
Charles University in Prague
Faculty of Social Sciences
Institute of Economic Studies

MASTER’S THESIS

Connectedness and spillover effects
between forex and stock markets: Evidence

from Scandinavia

Author: Bc. Arman Mkhitaryan

Supervisor: Prof. Ing. Evžen Kočenda, Ph.D.

Academic Year: 2018/2019



Declaration of Authorship
The author hereby declares that he compiled this thesis independently, using only
the listed resources and literature, and the thesis has not been used to obtain a
different or the same degree.

The author grants to Charles University permission to reproduce and to distribute
copies of this thesis document in whole or in part.

Prague, April 19, 2019 Signature



Acknowledgments
I would like to express my gratitude to my supervisor, Prof. Ing. Evžen Kočenda,
Ph.D., for his comments and guidance.
This thesis is part of a project that has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No. 681228.



Abstract
In this thesis, we study the return and volatility spillovers between forex and
stock markets in Scandinavian countries employing recently developed method-
ology of spillover indices. Those measures are based on forecast error variance
decomposition of generalized vector autoregressive (GVAR) model. This allows
us to estimate both total and directional spillovers. Moreover, frequency connect-
edness analysis is conducted by decomposing the spillover indices into frequency
bands, corresponding to short-, medium- and long-run connectedness. We used
daily data for major stock market indices and exchange rates of domestic cur-
rency towards US dollar for Norway, Sweden, Denmark and Finland. Our data
spans from February 2002 till July 2018 that covers turmoil periods of global fi-
nancial crisis in 2007-2009, European sovereign debt crisis 2010-2013 and Brexit
referendum in mid 2016. Our empirical analysis reveals that Norwegian financial
markets do not contribute much to both return and volatility spillovers. On the
other hand, euro and Danish FX market perform very similarly, by exhibiting
the highest spillover contributions for both returns and volatility. Furthermore,
distinct increasing trends in spillovers are revealed during the turmoil periods for
most of the markets. From frequency connectedness analysis, we inspect high
short-run return connectedness for the whole period of time. For volatility, short-
run connectedness is prevailing over long-run in normal times, while the pattern
inverses during turmoil periods.
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Motivation In the last two decades, financial markets all over the world became
more interconnected in an unprecedented manner. This led to increase of interest in
studying interconnectedness both across countries and across financial markets. The
literature of analyzing those interconnections are focused on returns and their volatility.
Stock return volatility and its features, such as leverage effect or volatility clustering,
form a significant part of current econometric research. It is due to extensive usage of
volatility as a risk measure, entering various pricing models, risk-assessment models or
optimal portfolio construction frameworks. In other words, estimation of volatility and
its accuracy is very important because this measure is relevant for all market participants
and for their decision-making. The intense interest in volatility modeling began only
after the seminal works of Engle (1982) and Bollerslev (1986) and has since become an
extensively researched area in the field of financial econometrics.
It is very important to understand main drivers that allow us to estimate the actual
volatility or forecast the future volatility. Njegic, Zivkov & Jankovic (2018) found that
shock and volatility spillover effect is predominantly directed from exchange rate market
to stock market. Granger, Huang, & Yang (2000) and Kyung-Chun (2008) found strong
correlation between exchange rate and stock returns in many Asian countries. Thus,
we can assume that exchange rate is one of many drivers of stock market volatility.
The main purpose of this thesis is to analyze return and volatility spillover effects
between stock and forex markets and cross-country spillovers for Scandinavian countries.
Thus, we can analyze the differences between exchange rate regimes of Nordic countries.
The idea is that in case of constraining exchange rate regimes it is assumed that the
exchange rates will not be as much volatile as for freely floating exchange rates, as
suggested by Sidek, Abidin & Umar (2011) for some sector indices. That is the case
with Denmark and Sweden that peg their currencies to Euro, while in Norway the



monetary authorities follow inflation targeting policy and left exchange rate for free
float. The case of Finland is also interesting for further investigation as it does not have
its own monetary policy and has adopted Euro since 1999.

Hypotheses

Hypothesis #1: The return and volatility spillovers from forex to stock market in
countries with constraining exchange rate regimes is less than in countries with
floating exchange rates.

Hypothesis #2: Spillovers during financial crisis are not more than during normal
times.

Hypothesis #3: Connectedness of forex market with stock market is not higher
for high frequencies than in lower frequencies.

Methodology For the analysis we will use daily data of stock market indices and
exchange rates for 4 Scandinavian countries, namely Denmark, Sweden, Finland and
Norway, for the period from February 2002 until the end of July 2018. The data is
collected from Thomson Reuters Eikon platform.
The methodoligy that will be used in this thesis is based on simple measure of connect-
edness of asset returns and vlatilities introduced by Diebold & Yilmaz (2009). That
measure is based on forecast error variance decomposition from vector autoregressive
(VAR) model. This approach enables us to determine the proportion of forecast er-
ror variance of one asset which could be attributed to the shocks of the other asset,
thus capturing cross-asset spillovers and also aggregate spillover effects between asset
classes. However, that methodology relies on the Cholesky-factor identification of VAR
and, thus, results depend on ordering of variables. As a result, Diebold & Yilmaz (2012)
proposed new approach for measuring directional spillovers that relies on generalized
VAR (GVAR) framework in which results are independent from ordering of variables.
Implementing the approach of Diebold & Yilmaz (2012) will allow us to measure both
directional and total return and volatility spillovers and will reveal the cross-country
and cross-market spillovers. Furthermore, to measure dynamics of connectedness in
short-, medium- and long-term frequencies we will implement the approach of Baruník
& Křehlík (2018). We will measure frequency dynamics of both cross-country and cross-
market connectedness.

Expected Contribution While most of the researches on this topic focus mostly
on many developed and developing countries, we analyze Scandinavian countries. The
expected contribution of this thesis is fourfold. First, we will show the inter-market
connectedness and spillover effects between forex and stock markets. Furthermore,



we will reveal the differences of those effects between different exchange rate regimes,
namely constraining exchange rate regimes (pegging to Euro), free floating exchange rate
and adoption of regional currency (Euro). Secondly, we will analyze the cross-country
spillovers for selected Nordic countries. This will reveal the level of integration among
Nordic stock and foreign exchange markets. And, finally, the high, medium and low
frequency shock effects will be investigated, giving deeper insight in the persistence of
shocks in those markets. What’s more, the results will help investors and other financial
market participants to understand the spillover dynamics in Scandinavian countries for
making accurate investment decisions. Additionally, we will point out the developments
of diversification effects between those two markets for investors.
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Chapter 1

Introduction

Globalization and integration over the recent decades induced to increasing in-
terconnectedness between countries. Although there are various advantages in
integration, nothing comes without costs. Such a process makes countries more
prone to shocks emerging in other countries. Similarly, financial liberalization led
to increasing interconnectedness between financial markets. Those interconnec-
tions became even more tight after the global financial crisis in 2007-2009, when
economies and financial markets worldwide were hit tremendously. Moreover, this
kind of distress periods increase the uncertainty in the markets, thus leading to
increased volatility. As volatility is used as a measure of risk, entering various
pricing models and portfolio construction frameworks, it is interesting to examine
the sources and volatility transmission mechanisms between various markets.

The huge amount of academic researches is devoted to volatility and connect-
edness modeling and studying volatility spillover effects both across countries and
across financial markets. Major part of existing literature is focusing on analysis
of developed markets, while in this thesis we will analyze the interconnectedness
between stock and forex markets in Scandinavian countries, specifically, Sweden,
Finland, Norway and Denmark. As a representative of stock markets in each
country we chose the stock market indices, while for FX markets each country’s
domestic currency against US dollar is chosen. The aim of this thesis is to model
and analyze not only volatility, but also return connectedness and spillovers effects
among those markets. Our sample covers the period from February 2002 till July
2018, which enables us to examine such distress periods as the global financial
crisis, European debt crisis and Brexit referendum. Moreover, there is sufficient
data to cover also the calm periods and compare those with the abovementioned
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extreme events.

To conduct further analysis of connectedness effects we employed the methodol-
ogy of spillover indices initially proposed by Diebold & Yilmaz (2009) and further
updated by Diebold & Yilmaz (2012). This concept allows us to understand not
only the total spillovers among the markets under analysis, but also to construct
the directional spillover measures. The latest measures enable us to decompose
forecast error variance of vector autoregressive (VAR) model and to estimate how
shocks in one market affect the shocks in other markets, hence estimating the
spillovers. Furthermore, we employ the extension to this methodology proposed
by Baruník & Křehlík (2018) which allows to decompose the spillover indices into
various frequency bands, specifically, short-term, medium-term and long-term.
Those frequency bands correspond to daily, weekly and monthly frequencies, re-
spectively. This new framework will give more insight about the transmission of
return and volatility spillovers among markets at different frequencies, thus at
different velocities.

The remainder of the thesis is organized as follows. Chapter 2 provides briefly the
review of the existing literature on the topics of connectedness between financial
markets, especially between stock and forex markets. Chapter 3 covers the data
analysis providing with preliminary analysis of the dataset and construction of
realized volatility (RV) measures. Chapter 4 provides the theoretical background
of the methodologies used for spillover and connectedness estimations. Empirical
results are discussed in Chapter 5. Finally, in Chapter 6 we provide the summary
of our findings, discuss them and suggest possible extensions of our analysis.



Chapter 2

Literature Review

To better understand the research field and the topic in particular in this section
we will go through the past researches on similar topics of return and volatility
modeling, spillovers, etc. First, we will start with the history of development of
volatility models. In the next two parts, we will review some of the literature
connected to volatility spillovers and transmission mechanisms between stock and
forex markets.

2.1 History of Volatility Models
It is worth mentioning that volatility models, such as Autoregressive Conditional
Heteroskedasticity (ARCH) were first introduced by Engle (1982) and started to
increase their popularity afterwards. Various extensions of ARCH model were
introduced afterwards, depending on case-by-case application. The most popular
volatility model is Generalized ARCH (GARCH) model introduced by Boller-
slev (1986). Meanwhile Engle proposed another extension of ARCH model called
ARCH-in-mean (ARCH-M) (Engle, Lilien & Robins, 1987). That model allowed
the mean of time-series to depend on conditional variance. This can be used for
modeling the risk premium depending on conditional variance of returns. Nelson
(1991) proposed new model called exponential GARCH (EGARCH) that models
the asymmetric effects of shocks on volatility (leverage effect). The three features
of EGARCH model that makes it very useful are:

• Because of log-form of conditional variance, the implied value cannot be
negative, regardless of the coefficients

• Instead of using ϵt−1 EGARCH uses standardized value of (ϵt−1/
√

ht−1),
which is unit free measure
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• EGARCH allows for leverage effects

Two years later Glosten, Jagannathan & Runkle (1993) introduced new model
called GJR-GARCH. It again captures the leverage effect for volatility, while just
using dummy variable (it equals 1 if residuals, thus shock, is negative and zero
otherwise). It is very similar to the model proposed by Zakoian (1994) called
threshold GARCH (TGARCH or TARCH). The difference is that TARCH model
uses standard deviation instead of variance as a dependent variable. Although the
family of extensions of univariate GARCH models is huge, including SAARCH
(Engle, 1990), PARCH (Higgins & Bera, 1992), etc., the multivariate framework
was also introduced and currently is at least as much popular as univariate models.

Multivariate GARCH model was introduced by Bollerslev et al. (1988). Intro-
ducing VECH-MGARCH model it allows for analyzing comovements of two time-
series. As VECH model uses too many variables in estimation and sometimes
it makes the calculations too complex, diagonal VECH model was introduced.
However, both models have a drawback of no guarantee that covariance matrix
is positive semi-definite. To address that issue Engle & Kroner (1995) proposed
new model called BEKK-GARCH that ensures the positive semi-definiteness of
covariance matrix. Following that newer papers of Engle & Sheppard (2001) and
Engle (2002) proposed new extension of MGARCH models which is dynamic con-
ditional correlation (DCC) MGARCH that allows to analyze the dynamic (non-
linear) conditional correlation between two series following univariate GARCH
models. Compared to previous MGARCH models DCC-MGARCH number of
parameters does not depend on number of variables used in the model. This
feature makes it easier to estimate the model for the most cases. Cappiello et
al. (2006) also had their investment in multivariate GARCH models, introducing
asymmetric DCC-GARCH model to capture asymmetries in conditional variances
and correlations (Kočenda, 2017).

In addition to ARCH-family models, developed earlier, Diebold & Yilmaz (2009)
introduced new methodology for connectedness and spillover measuring. The
methodology is based on forecast error variance decomposition from vector au-
toregressive (VAR) model. This approach enables to determine the proportion of
forecast error variance of one asset class, which could be attributed to the shocks
from the other asset class. Thus, this method captures cross-asset spillovers and
aggregate spillover effects between asset classes. Nonetheless, this approach is
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based on Cholsesky-factor identification of VAR and therefore depends on order-
ing of variables. Consequently, Diebold & Yilmaz (2012) proposed new method for
measuring directional spillovers that relies on generalized VAR framework, where
results do not depend on variable ordering. This methodology was extended by
Baruník et al. (2016) who proposed to use realized semivariance instead of real-
ized variance for volatility spillover measuring. This approach enables to capture
asymmetric behavior of volatility by decomposing volatility into bad and good,
based on negative and positive returns respectively. Finally, recent extension of
spillover index methodology is proposed by Baruník & Křehlík (2018). Based
on their new method spillover dynamics are decomposed into various frequency
bands, capturing high, medium and low frequency dynamics. Subsequently, we
can measure connectedness dynamics of assets in short-, medium- and long-term
periods.

2.2 Volatility Spillovers
The research literature of volatility spillovers across various markets is huge. In
this subsection, we will discuss some of them.
Theodossiou & Lee (1993) examine mean and volatility spillovers across US, UK,
German, Canadian and Japanese stock markets. They use multivariate GARCH-
M model. The results suggest significant mean spillovers from US market to
UK, Canada and Germany and from Japan to Germany. Also strong conditional
volatility exists in returns of all markets. Own-volatility spillovers of Canada and
UK are insignificant, meaning that those countries import conditional volatility
from abroad, mostly from USA. To capture asymmetric volatility spillovers Kout-
mos & Booth (1995) use multivariate EGARCH model to examine relationship be-
tween US, UK and Japan stock markets. Using daily data, they reveal asymmetric
volatility spillovers among all 3 markets, which are more pronounced during Oc-
tober 1987 crisis period, suggesting more interdependent growth of those markets.

Huge amount of existing literature is concentrated on modeling volatility spillovers
across CEE financial markets. For instance, Kasch-Haroutounian & Price (2001)
investigate the interdependence among CEE stock markets, namely Poland, Slo-
vakia, Czech Republic and Hungary. They use daily data from 1994 to 1998
and employ two MGARCH approaches, constant conditional correlation (CCC)
and BEKK models. CCC model results in positive and significant conditional
correlation coefficients between Czech and Hungarian and Hungarian and Polish
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stock markets. For other pairs of stock markets the coefficients are very small
and insignificant. However, when applying BEKK model only one unidirectional
volatility spillover from Hungarian stock market to Polish stock market has been
found. These results are in line with the findings of Scheicher (2001) when ana-
lyzing connectedness Czech, Polish and Hungarian stock markets over the period
of 1995-1997. Using vector autoregression (VAR) constant conditional correla-
tion (CCC) model they find that the highest correlation is between Budapest and
Warsaw stock markets, with shocks coming from Budapest stock market affect-
ing both return and volatilities in Warsaw stock market. Moreover, their results
suggest that international shocks are transmitted to CEE equity markets through
return shocks rather than volatility shocks.

Some other studies delve into the connectedness effects between CEE countries
and other regional markets. Studying the interdependence between the same
three major emerging markets (Hungary, Czech Republic and Poland) and euro
area Wang & Moore (2008) suggest that financial crisis and EU expansion sub-
stantially increased the correlations between CEE countries and euro area market.
Moreover, evidence of contributions of financial depth to increased correlation has
been found, while suggesting no influence of macroeconomic and monetary devel-
opments on those correlations. Further, Gjika & Horvath (2013), using asymmet-
ric DCC-MGARCH model on daily data from 2001 to 2011, find similar results
that are in line with Wang & Moore (2008) findings. In addition to those, they
show positive linkage between conditional variances and correlations, thus sug-
gesting decreased diversification benefits during volatile periods. Furthermore,
they suggest that conditional variances and correlations exhibit asymmetric be-
havior. Using DCC approach on bigger sample of countries Syllignakis & Kouretas
(2011) also show that stock market correlations increase over time and the diver-
sification effect in CEE markets decreases. They explain the higher correlations
by increasing financial openness, increased presence of foreign investors and entry
in the European Union. On the other hand, Égert & Kočenda (2011), using DCC
model, conclude that correlations between emerging markets and between emerg-
ing and developed markets are very low. However, they show high correlations
between developed markets, pointing the high level of integration. Moreover, an
increasing correlation between CEE markets after first half of 2004 is found, which
is described by joining of those countries the European Union.
Employing wavelet tools to examine contagion among CEE and German stock
markets during financial crisis (January 2008 - November 2009) Baruník & Vácha
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(2013) show that correlations are continuously changing over time and across fre-
quencies. They find strong relationship between Czech and Polish stock markets.
Another aspect of findings is that correlation between CEE markets is generally
low with DAX on high frequencies. Thus, they concluded that CEE markets are
not still tightly connected to leading markets in the region.

Booth, Tse & Martikainen (1997) examine price and volatility spillovers in Scan-
dinavian stock markets, namely, Denmark, Sweden, Norway and Finland. They
also use multivariate EGARCH model to capture asymmetric volatility transmis-
sion. They reveal price and volatility spillovers between markets; however they
are few in number. Moreover, the results suggest asymmetric volatility spillovers
that are more pronounced for bad news.

Some other studies focus on spillover effects between developed markets. For
instance, Ehrmann, Fratzscher, & Rigobon (2011) aim to explain the financial
transmission mechanism among money, bond, forex and equity markets both
within and between US and Euro area countries. They reveal strong interna-
tional spillovers that are the strongest across the same markets and mostly are
positive.

All the studies discussed above used multivariate GARCH or other ARCH fam-
ily models. However, inability to quantify the spillover effects in enough detail
(Baruník et al., 2015) is the drawback of such models. To capture volatility
spillovers Diebold & Yilmaz (2009) proposed new methodology that is based on
forecast error variance decomposition (FEVD) of vector autoregressive (VAR)
model. Using this framework they examine volatility and return spillovers in
19 global equity markets for the period of 1990-2009. Their results suggest in-
creasing trend of return spillovers, which is explained by increased integration of
international financial markets during recent decade. While, volatility spillovers
display clear bursts associated with crisis events. Resolving several drawbacks of
this methodology Diebold & Yilmaz (2012) introduced new methodology, based
on generalized VAR mode, in which the results are invariant to ordering of the
variables in the system. Using this new methodology, they investigate spillover
effects of US stock, bond, forex and commodity markets for period of January
1999 until January 2010. They reveal that spillovers were limited before crisis of
2008-2009, while during crisis volatility spillovers intensified. Particularly, they
emphasize spillovers from stock market to other markets, while spillovers from
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bond market are characterized as lower than those from other markets. More-
over, volatility spillovers from forex market are generally to stock and commodity
markets. Continuing with the same methodology, Baruník et al. (2015) examined
asymmetries in volatility transmission between four petroleum commodities for
the period of 1987-2014. Using realized semivariances they have found increasing
volatility spillovers since 2000s that substantially increase after 2008. According
to them increasing volatility is due to progressive financialization of petroleum
commodities after 2002. Surprisingly, they showed that before crisis 2008-2009
volatility transmission was higher than after it. Although there is asymmetric
patter in volatility transmission between commodities, it decreased after crisis
2008. As opposed to Gjika & Horvath (2013), Baruník et al. (2016) on a sample
of 21 US companies from different sectors show that volatility transmission across
companies differs from sector to sector and there is no pronounced asymmetric
behavior of volatility transmission, although they reject symmetric connected-
ness hypothesis for all sectors. Further, analyzing forex markets for the period of
2000-2016 Baruník et al. (2017) found asymmetric connectedness primarily dom-
inated by negative volatility. They showed that bad volatility is due to sovereign
debt crisis in Europe, while positive spillovers due to subprime mortgage crisis.
Hence, they documented that net positive spillovers are caused by combination of
monetary and real-economy events, while net negative spillovers come from fiscal
factors.

2.3 Forex and Stock Market Linkages
There are many researches about stock and foreign exchange market linkages and
spillovers. One of those studies is done by Ma & Kao (1990). They suggest that
stock markets react to FX rate changes based on whether the country is import
or export dominant. For import dominant countries, they show that currency
appreciation boosts the stock markets, while export dominant countries lose their
competitive power in case of currency appreciation, thus leading to stock market
fall. These findings are in line with those of Ajayi & Mougoué (1996). Employing
Vector Error Correction (VEC) model they also support the notion that currency
depreciation leads to stock market fall. However, they do not divide their sample
between import and export oriented countries. Moreover, they reveal significant
negative short-run effect of FX rate on stock market.

Bartov, Bodnar & Kaul (1996) examine the impact of exchange rate changes
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on stock return volatility in USA. They show positive relationship between FX
rate variability and stock market volatility. The results suggest that increase in
FX rate variability after 1973 was perceived by investors to be associated with
increase in riskiness of cash flows of multinational companies that required com-
pensations in terms of higher expected returns. Continuing with the analysis of
similar time period De Santis & Gerard (1998) examine for existence of currency
risk premium in stock market in USA, UK, Germany and Japan. Using MGARCH
model on monthly data for the period of 1973-1993, authors show currency risk
premium in the data, but they vary across time and countries. Furthermore, they
reveal negative currency risk premium for the period of 1980-1985 and positive risk
premium for the period of 1989-1994. Increasing the sample of countries Kanas
(2000) examine interdependence of stock returns and exchange rate changes in
six industrialized countries. Using bivariate EGARCH model they study volatil-
ity spillovers between two markets in all countries. The results suggest volatility
spillovers from stock market to FX market for all examined countries (USA, UK,
Canada, Japan and France), except Germany. Increased spillovers are found since
October 1987. They explain that phenomenon as a high integration of interna-
tional financial markets. There is no evidence of spillovers from FX market to
stock market in all researched countries. Further, Nieh & Lee (2001) examine
dynamic relationship between stock prices and FX rates in G-7 countries. Us-
ing daily data for the period of 1993-1996 they do not find significant long-run
relationship. Meanwhile, they show significant short-run relationship for some
of the G-7 countries for only one day. Furthermore, they show that the stock
prices and value of USD cannot depend on when forecasting the future in USA in
both long-run and short-run. Using the same sample of countries and employing
multivariate EGARCH model Yang, & Doong (2004) show asymmetric volatility
transmission from stock market to FX market. This finding is in line with the
findings of Jiang & Chiang (2000) who employ GJR-GARCH model and suggest
that bad (good) news increase (reduce) market volatility. Moreover, the authors
employ GARCH-M model and reveal that positive and negative shocks play dif-
ferent roles in markets’ expectations formation about future volatility.

Huge part of existing literature is focused on forex and stock market linkages
in Asian countries. One of those researches is done by Granger et al. (1998) who
test causality relationship between stock prices and exchange rates. Their results
disclose positive one-way correlation from exchange rates to stock prices in Japan
and Thailand and negative one-way correlation from stock prices to exchange rates
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in Taiwan. For Indonesia, Korea, Malaysia and the Philippines they show strong
feedback relationship, while for Singapore there are no discernible patterns of rela-
tionship. Further, Kyung-Chun (2008) find that local stock market volatility was
significantly increased by exchange rate fluctuations in 8 East Asian countries in
period of July 1994 - August 2001. The relationship was especially high for Asian
Financial Crisis period. The results also suggest strong relationship between FX
rates and stock market in case of Asian variables compared to the case of USA.
Continuing with the analysis of Asian financial crisis Baharom, Habibullah, &
Royfaizal (2008) employing Johansen (1991) cointegration method, analyze cau-
sation between FX and stock market in Malaysia. By dividing the sample into two
periods, pre-crisis and post-crisis, they cannot find long-run relationship between
stock prices and FX rates in both sub-periods. These findings are in line with
finding of Nieh & Lee (2001).

Using cointegration and DCC methods Gudmundsson (2014) examine linkages
between stock and foreign exchange markets in Iceland, Norway, Sweden and
Hungary. The results suggest cointegrated relationships between domestic stock
markets and real exchange rates. Moreover, significant time-varying correlation
is revealed, however source of relationships is not clearly established. This is
in line with the findings of Živkov, Njegić & Mirović (2016). Employing DCC-
FIAPARCH model on a sample of Eastern European emerging markets they also
show significant time-varying behavior between stock and FX markets, especially
during global financial crisis period.



Chapter 3

Data Overview

In this chapter, we will discuss the dataset that will be used in our analysis.
Section 3.1 describes how dataset is constructed and adjusted. Section 3.2 presents
basic analysis of time series. In particular, summary statistics, results of tests for
stationarity, normality and autocorrelations are discussed. In Section 3.3, we show
the same basic analysis for realized volatility. At the end of the section we also
perform simple correlation analysis of returns and realized volatility.

3.1 Data Construction
The goal of this thesis is to describe rigorously the interactions among financial
markets in Scandinavian countries. More specifically, we aim to describe the re-
turn and volatility transmission mechanisms among stock and forex markets. We
will analyze four countries of Scandinavia, namely Sweden, Finland, Norway and
Denmark. In this section, we will define the way of obtaining and adjusting the
dataset for further analysis of this thesis.

The data comprises of intra-day closing, high and low prices spanning from Febru-
ary 2002 until the end of July 2018. The data for all indices and exchange rates
are obtained from Thomson Reuters Eikon platform.

We assumed that stock markets for each country is represented by stock in-
dex for that particular country. We obtained data for the following indices:
Helsinki Stock Exchange Index (OMXH25), Copenhagen Stock Exchange Index
(OMXC20), Stockholm Stock Exchange Index (OMXS30) and Oslo Bors All Share
Index (OSEAX). For representation of foreign exchange markets for each country,
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we obtained exchange rates of the currency of respective country against US dol-
lar: EUR/USD, NOK/USD, SEK/USD and DKK/USD.1

Due to inconsistencies in working days in analyzed countries, there were many
omitted observations. To avoid it, we deleted all the observations for the days
when at least one stock exchange is not working. What’s more, we should note
that the stock exchanges work only on weekdays, thus, the dataset has irregular
frequency. Hence, we need to adjust the dataset before starting the analysis part.
After all the adjustments, the dataset comprises of 4449 observations.

Furthermore, due to existence of anomaly called day-of-the-week effect (Roca,
1999), the daily data may be affected, thus the whole analysis can be influenced.
We believe that feature of daily data will not cause significant issues to our anal-
ysis and the results will be robust.

As the aim of this thesis is to analyze return and volatility spillovers across mar-
kets and countries, we therefore adjust the dataset to get returns and volatilities
for all time series. We transformed data by taking log first difference, producing
the return series as

rt = ln Pt

Pt−1
(3.1)

To compute the volatilities for series we followed the approach of Diebold & Yil-
maz (2012), who computed daily volatility using estimator derived by Parkinson
(1980). The daily volatility is derived using daily high and low prices as

σ̂2
it = 0.361 × (ln P high

it − ln P low
it )2 (3.2)

σ̂2
it is the estimator of daily variance. To obtain annualized daily percentage

standard deviation, we will follow the (3.3).

σit = 100 ×
√︂

365 × σ̂2
it (3.3)

In (3.3), 365 represents the number of days in a year.
1The currency abbreviations represent the following national currencies: DKK – Danish

Krone, NOK – Norwegian Krone, SEK – Swedish Krona, EUR – Euro, USD – US dollar
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3.2 Level and Return Data
In this section, we will investigate basic properties of the series in our dataset. We
present the graphs for level and returns, summary statistics, correlation analysis
and basic tests for stationarity, normality and autocorrelation.

Figure 3.1: Evolution of Stock Markets

Source: Reuters Eikon

The level data for stock indices is presented in Figure 3.1. As can be seen from
the graphs there are many ups and downs through the whole period of analysis in
all countries. Those developments are mainly described by dot-com crisis in the
beginning of 2000s, global financial crisis in 2008-2009, European sovereign debt
crisis in 2011 and long-term uncertainty concerning Greece monetary shortfall,
Russian sanction against EU and reverse sanctions against Russia at the end of
2015. All those events made stock markets in Scandinavian countries to shrink
from period to period. As we can observe, Finish and Swedish stock markets
perform very similar to each other, while Denmark and Norway stock markets are
similar to each other in both development and volatility magnitudes. Moreover,
we can notice that the level of changes in Finland and Denmark are of higher
magnitude.
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Figure 3.2 reports the development of forex market in Scandinavia for the same
period as for stock indices. It is worth mentioning the EUR and DKK as their
developments are very similar. That is due to the fact, that since 1982 Denmark
adopted fixed-exchange-rate policy keeping krone stable against German mark
and from 1999 against euro. Current fixed rate is 746.038 kroner per 100 EUR,
with fluctuation band of ±2.25%. The aim of this exchange rate policy is to keep
inflation low and stable. NOK and SEK also exhibit similar patterns. Otherwise,
all exchange rate pairs behave as usual, displaying abrupt increase during global
financial crisis of 2008-2009.

Figure 3.2: Evolution of FX Markets

Source: Reuters Eikon

After the performance of stationarity tests for level data, we can confirm that all
the time-series are non-stationary. As we need to work with stationary data for
our further analysis we transformed data by taking log first difference, produc-
ing the return series as described in the previous section. Table 3.1 documents
stationarity tests for returns. Augmented Dickey-Fuller test statistic, KPSS test
statistic and Phillips-Perron test statistic are presented.

From the table we can conclude that all the return series are stationary, as we
reject the null hypothesis of non-stationarity for both ADF and Phillips-Perron
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Table 3.1: Stationarity Tests for Returns

ADF KPSS Phillips-Perron
OMXH25 -15.71*** 0.14 -64.03***
OMXC20 -15.24*** 0.19 -64.70***
OMXS30 -15.55*** 0.19 -68.38***
OSEAX -14.68*** 0.10 -66.68***
EUR -15.70*** 0.25 -68.05***
NOK -16.25*** 0.34 -68.45***
DKK -15.67*** 0.26 -68.31***
SEK -15.93*** 0.23 -69.02***

Notes: ADF, KPSS and Phillips-Perron test lag orders are selected au-
tomatically and are 16, 15 and 10 for all series respectively. ***, **, *
represent significance level of 1%, 5%, 10% respectively.

tests for all series at 1% significance level. What’s more, we cannot reject at any
acceptable level of significance the null hypothesis of stationarity for KPSS test
for return series.

Figure 3.3 depicts the returns for stock indices. The volatilities vary substan-
tially over the observed period. We can easily observe that the most unstable
periods of all stock markets is global financial crisis of 2008-2009, starting with
fall of Lehman Brothers in September 2008. From the plots, we also see that
Danish stock market is the most affected during that period compared to other
stock markets. Other period for most volatility is dot-com crisis in the beginning
of this century. During that period, Swedish stock market is the most affected
one.

Figure 3.4 documents the returns for forex markets. Once more we can con-
firm that global financial crisis is the most turbulent period. The most volatile
exchange rate is NOK that reaches its minimum and maximum values during fi-
nancial crisis. Furthermore, we can observe similar return patterns for EUR and
DKK and for NOK and SEK.

Table 3.2 provides descriptive statistic of returns of all time-series. The sample
mean, standard deviation, minimum, maximum, kurtosis and skewness are pre-
sented for all series from period of February 2002 until August 2018. The same
statistics for level data can be found in Appendix.
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Figure 3.3: Stock Market Returns

Source: Reuters Eikon

Figure 3.4: FX Market Returns

Source: Reuters Eikon

Mean returns for all series are close to zero and positive. The greatest range of
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Table 3.2: Descriptive Statistics for Returns

Min Mean Max S.D. Kurtosis Skewness JB-stat Ljung-Box
Q-stat

OMXH25 -0.09 1.58E-04 0.09 1.39E-02 6.62 -0.10 2436.52*** 30.97***
OMXC20 -0.12 2.50E-04 0.09 1.26E-02 8.88 -0.27 6469.95*** 27.19***
OMXS30 -0.09 8.95E-05 0.10 1.44E-02 7.18 0.06 3240.07*** 38.25***
OSEAX -0.10 3.72E-04 0.09 1.37E-02 9.56 -0.60 8230.96*** 24.45***
EUR -0.03 5.00E-05 0.04 6.23E-03 4.71 0.06 545.40*** 14.24*
NOK -0.05 1.58E-05 0.06 7.72E-03 5.57 -0.14 1238.48*** 13.68*
DKK -0.03 5.06E-05 0.04 6.22E-03 4.72 0.03 549.88*** 14.46*
SEK -0.04 1.76E-05 0.05 7.74E-03 5.73 -0.04 1386.29*** 22.59***

Notes: JB-stat stands for Jarque-Bera statistic. For Ljung-Box test we
used 8 lags. ***, **, * represent significance level of 1%, 5%, 10%

values turns out to have Danish stock index. It also has the lowest return (-12%)
and the second highest return (9%), after Swedish stock index (10%), among all
series. The second lowest return has Norwegian stock index (-10%). Swedish stock
index has the highest standard deviation, thus it has the most dispersed returns.
Based on standard deviations, we can conclude that stock market are much more
volatile compared to FX market. Besides, the return distributions for all series
are non-normal. All return series have higher than three kurtosis and negative
skewness, as typically the financial data are characterized. The exceptions are
EUR, DKK and OMXS30. Those series are positively skewed. OSEAX has the
highest both kurtosis and skewness (in absolute terms). The non-normality of
series can be confirmed by Jarque-Bera statistics, as we reject the null hypothesis
of normality at 1% significance level. Using Ljung-Box Q-statistic we test for the
presence of autocorrelations in returns. Again, we reject the null hypothesis of no
autocorrelation for all time series at 1% significance level. Exceptions are EUR,
NOK and DKK exchange rates for which we reject at only 10% significance level.

3.3 Realized Volatility
In this section, we will go through preliminary analysis of realized volatility mea-
sure. The construction of realized volatility (RV) is described in Section 3.1.

The plot of RV for stock indices and FX rates are depicted in Figure 3.5 and 3.6
respectively. Those plots indicate that the most distressed period was global fi-
nancial crisis. Amongst stock indices the most affected is OMXC20, which reaches
its maximum values during those distressed times. The least volatile is OMXH25.
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Once more we can confirm that forex markets are less volatile than stock markets.
The most volatile currency is NOK. EUR and DKK have quite similar pattern of
volatilities, too, as it was true for returns.

Figure 3.5: Stock Market RV

Source: Reuters Eikon

To avoid spurious results, before proceeding with further analysis of RV, we first
need to check them for stationarity. Table 3.3 presents the stationarity tests for
realized volatility for all series. Based on the results we reject the null hypothe-
ses of non-stationarity for both ADF and Phillips-Perron tests for all series at
1% significance level. What’s more, we reject at 1% level of significance the null
hypothesis of stationarity for KPSS test for all series. Based on ADF and Phillips-
Perron tests, we conclude that RV series are stationary and we can proceed with
further analysis.

To further analyze the shape of distributions of realized volatility for the series we
will inspect the descriptive statistics. Table 3.4 reports the results. We can easily
observe that realized volatility values for OSEAX range from -16.12 to 4.92, which
is the largest range of values among all series. However, the highest standard de-
viation of RV has OMXH25 (0.81), although they are quite low for all series. The
mean volatility is almost the same for all series too, with the highest being for
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Figure 3.6: FX Market RV

Source: Reuters Eikon

Table 3.3: Stationarity Tests for RV

ADF KPSS Phillips-Perron
OMXH25 -8.61*** 1.90*** -48.40***
OMXC20 -6.97*** 1.99*** -43.28***
OMXS30 -6.11*** 4.62*** -38.88***
OSEAX -7.63*** 2.29*** -39.45***
EUR -5.67*** 2.34*** -56.74***
NOK -5.82*** 1.42*** -51.90***
DKK -5.78*** 1.99*** -57.00***
SEK -5.40*** 2.40*** -51.66***

Notes: ADF, KPSS and Phillips-Perron test lag orders are selected au-
tomatically and are 16, 15 and 10 for all series respectively. ***, **, *
represent significance level of 1%, 5%, 10% respectively.

OMXS30 (2.76). Based on skewness and kurtosis we observe that the distribution
of realized volatility for EUR is close to normal, with a little bit higher than three
kurtosis and almost zero skewness. Nonetheless, based on Jarque-Bera statistic
we reject the null hypothesis of normality for all series at 1% level of significance.
Thus, we can conclude that the distributions of realized volatility for all series are
non-normal. Based on Ljung-Box Q-statistic we reject the null of no autocorrela-
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Table 3.4: Descriptive Statistics for RV

Min Mean Max S.D. Kurtosis Skewness JB-stat Ljung-Box
Q-stat

OMXH25 -16.12 2.74 4.75 0.81 269.72 -11.37 1.33E+07*** 2854.07***
OMXC20 1.22 2.70 5.48 0.54 3.59 0.50 247.38*** 8370.28***
OMXS30 1.17 2.76 4.94 0.57 2.90 0.30 66.62*** 12846.35***
OSEAX -16.12 2.67 4.92 0.69 250.28 -8.81 1.14E+07*** 5416.46***
EUR 0.43 2.27 3.98 0.46 3.25 0.02 11.48*** 5964.21***
NOK -0.50 2.53 4.45 0.44 4.14 0.16 259.15*** 6081.14***
DKK -0.65 2.26 3.95 0.47 4.71 -0.24 582.71*** 4851.75***
SEK -1.05 2.51 4.48 0.45 5.31 0.02 985.39*** 6365.78***

Notes: JB-stat stands for Jarque-Bera statistic. For Ljung-Box test
we used 8 lags. ***, **, * represent significance level of 1%, 5%, 10%
respectively.

tion at 1% significance level.

At the end of this section, we perform some simple connectedness analysis of time
series. Table 3.5 and 3.6 report simple correlations between stock and FX market
returns and realized volatility respectively. The results indicate that the high-
est correlation among stock market returns is between OMXS30 and OMXH25
(83.91%). Among the currencies the highest correlation is between EUR and DKK
(99%). The later is described by already mentioned fixed-exchange-rate regime
in Denmark. While inter-market return correlations are higher than 65%, cross-
market ones are rather low, reaching 25.14% between NOK and OSEAX.

Volatility correlation patterns are the same for forex market, with the highest
correlation between DKK and EUR (95.59%). The pattern changes for stock
markets. The correlations range from 35.64% (between OSEAX and OMXH25) to
68.11% (between OMXS30 and OMXC20). Cross-market correlations are rather
higher for volatilities, than for returns. The highest cross-market correlation is
again between OSEAX and NOK (25.14%).

This was just a simplified analysis of time series. In order to elaborate more
on the topic of interconnectedness and spillovers we will switch to forecast error
variance decomposition (FEVD) of VAR model, discussed in further chapters.
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Table 3.5: Return Correlations

OMXH25 OMXC20 OMXS30 OSEAX EUR NOK DKK SEK
OMXH25 1
OMXC20 0.71 1
OMXS30 0.84 0.69 1
OSEAX 0.71 0.66 0.67 1
NOK 0.21 0.17 0.18 0.25 1
SEK 0.23 0.17 0.20 0.24 0.80 1
DKK 0.06 0.03 0.05 0.12 0.78 0.82 1
EUR 0.06 0.03 0.05 0.12 0.78 0.82 0.99 1

Source: Author’s Estimations

Table 3.6: Volatility Correlations

OMXH25 OMXC20 OMXS30 OSEAX EUR NOK DKK SEK
OMXH25 1
OMXC20 0.46 1
OMXS30 0.55 0.68 1
OSEAX 0.36 0.49 0.53 1
NOK 0.25 0.37 0.38 0.34 1
SEK 0.28 0.37 0.40 0.32 0.75 1
DKK 0.24 0.35 0.38 0.28 0.74 0.74 1
EUR 0.25 0.37 0.40 0.28 0.74 0.74 0.96 1

Source: Author’s Estimations
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Methodology

In this chapter, we describe the theoretical background and the methodologies
used in this thesis for estimation of return and volatility spillovers in stock and
forex markets. In section 4.1, we discuss the construction of spillover indices with
its decomposition into directional spillover measures, net spillover measures and
net pairwise spillovers. For construction of spillover indices, we use the method
initially developed by Diebold & Yilmaz (2009) and further amended by Diebold
& Yilmaz (2012). Following that new approach, we use generalized vector autore-
gressive (VAR) model. Specifically, we use forecast error variance decomposition,
which shows the shares of information each variable in the system contributes to
the other ones. Moreover, with the amended method we can estimate also the
directional spillovers, while initially only total spillover measure could be calcu-
lated.
In section 4.2, we will present the construction of frequency connectedness mea-
sures, proposed by Baruník & Křehlík (2018).

4.1 Spillover Indices
In this section, we discuss the measure of volatility spillovers, introduced by
Diebold & Yilmaz (2009, 2012).
The uniform spillover index was initially proposed by Diebold & Yilmaz (2009),
which was built on the variance decomposition of forecast errors of vector autore-
gressive (VAR) model. That measure records how much of H-step-ahead forecast
error variance of variable i is due to exogenous shocks of another variable j. Thus,
this concept provides intuitive way of measuring volatility spillovers. Nonetheless,
this methodology has some limitations. The most important shortcoming of this
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framework is that it relies on the Cholesky factor identification of covariance ma-
trix of the VAR residuals. That may lead the resulting variance decompositions to
be dependent on variable ordering of underlying VAR process. Furthermore, the
initial spillover index, proposed by Diebold & Yilmaz (2009), enables to measure
only total spillovers, while one may be interested in directional spillovers, i.e. how
return or volatility from one specific asset i spilled over to another asset j and vice-
versa. Consequently, those methodological drawbacks were eliminated by Diebold
& Yilmaz (2012), who introduced generalized vector autoregressive framework.
That new methodology allows us to measure volatility spillovers through forecast
error variance decomposition that is invariant to the ordering of variables and
enables to measure also the directional spillovers.

4.1.1 Total Spillover Index

In this part, we will go through the methodology of the construction of spillover
index as proposed by Diebold & Yilmaz (2012), which follows from the forecast
error variance decomposition in a generalized VAR model, instead of employing
the Cholesky factor identification. So first, let us consider covariance stationary
N-variable VAR(p) model that is defined as in (4.1):

Yt = Φ1Yt−1 + Φ2Yt−2 + ... + ΦpYt−p + ϵt =
p∑︂

i=1
ΦiYt−i + ϵt (4.1)

where Yt = (Y1t, ..., YNt)′ denotes an N-dimensional vector of variables, Φi, with
i ∈ {1, ..., p}, represents coefficient matrices and ϵt ∼ N(0, Σϵ) is a vector of
independently and identically distributed (iid) error terms. Under the assumption
of weak stationarity, the VAR can be represented as an infinite moving average
(MA) process that is given by

Yt = ϵt + Ψ1ϵt−1 + Ψ2ϵt−2 + ... =
∞∑︂

i=1
Ψiϵt−i (4.2)

where the N × N coefficient matrices Ψi can be computed recursively as in (4.3)

Ψt = Φ1Ψt−1 + Φ2Ψt−2 + ... =
∞∑︂

j=1
ΦjΨt−j (4.3)

with Ψ0 being an N × N identity matrix and Ψi = 0, ∀ i < 0.

The MA representation is crucial in understanding the dynamics of the system
as it allows us to compute the variance decompositions. These in turn enable
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to divide the forecast error variance decomposition of each variable in the VAR
system into parts, corresponding to various shocks in the system. To obtain
variance decompositions, that are invariant to ordering of variables in the VAR
system, Diebold & Yilmaz (2012) utilized generalized VAR framework of Koop et
al. (1996) and Pesaran & Shin (1998). This concept allows for correlated shocks
and also takes them into account under assumption of normally distributed error
terms. However, the shocks transmitted to each variable are not orthogonalized.
Therefore, the sum of contributions to the forecast error variance may not be one.

The total spillover index proposed by Diebold & Yilmaz (2012) consists of two
parts: own and cross variance shares. Own variance shares are determined as
protions of H-step-ahead forecast error variance of Yi due to shocks to Yi, ∀
i ∈ {1, 2, ..., N}. Cross variance shares, spillovers, are determined as portions of
H-step-ahead forecast error variance of Yi due to shocks to Yj, ∀ i, j ∈ {1, 2, ..., N},
such that i ̸= j. Following the notation used by Baruník et al. (2016) and Palanska
(2018), the H-step-ahead generalized FEVD matrix is as follows:

ωH
ij =

σ−1
jj

∑︁H−1
h=0 (e′iΨhΣϵej)2∑︁H−1

h=0 e′iΨhΣϵΨ′hej

(4.4)

where σjj is the standard deviation of error term in the jth equation, Σϵ is the
variance matrix of error vector ϵt, ei is called selection vector that has 1 at ith

element and 0 elsewhere and Ψh are MA coefficients from forecast at time t. As
mentioned above, the shocks of each variable are not orthogonalized, which can
be formulized as

N∑︂
j=1

ω̃H
ij ̸= 1 (4.5)

Hence, to make the information from total spillover table informative, normal-
ization of each component of variance decomposition matrix by row sum is done,
where row sum represents the directional spillovers from all assets in the system
to some specific one:

ω̃H
ij =

ωH
ij∑︁N

j=1 ωH
ij

(4.6)
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This step ensures that ΣN
j=1ω̃

H
ij = 1 and ΣN

i,j=1ω̃
H
ij = N . Afterwards, Diebold &

Yilmaz (2012) define the total spillover index as

SH = 100 × 1
N

N∑︂
i,j=1
i ̸=j

ω̃H
ij (4.7)

4.1.2 Directional Spillovers

The spillover index defined in (4.7) is useful for understanding the amount of
shocks that spill over across the assets under analysis. The key advantage of gen-
eralized VAR framework, is that it enables the calculation of directional spillovers
using normalized elements of generalized variance decomposition matrix. The
directional spillovers enable us to further uncover the transmission mechanism,
through the decomposition of total spillover index into those coming from and to
a specific asset from the system.

The directional spillovers received by asset i from all other assets in the system,
proposed by Diebold & Yilmaz (2012), has the following form:

SH
i→Others = 100 × 1

N

N∑︂
i,j=1
i ̸=j

ω̃H
ij (4.8)

Similarly, the directional spillovers from asset i to all other assets in the system
has the following form:

SH
i←Others = 100 × 1

N

N∑︂
i,j=1
i ̸=j

ω̃H
ji (4.9)

4.1.3 Net Spillovers and Net Pairwise Spillovers

After defining directional spillovers, it is straightforward to obtain net spillovers
from asset i to all other assets j. It can be calculated by simple difference between
total volatility spillovers to and from all other assets as shown in (4.10).

SH
i = SH

i←Others − SH
i→Others (4.10)

Net spillover measure tells us how much each asset i contributes to other assets
in the system in net terms (Baruník et al., 2016). Furthermore, we can get net
pairwise spillovers between two assets i and j. It can be computed simply as the
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difference between total spillovers from asset i to asset j and those from asset j

to asset i.

SH
ij = 100 × 1

N
(ω̃H

ji − ω̃H
ij ) (4.11)

4.2 Frequency Connectedness
In this section, we will describe the theory behind the frequency dynamics mea-
surement as proposed by Baruník & Křehlík (2018). This new methodology allows
us to measure the connectedness between assets in long-, medium- and short-term
time horizons.

First of all, let us consider a spectral representation of variance decompositions
based on frequency responses, and not of impulse responses, to shocks. As a part
of the aforementioned theory, we consider a frequency response function in the
following form:

Ψ(e−iω) = ΣHe−iωhΨh (4.12)

We can obtain (4.12) as a Fourier transform of the coefficients Ψh, with i =
√

−1.
Consequently, the spectral density of realized variance at frequency ω can be
estimated as Fourier transform of MA(∞) filtered sersies:

SRV (ω) =
∞∑︂

h=−∞
E(RVtRV ′t−h)e−iωh = Ψ(e−iω)ΣΨ′(e+iω) (4.13)

SRV (ω) is the power spectrum, which describes the distribution of the variance of
RVt over the frequency components ω. The spectral representation of covariance
matrix is estimated as

E(RVtRV ′t−h) =
∫︂ π

−π
SY (ω)eiωhdω (4.14)

Using standard discrete Fourier transforms, we can calculate the spectral quanti-
ties. The following is the cross-spectral density, on the interval of d = (a; b); a, b ∈
(−π, π), a < b:

∑︂
ω

Ψ̂(ω)σ̂Ψ̂
′
(ω) (4.15)
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for ω ∈ {aH
2π

, ..., bH
2π

}, where Ψ̂(ω) = ∑︁H−1
h=0 Ψ̂he−2iωπ/H and Σ̂ = ϵ̂′ϵ̂/(T − z), where

z is correction for loss of degrees of freedom and depends on VAR specification.

Following the definitions of Baruník & Kočenda (2018) impulse response function
decomposition at a desired frequency band is given as Ψ̂(d) = ΣωΨ̂(ω). Even-
tually, we can derive the generalized variance decompositions at given frequency
bands as

(θ̂d)j,k =
∑︂
ω

Γ̂j(ω)(f̂(ω))j,k (4.16)

where estimated generalized causation spectrum is given as

(f̂(ω))j,k ≡ σ̂−1
kk [(Ψ̂(ω)Σ̂)j,k]2

(Ψ̂(ω)Σ̂Ψ̂
′
(ω))j,j

(4.17)

and weighting function is

Γ̂j(ω) = (Ψ̂(ω)Σ̂Ψ̂
′
(ω))j,j

Ωj,j

(4.18)

where Ω = ΣωΨ̂(ω)Σ̂Ψ̂
′
(ω). Finally, the connectedness measure at a desired

frequency band can be obtained by substituting (θ̂d)j,k into the aforementioned
measures (Baruník & Kočenda, 2018).



Chapter 5

Empirical Results

In this chapter, we perform full analysis of return and volatility spillovers between
stock and forex markets, as well inter-market spillover analysis. Moreover, we will
perform frequency connectedness analysis for the same sample. This will allow
us to understand the differences in connectedness in three different frequencies,
namely short-, medium- and long-run, that are attributed to daily, weekly and
monthly connectedness, respectively. The covered sample includes sufficient data
to analyze the impact of financial distress periods on those connectedness mea-
sures, which is the main theme of our analysis. All the estimations are performed
in free statistical software R.

This chapter is organized as follows. First, in Section 5.1, we perform the nec-
essary analysis for the VAR model selection. In Section 5.2, we perform static
spillover analysis for returns and then for realized volatility. This includes anal-
ysis of total spillover indices and its decomposition into directional TO, FROM
NET and NET pairwise spillovers. Afterwards, in Section 5.3, we perform dy-
namic spillover analysis for returns and realized volatility using 200-day rolling
window. This way we got the evolution of the spillover indices over time. Finally,
in Section 5.4 we perform frequency connectedness analysis, where we decompose
the total spillover indices for returns and realized volatility into three frequency
bands, corresponding to daily, weekly and monthly connectedness.

5.1 Model Selection
In this section, we will discuss the vector autoregressive (VAR) model selection
for our analysis. To do that, we first need to ensure that our data series are
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stationary. For that, we employ three commonly used stationarity tests:

• Augmented Dickey-Fuller (ADF) proposed by Dickey & Fuller (1979)

• Phillips-Perron (PP), proposed by Phillips & Perron (1988)

• Kwiatkowski, Phillips, Schmidt & Shin (KPSS) test, proposed by Kwiatkowski
et. al. (1992)

ADF and PP tests are similar in a manner that both have null hypothesis of non-
stationarity. On the other hand, KPSS test has stationarity as a null hypothesis.
The results of those tests for both returns and realized measures are presented in
Section 3.2 and 3.3, respectively. Based on those results, we confirm that all the
series are stationary and can be used in further analysis. Consequently, we can
proceed with the selection of VAR model.

In order to select the VAR model lag length, we use three widely used informa-
tion criteria: Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC), also called Schwarz Information Criterion, and Hannan-Quinn information
criterion (HQ). The information criteria are given as:

AIC = T log |Σ| + 2m (5.1)

BIC = T log |Σ| + m log T (5.2)

HQ = T log |Σ| + 2m log(log T ) (5.3)

where T is the number of observations, |Σ| is the determinant of variance-covariance
matrix of residuals and m is number of parameters. The formulas reveal that AIC
has the lowest penalty term for additional parameters, while BIC has the highest.
Table 5.1 presents the results of suggested lag orders based on information criteria
for returns and realized volatility respectively for maximum lag orders from 5 to
10.

For both returns and the realized volatility we can observe that all information
criteria suggest different lag orders. For the returns SIC and HQ suggest the
same lag order irrespective to maximum number of lags specified, one and four
lags, respectively. Meanwhile, AIC suggests five lags, when maximum lag order



Empirical Results 30

Table 5.1: Lag Length Selection for VAR based
on Information Criteria

Returns RV
Max. Lag

Length AIC SIC HQ AIC SIC HQ

5 5 1 4 5 3 5
6 6 1 4 6 3 5
7 6 1 4 7 3 5
8 6 1 4 8 3 5
9 6 1 4 8 3 5
10 6 1 4 10 3 5

Source: Author’s Estimations

is set to five, and six for all others. The patterns of SIC and HQ for realized
volatility are rather similar. SIC suggests three lags, while HQ suggests five lags,
regardless of the maximum number of lags. For volatilities, AIC suggestion is
changing with the maximum number of lags applied. The results are evident, as
AIC penalizes the least for additional parameters used in the model. Hence, based
on the information criteria, we choose the VAR ordering to be one for returns and
three for realized volatility. Moreover, using these number of lags will allow us
to produce more parsimonious models. Although the selections are not consistent
with the existing literature that employ the same spillover indices proposed by
Diebold & Yilmaz (2009) (Baruník et al. (2015), Baruník et al. (2016), Baruník et
al. (2017), Yilmaz (2010) used lag length of 2), all of them are showing, that the
results are not dependent on the lag order of the model. For instance, Diebold &
Yilmaz (2012) provide robustness analysis of the spillover index for the VAR lag
of two to six, while Baruník et al. (2016) conducts the same analysis for lags two
to four, both demonstrating the independence of the results on the lag length of
the model. To ensure that our results are in line with the existing literature, we
also perform robustness checks for both volatilities and returns. The results can
be found in Appendix. Based on them we can conclude that the results are not
significantly dependent on lag length for both returns and volatilities.

To perform the dynamic analysis, we need to define the length of rolling win-
dow, w, and forecasting horizon, H. To be consistent with the existing literature
(Baruník et al. (2015), Baruník et al. (2016), Baruník et al. (2017), Diebold &
Yilmaz (2012)) we have selected 200-day rolling window and 10-day forecasting
horizon for the construction of spillover indices. Additionally, we performed a
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robustness check for both rolling window and forecasting horizon with alternative
values of 150 and 250 days for w and for 5 and 15 days for H. The results can be
found in Appendix. From them, we can observe that the spillover indices are not
changing significantly due to changes in w and H for both returns and volatilities.

5.2 Unconditional Patterns
In this section we will perform static return and volatility spillover analysis be-
tween stock and forex markets of Scandinavian countries. The estimations of
spillover indices are based on variance decomposition of 10-days-ahead forecast
errors from VAR model. As mentioned in Section 5.1 lag order of VAR for re-
turns is chosen to be one, while for realized volatility it is set to three. The
spillover tables presented in further sub-sections are constructed in such a way,
that diagonal elements show the own variance shares, while off-diagonal elements
are cross-variance shares, thus the spillovers.

5.2.1 Static Analysis for Returns

Table 5.2 presents the return spillover indices for the full sample with stock indices
and exchange rates. It provides with condensed information on how one specific
asset transmits and receives spillovers. The highest values are reported on a di-
agonal as they represent own volatility shares. The off-diagonal values represent
the directional spillover indices for returns.

Table 5.2: Return Spillover Table

OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK NOK FROM
Stocks

FROM
FX

FROM
Others

OMXH25 35.41 17.5 25.13 17.79 0.16 0.16 2.12 1.73 60.42 4.17 64.59
OMXC20 20.06 40.22 19.71 17.21 0.04 0.04 1.48 1.24 56.98 2.80 59.78
OMXS30 25.96 17.77 36.64 16.65 0.12 0.12 1.54 1.2 60.38 2.98 63.36
OSEAX 19.79 16.76 17.92 39.12 0.66 0.64 2.55 2.56 54.47 6.41 60.88
EUR 0.12 0.05 0.09 0.49 30.38 30.04 20.29 18.55 0.75 68.88 69.63
DKK 0.12 0.04 0.09 0.46 30.09 30.43 20.28 18.47 0.71 68.84 69.55
SEK 1.73 0.96 1.3 1.9 21.15 21.1 31.7 20.17 5.89 62.42 68.31
NOK 1.51 0.97 1.06 2.09 20.15 20.04 21.02 33.15 5.63 61.21 66.84
TO Stocks 65.81 52.03 62.76 51.65 0.98 0.96 7.69 6.73

TO FX 3.48 2.02 2.54 4.94 71.39 71.18 61.59 57.19 Total Spillover Index
65.37%

TO 69.29 54.05 65.30 56.59 72.37 72.14 69.28 63.92

Source: Author’s Estimations

From the results, we can conclude that the shares of return shocks spilled over
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the other markets vary significantly, from 0.04% to 2.56%. As can be observed
from the spillovers from specific market TO all others (the last row from the
table) the return shocks are spilled the least by OMXC20 (54.05%), while the
most is transmitted by EUR (72.37%). Moreover, higher return transmission lev-
els from forex markets TO all other markets are observed, compared to stock
markets. Furthermore, we constructed inter-market and cross-market spillover in-
dices. From those we can conclude that inter-market spillovers are rather higher
than cross-market spillovers. This holds for both stock and forex markets. Among
the stock markets OMXH25 exhibits the highest level of inter-market spillovers
(65.81%), while OMXC20 exhibits the lowest ones (52.03%). On the other hand,
between stock markets the highest cross-market spillovers are transmitted by OS-
EAX (4.94%), while the lowest again by OMXC20 (2.02%), followed by OMXS30
(2.54%). Among the forex markets the highest inter-market shock transmitter is
EUR (71.39%), while the lowest one is NOK (57.19%), followed by SEK (61.59%).
On the other hand, the highest cross-market shocks are spilled by SEK (7.69%),
while the lowest by DKK (0.96%), followed by EUR (0.98%). What’s more, we
observe similar spillover magnitudes for EUR and DKK both FROM and TO
other markets.

When exploring the directional spillovers FROM other markets to specific mar-
ket (the most right three columns from the Table 5.2), we reveal a narrower
range of values (from 0.71% to 68.88%) compared to directional spillovers TO
other assets (from 0.96% to 71.39%). The last column indicates that the high-
est spillovers are received by EUR and DKK, 69.63% and 69.55%, respectively.
The lowest spillovers are received by OMXC20 (59.78%), followed by OSEAX
(60.88%). Furthermore, we decomposed the directional spillovers to observe the
inter-market and cross-market spillovers to specific assets. Again, we can observe
that inter-market shock transmission is higher compared to cross-market transmis-
sions. Among the stock markets, the lowest inter-market shock receiver is OSEAX
(54.47%), followed by OMXC20 (56.98%), whilst OMXH25 (60.42%) receives the
most. On the other hand, from the cross-market spillovers, the most shocks are
received by OSEAX, 6.41%, followed by OMXH25, 4.17%, whilst the lowest are
received by OMXC20 (2.8%). Among the forex markets the highest inter-market
spillovers are received by EUR and DKK, 68.88% and 68.84%, respectively, while
NOK receives the lowest (61.21%). On the other hand, the pattern reverses for
the spillovers received from stock markets. The highest shock receivers are SEK
and NOK (5.89% and 5.3%, respectively), while EUR (0.75%) and DKK (0.71%)
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receive the least.

Finally, total spillover index for returns shows the average shock transmission
between the assets in the system. We may conclude that on average 65.37% of
all shocks are transmitted to other markets. The rest of the shocks are associated
with the ones that spill over from other markets that are not under the analysis
in our research.

To get more insight from the static spillover analysis, we can proceed with the
analysis of net and net pairwise spillovers. As already described, the net spillovers
are estimated as the difference between the shocks transmitted TO other assets
and those received FROM other assets. Using the same logic one can estimate
the net pairwise spillovers. Table 5.3 documents the results of net spillovers.

Table 5.3: Net Return Spillover Table

OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK NOK
4.70 -5.73 1.94 -4.29 2.74 2.59 0.97 -2.92

Source: Author’s Estimations

The results indicate that Norwegian both markets are net return spillover re-
ceivers. Moreover, the other net spillover receiver is OMXC20. All other markets
are net volatility givers. The highest volatility giver is OMXH25 (4.7%). OMXC20
turns to be the highest spillover receiver (5.73%). Moreover, the results reveal the
difference between pegged and floating currency regimes. DKK and SEK mimic
EUR in terms of shock transmission and all three are net givers, although the
volume for SEK is much less, while free floating NOK is net receiver.

Table 5.4 documents the net pairwise spillovers among markets. OMXC20 acts as
a net shock receiver in all its pairs, with exceptions of EUR (receives only 0.01%)
and DKK (net shock transmission is zero, thus suggesting no net transmission be-
tween domestic stock and forex markets in Denmark). On the other hand, EUR
dominates over all other pairs. Similar pattern can be observed for OSEAX that
is dominating in all pairs, except for OMXC20. We can easily observe that forex
markets are dominating over stock markets in all pairs, although the volumes are
rather low. Even OMXH25, that is highest shock transmitter, dominates only
over stock markets.
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Table 5.4: Net Pairwise Return Spillover Table

FROM
OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK

OMXC20 2.56
OMXS30 0.83 -1.94
OSEAX 2.00 -0.45 1.27

TO EUR -0.04 0.01 -0.03 -0.17
DKK -0.04 0.00 -0.03 -0.18 0.05
SEK -0.39 -0.52 -0.24 -0.65 0.86 0.82
NOK -0.22 -0.27 -0.14 -0.47 1.6 1.57 0.85

Source: Author’s Estimations

5.2.2 Static Analysis for Realized Volatility

In this section, we will perform similar analysis for realized volatilities. Table 5.5
reports the total volatility spillover table. Total spillover index reveals that on
average 55.66% of volatility are transmitted to other markets, while the rest is
transmitted from other markets not included in our sample. Compared to return
spillovers, on average less volatility shocks are transmitted between the markets
under analysis.

Table 5.5: Volatility Spillover Table

OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK NOK FROM
Stocks

FROM
FX

FROM
Others

OMXH25 60.56 9.55 16.95 4.01 2.33 1.97 2.66 1.98 30.51 8.94 39.45
OMXC20 5.81 49.61 21.26 6.7 4.63 4.07 4.13 3.78 33.77 16.61 50.38
OMXS30 8.45 16.81 51.29 7.26 4.74 4.06 4.17 3.22 32.52 16.19 48.71
OSEAX 3.77 9.96 13.8 57.45 2.89 2.96 4.13 5.04 27.53 15.02 42.55
EUR 0.74 2.6 3.34 1.07 32.23 28.39 16.05 15.57 7.75 60.01 67.76
DKK 0.67 2.32 2.94 1.2 29.35 31.36 16.25 15.92 7.13 61.52 68.65
SEK 1.09 2.96 3.83 2.15 18.29 17.54 36.05 18.09 10.03 53.92 63.95
NOK 0.81 3.13 3.3 2.58 18.1 17.39 18.54 36.14 9.82 54.03 63.85
TO Stocks 18.03 36.32 52.01 17.97 14.59 13.06 15.09 14.02

TO FX 3.31 11.01 13.41 7.00 65.74 63.32 50.84 49.58 Total Spillover Index
55.66%

TO 21.34 47.33 65.42 24.97 80.33 76.38 65.93 63.60

Source: Author’s Estimations

The directional spillovers TO other markets from each specific market range
from 21.34% to 80.33% for OMXH25 and EUR, respectively. As for the return
spillovers, the forex markets transmit more volatility to other markets compared
to stock markets. From the decomposed directional spillovers to other assets we
observe higher inter-market transmission than cross-market ones. This holds for
both stock and forex markets. In the stock market the highest inter-market volatil-
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ity transmission comes from OMXS30 (52.01%), while the lowest is from OSEAX
(17.97%), followed by OMXH25 (18.03%). The volatility spillovers from stock
market to forex market is also dominated by OMXS30 (13.41%), while OMXH25
contributes to the cross-market spillovers the least (3.31%). In the forex mar-
ket the highest contributor of inter-market volatility spillovers is EUR (65.74%),
while NOK contributes the least. On the other hand, the pattern changes for
cross-market spillovers, where SEK transmits 15% of the volatility to stock mar-
kets, while DKK contributes the least.

The directional spillovers FROM other markets to each specific market range from
39.45% to 68.65%, a narrower range compared with directional spillovers TO other
assets. Again, we observe higher spillover values for forex markets, compared to
stock markets under analysis. The least volatility receiver is OMXH25 (similarly,
as mentioned, it is transmitting the least TO other markets), while the most
receiver is DKK (68.65%). Decomposed directional spillovers reveal higher inter-
market volumes compared to those of cross-market spillovers. Moreover, inter-
market spillover volumes are twice higher in forex markets. The highest volatility
spillover transmitter among forex markets is DKK that transmits almost 62%
of uncertainty to other markets. SEK and NOK report the lowest inter-market
volatility volumes received, although they still receive more than 50% of uncer-
tainty from other forex markets under analysis. On the other hand, SEK receives
the most volatility from stock markets among forex markets, while DKK receives
the least (10.03% and 7.13%, respectively). Among stock markets, as in case of
forex markets, Danish stock market dominates in receiving inter-market volatility
spillovers. The pattern does not change in cross-market spillovers. On the other
hand, the least inter-market spillovers are received by OSAEX (27.53%), while
OMXH25 receives the least from forex markets (8.94%).

Table 5.6: Net Volatility Spillover Table

OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK NOK
-18.11 -3.05 16.71 -17.58 12.57 7.73 1.98 -0.25

Source: Author’s Estimations

To get more insight about the spillovers, let’s proceed with net and net pairwise
volatility spillover analysis. Table 5.6 reports the net volatility spillovers. As it
was for return spillovers, forex markets, except Norwegian one, are net spillover
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transmitters. Moreover, stock markets are net volatility receivers, except Swedish
stock market that transmits the highest volume of volatility to other markets.
The most volatility is received by OMXH25 and OSAEX, 18.11% and 16.71%,
respectively.

Table 5.7: Net Pairwise Volatility Spillover Table

FROM
OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK

OMXC20 -3.74
OMXS30 -8.5 -4.45
OSEAX -0.24 3.26 6.54

TO EUR -1.59 -2.03 -1.4 -1.82
DKK -1.3 -1.75 -1.12 -1.76 0.96
SEK -1.57 -1.17 -0.34 -1.98 2.24 1.29
NOK -1.17 -0.65 0.08 -2.46 2.53 1.47 0.45

Source: Author’s Estimations

Table 5.7 presents the net pairwise volatility spillover table that provides more
insight about the volatility spillovers between the markets. As for the returns,
forex markets are dominating over the stock markets. OMXH25 turns to be net
receiver in all pairs, while EUR is net giver for its all pairs. OSEAX is also dom-
inated in all its pairs, with exception of OMXH25, while NOK is dominating in
stock pairs, except for OMXS30, and is dominated in its FX pairs.

Now we can proceed with dynamic analysis and shed light on the evolution of
connectedness and the spillovers during pre- and post-crisis periods.

5.3 Conditional Patterns
In previous section, we performed static spillover analysis for returns and real-
ized volatilities, which provides with overview of average spillover effects over the
period of our research. To get more insight in the spillover effects, we will pro-
ceed with dynamic spillovers analysis. In this section, we will construct dynamic
spillover measures using the methodology, proposed by Diebold & Yilmaz (2012).
As described in Section 4.1, their methodology is based on H-step-ahead forecast
error variance decomposition of vector autoregressive (VAR) model. To capture
dynamics of spillover effects we employ 200-day rolling window and forecast hori-
zon of 10 days. VAR model order will be one for returns and three for volatilities,
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the same as for static analysis.

First, we will analyze the dynamics of total spillovers for the analyzed period
of time. Afterwards, we will go through the directional spillover contributions
FROM and TO other markets. Finally, we will discuss the net total spillovers.
All these dynamics will be discussed for both returns and realized volatilities.

5.3.1 Dynamic Analysis for Returns

Figure 5.1 reports the evolution of the total spillovers index for returns. We can
observe rather volatile dynamics of the spillovers. No long-run trends are ob-
served, however, some short ones can be noticed. High levels of spillovers are
observed during the whole period under the analysis. They are fluctuating be-
tween 55% to 77%. In the beginning of the analyzed period we observe increase
in the return spillovers, attributed to October 2002 stock market downturn, when
stock markets worldwide reached their lows since 1997. Moreover, we can inspect
high spikes during the global financial crisis starting from April of 2007, when
Bear and Stearns was bailed out, followed by suspension of the withdrawals from
two of BNP Paribas hedge funds, bankruptcy of Lehman Brother’s in September
14, 2008 and US subprime mortgage crisis that led to global financial crisis. The
turmoil in the markets persisted for quite a long period of time, until the end of
2009. However, immediately after that European sovereign debt crisis tensions
started in 2010 and we again observe spike in the total spillover index. It reaches
its peak in 2012, when Greece was downgraded to default rates by Fitch and S&P
rating companies. As those tensions wiped out, we examine downward evolution
of spillover index. The surge of the spillover index is also noticed in mid-October
of 2014, when US stock market started to decline. Those levels were persisted un-
til the end of 2015. Furthermore, in the end of 2014 global stock markets declined
with tumbling oil prices and political uncertainty in Greece with negative outlook
of possible new Eurozone crisis. In the end of 2015 we easily observe another
jump of spillover index. This may be caused by the Black Monday in China,
when stock markets worldwide were hit. Moreover, in 2016 Brexit referendum
forced the spillover index hit its second peak since 2013. Those high volumes of
spillovers persist until 2017 and afterwards it returns to its pre-crisis periods.

To shed more light on the spillovers between the markets under analysis, we will
proceed with the directional spillovers. As already mentioned in Section 4.1, direc-
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Figure 5.1: Total Return Spillover Index

Source: Author’s Estimations

tional spillovers are useful for understanding how each of the markets affects the
other markets and vice versa. Figure 5.2 presents the directional return spillovers
from one specific market TO all other markets during the whole period of analysis.
The results indicate that OMXH25, OMXS30, EUR and DKK have rather smooth
spillovers during global financial crisis period of 2007-2009, while in other markets
we notice spikes. This suggests that Finnish both financial markets are not much
affected by GFC. Moreover, EUR and DKK exhibit even decreasing trend during
those periods. Further, we observe three main cycles in stock markets since 2010,
attributed to European debt crisis tensions. On the other hand, cannot examine
such big cycles in forex market, only for EUR and DKK increased spillovers are
noticed for the period of 2011-2013. Another sharp increase in spillovers TO other
markets can be examined in the end of 2015, due to Black Monday in China and
in mid 2016 after Brexit referendum.

Figure 5.3 presents the directional spillovers FROM other markets to each spe-
cific market, thus, showing how much shocks are received by each market. We
observe in general rather lower volumes of transmission, compared to spillovers
TO others. As opposed to directional spillovers TO other markets, all markets
exhibit higher volumes of spillovers FROM other markets during global financial
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Figure 5.2: Directional Return Spillovers TO others

Source: Author’s Estimations

crisis of 2007-2009. Those kind of high levels of spillovers remain until 2013, due
to sovereign debt crisis immediately following global financial crisis.

Moreover, it can be easily examined that the markets under analysis, but OMXC20,
reach their peaks in 2012. The latest reaches its peak in 2010, when the tensions
of sovereign debt crisis just started. Thus, this suggests that the markets under
analysis are more affected by sovereign debt crisis, rather than global financial cri-
sis. Furthermore, we can distinctly observe two more spikes in all markets since
2014. Those periods correspond to oil market turmoil in the end of 2014 and mid
2015 Chinese Black Monday. What’s also interesting, after Brexit referendum
in June 2016 we observe declining trends in all markets, except SEK and NOK.
The latest two are reaching their second peak since sovereign debt crisis. This
suggests the notion that floating exchange rates are more prone to shocks from
Brexit turmoil, while others exhibit downward trend. Similar trend is noticed in
stock markets.

Figure 5.4 documents the NET return spillovers for the 18-year period. Those
are determined as the difference between the shock transmissions TO others and
transmissions FROM others. Thus, the positive values mean that the particular
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Figure 5.3: Directional Return Spillovers FROM others

Source: Author’s Estimations

Figure 5.4: NET Return Spillovers

Source: Author’s Estimations

market transmits more shocks to others than it receives from others and vice versa.
In case of positive values the market will be called net spillover giver (transmitter)
and in case of negative values market is called net spillover receiver. The results
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indicate that EUR and DKK exhibit similar patterns for the whole period of time
and they are predominantly net spillover transmitters along with OMXH25 and
OMXS30. The other four markets exhibit inverse pattern, thus being net spillover
receivers for the whole span. These findings suggest that Norwegian financial mar-
kets, SEK and OMXC20 do not contribute much to return spillovers. The only
distinct period is the sovereign debt crisis, when all the forex markets along with
OMXS30 invert their signs.

5.3.2 Dynamic Analysis for Realized Volatility

In the previous section, we discussed the dynamic return spillovers. Now we will
proceed with a similar analysis of volatility spillovers. Figure 5.5 documents the
total volatility spillover index evolution through the 18-year time period. As for
the returns, the volatility spillovers used to be rather low in the beginning of the
century, while there is persistent jump for almost two years. This may be caused
by the turmoil in October 2002, that led to huge losses in stock markets glob-
ally. Moreover, we observe persistent increase in volatility spillovers in during the
period of global financial crisis, when the uncertainty hits the financial market
globally. During that period the spillover index reaches 72% in 2008, attributable
to Lehman Brothers’ collapse. Since 2009 we observe rather calmer times that
last only one year. Those times are interrupted by sovereign debt crisis in 2010.

The volatility spillover index reaches its peak during those times, more precisely
in mid 2012. This again supports the notion that market under analysis are more
affected by sovereign debt crisis, rather than by global financial crisis. Further,
turmoil periods are noticed since the end of 2014, when financial market worldwide
incurred losses due to oil price tumbling. In 2015 and 2016 we observe uncertainty
hitting the markets again. We can easily examine the that Brexit referendum led
to as much turmoil in the markets as the global financial crisis. Since mid 2017
the total volatility spillover levels returned to their pre-crisis levels. To shed more
light on dynamics of volatility spillovers between the markets, we will proceed
with the directional spillover analysis.

Figure 5.6 documents the development of directional volatility spillovers from
each specific market under analysis TO all other markets in the system. Due to
high non-persistent jumps in directional spillovers in some markets, directional
volatility spillover figures present the developments in a limited band. The full



Empirical Results 42

Figure 5.5: Total Volatility Spillover Index

Source: Author’s Estimations

figures can be found in Appendix. From the results we can conclude that the
cycles, corresponding to the turmoil periods, are not that distinct in forex mar-
ket, while we can observe rather distinctive patterns in stock markets. In stock
markets persistent jump in directional spillovers TO others during global financial
crisis since mid 2007 till end of 2008.

On the other hand, the forex markets exhibit rather decreasing trends during
those times. The next high volatility transmission period from stock markets is
noticed since 2010, the beginning of sovereign debt crisis tensions. We can easily
examine that OMXH25 and OMXS30 reach their highs during that period, while
OSEAX and OMXC20 during 2007-2009 period. This suggests that the Norwe-
gian and Danish stock markets do not contribute much to volatility spillovers
during sovereign debt crisis. On the other hand, the forex markets evolve similar
to OMXH25 adn OMXS30, exhibiting increase in spillovers during 2010-2013 pe-
riod. Moreover, we observe distinct cycle in the end of the span under analysis.
This pattern is not that distinct in OSEAX. This again supports our previous
finding that Norwegian stock market does not contribute much to spillover trans-
missions. On average we can observe that EUR and DKK transmit spillovers the
most, while OSEAX has the least contribution.
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Figure 5.6: Directional Volatility Spillovers TO others

Source: Author’s Estimations

Figure 5.7: Directional Volatility Spillovers FROM others

Source: Author’s Estimations

Figure 5.7 documents the directional volatility spillovers FROM other markets to
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each specific market. In general, we observe lower volumes of transmission FROM
other markets, compared to those TO others, as it was the case for returns. An
interesting observation from all markets is that all turmoil periods are represented
with cycles of similar magnitudes in all markets under analysis. Slightly higher
volumes of spillovers can be observed for OSEAX and OMXC20 during sovereign
debt crisis, compared to other events leading to high spillover transmission. This
suggests that the level of uncertainty in the markets was almost the same for all
the events. Another interesting observation is that FX markets seem to receive
volatility spillovers more on average, compared to stock markets. Moreover, only
OSEAX, OMXC20 and NOK return to their pre-crisis volatility spillover levels
after 2013, while other markets seem to have high spillover transmission levels up
to the end of the period under analysis. This is in line with our previous findings.

Figure 5.8: NET Volatility Spillovers

Source: Author’s Estimations

Figure 5.8 reports the net volatility spillovers in all markets. As already described
in Section 4.1 those spillover measures are estimated as the difference between the
spillovers transmitted TO other markets and spillovers received FROM other mar-
kets. From the results, we can inspect positive values of net volatility spillovers
during the whole period for EUR and DKK. This suggests that those two markets
are net volatility givers. OSEAX, NOK and OMXC20 are net volatility receiver



Empirical Results 45

for the whole period under analysis, with exception of rather short time period of
2008-2010. These results are in line with our previous findings.

Other markets exhibit rather balanced patterns of volatility transmissions, with
dominance of negative net volatility transmission values during the global financial
crisis period. The only net volatility transmitters during that period are OSEAX,
OMXC20 and NOK. On the other hand, European debt crisis is characterized by
positive net spillovers for EUR, DKK, OMXH25 and OMXS30, while OSEAX and
OMXC20 exhibit negative values. The other markets have balanced patterns.

5.4 Frequency Connectedness
In this section, we will demonstrate the frequency connectedness between forex
and stock markets in Scandinavian countries. Based on the approach of Baruník
& Křehlík (2018) we will decompose the total spillover indices for returns and
volatilities into frequency bands representing short-, medium- and long-term con-
nectedness. 1

This section is constructed as follows: first, we will perform a static analysis for
frequency connectedness for both returns and realized volatilities and afterwards
we will proceed with dynamic analysis.

5.4.1 Static Frequency Connectedness

Table 5.8 presents the static connectedness table for returns on different frequen-
cies. From total spillover indices, we can observe that short-term return spillovers
prevail over those both in medium- and long-term horizons. This is in contrary
with our third hypothesis, that states that connectedness in higher frequencies is
not higher than in lower frequencies. Furthermore, we may examine no spillover
effects in medium- and long-run between some of the markets, such as in pairs
like OMXC20–EUR, OMXC20–DKK in medium-run and EUR and DKK with
OMXH25, OMXS30 and OMXC20 in long-run. From directional spillovers TO
other markets, we can examine higher inter-market return connectedness in forex
markets in short-run, compared to stock markets. On the other hand, stock mar-
kets on average contribute more to inter-market connectedness in medium- and

1The frequency connectedness at short-term horizon is defined at d1 ∈ [1; 5] days (week),
medium-term horizon is defined at d2 ∈ (5; 20] days (month) and long-term horizon is defined
at d3 ∈ (20; 200] days (year).
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long-run horizons. The difference between contribution of forex and stock mar-
kets in cross-market return spillovers is not that distinct, but again forex market
prevalence can be observed. Directional spillovers FROM other markets reveals
different pattern regarding inter-market and cross-market return connectedness.
Forex markets prevail over stock markets in inter-market return connectedness in
all frequencies. The pattern is the same for cross-market return spillovers.

Table 5.8: Frequency Decomposition of Static Return Connectedness

Short-term Connectedness

OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK NOK FROM
Stocks

FROM
FX

FROM
Others

OMXH25 28.3 14.06 19.89 14.33 0.11 0.11 1.52 1.26 48.28 3.00 51.28
OMXC20 15.65 32.28 15.28 13.75 0.03 0.03 1.01 0.9 44.68 1.97 46.65
OMXS30 21.38 14.71 30.02 13.89 0.08 0.09 1.17 0.92 49.98 2.26 52.24
OSEAX 15.6 13.36 13.94 31.82 0.47 0.46 1.83 1.92 42.90 4.68 47.58
EUR 0.11 0.05 0.07 0.43 24.9 24.62 16.72 15.51 0.66 56.85 57.51
DKK 0.11 0.04 0.07 0.41 24.64 24.96 16.71 15.42 0.63 56.77 57.40
SEK 1.42 0.83 1.03 1.63 17.32 17.28 26.14 16.83 4.91 51.43 56.34
NOK 1.23 0.85 0.85 1.74 16.33 16.24 17.02 27.22 4.67 49.59 54.26
TO Stocks 52.63 42.13 49.11 41.97 0.69 0.69 5.53 5.00

TO FX 2.87 1.77 2.02 4.21 58.29 58.14 50.45 47.76 Total Spillover Index
52.91%

TO 55.50 43.90 51.13 46.18 58.98 58.83 55.98 52.76
Medium-term Connectedness

OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK NOK FROM
Stocks

FROM
FX

FROM
Others

OMXH25 5.24 2.53 3.86 2.54 0.04 0.04 0.44 0.34 8.93 0.86 9.79
OMXC20 3.24 5.86 3.25 2.55 0.01 0.01 0.34 0.25 9.04 0.61 9.65
OMXS30 3.38 2.26 4.89 2.04 0.03 0.03 0.27 0.21 7.68 0.54 8.22
OSEAX 3.08 2.50 2.92 5.38 0.14 0.14 0.53 0.47 8.50 1.28 9.78
EUR 0.01 0.00 0.01 0.04 4.04 4.00 2.64 2.25 0.06 8.89 8.95
DKK 0.01 0.00 0.01 0.04 4.02 4.04 2.64 2.26 0.06 8.92 8.98
SEK 0.23 0.10 0.20 0.20 2.82 2.82 4.10 2.47 0.73 8.11 8.84
NOK 0.21 0.09 0.15 0.26 2.82 2.80 2.95 4.37 0.71 8.57 9.28
TO Stocks 9.70 7.29 10.03 7.13 0.22 0.22 1.58 1.27

TO FX 0.46 0.19 0.37 0.54 9.66 9.62 8.23 6.98 Total Spillover Index
9.19%

TO 10.16 7.48 10.40 7.67 9.88 9.84 9.81 8.25
Long-term Connectedness

OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK NOK FROM
Stocks

FROM
FX

FROM
Others

OMXH25 1.88 0.9 1.38 0.91 0.01 0.01 0.16 0.12 3.19 0.30 3.49
OMXC20 1.17 2.09 1.17 0.91 0.00 0.00 0.13 0.09 3.25 0.22 3.47
OMXS30 1.20 0.80 1.74 0.72 0.01 0.01 0.1 0.07 2.72 0.19 2.91
OSEAX 1.11 0.89 1.05 1.92 0.05 0.05 0.19 0.17 3.05 0.46 3.51
EUR 0.00 0.00 0.00 0.01 1.44 1.42 0.93 0.79 0.01 3.14 3.15
DKK 0.00 0.00 0.00 0.01 1.43 1.44 0.94 0.80 0.01 3.17 3.18
SEK 0.08 0.03 0.07 0.07 1.00 1.00 1.45 0.87 0.25 2.87 3.12
NOK 0.07 0.03 0.05 0.09 1.01 1.00 1.05 1.55 0.24 3.06 3.30
TO Stocks 3.48 2.59 3.60 2.54 0.07 0.07 0.58 0.45

TO FX 0.15 0.06 0.12 0.18 3.44 3.42 2.92 2.46 Total Spillover Index
3.27%

TO 3.63 2.65 3.72 2.72 3.51 3.49 3.50 2.91

Table 5.9 presents the net return spillovers in three frequencies. We can examine
more net return spillover receivers in short-run, than in medium- and long-run
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Table 5.9: Frequency Decomposition of NET Return Connectedness

OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK NOK
Short-term Connectedness

4.22 -2.75 -1.11 -1.40 1.47 1.43 -0.36 -1.50
Medium-term Connectedness

0.37 -2.17 2.18 -2.11 0.93 0.86 0.97 -1.03
Long-term Connectedness

0.14 -0.82 0.81 -0.79 0.36 0.31 0.38 -0.39

horizons. This is mainly due to SEK and OMXS30 that are net receivers in short-
run, while net spillover givers in medium- and long-run. All other markets keep
the same sign of net spillover contribution in all frequencies. Furthermore, we
observe higher volumes of net spillovers in shorter terms than in longer-term pe-
riods. This is in line with our previous finding.

Now let us proceed with the static frequency connectedness analysis for realized
volatilities. Table 5.10 reports total spillover table for volatilities. From total
spillover indices in different frequencies, we can observe that on average long-
term connectedness (29.13%) is much tighter than short-term one (16.53%), while
medium-term connectedness is the lowest (12.09%). Furthermore, we examine
prevalence of inter-market volatility connectedness, based on spillovers TO other
markets, in forex markets over stock markets in short- and medium-term hori-
zons, while the contributions TO others in long-run are almost similar from both
markets. On the other hand, the cross-market volatility spillovers are prevailed
by forex markets in all frequencies. Similar patterns can be noticed from direc-
tional spillovers FROM other markets. Again, we document high dominance of
forex markets in inter-market volatility connectedness in short- and medium-run
periods, while stock markets take over in long-run. The directional cross-market
volatility connectedness FROM others reveals dominance of forex markets in all
frequencies.

Table 5.11 documents the NET volatility connectedness decomposed into different
frequencies. In NET spillovers the pattern reverses a little bit. We observe higher
NET spillover volumes in lower frequencies. Thus, the short-run connectedness
is the lowest, while long-run is the highest. As it was for returns, SEK is net
volatility receiver in short-run, while it is net volatility transmitter in long-run.
NOK performs similarly, being net receiver in short- and medium-run and net
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Table 5.10: Frequency Decomposition of Static Volatility Connectedness

Short-term Connectedness

OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK NOK FROM
Stocks

FROM
FX

FROM
Others

OMXH25 34.71 1.64 3.68 0.95 0 .35 0.34 0.38 0.31 6.27 1.38 7.65
OMXC20 1.08 19.89 2.96 1.04 0.50 0.48 0.42 0.46 5.08 1.86 6.94
OMXS30 1.86 2.3 14.53 1.17 0.59 0.60 0.60 0.60 5.33 2.39 7.72
OSEAX 0.71 1.22 1.75 26.24 0.18 0.20 0.21 0.35 3.68 0.94 4.62
EUR 0.20 0.39 0.59 0.11 15.66 14.08 7.06 6.67 1.29 27.81 29.10
DKK 0.20 0.39 0.62 0.13 14.66 16.56 7.09 6.75 1.34 28.50 29.84
SEK 0.21 0.35 0.63 0.14 7.65 7.60 16.88 6.99 1.33 22.24 23.57
NOK 0.18 0.37 0.63 0.24 7.23 7.22 6.95 17.11 1.42 21.40 22.82
TO Stocks 3.65 5.16 8.39 3.16 1.62 1.62 1.61 1.72

TO FX 0.79 1.50 2.47 0.62 29.54 28.90 21.10 20.41 Total Spillover Index
16.53%

TO 4.44 6.66 10.86 3.78 31.16 30.52 22.71 22.13
Medium-term Connectedness

OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK NOK FROM
Stocks

FROM
FX

FROM
Others

OMXH25 12.21 2.21 3.73 0.79 0.44 0.35 0.56 0.40 6.73 1.75 8.48
OMXC20 1.26 9.68 4.62 1.47 0.94 0.82 0.84 0.78 7.35 3.38 10.73
OMXS30 1.71 3.50 9.92 1.45 0.85 0.70 0.71 0.50 6.66 2.76 9.42
OSEAX 0.80 2.25 3.01 13.04 0.59 0.65 1.00 1.34 6.06 3.58 9.64
EUR 0.12 0.56 0.66 0.23 7.08 6.13 3.52 3.52 1.57 13.17 14.74
DKK 0.10 0.49 0.55 0.28 6.32 6.59 3.70 3.73 1.42 13.75 15.17
SEK 0.22 0.62 0.73 0.55 3.98 3.76 8.01 4.16 2.12 11.90 14.02
NOK 0.14 0.71 0.58 0.69 4.11 3.88 4.39 7.99 2.12 12.38 14.50
TO Stocks 3.77 7.96 11.36 3.71 2.82 2.52 3.11 3.02

TO FX 0.58 2.38 2.52 1.75 14.41 13.77 11.61 11.41 Total Spillover Index
12.09%

TO 4.35 10.34 13.88 5.46 17.23 16.29 14.72 14.43
Long-term Connectedness

OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK NOK FROM
Stocks

FROM
FX

FROM
Others

OMXH25 10.12 6.40 10.52 2.59 1.99 1.65 2.10 1.57 19.51 7.31 26.82
OMXC20 3.56 16.87 14.74 4.43 3.72 3.20 3.37 2.88 22.73 13.17 35.90
OMXS30 4.69 11.49 24.45 4.82 3.87 3.22 3.36 2.51 21.00 12.96 33.96
OSEAX 2.48 7.31 10.35 13.94 2.72 2.59 3.43 3.64 20.14 12.38 32.52
EUR 0.57 2.12 2.77 0.97 8.84 7.59 5.33 5.22 6.43 18.14 24.57
DKK 0.49 1.86 2.37 1.01 7.87 7.60 5.35 5.31 5.73 18.53 24.26
SEK 0.83 2.57 3.29 1.76 6.39 5.89 10.12 6.66 8.45 18.94 27.39
NOK 0.66 2.59 2.86 1.93 6.54 6.03 6.98 10.01 8.04 19.55 27.59
TO Stocks 10.73 25.20 35.61 11.84 12.30 10.66 12.26 10.60

TO FX 2.55 9.14 11.29 5.67 20.80 19.51 17.66 17.19 Total Spillover Index
29.13%

TO 13.28 34.34 46.90 17.51 33.10 30.17 29.92 27.79

Table 5.11: Frequency Decomposition of NET Volatility Connectedness

OMXH25 OMXC20 OMXS30 OSEAX EUR DKK SEK NOK
Short-term Connectedness

-3.21 -0.28 3.14 -0.84 2.06 0.68 -0.86 -0.69
Medium-term Connectedness

-4.13 -0.39 4.46 -4.18 2.49 1.12 0.7 -0.07
Long-term Connectedness

-13.54 -1.56 12.94 -15.01 8.53 5.91 2.53 0.2
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volatility transmitter in long-run. All other markets behave the same way in all
frequencies. The highest volatility transmitter in short-run is OMXS30 (3.14%),
followed by EUR (2.06%), while the highest receiver is OMXH25 (3.21%). On
the other hand, in long-run horizon the pattern changes slightly. While again
OMXS30 and EUR dominate as net volatility transmitters, the most is received
by OSEAX (15%), followed by OMXH25 (13.54%).

5.4.2 Dynamic Frequency Connectedness

In the previous section, we performed static analysis of frequency return and
volatility connectedness, which gives us an average information about intercon-
nectedness between the markets under analysis. Now we will proceed with dy-
namic frequency connectedness analysis. To get the dynamics, we used 200 days
of rolling window and forecasting horizon of 100 days. Thus, our data points
decrease by 200 days.

Figure 5.9: Total Return Frequency Connectedness

Notes: The frequency connectedness at short-term horizon defined at d1 ∈ [1; 5] days in bold
line (right axis), medium-term horizon defined at d2 ∈ (5; 20] days in dashed line (left axis) and
long-term horizon defined at d3 ∈ (20; 200] days in grey line (left axis). All lines through the
frequency bands sum to the total connectedness.

Figure 5.9 presents the dynamic total frequency connectedness for returns. We
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can easily observe that short-term connectedness highly prevails over connected-
ness in medium- and long-term horizons. This is in line with our previous finding
from static analysis for returns. The long-run connectedness is the smoothest with
rather small cycles during the whole period under analysis. Although the con-
nectedness is much tighter in medium-run, the volatility of the volumes are rather
low too. However, we can still notice some spikes corresponding to turmoil peri-
ods, such as global financial crisis in 2007-2009, European sovereign debt crisis in
2010-2013, Black Monday in China in 2015, for both medium-term and long-term
connectedness. The dynamics are more saturated in short-run. We observe spike
in return spillovers from 47% to 61% in 2008. That high spillovers volume persists
until the end of 2010. Afterwards, we examine spike of similar magnitude during
2010-2013 period, corresponding to European debt crisis. Another round of high
spillover transmissions is 2016-2017 period, when Britains voted for Brexit. In
2018 the spillover volumes returned to their pre-crisis periods, consequently sug-
gesting rather calmer times.

What is also important is that the connectedness in all horizons reach their
peaks during sovereign debt crisis in 2012, rather than during global financial
crisis. Moreover, both medium- and long-run connectedness have downward slop-
ing trends after Brexit referendum in 2016, while short-run connnectedness reaches
its second peak.

To save some space we will proceed directly to NET dynamic spillover analy-
sis for returns. Figure 5.10 presents the NET dynamic spillovers for returns in
three frequencies. For all markets, we observe rather low connectedness dynam-
ics in long-run. This supports the notion that directional spillovers FROM and
TO other markets are not significantly different from each other in long-run. Al-
though, similar patterns are observed in medium-run NET spillover dynamics, we
can still reveal some distinct patterns. OMXS30, EUR and DKK are net spillover
givers, with exception of two periods, from 2008 till 2009 and from 2011 till 2012
for the latest two. The latest period corresponds to European debt crisis. Other
stock markets are dominated by negative values in medium-run for the whole pe-
riod under analysis.

On the other hand, the short-run dynamics have higher volumes and are more
informative in our case. Those dynamics reveal that during the whole period
under analysis EUR and DKK are net spillover givers, with exception of two pe-
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Figure 5.10: NET Return Frequency Connectedness

Notes: The frequency connectedness at short-term horizon defined at d1 ∈ [1; 5] days in light
grey, medium-term horizon defined at d2 ∈ (5; 20] days in dotted line and long-term horizon
defined at d3 ∈ (20; 200] days in bold grey line.

riod that corresponds to European debt crisis. Meanwhile, OMXC20, OSEAX
and NOK are rather net spillover receivers. Other markets have more balanced
spillover dynamics. We can conclude that Norwegian financial markets do not con-
tribute much to return spillovers in short-run, rather receiving them from other
markets during that period.

Now as we completed the dynamic analysis of frequency decomposition of connect-
edness for returns, we can proceed with the dynamic analysis for volatilities. Fig-
ure 5.11 presents the dynamics of total volatility connectedness decomposed into
three frequency bands. We can easily observe rather higher volumes of volatility
transmission, compared to those for returns, with exception of short-run connect-
edness. Moreover, the long-run and short-run connectedness have richer dynamics,
while medium-run spillovers are rather smooth with three main periods of higher
volatility transmission (2008-2009, 2010-2013, 2015-2017). Those periods corre-
spond to main crisis and turmoil events discussed in previous sections.

From the dynamics of short- and long-term spillovers, we observe prevalence of
short-term connectedness during normal times, while long-term connectedness
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Figure 5.11: Total Volatility Frequency Connectedness

Notes: The frequency connectedness at short-term horizon defined at d1 ∈ [1; 5] days in bold
line, medium-term horizon defined at d2 ∈ (5; 20] days in dotted line and long-term horizon
defined at d3 ∈ (20; 200] days in grey line. All lines through the frequency bands sum to the
total connectedness.

prevails during turmoil periods. Such a pattern is observed during 2009-2010 cri-
sis period and during 2012-2013 period. Moreover, during those periods decrease
in short-term connectedness is observed. On the other hand, Brexit referendum
did not lead to the same pattern, but dominance of short-term connectedness is
observed. Another period of prevalence of long-term connectedness over short-
term is the end of 2014 till the end of 2015. This may be attributed to decline
in oil prices and Chinese Black Monday during those times. Such findings are in
line with the existing literature (Baruník & Křehlík, 2018; Baruník & Kočenda,
2018).

Figure 5.12 presents the dynamic NET volatility spillover decomposed into three
frequency bands. First thing that can be easily observed is that short- and
medium-run connectedness are rather low and close to zero, while long-term con-
nectedness has rich dynamics for all markets. Still in short-run, we can observe
prevalence of positive net spillovers for EUR and DKK during the whole period
under analysis, with exception of crisis periods of 2009 and 2012, when the dy-
namics reverse. NOK, OSEAX and OMXC20 exhibit negative short-term spillover
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Figure 5.12: NET Volatility Frequency Connectedness

Notes: The frequency connectedness at short-term horizon defined at d1 ∈ [1; 5] days in black
line, medium-term horizon defined at d2 ∈ (5; 20] days in dotted grey line and long-term horizon
defined at d3 ∈ (20; 200] days in grey line.

prevalence over the whole period. The other markets exhibit rather balanced dy-
namics. In medium-run no discernible patterns can be observed.

In long-term horizon the net connectedness measures are rather abruptly chang-
ing from positive to negative in all markets. Consequently, rather high and non-
persistent spikes can be observed. Even though, some distinctive patterns are
examined. EUR and DKK exhibit positive net spillover values in long-run, while
OSEAX is net spillover receiver for the whole span, with exception of 2008-2009
period, when the pattern reverses. NOK also performs similarly as OSEAX, which
is in line with our previous finding, suggesting that Norwegian forex and stock
markets exhibit rather similar patterns. Other markets exhibit balanced patterns
of net volatility spillovers in long-run.
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Conclusion

In this thesis, we aim to analyze the return and volatility spillovers using the
approach based on spillover index, proposed by Diebold & Yilmaz (2009) and fur-
ther evolved by Diebold & Yilmaz (2012). This approach is based on generalized
vector autoregressive (GVAR) model. In such a model forecast error variance
decomposition is invariant to the ordering of the variables, which allows us to
estimate total, directional and net spillovers. Furthermore, we employed the new
methodology proposed by Baruník & Křehlík (2018), that is based on decompo-
sition of spillover indices for returns and realized volatility into frequency bands,
that represent short-, medium- and long-term horizons. Those frequency bands
correspond to daily, weekly and monthly frequencies, respectively.

All the estimations are performed in statistical software R using its supplemental
package Frequency Connectedness. The analysis is performed for four Scandina-
vian stock and forex markets for the period of February 2002 till the end of July
2018. This period covers various turmoil periods, such as the downturn of global
stock markets in 2002, global financial crisis in 2007-2009, European sovereign
debt crisis in 2010-2013 and Brexit referendum in mid 2016. Hence, there is
enough data to cover pre- and post-crisis periods for all events.

The empirical results consist of several sections. First, we performed spillover
analysis for both returns and realized volatility over the whole period, thus, static
analysis. Afterwards, we employ 200-day rolling window and estimate the total
and directional spillover dynamics through the 18-year span under analysis. This
method enables us to examine the evolution of the spillover indices over time
and to reveal the differences between distress and normal times. Finally, we per-
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formed similar analysis on our sample employing newly developed methodology of
frequency connectedness. This methodology allows us to decompose the spillover
indices into frequency bands and examine the evolution of spillover indices in
short-, medium- and long-term horizons. Using this new framework we performed
first the static analysis and then delved into the evolution of the spillover indices
in various frequencies.

The static analysis of spillover indices reveals that inter-market spillovers are of
higher magnitudes than the cross-market spillovers for both returns and realized
volatility. As opposed to our first hypothesis we determined less contribution to
return and volatility spillovers by Norwegian stock and forex markets, which has
floating exchange rate regime. On the other hand, SEK turns out to be the highest
contributor of cross-market spillovers in case of both returns and volatility, while
EUR has the highest spillovers to other markets in total. Furthermore, OMXS30
is the highest contributor in cross-market spillovers among stock markets for both
returns and volatility. Meanwhile, OMXH25 contributes the most in total return
spillovers and the least in total volatility spillovers among stock markets. Addi-
tionally, we reveal that in net terms OMXC20, OSEAX and NOK are only net
return spillover receivers, while OMXH25 is the highest return spillover transmit-
ter, followed by EUR. The pattern changes slightly in case of volatility spillovers.
The list of net spillover receivers remains the same with addition of OMXH25 as
the highest net volatility receiver from other markets, while OMXS30 is the high-
est volatility transmitter, followed by EUR. All other markets are net spillover
givers.

The dynamic analysis of spillover indices reveals higher spillover volumes during
distress periods for both returns and volatility. Hence, we can reject our second
hypothesis. Moreover, the dynamics indicate that Scandinavian financial markets
are affected more by European sovereign debt crisis in 2010-2013, rather than by
global financial crisis in 2007-2009. In case of return spillovers we observe that
OMXH25, OMXS30, EUR and DKK exhibit smooth evolution of spillover trans-
missions during global financial crisis, while other markets have higher volumes of
spillover transmissions TO other markets. However, for OMXH25 and OMXS30
the pattern changes in case of directional spillovers FROM others, while EUR and
DKK exhibit downward sloping trend. Moreover, all markets, but SEK, exhibit
high spikes compared to other markets during 2015-2017 period. From net direc-
tional spillovers, we observed that OMXH25, OMXS30, EUR and DKK are net
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return spillover transmitters for the whole time span, while others are net return
spillover receivers. Hence, we concluded that Finnish financial markets contribute
the most to return spillovers, while Swedish ones contribute the least.

The results from the dynamic volatility spillover analysis, reveal that cycles in
all markets during the turmoil periods are of similar volumes. This suggests that
the the level of uncertainty in all markets was the same during all crisis events.
Moreover, OSEAX, OMXC20 and NOK return to their pre-crisis level faster after
2013, compared to other markets. This supports our finding that Norwegian finan-
cial markets and Danish stock market are not exposed to that much of volatility
compared to others. Furthermore, EUR and DKK are the net volatility spillover
transmitters during the whole period under analysis, while NOK, OSEAX and
OMXC20 are net spillover receivers, with exception of global financial crisis peri-
ods, when the pattern inverses for all abovementioned markets.

The static frequency connectedness analysis shows that on average short-term
connectedness is rather high, compared to medium- and long-term ones for return
spillovers. However, the pattern changes for volatility spillovers. In that case
long-term connectedness prevails over short-term connectedness, while medium-
term connectedness is the lowest. Net spillover transmissions for returns show
that Swedish financial markets are net spillover receivers in short-run, while they
become net spillover givers in long-run. Other markets keep their signs the same
for all frequency bands, with OMXH25 being the highest contributor of return
spillovers in short-run, while OMXS30 is the highest in medium-and long-run
horizons. The pattern changes slightly for volatility spillovers. All stock markets
are net volatility receivers, except OMXS30, which is the highest volatility giver
in all frequency bands, followed by EUR. Moreover, Norwegian financial markets
are net spillover receivers in short- and medium-run, while NOK changes its sign
in long-run.

Dynamic frequency connectedness analysis for returns reveals that short-term con-
nectedness is rather too high compared to medium- and long-term connectedness
during the whole period under analysis. Thus, we can reject our third hypothesis,
which states that at higher frequencies the spillovers are not higher than in lower
ones. Furthermore, we documented that connectedness in all frequencies reach
their peaks during European debt crisis in 2012, rather during global financial
crisis. Even after Brexit referendum in June 2016 medium- and long-run con-
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nectdness have downward sloping trend, while short-run connectedness reaches
its second peak.

Dynamic volatility frequency connectedness analysis reveals that medium-run con-
nectedness is the lowest for the whole period under analysis, while the dominance
of short-run and long-run connectedness changes from time to time. In general
short-run connectedness dominates over long-run during calm periods, while long-
run connectedness takes over during distress periods, such as global financial crisis
mid 2008-2010, sovereign debt crisis from the end of 2011 till the mid of 2012 and
in 2015 corresponding to Black Monday in China. Moreover, during those turbu-
lent periods we documented decrease in short-run conenctedness.

Finally, we see several directions of extension of the analysis performed in this
thesis. First, similar analysis can be done using high frequency data, while we
used only daily data. This may reveal some new patterns and also will enable
to analyze asymmetric volatility spillovers. Additionally, further analysis of di-
rectional pairwise spillovers can be conducted, which will allow to examine the
sources of spillovers received by the markets in the system more deeply. Last, but
not least, more markets can be included in the analysis, such as bond markets
of the same countries or financial markets of other countries, such as US, UK or
other European or Asian country.
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Appendix

Descriptive Statistics for Level Data

Table A.1: Descriptive Statistics for Level Data

Min Mean Max S.D. Kurtosis Skewness JB-stat Ljung-Box
Q-stat

OMXH25 1093.37 2433.71 4363.30 798.48 2.27 0.41 222.65*** 35209.58***
OMXC20 169.04 506.43 1051.83 258.80 2.35 0.86 620.86*** 35387.84***
OMXS30 421.01 1060.99 1719.93 323.49 2.08 0.15 173.91*** 35297.81***
OSEAX 105.82 455.49 1028.41 214.25 2.52 0.27 96.15*** 35239.80***
EUR 0.84 1.23 1.60 0.16 2.88 -0.44 143.36*** 35141.26***
NOK 0.11 0.15 0.20 0.02 1.94 -0.12 218.45*** 35127.21***
DKK 0.11 0.17 0.21 0.02 2.89 -0.44 145.95*** 35138.12***
SEK 0.09 0.13 0.17 0.02 2.28 -0.27 150.44*** 35068.63***

Notes: JB-stat stands for Jarque-Bera statistic. For Ljung-Box test we used 8 lags. ***, **, * represent
significance level of 1%, 5%, 10%

Table A.2: Stationarity Tests for Level Data

ADF KPSS Phillips-Perron
OMXH25 -1.73 16.94*** -2.07
OMXC20 -1.91 22.35*** -2.07
OMXS30 -3.03 21.43*** -3.52
OSEAX -1.51 22.39*** -1.45
EUR -2.00 6.20*** -1.89
NOK -1.84 5.40*** -1.79
DKK -2.01 6.17*** -1.91
SEK -1.80 5.17*** -1.72

Notes: ADF, KPSS and Phillips-Perron test lag orders are selected
automatically and are 16, 15 and 10 for all series respectively. ***, **,
* represent significance level of 1%, 5%, 10% respectively.
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Full Volatility Spillover Figures

Figure A.1: Directional Volatility Spillovers TO others - Full

Source: Author’s Estimations

Figure A.2: Directional Volatility Spillovers FROM others - Full

Source: Author’s Estimations
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Figure A.3: NET Directional Volatility Spillovers - Full

Source: Author’s Estimations

Robustness Check

Figure A.4: Robustness check for returns with respect to lag length

Source: Author’s Estimations
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Figure A.5: Robustness check for RV with respect to lag length

Source: Author’s Estimations

Figure A.6: Robustness check for returns with respect to the window width, w,
and forecasting horizon, H

Source: Author’s Estimations
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Figure A.7: Robustness check for RV with respect to the window width, w, and
forecasting horizon, H

Source: Author’s Estimations
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