated as

the percentage reduction in variance of the hedged position relative to the

unhedged portfolio. Furthermore, the return of the hedged portfolio in terms

of its mean and variance, and MAE of forecast errors is evaluated for better

comparison of the methods.

Expected Contribution

The analysis is conducted to evaluate the effectiveness of several methodolo-

gies in terms of their hedging performance. While there is relatively abundant

literature on stock and FX markets in recent years, the efficiency of methods

is determined in a different product framework and as such the thesis con-

tributes to rather sparse literature on interest rate futures hedging. The aim

is to determine whether advanced models with time-varying properties are

superior to the constant approaches when hedging a fixed-income portfolio.

With respect to the existing research on hedge ratio estimation, the study

provides empirical results of the proposed models on data gathered outside of

the US and it covers the recent years characterized by an increased interest

rate volatility.
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1 Introduction

With changes in interest rates affecting the value of a fixed income portfolio,

bond market participants seek risk minimization techniques to protect their

portfolios from interest rate risk. Rapid expansion of financial futures markets

in 1970s, gave rise to bond futures which, because of their liquidity, speed and

lower transaction costs, became popular instruments for hedging interest rate

risk. When combining cash assets with futures contracts, in an attempt to

minimize net changes in the portfolio value, it is of significance to determine a

suitable number of futures that should be held for each unit of a fixed-income

portfolio, i.e. it is crucial to identify an appropriate hedge ratio.

Based on the portfolio theory, the early research of Johnson (1960), Stein

(1961), and Ederington (1979) derives the minimum variance hedge ratio

that minimizes the variance of an investor’s portfolio. As that could be

estimated by standard OLS regression, several studies question the appropri-

ateness of the method, highlighting the problems with serial correlation and

heteroskedasticity (Herbst, Kare & Caples 1989; Herbst, Kare & Marshall

1993; H. Y. Park & Bera 1987). Time-series econometric methods offer

alternative ways to derive hedge ratios, while not only correcting for the

drawbacks of the OLS but also bringing new aspects to consider. Recognizing

the cointegrating relationship between futures and spot prices, a number

of authors (Ghosh & Clayton 1996; Kenourgios, Samitas & Drosos 2008;

Li 2010) incorporate long-run equilibrium and short-run dynamics with the

error correction model (ECM) and report improved hedging results with the

derived hedge ratio. Some argue that constant hedge ratios are in contra-

diction with the changeable nature of the futures and spot relationship, and

rather suggest time-varying hedge ratios that account for the arrival of new

information during the life of the hedge. Several studies (Lien & Tse 1999;

Lypny & Powalla 1998; Yang & Allen 2005) therefore employ this dynamic

hedging approach with GARCH-type models to account for heteroskedasti-

city in the regression residuals, in an attempt to produce superior hedge

ratios. Outside of the econometrics world and specific for fixed-income only,

1



the hedge ratios for bond portfolios can also be calculated with modified

durations and conversion factors.

With several approaches to estimate hedge ratio, the superiority of one

over the other has not been fully confirmed while it has equally not been

established whether the advanced time-varying hedge ratios provide greater

hedging effectiveness. Moreover, many of the results are concentrated in the

US environment and focus on stock index and FX markets.

This work is centred around hedging a bond portfolio with interest rate

futures while focusing on German bonds and their highly liquid futures

market. In particular, Euro-Bund and Euro-Bobl futures traded on the

Eurex Exchange are chosen because they are characteristically liquid. The

analysis is conducted over the years of the global financial crisis and the

aftermaths of the European sovereign debt crisis that are characterized by

low interest rates.

Hedge ratio is estimated with several methodologies, including OLS, VAR,

VECM, and GARCH models, as well as the duration method. Their hedging

effectiveness is subsequently measured in terms of portfolio variance reduction

relative to an unhedged portfolio that achieved with a particular hedging

strategy while also considering risk-return trade-off since it is assumed that

investors want to maximize their expected utility rather than being pure risk

minimizers. The aim of the work is to investigate whether advanced models

with dynamic properties provide superior performance in terms of decreasing

basis risk, relative to constant approaches when hedging a fixed-income

portfolio.

The rest of the thesis is organized as follows. The second chapter presents

the literature dealing with the hedge ratio estimation and provides the find-

ings on the effectiveness of hedging strategies. The third chapter introduces

the theoretical background of interest rate risk and highlights the main

considerations when hedging with interest rate futures. The fourth chapter

provides the methodology used for the analysis while the fifth chapter de-

scribes the dataset and the economic situation during the studied periods.

2



Chapter six presents the results including the estimated hedge ratios and

evaluation of their hedging effectiveness. The final chapter concludes the

thesis with the key findings and Appendix A and B cover tables and figures

that were not included in the text.

3



2 Literature review

Hedging as a risk minimization technique has been one of the most important

applications of futures markets and as such it has been a point of interest for

many academics and practitioners to determine the right volume of futures

contracts needed to secure a cash market position. This section reviews

the extensive literature on hedge ratio estimation and presents associated

findings and comparisons.

The foundations of the standard approach for hedge ratio estimation date

back to the 1960s. Johnson (1960) and Stein (1961) reformulate the hedging

strategies prevailing at that time while incorporating the portfolio theory.

The two main hedging concepts the papers base on are the traditional hedging

theory and Holbrook Working’s approach (Working 1953). The traditional

theory postulates a hedger primarily seeks a strategy to avoid risk. While

assuming spot and futures prices move together it is suggested that a spot

market position can be covered by a futures contract of the same size and the

opposite direction1. This argument is, however, unjustified since spot and

futures price changes are not necessarily equal. Working (1953) on the other

hand argues that the risk avoidance is not a sole impetus and integrates an

expected profit maximization element. He claims that an individual hedges in

the interest of an expected return that results from anticipations of favourable

relative movements in spot and futures prices by conducting an arbitrage. As

per Johnson (1960) neither of the theories precisely corresponded to market

phenomena. Johnson (1960) and Stein (1961) eventually apply the basic

portfolio theory while incorporating the risk avoidance of the traditional

theory and the expected profit maximization suggested by Working (1953).

This portfolio model of hedging proposes that hedgers allocate their holdings

between hedged and unhedged cash instruments based on their degree of risk

aversion to reach an optimal risk-return trade-off.

The application of the portfolio theory to hedging was further studied

1For further details, see Ederington (1979)[159-160]

4



and in some cases enhanced. Some researchers focus on utility maximization

function (Anderson & Danthine 1980; Benninga, Eldor & Zilcha 1984), some

examine the intertemporal structure of optimal hedging (Adler & Detemple

1988; Briys, Crouhy & Schlesinger 1990), others consider the effects of

duration and hedging horizon (Figlewski 1984; Hill & Schneeweis 1982;

Junkus & Lee 1984; Lindahl 1992; Viswanath 1993).

Nonetheless, one of the most influential augmentations of Johnson (1960)

and Stein (1961) is presented by Ederington (1979). While evaluating

Government National Mortgage Association (GNMA) and T-Bill futures as

instruments for hedging, Ederington (1979) applies the Markowitz portfolio

theory and integrates price change expectations to derive a hedge ratio that

maximizes profit conditional on some risk averse weighted variance.

Ederington (1979) considers a hedger with fixed spot market holdings Xs

deciding about how much of the assets to hedge. Following the Markowitz

portfolio theory the expected return on an unhedged position E(U) and the

variance of this return V ar(U) are then as follows:

E(U) = XsE[P 2
s − P 1

s ] (2.1)

V ar(U) = X2
sσ

2
s , (2.2)

where P 1
s and P 2

s are spot prices in periods 1 and 2, respectively, and σs

represents the variance of spot price changes.

When including the futures market and the individual’s futures holdings

Xf , the expected return on the portfolio E(R) and the corresponding variance

V ar(R) are determined as

E(R) = XsE[P 2
s − P 1

s ]−XfE[P 2
f − P 1

f ]−K(Xf ) (2.3)

V ar(R) = X2
sσ

2
s +X2

fσ
2
f − 2XsXfσsf , (2.4)

where similarly P 1
f and P 2

f are futures prices in periods 1 and 2, respectively,

σf is the variance of futures price changes, σsf denotes the covariance of the

potential price changes from period 1 to period 2, and K(Xf ) are brokerage

and other costs accompanying the futures transaction including the cost of

margin provision.

5



Since there is no presumption of hedging the entire spot market position,

as is the case in the traditional theory, let b constitute the proportion of the

spot market holdings being hedged:

b =
Xf

Xs

. (2.5)

After expressing Xf from the equation (2.5) and substituting it into the

equation (2.4), V ar(R) can be expressed as follows:

V ar(R) = X2
s [σ

2
s + b2σ2

f − 2bσsf ]. (2.6)

Taking the first derivative of the equation (2.6) and setting it to zero yield

the following from which the minimum variance hedge ratio b∗ can be further

expressed:
∂V ar(R)

∂b
= X2

s [2bσ
2
f − 2σsf ] (2.7)

b∗ =
σsf

σ2
f

. (2.8)

b∗ is the portfolio model’s optimal risk minimizing hedge ratio and is expressed

as the ratio of the covariance between spot and futures prices to the variance

of futures prices. This hedge ratio formula mirrors the OLS slope estimator

from a traditional regression framework when spot price data are regressed on

futures price data2. Ederington (1979) shows in his results that the optimal

hedge ratio is on many occasions less than 1 suggesting that even for risk

minimizers only it might be optimal to hedge just a proportion of their entire

portfolio.

While the approach had generally been accepted the question arose around

the estimation technicalities. Some papers estimate the hedge ratio with price

levels (Witt, Schroeder & Hayenga 1987; Young, Hogan & Batten 2004),

others incorporate first differences (Carter & Loyns 1985; Hill & Schneeweis

1982; Kenourgios et al. 2008; Myers & Thompson 1989) or percentage price

changes (Brown 1985; Lypny & Powalla 1998). Young et al. (2004) argues

that the application should depend on the hedging horizon and the variability

of returns in the cash and futures markets. Focused on the returns’ variability

2OLS methodology is further defined in section 4.1
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while targeting longer time periods and using weekly or monthly data it is

suggested to employ the first differences or the percentage price changes.

This is supported by previous conclusions of Brown (1985). However, for

shorter hedging horizons when using daily or more frequent data the price

levels seem to provide more reliable results given the nonsynchronous trading

between cash and futures markets.

When hedging interest rate risk duration-based approach is another tech-

nique to obtain a constant hedge ratio estimate. Gay, Kolb & Chiang (1983)

and Landes, Stoffels & Seifert (1985) were among the first to consider the

relative durations of cash bond and futures contract to minimize the net

price change. A few studies concentrate on the comparison of the duration

method with the OLS. Taevs & Jacob (1986) propose that the two methods

are equivalent if the regression uses forecasted values. When hedging the

long-term Bellwether bond and the two-year T-note Daigler (1998) questions

this finding by demonstrating that the two methods can produce significantly

different results for specific quarters. Further he shows in his results that

while both being more efficient than a no-hedge and two näıve hedges neither

of the methods is consistently superior over the other.

Over the years some problems with the simple regression model became

apparent. Herbst et al. (1989) were among the first to stress the presence of

serial correlation in the OLS residuals. To correct for the problem they employ

a Box-Jerkins autoregressive integrated moving average (ARIMA) method

and report better hedging results. Herbst et al. (1993) confirm the problem of

serial correlation and heteroskedasticity and further emphasize that the OLS

method fails to consider the effect of carrying costs and assumes a constant

basis. They consider that in reality the basis declines when approaching a

contract’s maturity and by incorporating the time variable they reach an

improved hedging performance. Recognizing the convergence effect other

empirical studies deliver similar results (Castelino 1990; 1992; Leistikow

1993; Lindahl 1992; Viswanath 1993). More specifically, Viswanath (1993)

includes the basis as an independent variable in the regression analysis
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and proves the corrected method leads to smaller portfolio variances. While

examining MMI and S&P 500 stock index futures Lindahl (1992) suggests that

hedging should be perceived as a dynamic technique rather than maintaining

a constant measure, i.e. the hedge ratio should be adjusted when approaching

a contract’s expiration. This notion is supported by previous evidences by

Lo & MacKinlay (1988) and Malliaris & Urrutia (1991) who show that the

hedge ratios and measures of hedging effectiveness are non-stationary.

The shortcomings of the OLS estimation and the development of time-

series econometric methods soon gave rise to alternative approaches in hedge

ratio estimation. Granger (1981) and Engle & Granger (1987) introduce

the concept of cointegration. When testing market efficiency many papers

(Barnhart & Szakmary 1991; Krehbiel & Adkins 1993; Lai & Lai 1991;

Wahab & Lashgari 1993) afterwards provided empirical evidence that spot

and futures prices are cointegrated. Ghosh (1993b), Ghosh (1993a), and

Ghosh & Clayton (1996) were first to integrate this long-term equilibrium re-

lationship and short-run dynamics of cash and futures prices while employing

error correction model (ECM) for hedging. They claim that when one does

not make account for the cointegrating relationship and does not include the

error-correction term in the regression the minimum variance hedge ratio is

then biased downwards resulting in a smaller than optimal position taken 3.

Ghosh & Clayton (1996) examine stock index futures for CAC 40, FTSE

100, DAX, and NIKKEI, and show that the hedge ratio derived from the

ECM is superior to the one estimated by the OLS in terms of both portfolio

risk reduction and higher mean holding-period returns. Further studies also

demonstrate poor hedging performance when omitting the cointegrating

relationship (Chou, Denis & Lee 1996; Ghosh 1995; Kenourgios et al. 2008;

Lien 1996).

Heaney (1998) suggests one should also consider cost-of-carry terms and

includes interest rate and stock level in the cointegrating vector to avoid mis-

specification. Yet Ferguson & Leistikow (1999) later conclude the difference

3Lien (1996) provides a mathematical proof supporting conclusions of Ghosh (1993a).
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between the hedging performance of this modified method and the ECM is

of neither economic nor statistical significance. Additional applications are

presented in Kroner & Sultan (1993) who employs vector error correction

model (VECM) and Li (2010) where threshold VECM is used for testing the

impact of arbitrage threshold behaviours on futures hedging effectiveness.

The results generally support the usage of ECM/VECM.

The development of the autoregressive conditional heteroskedastic (ARCH)

model by Engle (1982) and the generalized autoregressive conditional hetero-

skedastic (GARCH) model by Bollerslev (1986) allowed for another alternative

approach to the regression method in hedge ratio estimation. Since the evid-

ence of the time variation in stock return distributions (Baillie & DeGennaro

1990; Bollerslev 1987) the suitability of the constant hedge ratios have been

questioned whilst it is argued the joint distribution of cash and futures prices

is changing throughout time. E.g. Hatemi-J & El-Khatib (2012) show in their

simulation and empirical analysis that the optimal hedge ratio is stochastic

and changes significantly with time. They suggest investors should employ a

time-dependent conditional variance model and consecutively rebalance the

underlying portfolio.

The aim of many researchers was to correct for the problems encountered

in the OLS estimation. H. Y. Park & Bera (1987) and Bera, Bubnys & Park

(1993) use the ARCH model to account for the heteroskedasticity and non-

normality present in the disturbances of the OLS regression. Their dynamic

hedge ratios lead to an improved performance of both direct and cross hedging.

Similar results are delivered by Cecchetti, Cumby & Figlewski (1988) who

apply bivariate ARCH specification to allow for the time-varying distribution

of prices while also focusing on maximizing an investor’s expected utility.

The GARCH-type models received fairly wide attention. Using data on

commodities and stock indices, respectively, Baillie & Myers (1991) and

T. H. Park & Switzer (1995a) apply bivariate GARCH and demonstrate an

improved hedging efficiency over both the OLS and ECM models. T. H.
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Park & Switzer (1995b) present equivalent findings while incorporating

the mean-variance expected utility function. Additionally, they consider

transaction costs incurred due to portfolio rebalancing and conclude the

dynamic hedging is more efficient than maintaining a constant hedge even

after accounting for transaction costs. Focused on the German market

specifically, Lypny & Powalla (1998) use GARCH(1,1) combined with an

error correction of the mean returns and document significant improvements

over the OLS and ECM models when hedging stock index futures on the

DAX index. Lien & Tse (1999) tests hedging effectiveness of the fractionally

integrated ECM, the standard ECM, the OLS, the VAR, and the GARCH.

Their results show that the ECM incorporating conditional heteroskedasticity

is the dominant strategy while the OLS is outperformed by all other strategies.

Comparable findings in favour of GARCH dynamic hedging are presented in

Sephton (1993), Gagnon & Lypny (1997), and Yang & Allen (2005).

While the evidence suggests the hedging position should be adjusted con-

ditionally on new market information some papers contradict the proposition

while demonstrating that advanced methods do not always bring huge bene-

fits. In the application on commodity prices Myers (1991) determines that

the GARCH performs only marginally better than the regression method and

concludes the latter is sufficient unless there are some considerable structural

breaks in the price series characterized by increased volatility. This view is

supported by a later study by Caporin, Jimenez-Martin & Gonzalez-Serrano

(2014) comparing the exponential weighted moving average (EWMA) fil-

ter technique and several multivariate GARCH models with the constant

strategies during the financial turmoil in 2007-2008 and the subsequent

Euro sovereign debt crisis. They report an improved hedging effectiveness

of advanced models during the crisis periods while the opposite holds in

non-crisis times and after the intervention of the European Central Bank.

Kroner & Sultan (1993) assert that time-varying ARCH hedge ratios are

highly unstable and make statistical testing impossible. Comparing with the

näıve hedge and the traditional OLS they evaluate the VECM approach as
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the best strategy for currency hedging. Similarly Chakraborty & Barkoulas

(1999) analysed hedging performance with five currencies and only in one

case the time-varying strategy outperforms the constant hedge. Multiple

studies follow with questioning the strength of the time-varying specification

(Czekierda & Zhang 2010; Lien & Luo 1994; Lombana Betancourt & Al

Azzawi 2013; Thomas & Brooks 2001; Wilkinson, Rose & Young 1999;

Ye & Chen 2006) while some even report better results under traditional

regression approach (Holmes 1996; Lien 2009; Lien & Shrestha 2008).

As Lien (2009) points out the results may stem from the fact that the

hedging effectiveness is measured based on the unconditional variance and the

traditional OLS hedge ratio actually minimizes the unconditional variance

while the conditional hedge ratio intends to minimize the conditional vari-

ance. Power, Vedenov, Anderson & Klose (2013) employs a nonparametric

copula-based GARCH (NPC-GARCH) model. The results do not indicate a

significant portfolio variance reduction over the OLS yet the model performs

better when assessed in terms of the expected short fall (lower tail risk).

Over the past two decades researchers have attempted to find merit in even

more complex models. Many studies focus on the comparison of the dynamic

conditional correlation GARCH (DCC-GARCH) model introduced by Engle

(2002) with the traditional multivariate constant conditional correlation

GARCH (CCC-GARCH) by Bollerslev (1990). Ku, Chen & Chen (2007) show

in their results that the DCC-GARCH followed by the OLS lead to the greatest

hedging effectiveness while the CCC-GARCH model performs the worst. S. Y.

Park & Jei (2010) extend the DCC-GARCH by incorporating an asymmetric

and flexible distribution specification. While the augmentation leads to a

better goodness-of-fit of the estimated models the authors conclude a higher

variance reduction compared to the OLS is not guaranteed. Comparable

results are presented by Lien, Tse & Tsui (2002) and Fan, Roca & Akimov

(2010) which possibly indicates that the forecasts generated by more advanced

models might be too variable. Additionally, C. Brooks, Černỳ & Miffre (2012)

determine optimal hedge ratios in a utility-based framework allowing for the
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effect of higher moments of the hedging decision. They similarly conclude

the enhanced models provided at best very modest improvement over the

constant OLS hedge.

Markov regime-switching (MRS) models and their extensions constitute

another popular methods for hedge ratio estimation. As Alizadeh & Nomikos

(2004) explain the dynamic relationship between spot and futures prices

may be featured by regime shifts whereby the hedge ratio is allowed to

be dependent upon the prevailing market conditions. While investigating

S&P 500 and FTSE 100 markets Alizadeh & Nomikos (2004) report the

MRS method outperforms the OLS and GARCH models within sample,

however, the out-of-sample analysis produces mixed results. H.-T. Lee & Yo-

der (2007) and Su & Wu (2014) combine the MRS technique with other

GARCH-type models - BEKK and DCC, respectively, whereby they allow

for the time-varying feature and also a state-dependence. Similarly as in

Alizadeh & Nomikos (2004), the in-sample results are in favour of the afore-

mentioned combinations, while the out-of-sample performance is shown to be

only marginally better. H.-T. Lee & Yoder (2007) additionally perform the

data-snooping reality check proposed by White (2000) to test the forecasting

superiority of their RS-BEKK-GARCH model. They demonstrate that the

difference in variance reduction between the RS-BEKK-GARCH and other

benchmark models is not of statistical significance. Further enhancements

of the MRS are presented in H.-T. Lee (2009) and H.-T. Lee (2010) who

develop a regime-switching Gumbel-Clayton (RSGC) copula GARCH and an

independent switching dynamic conditional correlation (IS-DCC) GARCH,

respectively. Both models outperform GARCH and other benchmark hedges

and hence constitute prospective augmentations of the MRS.

An interesting technique for hedge ratio estimation is presented in

Nguyen, Kim & Henry (2017). Rather than obtaining a single point estimate

the authors use the wild bootstrap to estimate a confidence interval and

percentiles for the optimal hedge ratio. The interval estimator is said to

be more informative and provides a number of possible hedging strategies.
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Moreover, it tackles the issues with non-normality, unknown forms of hetero-

skedasticity, and influential outliers. Nguyen et al. (2017) show that the wild

bootstrap percentile-based hedging performs better than that of the näıve

and DCC-GARCH models.

There has been a variety of results in the literature on the hedge ratio

estimation. While the OLS has been deemed a standard strategy, time-

series econometrics and many other more sophisticated models challenged its

efficiency and highlighted its problems. Nonetheless, the overall superiority

of advanced models has not been proven (S.-S. Chen, Lee & Shrestha 2013;

Y.-T. Chen, Ho & Tzeng 2014). Moosa (2003) argues the model specification

used has a very small effect on the outcome and suggests the correlation

between the spot prices and prices of the hedging instrument is of the greatest

importance. Furthermore, Lien & Shrestha (2008) claims the differing results

stem from the estimation error.

While most of the aforementioned studies focus on hedging stock indices,

currencies, and commodities, the thesis both concentrates and contributes to

literature on the fixed-income market and the efficiency of German interest

rate futures.
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3 Theoretical background

3.1 Interest rate risk

Of major concern to investors in the bond market is interest rate risk.

As Markellos & Psychoyios (2013) point out the market participants are

particularly concerned about interest rates’ future development and volatility

since market interest rate changes consequently have an effect on the price

of a bond held in a portfolio and its yield. If the market interest rates rise

above the bond’s yield, newly issued investments, that are similar to the

bond held in a portfolio, will offer higher payments. To make the bond

equally attractive, the relatively lower yield has to be compensated by a

lower bond’s price. If the current market interest rates fall, the bond held

is more appealing to investors since it offers better coupon payments and

consequently its market price goes up. The relationship between interest

rates and bond prices is therefore inverse, i.e. a bond’s price declines when

interest rates increase and it goes up when interest rates decrease4. Interest

rate risk is particularly important for the bonds with a fixed-rate coupon and

affects also the bonds issued by a government. While the coupon payments

and the principal are guaranteed by the issuer, the market price of the bond

changes over the bond’s life, mainly because of market interest rate changes,

creating a possibility of lower profit when the bond is sold before it matures.

An important measure of a bond’s price sensitivity to interest rate changes

is duration. It indicates how long on average a bond’s holder has to wait

before receiving cash payments stemming from the bond. Following Hull

(2012, pp. 89–92) a bond’s price, B, is determined as the present value of all

the future cash flows:

B =
nX

i=1

CF ie
−yti , (3.1)

where CF i is a cash flow at time ti (1 ≤ i ≤ n), y is the bond’s yield

4The relationship can be directly seen in a bond’s pricing formula. For empirical evidence see e.g.

Kluza & S lawiński (2004).
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(continuously compounded), and n is the number of periods (years). The

Macaulay duration of the bond, D, is then defined as follows:

D =
nX

i=1

ti


CF ie

−yti

B


. (3.2)

The duration is thus a weighted average of the maturities of the cash flows

with weights being equal to the proportion of the bond’s total present value

given by the cash payment at time ti. Considering a small change in the

bond’s yield, ∆y, an approximate relationship between a percentage change

in the bond’s price and a change in its yield is suggested to be as such

∆B

B
= −D∆y. (3.3)

When a bond’s yield is expressed with a compounding frequency of m

times per year the modified duration poses an alternative in the following

form:

MD =
D

1 + y/m
(3.4)

The relationship between a bond’s price and its yield then becomes as follows:

∆B

B
= −MD∆y. (3.5)

From equations 3.3 and 3.5 it is obvious that the greater the duration

of a bond the greater the percentage change in the bond’s price for a given

interest rate change. Hence a greater duration of a bond leads to its higher

interest rate risk. As Čerović, Pepić, Čerović & Čerović (2014) emphasize to

have a complete view of the bond’s price sensitivity one should also consider

the convexity of the bond. Nevertheless, for the purpose of hedge ratio

estimation this can remain undefined.

3.2 Interest rate futures hedging

Next to other derivative products (swaps, options, caps and floors) interest

rate futures have been popular instruments for hedging interest rate risk.

As per Fabozzi (2007, p. 360) they offer several advantages over the cash

market in terms of cost, speed and liquidity. Nowadays this is supported by
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constant technology enhancements at leading derivatives exchanges5. The

fast trading infrastructure attracts many market makers and high frequency

traders which in turn provide greater liquidity. Moreover, leveraged positions

using interest rate futures can be easily created because of lower margins

that are typically less costly than bond issues or OTC derivatives margin

requirements.

Hedging itself aims at reducing the risk inherent in the underlying market

and transfers it into the so-called basis risk (Kolb & Overdahl 2003, p. 70).

Basis is defined as the difference between spot price of a hedged bond and

futures delivery price and converges to zero as the futures contract approaches

its maturity. Because of this convergence concept there is no uncertainty

when the hedge is held until maturity. However, insecurity arises when the

hedge is lifted beforehand since the basis generally varies before the futures

expiration date (Czekierda & Zhang 2010).

Moreover, as Young et al. (2004) remarks, due to liquidity considera-

tions but also because of the fact that a corresponding futures contract for

the bond in question simply does not exist the hedging strategy is often

performed with mismatched contracts. Cross-hedging may stem from both

differing underlying asset and differing maturity specifications. When the

characteristics between the hedged and hedging instrument do not match the

instrument’s prices might then not move by the same amounts in response

to changes in the underlying interest rates.

Since the interest rate sensitivity of a fixed income future closely relates

to the CTD (cheapest to deliver) bond, Fabozzi (2007, p. 632) additionally

suggests the CTD issue should be included in considerations to enhance

the performance of the hedge. More specifically, the reliability of the hedge

falls as the correlation between the bond to be hedged and the CTD issue

decreases (Eurex 2007, p. 42).

Because of the aforementioned points it is important for the hedger to

consider the correlation between the interest rates associated with cash and

5Eurex Exchange implements major releases of its T7 technology almost every year. For more

information see https://www.eurexchange.com/exchange-en/resources/initiatives.
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futures positions, respectively, and determine an appropriate method for

hedge ratio estimation to mitigate the materialization of the basis risk.
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4 Methodology

The first part of the analysis is dedicated to the estimation of hedge ratios

using several methodologies. The second part focuses on hedging effectiveness

whereby the employed techniques are assessed and compared based on their

hedging performance. Data processing is implemented in R using RStudio

IDE.

4.1 Hedge ratio estimation

4.1.1 Duration model

To minimize the risk of a fixed-income portfolio the duration-based approach

considers relative durations of the cash bond and the futures contract. The

modified duration representing the percentage change in the bond’s price

for one percent change in the yield is used for the hedge ratio calculation.

It is assumed that the futures contract is highly influenced by the CTD

(cheapest-to-deliver) bond, i.e. the deliverable bond with the highest implied

repo rate. Based on Pepić (2014), the modified duration hedge ratio hd is

then obtained as follows

hd =
St

Ft

× MDs

MDctd

× cfctd (4.1)

where St is the price of the bond, Ft is the futures price, MDs and MDctd

are modified durations of the cash asset and the CTD, respectively, and cfctd

is the conversion factor of the CTD bond. It is assumed that there is no

change in the CTD bond during the life of the hedge. If that is not the case

the hedge needs to be adjusted.

4.1.2 OLS model

As previously outlined the minimum variance hedge ratio can be estimated

by the conventional OLS regression. The model involves regressing the spot

price series on futures price series. Following Young et al. (2004) the hedge

ratio for a short hedging horizon with daily data is estimated using price
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levels as follows:

lnSt = α + β lnFt + t (4.2)

where α is the constant term, lnSt and lnFt represent logarithms of spot

and futures prices, respectively, and t is the error term. An alternative is to

carry out the estimation using price changes:

∆ lnSt = a+ b∆ lnFt + ut (4.3)

where, given the natural logarithms of St and Ft, ∆ lnSt and ∆ lnFt signify

spot and futures percentage price changes, respectively,a is a constant, and

ut denotes the error term. The estimated coefficients of the independent

variable in both equations, β and b, are then one-period optimal hedge ratios.

The OLS estimator corresponds to the previously derived relationship in the

equation 2.8 and assumes constant variances and covariances of spot and

futures prices.

Serial correlation

The presence of serial correlation in the error term is examined by the Box-

Pierce test developed by Box & Pierce (1970) that tests the joint hypothesis

that autocorrelation coefficients are not significantly different from zero with

the below statistic

Q = T
mX
k=1

τ̂ 2
k

a∼ χ2
m (4.4)

where τ̂k, k = 1, ...,m, are autocorrelation coefficients, m is the maximum

number of lags, and T is the sample size. The test formulated by Ljung & Box

(1978) supplements the previous test with better small sample properties.

The test uses the statistic that asymptotically mirrors the Box-Pierce test

Q∗ = T (T + 2)
mX
k=1

τ̂ 2
k

T − k

a∼ χ2
m. (4.5)

4.1.3 VAR model

When present, the problem with serial correlation can be corrected by the

vector autoregressive model (VAR), as was implemented in e.g. Lien & Tse
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(1999). The VAR model separately regresses the two variables from the OLS

equation on the lagged values of both variables. The bivariate VAR model

for log-transformed spot and futures price series, lnSt and lnFt, is then as

follows:

∆ lnSt = cs +
kX

i=1

βsi∆ lnSt−i +
kX

i=1

γsi∆ lnFt−i + st

∆ lnFt = cf +
kX

i=1

βfi∆ lnSt−i +
kX

i=1

γfi∆ lnFt−i + ft

(4.6)

where cs and cf are constants, βsi, βfi, γsi, and γfi, for i = 1, ..., k, are

positive parameters, and st and ft denote i.i.d. error terms with zero mean.

The number of lags k can be identified with the likelihood ratio test and

information criteria. Following C. Brooks (2014), the likelihood ratio test is

given by the following test statistic

LR = T [log|Σ̂r| − log|Σ̂u|] (4.7)

where Σ̂ is the variance-covariance matrix of residuals, |Σ̂r| is the determinant

of this matrix in the restricted model, |Σ̂u| is the determinant of the matrix in

the unrestricted model, and T is the sample size. Under the null hypothesis

LR
a∼ χ2

q, where q is the total number of restrictions.

Another method to determine an appropriate number of lags in the VAR

model is the use of information criteria. Given that it is preferable to have

the same number of lags in each equation, the multivariate versions of the

Akaike information criterion (MAIC) and Schwartz Bayesian information

criterion (MSBIC) that are expressed as follows:

MAIC = ln|Σ̂|+ 2k0

T
(4.8)

MSBIC = ln|Σ̂|+ k0

T
lnT (4.9)

where Σ̂ is the variance-covariance matrix of the residuals, T is the sample

size, and k0 is the total number of regressors in all equations

To determine the hedge ratio let σff denote the variance of ft and σsf

denote the covariance of st and ft. The minimum variance hedge ratio from

20



the VAR model is then

h =
σsf

σff

. (4.10)

4.1.4 VECM model

As Lien (1996) proved, if the cointegrating relationship between variables is

not taken into account the hedge ratio is less than optimal. It is suggested

that if the series are cointegrated one should incorporate an error correction

term in the VAR model to account for this long-run relationship. Therefore

the time series properties, more specifically the presence of unit roots and

cointegration, are examined first before further modelling.

Unit root

The augmented Dickey-Fuller (ADF) and the Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) tests are performed to test for unit root and stationarity of the

individual price series. The tests are of importance to avoid problems with

spurious regression and statistical inference. Moreover, they are needed for

the examination of a cointegration relationship which in turn justifies the

model selection.

The ADF test is an extension of the Dickey-Fuller (DF) test (Dickey & Fuller

1979) that accounts for the serial correlation in the error term. As with the

DF test, the model can take the form with an intercept or with an intercept

and a deterministic trend. The test regression is then as follows:

∆yt = µ+ λt+ θyt−1 +

pX
i=1

αi∆yt−i + ut, t = 1, 2, ...., (4.11)

where µ is a constant, λt denotes a deterministic trend, yt is the series of

interest, and p is the number of lagged changes of the dependent variable

which can be determined according to the Akaike Information Criterion

(AIC). The null hypothesis of a unit root H0 : θ = 0 is tested against the

one-sided alternative HA : θ < 0 of no unit root. The critical values for the

DF test are suggested by e.g. Banerjee, Dolado, Galbraith & Hendry (1993).

While the ADF test detects a potential unit root the rejection of the null

hypothesis does not necessarily imply a stationary series.
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As Kočenda & Černý (2015) recommends the KPSS test should be carried

out along the ADF test since the former focuses directly on the stationarity.

As per Kwiatkowski, Phillips, Schmidt & Shin (1992) it is assumed that

the time series being checked for level stationarity yt can be decomposed

into a random walk rt and a stationary error t. When testing for the trend

stationarity, this further includes a deterministic trend βt as follows:

yt = βt+ rt + t, rt = rt−1 + ut (4.12)

where ut are normal i.i.d. errors with a zero mean and variance σ2
u. It is

further assumed the initial value r0 is fixed and serves as an intercept. The

null hypothesis of the stationarity corresponds to the situation when σ2
u = 0

and rt = r0 for all t, i.e. the random walk has zero variance.

Depending on whether the level or trend stationarity is tested, the regres-

sion equations yt = α0 + et or yt = α0 + βt+ et are estimated by the OLS

and the estimated rediduals êt are used for the calculation of LM statistics

for level and trend stationarity, ηµ and ητ , respectively:

ηµ/τ = T−2 1

s2(l)

TX
t=1

S2
t , where St =

tX
i=1

ei, t = 1, ..., T (4.13)

where St is the partial sum of the residuals et from the estimated equations

and s2(l) is the estimator of their long-run variance6.

Cointegration

As discussed before the concept of stationarity is important for the valid-

ity of classical regression properties and statistical inference. However, a

regression involving I(1) variables, i.e. the variables integrated of order 1, is

meaningful when the series are cointegrated. Cointegration arises when a

linear combination of the non-stationary variables forms a stationary I(0)

process which in turn implies the long-run equilibrium relationship between

the variables. The formal definition provided by Engle & Granger (1987) is

as follows:

6For more details, see Kwiatkowski et al. (1992).

22



“the components of the vector xt are said to be cointegrated of

order d, b, denoted xt ∼ CI(d, b), if all components of xt are I(d)

and if there exists a nonzero vector α so that the linear combination

of the components of xt, i.e. zt = α0xt, is I(d− b), b > 0”

where the vector α denotes the cointegrating vector.

Following Engle & Granger (1987) the cointegration of two I(1) variables

is examined with the residual-based approach. The OLS residuals from the

estimated equation are tested for stationarity by the ADF test with the

following test regression:

∆ût = θût−1 + νt (4.14)

where νt is an i.i.d. error term. Given the test is conducted on the residuals

of the estimated model rather than on raw data the distribution of the test

statistic is different and therefore the inference should be carried out with

different critical values, e.g. the ones provided by Davidson & MacKinnon

(1993). The ADF without an intercept and a trend, and the KPSS tests are

performed as well to supply more evidence on the stationarity of the residuals.

If the residuals resemble stationary I(0) process the tested variables are said

to be cointegrated.

VECM

Under the condition that the time series are cointegrated Engle & Granger

(1987) presents the error correction model (ECM) that commingles the short-

run dynamics of the variables with long-run equilibrium. The vector error

correction model (VECM) has then the form of a bivariate VAR model with

first differenced logarithms that additionally incorporates the error correction

term as follows:

∆ lnSt = cs +
kX

i=1

βsi∆ lnSt−i +
kX

i=1

γsi∆ lnFt−i + δsEt−1 + st

∆ lnFt = cf +
kX

i=1

βfi∆ lnSt−i +
kX

i=1

γfi∆ lnFt−i − δfEt−1 + ft

(4.15)

where again cs and cf are intercepts, βsi, βfi, γsi, and γfi, for i = 1, ..., k, are

positive parameters, st and ft denote i.i.d. errors with zero mean. Et−1 is
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the so-called error correction term that is given by

Et−1 = lnSt−1 − α lnFt−1 (4.16)

where α is the cointegrating vector. Et−1 is therefore defined by the lagged

residuals from the cointegrating regression. The error correction term identi-

fies how the dependent variable adjusts to the deviation from the long-run

equilibrium that occurred in the previous period. The coefficients on the

error correction term in the two equations, δs and δf , then give the speed of

adjustment, i.e. at what speed the markets respond to the deviation from

the long-term equilibrium.

The residuals from the VECM model are used to calculate unconditional

variances of spot and futures prices, σss and σff , respectively, and the

covariance σsf , which further define the hedge ratio as per the equation 4.10.

4.1.5 GARCH model

Given that the arrival of a new information can have a great influence on

the risk of assets the variances and covariances of the price series might be

changing over time. Since the contribution of Engle (1982) and Bollerslev

(1986) on the formulation of second moments of time series it has been

suggested by many researchers that if the joint distribution of spot and

futures prices is time-varying the hedge ratio should be built based on a

time-dependent conditional variance model.

Engle (1982) introduced the autoregressive conditional heteroskedastic

(ARCH) model characterized by the conditional variance that is allowed to

vary over time as a function of past errors while leaving the unconditional

variance, that is captured by a constant, unchanged. Bollerslev (1986)

generalized the ARCH model allowing the conditional variance to depend

on its own previous lags bringing a more flexible lag structure. The number

of lags can be again determined by information criteria, nonetheless as per

C. Brooks (2014) GARCH (1,1) is usually sufficient to model the volatility in

the data. In this work the GARCH(1,1) specification is employed to model

the residual series in the context of the previously introduced VAR model

24



that is used as a mean equation.

Before fitting any model it is examined whether there indeed are any

dependencies and ARCH effects in the residuals. The previously introduced

Box-Pierce and Ljung-Box tests are used to test for autocorrelation. The

conditional heteroskedasticity is then tested by the ARCH-LM test to confirm

whether there is an ARCH pattern in the residuals. Following C. Brooks

(2014) this method tests the null hypothesis that the coefficients on all q lags

of the squared residuals are simultaneously equal to zero.

Considering the time-varying hedge ratio is based on the interaction

between two variables the following multivariate linear version of GARCH(1,1)

based on Bollerslev, Engle & Wooldridge (1988) is employed

Ht =


hss,t

hsf,t

hff,t

 =


css,t

csf,t

cff,t

+


a11 a12 a13

a21 a22 a23

a31 a32 a33

×


2s,t−1

s,t−1, f,t−1

2f,t−1

+


b11 b12 b13

b21 b22 b23

b31 b32 b33

×


hss,t−1

hsf,t−1

hff,t−1


(4.17)

where hss,t and hff,t are the conditional variances of the errors from the

equation 4.6, s,t and f,t , respectively, and hsf,t is the conditional covariance

between spot and futures series. t = (st, ft)
0 are assumed to follow a

bivariate normal distribution with zero mean and a conditional variance-

covariance matrix Ht with a constant correlation coefficient ρ. It is further

assumed that the matrices of coefficients, A1 and B1, are positive semidefinite.

Since the number of parameters to be estimated is rather high even in this

simple GARCH(1,1) specification, Bollerslev et al. (1988) further proposes

the diagonal vec (DVEC) version of the model that sets the off-diagonal

elements of the A1 and B1 matrices to zero leaving the conditional variance

dependent only on the lagged squared residuals and its own lagged values.

The DVEC representation of the conditional variances and covariance is then

as follows

hss,t = css + αss
2
s,t−1 + βsshss,t−1

hsf,t = csf + αsfs,t−1f,t−1 + βsfhsf,t−1

hff,t = cff + αff
2
f,t−1 + βffhff,t−1

(4.18)
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where the α and β coefficients are non-negative.

Following Kroner & Sultan (1993) the time varying hedge ratio δt−1 that

aims to minimize the variance of the return St − δt−1Ft conditional on the

information set at time t− 1 is calculated as follows

δt−1 =
hsf,t−1

hff,t−1

. (4.19)

4.2 Hedging effectiveness

The hedging effectiveness is measured in terms of return and portfolio variance

reduction to extract the risk-return trade-off in the hedged portfolio. The

performances of the particular hedge ratios are then compared against each

other including the results of a no hedge and a näıve one-to-one hedge. Both

in-sample and out-of-sample testing considering various hedging horizons are

employed.

4.2.1 Return and percentage variance reduction

A common method to evaluate the performance of a hedging strategy is to

consider whether the hedge does indeed reduce the variance of the portfolio’s

returns, i.e. whether the strategy decreases the portfolio’s risk. The return

on the unhedged cash position which corresponds to the change in the bond

portfolio value can be determined with a Basis Point Value (BPV ). The

BPV gives the price change of the position for a change of one basis point

in the yield to maturity (YTM) of the bond (Fabozzi 2007, p. 182) and is

specified as follows:

BPV = St ×MDs × 0.0001 (4.20)

where St is the cash bond price and MDs is the modified duration of the

bond. For a given change in the YTM of the bond (in basis points), the

BPV is then used to calculate the profit or loss of the cash position, i.e. the

return of the unhedged portfolio ru,t, as

ru,t = ∆Y TM ×BPV. (4.21)

26



The profit or loss stemming from the futures position is determined by the

change in the futures price ∆ lnF multiplied by the optimal hedge ratio

h∗. The hedge ratio h∗ that determines the number of futures contracts

needed for the hedge is estimated separately by each method introduced in

the previous section. The overall return on the hedged portfolio rh,t is then

given as follows

rh,t = ru,t − h∗∆ lnFt. (4.22)

Following Ederington (1979) the percentage reduction in the variance of

the hedge portfolio compared to the unhedged cash position is as follows

PV R =
V ar(U)− V ar(H)

V ar(U)
. (4.23)

where V ar(U) and V ar(H) are the variances of the unhedged and hedged

portfolios, respectively.

With hedging investors aim to secure their positions and reduce risk.

However, in many cases they are concerned not only with the variance

reduction but also with the risk-return trade-off resulting from the hedge.

For this the mean returns of the hedged portfolios achieved with the particular

hedging strategies are compared.

4.2.2 In-sample and out-of-sample testing

Since the hedging effectiveness of the models may vary with the length of

the hedge, the models’ performance is evaluated for the hedging horizons

of 5, 10, 20, and 30 days. The calculations are carried out using rolling

windows whereby a function is applied to the subsets of the data that have

fixed width while indexing one observation for each calculation. For each

hedging horizon and for each hedging technique the compound returns from

daily returns within a rolling window are obtained. Subsequently, the mean

of the compound returns, variance of these returns, and percentage variance

reduction to the unhedged portfolio are calculated.

The performance is tested both in sample and out of sample. While the

majority of observations are used for the estimation of the hedge ratio, 30

observations are reserved for the out-of-sample testing. As suggested by
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Hsu, Tseng & Wang (2008), the out-of-sample series of time-varying hedge

ratios can be obtained by rolling over a particular number of samples while

always forecasting the hedge ratio for the following day. The forecasted hedge

ratio is then calculated as the one-period-ahead forecast of the conditional

covariance divided by the one-period-ahead forecast of the conditional vari-

ance. The sample to be used for the next day is updated by taking into

account a particular number of the nearest observations preceding the day

for which the forecast is performed. The calculations are repeated through

the end of the dataset yielding a series of one-period forecasted hedge ratios.
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5 Data

The data was acquired from The Bloomberg Terminal. It comprises the

daily closing prices of Euro-Bund (FGBL) and Euro-Bobl (FGBM) futures

traded on the Eurex Exchange, and the prices of corresponding CTD bonds.

Furthermore, it is complemented with the daily data on the bonds’ modified

durations, yields to maturity and conversion factors. While there are several

expiries only front-month futures contracts are considered. The CTD was

chosen as the cash side to be hedged to retain the continuity in prices and

enable estimation.

The analysis is conducted for two time periods. The first period runs from

2 April 2007 to 16 October 2009 comprising of 665 observations. This period

captures the global financial crisis and the effects of problematic subprime

mortgages, liquidity, and trust amongst banks. The second period covers

the time between 9 December 2013 and 8 June 2016 with the total of 653

observations, and represents the aftermaths of the European sovereign debt

crisis. Furthermore, these periods were chosen based on the advantage that

they offer, compared to other periods, in terms of less changes in CTD bonds

associated with the futures contracts. Frequent changes in CTD bonds might

cause artificial breaks in the data as the change in the price level on the

cash side may be more profound than on the futures side, potentially causing

negative correlation between spot and futures. Therefore, while the usage

of CTD bond ensures the consistent bond selection and the availability of

data on both cash and futures side, less changes in CTD bonds during the

studied periods are desired to avoid any misleading results.

As is common for bond futures contracts, the short side can actually

deliver any security from the deliverable basket containing the instruments

within a specific maturity range and with a specific coupon rate. The seller

can therefore optimize the transaction by choosing the bond that is cheapest

to deliver (CTD). The CTD bond then provides the highest implied repo rate
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which is the rate from the cash-and-carry transaction7. Consequently, the

CTD bond typically shows higher trading volumes when compared to other

bond issues (Kolb & Overdahl 2010, p. 137). While only a small proportion

goes to delivery, bond futures contracts are rather rolled over to the next

expiry month. The possibility of physical delivery, however, generally creates

a close correlation between the CTD and the futures making the pricing of

bond futures contracts dependent on the CTD issue.

The deliverable securities for FGBL and FGBM are medium- and long-

term instruments issued by the Federal Republic of Germany. The most

heavily traded securities in the German bond market are then Bund and

Bobl characterized by the maturities of 10 and 5 years, respectively8. While

being an important source of government funding, German bonds are highly

accepted as collateral and serve as the benchmark in the Euro area because

of their relative liquidity and credit quality. Often perceived as the safest

fixed-income investment in the Eurozone, German bonds are often affected

by the flight-to-safety and flight-to-liquidity phenomena which are at times

more pronounced than for other sovereign bonds. Barrios, Iversen, Lewan-

dowska & Setzer (2009) and Ejsing & Sihvonen (2009) propose that the

benchmark status might also be attributed to the existence of highly liquid

futures market that provides investors with hedging opportunities.

As per Barrios et al. (2009), the flight-to-safety indeed affected the German

bond market during the financial crisis, with increased demand pushing the

bond prices up while depressing the yields, and that more profoundly than

in other countries. After September 2008, the spreads between the German

Bund and other Euro-area sovereign bonds increased significantly evolving

into the European sovereign debt crisis due to rising public debt. The central

banks aimed at increasing liquidity and restoring economic growth. While

implementing various policy measures of the European Central Bank (ECB)

7The cash-and-carry involves purchasing a bond with borrowed funds in the spot market while selling

the corresponding future in the futures market.

8The original maturities of Bund are 10 and 30 years, however, only the 10-year contracts apply for

the delivery against the Euro-Bund future (FGBL). Instead, Euro-Buxl futures (FGBX) offers the delivery

of the securities with the remaining maturity of 24 to 35 years.
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and providing assurances in the ”whatever it takes” speech of the ECB Pres-

ident Mario Draghi in 2012, the financial stability in the Eurozone improved

and interest rates were falling (Van Der Heijden, Beetsma & Romp 2018).

The decline in interest rates was further intensified by the quantitative easing

(QE) policy in 2015. With the QE, a central bank purchases government

securities in order to increase the money supply and encourage lending and

investment in an already low interest rate environment. The yields were

pushed further down, with some in Germany falling below zero.

As outlined previously, the German bond market has the most liquid

futures market out of the whole Eurozone, contributing to the liquidity of

the cash market and enhancing the price discovery in euro-area interest rates,

as per Ejsing & Sihvonen (2009). Offered at the biggest derivatives exchange

in Europe9, Euro-Bund (FGBL) and Euro-Bobl (FGBM) futures are heavily

traded fixed-income derivatives that enable hedging and speculating activities

on the euro-area interest rates. The direct market participants in FGBL and

FGBM comprise both brokers, market-makers, and high-frequency traders.

The contract specifications are provided in Table 1. In 2013 the trading

platform was launched using the T7 technology developed by Deutsche Boerse

advancing electronic trading in derivatives. As with the bond market, futures

prices were affected by the ECB policies and declining interest rates during

the studied years.

Figure 1 shows the development of price series over the studied periods

and Table 2 provides the summary statistics. It is visible that generally the

spot price follows the futures price yet the relation seems to be weaker than

the one usually found in the stock index markets. The reason may lie in the

different nature of the markets. While the equity markets have experienced

technological advances over the last decade and have been dominated by

HFT firms bringing prices close together with algorithmic trading, the bond

market is still marked with trading often conducted by phone. Furthermore,

the price departures might also be caused by the different closing times

9See Statista (2019).
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between cash and futures markets10. While acknowledging a weaker cohesion

the futures and CTD prices seem to depart more significantly towards the end

of period 2, with basis widening for both FGBL and FGBM contracts. This

could convey a smaller ability of the futures contract to hedge the underlying

asset.

The CTD prices vary around the par value of 100 while rising in the

second half of period 1. In period 2 the prices are at a higher level reaching

the values over 115 while the variance lowered. The futures are trading above

the CTD bonds with FGBL hitting 160 and FGBM trading over 130 towards

the end of period 2. Both futures and bond prices rose significantly between

the two periods reflecting the economic situation and a drop in interest rates.

All series seem to embody a non-stationary process which is further tested in

the next section.

Table 1: Contract specifications

Contract name Euro-Bund Futures Euro-Bobl Futures

Product ID FGBL FGBM

Contract standard

Notional long- and medium-term debt securities is-

sued by the Federal Republic of Germany with a 6

percent coupon.

Remaining term (in years) 8.5 to 10.5 4.5 to 5.5

Contract value EUR 100,000

Settlement
Physical settlement with debt securities of a minimum

issue amount of EUR 5 billion.

Price Quotation In percent of the par value.

Tick & tick value 0.01 percent equivalent to EUR 10.

Contract months
Up to 9 months: The three nearest quarterly months

of the March, June, September and December cycle.

Trading hours
01:00-22:00 CET, on the Last Trading Day 01:00-

12:30 CET

Source: Eurex (2019)

10While the Boerse Frankfurt closes the market at 8:00 p.m. CET, Eurex allows trading till 10:00 p.m.

CET.
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Figure 1: Euro-Bund and Euro-Bobl futures, and CTD prices

Table 2: Summary statistics

Period 1 FGBL CTD FGBM CTD

Min. 109.8 Min. 93.17 Min. 105.2 Min. 94.6

1st Qu. 113.3 1st Qu. 97.56 1st Qu. 107.8 1st Qu. 100.60

Median 115.3 Median 99.91 Median 109.9 Median 103.56

Mean 116.9 Mean 101.51 Mean 111.0 Mean 103.44

3rd Qu. 121.4 3rd Qu. 106.77 3rd Qu. 115.4 3rd Qu. 107.47

Max. 126.4 Max. 109.61 Max. 117.9 Max. 109.32

Std. 4.51 Std. 4.84 Std. 3.81 Std. 3.89

Period 2 FGBL CTD FGBM CTD

Min. 139.0 Min. 96.91 Min. 124.2 Min. 112.6

1st Qu. 148.0 1st Qu. 102.77 1st Qu. 127.9 1st Qu. 114.2

Median 154.0 Median 105.97 Median 129.2 Median 115.0

Mean 153.4 Mean 106.33 Mean 129.0 Mean 115.0

3rd Qu. 158.7 3rd Qu. 110.69 3rd Qu. 130.6 3rd Qu. 115.9

Max. 166.6 Max. 115.51 Max. 133.3 Max. 116.6

Std. 6.98 Std. 4.78 Std. 2.05 Std. 0.99

Note: The summary statistics is calculated for Euro-Bund (FGBL) and Euro-Bobl (FGBM) prices and
their corresponding cheapest-to-deliver (CTD) bonds during 2 April 2007 to 16 October 2009 (Period 1)
and 9 December 2013 to 8 June 2016 (Period 2).
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6 Empirical results

The first part of this section presents the model results as well as the auxiliary

tests to determine the properties of the data. The optimal hedge ratio is

estimated with the following models: OLS with levels, OLS with percentage

changes, VAR, VECM, GARCH, and the duration method. The second part

provides the hedging effectiveness of the aforementioned methods in terms of

risk-return trade-off, both in- and out-of-sample. Lastly, robustness testing

is conducted to check the consistency of the results.

6.1 Hedge ratio estimation

6.1.1 Unit root

Before the estimation of the models the price series are transformed to natural

logarithms and tested for unit root and level stationarity to determine their

order of integration. Table 3 provides ADF and KPSS statistics. For all series

in both periods, the null hypothesis of unit root is not rejected when the

ADF is executed on levels while the null is rejected at 1% level of significance

when the series are first-differenced. The results are supported by the KPSS

test that rejects the null of stationarity at 1% significance level for level

variables and fails to reject the null of stationarity at 5 % level of significance

after first-differencing. Both spot and futures series are therefore I(1), i.e.

integrated of order one. When integrated of the same order the prices meet

a prerequisite for the testing of cointegration relationship between the series

as is required by Engle & Granger (1987).

6.1.2 OLS

To determine Ederington’s minimum variance hedge ratio (Ederington 1979)

and further proceed with the cointegration testing the standard OLS model

with series in levels is estimated as per the equation 4.2. The results for

both FGBL and FGBM in the two periods are given in Table 4. In period

1, the coefficients on the futures series and therefore the estimated hedge

ratios are statistically significant and high in value, with the hedge ratio for
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Table 3: ADF and KPSS tests

(a) FGBL

ADF KPSS

Period 1: lnFGBL level -2.1099 6.0431***

∆ -8.9641*** 0.1001*

lnCTD level -2.3441 7.5975***

∆ -9.2106*** 0.0469*

̂t level -2.5207 2.1504***

Period 2: lnFGBL level -2.2081 7.2340***

∆ -8.0729*** 0.0768

lnCTD level -1.6941 2.0964***

∆ -7.2045*** 0.5002*

̂t level -1.67634 2.5146***

(b) FGBM

ADF KPSS

Period 1: lnFGBM level -1.8862 6.8574***

∆ -8.9657*** 0.1309*

lnCTD level -2.0951 3.6010***

∆ -7.8552*** 0.1648*

̂t level -2.5692 1.7696***

Period 2: lnFGBM level -2.8132 6.5855***

∆ -8.6161*** 0.0543

lnCTD level -2.4942 3.8134***

∆ -8.1071*** 0.1677

̂t level -2.4883 2.7357***

Note: lnFGBL and lnFGBM denote logarithms of Euro-Bund and Euro-Bobl futures prices, respectively,
and lnCTD is the logarithm of their respective cheapest-to-deliver bonds. ̂t are residuals from the OLS
equation lnSt = α+ β lnFt + t for FGBL and FGBM, and their CTDs. *, ** and *** denote statistical
significance at the 10%, 5% and 1% levels, respectively.
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FGBL greater than 1. In period 2, the hedge ratios are estimated to be much

smaller with coefficients 0.41 and -0.10 for FGBL and FGBM, respectively.

In case of FGBM the coefficient is negative and insignificant presaging a

potential inappropriateness of the model.

It is reasonable to believe that there is a long-run relationship between

the spot and futures prices given the close relationship between the CTD

and the bond futures. Since both series are non-stationary I(1) processes,

the prices are further tested for cointegration. After the estimation of the

equation 4.2 the residuals are saved and tested for unit root and stationarity

to determine whether the spot and futures series could result in a stationary

process when combined. As is shown in Table 3 the ADF test does not reject

the null hypothesis of unit root while the null of stationarity is rejected by

the KPSS test at 1% significance level. The results, consistent across both

futures contracts and both studied periods, indicate the non-stationarity of

residuals and therefore the cointegration relationship has not been proven.

In the absence of a long-run cointegrating relationship between spot and

futures the series are differenced resulting in price percentage changes and

estimated by the OLS as given in the equation 4.3. The estimation results

are provided in Table 5. The coefficients of the independent variable are now

all significant and positive. The hedge ratios in period 1 are estimated to be

around 0.9 for both FGBL and FGBM, while period 2 resulted in the hedge

ratios of 0.79 and 0.43 for FGBL and FGBM, respectively, being greater than

the values estimated with the level variables.

The residuals of the OLS equations are further tested for serial correl-

ation. The autocorrelation in the residuals violates classical linear model

assumptions and if present it should be treated appropriately. The residuals

are examined with Box-Pierce and Ljung-Box tests with results provided in

Table A1 in Appendix A. There is a strong evidence of serial correlation as

the null hypothesis of no autocorrelation is rejected at 1% significance level

in almost all cases. There is no evidence of serial correlation in the residuals

of the OLS model with percentage changes in case of FGBM in period 2.
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Table 4: OLS levels

(a) FGBL - Period 1

Dependent variable:

log(CTD1FGBL)

Constant −0.7665∗∗

(0.3722)

log(FGBL1) 1.1311∗∗∗

(0.0777)

Observations 635

R2 0.868

Adjusted R2 0.868

Residual Std. Error 0.017 (df = 633)

F Statistic 4,164.357∗∗∗ (df = 1; 633)

(b) FGBM - Period 1

Dependent variable:

log(CTD1FGBM)

Constant 0.1526

(0.4083)

log(FGBM1) 0.9524∗∗∗

(0.0857)

Observations 635

R2 0.741

Adjusted R2 0.741

Residual Std. Error 0.019 (df = 633)

F Statistic 1,815.011∗∗∗ (df = 1; 633)

(c) FGBL - Period 2

Dependent variable:

log(CTD2FGBL)

Constant 2.6246∗∗∗

(0.9912)

log(FGBL2) 0.4060∗∗

(0.1977)

Observations 623

R2 0.154

Adjusted R2 0.153

Residual Std. Error 0.042 (df = 621)

F Statistic 113.011∗∗∗ (df = 1; 621)

(d) FGBM - Period 2

Dependent variable:

log(CTD2FGBM)

Constant 5.2300***

(0.7863)

log(FGBM2) -0.1000

(0.1623)

Observations 623

R2 0.035

Adjusted R2 0.033

Residual Std. Error 0.008 (df = 621)

F Statistic 22.533∗∗∗ (df = 1; 621)

Note: The results are obtained from the OLS estimation of lnSt = α+ β lnFt + t for FGBL and FGBM,
and their respective CTDs. Figures in parentheses are HAC standard errors.*, ** and *** denote statistical
significance at the 10%, 5% and 1% levels, respectively.
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Table 5: OLS percentage changes

(a) FGBL - Period 1

Dependent variable:

diff(log(CTD1FGBL))

Constant 0.0001***

(0.0000)

diff(log(FGBL1)) 0.9332∗∗∗

(0.0226)

Observations 634

R2 0.807

Adjusted R2 0.806

Residual Std. Error 0.002 (df = 632)

F Statistic 2,635.152∗∗∗ (df = 1; 632)

(b) FGBM - Period 1

Dependent variable:

diff(log(CTD1FGBM))

Constant −0.0001

(0.0001)

diff(log(FGBM1)) 0.9538∗∗∗

(0.0325)

Observations 634

R2 0.649

Adjusted R2 0.648

Residual Std. Error 0.002 (df = 632)

F Statistic 1,166.284∗∗∗ (df = 1; 632)

(c) FGBL - Period 2

Dependent variable:

diff(log(CTD2FGBL))

Constant −0.0001

(0.0001)

diff(log(FGBL2)) 0.7880∗∗∗

(0.0720)

Observations 622

R2 0.589

Adjusted R2 0.588

Residual Std. Error 0.002 (df = 620)

F Statistic 887.437∗∗∗ (df = 1; 620)

(d) FGBM - Period 2

Dependent variable:

diff(log(CTD2FGBM))

Constant −0.00005

(0.00004)

diff(log(FGBM2)) 0.4328∗∗∗

(0.0811)

Observations 622

R2 0.404

Adjusted R2 0.403

Residual Std. Error 0.001 (df = 620)

F Statistic 419.650∗∗∗ (df = 1; 620)

Note: The results are obtained from the OLS estimation of ∆ lnSt = a+ b∆lnFt + ut for FGBL and
FGBM, and their respective CTDs. Figures in parentheses are HAC standard errors.*, ** and *** denote
statistical significance at the 10%, 5% and 1% levels, respectively. respectively.
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6.1.3 VAR and VECM

To account for the serial correlation in the residuals the spot and futures

series are modelled with the VAR model given in the equation 4.6. To select

the appropriate number of lags to eliminate the autocorrelation the Akaike

and Schwartz information criteria are used. In the majority of cases a VAR

of the second order is estimated, while the optimal number of three lags is

identified for FGBM in period 1. The results of the VAR models for period

1 and 2 are available in Tables A3 and A5 in Appendix A. The coefficients

on the lags of differenced logarithms of prices are in many cases statistically

insignificant which suggests the hedge ratio estimated by the VAR might not

be that much different from the one estimated by the OLS.

While the spot and futures prices were not found to be cointegrated, the

VECM model might still potentially offer some meaningful results. As per

Lien & Tse (1999) the error correction term could substitute the effect of the

no-arbitrage relationship between spot and futures while also account for the

effect of the basis on the price movements as the basis declines towards the

maturity of the futures contract. The VAR model is therefore amended with

the error correction term according to the equation 4.15 forming the VECM

model. The results for the two periods are provided in Tables A7 and A9 in

Appendix A. After the inclusion of the error correction term more coefficients

on the differenced logarithms of prices become statistically significant. The

coefficient on the error correction term (ECT) itself is significant for both

FGBL and FGBM in both periods, while being mostly negative. The positive

coefficient on the ECT is identified for FGBL in period 1 which signals the

lack of convergence. In all cases the ECT’s coefficient from the equation

with futures series as the dependent variable is greater than the one from

the equation for spot series which means that the futures prices have greater

speed of adjustment to the last period’s deviation from a long-run equilibrium

than the spot prices.

The hedge ratios from VAR and VECM models are then calculated as the

ratios of the covariance between the error terms st and ft to the variance
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of ft from the VAR and VECM equations, respectively (see the equation

4.10). The variance-covariance matrices and the estimated hedge ratios are

given in Tables 6 and 7 for FGBL and FGBM, respectively. The hedge ratios

are generally only slightly different from the OLS hedge ratio, see Table 8

providing the summary of constant hedge ratios11. While there are only slight

differences for FGBL in the first period, for FGBM the VECM hedge ratio is

greater than both the VAR and OLS estimates. In the second period however

the VECM hedge ratios are smaller than the other two. Therefore, there

is not much consistency other than the hedge ratios estimated in period 2

are much smaller than the ones estimated for period 1. Seemingly weakened

relationship between CTD bonds and their futures might be a consequence

of the yields being kept low and relatively smaller variance of CTDs and

FGBM futures in the second period.

Table 6: FGBL Variance-covariance matrices

VAR VECM

Period 1 σss σff σss σff

σss 1.6894e-05 1.4928e-05 1.4743e-05 1.4743e-05

σff 1.4928e-05 1.6087e-05 1.4743e-05 1.5975e-05

σsf/σff 0.9280 0.9229

Period 2 σss σff σss σff

σss 1.2426e-05 9.6757e-06 1.2799e-05 9.4158e-06

σff 9.6757e-06 1.2216e-05 9.4158e-06 1.2227e-05

σsf/σff 0.7920 0.7701

Note: σff and σss denote the variance of ft and st, respectively, and σsf indicates the
covariance of st and ft from the VAR equation 4.6 and the VECM equation 4.15 for
FGBL and the corresponding CTD.

11The OLS model estimated with percentage changes is considered for further analysis. The OLS

model will levels is not employed in the upcoming analyses.
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Table 7: FGBM Variance-covariance matrices

VAR VECM

Period 1 σss σff σss σff

σss 8.9664e-06 6.8383e-06 9.9358e-06 7.2520e-06

σff 6.8383e-06 7.3585e-06 7.2520e-06 7.5362e-06

σsf/σff 0.9293 0.9623

Period 2 σss σff σss σff

σss 1.6367e-06 1.5278e-06 1.6886e-06 1.3965e-06

σff 1.5278e-06 3.4866e-06 1.3965e-06 3.6738e-06

σsf/σff 0.4382 0.3801

Note: σff and σss denote the variance of ft and st, respectively, and σsf indicates the
covariance of st and ft from the VAR equation 4.6 and the VECM equation 4.15 for
FGBM and the corresponding CTD.

Table 8: Constant hedge ratios

Period 1 Period 2

FGBL FGBM FGBL FGBM

OLS 0.9332 0.9538 0.7880 0.4328

VAR 0.9280 0.9293 0.7920 0.4382

VECM 0.9229 0.9623 0.7701 0.3801

Note: The OLS hedge ratio is obtained from estimating
the equation ∆ lnSt = a+ b∆lnFt + ut.

6.1.4 GARCH

The VAR model can be further extended by modelling the features in the re-

siduals with the multivariate GARCH model. The GARCH model postulates

that the current fitted variance comprises the long-term average variance and

the previous period’s actual volatility and the predicted variance from the

model. The GARCH model can therefore eliminate conditional heteroske-

dasticity in the residuals whereby creating conditions for time-varying hedge

ratios.

Before employing the GARCH model the residuals are tested for the pres-
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ence of ARCH effects. The Box-Pierce test and the Ljung-Box test are used

to determine the extent to which the residuals are autocorrelated whilst the

ARCH-LM test is employed to test for conditional heteroskedasticity. Table

A11 in Appendix A provides the results for the residuals from both equations

of the VAR model. While in some cases the Q-statistics for Box-Pierce and

Ljung-Box tests were not significant to reject the null of no autocorrelation,

in every period for both FGBL and FGBM the Q-statistic is significant in at

least one of the two VAR equations. The same holds for the ARCH-LM test

whereby the null hypothesis of no conditional heteroskedasticity is rejected

for at least one set of residuals in each case. Overall the results suggest there

are ARCH effects present in the residuals of the VAR’s futures equations in

period 1, while there are more dependencies in the spot equations in period

2. Figures A1, A2, A3, and A4 in Appendix A depict the ACF and PACF

of squared residuals from the VAR model. Along with the previous results

these graphs show there are dependencies in the data that could be modelled

with ARCH-type models.

Based on previous studies a multivariate GARCH(1,1) model is employed

to model the residuals of the previously estimated VAR model12. The

parameters of the model are estimated by the maximum likelihood estimation

method. The complete results of the GARCH model for the two periods

are given in Tables A13 and A15 in Appendix A. Omega which denotes

a constant and represents the long-run average variance in the model is

small in value and statistically insignificant. The parameter alpha (ARCH

effect) representing the lagged variance is mostly significant with generally

low values apart from the parameter in the spot variance equation for FGBL

in period 2. The low significant values suggest the volatility is influenced

by the past shocks though the markets are relatively calm. The parameter

beta (GARCH effect) that is the coefficient on the lagged squared residuals

is statistically significant in all cases with mostly high values suggesting the

12While both VAR and VECM models were estimated previously, only VAR is considered for GARCH

modelling because of computation obstacles with error correction term.
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persistence of volatility13.

The GARCH hedge ratios are calculated similarly as with the VAR model,

i.e. as the ratio of the covariance between the residuals from the spot and

futures equations and the variance of futures residuals as per the equation

4.19. Figure 2 shows the estimated hedge ratios for FGBL and FGBM in

periods 1 and 2, and Table 9 provides the summary statistics. It is visible that

the time-varying hedge ratios are substantially volatile with wide range of

values. For FGBL and FGBL in the first period, and for FGBL in the second

period the hedge ratios are much higher than the constant counterparts, in

some cases reaching the values over 1.4 per spot contract. The graphs exhibit

several spikes reflecting increased volatility in the prices. As with constant

hedge ratios, the estimates from the second period are generally lower than

the ones from the first period.

Table 9: GARCH Hedge Ratio: summary statistics

Period 1 Period 2

FGBL FGBM FGBL FGBM

Min. 0.5486 Min. 0.6720 Min. 0.4157 Min. 0.4261

1st Qu. 0.6775 1st Qu. 0.8378 1st Qu. 0.5604 1st Qu. 0.4711

Median 0.7242 Median 0.9242 Median 0.6182 Median 0.5330

Mean 0.7394 Mean 0.9374 Mean 0.6481 Mean 0.5470

3rd Qu. 0.7820 3rd Qu. 1.0254 3rd Qu. 0.6882 3rd Qu. 0.5894

Max. 1.3127 Max. 1.4280 Max 1.4178 Max. 0.9454

Note: The summary statistics is calculated for the time-varying hedge ratios estimated by the
GARCH for Euro-Bund (FGBL) and Euro-Bobl (FGBM) futures.

13As per Alexander (2008) the ARCH effect usually fluctuates between 0.05 for a relatively stable

market to 0.1 signalling a nervous market. With respect to the GARCH effect, the values usually fluctuate

between 0.85 to 0.98 with higher values signalling a higher volatility persistence.
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(a) FGBL - Period 1

(b) FGBM - Period 1

(c) FGBL - Period 2

(d) FGBM - Period 2

Figure 2: GARCH Hedge Ratios
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6.1.5 Duration model

The duration hedge ratio is calculated at the beginning of the hedging period

and held constant for the entire horizon of the hedge. Since the cash asset to

be hedged is a CTD bond the equation 4.1 further simplifies to the following

formula

hd =
St

Ft

× cfctd. (6.1)

When testing the hedging effectiveness the hedge ratio is recalculated for

each hedging window.

6.2 Hedging effectiveness

6.2.1 In-sample testing

The hedge ratios estimated in the previous section are further examined in

terms of their hedging effectiveness. The hedging effectiveness is tested for

5-, 10-, 20- and 30-day hedging horizons while applying rolling windows over

the sample. The mean and variance of returns as well as percentage variance

reduction to the unhedged position is calculated for each hedging strategy

and each hedging horizon.

The results for hedging with FGBL and FGBM in the first period are

provided in Tables 10 and 11, respectively. The hedging strategies seem to

work very well though at the cost of lower return as the un-hedged position

yields highest mean return. The second highest returns are achieved with

the GARCH time-varying hedge ratios while the duration method results

in negative returns. When taking a 10-day hedge for FGBL as an example,

the mean return from the GARCH is 0.04% whilst the duration yields a

mean return of -0.2%. As one would expect the minimum returns are limited

when the position is hedged as the unhedged position has lowest minimum

return. In period 1 the variances of returns are generally very low. The

greatest variance reduction is achieved with the duration method and the
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one-to-one hedge. The constant hedge ratios OLS, VAR, and VECM perform

in a similar way since the hedge ratios were estimated to be very close. For

FGBM the VECM hedge ratio yields a higher return than the other two.

The GARCH model gives a lowest percentage variance reduction, however,

it is still over 88% and 95% for FGBL and FGBM, respectively, while at

the same time it offers a higher return than other strategies. The hedging

performance is consistent across hedging horizons, there are no significant

differences.

The results for the second period are presented in Tables 12, and 13. As in

period 1 the highest mean return is given by the unhedged position. However,

while for FGBL the GARCH model offers the highest return compared

with other hedging strategies, for FGBM the GARCH mean return is lower

than the one provided by OLS, VAR, and VECM, with the VECM being

the highest. While for FGBL the minimum return is limited, the hedging

strategies with FGBM sometimes resulted is lower minimum return than

the one of unhedged position. Similarly, the maximum return is sometimes

higher after hedging compared to the cash only position for both FGBL and

FGBM. The variances of returns are higher than in period 1 and as expected,

given a seemingly lower connection between CTDs and futures in this period,

the percentage variance reductions are smaller. The duration method still

offers the highest variance reduction and negative or small returns. For

FGBL, the OLS, VAR, and VECM reduce the variance by roughly 75-77%

in all hedging horizons, with the VECM giving the smallest reduction. The

GARCH still reduces the variance of returns by at least 66% with the highest

return among all hedging strategies. The one-to-one strategy with FGBM

massively increases variance of returns, by at least 70% for each hedging

horizon. The OLS, VAR, and VECM reduce the variance at around 25%

rate for 5-day hedges, while the performance decreases with hedging horizon.

Contrary to FGBL, the VECM hedge ratio now provides greater variance

reduction than the OLS and VAR. The GARCH has been found to reduce

the variance by only 5.5% for the 5-day hedge while increasing variance for
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other hedging horizons. Coupled with lower return, for FGBM the GARCH

model did not perform well.

In summary, hedging strategies are, in almost all cases, effective in per-

centage variance reduction and there is an apparent risk-return trade-off.

The hedging effectiveness is stronger in period 1 given there is a closer rela-

tion of CTDs and futures prices and higher variance of price series in that

period. The duration method reduces the variance most while providing low

or negative returns. A similar performance is observed with the one-to-one

hedge though on some occasions the variance rather increased therefore this

strategy could be perceived as unreliable. The constant hedge ratios - OLS,

VAR, and VECM - performed similarly, with an occasional dominance of

the VECM which might be given by the significance and size of the error

correction term for that particular asset and period. Apart from the FGBM

in period 2, the GARCH model performed well providing high returns and

still relatively good percentage variance reduction. Generally, there seems to

be no differences in hedging effectiveness among the hedging horizons.
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Table 10: FGBL In-sample testing: Period 1

Horizon Method HR Mean return Min return Max return Variance Variance reduction

5-day Cash - 0.00064 -0.02626 0.03028 0.000090 -

1-to-1 1 0.00009 -0.00630 0.01108 0.000002 97.54%

Duration 0.7517* -0.00026 -0.00037 -0.00019 0.000000 99.99%

OLS 0.9332 0.00013 -0.00722 0.01062 0.000003 96.90%

VAR 0.9280 0.00013 -0.00731 0.01058 0.000003 96.81%

VECM 0.9229 0.00014 -0.00741 0.01057 0.000003 96.72%

GARCH 0.7394* 0.00020 -0.01102 0.01152 0.000010 88.39%

10-day Cash - 0.00130 -0.02993 0.04259 0.000164 -

1-to-1 1 0.00019 -0.00563 0.01043 0.000004 97.78%

Duration 0.7517* -0.00183 -0.00238 -0.00148 0.000000 99.96%

OLS 0.9332 0.00027 -0.00565 0.01016 0.000005 97.21%

VAR 0.9280 0.00027 -0.00579 0.01015 0.000005 97.13%

VECM 0.9229 0.00028 -0.00592 0.01013 0.000005 97.05%

GARCH 0.7394* 0.00041 -0.01301 0.01788 0.000018 88.85%

20-day Cash - 0.00259 -0.03287 0.06222 0.000319 -

1-to-1 1 0.00039 -0.00474 0.01264 0.000006 98.03%

Duration 0.7517* -0.00123 -0.00157 -0.00100 0.000000 99.99%

OLS 0.9332 0.00054 -0.00658 0.01450 0.000008 97.55%

VAR 0.9280 0.00055 -0.00672 0.01464 0.000008 97.48%

VECM 0.9229 0.00056 -0.00686 0.01479 0.000008 97.40%

GARCH 0.7394* 0.00083 -0.01544 0.02633 0.000034 89.24%

30-day Cash - 0.00390 -0.04234 0.07418 0.000497 -

1-to-1 1 0.00062 -0.00515 0.01195 0.000009 98.17 %

Duration 0.7517* -0.00318 -0.00393 -0.00267 0.000000 99.97%

OLS 0.9332 0.00084 -0.00639 0.01326 0.000011 97.72%

VAR 0.9280 0.00085 -0.00656 0.01336 0.000012 97.64%

VECM 0.9229 0.00087 -0.00672 0.01346 0.000012 97.57%

GARCH 0.7394* 0.00127 -0.01653 0.02939 0.000056 88.64%

Note: The hedging effectiveness of strategies is evaluated for Euro-Bund (FGBL) future during 2 April 2007 to
4 September 2009 in the sample. Percentage variance reduction is calculated according to the equation PV R =
V ar(U)− V ar(H)

V ar(U)
, where V ar(U) and V ar(H) are the variances of the unhedged and hedged portfolios, respectively.

*For non-constant hedge ratios, the mean of hedge ratios within a sample is provided.
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Table 11: FGBM In-sample testing: Period 1

Horizon Method HR Mean return Min return Max return Variance Variance reduction

5-day Cash - 0.00059 -0.01640 0.01941 0.000038 -

1-to-1 1 -0.00001 -0.00374 0.00386 0.000001 98.51%

Duration 0.8667* 0.00005 0.00002 0.00008 0.000000 99.99%

OLS 0.9538 0.00002 -0.00357 0.00358 0.000001 98.14%

VAR 0.9293 0.00003 -0.00390 0.00347 0.000001 97.78%

VECM 0.9623 0.00001 -0.00346 0.00362 0.000001 98.24%

GARCH 0.9374* 0.00007 -0.00512 0.00684 0.000002 95.69%

10-day Cash - 0.00118 -0.01821 0.03116 0.000074 -

1-to-1 1 -0.00002 -0.00419 0.00388 0.000001 98.75%

Duration 0.8667* -0.00062 -0.00089 -0.00034 0.000000 99.96%

OLS 0.9538 0.00003 -0.00439 0.00377 0.000001 98.30%

VAR 0.9293 0.00006 -0.00450 0.00394 0.000002 97.90%

VECM 0.9623 0.00002 -0.00436 0.00379 0.000001 98.41%

GARCH 0.9374* 0.00015 -0.00533 0.01015 0.000003 95.65%

20-day Cash - 0.00235 -0.02921 0.03658 0.000154 -

1-to-1 1 -0.00003 -0.00434 0.00467 0.000002 98.87%

Duration 0.8667* -0.00079 -0.00099 -0.00059 0.000000 99.99%

OLS 0.9538 0.00008 -0.00518 0.00510 0.000003 98.35%

VAR 0.9293 0.00014 -0.00571 0.00532 0.000003 97.92%

VECM 0.9623 0.00006 -0.00501 0.00502 0.000002 98.48%

GARCH 0.9374* 0.00031 -0.00773 0.00989 0.000007 95.66%

30-day Cash - 0.00358 -0.03741 0.04562 0.000255 -

1-to-1 1 -0.00003 -0.00567 0.00446 0.000003 98.89%

Duration 0.8667* -0.00167 -0.00211 -0.00121 0.000000 99.97%

OLS 0.9538 0.00014 -0.00658 0.00563 0.000004 98.32%

VAR 0.9293 0.00023 -0.00706 0.00650 0.000005 97.86%

VECM 0.9623 0.00011 -0.00641 0.00533 0.000004 98.45%

GARCH 0.9374* 0.00048 -0.00886 0.01404 0.000012 95.32%

Note: The hedging effectiveness of strategies is evaluated for Euro-Bobl (FGBM) future during 2 April 2007 to
4 September 2009 in the sample. Percentage variance reduction is calculated according to the equation PV R =
V ar(U)− V ar(H)

V ar(U)
, where V ar(U) and V ar(H) are the variances of the unhedged and hedged portfolios, respectively.

*For non-constant hedge ratios, the mean of hedge ratios within a sample is provided.
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Table 12: FGBL In-sample testing: Period 2

Horizon Method HR Mean return Min return Max return Variance Variance reduction

5-day Cash - 0.00118 -0.03090 0.01633 0.000050 -

1-to-1 1 0.00001 -0.02023 0.01840 0.000013 74.50%

Duration 0.4858* -0.00005 -0.00012 0.00005 0.000000 99.99%

OLS 0.7880 0.00026 -0.02010 0.01698 0.000012 76.52%

VAR 0.7920 0.00025 -0.02010 0.01701 0.000012 76.57%

VECM 0.7701 0.00028 -0.02012 0.01686 0.000012 76.25%

GARCH 0.6481* 0.00048 -0.02663 0.01602 0.000016 68.56%

10-day Cash - 0.00247 -0.04306 0.02266 0.000097 -

1-to-1 1 0.00002 -0.02053 0.01941 0.000024 75.18%

Duration 0.4858* -0.00203 -0.00225 -0.00189 0.000000 99.99%

OLS 0.7880 0.00054 -0.02198 0.01904 0.000022 77.11%

VAR 0.7920 0.00053 -0.02196 0.01905 0.000022 77.16%

VECM 0.7701 0.00059 -0.02211 0.01901 0.000022 76.83%

GARCH 0.6481* 0.00102 -0.02967 0.01854 0.000030 68.74%

20-day Cash - 0.00524 -0.05226 0.03485 0.000184 -

1-to-1 1 0.00007 -0.02078 0.01861 0.000047 74.20%

Duration 0.4858* -0.00324 -0.00361 -0.00302 0.000000 99.99%

OLS 0.7880 0.00117 -0.02144 0.01823 0.000045 75.55%

VAR 0.7920 0.00115 -0.02143 0.01823 0.000045 75.61%

VECM 0.7701 0.00126 -0.02150 0.01819 0.000046 75.25%

GARCH 0.6481* 0.00219 -0.02876 0.01799 0.000062 66.25%

30-day Cash - 0.00791 -0.06808 0.04620 0.000280 -

1-to-1 1 0.00013 -0.02143 0.02056 0.000072 74.34%

Duration 0.4858* 0.00315 0.00258 0.00415 0.000000 99.93%

OLS 0.7880 0.00179 -0.02078 0.02227 0.000069 75.29%

VAR 0.7920 0.00175 -0.02078 0.02223 0.000069 75.36%

VECM 0.7701 0.00193 -0.02080 0.02241 0.000070 74.96%

GARCH 0.6481* 0.00332 -0.02751 0.02434 0.000092 66.93%

Note: The hedging effectiveness of strategies is evaluated for Euro-Bund (FGBL) future during 9 December 2013
to 27 April 2016 in the sample. Percentage variance reduction is calculated according to the equation PV R =
V ar(U)− V ar(H)

V ar(U)
, where V ar(U) and V ar(H) are the variances of the unhedged and hedged portfolios, respectively.

*For non-constant hedge ratios, the mean of hedge ratios within a sample is provided.
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Table 13: FGBM In-sample testing: Period 2

Horizon Method HR Mean return Min return Max return Variance Variance reduction

5-day Cash - 0.00048 -0.01041 0.00700 0.000007 -

1-to-1 1 0.00011 -0.01419 0.01517 0.000013 -71.26%

Duration 0.7856* -0.00050 -0.00065 -0.00044 0.000000 99.96%

OLS 0.4328 0.00032 -0.01122 0.00961 0.000006 24.74%

VAR 0.4382 0.00032 -0.01124 0.00966 0.000006 24.52%

VECM 0.3801 0.00034 -0.01112 0.00909 0.000005 26.27%

GARCH 0.5470* 0.00022 -0.01663 0.01146 0.000007 5.49%

10-day Cash - 0.00101 -0.01382 0.01058 0.000014 -

1-to-1 1 0.00022 -0.01443 0.01454 0.000025 -84.13%

Duration 0.7856* -0.00156 -0.00197 -0.00138 0.000000 99.82%

OLS 0.4328 0.00067 -0.01346 0.00912 0.000011 20.12%

VAR 0.4382 0.00067 -0.01346 0.00917 0.000011 19.82%

VECM 0.3801 0.00071 -0.01351 0.00865 0.000011 22.29%

GARCH 0.5470* 0.00047 -0.01720 0.01061 0.000014 -5.12%

20-day Cash - 0.00215 -0.01307 0.01951 0.000026 -

1-to-1 1 0.00047 -0.01433 0.01458 0.000050 -96.58%

Duration 0.7856* -0.00190 -0.00234 -0.00171 0.000000 99.89%

OLS 0.4328 0.00143 -0.01306 0.01155 0.000021 18.04%

VAR 0.4382 0.00142 -0.01307 0.01145 0.000021 17.69%

VECM 0.3801 0.00151 -0.01299 0.01252 0.000020 20.74%

GARCH 0.5470* 0.00101 -0.01668 0.01143 0.000028 -10.32%

30-day Cash - 0.00322 -0.02086 0.02066 0.000035 -

1-to-1 1 0.00072 -0.01576 0.01501 0.000076 -116.24%

Duration 0.7856* 0.00023 0.00000 0.00078 0.000000 99.88%

OLS 0.4328 0.00214 -0.01796 0.01209 0.000030 13.61%

VAR 0.4382 0.00213 -0.01793 0.01198 0.000031 13.18%

VECM 0.3801 0.00227 -0.01831 0.01313 0.000029 17.20%

GARCH 0.5470* 0.00152 -0.01793 0.01159 0.000042 -19.90%

Note: The hedging effectiveness of strategies is evaluated for Euro-Bobl (FGBM) future during 9 December 2013
to 27 April 2016 in the sample. Percentage variance reduction is calculated according to the equation PV R =
V ar(U)− V ar(H)

V ar(U)
, where V ar(U) and V ar(H) are the variances of the unhedged and hedged portfolios, respectively.

*For non-constant hedge ratios, the mean of hedge ratios within a sample is provided.
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6.2.2 Out-of-sample testing

The hedging strategies are tested further out of the sample for the last 30

days of the chosen periods. For the OLS, VAR, and VECM methods the

hedge ratios estimated previously are employed. The duration hedge ratio

is calculated for each hedging window a day before entering a hedge. With

regard to the time-varying hedge ratios, a series of 1-step-ahead forecasts was

obtained while rolling the estimation window of constant size. The forecasted

hedge ratios are depicted in Figure 3. While the hedge ratios for FGBL

in period 1 and both FGBL and FGBM in period 2 generally fluctuate in

a 0.45-0.75 band, the hedge ratios for FGBM in the first period are more

volatile, with a massive drop from 1 to less than 0.55 at the beginning of the

forecasting period. A decrease is caused by a sudden drop in futures price

on 9 October 2009 by 2.27 while the CTD falls by only 0.304 on that day. A

similar decline is evident for FGBL where the futures price decreases by 1.64

while the spot price fell only by 0.296.

Tables 14 and 15 present the results for the first period for FGBL and

FGBM, respectively. For both futures contracts, it is evident that the un-

hedged position no longer yields the highest mean return. Instead, the greatest

mean return is provided by the duration technique and the GARCH model.

For a 5-hedge with FGBL, the duration yields 0.97% while the GARCH and

the cash only position provide 0.12% and 0.08%, respectively. The hedging

strategies mostly provide higher minimum return when compared with the

unhedged position. With respect to the percentage variance reduction, the

duration method again performs best for both futures contracts. For FGBL,

the OLS, VAR, and VECM reduce the variance by around 75% and 89%

for 5-day and 10-day hedges, respectively, with VECM performing slightly

better in terms of variance reduction. The GARCH model is effective as

well, offering 64% and 84% reduction for 5-day and 10-day hedges. With

the 20-day hedging horizon, however, the duration hedge ratios aside, the

strategies increase the returns’ variance, with the GARCH incresing the

variance least. For FGBM, after the duration, the VAR provides the greatest
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variance reduction for a 5-day hedge while the GARCH rather increases the

variance. With a 10-day hedge the VAR leads again, while the GARCH

reduces the variance as well. Similarly to FGBL, almost all hedging strategies

increase the variance for a 20-day hedge, with lowest increase provided by

the GARCH.

The results for the second period are given in Tables 16 and 17. Apart

from the unhedged portfolio, the highest mean returns are given by the

duration and GARCH model for FGBL, while the high mean returns for

FGBM are mostly provided by the VECM and other constant hedge ratios.

The duration and the one-to-one strategy lower the variance of returns most

though the return on one-to-one hedges is mostly low or negative. For FGBL

all other hedging strategies perform very well, with the VAR reducing the

variance most. Similarly to the in-sample analysis, the GARCH offers lowest

reduction though it is still on a relatively high level. For FGBM the GARCH

lowers the variance of returns more than OLS, VAR, and VECM which

follows the risk-return trade-off pattern.

It is important to stress that the out-of-sample results have less statistical

power because of low number of rolling windows tested. In many cases the

duration method and the GARCH yield highest returns, with the duration

also significantly lowering the variance of returns which contradicts the risk-

return trade-off. The constant hedge ratios from the VAR and VECM model

work relatively well, though there is no consistency in which one should be

better. It seems reasonable to say that when using the constant hedge ratios,

OLS, VAR, and VECM could be estimated to see which model fits the data

most based on the past observations. However, it has been shown that if the

model works well in the sample, it is not guaranteed that the performance

level will be the same with the out-of-sample data. The GARCH time-

varying hedge ratios perform relatively well mostly providing solid reduction

in returns’ variance. In periods when all time-series hedging strategies

increase the variance, the GARCH raises the variance least. Generally, the

hedging effectiveness is not influenced by the length of the hedging horizon
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though there are some differences in period 1.

(a) FGBL - Period 1 (b) FGBM - Period 1

(c) FGBL - Period 2 (d) FGBM - Period 2

Figure 3: GARCH 1-step-ahead forecasts
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Table 14: FGBL Out-of-sample testing: Period 1

Horizon Method HR Mean return Min return Max return Variance Variance reduction

5-day Cash - 0.00084 -0.01432 0.01255 0.000064 -

1-to-1 1 0.00090 -0.00257 0.01274 0.000018 72.52%

Duration 0.7875* 0.00971 0.00960 0.00973 0.000000 99.99%

OLS 0.9332 0.00090 -0.00336 0.01183 0.000016 74.76%

VAR 0.9280 0.00090 -0.00342 0.01175 0.000016 74.90%

VECM 0.9229 0.00090 -0.00348 0.01168 0.000016 75.02%

GARCH 0.6091* 0.00118 -0.00662 0.00982 0.000022 64.81%

10-day Cash - 0.00384 -0.01220 0.01987 0.000120 -

1-to-1 1 0.00093 -0.00273 0.01157 0.000017 85.47%

Duration 0.7875* 0.00598 0.00578 0.00603 0.000000 99.99%

OLS 0.9332 0.00112 -0.00322 0.01019 0.000014 88.50%

VAR 0.9280 0.00114 -0.00326 0.01008 0.000014 88.69%

VECM 0.9229 0.00115 -0.00329 0.00998 0.000013 88.86%

GARCH 0.6091* 0.00250 -0.00570 0.00866 0.000018 84.60%

20-day Cash - 0.00901 0.00198 0.01908 0.000022 -

1-to-1 1 0.00186 -0.00250 0.01153 0.000035 -58.83%

Duration 0.7875* 0.01079 0.01078 0.01080 0.000000 99.99%

OLS 0.9332 0.00234 -0.00196 0.01137 0.000031 -40.03%

VAR 0.9280 0.00238 -0.00192 0.01136 0.000030 -38.64%

VECM 0.9229 0.00115 -0.00188 0.01134 0.000030 -37.30%

GARCH 0.6091* 0.00556 -0.00027 0.01256 0.000023 -7.04%

30-day Cash - -0.00321 -0.00321 -0.00321 - -

1-to-1 1 0.00888 0.00888 0.00888 - -

Duration 0.7875* 0.00624 0.00624 0.00624 - -

OLS 0.9332 0.00808 0.00808 0.00808 - -

VAR 0.9280 0.00802 0.00802 0.00802 - -

VECM 0.9229 0.00796 0.00796 0.00796 - -

GARCH 0.6091* 0.00672 0.00672 0.00672 - -

Note: The hedging effectiveness of strategies is evaluated for Euro-Bund (FGBL) future during 7 September 2009
to 16 October 2009 out of the sample. Percentage variance reduction is calculated according to the equation PV R =
V ar(U)− V ar(H)

V ar(U)
, where V ar(U) and V ar(H) are the variances of the unhedged and hedged portfolios, respectively.

*For non-constant hedge ratios, the mean of hedge ratios within a sample is provided.
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Table 15: FGBM Out-of-sample testing: Period 1

Horizon Method HR Mean return Min return Max return Variance Variance reduction

5-day Cash - -0.00006 -0.00841 0.00534 0.000019 -

1-to-1 1 0.00097 -0.00150 0.01194 0.000016 13.37%

Duration 0.8724* 0.01059 0.01049 0.01062 0.000000 99.99%

OLS 0.9538 0.00092 -0.00182 0.01138 0.000015 20.08%

VAR 0.9293 0.00090 -0.00199 0.01114 0.000014 23.35%

VECM 0.9623 0.00093 -0.00176 0.01146 0.000015 18.90%

GARCH 0.6752* 0.00122 -0.00377 0.01393 0.000023 -21.33%

10-day Cash - 0.00112 -0.00817 0.00982 0.000031 -

1-to-1 1 0.00101 -0.00178 0.01100 0.000017 44.58%

Duration 0.8724* 0.00891 0.00875 0.00896 0.000000 99.98%

OLS 0.9538 0.00102 -0.00207 0.01024 0.000015 51.67%

VAR 0.9293 0.00102 -0.00223 0.00984 0.000014 55.07%

VECM 0.9623 0.00102 -0.00202 0.01038 0.000016 50.43%

GARCH 0.6752* 0.00177 -0.00389 0.01075 0.000018 43.92%

20-day Cash - 0.00300 -0.00212 0.00770 0.000006 -

1-to-1 1 0.00195 -0.00197 0.01114 0.000033 -418.10%

Duration 0.8724* 0.01032 0.01026 0.01034 0.000000 99.98%

OLS 0.9538 0.00200 -0.00182 0.01084 0.000031 -377.20%

VAR 0.9293 0.00203 -0.00174 0.01069 0.000029 -356.36%

VECM 0.9623 0.00199 -0.00185 0.01090 0.000031 -384.57%

GARCH 0.6752* 0.00370 -0.00189 0.01399 0.000043 -56.15%

30-day Cash - -0.00354 -0.00354 -0.00354 - -

1-to-1 1 0.00934 0.00934 0.00934 - -

Duration 0.8724* 0.00757 0.00757 0.00757 - -

OLS 0.9538 0.00875 0.00875 0.00875 - -

VAR 0.9293 0.00843 0.00843 0.00843 - -

VECM 0.9623 0.00886 0.00886 0.00886 - -

GARCH 0.6752* 0.01005 0.01005 0.01005 - -

Note: The hedging effectiveness of strategies is evaluated for Euro-Bobl (FGBM) future during 7 September 2009 to
16 October 2009 out of the sample. Percentage variance reduction is calculated according to the equation PV R =
V ar(U)− V ar(H)

V ar(U)
, where V ar(U) and V ar(H) are the variances of the unhedged and hedged portfolios, respectively.

*For non-constant hedge ratios, the mean of hedge ratios within a sample is provided.
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Table 16: FGBL Out-of-sample testing: Period 2

Horizon Method HR Mean return Min return Max return Variance Variance reduction

5-day Cash - 0.00322 -0.00384 0.01268 0.000021 -

1-to-1 1 -0.00015 -0.00112 0.00133 0.000000 98.58%

Duration 0.4048* 0.00416 0.00415 0.00416 0.000000 99.99%

OLS 0.7880 0.00056 -0.00076 0.00282 0.000001 95.71%

VAR 0.7920 0.00055 -0.00074 0.00279 0.000001 95.85%

VECM 0.7701 0.00062 -0.00083 0.00295 0.000001 95.02%

GARCH 0.5329* 0.00137 -0.00192 0.00570 0.000005 77.92%

10-day Cash - 0.00430 -0.00428 0.01403 0.000035 -

1-to-1 1 -0.00022 -0.00126 0.00101 0.000000 99.14%

Duration 0.4048* 0.00820 0.00819 0.00821 0.000000 99.99%

OLS 0.7880 0.00074 -0.00116 0.00271 0.000001 96.20%

VAR 0.7920 0.00072 -0.00114 0.00265 0.000001 96.34%

VECM 0.7701 0.00082 -0.00123 0.00296 0.000002 95.51%

GARCH 0.5329* 0.00177 -0.00235 0.00657 0.000007 78.87%

20-day Cash - 0.00803 0.00411 0.01249 0.000008 -

1-to-1 1 -0.00042 -0.00139 0.00064 0.000000 94.71%

Duration 0.4048* 0.00710 0.00709 0.00711 0.000000 99.99%

OLS 0.7880 0.00137 -0.00018 0.00227 0.000001 91.52%

VAR 0.7920 0.00133 -0.00020 0.00222 0.000001 91.67%

VECM 0.77016 0.00152 -0.00008 0.00250 0.000001 90.84%

GARCH 0.5329* 0.00329 0.00085 0.00565 0.000002 67.44%

30-day Cash - 0.02112 0.02112 0.02112 - -

1-to-1 1 -0.00049 -0.00049 -0.00049 - -

Duration 0.4048* 0.01233 0.01233 0.01233 - -

OLS 0.7880 0.00407 0.00407 0.00407 - -

VAR 0.7920 0.00398 0.00398 0.00398 - -

VECM 0.7701 0.00445 0.00445 0.00445 - -

GARCH 0.5329* 0.00920 0.00920 0.00920 - -

Note: The hedging effectiveness of strategies is evaluated for Euro-Bund (FGBL) future during 28 April 2016 to 8 June

2016 out of the sample. Percentage variance reduction is calculated according to the equation PV R =
V ar(U)− V ar(H)

V ar(U)
,

where V ar(U) and V ar(H) are the variances of the unhedged and hedged portfolios, respectively. *For non-constant
hedge ratios, the mean of hedge ratios within a sample is provided.
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Table 17: FGBM Out-of-sample testing: Period 2

Horizon Method HR Mean return Min return Max return Variance Variance reduction

5-day Cash - 0.00093 -0.00122 0.00470 0.000003 -

1-to-1 1 0.00002 -0.00058 0.00067 0.000000 97.62%

Duration 0.7469* 0.00049 0.00049 0.00049 0.000000 99.99%

OLS 0.4328 0.00054 -0.00076 0.00282 0.000001 64.22%

VAR 0.4382 0.00053 -0.00075 0.00280 0.000001 64.81%

VECM 0.3801 0.00059 -0.00081 0.00305 0.000001 58.20%

GARCH 0.4410* 0.00047 -0.00067 0.00239 0.000001 72.90%

10-day Cash - 0.00124 -0.00182 0.00414 0.000004 -

1-to-1 1 0.00001 -0.00053 0.00037 0.000000 98.62%

Duration 0.7469* 0.00124 0.00124 0.00125 0.000000 99.99%

OLS 0.4328 0.00071 -0.00120 0.00242 0.000001 65.06%

VAR 0.4382 0.00070 -0.00119 0.00240 0.000001 65.65%

VECM 0.3801 0.00077 -0.00127 0.00262 0.000002 58.96%

GARCH 0.4410* 0.00062 -0.00109 0.00206 0.000001 73.00%

20-day Cash - 0.00228 0.00076 0.00434 0.000001 -

1-to-1 1 0.00001 -0.00032 0.00044 0.000000 95.27%

Duration 0.7469* 0.00090 0.00089 0.00090 0.000000 99.99%

OLS 0.4328 0.00130 0.00030 0.00242 0.000000 62.47%

VAR 0.4382 0.00129 0.00029 0.00240 0.000000 63.05%

VECM 0.3801 0.00142 0.00035 0.00265 0.000001 56.60%

GARCH 0.4410* 0.00114 0.00023 0.00201 0.000000 75.80%

30-day Cash - 0.00569 0.00569 0.00569 - -

1-to-1 1 0.00020 0.00020 0.00020 - -

Duration 0.7469* 0.00158 0.00158 0.00158 - -

OLS 0.4328 0.00331 0.00331 0.00331 - -

VAR 0.4382 0.00328 0.00328 0.00328 - -

VECM 0.3801 0.00360 0.00360 0.00360 - -

GARCH 0.4410* 0.00295 0.00295 0.00295 - -

Note: The hedging effectiveness of strategies is evaluated for Euro-Bobl (FGBM) future during 28 April 2016 to 8 June

2016 out of the sample. Percentage variance reduction is calculated according to the equation PV R =
V ar(U)− V ar(H)

V ar(U)
,

where V ar(U) and V ar(H) are the variances of the unhedged and hedged portfolios, respectively. *For non-constant
hedge ratios, the mean of hedge ratios within a sample is provided.
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6.3 Robustness testing

To confirm the previous findings and obtain more consistency in the results

the same analysis is conducted with the joined datasets of the two subsamples.

An immediate advantage is an increase in the sample size for hedge ratio

estimation which could have an impact on the models’ outcome.

However, it is important to consider that there is a time gap between the

subsamples over the years 2009 to 2013. As is evident from the previous

Figure 1 and the summary statistics in Table 2, both futures and CTD prices

rose over the years with the biggest jump in FGBL. The price increase is

attributable mainly to sinking interest rates with Bund yield decreasing from

around 4% in April 2007 to around 1.7% in December 2013. More liquid

Bund futures market could also be subject to the flight-to-safety while also

being affected by the T7 technology upgrade in 2013.

Nonetheless, given the main goal of the analysis is to re-assess the effect-

iveness of the hedging strategies rather than to study the dynamics between

the prices, the data is artificially shifted to bring the series onto the same

level. The aim is to avoid misleading results, that could potentially be caused

by a jump in prices between the subsets, and to enable the analysis. To

obtain a continuous set of prices, each price series in the second subsample

is shifted by a constant so that the first observation of the second subsample

matches the last observation of the same series in the first subsample.

The results for the joint dataset are available in Appendix B. The futures

and spot series are again found to be non-stationary and integrated of order

one, with ADF and KPSS test results provided in Table B1. Furthermore,

the residuals from the OLS regression with level variables are not stationary

therefore it is confirmed the futures and CTD prices are not cointegrated.

The hedge ratio is therefore estimated by the OLS with differenced logarithms.

The results in Table B4 show statistically significant coefficients that are

estimated to be 0.78 and 0.75 for FGBL and FGBM, respectively. Based

on the results of Box-Pierce and Ljung-Box tests in Table B5 that indicate

autocorrelation in the regression residuals, the series are further modelled
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with the VAR and VECM models or second order, see Tables B6, B8, and

the variance-covariance matrix in Table B10. The error correction term is

again found to be statistically significant though for FGBM it is greater than

one, signalling the prices do not converge. Consistent with the subsample

results the OLS, VAR, and VECM hedge ratios are of similar value. Before

the GARCH estimation the series are again examined by autocorrelation and

ARCH-LM tests. The results in Table B11 show that while the null of no

conditional heteroskedasticity is not rejected for all series, the autocorrelation

tests and the ACF and PACF of squared residuals in Figures B1 and B2

suggest the series exhibit signs of dependencies. Table B12 providing the

results for the GARCH model shows a very similar outcome to the previous

analyses. The long-run average variance is found to be insignificant, while

the GARCH effect is significant and mostly large in value indicating a higher

volatility persistence.

The hedging performance in the sample is provided in Tables 18 and

19 for FGBL and FGBM, respectively. Similarly to previous results the

one-to-one hedge yields relatively low returns while also being outperformed

by other strategies in percentage variance reduction. The duration method

consistently reduces the variance most but the obtained mean returns are

very low or negative. The highest mean return is delivered by the GARCH

again. While reducing the variance of returns least it still provides the

reduction of over 40% for FGBL as the other methodologies. Interestingly,

for FGBM the classical trade-off between risk and return seem to be absent

as GARCH provides the highest return from all the hedging strategies while

also reducing the variance most (next to the leading duration strategy). The

same pattern can be observed for the VAR model, however, the differences

between OLS, VAR, and VECM are small and there is again no consistency

in which model outperforms the other.
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Table 18: Robustness: FGBL In-sample testing

Horizon Method HR Mean return Min return Max return Variance Variance reduction

5-day Cash - 0.00133 -0.03090 0.11953 0.000120 -

1-to-1 1 0.00046 -0.02270 0.11902 0.000063 46.98%

Duration 0.6822* -0.00040 -0.00081 -0.00018 0.000000 99.97%

OLS 0.7794 0.00065 -0.02000 0.11911 0.000063 47.68%

VAR 0.7758 0.00066 -0.02001 0.11911 0.000063 47.64%

VECM 0.7604 0.00067 -0.02002 0.11911 0.000063 47.45%

GARCH 0.6419* 0.00078 -0.02491 0.11912 0.000066 44.78%

10-day Cash - 0.00273 -0.04306 0.11653 0.000220 -

1-to-1 1 0.00092 -0.02200 0.11893 0.000123 43.97%

Duration 0.6822* -0.00254 -0.00458 -0.00143 0.000001 99.65%

OLS 0.7794 0.00132 -0.02133 0.11840 0.000119 45.73%

VAR 0.7758 0.00133 -0.02136 0.11839 0.000119 45.70%

VECM 0.7604 0.00135 -0.02148 0.11836 0.000120 45.58%

GARCH 0.6419* 0.00158 -0.02743 0.11770 0.000124 43.43%

20-day Cash - 0.00559 -0.05226 0.12852 0.000422 -

1-to-1 1 0.00185 -0.02225 0.11910 0.000244 42.22%

Duration 0.6822* -0.00166 -0.00296 -0.00097 0.000000 99.93%

OLS 0.7794 0.00268 -0.02114 0.12002 0.000235 44.17%

VAR 0.7758 0.00269 -0.02115 0.12005 0.000236 44.15%

VECM 0.7604 0.00275 -0.02121 0.12022 0.000236 44.05%

GARCH 0.6419* 0.00324 -0.02664 0.12361 0.000246 41.70%

30-day Cash - 0.00847 -0.06808 0.12765 0.000646 -

1-to-1 1 0.00281 -0.02529 0.12911 0.000363 43.73%

Duration 0.6822* -0.00411 -0.00701 -0.00260 0.000001 99.78%

OLS 0.7794 0.00406 -0.02073 0.12668 0.000354 45.21%

VAR 0.7758 0.00408 -0.02073 0.12664 0.000354 45.18%

VECM 0.7604 0.00417 -0.02074 0.12647 0.000355 45.05%

GARCH 0.6419* 0.00490 -0.02559 0.12534 0.000375 41.99%

Note: The hedging effectiveness of strategies is evaluated for Euro-Bund (FGBL) future in the sample with the joint

dataset. Percentage variance reduction is calculated according to the equation PV R =
V ar(U)− V ar(H)

V ar(U)
, where

V ar(U) and V ar(H) are the variances of the unhedged and hedged portfolios, respectively.
*For non-constant hedge ratios, the mean of hedge ratios within a sample is provided.
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Table 19: Robustness: FGBM In-sample testing

Horizon Method HR Mean return Min return Max return Variance Variance reduction

5-day Cash - 0.00086 -0.01640 0.08835 0.000051 -

1-to-1 1 0.00041 -0.01483 0.08967 0.000039 24.24%

Duration 0.8349* 0.00003 -0.00006 0.00008 0.000000 99.99%

OLS 0.7538 0.00052 -0.01321 0.08935 0.000036 28.55%

VAR 0.7465 0.00053 -0.01317 0.08934 0.000036 28.57%

VECM 0.7612 0.00052 -0.01326 0.08936 0.000036 28.52%

GARCH 0.6852* 0.00053 -0.01529 0.08910 0.000035 30.68%

10-day Cash - 0.00174 -0.01821 0.08575 0.000095 -

1-to-1 1 0.00083 -0.01514 0.08896 0.000076 20.04%

Duration 0.8349* -0.00077 -0.00157 -0.00034 0.000000 99.93%

OLS 0.7538 0.00106 -0.01382 0.08817 0.000070 25.61%

VAR 0.7465 0.00106 -0.01379 0.08815 0.000070 25.67%

VECM 0.7612 0.00105 -0.01385 0.08819 0.000070 25.54%

GARCH 0.6852* 0.00108 -0.01618 0.08757 0.000067 28.71%

20-day Cash - 0.00355 -0.02921 0.09092 0.000184 -

1-to-1 1 0.00168 -0.01514 0.08881 0.000148 19.41%

Duration 0.8349* -0.00090 -0.00147 -0.00059 0.000000 99.98%

OLS 0.7538 0.00214 -0.01354 0.08927 0.000137 25.38%

VAR 0.7465 0.00215 -0.01353 0.08928 0.000137 25.45%

VECM 0.7612 0.00213 -0.01355 0.08926 0.000138 25.30%

GARCH 0.6852* 0.00218 -0.01557 0.08976 0.000131 28.64%

30-day Cash - 0.00537 -0.03741 0.09249 0.000285 -

1-to-1 1 0.00254 -0.01647 0.09948 0.000222 22.05%

Duration 0.8349* -0.00191 -0.00319 -0.00121 0.000000 99.94%

OLS 0.7538 0.00324 -0.01540 0.09604 0.000207 27.39%

VAR 0.7465 0.00326 -0.01546 0.09594 0.000207 27.44%

VECM 0.7612 0.00322 -0.01535 0.09614 0.000207 27.33%

GARCH 0.6852* 0.00330 -0.01779 0.09524 0.000199 30.20%

Note: The hedging effectiveness of strategies is evaluated for Euro-Bobl (FGBM) future in the sample with the joint

dataset. Percentage variance reduction is calculated according to the equation PV R =
V ar(U)− V ar(H)

V ar(U)
, where

V ar(U) and V ar(H) are the variances of the unhedged and hedged portfolios, respectively.
*For non-constant hedge ratios, the mean of hedge ratios within a sample is provided.
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For the out-of-sample testing, time-varying hedge ratios comprise the series

of one-step-ahead forecasts while the estimation window for the forecasts

is now larger than the one used for the subsamples. The forecasted hedge

ratios are displayed in Figure 4. The span of the hedge ratios is now much

smaller when compared to the subsample analyses with FGBL ranging from

0.475 to 0.6 and FGBM remaining close to 0.48.

The out-of-sample test results for the last 30 days of the sample are given

in Tables 20 and 21. Following the previous out-of-sample analyses the

highest returns are achieved with not only the unhedged position but also

with the duration and the GARCH models while the duration method still

leads in the percentage variance reduction. As opposed to the subsample

results, the variance is not increased by any of the strategies, rather the

performance is more stable and the percentage variance reduction is generally

greater.

Overall, the robustness results are very similar to the outcomes of the

individual subsample analyses, nonetheless, the performance of the models is

more consistent and settled. The one-to-one hedge is generally outperformed

by other strategies. It has been confirmed the duration hedge leads to the

greatest variance reduction that however might also squeeze the return. The

GARCH model delivers an attractive return while reducing the risk relatively

well.

(a) FGBL (b) FGBM

Figure 4: Robustness: GARCH 1-step-ahead forecasts

63



Table 20: Robustness: FGBL Out-of-sample testing

Horizon Method HR Mean return Min return Max return Variance Variance reduction

5-day Cash - 0.00322 -0.00384 0.01268 0.000021 -

1-to-1 1 -0.00058 -0.00254 0.00085 0.000001 95.63%

Duration 0.5012* 0.00303 0.00302 0.00304 0.000000 99.99%

OLS 0.7794 0.00026 -0.00073 0.00218 0.000000 98.14%

VAR 0.7758 0.00027 -0.00072 0.00220 0.000000 98.07%

VECM 0.7604 0.00033 -0.00068 0.00233 0.000000 97.73%

GARCH 0.5082* 0.00124 -0.00172 0.00501 0.000004 82.35%

10-day Cash - 0.00430 -0.00428 0.01403 0.000035 -

1-to-1 1 -0.00080 -0.00290 0.00115 0.000001 96.23%

Duration 0.5012* 0.00589 0.00586 0.00590 0.000000 99.99%

OLS 0.7794 0.00032 -0.00101 0.00145 0.000000 98.65%

VAR 0.7758 0.00034 -0.00101 0.00149 0.000000 98.58%

VECM 0.7604 0.00042 -0.00100 0.00170 0.000001 98.24%

GARCH 0.5082* 0.00162 -0.00213 0.00583 0.000006 83.10%

20-day Cash - 0.00803 0.00411 0.01249 0.000008 -

1-to-1 1 -0.00151 -0.00281 -0.00010 0.000001 92.20%

Duration 0.5012* 0.00506 0.00504 0.00508 0.000000 99.99%

OLS 0.7794 0.00059 -0.00068 0.00133 0.000000 94.02%

VAR 0.7758 0.00063 -0.00066 0.00136 0.000000 93.95%

VECM 0.7604 0.00077 -0.00056 0.00154 0.000000 93.60%

GARCH 0.5082* 0.00301 0.00075 0.00504 0.000002 74.98%

30-day Cash - 0.02112 0.02112 0.02112 - -

1-to-1 1 -0.00324 -0.00324 -0.00324 - -

Duration 0.5012* 0.00882 0.00882 0.00882 - -

OLS 0.7794 0.00210 0.00210 0.00210 - -

VAR 0.7758 0.00219 0.00219 0.00219 - -

VECM 0.7604 0.00256 0.00256 0.00256 - -

GARCH 0.5082* 0.00834 0.00834 0.00834 - -

Note: The hedging effectiveness of strategies is evaluated for Euro-Bund (FGBL) future out of the sample with the

joint dataset. Percentage variance reduction is calculated according to the equation PV R =
V ar(U)− V ar(H)

V ar(U)
, where

V ar(U) and V ar(H) are the variances of the unhedged and hedged portfolios, respectively.
*For non-constant hedge ratios, the mean of hedge ratios within a sample is provided.
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Table 21: Robustness: FGBM Out-of-sample testing

Horizon Method HR Mean return Min return Max return Variance Variance reduction

5-day Cash - 0.00093 -0.00122 0.00470 0.000003 -

1-to-1 1 -0.00006 -0.00078 0.00053 0.000000 97.70%

Duration 0.7594* 0.00037 0.00037 0.00037 0.000000 99.99%

OLS 0.7538 0.00019 -0.00038 0.00116 0.000000 93.04%

VAR 0.7465 0.00019 -0.00039 0.00119 0.000000 92.71%

VECM 0.7612 0.00018 -0.00038 0.00112 0.000000 93.37%

GARCH 0.4849* 0.00045 -0.00066 0.00242 0.000001 73.52%

10-day Cash - 0.00124 -0.00182 0.00414 0.000004 -

1-to-1 1 -0.00009 -0.00056 0.00037 0.000000 98.64%

Duration 0.7594* 0.00097 0.00096 0.00097 0.000000 99.99%

OLS 0.7538 0.00024 -0.00065 0.00099 0.000000 94.10%

VAR 0.7465 0.00025 -0.00066 0.00102 0.000000 93.77%

VECM 0.7612 0.00023 -0.00063 0.00096 0.000000 94.42%

GARCH 0.4849* 0.00060 -0.00106 0.00207 0.000001 74.41%

20-day Cash - 0.00228 0.00076 0.00434 0.000001 -

1-to-1 1 -0.00017 -0.00045 0.00031 0.000000 95.43%

Duration 0.7594* 0.00068 0.00067 0.00068 0.000000 99.99%

OLS 0.7538 0.00043 -0.00011 0.00083 0.000000 90.67%

VAR 0.7465 0.00045 -0.00010 0.00085 0.000000 90.35%

VECM 0.7612 0.00042 -0.00012 0.00080 0.000000 91.00%

GARCH 0.4849* 0.00110 0.00020 0.00202 0.000000 71.86%

30-day Cash - 0.00569 0.00569 0.00569 - -

1-to-1 1 -0.00024 -0.00024 -0.00024 - -

Duration 0.7594* 0.00118 0.00118 0.00118 - -

OLS 0.7538 0.00122 0.00122 0.00122 - -

VAR 0.7465 0.00126 0.00126 0.00126 - -

VECM 0.7612 0.00117 0.00117 0.00117 - -

GARCH 0.4849* 0.00282 0.00282 0.00282 - -

Note: The hedging effectiveness of strategies is evaluated for Euro-Bobl (FGBM) future out of the sample with the

joint dataset. Percentage variance reduction is calculated according to the equation PV R =
V ar(U)− V ar(H)

V ar(U)
, where

V ar(U) and V ar(H) are the variances of the unhedged and hedged portfolios, respectively.
*For non-constant hedge ratios, the mean of hedge ratios within a sample is provided.
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7 Conclusion

The purpose of the thesis was to evaluate the effectiveness of various hedging

strategies and to inspect whether enhanced methods, especially the one

considering time-varying hedge ratios, contribute to lower portfolio risk and

offer advantages over simple constant hedges. The analysis was focused on

interest rate futures hedging whereby Euro-Bund and Euro-Bobl futures

traded at Eurex were used to hedge the corresponding CTD bonds. Hedge

ratios were estimated with OLS, VAR, VECM, GARCH, and the duration-

based methodology. Their hedging effectiveness was subsequently measured

in terms of portfolio variance reduction achieved with a particular hedging

strategy while also considering risk-return trade-off. The analysis was carried

out for two subperiods while also conducting a robustness check with the

joint dataset.

Although there was an apparent correlation between futures and bonds, the

cointegration between the series has not been confirmed. This is potentially

due to the nature of the bond market and the economic situation of the time.

Generally, the hedge ratios were estimated to be higher during the global

financial crisis (period 1) relative to the ones predicted for the time after the

European sovereign debt crisis (period 2), signalling a weakened relationship

between CTD bonds and their futures. The reason behind could be explained

by the environment of low interest rates governing period 2, and relatively

smaller variance of prices during that time. In almost all cases the hedge

ratio was estimated to be below one which follows the aforementioned idea of

Ederington (1979) that, contrary to the traditional theory, investors may find

it optimal to hedge only a proportion of their entire portfolio. The VAR and

VECM, correcting for serial correlation and convergence of prices, generally

produced hedge ratios similar to the OLS. Based on the presence of ARCH

effects, a time-varying hedge ratio that accounts for conditional information

entering the markets was estimated with the GARCH model. This hedge

ratio was found to be substantially volatile with a wide range of values.

It was shown that in, almost all cases, the hedging strategies work well in
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terms of variance reduction and the futures contracts are efficient at limiting

potential risks. However, generally there is an apparent trade-off whereby

the more the variance is cut the smaller the returns are, with the unhedged

position yielding the highest mean return. This is visible especially with

the duration strategy that on many occasions decreased the variance by

99% while the returns were low or negative in the sample. Constant hedge

ratios produced by the OLS, VAR, and VECM, performed similarly providing

generally high variance reduction while there was no consistency in which one

is obviously superior. From all the strategies, GARCH limited the variance

least, nonetheless, mostly it provided the reduction of at least 65% while also

delivering one of the highest returns along with the unhedged position. On

the other hand, the one-to-one strategy provided, on some occasions, high

variance reduction, but it was often outperformed by other methods, in both

return and variance. Generally, the hedging efficiency was not influenced by

the length of hedging horizon. Similarly, the relative performance of models

was consistent between the two periods tested, however, the overall hedging

effectiveness was smaller after the European sovereign debt crisis given the

reduced cohesion of the futures and CTDs influenced by lower variance of

price series.

None of the hedging strategies performed better than the other in all

aspects, though some do have appealing characteristics. Eventually, it

depends on the risk-return trade-off and the investor himself. Based on the

results, a risk averse investor would employ the duration method securing his

bond portfolio from volatile returns, while a less risk averse investor would

opt for a time-varying hedge ratio providing some room for a decent return.

The work suffers from some limitations. The periods chosen bear the

effects of the crises which could eventually have an impact on models’ outcome.

The analysis would be worth repeating once the low yields return to their

natural levels to confirm consistency. Furthermore, the analysis does not

consider transaction costs which could make the dynamic strategy costly in

the case of frequent portfolio rebalancing. The investor would then have to
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consider whether the costs are more than compensated by sufficient profit

from the strategy. Care should therefore be taken when interpreting the

results.

The research could be extended further. Despite the fact that all bonds

are subject to interest rate risk, it would be beneficial to examine how the

strategies perform when interest rate futures are used to hedge riskier bonds.

Moreover, given the efficiency of the duration method, which was specifically

developed for fixed-income assets, it could be of benefit to further investigate

whether any specific characteristics of a bond could be exploited to produce

greater returns while maintaining the same level of risk protection.
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Appendix A

Table A1: Autocorrelation tests

FGBL OLS levels OLS percentage changes

Period 1: Box-Pierce Test

χ2=3446.8***, df=6 χ2=76.737***, df=6

Ljung-Box Test

χ2=3476.3***, df=6 χ2=77.138***, df=6

Period 2: Box-Pierce Test

χ2= 3602.8***, df=6 χ2= 106.94***, df=6

Ljung-Box Test

χ2= 3634.6***, df=6 χ2= 107.62***, df=6

FGBM OLS levels OLS percentage changes

Period 1: Box-Pierce Test

χ2= 3472.4***, df=6 χ2=256.78***, df=6

Ljung-Box Test

χ2=3502.1***, df=6 χ2=258.19***, df=6

Period 2: Box-Pierce Test

χ2= 3378*** , df=6 χ2=8.4098 , df=6

Ljung-Box Test

χ2=3407*** , df=6 χ2=8.4626 , df=6

Note: Autocorrelation tests for the residuals of the OLS regressions lnSt = α + β lnFt + t
and ∆ lnSt = a+ b∆lnFt + ut, are carried out for Euro-Bund (FGBL) and Euro-Bobl (FGBM)
futures during 2 April 2007 to 4 September 2009 (Period 1, in the sample) and 9 December 2013
to 27 April 2016 (Period 2, in the sample). *, ** and *** denote statistical significance at the
10%, 5% and 1% levels, respectively.
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Table A3: VAR model: Period 1

Dependent variable: diff.log.CTD1

Estimate Std. Error t value Pr(>|t|)

Constant 0.0002 0.0002 0.96 0.3350

diff.log.CTD1.-1 0.3940 0.0937 4.20 0.0000

diff.log.FGBL1.-1 -0.2800 0.0960 -2.92 0.0037

diff.log.CTD1.-2 -0.0548 0.0936 -0.59 0.5587

diff.log.FGBL1.-2 -0.0180 0.0956 -0.19 0.8507

Dependent variable: diff.log.FGBL1

Estimate Std. Error t value Pr(>|t|)

Constant 0.0001 0.0002 0.67 0.5030

diff.log.CTD1.-1 0.1167 0.0915 1.28 0.2025

diff.log.FGBL1.-1 -0.0469 0.0937 -0.50 0.6170

diff.log.CTD1.-2 -0.1370 0.0913 -1.50 0.1340

diff.log.FGBL1.-2 0.0816 0.0933 0.87 0.3822

Dependent variable: diff.log.CTD1

Estimate Std. Error t value Pr(>|t|)

Constant 0.0001 0.0001 0.78 0.4337

diff.log.CTD1.-1 0.5746 0.0734 7.82 0.0000

diff.log.FGBM1.-1 -0.5362 0.0811 -6.61 0.0000

diff.log.CTD1.-2 0.1578 0.0789 2.00 0.0460

diff.log.FGBM1.-2 -0.1132 0.0852 -1.33 0.1847

diff.log.CTD1.-3 -0.1029 0.0735 -1.40 0.1622

diff.log.FGBM1.-3 0.0708 0.0818 0.87 0.3868

Dependent variable: diff.log.FGBM1

Estimate Std. Error t value Pr(>|t|)

Constant 0.0001 0.0001 1.22 0.2234

diff.log.CTD1.-1 0.1418 0.0665 2.13 0.0334

diff.log.FGBM1.-1 -0.1335 0.0735 -1.82 0.0698

diff.log.CTD1.-2 -0.0641 0.0715 -0.90 0.3700

diff.log.FGBM1.-2 0.0439 0.0772 0.57 0.5700

diff.log.CTD1.-3 0.0422 0.0666 0.63 0.5268

diff.log.FGBM1.-3 -0.0670 0.0741 -0.90 0.3658

Note: VAR model is estimated according to the equation 4.6 for Euro-Bund (FGBL) and
Euro-Bobl (FGBM) futures and the corresponding CTD during 2 April 2007 to 4 September 2009
(Period 1, in the sample). diff.log- indicates a differenced logarithm of a variable while -1, -2, and
-3 denote the first, the second, and the third lag of a respective variable.
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Table A5: VAR model: Period 2

Dependent variable: diff.log.CTD2

Estimate Std. Error t value Pr(>|t|)

Constant 0.0002 0.0001 1.08 0.2792

diff.log.CTD2.-1 0.2893 0.0635 4.56 0.0000

diff.log.FGBL2.-1 -0.3033 0.0637 -4.76 0.0000

diff.log.CTD2.-2 0.0956 0.0633 1.51 0.1315

diff.log.FGBL2.-2 -0.1514 0.0650 -2.33 0.0203

Dependent variable: diff.log.FGBL2

Estimate Std. Error t value Pr(>|t|)

Constant 0.0002 0.0001 1.76 0.0794

diff.log.CTD2.-1 0.1152 0.0630 1.83 0.0677

diff.log.FGBL2.-1 -0.0927 0.0632 -1.47 0.1430

diff.log.CTD2.-2 -0.1601 0.0628 -2.55 0.0110

diff.log.FGBL2.-2 0.0349 0.0645 0.54 0.5882

Dependent variable: diff.log.CTD2

Estimate Std. Error t value Pr(>|t|)

Constant -0.0000 0.0001 -0.34 0.7377

diff.log.CTD2.-1 -0.0887 0.0523 -1.69 0.0907

diff.log.FGBM2.-1 -0.0073 0.0355 -0.20 0.8378

diff.log.CTD2.-2 -0.0516 0.0521 -0.99 0.3226

diff.log.FGBM2.-2 0.0011 0.0354 0.03 0.9750

Dependent variable: diff.log.FGBM2

Estimate Std. Error t value Pr(>|t|)

Constant 0.0001 0.0001 0.82 0.4100

diff.log.CTD2.-1 -0.0314 0.0764 -0.41 0.6809

diff.log.FGBM2.-1 0.0215 0.0518 0.42 0.6777

diff.log.CTD2.-2 -0.2760 0.0761 -3.63 0.0003

diff.log.FGBM2.-2 0.0855 0.0517 1.65 0.0985

Note: VAR model is estimated according to the equation 4.6 for Euro-Bund (FGBL) and
Euro-Bobl (FGBM) futures and the corresponding CTD during 9 December 2013 to 27 April
2016 (Period 2, in the sample). diff.log- indicates a differenced logarithm of a variable while -1
and -2 denote the first and the second lag of a respective variable, respectively.
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Table A7: VECM model: Period 1

Dependent variable: diff.log.CTD1

Estimate Std. Error t value Pr(>|t|)

Constant 0.0001 0.0002 0.63 0.5270

ECT -0.0387 0.0029 -13.41 0.0000

diff.log.CTD1.-1 -0.3513 0.0842 -4.17 0.0000

diff.log.FGBL1.-1 0.4257 0.0970 4.39 0.0000

diff.log.CTD1.-2 -0.2344 0.0842 -2.78 0.0055

diff.log.FGBL1.-2 0.2356 0.0878 2.68 0.0075

Dependent variable: diff.log.FGBL1

Estimate Std. Error t value Pr(>|t|)

Constant 0.0001 0.0002 0.70 0.4817

ECT -0.0405 0.0028 -14.66 0.0000

diff.log.CTD1.-1 0.1127 0.0806 1.40 0.1627

diff.log.FGBL1.-1 -0.0531 0.0928 -0.57 0.5673

diff.log.CTD1.-2 -0.0833 0.0806 -1.03 0.3014

diff.log.FGBL1.-2 0.0837 0.0840 1.00 0.3194

Dependent variable: diff.log.CTD1

Estimate Std. Error t value Pr(>|t|)

Constant 0.0001 0.0001 0.72 0.4716

ECT 0.2833 0.0403 7.04 0.0000

diff.log.CTD1.-1 -0.4740 0.0762 -6.22 0.0000

diff.log.FGBM1.-1 0.2028 0.1198 1.69 0.0909

diff.log.CTD1.-2 -0.2432 0.0784 -3.10 0.0020

diff.log.FGBM1.-2 0.0870 0.1047 0.83 0.4064

diff.log.CTD1.-3 -0.2631 0.0726 -3.62 0.0003

diff.log.FGBM1.-3 0.1284 0.0847 1.52 0.1299

Dependent variable: diff.log.FGBM1

Estimate Std. Error t value Pr(>|t|)

Constant 0.0001 0.0001 1.20 0.2287

ECT 0.4161 0.0351 11.87 0.0000

diff.log.CTD1.-1 -0.1692 0.0663 -2.55 0.0110

diff.log.FGBM1.-1 0.1082 0.1043 1.04 0.3001

diff.log.CTD1.-2 -0.2103 0.0683 -3.08 0.0022

diff.log.FGBM1.-2 0.1589 0.0912 1.74 0.0821

diff.log.CTD1.-3 -0.1500 0.0633 -2.37 0.0180

diff.log.FGBM1.-3 0.0933 0.0738 1.26 0.2064

Note: VECM model is estimated according to the equation 4.15 for Euro-Bund (FGBL) and
Euro-Bobl (FGBM) futures and the corresponding CTD during 2 April 2007 to 4 September 2009
(Period 1, in the sample). diff.log- indicates a differenced logarithm of a variable while -1, -2, and
-3 denote the first, the second, and the third lag of a respective variable.
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Table A9: VECM model: Period 2

Dependent variable: diff.log.CTD2

Estimate Std. Error t value Pr(>|t|)

Constant 0.0002 0.0001 1.49 0.1376

ECT -0.1859 0.0137 -13.61 0.0000

diff.log.CTD2.-1 -0.4006 0.0599 -6.69 0.0000

diff.log.FGBL2.-1 0.4419 0.0732 6.04 0.0000

diff.log.CTD2.-2 -0.1797 0.0600 -3.00 0.0028

diff.log.FGBL2.-2 0.1762 0.0629 2.80 0.0052

Dependent variable: diff.log.FGBL2

Estimate Std. Error t value Pr(>|t|)

Constant 0.0002 0.0001 1.66 0.0964

ECT -0.2033 0.0133 -15.23 0.0000

diff.log.CTD2.-1 0.2571 0.0586 4.39 0.0000

diff.log.FGBL2.-1 -0.1000 0.0715 -1.40 0.1627

diff.log.CTD2.-2 0.0305 0.0586 0.52 0.6029

diff.log.FGBL2.-2 -0.0085 0.0615 -0.14 0.8898

Dependent variable: diff.log.CTD2

Estimate Std. Error t value Pr(>|t|)

Constant 0.0000 0.0001 0.21 0.8332

ECT -0.7789 0.0548 -14.22 0.0000

diff.log.CTD2.-1 -0.1863 0.0583 -3.20 0.0015

diff.log.FGBM2.-1 0.1768 0.0330 5.36 0.0000

diff.log.CTD2.-2 -0.0999 0.0480 -2.08 0.0378

diff.log.FGBM2.-2 0.0803 0.0312 2.58 0.0102

Dependent variable: diff.log.FGBM2

Estimate Std. Error t value Pr(>|t|)

Constant 0.0000 0.0001 0.19 0.8475

ECT -1.0829 0.0808 -13.41 0.0000

diff.log.CTD2.-1 0.8349 0.0859 9.72 0.0000

diff.log.FGBM2.-1 -0.4424 0.0487 -9.09 0.0000

diff.log.CTD2.-2 0.2959 0.0708 4.18 0.0000

diff.log.FGBM2.-2 -0.1738 0.0460 -3.78 0.0002

Note: VECM model is estimated according to the equation 4.15 for Euro-Bund (FGBL) and
Euro-Bobl (FGBM) futures and the corresponding CTD during 9 December 2013 to 27 April
2016 (Period 2, in the sample). diff.log- indicates a differenced logarithm of a variable while -1
and -2 denote the first and the second lag of a respective variable.
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Table A11: Autocorrelation and heteroskedasticity tests

FGBL diff.log.CTD diff.log.FGBL

Period 1: Box-Pierce Test

χ2=25.494***, df=6 χ2=25.946***, df=6

Ljung-Box Test

χ2=25.672***, df=6 χ2=26.213***, df=6

ARCH-Lagrange Multiplier Test

χ2=7.3784, df=6 χ2=24.182***, df=6

Period 2: Box-Pierce Test

χ2=39.036***, df=6 χ2= 6.5466, df=6

Ljung-Box Test

χ2= 39.411***, df=6 χ2= 6.6056, df=6

ARCH-Lagrange Multiplier Test

χ2=12.874**, df=6 χ2=0.15835, df=6

FGBM diff.log.CTD diff.log.FGBM

Period 1: Box-Pierce Test

χ2=8.6633, df=6 χ2=41.325***, df=6

Ljung-Box Test

χ2=8.7299, df=6 χ2=41.777***, df=6

ARCH-Lagrange Multiplier Test

χ2=0.10629, df=6 χ2=34.109***, df=6

Period 2: Box-Pierce Test

χ2= 55.73*** , df=6 χ2= 0.69947, df=6

Ljung-Box Test

χ2= 56.097***, df=6 χ2= 0.70615, df=6

ARCH-Lagrange Multiplier Test

χ2=146.6***, df=6 χ2=0.23005, df=6

Note: Autocorrelation and ARCH-LM tests for the residuals of the two equations of the VAR
model are carried out for Euro-Bund (FGBL) and Euro-Bobl (FGBM) futures during 2 April 2007
to 4 September 2009 (Period 1, in the sample) and 9 December 2013 to 27 April 2016 (Period
2, in the sample). *, ** and *** denote statistical significance at the 10%, 5% and 1% levels,
respectively.
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(a) ACF - diff.log.CTD1 (b) ACF - diff.log.FGBL1

(c) PACF - diff.log.CTD1 (d) PACF - diff.log.FGBL1

Figure A1: FGBL ACF and PACF of squared residuals: Period 1

(a) ACF - diff.log.CTD1 (b) ACF - diff.log.FGBM1

(c) PACF - diff.log.CTD1 (d) PACF - diff.log.FGBM1

Figure A2: FGBM ACF and PACF of squared residuals: Period 1
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(a) ACF - diff.log.CTD2 (b) ACF - diff.log.FGBL2

(c) PACF - diff.log.CTD2 (d) PACF - diff.log.FGBL2

Figure A3: FGBL ACF and PACF of squared residuals: Period 2

(a) ACF - diff.log.CTD2 (b) ACF - diff.log.FGBM2

(c) PACF - diff.log.CTD2 (d) PACF - diff.log.FGBM2

Figure A4: FGBM ACF and PACF of squared residuals: Period 2
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Table A13: GARCH model: Period 1

diff.log.CTD1

Estimate Std. Error t value Pr(>|t|)

omega 0.0000 0.0000 0.48 0.6343

alpha 0.0777 0.0319 2.44 0.0148

beta 0.8875 0.0373 23.80 0.0000

diff.log.FGBL1

Estimate Std. Error t value Pr(>|t|)

omega 0.0000 0.0000 0.22 0.8266

alpha 0.0414 0.0104 3.98 0.0000

beta 0.9518 0.0114 83.18 0.0000

Joint.C1 0.9900 0.0268 36.91 0.0000

diff.log.CTD1

Estimate Std. Error t value Pr(>|t|)

omega 0.0000 0.0000 0.03 0.9776

alpha 0.0186 0.0260 0.71 0.4757

beta 0.9804 0.0124 79.33 0.0000

diff.log.FGBM1

Estimate Std. Error t value Pr(>|t|)

omega 0.0000 0.0000 0.13 0.9004

alpha 0.0581 0.0144 4.02 0.0000

beta 0.9366 0.0146 64.04 0.0000

Joint.C1 0.9900 0.0779 12.71 0.0000

Note: The GARCH residual structure of the VAR model is estimated according to the equation
4.17 for Euro-Bund (FGBL) and Euro-Bobl (FGBM) futures and the corresponding CTD during
2 April 2007 to 4 September 2009 (Period 1, in the sample). Omega, alpha, and beta denote a
constant, ARCH effect, and GARCH effect, respectively. Joint.C1 indicates joint significance of
the variables.
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Table A15: GARCH model: Period 2

diff.log.CTD2

Estimate Std. Error t value Pr(>|t|)

omega 0.0000 0.0000 0.59 0.5585

alpha 0.1543 0.0586 2.63 0.0084

beta 0.7550 0.0573 13.17 0.0000

diff.log.FGBL2

Estimate Std. Error t value Pr(>|t|)

omega 0.0000 0.0000 0.05 0.9615

alpha 0.0167 0.0124 1.34 0.1798

beta 0.9823 0.0078 125.22 0.0000

Joint.C1 0.9900 0.1106 8.95 0.0000

diff.log.CTD2

Estimate Std. Error t value Pr(>|t|)

omega 0.0000 0.0000 0.00 0.9974

alpha 0.0251 0.1806 0.14 0.8895

beta 0.9632 0.1252 7.69 0.0000

diff.log.FGBM2

Estimate Std. Error t value Pr(>|t|)

omega 0.0000 0.0000 0.07 0.9432

alpha 0.0013 0.0005 2.72 0.0066

beta 0.9902 0.0012 853.00 0.0000

Joint.C1 0.9900 0.1996 4.96 0.0000

Note: The GARCH residual structure of the VAR model is estimated according to the equation
4.17 for Euro-Bund (FGBL) and Euro-Bobl (FGBM) futures and the corresponding CTD during
9 December 2013 to 27 April 2016 (Period 2, in the sample). Omega, alpha, and beta denote a
constant, ARCH effect, and GARCH effect, respectively. Joint.C1 indicates joint significance of
the variables.
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Appendix B

Table B1: Robustness: ADF and KPSS tests

ADF KPSS

lnFGBL level -2.9469 14.976***

∆ -11.736*** 0.0892

lnCTD level -1.1691 13.68***

∆ -11.022*** 0.1761

̂t level -0.7968 2.624***

lnFGBM level -2.5107 14.533***

∆ -11.532*** 0.0454

lnCTD level -2.2348 9.322***

∆ -10.418*** 0.0803

̂t level -2.7284 1.7323***

Note: Tests are conducted for the joint dataset
of Period 1 and Period 2. *, ** and *** denote
statistical significance at the 10%, 5% and 1% levels,
respectively. ̂t are residuals from the OLS equation
lnSt = α+ β lnFt + t.

Table B2: Robustness: OLS levels

Dependent variable:

log(CTDFGBL)

Constant 0.3548∗

(0.1862)

log(FGBL) 0.8973∗∗∗

(0.0385)

Observations 1,288

R2 0.799

Adjusted R2 0.799

Residual Std. Error 0.037 (df = 1286)

F Statistic 5,103.980∗∗∗ (df = 1; 1286)

Dependent variable:

log(CTDFGBM)

Constant 1.3275***

(0.5734)

log(FGBM) 0.7027***

(0.1214)

Observations 1,288

R2 0.735

Adjusted R2 0.734

Residual Std. Error 0.019 (df = 1286)

F Statistic 3,561.426∗∗∗ (df = 1; 1286)

Note: The results are obtained from the OLS estimation of lnSt = α+ β lnFt + t for the price
series from the joint dataset. Figures in parentheses are HAC standard errors.*, ** and ***
denote statistical significance at the 10%, 5% and 1% levels, respectively.
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Table B4: Robustness: OLS percentage changes

Dependent variable:

diff(log(CTDFGBL))

Constant 0.0000

(0.0000)

diff(log(FGBL)) 0.7794***

(0.0360)

Observations 1,287

R2 0.698

Adjusted R2 0.697

Residual Std. Error 0.002 (df = 1285)

F Statistic 2,963.355∗∗∗ (df = 1; 1285)

Dependent variable:

diff(log(CTDFGBM))

Constant 0.0000

(0.0001)

diff(log(FGBM)) 0.7538***

(0.0579)

Observations 1,287

R2 0.548

Adjusted R2 0.548

Residual Std. Error 0.002 (df = 1285)

F Statistic 1,560.495∗∗∗ (df = 1; 1285)

Note: The results are obtained from the OLS estimation of ∆ lnSt = a+ b∆lnFt + ut for the
price series from the joint dataset. Figures in parentheses are HAC standard errors.*, ** and ***
denote statistical significance at the 10%, 5% and 1% levels, respectively.

Table B5: Robustness: Autocorrelation tests

OLS levels OLS percentage changes

FGBL Box-Pierce Test

χ2= 8651.1***, df=7 χ2= 156.23***, df=7

Ljung-Box Test

χ2= 8691.2***, df=7 χ2= 156.65***, df=7

FGBM Box-Pierce Test

χ2= 8365***, df=7 χ2=281.02***, df=7

Ljung-Box Test

χ2= 8403.5***, df=7 χ2=281.79***, df=7

Note: Autocorrelation tests for the residuals of the OLS regressions lnSt =
α+β lnFt + t and ∆ lnSt = a+ b∆ lnFt +ut, are carried out for the price
series from the joint dataset. *, ** and *** denote statistical significance
at the 10%, 5% and 1% levels, respectively.

89



Table B6: Robustness: VAR model

Dependent variable: diff.log.CTD

Estimate Std. Error t value Pr(>|t|)

Constant 0.0001 0.0001 1.36 0.1740

diff.log.CTD.-1 0.3526 0.0516 6.83 0.0000

diff.log.FGBL.-1 -0.2606 0.0473 -5.51 0.0000

diff.log.CTD.-2 0.0233 0.0517 0.45 0.6524

diff.log.FGBL.-2 -0.0855 0.0477 -1.79 0.0734

Dependent variable: diff.log.FGBL

Estimate Std. Error t value Pr(>|t|)

Constant 0.0002 0.0001 1.60 0.1099

diff.log.CTD.-1 0.1528 0.0562 2.72 0.0066

diff.log.FGBL.-1 -0.0860 0.0515 -1.67 0.0950

diff.log.CTD.-2 -0.1501 0.0563 -2.67 0.0077

diff.log.FGBL.-2 0.0437 0.0520 0.84 0.4007

Dependent variable: diff.log.CTD

Estimate Std. Error t value Pr(>|t|)

Constant 0.0000 0.0001 0.64 0.5223

diff.log.CTD.-1 0.3607 0.0424 8.50 0.0000

diff.log.FGBM.-1 -0.2831 0.0416 -6.81 0.0000

diff.log.CTD.-2 0.1420 0.0425 3.34 0.0009

diff.log.FGBM.-2 -0.0899 0.0421 -2.13 0.0331

Dependent variable: diff.log.FGBM

Estimate Std. Error t value Pr(>|t|)

Constant 0.0001 0.0001 1.36 0.1751

diff.log.CTD.-1 0.1067 0.0434 2.46 0.0142

diff.log.FGBM.-1 -0.0766 0.0426 -1.80 0.0723

diff.log.CTD.-2 -0.0676 0.0435 -1.55 0.1204

diff.log.FGBM.-2 0.0242 0.0431 0.56 0.5739

Note: VAR model is estimated according to the equation 4.6 for the price series from the joint
dataset. diff.log- indicates a differenced logarithm of a variable while -1 and -2 denote the first
and the second lag of a respective variable.
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Table B8: Robustness: VECM model

Dependent variable: diff.log.CTD

Estimate Std. Error t value Pr(>|t|)

Constant 0.0002 0.0001 1.45 0.1478

ECT -0.1258 0.0065 -19.41 0.0000

diff.log.CTD.-1 -0.3599 0.0471 -7.64 0.0000

diff.log.FGBL.-1 0.3834 0.0506 7.57 0.0000

diff.log.CTD.-2 -0.1906 0.0473 -4.03 0.0001

diff.log.FGBL.-2 0.1711 0.0448 3.82 0.0001

Dependent variable: diff.log.FGBL

Estimate Std. Error t value Pr(>|t|)

Constant 0.0002 0.0001 1.60 0.1109

ECT -0.1485 0.0069 -21.39 0.0000

diff.log.CTD.-1 0.2303 0.0504 4.57 0.0000

diff.log.FGBL.-1 -0.1056 0.0542 -1.95 0.0516

diff.log.CTD.-2 0.0092 0.0507 0.18 0.8564

diff.log.FGBL.-2 -0.0038 0.0479 -0.08 0.9375

Dependent variable: diff.log.CTD

Estimate Std. Error t value Pr(>|t|)

Constant 0.0001 0.0001 0.95 0.3406

ECT 0.1002 0.0072 13.95 0.0000

diff.log.CTD.-1 -0.5194 0.0415 -12.51 0.0000

diff.log.FGBM.-1 0.3399 0.0530 6.41 0.0000

diff.log.CTD.-2 -0.1729 0.0413 -4.18 0.0000

diff.log.FGBM.-2 0.1135 0.0427 2.66 0.0079

Dependent variable: diff.log.FGBM

Estimate Std. Error t value Pr(>|t|)

Constant 0.0001 0.0001 1.45 0.1472

ECT 0.1484 0.0070 21.19 0.0000

diff.log.CTD.-1 -0.0101 0.0405 -0.25 0.8028

diff.log.FGBM.-1 0.0444 0.0517 0.86 0.3908

diff.log.CTD.-2 -0.0528 0.0403 -1.31 0.1902

diff.log.FGBM.-2 0.0516 0.0416 1.24 0.2152

Note: VECM model is estimated according to the equation 4.15 for the price series from the
joint dataset. diff.log- indicates a differenced logarithm of a variable while -1 and -2 denote the
first and the second lag of a respective variable, respectively.
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Table B10: Robustness: VAR & VECM variance-covariance matrices

VAR VECM

FGBL σss σff σss σff

σss 1.3480e-05 1.2382e-05 1.3941e-05 1.2151e-05

σss 1.2382e-05 1.5961e-05 1.2151e-05 1.5981e-05

σsf/σff 0.7758 0.7604

FGBM σss σff σss σff

σss 5.5937e-06 4.3745e-06 6.1655e-06 4.4592e-06

σss 4.3745e-06 5.8599e-06 4.4592e-06 5.8581e-06

σsf/σff 0.7465 0.7612

Note: σff and σss denote the variance of ft and st, respectively, and σsf denotes the
covariance of st and ft from the VAR equation 4.6 and the VECM equation 4.15 for
FGBL and the corresponding CTD from the joint dataset.

Table B11: Robustness: Autocorrelation and heteroskedasticity tests

diff.log.CTD diff.log.FGBL

FGBL Box-Pierce Test

χ2= 70.233***, df=7 χ2= 15.438**, df=7

Ljung-Box Test

χ2= 70.523***, df=7 χ2= 15.511**, df=7

ARCH-Lagrange Multiplier Test

χ2=8.3288, df=7 χ2=0.30634, df=7

FGBM Box-Pierce Test

χ2= 75.197***, df=7 χ2= 7.4365, df=7

Ljung-Box Test

χ2= 75.468***, df=7 χ2= 7.473, df=7

ARCH-Lagrange Multiplier Test

χ2= 0.79713, df=7 χ2= 0.27187, df=7

Note: Autocorrelation and ARCH-LM tests for the residuals of the two equations
of the VAR model are carried out for the price series from the joint dataset. *, **
and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.
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(a) ACF - diff.log.CTD (b) ACF - diff.log.FGBL

(c) PACF - diff.log.CTD (d) PACF - diff.log.FGBL

Figure B1: Robustness: FGBL ACF and PACF of squared residuals

(a) ACF - diff.log.CTD (b) ACF - diff.log.FGBM

(c) PACF - diff.log.CTD (d) PACF - diff.log.FGBM

Figure B2: Robustness: FGBM ACF and PACF of squared residuals
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Table B12: Robustness: GARCH model

diff.log.CTD

Estimate Std. Error t value Pr(>|t|)

omega 0.0000 0.0000 0.51 0.6131

alpha 0.1112 0.0367 3.04 0.0024

beta 0.8530 0.0383 22.28 0.0000

diff.log.FGBL

Estimate Std. Error t value Pr(>|t|)

omega 0.0000 0.0000 0.12 0.9013

alpha 0.0287 0.0173 1.65 0.0986

beta 0.9624 0.0156 61.70 0.0000

Joint.C1 0.9900 0.0477 20.76 0.0000

diff.log.CTD

Estimate Std. Error t value Pr(>|t|)

omega 0.0000 0.0000 0.03 0.9800

alpha 0.0211 0.0026 8.22 0.0000

beta 0.9779 0.0005 1901.5 0.0000

diff.log.FGBM

Estimate Std. Error t value Pr(>|t|)

omega 0.0000 0.0000 0.00 0.9999

alpha 0.0172 0.0021 7.94 0.0000

beta 0.9817 0.0007 1359.7 0.0000

Joint.C1 0.9900 0.0569 17.4 0.0000

Note: The GARCH residual structure of the VAR model is estimated according to the equation
4.17 for the price series from the joint dataset. Omega, alpha, and beta denote a constant, ARCH
effect, and GARCH effect, respectively. Joint.C1 indicates joint significance of the variables.
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