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Abstract: The continuum function is a function which maps every infinite cardinal κ
to 2κ. We say that a regular uncountable cardinal κ has the tree property if every κ-
tree has a cofinal branch, or equivalently if there are no κ-Aronszajn trees. We say that
a regular uncountable cardinal κ has the weak tree property if there are no special κ-
Aronszajn trees. It is known that the tree property, and the weak tree property, have
the following non-trivial effect on the continuum function: (∗) If the (weak) tree property
holds at κ++, then 2κ ≥ κ++. In this thesis we show several results which suggest that
(∗) is the only restriction which the tree property and the weak tree property put on the
continuum function in addition to the usual restrictions provable in ZFC (monotonicity
and the fact that the cofinality of 2κ must be greater than κ; let us denote these conditions
by (∗∗)). First we show that the tree property at ℵ2n for every 1 ≤ n < ω, and the weak
tree property at ℵn for 2 ≤ n < ω, does not restrict the continuum function below ℵω

more than is required by (∗), i.e. every behaviour of the continuum function below ℵω

which satisfies the conditions (∗) and (∗∗) is realisable in some generic extension. We
use infinitely many weakly compact cardinals (for the tree property) and infinitely many
Mahlo cardinals (for the weak tree property) as the optimal large cardinal assumption.
In the second result we show that the tree property at the double successor of a singular
strong limit cardinal κ with countable cofinality does not limit the size of 2κ except
for conditions (∗) and (∗∗). We use the assumption of the existence of a supercompact
cardinal with a weakly compact cardinal above it for the result. In the final result we
show that the tree property at ℵω+2 with ℵω strong limit is consistent with 2ℵω being
equal to ℵω+2+n for any prescribed 0 ≤ n < ω. We use the existence of a strong cardinal
of a suitable degree and a weakly compact cardinal above it for this result.
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Název: Stromová vlastnost a funkce kontinua
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Abstrakt: Funkce kontinua je funkce, která libovolnému nekonečnému kardinálu κ
přǐrad́ı hodnotu 2κ. Řekneme, že regulárńı nespočetný kardinál κ má stromovou vlast-
nost, jestliže každý κ-strom má kofinálńı větev, ekvivalentně, že neexistuje žádný κ-
Aronszajn̊uv strom. Obdobně definujeme, že regulárńı nespočetný kardinál κ má slabou
stromovou vlastnost, jestliže neexistuje žádný speciálńı κ-Aronszajn̊uv strom. Stromová
vlastnost a slabá stromová vlastnost maj́ı následuj́ıćı netriviálńı efekt na funkci kon-
tinua: (*) Jestliže (slabá) stromová vlastnost plat́ı na κ++, pak 2κ ≥ κ++. V této práci
se věnujeme několika výsledk̊um, které naznačuj́ı, že (*) je jediná restrikce, kterou na
funkci kontinua kladou stromová vlastnost a slabá stromová vlastnost kromě obvyklých
restrikćı dokazatelných v ZFC (monotonie a tvrzeńı, že kofinalita 2κ muśı být větš́ı než
κ; označme tyto restrikce (**)). Nejprve ukážeme, že stromová vlastnost na ℵ2n pro
každé 1 ≤ n < ω a slabá stromová vlastnost na ℵn pro 2 ≤ n < ω neovlivňuj́ı funkci
kontinua pod ℵω v́ıc, než je dáno podmı́nkami (*) a (**), tedy že každé chováńı funkce
kontinua pod ℵω, které splňuje podmı́nky (*) a (**), je realizovatelné v nějaké gener-
ické extenzi. Pro d̊ukaz stromové vlastnosti předpokládáme existenci nekonečně mnoha
slabě kompaktńıch kardinál̊u a pro d̊ukaz slabé stromové vlastnosti předpokládáme exis-
tenci nekonečně mnoha Mahlových kardinál̊u, což jsou optimálńı předpoklady vzhledem ke
konzistentńı śıle daných tvrzeńı. V daľśı části ukážeme, že stromová vlastnost na dvojitém
následńıku singulárńıho silně limitńıho kardinálu κ se spočetnou kofinalitou neovlivňuje
hodnotu 2κ kromě podmı́nek (*) a (**). Pro tento výsledek použ́ıváme předpoklad ex-
istence superkompaktńıho kardinálu κ se slabě kompaktńım kardinálem nad κ. Posledńı
výsledek ukazuje, že stromová vlastnost na ℵω+2 s ℵω silně limitńım je konzistentńı s
tvrzeńım 2ℵω = ℵω+2+n pro libovolné n, 0 ≤ n < ω. Pro d̊ukaz využ́ıváme předpoklad
existence silného kardinálu κ jistého stupně se slabě kompaktńım kardinálem nad κ.
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1 Introduction

1 Introduction

In the thesis, we study the tree property and its interaction with the continuum function.

If κ > ω is a regular uncountable cardinal, we say that κ has the tree property, and we
denote it by TP(κ), if all κ-trees have a cofinal branch.1 The tree property of κ is a
compactness property which derives its motivation from compactness of the infinitary
logic Lκ,κ for an inaccessible κ (see [48] for more details). Indeed, κ is weakly compact if
and only if κ has the tree property and it is inaccessible. The notion of the tree property
at κ is a priori weaker than weak compactness as it does not require κ to be inaccessible.
We will give more background later on (see Section 4.1), but let us state here that the
existence of κ with the tree property is equiconsistent with the existence of a weakly
compact cardinal, and that the tree property can also hold at successor cardinals greater
or equal to ℵ2.

A κ-tree T which witnesses the failure of the tree property at κ is called a κ-Aronszajn
tree, i.e. T is a κ-tree which has no cofinal branches. By results of Aronszajn and Specker
([50] and [69]), GCH ensures the existence of many counterexamples to the tree property:

(1.1) (∀κ ≥ ω) (κ<κ = κ → ¬TP(κ+)).

In particular, the tree property can never hold at ℵ1 (or at the successor of an inaccessible
cardinal). In fact, the tree constructed to witness (1.1) can be required to have the
additional property that there exists a function T → κ which is injective on the chains in
the tree ordering such trees are called special Aronszajn trees. It is consistent that special
Aronszajn trees form a strictly smaller family than the Aronszajn trees, and we therefore
introduce the notion of the weak tree property, and we denote it by wTP(κ): wTP(κ) says
that there are no special κ-Aronszajn trees. More details can be found in Section 4.1, but
let us say that the existence of κ with the weak tree property is equiconsistent with the
existence of a Mahlo cardinal.

The inequality in (1.1) generalises to the weak tree property:

(1.2) (∀κ ≥ ω) (κ<κ = κ → ¬wTP(κ+)).

In fact, the antecedent of the implication in (1.2) can be weakened to the existence of the
weak square sequence at κ (denoted □∗

κ) (see Definition 3.8 and [8] for more details):

(1.3) (∀κ > ω) (□∗
κ → ¬wTP(κ+)).

By results of Jensen [46], □∗
κ is actually equivalent to the existence of a special κ+-

Aronszajn tree, and therefore to the failure of the weak tree property.

Recall that the function which maps an infinite cardinal κ to 2κ is called the continuum
function. As is well known, the continuum function on regular cardinals can behave
very arbitrarily (see Section 3.5). While large cardinals and the singular strong limit
cardinals of uncountable cofinality do reflect the pattern of the continuum function to
smaller cardinals – and therefore restrict the freedom of the continuum function –, this
limits the arbitrariness of the continuum function on regular cardinals only modulo “large

1See Section 3.1 for definitions.
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1 Introduction

sets” (such as the stationary sets); there is no local control over the continuum function.
It is of interest to note that (1.1) does provide such control: for instance TP(ℵ2) implies
the failure of CH.

The natural question on which we focus in this thesis is the following:

(Q) Do the tree property and the weak tree property put more restrictions on the con-
tinuum function apart from (1.1) and (1.2)?

This question can in principle be approached either locally or globally, i.e. with the tree
property holding at more cardinals at the same time. That is, we may ask how TP(κ)
influences the continuum function for a fixed κ, or consider a set of regular cardinals
{κi | i ∈ I} (usually an interval) and ask about the influence of TP(κi) for all i ∈ I.

Let us note in this context that it is highly non-trivial even to obtain a model with a
large interval of regular cardinals with the tree property: while an easy modification of
the original Mitchell’s construction (see [55]; we call the forcing Mitchell forcing) yields
two successive cardinals with the weak tree property, the existence of two successive
cardinals with the tree property requires a major modification of the argument (see [1]).
We will not go into details here, but let us mention some crucial problems which make
it hard to get long intervals with the tree property: by (1.3), obtaining the weak tree
property at the successor of a singular cardinal is hard since it requires the killing of weak
square sequences (which exist in core models); and just from (1.2), obtaining the weak
tree property at the double successor of a singular strong limit cardinal requires the failure
of SCH (see Section 3.5 for more details). Importantly, dealing with these restrictions at
more cardinals at the same time complicates the matters even more: it is noteworthy that
obtaining TP(ℵ2) and TP(ℵ3) at the same time requires a much large cardinal strength
than TP(ℵ2) or TP(ℵ3) alone (see Section 4.1 and [21] for more details).

Returning to our question (Q), we provide three original results which show that the
answer to (Q) is negative in some special cases: any behaviour – consistent with (1.1) and
(1.2) – of the continuum function on the cardinals considered in our results is consistent
with the tree property (locally and globally).

The thesis is structured as follows:

Section 2 contains a brief description of the original results which we will prove in Sections
5, 6, and 7.

In Section 3 we review basic notions and give basic facts for concepts appearing in the
thesis (trees, large cardinals, forcing conventions and the forcing notions we will use, and
basic facts about the continuum function).

In Section 4 we survey the existing results related to the tree property and provide back-
ground for the tree property arguments, including a sketch of the original Mitchell argu-
ment which achieves the tree property at a single cardinal of the form κ++ where κ is
regular.

In Section 5 we answer a limited global version of (Q) and show that the continuum
function below a strong limit ℵω can be anything consistent with (1.1) and (1.2) (and the
usual restrictions which the continuum function needs to satisfy) while the tree property
holds at every even cardinal below ℵω larger than ℵ1, or the weak tree property holds at
every regular cardinal below ℵω larger than ℵ1.

9



1 Introduction

In Sections 6 and 7 we focus on a local version of (Q): in Section 6 we show that the
tree property at the double successor of a singular strong limit cardinal κ with countable
cofinality does not put any restrictions on the value of 2κ apart from (1.1). In Section 7
we follow up with the result that 2ℵω can be equal to ℵω+2+n for any n < ω with the tree
property holding at ℵω+2.

Let us end the introduction by saying that we expect that the answer to (Q) will be
negative even when more cardinals with the tree property are considered. We consider
further development and open question in Section 8.

10



2 Original results of the thesis

2 Original results of the thesis

Let us briefly introduce the results in the thesis and discuss how they relate to existing
results.

The results in Section 5, joint with Radek Honzik, were submitted as [42] and deal with
the tree property and the weak tree property at cardinals ℵn, 1 < n < ω. We show that
the tree property and the weak tree property at these cardinals do not put any restrictions
on the continuum function below ℵω apart from the trivial implication that wTP(ℵn+2)
implies 2ℵn > ℵn+1 for 0 ≤ n < ω.

A succinct statement of the theorems is as follows:

Theorem 2.1. (GCH) Assume there are infinitely many weakly compact cardinals. Let f
be a function from ω to ω which satisfies

(i) For all m, n < ω, m < n → f(m) ≤ f(n).
(ii) f(2n) ≥ 2n + 2 for all n < ω.

Then there is a model where the tree property holds at every ℵ2n, 0 < n < ω, and the
continuum function below ℵω obeys f : i.e. 2ℵn = ℵf(n) for all n < ω.

Theorem 2.2. (GCH) Assume there are infinitely many Mahlo cardinals. Let f be a
function from ω to ω which satisfies

(i) For all m, n < ω, m < n → f(m) ≤ f(n),
(ii) f(n) > n + 1 for all n < ω.

Then there is a model where the weak tree property holds at every ℵn, 1 < n < ω, and the
continuum function below ℵω obeys f : i.e. 2ℵn = ℵf(n) for all n < ω.

Theorem 2.1 is based on the construction in [26, Section 5] – which just ensures 2ℵm =
ℵm+2, 0 ≤ m < ω, and the tree property at ℵ2n, 0 < n < ω –, and adds extra forcings to
control the continuum function. Similarly, Theorem 2.2 builds on the proof in Unger [74]
and adds extra forcings to control the continuum function while ensuring the weak tree
property at every ℵn, 1 < n < ω. In both cases we used the product of Cohen forcings at
relevant cardinals, and computed that their presence will not destroy the tree property
ensured by the rest of the forcing.

The results in Section 6, joint with Sy-David Friedman and Radek Honzik, were submitted
as [27] and focus on the tree property at the double successor of a singular strong limit
cardinal κ with countable cofinality.

A succinct statement of the theorem is as follows:

Theorem 2.3. Assume GCH and let κ be a Laver-indestructible supercompact cardinal,
λ a weakly compact cardinal and µ a cardinal of cofinality greater than κ such that κ <
λ < µ. Then there is a forcing notion R such that the following hold:

(i) R preserves cardinals ≤ κ+ and ≥ λ.
(ii) V [R] |= (κ++ = λ & 2κ = µ & cf(κ) = ω & κ is strong limit).

(iii) V [R] |= TP(λ).

Theorem 2.3 generalises the construction in [10] in which Cummings and Foreman ob-
tained a singular strong limit cardinal with countable cofinality with 2κ = κ++ and

11



2 Original results of the thesis

TP(κ++), starting with a Laver-indestructible supercompact κ. We modify their original
forcing – which integrates Prikry forcing with Mitchell forcing – by adding more Cohen
subsets of κ to control the continuum function at κ so that 2κ = µ for any µ ≥ λ of
cofinality greater than κ. This modification required substantial changes in the argument
built as it is on reflecting Prikry forcing defined after adding λ-many Cohen subsets of κ:
we add µ-many subsets of κ, with µ > λ, and therefore the reflection is more complicated.

In Section 7, submitted as [28] and joint with Sy-David Friedman and Radek Honzik, we
bring the cardinal κ in Theorem 2.3 down to ℵω. The method of the proof is different
from [10] and [27]: we do not integrate Prikry forcing with collapses into Mitchell forcing,
but force with Prikry forcing after Mitchell forcing.2 Also, as the value of 2ℵω cannot be
arbitrarily high (see Section 3.5), we only achieve an arbitrary finite gap. It is an open
question whether we can achieve an infinite gap.

A succinct statement of the theorem is as follows:

Theorem 2.4. Suppose GCH holds in the universe. Assume n is a natural number,
2 ≤ n < ω, κ < λ are cardinals such that λ is the least weakly compact cardinal above κ,
and κ is H(λ+n−2)-strong. Then there is a forcing extension where the following hold:

(i) κ = ℵω is strong limit;
(ii) 2ℵω = ℵω+n;

(iii) TP(ℵω+2).

2 This modification is necessary: the original method does not work since λ (the weakly compact
cardinal above κ) must be first collapsed to κ++, and only then Prikry forcing with collapses can be used.

12



3 Preliminaries 3.1 Trees

3 Preliminaries

The purpose of this section is to introduce basic definitions and facts which are used later
in the text. Our notation is standard (see [44] or [48]).

3.1 Trees

In this section we introduce the notion of a tree and state some related facts.

Definition 3.1. We say that a set T with an ordering <T is a tree if for all t ∈ T the set
{s ∈ T | s <T t} is well-ordered by <T .

Let T be a tree. We say that S ⊆ T is a subtree of T in the induced ordering <S= <T ↾S
if for all s ∈ S and all t ∈ T :

(3.1) if t <T s then t ∈ S.

Definition 3.2. Let T be a tree.

(i) For t ∈ T , the height of t in T is defined by ht(t, T ) = ot({s ∈ T | s <T t}), where
ot(x) is the order-type of a set x (with an understood wellordering on x).

(ii) For an ordinal α, the α-th level of T is defined by Tα = {t ∈ T | ht(t) = α}.
(iii) The height of T , denoted by ht(T ), is the least ordinal α such that the level Tα is

empty.
(iv) For an ordinal α < ht(T ), the subtree T ↾α is defined by T ↾α =

⋃
β<α Tβ.

In this thesis, we deal with trees which are thin in the sense that their levels have size
smaller than the height of the tree.

Definition 3.3. For an infinite regular cardinal κ, we say that a tree T is a κ-tree if it
has height κ and all levels of T have size less than κ.

Let T be a tree. We say that b ⊆ T is a branch if it is a maximal chain in T ; if b is
moreover cofinal in the height of the tree, we say that b is a cofinal branch.

By a result of König, all ℵ0-trees have cofinal branches, and by results of Aronszajn
mentioned in [50] there are trees on ℵ1 which do not have cofinal branches. As we will
discuss later on, a related question for larger cardinals is independent of ZFC (modulo
large cardinals).

Definition 3.4. Let κ be a regular cardinal. We say that a κ-tree T is a κ-Aronszajn
tree if it has no cofinal branches.

We define a useful strengthening of the notion of an Aronszajn tree for a successor cardinal.

Definition 3.5. Let κ be an infinite cardinal. We say that a κ+-Aronszajn tree T is
special if it is an union of κ many antichains, where A ⊆ T is an antichain if all distinct
elements of A are pairwise incomparable in <T .

The notion of a special tree has several equivalent definitions. It is easy to see that our
definition is equivalent to requiring that there exists a function f from T to κ which

13



3 Preliminaries 3.1 Trees

is injective on chains in T . An argument due to Jensen [46] shows that the existence
of a special κ+-tree is equivalent to the existence of the so called weak square □∗

κ (see
Definition 3.8, and Cummings [8] for more details).3

If there are no κ-Aronszajn trees, we may view κ as having a certain form of compactness
for κ-trees: all κ trees are compact in the sense that having branches of all heights below
κ implies that there is a cofinal branch.

Definition 3.6. Let κ be an uncountable regular cardinal. We say that κ has the tree
property if there are no κ-Aronszajn trees, or equivalently every κ-tree has a cofinal branch.
We write TP(κ) if κ has the tree property.

Let us now introduce a related notion for the special trees at κ+. As we mentioned above,
the fact that there are no special κ+-trees is equivalent to the failure of □∗

κ, so strictly
speaking no new terminology is needed. However, we find it useful to formulate the notion
with the direct reference to trees. Before we give the definition of the weak tree property
let us for completeness give the definitions of the square principle and the weak square
principle.

Definition 3.7. Assume κ is an uncountable cardinal. The square principle □κ holds if
there is a sequence ⟨Cα | α < κ+, α a limit ordinal⟩ such as every Cα is a club subset of α,
the odertype of Cα is at most κ, and for all α, Cβ = Cα ∩ β whenever β is a limit point
of Cα.

The weak square principle □∗
κ allows us up to κ many guesses at α:

Definition 3.8. Assume κ is an uncountable cardinal. □∗
κ holds if there is a sequence

⟨C⃗α | α < κ+, α a limit ordinal⟩ such that C⃗α is a family of at most κ many club subsets
of α, the ordertype of each C ∈ C⃗α is at most κ, and for every α and every C ∈ C⃗α,
C ∩ β ∈ C⃗β whenever β is a limit point of C.

The following concept is a weaker case of the tree property:

Definition 3.9. Let κ be an infinite cardinal. We say that κ+ has the weak tree property
if there are no special κ+-Aronszajn trees. We write wTP(κ) if κ has the weak tree
property.

Notice that the difference between the tree property and the weak tree property is quite
substantial: being a κ-Aronszajn tree is Π1

1 over H(κ), while being a special κ-Aronszajn
tree is just Σ1

1 over H(κ). This distinction contributes to the difference between the
consistency strengths of these principles, especially at successive cardinals (see Section
4.1 for more details).

As we already mentioned (see [8]):

Fact 3.10. For all uncountable κ,

□∗
κ ↔ ¬wTP(κ+).

3There is a generalisation of the square principle which can be formulated for regular and limit cardinals
κ, and this generalisation leads naturally to the notion of a special κ-tree for a limit and regular κ. See
[71] for more details.
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3 Preliminaries 3.2 Large cardinals

For completness we give here the definition of a Suslin tree even though it is not the main
interest of this thesis.

Definition 3.11. Let κ be a regular cardinal. We say that a κ-Aronszajn tree T is a
κ-Suslin tree if it has no antichain of size κ.

Notice that the notions of a κ+-special Aronszajn tree and κ+-Suslin tree are mutually
exclusive: no κ+-tree T can be simultaneously Suslin and special. Also note that if above
every node t in T there are two distinct nodes s, s′ in T , then having no antichain of size
κ already implies that T has no cofinal branch.

3.2 Large cardinals

In this section we list definitions and elementary facts about large cardinals related to
this thesis. For definitions of other large cardinals and more details about them, see [48]
or [44].

Definition 3.12. We say that an uncountable cardinal κ is weakly inaccessible if it is
regular and limit. We say that it is (strongly) inaccessible if moreover, for all λ < κ,
2λ < κ.

Note that under GCH, the notions of a weakly inaccessible and an inaccessible cardinal
coincide.

Definition 3.13. We say that an uncountable cardinal κ is Mahlo if it is inaccessible and
the set of all regular cardinals below κ is stationary in κ.

Mahloness is a natural strengthening of inaccessibility. It is easy to show that the set of
inaccessible cardinals below a Mahlo cardinal κ is stationary below κ.

A strengthening of Mahloness is weak compactness. Originally, the definition of a weakly
compact cardinal was arrived at by generalising the compactness property of the classical
first-order logic to a certain infinitary logic. In this sense, κ is weakly compact if and only
if the relevant infinitary logic is compact. For more details about the original definition
consult [48]. We present here two definitions of weak compactness which are equivalent
to the original one and are used extensively throughout the text.

Definition 3.14. We say that an uncountable cardinal κ is weakly compact if it is inac-
cessible and all κ-tree has a cofinal branch, i.e. the tree property holds at κ.

Before we state the following fact, recall that if j : M → N is an elementary embedding
from a transitive class M to a transitive class N , then κ ∈ M is called the critical point
of j if κ is the first ordinal moved by j, i.e. j is the identity below κ and j(κ) > κ.

Fact 3.15. The following are equivalent for an uncountable cardinal κ:

(i) κ is weakly compact.
(ii) For every transitive set M with size κ, κ ∈ M and <κM ⊆ M there is an elementary

embedding j : M → N with critical point κ, where N is transitive with size κ and
<κN ⊆ N .

15



3 Preliminaries 3.2 Large cardinals

Weakly compact cardinals are relatively small in the sense that they are consistent with
V = L. With the next large cardinals, we move to cardinals which imply V ̸= L.

Definition 3.16. We say that an uncountable cardinal κ is measurable if there is a
non-principal κ-complete ultrafilter on κ.

Notice that an ultrafilter U on κ naturally defines a two-valued measure on subsets of κ:
a set X ⊆ κ gets measure 1 if and only if X ∈ U . For this reason, an ultrafilter is often
called a measure.

Fact 3.17. The following are equivalent for an uncountable cardinal κ:

(i) κ is measurable.
(ii) There is an elementary embedding j with critical point κ from V into a transitive

class M .

It is easy to see that if j : V → M is as above, then H(κ+) is always included in M . By
a strengthening of this property of j we get the definition of a H(µ)-strong cardinal.

Definition 3.18. We say that an uncountable cardinal κ is H(µ)-strong, where µ is a
cardinal greater than κ, if there is an elementary embedding j : V → M with critical
point κ from V into a transitive class M such that j(κ) > µ and H(µ) ⊆ M .

Remark 3.19. This concept is called by many different names in literature. Suppose
λ is κ++ for simplicity and that 2κ = κ+ holds:4 then a H(κ++)-strong cardinal in our
definition is called Vκ+2-strong in [48], and Vκ+2-hypermeasurable in [7]. Furthermore, in
our paper [28] we use the term H(µ)-hypermeasurable in place of H(µ)-strong.

It is often useful to have witnessing embeddings j : V → M which provide more informa-
tion about M .

Definition 3.20. Let κ < µ be infinite cardinals. We say that an embedding j : V → M
with critical point κ is a (κ, µ)-extender embedding if and only if

(3.2) M = {j(f)(α) | f : κ → V & α < µ}.

Strong cardinals are witnessed by extender embeddings with some additional properties:

Fact 3.21. Assume GCH and let κ < µ be infinite cardinals, with µ having cofinality
greater than κ. If κ is H(µ)-strong, then there is a (κ, µ)-extender embedding j : V → M
which satisfies the following:

(i) µ < j(κ) < µ+,
(ii) κM ⊆ M ,

(iii) H(µ) ⊆ M .

In the context of the tree property, it is useful to define the following slightly technical
notion (it is used for instance in [22]).

4With 2κ = κ+, Vκ+2 is logically equivalent to H(κ++) in the sense that H(κ++) is included in M if
and only if Vκ+2 is included M .
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3 Preliminaries 3.2 Large cardinals

Definition 3.22. We say that an uncountable cardinal κ is weakly compact strong if there
is a weakly compact cardinal λ above κ and an elementary embedding j with critical point
κ from V into a transitive class M such that j(κ) > λ, H(λ) ⊆ M and λ is a weakly
compact cardinal in M .

Let us add that it is relatively consistent that there exists a weakly compact strong
cardinal κ witnessed by a (κ, λ)-extender embedding j with λ < j(κ) < λ+, where λ > κ
is the least weakly compact cardinal above κ: For instance start with an H(λ+)-strong
cardinal κ witnessed by j∗ : V → M∗ (in M∗, λ is clearly the least weakly compact
cardinal above κ) and factor j∗ so that j∗ = k ◦ j, where j : V → M is the desired
embedding (note that by elementarity and the fact that k(λ) = λ, λ is still the least
weakly compact cardinal in M above κ).

For more details regarding the notion of an extender, and extender embeddings, please
see [9].

We shall briefly review a weakening of the notion of a strong cardinal which is important
as it provides an exact consistency strength for certain questions concerning the failure of
GCH at a measurable cardinal, or the failure of GCH at a singular strong limit cardinal.

If U and W are two normal measures at κ, let us write U <M W if U is an element of
the ultrapower generated by W (we call <M the Mitchell order). It can be shown that
<M is well-founded and may be used to assign to κ its Mitchell order o(κ) which is at
most (2κ)+. For our purposes we just mention that if GCH holds and κ is H(κ++)-strong,
then o(κ) = κ++. The Mitchell order can be generalised to extenders – combinatorial
objects which are used to construct extender embeddings in Definition 3.20 (see [48] for
more details). We will not give many details, just say that in this generalised order o(κ)
is not limited to (2κ)+, and in particular if κ is H(κ+n)-strong for some 2 ≤ n < ω and
GCH holds, then o(κ) = κ+n. It can be shown that the exact consistency strength of a
measurable cardinal κ with 2κ = κ+n, 2 ≤ n < ω, is exactly o(κ) = κ+n (see [33] for more
details).

The difference between o(κ) = κ+n and H(κ+n)-strongness is not very big and is related
to the notion of a tall cardinal. If κ < λ are cardinals, we say that κ is λ-tall if there is
an embedding j : V → M with critical point κ such that λ < j(κ) and M is closed under
κ-sequences in V . It can be showed that for 2 ≤ n < ω, o(κ) = κ+n is equiconsistent with
the existence of a κ+n-tall cardinal κ (see [33] for more details).

Finally we move to the largest cardinal in our thesis.

Definition 3.23. We say that an uncountable cardinal κ is λ-supercompact, where λ > κ
is a cardinal, if there is an elementary embedding j with critical point κ from V into a
transitive class M such that j(κ) > λ and λM ⊆ M .

Notice that the extra strength comes from the important property that M is closed under
λ-sequences in the universe.

Supercompact cardinals are useful because they can be made “indestructible” in the
following sense: As was shown by Laver [51], whenever κ is supercompact, there si a
forcing L of size κ such that in the resulting generic extension, κ remains supercompact
in any further forcing extension by a forcing which is κ-directed closed (where P is κ-
directed closed if for every D ⊆ P of size less than κ, if for all p1, p2 in D there is
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e ∈ D such that e ≤ p1 and e ≤ p2, then there is p ∈ P, with p ≤ d for all d ∈ D).
The forcing L is called the Laver preparation, and the supercompact κ in V [L] is called
Laver-indestructible.

3.3 Forcing

In this section we review some basic facts about forcing and fix notational conventions.
The general reference is Jech’s book [44]; the treatment of the iteration of forcing notions
follows Baumgartner’s paper [4].

3.3.1 Basic conventions

A forcing notion is a partially ordered set (P, ≤) with the greatest element which we
denote 1P . To simplify notation, we will often write P instead of (P, ≤) if the ordering is
clear from the context.

A condition p is stronger then q, in symbols p ≤ q, if it carries more informations. We say
that two condition p and q are compatible, in symbols p∥q, if there is an element of the
ordering such that it is below both p and q. We say that they are incompatible, if they
are not compatible and we denote this by p⊥q. We say that A ⊆ P is an antichain if all
distinct p, q in A are incompatible; an antichain is maximal if every p in P is compatible
with some element in A.

If (P, ≤) is a forcing notion, we write V [P ] to denote a generic extension by P if the
concrete generic filter is not important. Sometimes we write P ⊩ φ in place of 1P ⊩ φ.

We say that (P, ≤) is separative if p ≰ q implies that there is some r ≤ p which is
incompatible with q. Note that if (P, ≤) is separative, then p ≤ q is equivalent to p
forcing q into the generic filter.

A forcing notion is said to be non-trivial if below every condition there are two incom-
patible extensions. Otherwise a forcing notion is called trivial. Note that if (P, ≤) is
non-trivial, then a P -generic filter cannot be an element of the universe.

Recall that if (Q, ≤Q) is a partial order, then we can find a complete Boolean algebra,
(RO(Q), ≤RO(Q)), and a dense embedding (see Definition 3.34) i from Q to RO+(Q) =
{b ∈ RO(Q) | b > 0RO(Q)}. The algebra RO(Q) is unique up to isomorphism. If (Q, ≤Q)
is in addition separative, then the mapping i is 1-1 and therefore it is an isomorphism
between Q and some dense subset of RO+(Q). The uniqueness of the Boolean completion
can be used to define a natural notion of the forcing equivalence of forcing notions:

Definition 3.24. We say that two forcing notions (P, ≤P ) and (Q, ≤Q) are forcing equiv-
alent if their Boolean completions are isomorphic.

See Section 3.3.3 for more information about forcing equivalence and related notions.

To obtain all generic extensions it suffices to consider only separative orders. If (P, ≤)
is not separative, then it has a separative quotient which is forcing equivalent to P . For
more details about separative quotients see [44].

Now we define the notion of a lottery sum of forcing notions to provide some counterex-
amples in Section 3.3.3. The concept of a “sum” of forcing notions has been around for a
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long time; for more details see [38].

Definition 3.25. Let {Pi | i ∈ I} be an indexed set of forcing notions (Pi, ≤Pi). We
define the lottery

(3.3)
⨁

{Pi | i ∈ I}

as a forcing notion as follows: The underlying set is equal to {(i, p) | p ∈ Pi & i ∈ I}∪{1},
where 1 is not an element of

⋃
{Pi | i ∈ I}, and the ordering is such that 1 is the greatest

element, and (i, p) ≤ (j, q) ↔ i = j and p ≤Pi q.

The intuition is that a
⨁

{Pi | i ∈ I}-generic first chooses a forcing notion to force with,
and then forces with it.

Finally, we define Cohen forcing at a regular cardinal κ because we will use it to illustrate
certain concepts in the following sections. More forcing notions will be defined in Section
3.4.

Definition 3.26. Let κ be a regular cardinal and α > 0 an ordinal. The Cohen forcing
at κ of length α, denoted by Add(κ, α), is the set of all partial functions from κ × α to 2
of size less than κ. The ordering is by reverse inclusion, i.e. p ≤ q ↔ q ⊆ p.

Cohen forcing at κ is κ-closed, and if κ<κ = κ, then it is also κ+-Knaster (see Definition
3.27).

3.3.2 Basic properties of forcing notions

In this section we review some basic properties which we will use in the thesis.

Definition 3.27. Let P be a forcing notion and let κ > ℵ0 be a regular cardinal. We say
that P is:

• κ-cc if every antichain of P has size less than κ (we say that P is ccc if it is ℵ1-cc).

• κ-Knaster if for every X ⊆ P with |X| = κ there is Y ⊆ X, such that |Y | = κ and
all elements of Y are pairwise compatible.

• κ-closed if every decreasing sequence of conditions in P of size less than κ has a
lower bound.

• κ-distributive if P does not add new sequences of ordinals of length less than κ.

It is easy to check that all these properties – except for the κ-closure – are invariant
under forcing equivalence. Regarding the closure, note that for every non-trivial forcing
notion P which is κ-closed there exists a forcing-equivalent forcing notion which is not
even ℵ1-closed (the completion RO+(P ) is never ℵ1-closed).

Lemma 3.28. Let κ > ℵ0 be a regular cardinal and assume that P is a forcing notion
and Q̇ is a P -name for a forcing notion. Then the following hold:

(i) P is κ-closed and P forces Q̇ is κ-closed if and only if P ∗ Q̇ is κ-closed.
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(ii) P is κ-distributive and P forces Q̇ is κ-distributive if and only if P ∗ Q̇ is κ-
distributive.

(iii) P is κ-cc and P forces Q̇ is κ-cc if and only if P ∗ Q̇ is κ-cc.

Proof. The proofs are routine; for more details see [44] or [49]. □

An analogous statement (iii) for the Knaster property is not in general true: it may
happen that P ∗ Q̇ is κ-Knaster, yet P does not force that Q̇ is κ-Knaster. Consider the
following example: Assume MA (Martin’s Axiom) and let Q̇ be an Add(ℵ0, 1)-name for
the ℵ1-Suslin tree added by Add(ℵ0, 1) (see Jech [44] for details). Then Add(ℵ0, 1) ∗ Q̇ is
ccc by previous lemma (iii) and as we assume MA, all ccc forcing notions are ℵ1-Knaster.
Therefore Add(ℵ0, 1) ∗ Q̇ is ℵ1-Knaster, but Add(ℵ0, 1) forces that Q̇ is not ℵ1-Knaster.

If Q is in the ground model, P ∗ Q̌ is equivalent to P ×Q. We state some properties which
the product forcing has with respect to the chain condition.

Lemma 3.29. Let κ > ℵ0 be a regular cardinal and assume that P and Q are forcing
notions. Then the following hold:

(i) If P and Q are κ-Knaster, then P × Q is κ-Knaster.
(ii) If P is κ-Knaster and Q is κ-cc, then P × Q is κ-cc.

Proof. The proofs are routine using only combinatorial arguments (a forcing argument
is not required). □

Note that in general Lemma 3.29 cannot be strengthen to say that the product of two
κ-cc forcing notions is κ-cc (consider for instance a Suslin tree T at ℵ1 as a forcing notion;
then T is ℵ1-cc, but T × T has an antichain of size ℵ1).

The following lemma summarises some of the more important forcing properties of a
product P × Q regarding the chain condition.

Lemma 3.30. Let κ > ℵ0 be a regular cardinal and assume that P and Q are forcing
notions such that P is κ-Knaster and Q is κ-cc. Then the following holds:

(i) P forces that Q is κ-cc.
(ii) Q forces that P is κ-Knaster.

Proof. (i). This is easy consequence of Lemmas 3.28(iii) and 3.29(ii).

(ii). We follow the argument from [6], attributed to Magidor. Let q ∈ Q be a condition
which forces that {ṗα | α < κ} is a subset of P of size κ. For each α choose qα ≤ q which
decides the value of ṗα and denote this value by pα. Now, by the κ-Knasterness of P ,
there is A ⊆ κ of size κ such that all conditions in {pα | α ∈ A} are pairwise compatible.

To conclude the proof it suffices to show that there is qα which forces that B = {β ∈
A | qβ ∈ Ġ} is unbounded in A. Then if G is a generic filter which contain qα, the set
{pα | α ∈ B} is a subset of {ṗG

α | α < κ} of size κ and consists of pairwise compatible
conditions.

For contradiction assume that there is no such α. It means that for each α ∈ A we can
find q∗

α ≤ qα and γα > α such that for all β ≥ γα

(3.4) q∗
α ⊩ qβ /∈ Ġ.
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In particular q∗
α is incompatible with all qβ, β ≥ γα and therefore also with all q∗

β, β ≥ γα.
Now, it is easy to construct an unbounded subset A∗ of A such that all conditions in
{q∗

α | α ∈ A∗} are pairwise incompatible. This contradicts the assumption that Q is κ-cc.
□

Now we mention some properties of the product of two forcing notions with respect to
preservation of κ-distributivity and κ-closure. If P and Q are two κ-distributive forcing
notions, then the product P × Q does not have to be κ-distributive. Again consider a
Suslin tree T at ℵ1 as a forcing notion; T is ℵ1-distributive (see Jech [44] for the details),
but T × T may collapse ℵ1 if T is homogeneous (see [17] for the details) and therefore it
is not ℵ1-distributive. However, if at least one of P and Q is κ-closed, then the product
is κ-distributive. Moreover, if both P and Q are κ-closed then their product is κ-closed.

The following lemma summarises some of the more important properties of the product
P × Q regarding the distributivity and closure.

Lemma 3.31. Let κ > ℵ0 be a regular cardinal and assume that P and Q are forcing
notions, where P is κ-closed and Q is κ-distributive. Then the following hold:

(i) P forces that Q is κ-distributive.
(ii) Q forces that P is κ-closed.

Proof. The proof is routine. □

We can also formulate some results for the product of two forcing notions with respect
to preservation of the chain condition and distributivity at the same time. The following
lemma appeared in [18].

Lemma 3.32. (Easton) Let κ > ℵ0 be a regular cardinal and assume that P and Q are
forcing notions, where P is κ-cc and Q is κ-closed. Then the following hold:

(i) P forces that Q is κ-distributive.
(ii) Q forces that P is κ-cc.

Proof. For the proof of (i), see [44, Lemma 15.19], (ii) is easy. □

Note that in the previous lemma, we cannot strengthen the condition (i) to get κ-closure
(for instance if P = Add(ℵ0, 1) and Q = Add(ℵ1, 1), then it is easy to check that Q is not
ℵ1-closed in V [P ]).

Easton’s lemma 3.32 can be generalised in many ways. Let us state one such generalisation
which combines the chain condition and distributivity in a more complicated way (it is
probably folklore but we have not found a proof so we give one for the benefit of the
reader).5

Lemma 3.33. Let κ > ℵ0 be a regular cardinal, let P , R, S be forcing notions and let
Q̇ be a P -name for a forcing notion. Assume that P × R is κ-cc and P forces that Q̇ is
κ-closed. If S is κ-closed, then (P ∗ Q̇) × R forces that S is κ-distributive.

Proof. Let use denote (P ∗ Q̇) × R by Z. Assume for simplicity that the greatest
condition in Z × S forces that ḟ : κ′ → ORD is a function in V [Z][S] for some fixed

5We intend to use this lemma in a paper under preparation (it is not used for the results in this thesis).
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κ′ < κ and some name ḟ . We will find a stronger condition which will force that this
function is already in V [Z]. As ḟ is arbitrary, this will prove the lemma.

By induction in V , we construct for each α < κ′ sequences wα = ⟨((pα
β , q̇α

β ), rα
β , sα

β) | β <
γα < κ⟩, of conditions in Z × S with the following properties:

(i) For each β < γα, wα
β = ((pα

β , q̇α
β ), rα

β , sα
β) decides the value of ḟ(α).

(ii) 1P forces that ⟨q̇α
β | β < γα⟩ is a decreasing sequence of conditions in Q̇.

(iii) The set {(pα
β , rα

β ) | β < γα} is a maximal antichain in P × R.
(iv) ⟨sα

β | β < γα⟩ forms a decreasing sequence in S.

and for α′, α < α′ < κ′:

(v) 1P forces that q̇α′
0 is below each q̇α

β , β < γα.
(vi) sα′

0 is below each sα
β , β < γα.

We first construct the sequence w0 by induction, ensuring as we go the conditions (i)–
(iv) above. Choose w0

0 = ((p0
0, q̇0

0), r0
0, s0

0) so that it decides the value of ḟ(0). Suppose
w0

β has been constructed for every β < γ; we describe the construction of w0
γ . If γ is a

limit ordinal, first take the lower bound of q̇0
β (denote it q̇′) and the lower bound of s0

β

(denote it s′), β < γ. This is possible by condition (ii) and (iv), respectively and from the
assumption that Q̇ is forced to be κ-closed and S is κ-closed. If γ is a successor cardinal
δ + 1, work with q̇0

δ as q̇′ and s0
δ as s′.

If possible, choose a condition ((p, q̇), r, s) such that p forces that q̇ is below q̇′, s is below
s′, (p, r) is incompatible with all the previous elements (p0

β, r0
β), β < γ , and crucially

((p, q̇), r, s) decides the value of ḟ(0). In more detail, if possible first pick any (p′, r′)
incompatible with all the previous pairs (p0

β, r0
β), β < γ. Then using the forcing theorem

there must be and extension of ((p′, q̇′), r′, s′) which decides the value of ḟ(0). We denote
this extension ((p, q̇), r, s) (note that p ⊩ q̇ ≤ q̇′). Set w0

γ = ((p, q̇′′), r, s), where q̇′′ is a
name which interprets as q̇ below the condition p, and interprets as q̇′ below conditions
incompatible with p.

If this is not possible, set γ0 = γ. Note that γ0 < κ since P × R is κ-cc.

The construction of wα for α < κ′ proceeds analogously, while ensuring the conditions
(v)–(vi).

By the κ-closure of Q̇ and S, we can take a single limit of all the conditions appearing in
the sequences wα at the coordinates of Q̇ and S – denote these limits q̇ and s, respectively.
Let G × F be any Z × S-generic containing ((1P , q̇), 1R, s). We want to argue that we can
define ḟG×F already in V [G]. Let α < κ be fixed. By the construction there is a unique
pair (pα

β , rα
β ) such that ((pα

β , q̇α
β ), rα

β ) is in G. This follows from the construction of the
sequences wα as we ensured that {(pα

β , rα
β ) | β < γα} is a maximal antichain in P × R by

condition (iii). Working in V [G], we can define the right value of ḟ(α) as the value which
is forced by ((pα

β , q̇α
β ), rα

β , s). □

3.3.3 Comparing forcing notions

In this section we state some facts concerning the comparison of forcing notions. To our
knowledge, many of these facts have not been written up in detail in literature, so we
include their proofs for the benefit of the reader. The books [49] and [2] are a general
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reference for this section.

For the purposes of this section, we assume (unless we say otherwise) that our forcing
notions are non-trivial and separative.

Recall that we say that (P, ≤P ) and (Q, ≤Q) are forcing equivalent if their Boolean com-
pletions are isomorphic (Definition 3.24).

It is easy to see that forcing-equivalence implies the following weaker property:6

(∗) for every P -generic G over V there exists a Q-generic H over V in V [G]
such that V [G] = V [H], and conversely.

In this section we will discuss several concepts related to the relationship between two forc-
ing notions (P, ≤P ) and (Q, ≤Q); these concepts will be formulated in terms of existence
of certain functions from P to Q (and conversely) and also in terms of model-theoretic
conditions which are weakenings of the condition (∗).

Definition 3.34. We say that a function i : P → Q between partial orders (P, ≤P ) and
(Q, ≤Q) is a dense embedding if it is order-preserving, i(p) ⊥ i(p′) whenever p ⊥ p′, and
the range of i is dense in Q.

It is easy to check that the existence of a dense embedding implies forcing equivalence.

Definition 3.35. We say that a function π : P → Q between (P, ≤P ) and (Q, ≤Q) is a
projection if it is order-preserving, π(1P ) = 1Q, and

(3.5) for all p ∈ P and all q ≤Q π(p) there is p′ ≤P p such that π(p′) ≤Q q.7

Let π be as above and fix a P -generic filter G. If D ⊆ Q is open dense in Q then π−1”D is
open dense in P and it is easy to see that π”G generates a Q-generic filter. Let us denote
this generic filter by H. The forcing P can be decomposed into a two-step iteration of Q
followed by a quotient forcing P/H defined as follows:

(3.6) P/H = {p ∈ P | π(p) ∈ H}.

Now, it holds that G is a P/H-generic filter over V [H] and V [G] = V [H][G], where in
the first model G is taken as a P -generic filter over V and in second as a P/H-generic
filter over V [H].

The converse holds as well. If we first take a Q-generic filter H over V and then a P/H-
generic filter G over V [H], then G is a P -generic filter over V and moreover the generic
filter H is generated by π”G.

Definition 3.36. We say that a function i : Q → P between partial orders (Q, ≤Q) and
(P, ≤P ) is a complete embedding if it is order-preserving, i(q)⊥ i(q′) whenever q ⊥q′ and

(3.7) for all p ∈ P there is q ∈ Q such that for all q′ ≤ q, i(q′)∥p.

6If P is any forcing notion, then the lottery sum of κ-many copies of P , where κ ≥ (2|P |)+, yields a
non-equivalent forcing notion which however satisfies the model-theoretic condition (∗).

7Note that the condition π(1P ) = 1Q together with (3.5) ensures that the range of π is dense in Q.
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Analogues of facts mentioned for projections following Definition 3.35 hold also for com-
plete embeddings. Let i be as in the definition above and fix a P -generic filter G. If
D ⊆ Q is predense in Q then i”D is predense in P and i−1”G is a Q-generic filter. Let
us denote this generic filter by H and in V [H] define a quotient forcing as follows:

(3.8) P/H = {p ∈ P | ∀q ∈ H(p∥ i(q))}.

Then G is a P/H-generic filter over V [H] and V [G] = V [H][G], where in the first model
G is taken as a P -generic over V and in second as a P/H-generic over V [H].

The converse direction holds as well. If we first take a Q-generic filter H over V and
define the quotient forcing P/H and then take a P/H-generic filter G over V [H], then G
is P -generic over V and moreover the generic filter H is equal to i−1”G.

Remark 3.37. In general, the quotient forcings (3.6) and (3.8) of two separative forcings
do not have to be separative. Consider the following easy example using Cohen forcing
Add(κ, α) (see Definition 3.26). Let κ be a regular cardinal and 0 < β < α be ordinals.
Then it is easy to see that π from Add(κ, α) to Add(κ, β) defined by π(p) = p↾(κ × β) is
a projection. Let G be an Add(κ, β)-generic filter over V . Then

(3.9) Add(κ, α)/G = {p ∈ Add(κ, α) | p↾(κ × β) ∈ G}.

It follows that all conditions in Add(κ, β) which are in G are in Add(κ, α)/G and each
condition p in the quotient Add(κ, β) is compatible with all conditions in G. Thus two ar-
bitrary conditions q0 ̸= q1 in G witness that Add(κ, α)/G is not separative. The argument
can be modified for complete embeddings as well.

Complete embeddings have the following equivalent – and often more useful – character-
isation.

Definition 3.38. We say that a function i : Q → P between partial orders (Q, ≤Q) and
(P, ≤P ) is a regular embedding if it is order-preserving, i(q) ⊥ i(q′) whenever q ⊥ q′, and
i”A is a maximal antichain in P , whenever A is maximal in Q.

Lemma 3.39. Let (Q, ≤Q) and (P, ≤P ) be two partial orders. Then a function i from Q
to P is a complete embedding if and only if it is a regular embedding.

Proof. Assume that i is a complete embedding between Q and P . Let A ⊆ Q be a
maximal antichain and p in P be given. We will show that there is a ∈ A such that
i(a)∥p, hence i”A is maximal. As p is in P there is q ∈ Q such that for all q′ ≤ q, i(q′)∥p
by (3.7). Since A is maximal in Q, there is a ∈ A such that a ∥ q, hence there is q′ ≤ q
such that q′ ≤ a. Therefore i(q′) ≤ i(a) and i(q′)∥p. Hence i(a)∥p.

For the converse direction assume that i is a regular embedding between Q and P . Let
p in P be given and assume for contradiction that for all q ∈ Q there is q′ ≤ q such that
i(q′)⊥p. Then the set

(3.10) D = {q ∈ Q | i(q)⊥p}

is dense in Q. Let A ⊆ D be a maximal antichain, then by the definition of a regular
embedding i”A is maximal in P , hence there exists a ∈ A such that i(a) ∥ p. This is a
contradiction as a is also in D and therefore i(a)⊥p. □
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It would be tempting to claim that a projection from (P, ≤P ) to (Q, ≤Q) ensures the
existence of a complete embedding from (Q, ≤Q) to (P, ≤P ) and conversely. But in general
we need to use the Boolean completions of P and Q.

Lemma 3.40. Let (Q, ≤Q) and (P, ≤P ) be two partial orders. Then the following hold:

(i) If there is a complete embedding from Q to P , then there is a projection from P to
RO+(Q).

(ii) If there is a projection from P to Q, then there is a complete embedding from Q to
RO+(P ).

Proof. (i). Let i be a complete embedding from Q to P . Let us define a function π from
P to RO+(Q) by

(3.11) π(p) =
⋁

{q ∈ Q | ∀q′ ≤ q(i(q′)∥p)}.

First note that π is defined correctly for all p ∈ P by (3.7). Moreover, for all q in Q it
holds:

(3.12) π(i(q)) = q.

To verify (3.12) denote Qp = {q ∈ Q | ∀q′ ≤ q (i(q′) ∥ p)} for p ∈ P . To show that
π(i(q)) ≤ q, note that for q∗ ∈ Qi(q) it holds that q∗ is below q, otherwise there exists
q′ ≤ q∗, which is incompatible with q, by separativity of Q. However, as i is a complete
embedding, it holds i(q′) ⊥ i(q), which is a contradiction with the assumption that q∗ is
in Qi(q). On the other hand, for every q′ ≤ q it holds that i(q′) ≤ i(q). Therefore q is in
Qi(q).

The function π is a projection. The order preservation follows since Qp′ ⊆ Qp whenever
p′ ≤ p. Since all conditions are compatible with the weakest condition 1RO+(Q), π(1P ) =
1RO+(Q).

Assume that b < π(p) (if b = π(p) the condition (3.5) is satisfied trivially). Since π(p) =⋁
{q ∈ Q | ∀q′ ≤ q (i(q′) ∥ p)}, there is q ∈ Q such that q ≤ b and i(q) is compatible with

p. Hence there is p∗ ∈ P below both i(q) and p. The rest now follows as π(p∗) ≤ π(i(q))
and π(i(q)) = q by (3.12).

(ii). Let π be a projection from P to Q. Let us define a function i from Q to RO+(P ) by

(3.13) i(q) =
⋁

{p ∈ P | π(p) ≤ q}.

First note that i is defined correctly for all q ∈ Q as π is dense. We will show that the
function i is a complete embedding. Clearly, i is order preserving as {p ∈ P | π(p) ≤ q′} ⊆
{p ∈ P | π(p) ≤ q} whenever q′ ≤ q. Assume that i(q) ∥ i(q′) for q, q′ ∈ Q we will show
that q ∥q′. As we work with a complete Boolean algebra, i(q)∥ i(q′) is equivalent to:

(3.14) i(q) ∧ i(q′) =
⋁

{p ∧ p′ | π(p) ≤ q & π(p′) ≤ q′} ≠ 0RO+(P ).

Therefore there are p and p′ in P such that p ∧ p′ ̸= 0RO+(P ), π(p) ≤ q and π(p′) ≤ q′. By
density of P in RO+(P ), there is p∗ ∈ P below p ∧ p′ and as π is order preserving π(p∗)
is below both q and q′.

To conclude that i is a complete embedding, it suffices by Lemma 3.39 to verify that
the image of a maximal antichain is maximal. Let A be a maximal antichain in Q, and
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p ∈ P be given (it is enough to consider elements of P as P is dense in RO+(P )). As
A is maximal, there is a ∈ A such that a and π(p) are compatible. Hence there is
q ∈ Q which is below a and π(p). By (3.5), there is p′ ≤ p, such that π(p′) ≤ q. Since
i(a) =

⋁
{p ∈ P | π(p) ≤ q} and π(p′) ≤ q, we conclude p′ ≤ i(a). Therefore the antichain

i”A is maximal. □

A natural method for obtaining projections between (P, ≤P ) and (Q, ≤Q) is model-
theoretic: it suffices to show that every generic extension V [G], where G is P -generic,
contains a Q-generic filter H.

Lemma 3.41. Let (P, ≤P ) and (Q, ≤Q) be two partial orders. Assume that for every
P -generic filter G over V , there is in V [G] a Q-generic filter over V . Let Ḣ be a P -name
such that 1P ⊩ “Ḣ is a RO+(Q)-generic filter”.8 Then the following hold:

(i) Define π : P → RO+(Q) by

(3.15) π(p) =
⋀

{b ∈ RO+(Q) | p ⊩ b ∈ Ḣ}.

Set bQ = π(1P ) =
⋀

{b ∈ RO+(Q) | 1P ⊩ b ∈ Ḣ}. Let RO+(Q)↾bQ denote the partial
order {b ∈ RO+(Q) | b ≤ bQ}. Then

(3.16) π : P → RO+(Q)↾bQ is a projection.

(ii) Moreover, π can be defined just using −Q = {−q | q ∈ Q}:

(3.17) π(p) =
⋀

{−q | q ∈ Q & p ⊩ −q ∈ Ḣ} =
⋀

{−q | q ∈ Q & p ⊩ q ̸∈ Ḣ}.

Proof. (i). First, we argue that π is well defined, i.e. π(p) > 0RO(Q) for all p ∈ P . To
see this, denote:

(3.18) Hp = {b ∈ RO+(Q) | p ⊩ b ∈ Ḣ}.

If π(p) =
⋀

Hp = 0RO+(Q), then D = {b ∈ RO+(Q) | ∃h ∈ Hp(h⊥b)} is dense. Therefore if
G contain p, then Hp ⊆ H = ḢG and also H ∩D ̸= ∅, hence H contains two incompatible
elements. This is a contradiction with the assumption that Ḣ is forced to be an RO+(Q)-
generic filter by P .

Notice also that π(p) =
⋀

Hp = a is forced by p into Ḣ: Consider the following dense set:

(3.19) D = {b ∈ RO+(b) | b ≤ a ∨ ∃h ∈ Hp(h⊥b)}.

If G contains p, but H does not contain a, then H must meet D in some element incom-
patible with some element in Hp. This is a contradiction. Therefore p forces π(p) into
Ḣ.

Now, we show that π is a projection. The preservation of the ordering is easy. We check
the condition (3.5), i.e. for every p ∈ P and every c ≤ π(p), there is p′ ≤ p such that
π(p′) ≤ c. Let p and c be given. If c = π(p), we are trivially done. So suppose c < π(p).
If for every p′ ≤ p, p′ ̸⊩ c ∈ Ḣ, then p ⊩ π(p) − c ∈ Ḣ, which contradicts the fact that

8Notice that π defined below depends on the specific name Ḣ we choose.
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π(p) is the infimum of Hp = {b ∈ RO+(Q) | p ⊩ b ∈ Ḣ}. It follows that there is some
p′ ≤ p, p′ ⊩ c ∈ Ḣ. Then π(p′) ≤ c as required.

(ii). Let p be fixed and let ap denote
⋀

{−q | q ∈ Q & p ⊩ −q ∈ Ḣ}. We wish to show that
π(p) as in (3.15) is equal to ap. Clearly π(p) ≤ ap. For the converse first notice that

(3.20) π(p) =
⋀

{−q | q ∈ Q & π(p) ≤ −q}.

This follows from the fact that each element b of RO+(Q) can be expressed as a supremum
of elements of Q which are below b. Let as denote {−q | q ∈ Q & π(p) ≤ −q} by −Qp. To
conclude the prove it is enough to show that −Qp is a subset of {−q | q ∈ Q & p ⊩ −q ∈
Ḣ}, i.e. to prove that if π(p) ≤ −q then p ⊩ −q ∈ Ḣ. However, we already prove that p
forces π(p) into Ḣ, therefore if −q ≥ π(p) then p ⊩ −q ∈ Ḣ. □

Lemma 3.42. Let (P, ≤P ) and (Q, ≤Q) be two partial orders. Assume that for every P -
generic filter G over V , there is in V [G] a Q-generic filter over V . Let Ḣ be a RO+(P )-
name such that 1RO+(P ) ⊩ “Ḣ is a RO+(Q)-generic filter”.9 Then the following hold:

(i) Define i : RO+(Q) → RO+(P ) by

(3.21) i(b) =
⋁

{a ∈ RO+(P ) | a ⊩ b ∈ Ḣ}.

Set bQ =
⋀

{b ∈ RO+(Q) | 1RO+(P ) ⊩ b ∈ Ḣ}. Let RO+(Q) ↾ bQ denote the partial
order {b ∈ RO+(Q) | b ≤ bQ}. Then

(3.22) i : RO+(Q)↾bQ → RO+(P ) is a complete embedding,

where (3.21) implies i(bQ) = 1RO+(P ).
(ii) Let Q↾bQ denote the partial order (Q ∩ RO+(Q)↾bQ) ∪ {bQ}. Then i′ = i↾ (Q↾bQ)

from Q↾bQ to RO+(P ) is a complete embedding.
(iii) Moreover, i′ can be defined using only the conditions in P :

(3.23) i′(q) =
⋁

{p ∈ P | p ⊩ q ∈ Ḣ}.

Proof. (i). First notice that i is correctly defined below bQ, i.e. for b ≤ bQ the set
{a ∈ RO+(P ) | a ⊩ b ∈ Ḣ} is nonempty. Let us denote this set by RO+(P )b. If b = bQ

then i(b) = 1RO+(P ) by density argument as in (3.19). Assume that b < bQ. If RO+(P )b

is empty then there is no a ∈ RO+(P ), a ⊩ b ∈ Ḣ, i.e. 1RO+(P ) ⊩ b /∈ Ḣ. Then 1RO+(P )
forces −b ∧ bQ to be in Ḣ and this is a contradiction as we defined bQ to be the infimum
of the conditions in RO+(Q) which are forced into Ḣ by 1RO+(P ).

Further notice that i(b) forces b into Ḣ. If not, then there is a below i(b) which forces
that b is not in Ḣ but as a is below i(b) =

⋁
{a ∈ RO+(P ) | a ⊩ b ∈ Ḣ}, there is a0 ≤ a

which forces b into Ḣ. This is a contradiction.

If b ≤ b′, then every a ∈ RO+(P ) which forces b ∈ Ḣ, forces b′ in Ḣ as well, since
Ḣ is forced to be a generic filter, therefore i is order preserving. The preservation of
incompatibility is easy, as compatible conditions cannot force two incompatible conditions
into a filter.

9Notice that i defined below depends on the specific name Ḣ we choose.
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To finish the proof, it suffices by Lemma 3.39 to show that the image of a maximal
antichan is maximal. Let A be a maximal antichain in RO+(Q) and let b in RO+(P ) be
given. As A is a maximal antichain and Ḣ is forced to be a generic filter, there has to be
a ∈ A and b′ ≤ b such that b′ ⊩ a ∈ Ḣ. But since i(a) =

⋁
{b ∈ RO+(P ) | b ⊩ a ∈ Ḣ},

b′ ≤ i(a) and hence b∥ i(a); therefore i”A is maximal.

(ii) This follows from Lemma 3.45(i).

(iii). Let q be fixed and let aq denote
⋁

{p ∈ P | p ⊩ q ∈ Ḣ}. We show that i′(q) as
in (3.21) is equal to aq. Clearly aq ≤ i′(q). For the converse, as i′(q) is an element of
RO+(P ) and P is dense in RO+(P ), i′(q) =

⋁
{p ∈ P | p ≤ i′(q)}; but all conditions below

i′(q) have to force q in Ḣ, and therefore i′(q) ≤ aq. □

Remark 3.43. Note that in the previous two lemmas, Lemma 3.41 and Lemma 3.42, we
cannot in general require π(1P ) = 1RO+(Q) or i(1Q) = 1RO+(P ), respectively. Consider
the lottery sum of Add(ℵ0, 1) and Add(ℵ1, 1). It is easy to see that every Add(ℵ0, 1)-
generic filter adds a generic filter for the lottery but only below a condition which chooses
Add(ℵ0, 1).

We conclude this section by further facts about projections and complete embeddings.

Lemma 3.44. Assume (P, ≤P ) and (Q, ≤Q) are partial orders and π : P → Q is a
projection.

(i) If P ′ is dense in P , then π ↾P ′ : P ′ → Q is a projection.
(ii) (a) If P is dense in P ′, then there is π′ ⊇ π such that π′ : P ′ → RO+(Q) is a

projection.
(b) If P ′ is forcing equivalent with P . Then there is a projection π′ : P ′ → RO+(Q).

(iii) Let Ṙ be a P -name for a forcing notion. Then π naturally extends to a projection
π′ : P ∗ Ṙ → Q.

Proof. (i). Obvious.

(ii)(a). For p′ ∈ P ′ define

(3.24) π′(p′) =
⋁

{π(p) | p ∈ P & p ≤ p′}.

By density of P in P ′, {π(p) | p ≤ p′} is non-empty for every p′ and therefore π′(p′) is in
RO+(Q) . If p′ ≤ q′ are in P ′, then clearly π′(p′) ≤ π′(q′). Suppose p′ ∈ P ′ is arbitrary
and b ≤ π′(p′). By the definition of π′(p), there is b′ ≤ b such that for some p ≤ p′, p ∈ P ,
b′ ≤ π(p). It follows there is some q ≤ p ≤ p′, q ∈ P , such that π(q) = π′(q) ≤ b′ ≤ b as
desired.

(ii)(b). As P is dense in RO+(P ), by the previous item there is a projection π∗ from
RO+(P ) to RO+(Q). Since P ′ is forcing equivalent to P , P ′ is dense in RO+(P ), and
π′ = π∗ ↾P ′ is a projection from P ′ to RO+(Q) by (i).

(iii). Define

(3.25) π′(p, ṙ) = π(p),

for every (p, ṙ) in P ∗Ṙ. If (p1, ṙ1) ≤ (p2, ṙ2), then in particular p1 ≤ p2, and so π′(p1, ṙ1) ≤
π′(p2, ṙ2) because π is order-preserving. If (p, ṙ) is arbitrary and b ≤ π′(p, ṙ) = π(p),
then since π is a projection, there is p′ ≤ p such that π(p′) ≤ b. Since (p′, ṙ) ≤ (p, ṙ),
π′(p′, ṙ) ≤ b is as required. □
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Lemma 3.45. Assume (P, ≤P ) and (Q, ≤Q) are partial orders and i : Q → P is a
complete embedding.

(i) If Q′ is dense in Q, then i↾Q′ : Q′ → P is a complete embedding.
(ii) (a) If Q is dense in Q′, then there is i′ ⊇ i such that i′ : Q′ → RO+(P ) is a complete

embedding.
(b) If Q′ is forcing equivalent with Q, then there is a complete embedding i′ : Q′ →

RO+(P ).
(iii) Let Ṙ be a P -name for a forcing notion. Then i naturally extends to a complete

embedding i′ : Q → P ∗ Ṙ.

Proof. (i). Obvious.

(ii)(a). For q′ ∈ Q′ define

(3.26) i′(q′) =
⋁

{i(q) | q ∈ Q & q ≤ q′}.

By density of Q in Q′, {i(q) | q ≤ q′} is non-empty for every q′ and therefore i′(q′) is in
RO+(P ) . If q′

0 ≤ q′
1 in Q′, then clearly i′(q′

0) ≤ i′(q′
1).

Assume that i′(q′
0) is compatible with i′(q′

1), then

(3.27) i′(q′
0) ∧ i′(q′

1) =
⋁

{i(q0) ∧ i(q1) | q0, q1 ∈ Q & q0 ≤ q′
0 & q1 ≤ q′

1} ≠ 0RO(P ).

Therefore there are q0 ≤ q′
0 and q1 ≤ q′

1 such that i(q0) and i(q1) are compatible. By the
definition of complete embedding, q0 is compatible with q1. Hence q′

0 ∥q′
1, as q0 ≤ q′

1 and
q1 ≤ q′

1.

Suppose b ∈ RO+(P ) is arbitrary. Then there is p ∈ P , p ≤ b, by density of P in RO+(P ).
Therefore there is q ∈ Q so that for all q∗ ∈ Q such that q∗ ≤ q, i(q∗) is compatible with
p, hence with b. Now, we need to show that for all q′ ∈ Q′ such that q′ ≤ q, i′(q′) is
compatible with b. Let q′ ≤ q, q′ ∈ Q′, be given and denote Qq′ = {i(q) | q ∈ Q & q ≤ q′}
so that i′(q′) =

⋁
Qq′ . As all conditions in Qq′ are compatible with b, and so is i′(q′).

(ii)(b). By (a) and the fact that Q is dense in RO+(Q) we conclude that there is a complete
embedding i∗ from RO+(Q) to RO+(P ). Since Q′ is forcing equivalent to Q, Q′ is dense
in RO+(Q), hence i′ = i∗ ↾Q′ is a complete embedding from Q′ to RO+(P ) by (i).

(iii). Define

(3.28) i′(q) = (i(q), 1Ṙ).

If q0 ≤ q1, then i′(q0) = (i(q0), 1Ṙ) ≤ (i(q1), 1Ṙ) = i′(q1) because i is order-preserving.
The same argument holds for the preservation of incompatibility. Let (p, ṙ) is arbitrary.
Then there is q ∈ Q such that for all q′ ≤ q, i(q′)∥p and therefore for all q′ ≤ q, i′(q′) is
compatible with (p, ṙ). □

3.4 Forcing notions used in the thesis

Apart from the usual Cohen forcing (see Definition 3.26), we also use Mitchell forcing
(in several variants) and Prikry forcing (with and without interleaved collapses). In this
section we briefly review their definitions and basic properties.
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3.4.1 Mitchell forcing

Mitchell forcing was first defined by Mitchell in [55]. The presentation of Mitchell forcing,
which we use in this thesis, was introduced by Abraham in [1]. In this section we review
the basic properties and state several facts which will be used in the thesis. All proofs
can be found in [1].

Before we define Mitchell forcing, let us fix the following convention: if p is a condition
in Add(κ, α) and β < α, let p↾β denote the restriction of p to Add(κ, β).

Definition 3.46. Let κ be a regular cardinal and λ > κ an inaccessible cardinal. Mitchell
forcing at κ of length λ, denoted by M(κ, λ), is the set of all pairs (p, q) such that p is in
Cohen forcing Add(κ, λ) and q is a function with dom(q) ⊆ λ of size at most κ and for
every β ∈ dom(q), it holds:

(3.29) 1Add(κ,β) ⊩ q(β) ∈ ˙Add(κ+, 1),

where ˙Add(κ+, 1) is the canonical Add(κ, β)-name for Cohen forcing at κ+.

A condition (p, q) is stronger than (p′, q′) if

(i) p ≤ p′,
(ii) dom(q) ⊇ dom(q′) and for every β ∈ dom(q′), p↾β ⊩ q(β) ≤ q′(β).

Assuming that κ<κ = κ and λ > κ is an inaccessible cardinal, Mitchell forcing M(κ, λ) is
λ-Knaster and κ-closed. Moreover, it collapses the cardinals in the open interval (κ+, λ)
to κ+ and forces 2κ = λ = κ++. The preservation of the cardinals (in particular of κ+) is
shown by means of the product analysis due to Abraham [1].

Let T be defined as follows:

(3.30) T = {(∅, q) | (∅, q) ∈ M(κ, λ)}.

The ordering on T is the one induced from M(κ, λ). It is clear that T is κ+-closed in V .
We will call T the term forcing (of Mitchell forcing).

It is is easy to see that the function

(3.31) π : Add(κ, λ) × T → M(κ, λ)

which maps (p, (∅, q)) to (p, q) is a projection. Since the product Add(κ, λ) ×T preserves
κ+, so does the forcing M(κ, λ). Another consequence of this product analysis (i.e. of
the existence of the projection π) is that M(κ, λ) is forcing-equivalent to Add(κ, λ) ∗ Q̇M,
where Q̇M is a forcing notion which is forced to be κ+-distributive.

There are natural projections from Mitchell forcing of length λ to Mitchell forcings of
shorter lengths and a projection to Cohen forcing Add(κ, λ). For the first claim, define a
function σλ,α from M(κ, λ) to M(κ, α), where α is an ordinal between κ and λ, as follows:
σλ,α((p, q)) = (p ↾ α, q ↾ α). For the second claim, define a function ρ from M(κ, λ) to
Add(κ, λ) by ρ((p, q)) = p. It is easy to see that σλ,α and ρ are projections.

Remark 3.47. Notice that the term forcing T collapses the cardinals between κ+ and
λ: Suppose κ<κ = κ and λ is inaccessible. As T is κ+-closed, Cohen forcing Add(κ, λ) is
still κ+-Knaster and κ-closed in V [T]. In particular, it does not collapse cardinals over
V [T] (so it must be T which collapses the cardinals).
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The term forcing analysis carries over to quotients given by the projection σλ,α whenever
α is an inaccessible cardinal between κ and λ. Let Gα be an M(κ, α)-generic filter and
define in V [Gα] the quotient M(κ, λ)/Gα as follows:

(3.32) M(κ, λ)/Gα = {(p, q) ∈ M(κ, λ) | (p↾α, q ↾α) ∈ Gα}.

Regarding this quotient, we can now analogously define the term forcing Tα in V [Gα]:

(3.33) Tα = {(∅, q) | (∅, q) ∈ M(κ, λ)/Gα}.

And also a function πα from Add(κ, λ − α) ×Tα to M(κ, λ)/Gα by πα((p, (∅, q))) = (p, q).

Fact 3.48. Let α be inaccessible and Gα an M(κ, α)-generic filter. Then in V [Gα] the
following hold:

(i) πα is a projection from Add(κ, λ − α) × Tα to M(κ, λ)/Gα.
(ii) Tα is κ+-closed in V [Gα].

Using these facts, one can show the following:

Theorem 3.49. (Mitchell) Assume κ<κ = κ. If λ is a weakly compact cardinal, then
M(κ, λ) forces the tree property at λ = κ++; if λ is just a Mahlo cardinal, M(κ, λ) forces
the weak tree property at λ = κ++.

For completeness, consider the quotient of Add(κ, λ)×T after M(κ, λ). Let G be M(κ, λ)-
generic. We define

(3.34) QT = (Add(κ, λ) × T)/G = {(p, (∅, q)) ∈ Add(κ, λ) × T | (p, q) ∈ G}.

Assuming κ<κ = κ and 2κ = κ+, QT adds a special λ-Aronszajn tree: As M(κ, λ) ∗ Q̇T
is forcing equivalent to Add(κ, λ) × T, it suffices to show that the latter forcing adds a
special λ-Aronszajn tree. Since T is κ+-closed, it still holds in the generic extension by
T that 2κ = κ+; it also holds that λ = κ++ by Remark 3.47. Therefore in V [T] there
exists a special λ-Aronszajn tree T , and the forcing Add(κ, λ) is λ-Knaster. By Fact 4.3,
it follows that Add(κ, λ) does not add cofinal branches to the tree T ; therefore T is a
special λ-Aronszajn tree in V [T][Add(κ, λ)].

Remark 3.50. Note that the generic for the Cohen part of QT is already added by the
M(κ, λ)-generic G; therefore the forcing QT is forcing equivalent over V [G] to the forcing
poset {(∅, q) ∈ T | (∅, q) ∈ G}.

The following lemma summarises the preservation of the chain conditions and distribu-
tivity by Mitchell forcing.

Lemma 3.51. Assume κ ≥ ℵ0 is regular and λ > κ is inaccessible. Assume P is κ+-cc,
Q is κ+-closed and R is κ+-Knaster. Then the following holds:

(i) P × M(κ, λ) forces that Q is κ+-distributive.
(ii) Q × M(κ, λ) forces that P is κ+-cc.

(iii) R × M(κ, λ) forces that P is κ+-cc.
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Proof. (i). Let Add(κ, λ)×T be the product forcing which projects onto M(κ, λ), where T
is the κ+-closed term forcing. The product T×Q is κ+-distributive over V [P ×Add(κ, λ)]
by Easton’s lemma 3.32, and thus

(3.35) all κ-sequences of ordinals in V [P × Add(κ, λ) × T × Q]
are already in V [P × Add(κ, λ)].

There is a natural projection

(3.36) π : P × Add(κ, λ) × T × Q → P × M(κ, λ) × Q.

If there were a condition r in P × M(κ, λ) × Q forcing a counterexample to the κ+-
distributivity of Q over V [P ×M(κ, λ)], one could pick a generic filter F for P ×Add(κ, λ)×
T × Q such that for some r′ ∈ F , π(r′) ≤ r. In V [F ], the κ-sequence of ordinals forced
by r to violate the κ+-distributivity would contradict (3.35).

(ii) and (iii). It suffices to argue that P is κ+-cc in the generic extension by Q×Add(κ, λ)×
T for (ii), and R × Add(κ, λ) ×T for (iii). This is easy to show using the Easton’s lemma
3.32. Note that the assumption of Knasterness for R ensures that R × Add(κ, λ) is still
κ+-Knaster. □

3.4.2 Prikry forcing

Prikry forcing was devised by Prikry [58] and is used to add a cofinal ω-sequence of
ordinals to a measurable cardinal κ, without adding any bounded subset of κ or collaps-
ing any cardinals. It is a robust forcing which does not require any cardinal-arithmetic
assumptions (besides the measurability of κ) to behave properly.
Definition 3.52. Let κ be a measurable cardinal and U a normal ultrafilter on κ. Prikry
forcing at κ, denoted by PrkU (κ), is the set of all pairs (s, A) such that

(i) s is a finite subset of κ;
(ii) A ∈ U ;
(iii) min(A) > max(s).

The ordering is defined by (s, A) ≤ (t, B) if

(i) s is an end-extension of t;
(ii) A ⊆ B;
(iii) s \ t ⊆ B.

We say that (s, A) directly extends (t, B), and write it as

(3.37) (s, A) ≤∗ (t, B)

if (s, A) ≤ (t, B) and s = t.

Prikry forcing PrkU (κ) satisfies the following important property (Prikry property): If φ
is a sentence in the forcing language and (s, A) is a condition, then there exists a direct
extension (s, B) ≤∗ (s, A) which decides φ.

Prikry forcing PrkU (κ) is κ+-Knaster since all conditions with the same s are compatible.
The forcing is not even ℵ1-closed in ≤, but it is κ-closed in the ordering ≤∗. The closure
of ≤∗ together with the Prikry property ensures that no bounded subsets of κ are added,
and therefore all cardinals (and cofinalities) below κ are preserved.
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3.4.3 Prikry forcing with collapses

Prikry forcing PrkU (κ) defined in the previous section changes the cofinality of a large
cardinal κ to ω. Prikry forcing with collapses, which we define now, collapses κ to become
ℵω.

Let us recall the following collapsing forcing notions:

Definition 3.53. Let κ be a regular cardinal and λ > κ a cardinal. The collapse forcing,
denoted by Coll(κ, λ), is the set of all partial functions from κ to λ of size less than κ.
The ordering is by reverse inclusion, i.e. p ≤ q ↔ q ⊆ p.

Notice that Coll(κ, κ) is equivalent to Add(κ, 1). Coll(κ, λ) is κ-closed, and if λ<κ = λ,
the size of Coll(κ, λ) is λ. In particular, under GCH, Coll(κ, λ) collapses λ to κ (and
preserves all other cardinals).

Definition 3.54. Let κ be a regular cardinal and λ > κ a cardinal. Lévy collapse, denoted
by Coll(κ, < λ), is the set of all partial functions p from λ × κ to λ of size less than κ
such that p(α, β) < α for every (α, β) ∈ dom(p). The ordering is by reverse inclusion, i.e.
p ≤ q ↔ q ⊆ p.

If λ is inaccessible, Coll(κ, < λ) is λ-cc and preserves λ so that λ becomes the successor
of κ in the generic extension. Coll(κ, <λ) is equivalent to the product of Coll(κ, |α|) for
α < λ with support of size less than κ.

Prikry forcing with collapses PrkCol(U, Gg) which we define next can be described as
follows: it simultaneously adds an ω-sequence cofinal in κ, and collapses all but finitely
many cardinals between the points in the ω-sequence, ensuring κ = ℵω in the generic
extension. It is important that the two tasks (adding an ω-sequence and collapsing) are
performed at the same time; it is known that performing them one by one may to lead to
collapsing (see [41] for more details).

Prikry forcing with collapses was introduced in [31]. Our presentation follows [31].

Definition 3.55. Let κ be a measurable cardinal, U a normal measure at κ, and jU :
V → M the ultrapower embedding generated by U . Prikry forcing with collapses, denoted
by PrkCol(U, Gg), is determined by U and a “guiding generic” Gg, which is a Coll(κ+k, <
j(κ))M -generic filter over M , for some natural number 1 < k < ω.

A condition r = (s, F, H) in PrkCol(U, Gg) is defined as follows:

(i) s is a finite sequence of the form (f0, α1, . . . , αm−1, fm−1), where the αi’s are inac-
cessible cardinals below κ (we call s the lower part);

(ii) αi < αj for i < j < m;
(iii) f0 ∈ Coll(ℵ0, < α1) and fi ∈ Coll(α+k

i , < αi+1) for 0 < i < m − 1 and fm−1 ∈
Coll(α+k

m−1, <κ);
(iv) A ∈ U and min(A) > αm−1;
(v) F is a function defined on A such that F (α) ∈ Coll(α+k, <κ) (α inaccessible);
(vi) [F ]U , the equivalence class of F in M , is in Gg.

The ordering is defined by ((f0, ..., αm−1, fm−1), A, F ) ≤ ((h0, ..., βn−1, hn−1), B, H) if

(i) n ≤ m;
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(ii) f0 ≤ h0, and αi = βi and fi ≤ hi for 0 < i < n (note this implies βn−1 < αn if
m − 1 ≥ n);

(iii) A ⊆ B;
(iv) αi ∈ B for n ≤ i < m;
(v) F (α) ≤ H(α) for α ∈ A;
(vi) fi ≤ H(αi) for n ≤ i < m.

If n = m in the definition above, we say that the first condition directly extends the
second condition. Notice that unlike in PrkU (κ), the direction extension may change the
elements in the lower part s by strengthening the collapsing conditions.

The forcing satisfies the Prikry condition: any sentence in the forcing language is decided
by a direct extension (this crucially uses the fact that Gg is a generic filter over M).

PrkCol(U, Gg) is κ+-Knaster because all elements in Gg are compatible, and so the com-
patibility is determined by the lower part. A product-like analysis and the Prikry property
are used to show that below κ only the cardinals explicitly collapsed by PrkCol(U, Gg)
are collapsed.

3.5 The continuum function

One of the motivations of our research is to study the continuum function – the function
which maps κ to 2κ – with respect to large-cardinal properties. In this section we briefly
review some basic facts regarding the continuum function.

The behaviour of the continuum function differs at regular and singular cardinals. It is
known that at regular cardinals the continuum function is very easily changed by forcing,
as was shown by Easton [18].

Definition 3.56. We say that a proper class function F from regular cardinals to cardi-
nals is an Easton function if for all κ and λ it holds:

(i) κ < λ → F (κ) ≤ F (λ);
(ii) cf(F (κ)) > κ.

Note that the continuum function satisfies the requirements of the Easton function with
F (κ) = 2κ. By the following theorem, the conditions (i) and (ii) of Definition 3.56 are
the only restrictions which ZFC puts to the continuum function on regular cardinals.

Theorem 3.57. (Easton [18]) Let M be a countable transitive model of ZFC + GCH and
let F be a definable Easton function10 in M . Then there is cofinality-preserving generic
extension M [G] of M , where the Easton function F is the continuum function on regular
cardinals, i.e. for all regular cardinals κ ∈ M [G]:

(3.38) M [G] |= F (κ) = 2κ.

The situation for singular cardinals is quite different. It is known that ZFC puts non-trivial
restrictions on the values of 2κ for singular κ. The following result of Silver appeared in
[64].

10The definability is not essential; but a more careful formulation must be used to avoid this assumption.
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Theorem 3.58. (Silver) Let κ be a singular cardinal with an uncountable cofinality. If
2α = α+ for stationarily many cardinals α below κ, then 2κ = κ+.

The assumption of the uncountable cofinality is necessary in Silver’s theorem. Already ℵω

can be the first cardinal where the GCH fails under some large cardinal assumptions (see
Gitik [31]). However, there are some non-trivial bounds on 2ℵω in ZFC: by a remarkable
result of Shelah (see [62]), if ℵω is strong limit, then 2ℵω is strictly less than the minimum
of ℵ(2ℵ0 )+ and ℵω4 .

The restrictions on the continuum function on a singular cardinal κ with uncountable
cofinality are similar to restrictions which large cardinals put on the continuum function:
an easy argument shows that if κ is a measurable cardinal and GCH holds on a set in
some normal measure on κ, then GCH holds at κ (notice the subtle difference: in Silver’s
theorem we have a stationary set while for the measurable cardinal we have a measure-one
set). More details regarding the continuum function and large cardinals can be found in
[24].

For the results in our thesis (Sections 6 and 7) it is relevant to consider the following
statement (∗)n whose consistency strength provides a lower bound for the results in our
thesis:

(∗)n There is a singular strong limit cardinal µ of countable cofinality such that 2µ = µ+n,
where 2 ≤ n < ω.

Notice that (∗)n implies the failure of GCH at κ; since κ is a singular strong limit cardinal,
we may also say that (∗)n implies the failure of SCH – the Singular Cardinal Hypothesis
– a weakening of GCH formulated only for singular cardinals and which says that if κ is
a strong limit singular cardinal, then 2κ = κ+.11

(∗)n is equiconsistent with the existence of a large cardinal κ with the Mitchell order
o(κ) = κ+n (see [31, 32, 33] and Section 3.2 for more details). We will work with the
stronger assumptions of the existence of a supercompact cardinal (Section 6), and of a
strong cardinal κ of an appropriate degree (Section 7). More precisely, in Section 7 we will
start with an H(λ+n)-strong cardinal κ, where λ is the least weakly compact cardinals
above κ and 1 ≤ n < ω. While the assumption of H(λ+n)-strongness is not optimal, it
is quite close to being optimal, and is certainly much weaker than supercompactness (see
[30] for more details regarding the exact consistency strength of the tree property at the
double successor of a singular strong limit cardinal).

Remark 3.59. Let us add that the assumption of supercompactness in Section 6 may
be weakened to a strong cardinal of an appropriate degree by methods in Section 7 at the
price of a more complicated argument.12 In fact, the assumption of strongness may be
further weakened and formulated in terms of tall cardinals of an appropriate degree (but
this would still be not optimal according to [30], so we will not give details). See Section
4.1 for more details regarding the background for the tree property.

11SCH may also be formulated for singular cardinals which are not strong limit; see [44] for more details.
12While a supercompact cardinal κ can be made indestructible with GCH still holding above and at κ

by [51], the analogous construction in Section 7 (see [40] for more details) non-trivially enlarges the size of
2κ+

destroying the strong-limitness of the weakly compact cardinal λ (see Section 7.3.1 for more details).
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4 Background information on the tree property

In Section 4.1 we briefly review the existing results on the tree property. In Section 4.2
we discuss “branch lemmas” which mention properties which are useful when showing
that certain forcings do not add branches to trees. The typical use of these lemmas is
illustrated in Section 4.3 with a brief review of the basic construction (due to Mitchell)
which ensures the tree property at ℵ2.

4.1 The tree property at successor cardinals

The first construction which showed that it is consistent to have the tree property at a
successor cardinal is due to Mitchell [55].13 Starting with regular cardinals ω ≤ κ < λ,
Mitchell found a forcing notion which does the following: with GCH, it collapses cardinals
in the interval (κ+, λ) (and no other cardinals), and whenever λ is Mahlo, then the weak
tree property holds at 2κ = λ = κ++, and whenever λ is weakly compact, then the tree
property holds at 2κ = λ = κ++. It is important for further development to notice that
κ itself is regular, and so Mitchell’s construction achieves the tree property at a double
successor of a regular cardinal – thus leaving aside successors of singulars, and double
successor of singulars. The large cardinal assumptions are optimal in the sense that if
the tree property holds at some κ, then κ is weakly compact in L, and if the weak tree
property holds at κ, then κ is Mahlo in L. Mitchell [55] gives an argument that the weak
tree property can be forced at two successive cardinals, such as ℵ2 and ℵ3, starting with
just two Mahlo cardinals. He left it open whether it is consistent to have the tree property
at two successive cardinals.

Abraham [1] solved the question by finding a forcing notion which ensures the tree prop-
erty at ℵ2 and ℵ3, with 2ℵ0 = ℵ2 and 2ℵ1 = ℵ3. Abraham started with a supercompact
cardinal and a weakly compact cardinal above it. While the assumption might seem
too strong at the first glance,14 the paper gives an argument (due to Magidor) that two
weakly compact cardinals certainly do not suffice since having the tree property at suc-
cessive cardinals implies the existence of 0♯. This lower bound was later improved to the
level of Woodin cardinals (see [21] for more details).

Another development was the result of Cummings and Foreman [10] who generalised
Abraham’s construction and obtained a model where the tree property holds at every
ℵn for 1 < n < ω, and 2ℵm = ℵm+2 for 0 ≤ m < ω (and GCH elsewhere). They left
open whether one can extend the interval of cardinals with the tree property further, in
particular to include ℵω+1 and ℵω+2.

We will leave ℵω+1 aside for a moment and focus on ℵω+2. Since ℵω is strong limit in
the model in [10] and GCH holds at ℵω, the tree property necessarily fails at ℵω+2. In
the second part of [10] (attributed to Foreman), they give an argument which shows how
to get the tree property at κ++ for a strong limit singular κ with countable cofinality
(starting with a supercompact κ and a weakly compact above it). They also claim that
their construction generalises to collapse κ to ℵω, and ensure the tree property at ℵω+2.
However, they provided no argument, and in hindsight it does not seem that an easy

13The modern presentation of Mitchell’s forcing is due to Abraham [1], and it is the one we use in this
thesis (see Section 3.4.1 for more details about Mitchell forcing).

14It is used only once to lift an embedding using a master condition argument.
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modification of their argument for κ++ with the tree property generalises to ℵω+2: The
problem is that Prikry forcing with collapses prevents the use of the type of forcing
they used in [10].15 Today, there are four different arguments available for the tree
property at ℵω+2 (to our knowledge): the first one is the construction of Friedman and
Halilović [22], followed by Gitik’s construction in [30], the construction in [15] due to
Cummings and others, and our present construction (see Theorem 2.4). The construction
in [22] is completely different from the argument of Cummings and Foreman in [10]:
first, it uses just a weakly compact strong cardinal, and second it uses Sacks iteration
at κ of length λ, followed by Prikry forcing with collapses, to achieve the desired goal.16

The constructions in [15] and our construction in Theorem 2.4 are similar, but differ
in important aspects. They both use Mitchell forcing followed by Prikry forcing with
collapses. However Theorem 2.4 uses only a strong cardinal of a suitable degree, while [15]
uses a supercompact cardinal.17 Furthermore, the construction in Theorem 2.4 achieves
any desired finite gap at ℵω. Regarding the Gitik’s construction, it proceeds from a
sequence of short extenders and it is optimal with respect to the large cardinal assumptions
(however, it is not known how to generalise it to achieve a larger gap than 2 at ℵω).

Remark 4.1. The optimal lage cardinal assumption for the tree property at ℵω+2 is close
to a weakly compact strong cardinal.18 We will not give too many details, but let us say
that it is not so important that we start with a weakly compact strong embedding – a
tall embedding j : V → M which sends κ above a weakly compact cardinal λ in M would
also suffice – the issue is whether we need to assume the existence of one big extender, or
a sequence of short extenders would suffice. As it turns out, the optimal large cardinal
strength is indeed formulated with a sequence of short extenders as we mentioned above
(see [30]).

Let us return to the case of the tree property at ℵω+1. Let us first note that in all
the models we discussed, with the tree property at ℵω+2, the tree property at ℵω+1 fails.
However, by itself the tree property at ℵω+1 is achievable as shown by Magidor and Shelah
in [54] (the key ingredient of the construction is a theorem in ZFC, proved in [54], which
says that if λ is a singular limit of strongly compact cardinals, then the tree property
holds at λ+). However, the methods in [54] force SCH at ℵω, so the tree property at ℵω+2
fails in the model in [54].

A lot of recent research has been focused on combining the above-mentioned results and
obtaining the tree property at all regular cardinals in the interval [ℵ2, ℵω+2]. There has
been an important progress, but the main question is still unanswered (see for instance
[56, 66, 75, 68, 76, 67] for more details). With the natural goal being to force the tree
property at all regular cardinals, it is also important to consider singular cardinals with
uncountable cofinality; there has been some important progress here as well (see Sinapova

15See Footnote 2 for more details.
16The use of Sacks forcing enforces a direct method of proof: there is no “product-style” analysis along

the lines of (3.31). A common restriction related to an iteration with support κ applies: it is possible to
achieve only gap 2 at ℵω, i.e. 2ℵω = ℵω+2. In retrospect, the use of Sacks forcing probably makes the
argument more complicated than the methods for the Mitchell-like forcings (unless we want to achieve
some sort definability result together with the tree property – in this setting an iteration is the primary
option; see Section 8.4 for more details).

17The paper [68] by Sinapova and Unger contains an argument for the tree property at κ++ for a large
strong limit κ of countable cofinality, with gap 3.

18Note that ℵω violates SCH, so lower bounds described in Section 3.5 apply.
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[65] for ℵω1+1 and Golshani and Mohammadpour [37] for κ++, κ singular with uncountable
cofinality for more details).

Remark 4.2. The results reviewed so far work with ℵω being strong limit. If we relax
this requirement, then it is consistent that both ℵω+1 and ℵω+2 have the tree property by
a result of Fontanella and Friedman [19]. It is an intriguing question whether ℵω can at
all be strong limit with the tree property holding at ℵω+1 and ℵω+2, especially because
the tree property can consistently hold at ℵω2+1 and ℵω2+2 with ℵω2 strong limit (see
Sinapova and Unger [68]). It may very well be that ℵω is a special case, whose properties
are governed by theorems provable in ZFC (as is the bound on 2ℵω identified by Shelah).

Stepping back to the weak tree property (or equivalently to the failure of the weak square
principle), it turns out that killing all special Aronszajn trees is much easier than killing all
Aronszajn trees. As we already said, Mitchell [55] gave a proof of the tree weak property
holding, for instance, at ℵ2 and ℵ3. This construction was generalised by Unger [74] to
all cardinals at the interval [ℵ2, ℵω), starting with infinitely many Mahlo cardinals.

Moving on to our thesis and research, it is important to state that all the results reviewed
so far did not specifically control the continuum function, and therefore achieve the least
possible gap at the relevant cardinal: if the tree property holds at κ++, then 2κ = κ++.
It is therefore natural to ask whether one can control the continuum function on regular
cardinals in the presence of the tree property as freely as in the case of the usual Easton
theorem.

4.2 Trees and forcing

An essential step in showing that some forcing notions force the tree property is to argue
that they do not add cofinal branches to certain trees. Fact 4.3 is due to Baumgartner
(see [4]) and Fact 4.4 is due to Silver (see [1] for more details; a proof with λ = ω is in
[49, Chapter VIII, §3]) .

Fact 4.3. Let κ be a regular cardinal and assume that P is a κ-Knaster forcing notion.
If T is a tree of height κ, then forcing with P does not add cofinal branches to T .

Fact 4.4. Let κ, λ be regular cardinals and 2κ ≥ λ. Assume that P is a κ+-closed forcing
notion. If T is a λ-tree, then forcing with P does not add cofinal branches to T .

These facts can be generalised as follows (see Unger [73] and [72]).

Fact 4.5. Let κ be a regular cardinal and assume that P is a forcing notion such that
square of P , P × P , is κ-cc. If T is a tree of height κ, then forcing with P does not add
cofinal branches to T .

Fact 4.6. Let κ < λ be regular cardinals and 2κ ≥ λ. Assume that P and Q are forcing
notions such that P is κ+-cc and Q is κ+-closed. If T is a λ-tree in V [P ], then forcing
with Q over V [P ] does not add cofinal branches to T .

Moreover, the previous fact can be generalised as follows.

Fact 4.7. Let κ < ξ ≤ λ be regular cardinals and 2κ ≥ λ. Assume that P and Q are
forcing notions such that P is ξ-cc and Q is ξ-closed. If T is a λ-tree in V [P ], then Q
does not add cofinal branches to T .
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Note that the previous fact says something new only if ξ is inaccessible: if ξ is equal to
µ+ for some µ ≥ κ, we can apply Fact 4.6.

4.3 Mitchell’s argument for the tree property

In this section we briefly review the original argument of Mitchell [55] in the presentation
of Abraham [1] to illustrate the basic idea of obtaining the tree property at the double
successor of a regular cardinal.

Assuming GCH, let κ be a regular cardinal and λ > κ a weakly compact cardinal. We
will argue that M(κ, λ) forces the tree property at λ = κ++ and makes 2κ = λ.

Suppose for contradiction there is a name Ṫ and a condition p which forces that Ṫ is a
λ-Aronszajn tree. Let G be an M(κ, λ)-generic filter which contains p, and let k : M → N
be a weakly compact embedding with critical point λ such that M contains all relevant
parameters, in particular the name Ṫ (we can also assume that Ṫ is in N). Suppose G∗H
is k(M(κ, λ))-generic filter and let k∗ be the lifting of k to

k∗ : M [G] → N [G][H].

The tree T = (Ṫ )G is in both M [G] and N [G], and T has a cofinal branch b in N [G][H]
since k∗(T ) (which is an element of N [G][H]) contains T as an initial segment, and has
nodes of height λ. The argument is finished by arguing that b is already in N [G], and
hence in M [G] – but this is a contradiction since we assumed that T is a λ-Aronszajn
tree in V [G], and so also in M [G]. The fact that b cannot be added by H uses the facts
reviewed in Section 4.2 and a the product and quotient analysis of Mitchell forcing: the
forcing adding H regularly embeds into a product of a κ+-Knaster forcing and a κ+-closed
forcing over N [G].

If λ is just a Mahlo cardinal, a similar argument is used that the weak tree property holds
at λ in V [M(κ, λ)].

Let us mention that obtaining the tree property at successive cardinals is much more
difficult than obtaining it on a single cardinal: the problem is that if we naively forced with
M(κ, λ) and M(κ+, λ∗), where λ < λ∗ are weakly compact, then the forcings “overlap”
and do not ensure the tree property. This problem cannot be resolved by a clever trick
as the consistency strength of two successive cardinals with the tree property is at least
on the level of Woodin cardinals ([21]).

The overlapping occurs even if we wish to get the tree property at cardinals µ and µ++

for some regular µ. However, in this situation one can argue that M(κ, λ)×M(λ, λ∗) does
ensure the tree property, where λ < λ∗ are weakly compact (λ will become µ and λ∗ will
become µ++ in the notion in the previous sentence); see Section 5 for more details.

If we focus on the weak tree property, the situation is different: obtaining two successive
cardinals with the weak tree property can be done by an easy modification of Mitchell
forcing starting with two Mahlo cardinals (see Mitchell [55] and Unger [74]).

Remark 4.8. In our results we generalise Mitchell’s construction in several aspects (see
Section 2 for a review of the results and the modifications of the original argument).
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5 The tree property below ℵω

In this section we study the continuum function below ℵω in connection with the tree
property and the weak tree property at cardinals ℵn for 1 < n < ω. The results are joint
with Radek Honzik and were submitted as [42].

The structure of the section is as follows. First, in Theorem 5.5, we deal for simplicity
with a single cardinal and show that the tree property at ℵ2 is compatible with 2ℵ0 = ℵ3
and 2ℵ1 = ℵ4 (we use “gap three” for concreteness, there is nothing particular about it).19

Theorem 5.5 is generalised in Theorem 5.7 where we show (starting with infinitely many
weakly compact cardinals) that the tree property at every even cardinal larger than ℵ1
below ℵω is compatible with any continuum function which satisfies 2ℵ2n ≥ ℵ2n+2, n < ω.
In Theorem 5.14, we formulate an analogous result for the weak tree property: starting
with infinitely many Mahlo cardinals, we show that the weak tree property at every ℵn,
1 < n < ω, is compatible with any continuum function which satisfies 2ℵn ≥ ℵn+2 for
n < ω. We focus on the case when ℵω is a strong limit cardinal in the resulting model,
but the method of the proof is not limited to that configuration.

Note that we use only modest large cardinal assumptions, i.e. weakly compact cardinals
and Mahlo cardinals, and therefore we cannot get two successive cardinals with the tree
property as this requires large cardinals on the level of one Woodin cardinal (see [21]),
and all known arguments require supercompactness.

5.1 Large 2ℵ0 and 2ℵ1 with TP(ℵ2)

In this section we provide a proof of a special case of Theorem 5.7. It illustrates the main
idea behind the construction with more clarity than the proof of Theorem 5.7, which
needs to deal with infinitely many cardinals.

We assume that the reader is familiar with the usual argument which shows that M(κ, λ)
forces the tree property at λ, whenever κ is regular, κ < λ and λ is weakly compact. For
the proof see a quick review in Section 4.3, or papers [55] or [1].

For concreteness of the construction in this section we will force “gap three” on ℵ0 and
ℵ1, i.e. get 2ℵ0 = ℵ3 and 2ℵ1 = ℵ4 with the tree property at ℵ2. Other values of the
continuum functions are easily obtainable; see Theorem 5.7.

Let κ be a weakly compact cardinal. Denote

(5.1) P = M(ℵ0, κ) × Add(ℵ0, κ+) × Add(ℵ1, κ++).

Remark 5.1. Note that M(ℵ0, κ) forces 2ℵ0 = ℵ2, and therefore to increase the value
of 2ℵ1 , we need to use some kind of product because the forcing Add(ℵ1, 1) defined in
V [M(ℵ0, κ)] collapses 2ℵ0 to ℵ1 (by a density argument, every subset of ω occurs as a
segment in a generic filter g for Add(ℵ1, 1), and therefore g yields a surjection from ℵ1
onto 2ℵ0).

Lemma 5.2. Assume GCH. In V [P], κ = ℵ2, 2ℵ0 = ℵ3, 2ℵ1 = ℵ4.

Proof. Let I denote the open interval of cardinals between ℵ1 and κ. It suffices to show
that in V [P] the cardinals in I are collapsed, and no other cardinals are collapsed. M(ℵ0, κ)

19This result for 2ℵ0 already follows from the “indestructibility” results presented in [72].
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5 The tree property below ℵω 5.1 Large 2ℵ0 and 2ℵ1 with TP(ℵ2)

collapses cardinals in I, but no other cardinals, see paragraph following Definition 3.46
of Mitchell forcing. The forcing Add(ℵ0, κ+) is ccc, and therefore no more cardinals
are collapsed in V [M(ℵ0, κ) × Add(ℵ0, κ+)]. By Lemma 3.51, the forcing Add(ℵ1, κ++)
is ℵ1-distributive in V [M(ℵ0, κ) × Add(ℵ0, κ+)]. Since the whole product Add(ℵ0, κ+) ×
M(ℵ0, κ)×Add(ℵ1, κ++) is κ-Knaster, Add(ℵ0, κ+)×M(ℵ0, κ) forces that Add(ℵ1, κ++) is
κ-cc (see Section 3.3.2). It follows that the forcing Add(ℵ1, κ++) applied over V [M(ℵ0, κ)×
Add(ℵ0, κ+)] preserves all cardinals not in I. This finishes the proof. □

Lemma 5.3. Assume P forces that Ṫ is a κ-Aronszajn tree, where Ṫ is a nice name for
a subset of κ.20 Then there are κ ⊆ A ⊆ κ+ and κ ⊆ B ⊆ κ++ both of size κ such that
M(ℵ0, κ) × Add(ℵ0, A) × Add(ℵ1, B) forces that Ṫ is a κ-Aronszajn tree.

Proof. Since all forcings composing P are κ-Knaster, it follows that the product P is κ-cc
(in fact κ-Knaster; see Section 3.3.2). It follows that Ṫ is of the form {{α̌} × Aα | α < κ},
where each Aα is an antichain of size less than κ. Let us write a condition in P as p̄ =
((p, q), p0, p1), where (p, q) is in M(ℵ0, κ), p0 is in Add(ℵ0, κ+) and p1 is in Add(ℵ1, κ++).
The set A is defined by κ ∪ A′ where A′ contains all β such there is some α < κ and some
p̄ in Aα such that (n, β), for some n < ω, is in the domain of the condition p0 which is in
p̄. Similarly for B and p1’s. □

Corollary 5.4. If P adds a κ-Aronszajn tree, then so does

(5.2) P|κ =df M(ℵ0, κ) × Add(ℵ0, κ) × Add(ℵ1, κ).

Proof. Any bijection between A and κ determines an isomorphism between Add(ℵ0, A)
and Add(ℵ0, κ), and similarly for B. □

Theorem 5.5. (GCH) Assume κ is weakly compact and P is as in (5.1). Then in V [P],
2ℵ0 = ℵ3, 2ℵ1 = ℵ4, and TP(ℵ2).

Proof. The fact that 2ℵ0 = ℵ3 and 2ℵ1 = ℵ4 is proved in Lemma 5.2. It remains
to verify the tree property at ℵ2. By Corollary 5.4, it suffices to show that P|κ cannot
add a κ-Aronszajn tree. Suppose for contradiction there is a condition (r1, r2) in P|κ =
M(ℵ0, κ) × [Add(ℵ0, κ) × Add(ℵ1, κ)] which forces there is a κ-Aronszajn tree Ṫ .

Let j : M → N be a weakly compact embedding with critical point κ where M and N
are transitive models of ZFC− closed under <κ-sequences, and M contains all parameters
required for the argument (in particular, the forcing P|κ and name Ṫ ).

Let G ∗ (H1 × H2) denote a generic filter over V for

(5.3) M(ℵ0, κ) ∗ [Add(ℵ0, j(κ) − κ) × Ṫκ],

where the product Add(ℵ0, j(κ)−κ)×Tκ projects to j(M(ℵ0, κ))/G. Denote by G∗H the
j(M(ℵ0, κ))-generic filter obtained from G ∗ (H1 × H2), using the projection πκ appearing
in Fact 3.48(i); note that we have automatically j”G ⊆ G ∗ H because j is the identity
on the conditions in G ⊆ M(ℵ0, κ). Assume further that r1 ∈ G.

Now we can lift j in V [G ∗ (H1 × H2)] to

(5.4) j : M [G] → N [G ∗ H].
20We will identify κ-trees with subsets of κ (every κ-tree is isomorphic to (κ, R) for some some binary

relation R).
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Let x∗ × y∗, with x∗ = x0 × x1 and y∗ = y0 × y1, be V [G ∗ (H1 × H2)]-generic for
Add(ℵ1, j(κ)) × Add(ℵ0, j(κ)), with x0 × y0 being Add(ℵ1, κ) × Add(ℵ0, κ)-generic over
V [G ∗ (H1 × H2)] so that

(5.5) j”(x0 × y0) ⊆ x∗ × y∗.

The inclusion (5.5) is possible because j is the identity on the conditions in x0 × y0.
Assume further that r2 ∈ x0 × y0.

Remark 5.6. It is worth noting that Add(ℵ1, j(κ))×Add(ℵ0, j(κ)) lives in V [G] (actually
already in V ), so x∗ × y∗ × H1 × H2 is a generic filter over V [G] for the product forcing
Add(ℵ1, j(κ)) × Add(ℵ0, j(κ)) × Add(ℵ0, j(κ) − κ) ×Tκ, and therefore x∗, y∗, H1, and H2
are mutually generic over V [G].

Now we can lift j in V [G ∗ (H1 × H2)][x∗ × y∗] to

(5.6) j : M [G][x0 × y0] → N [G][H][x∗ × y∗].

Recall that we have put the name Ṫ into M ; we can assume that Ṫ is a nice name
for a subset of κ, and is therefore present also in N . Since (r1, r2) is in G ∗ (x0 × y0),
T = Ṫ G∗(x0×y0) is a κ-Aronszajn tree in M [G][x0 × y0], and also in N [G][x0 × y0]. As
j(T ) is a j(κ)-tree, it has nodes of height κ. Since T = j(T )↾κ, the last sentence implies
that T has a cofinal branch in N [G][H][x∗ × y∗].

By Remark 5.6, the relevant filters are mutually generic over V [G], and hence also over
N [G], and therefore we can write

(5.7) N [G][H][x∗ × y∗] ⊆ N [G][x0][y0][x1][y1][H1][H2].

We finish the proof by showing that the generic filter x1×y1×H1×H2 cannot add a cofinal
branch to T , and therefore any such branch existing in the models in (5.7) must already
exist in N [G][x0 × y0], which contradicts our initial assumption that T is a κ-Aronszajn
tree in N [G][x0 × y0].

Let P1 denote the forcing Add(ℵ1, j(κ)−κ)×Add(ℵ0, j(κ)−κ)×Add(ℵ0, j(κ)−κ) which
adds the generic filter x1 × y1 × H1. As the square of P1 is isomorphic to P1, it suffices
to show by Fact 4.5 that P|κ forces P1 to be κ-cc. This follows from the fact that both
P|κ and P1 are κ-Knaster, and therefore P|κ × P1 is κ-cc (in fact κ-Knaster), and so P|κ
forces that P1 is κ-cc (see Section 3.3.2). Hence there are no new cofinal branches in T
in

(5.8) N [G][y0][x0][x1][y1][H1].

Now we show that H2 cannot add a cofinal branch either, which will finish the proof.
The term forcing Tκ is ℵ1-closed in N [G], and by Lemma 3.51 (with P being trivial),
the forcing Add(ℵ1, j(κ)) (which adds x0 × x1) is ℵ1-distributive in N [G], and therefore
does not add new countable sequences; this implies that that Tκ is still ℵ1-closed in
N [G][x0][x1]. We can therefore apply Fact 4.6 over the the model N [G][x0][x1] with P =
Add(ℵ0, j(κ)) (note that P is isomorphic to the ℵ0-Cohen forcing which adds y0 ×y1 ×H1)
and Q = Tκ. Thus there are no new cofinal branches in T in the model

(5.9) N [G][x0][x1][y0][y1][H1][H2] = N [G][x0][y0][x1][y1][H1][H2].

This finishes the proof. □
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5 The tree property below ℵω 5.2 Main theorems

5.2 Main theorems

In this section, we prove a more general version of Theorem 5.5, both for the tree property
(Theorem 5.7), and the weak tree property (Theorem 5.14).

5.2.1 The tree property

Let κ1 < κ2 < · · · be an ω-sequence of weakly compact cardinals with limit λ. Let κ0
denote ℵ0. In Theorem 5.7, we control the continuum function below ℵω = λ, λ strong
limit, while having the tree property at all even aleph’s.

Let A denote the set {κi | i < ω} ∪ {κ+
i | i < ω}, and let f : A → A be a function which

satisfies for all α, β in A:

(i) α < β → f(α) ≤ f(β).
(ii) If α = κi, then f(α) ≥ κi+1.

We say that f is an Easton function on A which respects the κi’s (condition (ii)); see also
Definition 3.56.

Theorem 5.7. Assume GCH and let ⟨κi | i < ω⟩, λ, and A be as above. Let f be an
Easton function on A which respects the κi’s. Then there is a forcing notion S such that
if G is an S-generic filter, then in V [G]:

(i) Cardinals in A are preserved, and all other cardinals below λ are collapsed; in par-
ticular, for all n < ω, κn = ℵ2n, and κ+

n = ℵ2n+1.
(ii) For all 0 < n < ω, the tree property holds at ℵ2n.

(iii) The continuum function on A = {ℵn | n < ω} is controlled by f .

Proof. Let P be a reverse Easton iteration of Cohen forcings Add(α, 1) for every in-
accessible α < λ. We will see that P ensures that the weak compactness of the κi’s is
preserved at a certain stage of the argument (see the paragraph after (5.21)).

Let Ṁ(κn, κn+1) denote a P-name for Mitchell forcing which makes 2κn = κn+1 and forces
the tree property at κn+1. Let Q̇ be a name for the full-support product of Mitchell
forcings in V [P]:

(5.10) Q̇ is a name for
∏

n<ω

Ṁ(κn, κn+1).

Finally, let Ṙ be a P-name for the standard Easton product to force the prescribed be-
haviour of the continuum function below ℵω (taking into account that the cardinals below
ℵω will be equal to the cardinals in A):

(5.11) Ṙ is a name for
∏

n<ω

( ˙Add(κn, f(κn)) × ˙Add(κ+
n , f(κ+

n )
)
.

We define the forcing S as follows:

(5.12) S = P ∗ (Q̇ × Ṙ).

We leave it as an exercise for the reader to verify that S preserves all cardinals in A
and forces the prescribed continuum function (it is a routine generalisation of Lemma 5.2
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using the product analysis of M(κ, λ) in Section 3.4.1 and Lemma 3.51). We will check
that the tree property holds at every ℵ2n, 0 < n < ω.

Let us work in V [P] for simplicity of notation (so that we can remove all “dots” from the
forcing notions).

Let us write R0(n) = Add(κn, f(κn)), R1(n) = Add(κ+
n , f(κ+

n )), and R(n) = R0(n) ×
R1(n). Thus R =

∏
n<ω R(n).

Let us denote for 0 < n < ω:

(5.13) S(n) = R0(n + 1) ×
∏

m≤n+1
M(κm, κm+1) ×

∏
m≤n

R(m),

and

(5.14) S(n)tail = R1(n + 1) ×
∏

m>n+1
M(κm, κm+1) ×

∏
m>n+1

R(m),

so that Q × R = S(n) × S(n)tail.

Suppose for contradiction that S adds a κn+1-Aronszajn tree T (for simplicity, we assume
that the weakest condition forces the existence of such a tree; otherwise we would work
below a condition which forces it). Then T is added by

(5.15) P ∗ Ṡ(n)

because S(n)tail is κ+
n+1-closed in V [P], and using Lemma 3.51, viewing S(n) as a product

of a κ+
n+1-cc forcing and M(κn+1, κn+2), it follows that S(n)tail is still κ+

n+1-distributive
in V [P] over S(n), and hence does not add any κn+1-trees.

The forcing S(n) is κn+2-Knaster in V [P] (because all the forcings making up the product
are κn+2-Knaster, and this property is preserved by products), and therefore T has in
V [P] a S(n)-name Ṫ which can be taken to be a <κn+2-sequence of elements in V [P]
(without loss of generality, a nice name for a subset of κn+1). This name – having size
less than κn+2 in V [P] – is already present in P(< κn+2) (the iteration P below κn+2)
because P(<κn+2) forces its tail in P to be κn+2-closed. It follows that

(5.16) P(<κn+2) ∗ Ṡ(n)

already adds T (note that Ṡ(n) can be taken to be a P(<κn+2)-name as all the conditions
in this forcing have size less than κn+2, so the expresion (5.16) is meaningful).

Let us define in V [P(<κn+2)]:

(5.17) S(n)− =
∏

m≤n

M(κm, κm+1) ×
∏

m≤n

R(m).

Thus we can write the forcing in (5.16) as

(5.18) P(<κn+2) ∗ (Ṁ(κn+1, κn+2) × Ṙ0(n + 1) × Ṡ(n)−).

This forcing is equivalent to

(5.19) P(<κn+2) ∗
(
Ṁ(κn+1, κn+2) × Ṙ0(n + 1)

)
∗ Ṡ(n)−.
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because M(κn+1, κn+2) ×R0(n + 1) does not change H(κn+1) where the conditions in the
rest of the forcing live.

We claim that T is in fact added by

(5.20) P(<κn+2) ∗ ˙Add(κn+1, 1) ∗ Ṡ(n)−.

This is true because T has a name in the forcing

(5.21) P(<κn+2) ∗
( ˙Add(κn+1, κn+2) × Ṙ0(n + 1)

)
∗ Ṡ(n)−

of size at most κn+1 (using the product analysis of M(κn+1, κn+2) which we discussed in
Section 3.4.1) and therefore a name in the forcing (5.20).

P(<κn+2) ∗ ˙Add(κn+1, 1) preserves the weak compactness of κn+1 (since in P(<κn+2) we
prepared by Cohen forcing at inaccessibles below κn+1; this may be shown for instance
by lifting a weakly compact embedding, see [9] for more details), so it remains to show
that S(n)− forces the tree property at κn+1 for a weakly compact κn+1.

Work in V [P(<κn+2)] and let us write S(n)− as:

(5.22) S(n)− = M(κn, κn+1) × S1 × S2 × S3,

where

• S1 =
∏

m<n M(κm, κm+1),
• S2 = R0(n) ×

∏
m<n R(m), and

• S3 = R1(n).

These forcings have the following basic properties which are relevant for the proof:

(a) M(κn, κn+1) is κn+1-Knaster, and there is a projection onto it from the product forcing
Add(κn, κn+1) × Tn, where Tn is a κ+

n -closed term forcing.
(b) S1 is κn-Knaster, and bounded in H(κn+1).
(c) S2 is κ+

n -Knaster.
(d) S3 is κ+

n -closed.

Denote κn+1 = κ. Exactly as in the proof of Theorem 5.5, using the fact that the whole
product S(n)− is κ-cc (using the productivity of the Knaster property), if S(n)− adds a
κ-Aronszajn tree, then so does the forcing

(5.23) M(κn, κ) × S1 × S2|κ × S3|κ,

where S2|κ and S3|κ denote the restrictions of all of the Cohen products in S2 and S3 to
length κ. In more detail, for Ri(m), i < 2, m ≤ n, let us write R0(m)|κ = Add(κm, κ)
and R1(m)|κ = Add(κ+

m, κ), and R(m)|κ = R0(m)|κ × R1(m)|κ. Then S2|κ denotes the
forcing R0(n)|κ ×

∏
m<n R(m)|κ, and S3|κ denotes R1(n)|κ. The fact that already the

forcing in (5.23) adds the tree follows exactly as in Lemma 5.3 and Corollary 5.4 with
appropriate reformulations.

Recall that we work in V [P(< κn+2)] where by our assumption we have a name Ṫ for a
κ-Aronszajn tree in the forcing (5.23). Let

(5.24) j : M → N
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be a weakly compact embedding with critical point κ, where M contains all the relevant
parameters (in particular, the forcing from (5.23) and the name Ṫ (which we view as a
nice name for a subset of κ – and is therefore also in N as it is a subset of H(κ))). Note
that M and N are closed under sequences of length <κ in V [P(<κn+2)], so in particular
the forcings j(S2|κ) and j(S3|κ) mean in N and in V [P(< κn+2)] the same thing as the
conditions in these forcings are sequences of length <κ (for the same reason, S2|κ and
S3|κ denote the same forcing in M , N and V [P(<κn+2)]).

Pursuing the analogy with Theorem 5.5, and the notation in that proof, consider the
model N [G][x0][y0][x1][H2][H1][y1], where in our case we have:

(a) G = G0 × G1 is M(κn, κ) × S1-generic.
(b) x0 is S3|κ-generic.
(c) x1 is such that x0 × x1 is j(S3|κ)-generic. Let us denote the relevant forcing as Ŝ3:

j(S3|κ) = S3|κ × Ŝ3.
(d) y0 is S2|κ-generic.
(e) y1 is such that y0 × y1 is j(S2|κ)-generic. Let us denote the relevant forcing as Ŝ2:

j(S2|κ) = S2|κ × Ŝ2.
(f) H1 is Add(κn, j(κ) − κ)-generic.
(g) H2 is Tn

κ-generic, where Tn
κ is the term forcing which is κ+

n -closed in N [G0].

Recall that we assume for simplicity that the weakest condition forces that Ṫ is a κ-
Aronszajn tree; otherwise we would need to choose G0 × G1 × x0 × y0 below a condition
wich forces it.

Remark 5.8. Note that the product S1 × j(S3|κ) × j(S2|κ) lives in V [P(< κn+2)[G0]
(actually already in V [P(<κn+2)]), so that G1 × x0 × x1 × y0 × y2 × H1 × H2 is a generic
filter for a product forcing over V [P(< κn+2)][G0], and therefore all these generic filters
are mutually generic over V [P(<κn+2)][G0].

Let us write

(5.25) V ∗ = V [P(<κn+2)][G][x0 × x1 × y0 × y1 × H1 × H2].

The conditions (a)–(g) above guarantee we can lift j in V ∗:

(5.26) j : M [G][x0][y0] → N [G][x0][y0][x1][y1][H],

where H is generic for the quotient j(M(κn, κ))/G0 over V [P(< κn+2)][G0] and j”G0 ⊆
G0 ∗ H (this is ensured exactly as in the proof of Theorem 5.5).

Since Ṫ is also present in N , the κ-Aronszajn tree T = Ṫ G×x0×y0 is present in N [G][x0][y0];
since j(T ) restricted to κ is T , the embedding (5.26) ensures that j(T ) has a node of height
κ, and therefore T has a cofinal branch, in N [G][x0][y0][x1][y1][H]. We will argue this is
not possible as the larger model N [G][x0][y0][x1][y1][H1][H2] cannot obtain a new cofinal
branch over N [G][x0][y0].

First note that P1 = Ŝ3 × Ŝ2 × Add(κn, j(κ) − κ) (which adds the generic x1 × y1 × H1) is
isomorphic to its square. By Fact 4.5 it therefore suffices to show that P0 = M(κn, κ) ×
S1 × S3|κ × S2|κ (which adds the generic G × x0 × y1) forces that P1 is κ-cc to conclude
that there are no new cofinal branches in T in

N [G][x0][y0][x1][y1][H1].
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This follows by the productivity of Knaster forcings as both P0 and P1 are κ-Knaster.

It remains to show that H2 cannot add a cofinal branch to T either. Denote P = S1 ×
S2 × Ŝ2 × Add(κn, j(κ) − κ).

Claim 5.9. The following hold.

(i) Tn
κ is κ+

n -closed in N [G0][x0][x1].
(ii) P is κ+

n -cc in N [G0][x0][x1].

Proof. (i). Tn
κ is κ+

n -closed in N [G0], and by Lemma 3.51 (with P being trivial), N [G0]
and N [G0][x0][x1] have the same <κ+

n -sequences of ordinals. Now the claim follows.

(ii). We will show that P is forced to be κ+
n -cc by

(5.27) Add(κn, κ) × Tn × S3|κ × Ŝ3.

This suffices as there is a projection from the forcing (5.27) to the forcing M(κn, κ) ×
S3|κ × Ŝ3 (which adds G0 × x0 × x1).

We use Easton’s lemma 3.32: P2 = Tn × S3|κ × Ŝ3 is κ+
n -closed and Add(κn, κ) × P is

κ+
n -cc, and therefore P2 forces Add(κn, κ) × P to be κ+

n -cc, and so P2 × Add(κn, κ) forces
P to be κ+

n -cc. In some detail, P2 forces that Add(κn, κ) × P is κ+
n -cc if and only if

P2 forces that Add(κn, κ) forces that P is κ+
n -cc, which is equivalent to P2 × Add(κn, κ)

forcing that P is κ+
n -cc. □

Recall that our tree T is in N [G][x0][y0]. Denote

(5.28) P = S1 × S2 × Ŝ2 × Add(κn, j(κ) − κ) and Q = Tn
κ.

Consider now the P -generic filter G1 ×y0 ×y1 ×H1 over the model N [G0][x0][x1]. It gives
rise to the model N [G0][x0][x1][G1][y0][y1][H1] which is equal to N [G][x0][y0][x1][y1][H1],
and extends N [G][x0][y0], and therefore contains the tree T . Now let us apply Fact 4.6
over the model N [G0][x0][x1] with P and Q fixed in (5.28). By Claim 5.9, P is κ+

n -cc
and Q is κ+

n -closed in N [G0][x0][x1]. It follows that that H2 (the generic filter for Q)
does not add new cofinal branches to T over

(5.29) N [G][x0][y0][x1][y1][H1].

This finishes the proof. □

A more succinct formulation of Theorem 5.7 is as follows:

Corollary 5.10. (GCH) Assume there are infinitely many weakly compact cardinals. Let
f be a function from ω to ω which satisfies

(i) For all m, n < ω, m < n → f(m) ≤ f(n).
(ii) f(2n) ≥ 2n + 2 for all n < ω.

Then there is a model where the tree property holds at every ℵ2n, 0 < n < ω, and the
continuum function below ℵω obeys f : i.e. 2ℵn = ℵf(n) for all n < ω.

Remark 5.11. Let us remark that the technique in the proof of Theorem 5.7 is not
limited to having ℵω strong limit: the values of 2ℵn for n < ω can be bigger than ℵω in
the resulting model (subject to the usual restrictions on the continuum function). This
follows from the fact that the argument for the tree property at κn+1 = κ reduces to the
forcing in (5.23) which uses only a portion of R of size κ; thus R can be chosen to force
2ℵn arbitrarily high without a material change in the argument.

47



5 The tree property below ℵω 5.2 Main theorems

5.2.2 The weak tree property

For the sake of completeness, we also address the question of the weak tree property and
the continuum function below ℵω.

Let κ2 < κ3 < · · · be an ω-sequence of Mahlo cardinals with limit λ. Let κ0 denote ℵ0,
and κ1 denote ℵ1. In Theorem 5.14, we control the continuum function below ℵω = λ, λ
strong limit, while having the weak tree property at all ℵn, n ≥ 2.

Let A denote the set {κi | i < ω}, and let f : A → A be a function which satisfies for all
α, β in A:

(i) α < β → f(α) ≤ f(β).
(ii) If α = κi, then f(α) ≥ κi+2.

We say that f is an Easton function on A which respects the κi’s (condition (ii)).

The following natural modification of Mitchell forcing first appeared in [74].

Definition 5.12. Let 0 ≤ n < ω be given. We define M(κn, κn+1, κn+2) as the collection
of pairs (p, q) which satisfy the same conditions as in M(κn, κn+2) with the difference that
instead of Add(κ+

n , 1) for collapsing, we use Add(κn+1, 1), and the size of the domain of
q is now <κn+1.

In particular, M(κn, κn+2) is equal to M(κn, κ+
n , κn+2). By an analysis similar to Abraham

[1] (for more details se Section 3.4.1), one can show that M(κn, κn+1, κn+2) is a projection
of the product

(5.30) Add(κn, κn+2) × Tn,

where Tn is a term forcing which is κn+1-closed and κn+2-cc (see [74], Lemma 4.7; see
also [44], Theorem 16.30; it is easy to see that the forcing is actually κn+2-Knaster by the
same argument).

We get the following analogue of Lemma 3.51.

Lemma 5.13. Assume ℵ0 ≤ κ < µ < λ are regular cardinals, ν<κ < µ for all ν < µ, and
λ is inaccessible. Assume P is µ-cc and Q is µ-closed. Then P × M(κ, µ, λ) forces that
Q is µ-distributive.

Proof. The proof is the same as in Lemma 3.51 with the modification that P ×Add(κ, λ)
is now µ-cc (since by our cardinal-arithmetic assumption, Add(κ, λ) is µ-Knaster by the
usual ∆-system argument) and the term part of Mitchell forcing is µ-closed. □

Note that we use Lemma 5.13 with GCH in the present context, so the cardinal-arithmetic
assumptions are automatically satisfied.

The following theorem is a generalisation of Theorem 4.11 in [74].

Theorem 5.14. Assume GCH and let ⟨κi | i < ω⟩, λ, and A be as above. Let f be an
Easton function on A which respects the κi’s. Then there is a forcing notion S such that
if G is an S-generic filter, then in V [G]:

(i) Cardinals in A are preserved, and all other cardinals below λ are collapsed; in par-
ticular, for all n < ω, κn = ℵn,
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(ii) The continuum function on A = {ℵn | n < ω} is controlled by f .
(iii) The weak tree property holds at every ℵn, 2 ≤ n < ω.

Proof. Set Q to be the full support product

(5.31) Q =
∏

n<ω

M(κn, κn+1, κn+2).

Let R be the standard Easton product to force the prescribed behaviour of the continuum
function below ℵω (taking into account that the cardinals below ℵω will be equal to
cardinals in A):

(5.32) R =
∏

n<ω

Add(κn, f(κn)).

For simplicity of notation, let us write R(n) = Add(κn, f(κn)).

We define the forcing S as follows:

(5.33) S = Q × R.

Again, we leave it as an exercise for the reader to verify that the cardinals in A are
preserved, κn = ℵn, and the continuum function below ℵω is controlled by f . The proof
is basically the same as in [74] using the usual Easton-style analysis, the product analysis
of the forcing M(κn, κn+1, κn+2) in (5.30) and Lemma 5.13.

Let n < ω be fixed. We show that there are no special κn+2-Aronszajn trees in V [S].

Let us denote:

(5.34) S(n) =
∏

m≤n

M(κm, κm+1, κm+2) ×
∏

m≤n+1
R(m),

and

(5.35) S(n)tail =
∏

m>n+2
M(κm, κm+1, κm+2) ×

∏
m>n+2

R(m),

so that

(5.36) S = S(n) × R(n + 2) × M(κn+1, κn+2, κn+3) × M(κn+2, κn+3, κn+4) × S(n)tail.

Suppose for contradiction S adds a special κn+2-Aronszajn tree (we assume for simplicity
that the weakest condition forces it; otherwise we would work below an appropriate
condition). Then also the forcing

(5.37) S(n) × R(n + 2) × Add(κn+1, κn+3) × Tn+1 × Add(κn+2, κn+4) × Tn+2 × S(n)tail

adds a special κn+2-Aronszajn tree because it projects onto S. Denote the tree T .

Then T is added by

(5.38) S(n) × R(n + 2) × Add(κn+1, κn+3) × Tn+1 × Add(κn+2, κn+4)

because Tn+2 × S(n)tail is κn+3-closed in V , and therefore by Easton’s lemma 3.32 κn+3-
distributive over the forcing (5.38) which is κn+3-cc by the productivity of the Knaster
property.
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We finish the proof by arguing that the forcing in (5.38) cannot add T (and its specialising
function g which maps T to the cardinal predecessor of κn+2 (i.e. κn+1) in the generic
extension by (5.38)). In the interest of further simplification of notation, we will not
introduce variables for generic filters, but we will use the convention that V [P ] denotes
a generic extension by a forcing P whenever the exact generic filter is irrelevant (recall
that we assume that the weakest condition forces that Ṫ is a κn+2-Aronszajn tree).

Let us work in

(5.39) V ∗ = V [R(n + 2) × Tn+1 × Add(κn+2, κn+4)].

V ∗ still satisfies that κn+2 is a Mahlo cardinal and S(n)×Add(κn+1, κn+3) is κn+2-cc (this
follows by Easton’s lemma 3.32 since R(n + 2) ×Tn+1 × Add(κn+2, κn+4) is κn+2-closed).
Note that since κn+2 is a Mahlo cardinal in V ∗ (and in particular inaccessible), T together
with its specialising function g cannot be present already in V ∗.

Since T is in the generic extension over V by the forcing in (5.38), there are in V ∗ some
S(n) × Add(κn+1, κn+3)-names Ṫ and ġ for the tree T and the function g witnessing its
specialisation.21 We can identify both Ṫ and ġ with a name for a subset of κn+2. Since
the forcing S(n) × Add(κn+1, κn+3) is κn+2-cc, we may assume that already S(n)|κn+2 ×
Add(κn+1, κn+2) adds the tree and the specialising function, where S(n)|κn+2 is the forcing

(5.40)
∏

m≤n

M(κm, κm+1, κm+2) ×
∏

m≤n+1
R(m)|κn+2,

where
∏

m≤n+1 R(m)|κn+2 is the restriction of Cohen forcings to length κn+2 (see (5.23)
and what follows for more details on the notation). This follows from the fact that
the names Ṫ and ġ refer to up to κn+2-many Cohen coordinates in the forcing S(n) ×
Add(κn+1, κn+3), so we can proceed as in Lemma 5.3 with suitable modifications.

Since κn+2 is a Mahlo cardinal, there is a V -inaccessible δ, κn+1 < δ < κn+2, such that
T ↾δ, g ↾δ (the restrictions of T and g to the subtree of T of height δ) are added over V ∗

by the following forcing

(5.41)
∏

m<n

M(κm, κm+1, κm+2) × M(κn, κn+1, δ) ×
∏

m≤n+1
R(m)|δ × Add(κn+1, δ).

Notice that R(n + 1)|δ denotes the forcing Add(κn+1, δ), and since Add(κn+1, δ) is iso-
morphic to its square, we may replace

∏
m≤n+1 R(m)|δ by

∏
m≤n R(m) in (5.41):

(5.42) S0 =
∏

m<n

M(κm, κm+1, κm+2) × M(κn, κn+1, δ) ×
∏

m≤n

R(m)|δ × Add(κn+1, δ).

The forcing S0 in (5.42) is δ-cc – and therefore in particular preserves the regularity of δ
– using the productivity of the Knaster property. The inaccessible δ is found as follows:
as T and g restricted to β < κn+2 have size <κn+2, there is a closed unbounded subset
in κn+2 of ordinals σ(β) such that T ↾β and g ↾β are added by the forcing restricted to
σ(β), where β ranges over ordinals between κn+1 and κn+2. By the Mahloness of κn+2,
this closed unbounded set has an inaccessible fixed point (which we denote δ).

21We assume for simplicity that the weakest condition forces that there is a special κn+2-Aronszajn
tree; if not, choose the generic filter to contain this condition.
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In (5.46) below, we will work with the product

(5.43) S(n)|κn+2 × Add(κn+1, κn+2).

With the current definition of S(n)|κn+2 in (5.40), the product (5.43) is equal to

(5.44)
∏

m≤n

M(κm, κm+1, κm+2) ×
∏

m≤n

R(m)|κn+2 × Add(κn+1, κn+2) × Add(κn+1, κn+2).

Since Cohen forcing is isomorphic to its square, the forcing in (5.44) is isomorphic to
(5.45):

(5.45)
∏

m≤n

M(κm, κm+1, κm+2) ×
∏

m≤n

R(m)|κn+2 × Add(κn+1, κn+2).

In order to simplify notation, we will from now on identify (5.43) with (5.45).

We finish the proof by arguing that the forcing from the model V ∗[S0] to

(5.46) V ∗[S(n)|κn+2 × Add(κn+1, κn+2)]

cannot add a cofinal branch to T ↾δ. This will be a contradiction for the following reason.
T ↾δ has a cofinal branch in the final model since it is a tree of height κn+2 and therefore has
nodes of height δ < κn+2. If the forcing from V ∗[S0] to V ∗[S(n)|κn+2 × Add(κn+1, κn+2)]
cannot add such a branch, it must be present already in V ∗[S0], but this is impossible:
by the choice of δ and the properties of the specialisation function g, g restricted to such
a branch yields an injective function from δ into the cardinal predecessor of δ (i.e. κn+1)
in the forcing extension V ∗[S0] and therefore the cardinal δ would be collapsed in V ∗[S0]
(which we argued below (5.42) is not the case). See also [55], Section 5, for more details.

Let us denote by Tn
δ the term forcing which is κn+1-closed in the extension V [M(κn, κn+1, δ)],

and hence also in V ∗[M(κn, κn+1, δ)] using the κn+2-closure of the forcing from V to V ∗,
such that in V ∗[M(κn, κn+1, δ)],

(5.47) M(κn, κn+1, κn+2)/M(κn, κn+1, δ)

is a projection of Add(κn, κn+2 − δ) × Tn
δ .

Thus it suffices to show that over V ∗[S0], the forcing

(5.48) Add(κn, κn+2 − δ) × Tn
δ ×

∏
m≤n

R(m)|(κn+2 − δ) × Add(κn+1, κn+2 − δ)

does not add a cofinal branch to T ↾ δ, where
∏

m≤n R(m)|(κn+2 − δ) is the restriction
of Cohen forcings to the interval [δ, κn+2) (see (5.23) and what follows for details on the
notation).

We can now finish the proof analogously to Theorem 5.7.22 Denote

(5.49) P1 = Add(κn, κn+2 − δ) ×
∏

m≤n

R(m)|(κn+2 − δ) × Add(κn+1, κn+2 − δ),

22It is immaterial to the argument whether we work in a generic extension of M as in Theorem 5.7,
and discuss the ordinals κ < j(κ), or work in a generic extension of V , and discuss the ordinals δ < κn+2.
Note that the proof of Theorem 5.7 could also have been formulated with some δ < κ without mentioning
an elementary embedding.
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and

(5.50) Q = Tn
δ .

Note that P1 × Q is the forcing from (5.48).

P1 is isomorphic to its square and is δ-cc in V ∗[S0] by the productivity of the Knaster
property. It follows that P1 cannot add a cofinal branch to T ↾ δ by Fact 4.5. It remains
to show that Q cannot add a cofinal branch to T ↾δ over the model V ∗[S0][P1].

Let

(5.51) P =
∏

m<n

M(κm, κm+1, κm+2) ×
∏

m≤n

R(m)|δ

× Add(κn, κn+2 − δ) ×
∏

m≤n

R(m)|(κn+2 − δ).

Now we state the analogue of Claim 5.9 (we explicitly spell out all the relevant forc-
ings for better orientation even though the expression could be simplified: in particular,
Add(κn+1, δ) × Add(κn+1, κn+2 − δ) is isomorphic to Add(κn+1, κn+2)).

Claim 5.15. The following hold.

(i) Q in (5.50) is κn+1-closed in

(5.52) V ∗[M(κn, κn+1, δ)][Add(κn+1, δ)][Add(κn+1, κn+2 − δ)].

(ii) P in (5.51) is κn+1-cc in

(5.53) V ∗[M(κn, κn+1, δ)][Add(κn+1, δ)][Add(κn+1, κn+2 − δ)].

Proof. (i). By Lemma 5.13, Add(κn+1, δ)×Add(κn+1, κn+2 −δ) is κn+1-distributive over
the model V ∗[M(κn, κn+1, δ)], where Q is κn+1-closed, and therefore Q stays κn+1-closed
in the model (5.52).

(ii). As in the proof of Claim 5.9(ii), use the product analysis of M(κn, κn+1, δ) and show
the κn+1-cc of P using the productivity of the Knaster property and Easton’s lemma 3.32.

□

Now the proof can be finished by applying Fact 4.7 to P and Q from Claim 5.15 over the
model V ∗[M(κn, κn+1, δ)][Add(κn+1, δ)][Add(κn+1, κn+2 −δ)] (notice that in this model it
is true that δ = κ+

n+1 and 2κn = δ, so the cardinal assumptions in Fact 4.7 are satisfied).
In more detail: the tree T ↾δ is in the generic extension V ∗[S0], and hence also in

(5.54) V ∗[M(κn, κn+1, δ)][Add(κn+1, δ)][Add(κn+1, κn+2 − δ)][P ] = V ∗[S0][P1]

which extends V ∗[S0] (note that (5.54) holds by the fact that the forcings over the model
V ∗ on the left-hand side and the right-hand side of the equation are composed of the
product of the same forcing notions, just suitably regrouped).

Now the proof is finished by applying Q over the model (5.54) using Fact 4.7. □

As with Theorem 5.7, we may formulate a more succinct version of Theorem 5.14:

Corollary 5.16. (GCH) Assume there are infinitely many Mahlo cardinals. Let f be a
function from ω to ω which satisfies
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(i) For all m, n < ω, m < n → f(m) ≤ f(n),
(ii) f(n) > n + 1 for all n < ω.

Then there is a model where the weak tree property holds at every ℵn, 1 < n < ω, and the
continuum function below ℵω obeys f : i.e. 2ℵn = ℵf(n) for all n < ω.

Note that Remark 5.11 also applies in this context.
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6 The double successor of a singular cardinal

In this section we study the tree property at the double successor of a singular strong limit
cardinal κ with countable cofinality. The results in this section are joint with Sy-David
Friedman and Radek Honzik, and were submitted as [27].

In [10], Cummings and Foreman showed that starting from a Laver-indestructible super-
compact cardinal κ and a weakly compact λ > κ, one can construct a generic extension
where 2κ = λ = κ++, κ is a singular strong limit cardinal with cofinality ω, and the
tree property holds at κ++. It is natural to try to generalize this result in at least two
directions.

First, one can ask whether – in addition to the properties identified in the previous
paragraph – κ can equal ℵω. Cummings and Foreman suggested in [10] that this is
possible, but did not provide any details. A model with the tree property at ℵω+2, with
ℵω strong limit, was first constructed by Friedman and Halilović in [22], moreover from
a significantly lower large cardinal assumption of strength.23 Shortly afterwards, Gitik,
answering a question posed in [22], showed in [30] that the same result can be proved
form a weaker and optimal assumption.

Second, one can ask whether it is possible to have 2κ greater than κ++ with the tree
property at κ++. Using a variant of Mitchell forcing, Friedman and Halilović [23] proved
that starting from a sufficiently strong κ, one can keep the measurability of κ together
with 2κ > κ++ and the tree property at κ++.

In this section, we generalize [10] in the second direction. In Theorem 6.1, we prove
that starting from a Laver-indestructible supercompact κ and a weakly compact λ above,
one can find a forcing extension where κ is strong limit singular with cofinality ω, 2κ =
κ+3 = λ+, and the tree property holds at κ++. In Theorem 6.25 we give an outline of a
generalisation in which the gap (κ, 2κ) can be arbitrarily large: 2κ = µ for any cardinal
µ > λ with cofinality greater than κ. The method of the proof is based on the argument
in [10], with reference to [73] which fills a gap in the final stage of that argument.

6.1 Gap three

Recall that a supercompact cardinal κ is Laver-indestructible if it remains supercompact
in any forcing extension by a forcing which is κ-directed closed (where P is κ-directed
closed if for every D ⊆ P of size less than κ, if for all p1, p2 in D there is e ∈ D such that
e ≤ p1 and e ≤ p2, then there is p ∈ P, with p ≤ d for all d ∈ D).

Theorem 6.1. Assume GCH and let κ be a Laver-indestructible supercompact cardinal
and κ < λ, λ weakly compact. Then there is a forcing notion R such that the following
hold:

(i) R preserves cardinals ≤ κ+ and ≥ λ.
(ii) V [R] |= (κ++ = λ & 2κ = λ+ & cf(κ) = ω & κ is strong limit).

(iii) V [R] |= TP(λ).

The proof will be given in a sequence of lemmas, and is divided into two stages. Stage
23The technique of proof in [22] used Sacks forcing to obtain the tree property, unlike the proof in [10]

which is based on a Mitchell-style analysis.
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1 defines R, verifies some basic properties for (i) and (ii) of Theorem 6.1 and shows that
if R adds an Aronszajn tree on λ, then already a regular subforcing, which we denote
R∗, adds an Aronszajn tree on λ. The forcing R∗ is designed to be very similar to the
forcing used in [10]. In stage 2, we show that indeed R∗ allows a very similar analysis to
[10] (with correction according to [73]), and therefore cannot add an Aronszajn tree on
λ, which finishes the proof.

6.1.1 Stage 1

Definition 6.2. Let P denote the Cohen forcing Add(κ, λ+) and for α < λ+, let P|α
denote Add(κ, α).

The following lemma will be useful.

Lemma 6.3. Let U̇ be a P-name such that

(6.1) 1P ⊩ U̇ is a normal measure on κ.

Then there is a set A of unboundedly many α < λ+ containing its limit points of cofinality
>κ such that for every α ∈ A and every P-generic filter G,

(6.2) U̇G ∩ V [G|α] ∈ V [G|α].

Proof. Let α0 < λ+ be given, we show how to find α ≥ α0 in A. Let ⟨ẋi | i < ν < λ+⟩
be some enumeration of all nice P|α0-names for subsets of κ. Note that there are at most
λ-many such names so we can indeed choose ν < λ+. For every i < ν, let Xi be a maximal
antichain in P of conditions deciding the statement ẋi ∈ U̇ ; by the κ+-cc of P, the size of
Xi is at most κ. Let β0 ≥ α0 be such that the supports of all conditions in

⋃
i<ν Xi are

contained in β0. Repeat this procedure κ+-many times, building an increasing chain of
ordinals and let α = sup{βk | k < κ+}, cf(α) = κ+. Now, if ẋ is a P|α-name for a subset
of κ, then there is some α′ < α such that all coordinates mentioned by ẋ are below α′; it
follows that ẋ was considered in the construction, together with a maximal antichain X
in P of conditions deciding the statement ẋ ∈ U̇ . Using these ẋ’s and X’s, one can build
a P|α-name U̇α such that for every nice P|α-name ẋ for a subset of κ:

(6.3) ẋG|α = ẋG ∈ U̇G ⇔ ẋG|α ∈ U̇G|α
α .

It is clear that if A is defined to be the set of α < λ+ constructed as above and α with
cofinality >κ is a limit point of A, then α ∈ A.24 □

Fix temporarily a P-generic filter G. Denote U̇G = U . For any α ∈ A such that λ < α <
λ+ there is a Pα-name, which we denote by U̇α, such that

(6.4) (U̇α)G|α = U ∩ V [G|α].

Let us write Uα for U ∩ V [G|α]. Let us fix β ∈ A, λ < β. This β is going to be fixed for
the remainder of the proof.

24We mention the closure of A because the current proof is directly applicable to Lemma 6.5 with a
set B, where the closure is relevant to ensure B∗ ⊆ B for a certain set B∗ defined in Section 6.1.2, 2nd
paragraph. The closure will not be used for A, though.
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For α ≤ λ, let Even(α) denote the set of even ordinals below α. For α ≤ λ, let us write
P|Even(α) to denote the Cohen forcing Add(κ, Even(α)) which only mentions coordinates
indexed by even ordinals. Let ι be a bijection between β and Even(λ); ι naturally generates
an isomorphism between P|β and P|Even(λ) which we also denote ι. Let us further extend
the domain of ι to all P|β-names, and also to P|β-generic filters, in the obvious way.

Since 1P|β ⊩ U̇β is a measure, we have 1P|Even(λ) ⊩ ι(U̇β) is a measure.

Remark 6.4. Note that ι generates a P|Even(λ)-generic filter ι(G|β) such that V [G|β] =
V [ι(G|β)], and

(6.5) Uβ = (U̇β)G|β = ι(U̇β)ι(G|β).

However, it is not true that ι(U̇β)G|Even(λ) = Uβ, where G|Even(λ) is the P|Even(λ)-
generic filter composed of the Cohen generics on the even coordinates of G below λ. The
reason is that V [G|Even(λ)] is a proper submodel of V [ι(G|β)] = V [G|β].

The proof of the following lemma is the same as for Lemma 6.3.

Lemma 6.5. There is a set B of unboundedly many α < λ containing its limit points of
cofinality >κ such that for every α ∈ B and every P|Even(λ)-generic filter H,

(6.6) ι(U̇β)H ∩ V [H|Even(α)] ∈ V [H|Even(α)],

where H|Even(α) is the restriction of H to P|Even(α).

Let us write U̇ ι
α for the natural (i.e. obtained from the construction in the proof of Lemma

6.5) P|Even(α)-name for the measure ι(U̇β)H ∩ V [H|Even(α)].

We fix the following notation: Denote Â = (A ∩ [β, λ+)) ∪ {λ+}. For every γ ∈ Â, let
P|γ ∗ Qγ denote the Cohen forcing Add(κ, γ) followed by Prikry forcing Qγ defined with
respect to the measure U̇γ (where we identify U̇λ+ with U̇ and P|λ+ ∗ Qλ+ with P ∗ Q).
For α ∈ B, where B is as in Lemma 6.5, let Qι

α be a P|Even(α)-name for Prikry forcing
defined with the P|Even(α)-name U̇ ι

α. Let us also define Qι
λ as Prikry forcing with the

measure ι(U̇β) in P|Even(λ).

The following lemma defines certain projections which will be used later on.

Lemma 6.6. The following hold.

(i) For every γ < δ in Â, there is a projection

(6.7) σδ
γ : P|δ ∗ Qδ → RO+(P|γ ∗ Qγ).

(ii) For every γ in Â and every α ∈ B, there is a projection

(6.8) σγ
α : P|γ ∗ Qγ → RO+(P|Even(α) ∗ Qι

α).

(iii) For γ ∈ A ∩ (β, λ+) and α ∈ B, let σ̂γ
α be the extension of σγ

α to the Boolean
completion of P|γ ∗ Qγ obtained according to Lemma 3.44(ii)(b):

(6.9) σ̂γ
α : RO+(P|γ ∗ Qγ) → RO+(P|Even(α) ∗ Qι

α).

Then the projections commute:

(6.10) σλ+
α = σ̂γ

α ◦ σλ+
γ .
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Proof. (i). Let G ∗ x be a P|δ ∗Qδ-generic filter,25 where x is an ω-sequence cofinal in κ.
By the geometric condition for Prikry genericity,26 and the fact that U̇γ is the restriction
of U̇δ, it is clear that G|γ ∗ x is P|γ ∗ Qγ-generic. The result follows by Lemma 3.41.

(ii). Let G ∗ x be a P|γ ∗Qγ-generic filter, where x is an ω-sequence cofinal in κ. By (6.5)
and the geometric condition for the generic filters for Prikry forcings,

(6.11) ι(G|β) ∗ x is P|Even(λ) ∗ Qι
λ-generic.

Substituting H = ι(G|β) in Lemma 6.5, for every α ∈ B, Qι
α is a forcing in V [H|Even(α)]

defined with respect to the restriction of the measure U ; it follows that H|Even(α)∗x is a
generic filter for P|Even(α) ∗Qι

α existing in V [G ∗ x]. The result again follows by Lemma
3.41.

(iii). σγ
α is correctly defined by Lemma 3.44(ii)(b). Let us fix (p, (s, Ȧ)) in P ∗ Q and let

us denote
bα =

⋀
{b ∈ RO+(P|Even(α) ∗ Qι

α) | (p, (s, Ȧ)) ⊩ b ∈ Ġα},

bγ =
⋀

{b ∈ RO+(P|γ ∗ Qγ) | (p, (s, Ȧ)) ⊩ b ∈ Ġγ},

and
bγ

α =
⋀

{b ∈ RO+(P|Even(α) ∗ Qι
α) | bγ ⊩ b ∈ Ġα},

where Ġγ and Ġα are the canonical names for the generic filters. The intuition is that the
Boolean value bα (and similarly bγ and bγ

α) corresponds to a condition (ι(p|β)|α, (s, Ċ))
for some Ċ which is the intersection of all elements in U̇α in V P|Even(α)∗Qι

α which contain
Ȧ; the problem is that this condition in general may not exist in P|Even(α) ∗ Qι

α, and it
is necessary to use the more abstract Boolean names.

We show that ba = bγ
α.

To argue for bγ
α ≤ bα, notice that we can identify every element of RO+(P|Even(α) ∗ Qι

α)
with an element b of RO+(P|γ ∗Qγ) by virtue of the projection σ̂γ

α; now if (p, (s, Ȧ)) forces
b into Ġα, then clearly (p, (s, Ȧ)) forces b into Ġγ . In particular bγ forces b into Ġα, and
so bγ

α ≤ bα.

Conversely, bγ can be identified with an element of RO+(P ∗ Q), and under this identifi-
cation (p, (s, Ȧ)) ≤ bγ . It follows that if bγ forces b ∈ RO+(P|Even(α) ∗ Qι

α) into Ġα, so
does (p, (s, Ȧ)), and hence bα ≤ bγ

α. □

We are now ready to define the main forcing R.

Definition 6.7. Conditions in R are triples (p, q, r) which satisfy the following (where B
is as in Lemma 6.5):

(i) (p, q) is a condition in P ∗ Q.
(ii) r is a function with dom(r) ⊆ B and |dom(r)| ≤ κ such that for every α ∈ dom(r),

r(α) is a nice P|Even(α) ∗ Qι
α-name and:

(6.12) P|Even(α) ∗ Qι
α ⊩ r(α) ∈ Add(κ+, 1).

25We abuse notation here and identify G ∗ x with the generic filter which it determines.
26The geometric condition characterises the genericity for Prikry forcing: a cofinal ω-sequence in κ

determines a generic filter if and only if it is eventually contained in every element of the measure used
to define the forcing.
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6 The double successor of a singular cardinal 6.1 Gap three

The ordering is defined as follows: (p′, q′, r′) ≤ (p, q, r) if the following hold:

(i) (p′, q′) ≤ (p, q) in P ∗ Q.
(ii) dom(r) ⊆ dom(r′) and for every α ∈ dom(r),

(6.13) σλ+
α (p′, q′) ⊩RO+(P|Even(α)∗Qι

α) r′(α) ≤ r(α).

The following lemmas identify the basic properties of R.

Define U to consist of all elements of R of the form (1, 1, r), with the induced partial
ordering. Let ν : (P ∗ Q) × U → R be given by ν((p, q), (1, 1, r)) = (p, q, r).

Lemma 6.8. The following hold:

(i) P ∗ Q has a dense subset which has the κ+-Knaster property.
(ii) U is κ+-closed.

(iii) ν is a projection which commutes with the natural projections from R and (P∗Q)×U
to P ∗ Q (so that in a natural way V [P ∗ Q] ⊆ V [R] ⊆ V [(P ∗ Q) × U]).

(iv) V [R] and V [P ∗ Q] have the same κ-sequences.

Proof. (i). Let Z contain all conditions of the form (p, (š, Ȧ)); then Z is dense in P ∗ Q
and has the κ+-Knaster property. (ii)–(iii) are obvious. Regarding (iv), by (i), (ii) and
the Easton’s lemma 3.32, U is κ+-distributive over V [P ∗Q]; then (iv) follows by (iii). □

Lemma 6.9. The following hold:

(i) R has the λ-Knaster property.
(ii) R collapses cardinals in the interval (κ+, λ) (and no other cardinals), making κ++

in V [R] equal to λ. In V [R], 2κ = λ+ = κ+3.

Proof. (i). Let Y = {(pα, qα, rα) | α < λ} be a set of conditions in R of size λ. We wish
to find a subset Y ′ of size λ which consists of pairwise compatible conditions. By a ∆-
system argument there is a cofinal a ⊆ λ such that {(pα, qα) | α ∈ a} is a family of pairwise
compatible conditions in P ∗Q. By another ∆-system argument, there is a cofinal a′ ⊆ a,
and a root r ⊆ B of size ≤ κ, such that for all α, β ∈ a′, α ̸= β, dom(rα) ∩ dom(rβ) = r.
By the inaccessibility of λ, the number of nice P|Even(γ)∗Qι

γ-names, γ ∈ r, for conditions
in Add(κ+, 1) is less than λ. Hence there is a cofinal a′′ ⊆ a′ such that if α, β are in a′′,
then for all γ ∈ r, rα(γ) = rβ(γ). It follows Y ′ = {(pα, qα, rα) | α ∈ a′′} is as required.

(ii). Obvious. □

We will need to consider truncations of R, which we define next.

Definition 6.10. Let γ ∈ A, and λ < β < γ. Conditions in R|γ are triples (p, q, r) which
satisfy the following:

(i) (p, q) is a condition in P|γ ∗ Qγ , where Qγ is Prikry forcing defined with respect to
the measure U̇γ .

(ii) r is a function with dom(r) ⊆ B and |dom(r)| ≤ κ such that for every α ∈ dom(r),
r(α) is a nice P|Even(α) ∗ Qι

α-name and:

(6.14) P|Even(α) ∗ Qι
α ⊩ r(α) ∈ Add(κ+, 1).

The ordering is defined as for R, but using the projections σγ
α, α ∈ B.
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6 The double successor of a singular cardinal 6.1 Gap three

Lemma 6.11. Let γ be in A and β < γ < λ+. There is a projection from R to RO+(R|γ).

Proof. First notice that R|γ is densely embeddable in R̂|γ, which is defined as R|γ but
with elements of RO+(P|γ ∗Qγ) instead of P|γ ∗Qγ , and with the projection σ̂γ

α. Because
of the commutativity σλ+

α = σ̂γ
α ◦ σλ+

γ , see Lemma 6.6(iii), it is easy to check that in V R,
we can find a generic for R̂|γ. □

We now show that if R adds an Aronszajn tree on λ, then a truncation R|β∗ for a certain
β∗ must add an Aronszajn tree on λ.

Before we give the lemma, let us define some terminology. Let (p, q) be a condition in
P ∗ Q; without loss of generality, q is of the form (s, Ė) for some finite subset s of κ and
some nice P-name Ė for a subset of κ. We say that a coordinate α < λ+ is in the support
of (p, q) if α is in the support of p or in the support of some p′ which occurs in the nice
name Ė.

Lemma 6.12. Suppose R forces that there is an Aronszajn tree on λ. Then for some β∗

in A, β < β∗, R|β∗ forces there is an Aronszajn tree on λ.

Proof. Let Ṫ be a nice name for a subset of λ which in some natural way corresponds to
an Aronszajn tree on λ, which we assume exists in V R. Ṫ is of the form

⋃
{{α}×Kα | α <

λ}, where Kα for α < λ is an antichain in R. By the λ-Knaster property, |Kα| < λ for
every α < λ. It follows there are at most λ many coordinates α < λ+ which are in the
support of (p, q) such that for some r, (p, q, r) ∈

⋃
α<λ Kα (we say that α is in the support

of Ṫ ). Hence we can choose β∗ in A such that β < β∗, and R|β∗ forces that Ṫ ′ is an
Aronszajn tree on λ, for some name Ṫ ′ which is naturally obtained from Ṫ . □

Suppose now that R does force that there is an Aronszajn tree on λ and let us fix β∗ as
above (we will later show that the assumption that R adds an Aronszajn tree on λ leads
to a contradiction).

Let ι∗ be an isomorphism between P|β∗ and P|λ; choose ι∗ so that it extends ι (the fixed
isomorphism between P|β and P|Even(λ)). This implies ι(U̇β) = ι∗(U̇β), and therefore
the measure ι∗(U̇β∗) is forced to extend the measure ι(U̇β). More precisely, if G|β∗ is
P|β∗-generic, then the following hold:

(i) Ḡ = ι∗(G|β∗) is P|λ-generic and its restriction to its even coordinates, to be denoted
as Ḡ|Even(λ), is equal to ι(G|β) (and Ḡ|Even(λ) is P|Even(λ)-generic).

(ii) The measure ι(U̇β)Ḡ|Even(λ) in V [Ḡ|Even(λ)] is extended by the measure ι∗(U̇β∗)Ḡ

in V [Ḡ].

Define Qι∗
λ as Prikry forcing in P|λ with the measure ι∗(U̇β∗).

Lemma 6.13. (i) ι∗ extends to an isomorphism from P|β∗ ∗ Qβ∗ onto P|λ ∗ Qι∗
λ .

(ii) For every α ∈ B, σλ
α = σβ∗

α ◦ (ι∗)−1 is a projection

(6.15) σλ
α : P|λ ∗ Qι∗

λ → RO+(P|Even(α) ∗ Qι
α).

Proof. (i). Let us view Qβ∗ as a collection of conditions (p, (s, Ȧ)), where Ȧ is a nice
name. It is clear that we can naturally extend ι∗ so that ι∗(Ȧ) is a nice name in P|λ.
Moreover, since ι∗ is an isomorphism, P|β∗ forces that Ȧ is in U̇β∗ if and only if ι(Ȧ) is in
ι∗(U̇β∗).
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6 The double successor of a singular cardinal 6.1 Gap three

(ii). This is clear because (ι∗)−1 is an isomorphism. □

Let us define the following variant of R, and call it R∗:

Definition 6.14. Conditions in R∗ are triples (p, q, r) which satisfy the following:

(i) (p, q) is a condition in P|λ ∗ Qι∗
λ .

(ii) r is a function with dom(r) ⊆ B and |dom(r)| ≤ κ such that for every α ∈ dom(r),
r(α) is a nice P|Even(α) ∗ Qι

α-name and:

(6.16) P|Even(α) ∗ Qι
α ⊩ r(α) ∈ Add(κ+, 1).

The ordering is defined by means of the projections σλ
α, α ∈ B.

Lemma 6.15. R|β∗ and R∗ are isomorphic.

Proof. Define f : R|β∗ → R∗ by assigning to (p, (s, Ȧ), r) the condition (ι∗(p), (s, ι∗(Ȧ)), r),
where (s, Ȧ) is a condition in Qβ∗ . Since σλ

α is determined by ι∗ and σβ∗
α (6.15), it is easy

to check that f is an isomorphism. □

By Lemma 6.12, it follows that if R adds an Aronszajn tree on λ, R∗ adds an Aronszajn
tree on λ. In Stage 2, we show that this cannot happen.

6.1.2 Stage 2

We verify that the method of [10] can be applied in our case to verify that R∗ does not
add an Aronszajn tree at λ. In the argument, we use ideas from [73] to fill some gaps in
[10].

In order to carry out the analysis of R∗, we need to be able to define truncations R∗|α
for a large set B∗ ⊆ B below λ. First we apply the construction in Lemma 6.5 to the
measure ι∗(U̇β∗) in P|λ, and obtain an unbounded set B∗ below λ where the measure
ι∗(U̇β∗) reflects. Using the closure at points of cofinality >κ, one can in fact refine to get
B∗ ⊆ B. For α ∈ B∗, define Qι∗

α as Prikry forcing defined with respect to the restriction
of the measure ι∗(U̇β∗). Denote B̂∗ = B∗ ∪ {λ}. We now proceed as in Lemma 6.6, and
in particular using Lemma 3.41, to obtain for every α < γ in B̂∗ projections:

(6.17) ϱγ
α : P|γ ∗ Qι∗

γ → RO+(P|Even(α) ∗ Qι
α)

and

(6.18) ϱ̂γ
α : RO+(P|γ ∗ Qι∗

γ ) → RO+(P|Even(α) ∗ Qι
α),

which moreover satisfy:

(6.19) ϱλ
α = ϱ̂γ

α ◦ ϱλ
γ .

Recall we used projections σλ
α, α ∈ B, to define the forcing R∗. We show that σλ

α is the
same projection as ϱλ

α for α ∈ B∗, and therefore we can view R∗ as being defined with
the projections ϱλ

α, α ∈ B∗.

Lemma 6.16. For α ∈ B∗, σλ
α = ϱλ

α.
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6 The double successor of a singular cardinal 6.1 Gap three

Proof. Let us fix α ∈ B∗ and a condition (p, q) in P|λ ∗ Qι∗
λ , and let us temporarily

denote RO+(P|Even(α) ∗ Qι
α) by BEven(α). Let F be a P|λ ∗ Qι∗

λ -generic filter, F ∗ a
P|β∗ ∗ Qβ∗-generic filter, and let Ḟ |Even(α) and Ḟ ∗|Even(α) be the canonical names for
the BEven(α)-generic filters existing in V [F ] and V [F ∗], respectively. Since ι∗ extends ι,
it is clear that for every b ∈ BEven(α),

(6.20) (p, q) ⊩ b ∈ Ḟ |Even(α) ⇔ (ι∗)−1(p, q) ⊩ b ∈ Ḟ ∗|Even(α),

and therefore

(6.21) ϱλ
α(p, q) =

⋀
{b ∈ BEven(α) | (p, q) ⊩ b ∈ Ḟ |Even(α)} =⋀

{b ∈ BEven(α) | (ι∗)−1(p, q) ⊩ b ∈ Ḟ ∗|Even(α)} = σλ
α(p, q),

as desired. □

Now we can define truncations R|γ for γ ∈ B∗:

Definition 6.17. For γ ∈ B∗, define R∗|γ as follows. Conditions in R∗|γ are triples
(p, q, r):

(i) (p, q) is a condition in P|γ ∗ Qι∗
γ .

(ii) r is a function with dom(r) ⊆ B∗ ∩ γ and |dom(r)| ≤ κ such that for every α ∈
dom(r), r(α) is a nice P|Even(α) ∗ Qι

α-name and:

(6.22) P|Even(α) ∗ Qι
α ⊩ r(α) ∈ Add(κ+, 1).

The ordering is defined as follows: (p′, q′, r′) ≤ (p, q, r) if the following hold:

(i) (p′, q′) ≤ (p, q) in P ∗ Q.
(ii) dom(r) ⊆ dom(r′) and for every α ∈ dom(r),

(6.23) ϱγ
α(p′, q′) ⊩RO+(P|Even(α)∗Qι

α) r′(α) ≤ r(α).

Lemma 6.18. For every γ ∈ B∗ there exists a projection from R∗ to RO+(R∗|γ).

Proof. It follows as in Lemma 6.11, using the fact that σλ
α = ϱλ

α, α ∈ B∗ (see Lemma
6.16). □

The analysis in Lemma 6.8 can be applied to R∗ straightforwardly. Let U∗ denote the
κ+-closed forcing such that there is a projection from (P|λ∗Qι∗

λ )×U∗ to R∗. By arguments
similar to Lemma 6.8 and 6.9, for an inaccessible α ∈ B̂∗, R∗|α preserves all cardinals
except in the interval (κ+, α) and forces 2κ = α. Moreover, V [R∗|α] is a submodel of
V [R∗] and every bounded subset of λ in V [R∗] appears in V [R∗|α], for some α ∈ B∗.

The existence of U∗ generalizes to the truncations R∗|α, α ∈ B∗.

Lemma 6.19. Let α be in B∗. Then R/(R|α) is in V [R|α] a projection of (P|λ∗Qι∗
λ /P|α∗

Qι∗
α ) × U∗

α for some κ+-closed forcing U∗
α in R|α.

Proof. Obvious. □

Following [10, Lemma 6.5], and the correction in [73], the proof is finished by showing
that for every α ∈ B∗, the product (P|λ ∗ Qι∗

λ /P|α ∗ Qι∗
α ) × (P|λ ∗ Qι∗

λ /P|α ∗ Qι∗
α ) (“the

square of (P|λ∗Qι∗
λ /P|α∗Qι∗

α )”) is κ+-cc in V [R∗|α] (this result is stated as Lemma 6.24).
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6 The double successor of a singular cardinal 6.1 Gap three

Since the argument in [73] is stated for a different forcing, we provide a self-contained
proof of Lemma 6.24. For the proof of Lemma 6.24, we need to prove some preliminary
facts (Lemma 6.20 – Lemma 6.23).

Lemma 6.20. Assume (p, (s, Ȧ)) ∈ P|α ∗ Qι∗
α and (q, (t, Ḃ)) ∈ P|λ ∗ Qι∗

λ are arbitrary
conditions. Then (p, (s, Ȧ)) forces that (q, (t, Ḃ)) is not a condition in P|λ ∗Qι∗

λ /P|α ∗Qι∗
α

if and only if one of the following conditions holds:

(i) q ↾α is incompatible with p,

(ii) q ↾α is compatible with p, s does not extend t and t does not extend s,

(iii) q ↾α is compatible with p, s extends t and q ∪ p ⊩ s \ t ⊈ Ḃ,

(iv) q ↾α is compatible with p, t extends s and (q ↾α) ∪ p ⊩ t \ s ⊈ Ȧ.

Proof. Notice that (p, (s, Ȧ)) ⊩ (q, (t, Ḃ)) /∈ P|λ ∗Qι∗
λ /P|α ∗Qι∗

α if and only if there is no
generic filter G ∗ x such that (q, (t, Ḃ)) ∈ G ∗ x and (p, (s, Ȧ)) ∈ G|α ∗ x.

From right to left, it is easy to see that each of the conditions (i)–(iv) above rules out the
existence of such a generic filter G ∗ x.

To prove the implication from left to right, assume that all conditions (i)–(iv) above fail.
Then p is compatible with q and it has to hold that either s extends t or t extends s. If
s extends t, then q ∪ p ⊮ s \ t ⊈ Ḃ. This means that there is r below q ∪ p such that
r ⊩ s\t ⊆ Ḃ. Consider the condition (r, (s, Ȧ∩Ḃ)) and let G∗x be generic filter such that
(r, (s, Ȧ ∩ Ḃ)) ∈ G ∗ x. It is easy to verify that (q, (t, Ḃ)) ∈ G ∗ x and (p, (s, Ȧ)) ∈ G|α ∗ x.
The second case, if t extends s, is similar. □

We have just characterised the case when a condition in P|λ ∗ Qι∗
λ is forced out of the

quotient. Now, we focus on the case when a condition is forced into the quotient. The
following lemma says when a condition is not forced out of the quotient.

Lemma 6.21. Assume (p, (s, Ȧ)) ∈ P|α ∗ Qι∗
α and (q, (t, Ḃ)) ∈ P|λ ∗ Qι∗

λ are arbitrary
conditions. If they satisfy the following conditions

(i) s extends t,

(ii) p ≤ q ↾α and

(iii) q ∪ p ⊩ s \ t ⊆ Ḃ,

then the following hold:

(i) (p, (s, Ȧ)) does not force that (q, (t, Ḃ)) out of the quotient P|λ ∗ Qι∗
λ /P|α ∗ Qι∗

α .
(ii) There is a direct extension of (p, (s, Ȧ)) which forces (q, (t, Ḃ)) into the quotient

P|λ ∗ Qι∗
λ /P|α ∗ Qι∗

α .

Proof. (i). It is enough to find P|λ∗Qι∗
λ -generic G∗x such that (q, (t, Ḃ)) is in G∗x and

(p, (s, Ȧ)) is in G|α ∗ x. Note that (p, (s, Ȧ)) and (q, (t, Ḃ)) are compatible in P|λ ∗Qι∗
λ as

witnessed by (p ∪ q, (s, Ȧ)). It suffices to choose G ∗ x such that (p ∪ q, (s, Ȧ)) is in G ∗ x,
and the rest of the argument follows.
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(ii). By the Prikry property, there is a direct extension of (p, (s, Ȧ)) which decides the
statement “(q, (t, Ḃ)) is in P|λ ∗ Qι∗

λ /P|α ∗ Qι∗
α ”. The negative decision contradicts (i)

(when applied to the direct extension); it follows that the decision must be positive. □

Lemma 6.22. Assume (p, (s, Ȧ)) is a condition in P|α ∗ Qι∗
α , and ṙi for i < 2, are

conditions forced by the weakest condition of P|α∗Qι∗
α into the quotient P|λ∗Qι∗

λ /P|α∗Qι∗
α .

Then there are (p′, (s′, Ȧ′)) ≤ (p, (s, Ȧ)), (qi, (ti, Ḃi)) and q̄i ≤ qi, i < 2, such that for
i < 2:

(i) (p,′ (s′, Ȧ′)) decides ṙi to be (qi, (ti, Ḃi)),

(ii) (p′, (s′, Ȧ′)) and (q̄i, (ti, Ḃi)) satisfy the assumptions (i)–(iii) of Lemma 6.21.

Proof. Let (p′, (s′, Ȧ′)) ≤ (p, (s, Ȧ)) be such that it decides the value of ṙi to be
(qi, (ti, Ḃi)) for i < 2. We may assume that s′ extends ti and p′ ≤ qi ↾ α for i < 2.
Since (p′, (s′, Ȧ′)) forces that ṙ0 is in P|α ∗ Qι∗

α , the condition (iii) in Lemma 6.20 has to
fail, hence there is q̄0 ≤ p′ ∪ q0 such that q̄0 forces s′ \ t0 ⊆ Ḃ0. Now, if it is necessary we
can extend p′ to ensure p′ ≤ q̄0 ↾α.

Now, we need to deal with ṙ1 = (q1, (t1, Ḃ1)). Since (p′, (s′, Ȧ′)) forces that ṙ1 is in
P|α∗Qι∗

α , the condition (iii) in Lemma 6.20 has to fail. Therefore there is q̄1 ≤ p′ ∪q1 such
that q̄1 forces s′ \ t1 ⊆ Ḃ1. Again, if it is necessary we can extend p′ so that p′ ≤ q̄1 ↾α.

□

Lemma 6.23. (P|λ ∗ Qι∗
λ )2 × (P|α ∗ Qι∗

α ) is κ+-cc.

Proof. Obvious. □

Finally we can prove the desired lemma which finishes the proof of Theorem 6.1.

Lemma 6.24. For every α ∈ B∗, the square of P|λ∗Qι∗
λ /P|α∗Qι∗

α is κ+-cc in V [P|α∗Qι∗
α ].

Proof. For contradiction assume that {(ṙ0
β, ṙ1

β) | β < κ+} is a P|α ∗ Qι∗
α -name for an

antichain in P|λ ∗ Qι∗
λ /P|α ∗ Qι∗

α . By Lemma 6.22, we can find for each β < κ+ and i < 2
conditions (pβ, (sβ, Ȧβ)), (qi

β(ti
β, Ḃi

β)) and extensions q̄i
β ≤ qi

β which satisfy items (i) and
(ii) in Lemma 6.22.

By Lemma 6.23, there are β < β′ < κ+ such that pβ is compatible with pβ′ and q̄i
β is

compatible with q̄i
β′ for i < 2. This means that pβ ∪pβ′ and q̄i

β ∪ q̄i
β′ for i < 2 are conditions

in P|λ. Moreover we may assume that ti = ti
β = ti

β′ and s = sβ = sβ′ for i < 2.

For i < 2, the conditions (pβ ∪ pβ′ , (s, Ȧβ ∩ Ȧβ′)) and (q̄i
β ∪ q̄i

β′ , (ti, Ḃi
β ∩ Ḃi

β′)) satisfy the
assumptions of Lemma 6.21. Therefore, there is an direct extension of (pβ ∪ pβ′ , (s, Ȧβ ∩
Ȧβ′)) (applying Lemma 6.21 twice) which forces the compatibility of (ṙ0

β, ṙ1
β) and (ṙ0

β′ , ṙ1
β′)

into the quotient. This is a contradiction. □

This finishes the proof of Theorem 6.1.

6.2 An arbitrary gap

Theorem 6.25. Assume GCH and let κ be a Laver-indestructible supercompact cardinal,
λ a weakly compact cardinal and µ a cardinal of cofinality greater than κ such that κ <
λ < µ. Then there is a forcing notion R such that the following hold:
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6 The double successor of a singular cardinal 6.2 An arbitrary gap

(i) R preserves cardinals ≤ κ+ and ≥ λ.
(ii) V [R] |= (κ++ = λ & 2κ = µ & cf(κ) = ω & κ is strong limit).

(iii) V [R] |= TP(λ).

We will not give a detailed proof, but instead specify what modifications to the proof of
Theorem 6.1 are needed to prove Theorem 6.25. Assume the notation is the same as in
the proof of Theorem 6.1 unless said otherwise.

Modify the construction in Stage 1 in Section 6.1.1 as follows:

(1) In analogy with Lemma 6.3, find a set A ⊆ [µ]λ which is unbounded in [µ]λ and closed
under unions of increasing chains of cofinality larger than κ which satisfies:

• For every x ∈ A, λ + 1 ⊆ x.
• For every x ∈ A, there is a name U̇x such that in V [P|x], U̇x interprets as the

restriction of the measure U̇ on κ. Let us denote by P|x ∗ Qx the Cohen forcing
restricted to x followed by Prikry forcing with the measure U̇x.

(2) Choose an arbitrary x0 ∈ A and an isomorphism ι : P|x0 → P|Even(λ). Thus ι(U̇x0)
is a measure in P|Even(λ).

(3) Denote Â = {y ∈ A | x0 ⊆ y}. As in Lemma 6.6, and with the notation naturally
modified for the current situation, there is an unbounded set B ⊆ λ closed under
limits of cofinality larger than κ, and commutative projections

σµ
y : P ∗ Q → RO+(P|y ∗ Qy), for y ∈ Â,

σ̂y
α : RO+(P|y ∗ Qy) → RO+(P|Even(α) ∗ Qι

α), for y ∈ Â, α ∈ B,

and
σµ

α : P ∗ Q → RO+(P|Even(α) ∗ Qι
α), for α ∈ B

with
σµ

α = σ̂y
α ◦ σµ

y , for y ∈ Â, α ∈ B.

Note that we denote by Qι
α Prikry forcing defined with respect to the restriction of

the measure ι(U̇x0) to V [P|Even(α)].

(4) Modify Definition 6.7 of R to use ι and σµ
α, in the sense of the previous paragraph.

As in Definition 6.10, define the truncations R|y for y ∈ Â.

(5) The key step is to show that if Ṫ is a λ-Aronszajn tree added by R, then for some
y ∈ Â, R|y adds an Aronszajn tree on λ and importantly, R|y is isomorphic to R∗

(which is the same forcing as in Definition 6.14). We argue as follows:
By the λ-Knaster property of (a dense subset of) R, there is y ∈ Â such that the
support of Ṫ (see the paragraph after Lemma 6.11) is included in y. Choose a bijection
ι∗ extending ι, ι∗ : P|y → P|λ. Denote Qι∗

λ Prikry forcing in V [P|λ] defined with
respect to the measure ι∗(U̇y). As in Lemma 6.13, ι∗ extends to an isomorphism
between P|y ∗ Qy and P|λ ∗ Qι∗

λ . Finally, as in Lemma 6.13, R|y is isomorphic to R∗.

Stage 2 of the argument is exactly the same as in the proof of Theorem 6.1
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6 The double successor of a singular cardinal 6.2 An arbitrary gap

Remark 6.26. Notice that the cofinality of 2κ is greater than κ in the final model in
Theorem 6.25. It is of interest to ask whether the cofinality of 2κ can be equal to γ,
for some ω < γ ≤ κ, with the tree property at κ++ (since κ has countable cofinality it
may in principle happen). Our method of proof cannot be easily modified to reach this
configuration because κ was regular when we enlarged the size of 2κ, and therefore the
cofinality of 2κ at that moment had to be greater than κ.
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7 The double successor of ℵω 7.1 Forcing notions

7 The double successor of ℵω

In this section we strengthen the result of the previous section and collapse κ to ℵω, i.e.
we show that the tree property at ℵω+2, with ℵω strong limit, is consistent with 2ℵω equal
to ℵω+2+n for an arbitrary natural number n. The results in this section are joint with
Sy-David Friedman and Radek Honzik, and were submitted as [28].

The exposition is structured as follows.

In Section 7.1 we review the forcings which we will use: in particular, we define a variant
of Mitchell forcing which ensures the large value of 2ℵω (see Section 7.1.1), and provide
a product analysis of Mitchell forcing followed by Prikry forcing with collapses which is
reminiscent of the analysis in [1] and [10] (Section 7.1.2).

In Section 7.2, we argue that it is possible to start with a strong cardinal κ of a suitable
degree and prepare the ground model so that a further forcing with the Cohen product
at κ (of a prescribed length) does not destroy the measurability of κ.27

In Section 7.3, we show that over the prepared ground model, the standard Mitchell
forcing followed by Prikry forcing with collapses forces that κ = ℵω is a strong limit
cardinal, 2ℵω = ℵω+3, and the tree property holds at ℵω+2.

In Section 7.4 we generalise the construction in Section 7.3 to any finite gap 2 ≤ n < ω.

7.1 Forcing notions

7.1.1 A variant of Mitchell forcing

We will use a variant of the standard Mitchell forcing as presented in [1], see Section 3.4.1.

Let κ < λ be regular cardinals, and assume λ is inaccessible. Let µ > λ be an ordinal.
We define a variant of Mitchell forcing, M(κ, λ, µ), as follows: Conditions are pairs (p, q)
such that p is in Add(κ, µ), and q is a function whose domain is a subset of λ of size at
most κ such that for every ξ ∈ dom(q), q(ξ) is an Add(κ, ξ)-name, and ∅ ⊩Add(κ,ξ) q(ξ) ∈

˙Add(κ+, 1), where ˙Add(κ+, 1) is the canonical Add(κ, ξ)-name forCohen forcing at κ+.
The ordering is as in the standard Mitchell forcing, i.e.: (p′, q′) ≤ (p, q) if and only if p′

is stronger than p in Cohen forcing, the domain of q′ contains the domain of q and if ξ is
in the domain of q, then p′ restricted to ξ forces q′(ξ) extends q(ξ).

Lemma 7.1. Assume GCH.

(i) M(κ, λ, µ) is λ-Knaster.
(ii) In V [M(κ, λ, µ)], 2κ = |µ|, and the cardinals in the open interval (κ+, λ) are collapsed

(and no other cardinals are collapsed).

Proof. The proof is standard (using a ∆-system argument for Knasterness). □

The following follows as in [1]:

Lemma 7.2. (i) M(κ, λ, µ) is a projection of Add(κ, µ) × T, where T is a κ+-closed
term forcing defined by T = {(∅, q) | (∅, q) ∈ M(κ, λ, µ)}.

27With more work, we can also preserve the initial degree of strongness; see Remark 7.7.
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7 The double successor of ℵω 7.1 Forcing notions

(ii) M(κ, λ, µ) is equivalent to Add(κ, µ) ∗ Q̇M, where Q̇M is forced to be κ+-distributive.

Proof. The proof is as in [1]. □

As will be apparent from the arguments in Section 7.3, it is also the case that if λ is
weakly compact, then the tree property holds at λ = κ++ in V [M(κ, λ, µ)].

7.1.2 Mitchell followed by Prikry forcing with collapses

Assume κ < λ < µ are as above, M = M(κ, λ, µ) is Mitchell forcing, and U̇ and Ġg

are M-names such that the weakest condition in M forces that PrkCol(U̇ , Ġg) is Prikry
forcing with collapses defined with respect to U̇ and Ġg (see Section 3.4.3 for more details
about Prikry forcing with collapses).

Lemma 7.3. M ∗ PrkCol(U̇ , Ġg) is λ-Knaster.

Proof. This follows by a ∆-system argument applied to M ∗ PrkCol(U̇ , Ġg) (the com-
patibility of the Prikry component is determined by the compatibility of the stems, and
there are only κ-many of these). □

Lemma 7.4. In M ∗ PrkCol(U̇ , Ġg), conditions ((p, q), r), where r in Prikry forcing de-
pends only on the Cohen information of Mitchell forcing and its stem is a checked name,
are dense.

Proof. This is because all conditions in Prikry forcing exist already in the extension by
the Cohen part of Mitchell forcing (in contrast, the definition of PrkCol(U̇ , Ġg) itself may
require the whole M in order to refer to U̇ and Ġg; this will be the case in our argument
in Section 7.3.3). Given ((p, q), r) we can extend (p, q) to some (p′, q′) such that (p′, q′)
forces that r is equal to some r′ in the generic extension by the Cohen part of Mitchell
forcing with its stem being a ground model object (since Cohen forcing at κ does not add
bounded subsets of Vκ). □

Using Lemma 7.4, we can formulate a projection-of-product analysis of the forcing M ∗
PrkCol(U̇ , Ġg) reminiscent of Abraham’s analysis of Mitchell forcing in [1] (see Section
3.4.1 for more details). Let us define:

(7.1) C = {((p, ∅), r) | ((p, ∅), r) ∈ M ∗ PrkCol(U̇ , Ġg)},

where we require that r depends only on the Cohen information of Mitchell forcing and
its stem is a checked name.28 Let us also define:

(7.2) T = {(∅, q) | (∅, q) ∈ M}.

Define a function π from C × T to M ∗ PrkCol(U̇ , Ġg) as follows: π applied to the pair
composed of ((p, ∅), r) and (∅, q) is equal to the condition ((p, q), r).

Lemma 7.5. The following hold:

(i) π is a projection from C × T onto a dense part of M ∗ PrkCol(U̇ , Ġg).
28The requirement that the stem of r is a checked name is not important for Lemma 7.5, but will be

useful in Section 7.3.3 when a similar analysis is performed.
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7 The double successor of ℵω 7.2 Preserving measurability by Mitchell forcing

(ii) T is κ+-closed in V .
(iii) C is κ+-cc in V .

Proof. (i). If ((p′, ∅), r′) ≤ ((p, ∅), r) and (∅, q′) ≤ (∅, q), then ((p, q′), r′) ≤ ((p, q), r),
hence π is order-preserving.

Now, suppose we are given ((p′, q′), r′) ≤ ((p, q), r), where

(7.3) ((p, q), r) = π(((p, ∅), r), (∅, q))

and r′ depends only on the Cohen information of Mitchell forcing and its stem is a checked
name (by Lemma 7.4 such conditions are dense). We will find q∗ and r∗ such that

(a) (∅, q∗) ≤ (∅, q) in T,
(b) ((p′, ∅), r∗) ≤ ((p, ∅), r) in C,
(c) π(((p′, ∅), r∗), (∅, q∗)) = ((p′, q∗), r∗) ≤ ((p′, q′), r′).

In order to get (a)–(b), first define q∗ so that it interprets as q′ below p′, and as q below
conditions incompatible with p′ (ensuring (a)). Since we assume that r and r′ depend
only on Cohen forcing (and have checked names for their stems), we can take r∗ = r′

(ensuring (b)). (c) is clear by the definition of q∗ and r∗.

Items (ii) and (iii) are obvious. □

The existence of the projection π in Lemma 7.5 will be useful (in a quotient setting) in
Section 7.3.3.

7.2 Preserving measurability by Mitchell forcing

In [10], the construction which yields the tree property at the double successor of a singular
strong limit κ with countable cofinality starts by assuming that κ is supercompact. The
reason is that we can then invoke Laver’s indestructibility result [51], and assume that
adding any number of Cohen subsets of κ will preserve the measurability of κ. Such
an assumption tends to simplify the subsequent constructions because one can avoid the
work of lifting a weaker embedding using a surgery argument, or some other methods.

A natural question is whether a “Laver-like” indestructibility is available also for smaller
large cardinals. In this section, we use an idea of Cummings and Woodin (see [7]) to
argue that it is possible to have a limited indestructibility for µ-tall cardinals κ, where
µ > κ is a regular cardinal.29

7.2.1 Stage 1

Assume GCH and suppose that µ > κ is the successor30 of the least weakly compact
cardinal λ above κ and j : V → M is an H(µ)-strong embedding with the extender
representation:

(7.4) M = {j(f)(α) | f : κ → V & α < µ}.

29With more work, one can also preserve the strongness of κ; see [40].
30Or more generally the n-th successor for some finite n > 1.
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7 The double successor of ℵω 7.2 Preserving measurability by Mitchell forcing

In particular, H(µ) is included in M and M is closed under κ-sequences in V . Let U
be the normal measure derived from j, and let i : V → N be the ultrapower embedding
generated by U . Let k : N → M be elementary so that j = k ◦ i. Note that κ is the
critical point of j, i and j, i have width κ, i.e. every element of M and N is of the form
j(f)(α), or i(f)(κ) respectively, for some f with domain κ. In contrast, the critical point
of k is (κ++)N and k has width µκ, i.e. every element of M can be written as k(f)(α)
for some f in N with domain µκ, where µκ is the successor of the least weakly compact
cardinal above κ in N , in particular (κ++)N < µκ < i(κ) < κ++. See [9] for more details
regarding the lifting of embeddings and the notion of width.

Let P denote the forcing Add(κ, µ) in V , Q = i(P ), and let g be a Q-generic filter over
V . Then the following hold:

Theorem 7.6. Assume GCH. Forcing with Q preserves cofinalities and the following hold
in V [g]:

(i) j lifts to j1 : V [g] → M [j1(g)], where j1 restricted to V is the original j.
(ii) i lifts to i1 : V [g] → N [i1(g)], where i1 restricted to V is the original i. N [i1(g)] is

the measure ultrapower obtained from j1.
(iii) k lifts to k1 : N [i1(g)] → M [j1(g)], where k1 restricted to N is the original k.
(iv) g is Q-generic over N [i1(g)].
(v) There is g̃ in V [g] such that g̃ is k(Q) = j(P )-generic over M [j1(g)].

Proof. We show that Q is κ+-closed and κ++-cc in V . Closure is obvious by the
fact that N is closed under κ-sequences in V . Regarding the chain condition, notice
that every element of Q can be identified with the equivalence class of some function
f : κ → Add(κ, µ). For f, f ′ : κ → Add(κ, µ), set f ≤ f ′ if for all i < κ, f(i) ≤ f ′(i);
it suffices to check that the ordering ≤ on these f ’s is κ++-cc. Let A be a maximal
antichain in this ordering; take an elementary substructure M̄ in some large enough H(θ)
of V which contains all relevant data, has size κ+ and is closed under κ-sequences. Then
it is not hard to check that A ∩ M̄ is maximal in the ordering (and so A ⊆ M̄), and
therefore has size at most κ+.

(i) and (ii). These follow by κ+-distributivity of Q in V and the fact that j, i have width
κ: the pointwise image of g generates a generic for j(Q) and i(Q), respectively.

(iii). i(Q) is i(κ+)-closed in N , and since µκ < i(κ+), we use the distributivity of i(Q)
and the fact that k has width µκ to argue that the pointwise image k”(i1(g)) generates
a generic filter which is equal to the generic filter generated by j”g by commutativity of
j, i, k.

(iv). Q is i(κ+)-cc in N and i(Q) is i(κ+)-closed in N . Therefore g and i1(g) are mutually
generic over N by Easton’s lemma 3.32.

(v). Q is i(κ)-closed in N [i1(g)] since the generic i1(g) does not add new sequences of
length i(κ); it follows as in (iii) that k1”g generates a j(P )-generic filter g̃ over M [j1(g)].

□

Remark 7.7. Notice that g is not present in M1. However, if so desired,31 we can ensure
that κ is still H(µ)-strong after the generic object g̃ is added; see [40] for more details.

31This is not required for the present proof, but may be useful if more complicated forcings are to be
defined over V 1 (such as the Radin forcing).
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7 The double successor of ℵω 7.2 Preserving measurability by Mitchell forcing

7.2.2 Stage 2

Let us work in the model V [g] = V 1 and let us use the notation j1, V 1, M1 to denote the
resulting models and embeddings in Theorem 7.6. Recall that by Remark 7.7, j1 is just
µ-tall (but the initial H(µ)-strongness of j still implies that the cardinals in the interval
[κ, µ] coincide between V 1 and M1). Note that λ is no longer strong limit in V 1, but we
will argue in Section 7.3.1 that it retains enough of weak compactness in V 1 for further
arguments.

Define Pκ to be the following Easton-supported iteration:

(7.5) Pκ = ⟨(Pα, Q̇α) | α < κ is measurable⟩,

where Q̇α denotes the forcing M(α, λα, µα), where λα is the least weakly compact cardinal
above α, and µα = (λα)+.

Theorem 7.8. The following hold:

(i) In V 1[Pκ][M(κ, λ, µ)], λ = κ++, 2κ = κ+3 = µ, and κ is measurable.
(ii) The measurability of κ is witnessed by a lifting of j1, which we call j2,

j2 : V 1[Pκ][M(κ, λ, µ)] → M2 = M1[j2(Pκ ∗ M(κ, λ, µ))].

Moreover, j2 is the normal measure embedding derived from j2, and M2 satisfies
λ = κ++ and 2κ = κ+3 = µ.

Proof. Let Gκ ∗ H be Pκ ∗ M(κ, λ, µ)-generic over V 1.

(i). We follow closely the argument in Cummings [7] but with the important simplification
that we use the factoring through k only in stage 1 (Theorem 7.6), and use directly the
generic object g̃ (Theorem 7.6) to lift only the embedding j1 (we do not lift k1 and i1).32

Using standard methods, lift j1 to

(7.6) j2 : V 1[Gκ] → M1[Gκ][H][h],

where h is constructed using the extender representation of M1: the dense open sets in
the forcing j1(Pκ) in the interval (κ, j1(κ)) can be grouped into κ+-many groups each
of size µ in M1[Gκ][H]; these groups are of the form {j1(f)(α) | α < µ}, where f is a
function from κ to H(κ). The intersection of each group is a dense set because the forcing
j1(Pκ) in the interval (κ, j1(κ)) is µ+-closed in M1[Gκ][H]. Since there are only κ+-many
of these groups, a generic h can be constructed in V 1[Gκ][H] which meets them all.

It remains to find a generic filter for the j2-image of M(κ, λ, µ). Using the fact that
Mitchell forcing decomposes into Add(κ, µ) ∗ Q̇M for some Q̇M which is forced to be κ+-
distributive by Add(κ, µ) (see Section 3.4.1), it suffices first to lift Add(κ, µ), and then
(easily) lift the distributive part Q̇M. Let us write H = gκ ∗ hκ where gκ is Cohen generic
and hκ is Q̇M-generic.

In order to lift Add(κ, µ), we use the generic object g̃ which we prepared in V 1. Notice
that g̃ is generic for the wrong forcing: it is j1(Add(κ, µ))-generic over M1, but we need a

32Lifting through k1 is problematic at stage κ where we deal with the forcing M(κ, λ, µ) in the sense of
the ultrapower (the forcing is non-trivially moved by k1 – a fact innocuous for Cohen forcing at κ, but
problematic for Mitchell forcing).
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7 The double successor of ℵω 7.3 The tree property with gap 3

generic object for j2(Add(κ, µ)) over M1[Gκ][H][h]. We use the following fact to overcome
this problem.33

Fact 7.9. Let S be a κ-cc forcing notion of cardinality κ, κ<κ = κ. Then for any µ, the
term forcing Qµ = Add(κ, µ)V [S]/S is isomorphic to Add(κ, µ).

By elementarity, Fact 7.9 implies that in V 1[Gκ][H], g̃ yields a generic object g∗ over
M1[Gκ][H][h] for j2(Add(κ, µ)) (note that j1(Pκ) has size j1(κ) in M1 and is j1(κ)-cc).
g∗ is still not good enough to lift j2 because it may not contain the pointwise image j2”gκ.
Using the method of surgery (see [7]), we modify g∗ to g∗∗ which is still j2(Add(κ, µ))-
generic, but in addition contains the pointwise image j2”gκ. It follows we can lift to

(7.7) j2 : V 1[Gκ][gκ] → M1[Gκ][H][h][g∗∗],

and then finally to V 1[Gκ][gκ][hκ] = V 1[Gκ][H]:

(7.8) j2 : V 1[Gκ][H] → M2 = M1[Gκ][H][h][g∗∗][h∗],

where h∗ is generated from j2”hκ. The last lifting shows that κ remains measurable as
desired.

(ii). It remains to show that j2 is a measure ultrapower embedding. Let N∗ be the normal
measure ultrapower via the measure U generated from j2 with the associated embedding
iU : V 1[Pκ][M(κ, λ, µ)] → N∗, and let j2 = k∗ ◦ iU be the commutative triangle with
k∗ : N∗ → M2. First note that k∗ is the identity on µ since its critical point must be
a regular cardinal in N∗ and N∗ computes κ+3 (= µ) correctly. Then the claim follows
since k∗ must be onto (and therefore the identity) using the extender representation of
M2 and elementarity: any element of M2 is of the form j2(f)(α) for some α < µ, and if
k∗ is the identity on α, then j2(f)(α) = k∗(iU (f))(α) = k∗(iU (f))(k∗(α)) = k∗(iU (f)(α)),
and thus j2(f)(α) is in the range of k∗. □

Remark 7.10. It can also be shown that the tree property holds at κ++ = λ in the
model V 1[Pκ][M(κ, λ, µ)]. This is implicit in the proof of Theorem 7.13.

7.3 The tree property with gap 3

In this section we will prove that it is consistent to have a model where ℵω is strong
limit, 2ℵω = ℵω+3, and the tree property holds at ℵω+2. It is relatively straightforward to
generalise this construction to get a finite gap: 2ℵω = ℵω+n, 3 ≤ n < ω (see Section 7.4).

Let us work with the model V 1[Pκ][M(κ, λ, λ+)]. As we showed in Theorem 7.8, κ is
measurable in here. In order to analyse this model, let us introduce notation for the
generic filters: let Gκ ∗ H be a generic filter over V 1 for Pκ ∗ M(κ, λ, λ+). As we showed
in Theorem 7.8, the lifted extender embedding j2 in Theorem 7.8 becomes a measure
ultrapower embedding iU in V 1[Gκ ∗ H], generated by the normal measure U derived
from j2. Let us rename j2 to j for simplicity.

33This appears as Fact 2 in [7]. Recall that Qµ – mentioned in Fact 7.9 – is the term forcing defined as
follows: the elements of Qµ are names τ such that τ is an S-name and it is forced by 1S to be in Add(κ, µ)
of V [S]. The ordering is τ ≤ σ ↔ 1S ⊩ τ ≤ σ.
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In particular, we can define Prikry forcing with collapses PrkCol(U, Gg) using this U and
a suitable guiding generic Gg which we construct in Lemma 7.11.34

Let Coll denote the forcing Coll((κ+4), < j(κ))M1[j(Gκ∗H)].

Lemma 7.11. In V 1[Gκ ∗ H], there exists an M1[j(Gκ ∗ H)]-generic filter for Coll.

Proof. Consider the extender representation j1 : V 1 → M1 ensured by the arguments
in Section 7.2.1, where

(7.9) M1 = {j1(f)(α) | f ∈ V 1 & f : κ → V 1 & α < λ+}.

Now notice that every maximal antichain of Coll in M1[j(Gκ ∗H)] has a name of the form
j1(f)(α) for some f : κ → H(κ)V 1 and α < λ+, with the range of f being composed of Pκ-
names. There are only κ+-many such f ’s, and since Coll is κ+4-closed in M1[j(Gκ ∗ H)],
we can built a Coll-generic filter Gg in V 1[Gκ ∗ H] over M1[j(Gκ ∗ H)] by the standard
method of grouping the antichains into κ+ many blocks each of size at most λ+, where
λ+ is equal to κ+3 in M1[j(Gκ ∗ H)]. □

Let us define in V :

(7.10) P = Q ∗ Pκ ∗ M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg),

where Q is the forcing from Theorem 7.6, and Ġg is a name for a guiding generic which
we know exists by Lemma 7.11.

Lemma 7.12. P is λ-cc.

Proof. This is a standard argument using Theorem 7.6 for Q and Lemma 7.3 for the
forcing M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg). □

We plan to show that V [P] is the desired model, i.e. that the tree property holds with
gap 3.

Theorem 7.13. (GCH). Assume that κ is H(λ+)-strong, where λ > κ is the least weakly
compact above κ. Then the forcing P in (7.10) forces κ = ℵω, ℵω strong limit, 2ℵω = ℵω+3,
and the tree property holds at λ = ℵω+2.

By standard facts about Mitchell forcing and Prikry forcing with collapses (see Sections
3.4.1 and 3.4.3), it suffices to check that we have the tree property at ℵω+2.

The argument starts with an observation (see Section 7.3.1) which allows us to work over
V 1[Pκ] with a fragment of a weakly compact embedding with critical point λ (but still
strong enough for our purposes).35

The core argument has two parts and starts over the model V 1[Pκ]. In Part 1 (Section
7.3.2), we show that if there were in V 1[Pκ] an M(κ, λ, λ+)∗PrkCol(U̇ , Ġg)-name Ṫ for an
ℵω+2-Aronszajn tree, we could find a suitable β, λ < β < λ+, and define a “truncation”
M(κ, λ, β) ∗ PrkCol(U̇β, Ġg

β) of the original forcing which forces that there is an ℵω+2-
Aronszajn tree (witnessed by Ṫ ). Then in Part 2 (Section 7.3.3), we show that in fact
this cannot be the case, i.e. we show that M(κ, λ, β) ∗ PrkCol(U̇β, Ġg

β) forces the tree
property at ℵω+2. This will yield the final contradiction, finishing the proof of Theorem
7.13.

34See Section 3.4.3 for more details about this forcing.
35Note that Q destroys the strong limitness of λ by adding many subsets of κ+.
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7.3.1 The fragment of weak compactness of λ in V 1[Pκ]

Suppose for contradiction that P forces that there is an ℵω+2-Aronszajn tree (assume for
simplicity the weakest condition forces this, otherwise work below a suitable condition);
let Ẇ be a Q∗Pκ-name for an M(κ, λ, λ+)∗PrkCol(U̇ , Ġg)-name Ṫ such that over V 1[Pκ],
M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg) forces that Ṫ is an ℵω+2-Aronszajn tree.

By Lemma 7.12, we can assume that Ẇ can be expressed as a nice name for a subset of
λ, and that Ṫ itself is a nice name for a subset of λ in V 1[Pκ].

Let β∗ be an ordinal between λ and λ+ (the choice of β∗ is described in Section 7.3.3)
large enough so that Ẇ only uses coordinates below β∗ in the sense that we can fix a
weakly compact embedding k with critical point λ,

(7.11) k : M → N

with the following properties:36

(i) M and N are transitive models of size λ closed under <λ-sequences,
(ii) M ∈ N , k ∈ N , β∗ < k(λ), and
(iii) M contains all relevant information (in particular, β∗, P and Ẇ are elements of

M ).

Let g ∗ Gκ be Q ∗ Pκ-generic over V and let us consider Q restricted to β∗ (let us denote
it Q(β∗))37; note that Q(β∗) is an element of M . Let g(β∗) be the restriction of g to β∗

so that g(β∗) ∗ Gκ is Q(β∗) ∗ Pκ-generic. Note that Q(β∗) ∗ Pκ is actually equivalent to
Q(β∗) × Pκ since Q(β∗) does not change Vκ where Pκ lives. By standard arguments, k
lifts to M [Gκ] → N [Gκ] since k(Pκ) = Pκ, and both the models are still closed under
<λ-sequences in V [Gκ].

By elementarity, k(Q(β∗)) is Q restricted to k(β∗). Let b : k(β∗) → k(β∗) be a bijection
which swaps γ and k(γ) for every λ ≤ γ < β∗, and is the identity otherwise. b extends to
an automorphism on k(Q(β∗)) by mapping p ∈ k(Q(β∗)) to b(p) where the coordinates in
b(p) are swapped by b. Note that b(p) is a valid condition in Q since by the elementarity
of k, k(p) = k”p is a condition in k(Q(β∗)) (and hence in Q) for every p in Q(β∗).38

Let g(k(β∗)) be the restriction of g to k(β∗). The automorphism b generates from g(k(β∗))
a generic filter g∗ on k(Q(β∗)) which contains the pointwise image k”g(β∗). It follows k
lifts to

(7.12) k : M [Gκ][g(β∗)] → N [Gκ][g∗].

Since Q is κ+-distributive over Pκ it holds that both the models are still closed under
κ-sequences in V [g ∗ Gκ].39

Thus for any Ẇ and β∗ as above, we have in V [g ∗ Gκ] a fragment of a weakly compact
embedding (7.12) such that all the relevant parameters are in M , including the name Ṫ ,
and the models are closed under κ-sequences in the universe.

36See [9] Theorem 16.1. To ensure β∗ < k(λ), define E in the proof of Theorem 16.1 so that it also
codes a well-ordering of β∗ of type λ: then N |= |β∗| = λ and therefore k(λ) > β∗ since by elementarity,
k(λ) is in N a limit cardinal greater than λ.

37Note that λ+ is a fixed point of the mapping i so Q is Add(i(κ), λ+) of the measure ultrapower N .
38The support of p is some set of size less than i(κ) in the measure ultrapower N , but certainly less

than λ in V : thus the k-image of the support is just its pointwise image.
39They are not closed under κ+-sequences though.
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7.3.2 The proof: Part 1

As we argued in Section 7.3.1, we can work in V 1[Gκ] and assume for contradiction that
Ṫ is a name for an ℵω+2-Aronszajn tree (we assume that Ṫ is a nice name for a subset
of λ). There is β̄, λ ≤ β̄ < λ+, such that all the coordinates in the forcing Add(κ, λ+)
which appear in Ṫ are below β̄ (there are only λ-many of them by the chain condition of
the forcing).

We wish to find β, β̄ < β < λ+, which allows us to define a suitable truncation of
M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg) to β which we will analyse in Part 2.

Using standard arguments, construct an elementary submodel A of H(θ) for some large
enough regular θ so that A satisfies the following conditions:

(i) |A | = λ, and A is closed under κ-sequences,
(ii) β̄ + 1 ⊆ A ,
(iii) M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg), U̇ , Ġg, Ṫ are elements of A ,
(iv) A ∩ λ+ = β for some β of cofinality κ+, β̄ < β,
(v) There is an M(κ, λ, β)-name U̇β which is forced by M(κ, λ, λ+) to be a normal

measure and a restriction of the measure U̇ to V 1[Pκ][M(κ, λ, β)].

The last item (v) follows as in [10].

Let c : A → Ā be the transitive collapse. The following hold (the proofs are routine):

(i) c(λ+) = β,
(ii) c(M(κ, λ, λ+)) = M(κ, λ, β),
(iii) c(U̇) is forced by M(κ, λ, β) to be equal to U̇β,
(iv) c(Ġg), which we denote by Ġg

β, is forced by M(κ, λ, β) to be a guiding generic with
respect to U̇β, and therefore M(κ, λ, β) forces that PrkCol(U̇β, Ġg

β) is a Prikry forcing
with collapses,

(v) M(κ, λ, λ+) forces that PrkCol(U̇β, Ġg
β) is a regular subforcing of PrkCol(U̇ , Ġg),

(vi) c(Ṫ ) = Ṫ is forced by M(κ, λ, β) ∗ PrkCol(U̇β, Ġg
β) to be an ℵω+2-Aronszajn-tree.

By elementarity, c(Ṫ ) = Ṫ is forced in Ā by the forcing M(κ, λ, β) ∗ PrkCol(U̇β, Ġg
β) to

be a λ-Aronszajn tree. This by itself would not be enough to conclude that M(κ, λ, β) ∗
PrkCol(U̇β, Ġg

β) adds such a tree over the universe V 1[Gκ]. However, since the collapse
c(Ṫ ) is equal to Ṫ , and (v) holds, any M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg)-generic filter h ∗ x
yields an M(κ, λ, β) ∗ PrkCol(U̇β, Ġg

β)-generic filter h′ ∗ x′ over V 1[Gκ] (and therefore over
Ā ) such that (Ṫ )h∗x = (Ṫ )h′∗x′ . It follows that M(κ, λ, β) ∗ PrkCol(U̇β, Ġg

β) forces over
V 1[Gκ] that Ṫ is a λ-Aronszajn tree. In Part 2 we show this is not possible, and this will
be the desired contradiction.

7.3.3 The proof: Part 2

Let M denote the forcing M(κ, λ, β), where β is as in Part 1. Let us work in V 1[Gκ].

Using the arguments in Section 7.3.1, let us fix
(7.13) k : M → N

which is the fragment of a weakly compact embedding with critical point λ such that M
and N are transitive models of size λ closed under κ-sequences, M ∈ N , k ∈ N , β <
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k(λ),40 and M contains all relevant information (in particular, β, M∗PrkCol(U̇β, Ġg
β), U̇β

and Ġg
β are elements of M ). Let M∗ denote k(M(κ, λ, β)), which is equal to M(κ, k(λ), k(β)).

Let h∗ be M∗-generic over V 1[Gκ]; use h∗ to define h which is M-generic over V 1[Gκ] and
k”h ⊆ h∗. Now lift to

(7.14) k : M [h] → N [h∗].

Let us abuse notation a little and write U = (U̇β)h and Gg = (Ġg
β)h instead of Uβ and

Gg
β (to simplify notation).

In N [h∗], consider U∗ = k(U), and Gg∗ = k(Gg), and the forcing PrkCol(U∗, Gg∗). Note
that by elementarity U ⊆ U∗ (since k(X) = X for every X ∈ U), and all functions F
whose equivalence class is in Gg appear in the forcing PrkCol(U∗, Gg∗) (since k(F ) = F

for every F : κ → V
M [h]

κ , F ∈ M [h]), and k(PrkCol(U, Gg)) = PrkCol(U∗, Gg∗).41

It follows that k is a regular embedding:

(7.15) k : M ∗ PrkCol(U̇ , Ġg) → M∗ ∗ PrkCol(U̇∗, Ġ∗g),

as by the λ-cc of M ∗ PrkCol(U̇ , Ġg), if A is a maximal antichain in M ∗ PrkCol(U̇ , Ġg),
then k(A) = k”A is a maximal antichain in M∗ ∗ PrkCol(U̇∗, Ġ∗g).

Let x∗ be PrkCol(U∗, Gg∗)-generic over V 1[Gκ][h∗]; the pull-back of x∗ via k−1 is a generic
filter x for PrkCol(U, Gg) such that k”x ⊆ x∗. Let us lift k further to

(7.16) k : M [h][x] → N [h∗][x∗].

By (7.15) and (7.16), we can define in N [h∗][x∗] a generic filter h ∗ x for the forcing
M ∗ PrkCol(U̇ , Ġg) ∈ N using the inverse of k (by our assumptions in (7.13), k is an
element of N ). By standard arguments for complete Boolean algebras it follows that
there is a projection σ,42

(7.17) σ : M∗ ∗ PrkCol(U̇∗, Ġ∗g) → RO+(M ∗ PrkCol(U̇ , Ġg)).

Notice that if ((p, q), r) is a condition in M∗ ∗ PrkCol(U̇∗, Ġ∗g), then we can identify
σ(p) = σ((p, ∅), 1PrkCol(U̇∗,Ġ∗g)) with (k−1)”p, i.e. with

(7.18) p↾(κ × λ) ∪ {((γ, α), i) | γ < κ, α ∈ [λ, β), i ∈ {0, 1}, ((γ, k(α)), i) ∈ p}.

In the analysis of the quotient determined by σ, it will be important to control the names
for the conditions in PrkCol(U∗, Gg∗). Recall that by Lemma 7.4, we can adopt the
following convention:

Convention. We now view M∗ ∗ PrkCol(U̇∗, Ġ∗g) as consisting of conditions ((p, q), r),
where r depends only on Cohen information, and its stem is a checked name (such condi-
tions are dense by Lemma 7.4). With this convention in mind, let us denote the quotient
determined by σ in (7.17) as Qσ:

(7.19) Qσ = {((p, q), r) ∈ M∗ ∗ PrkCol(U̇∗, Ġ∗g) | σ(((p, q), r)) ∈ h ∗ x},

40Choose β∗ in Section 7.3.1 high enough to ensure this inequality.
41However, note that the equivalence classes of a fixed F with respect to U and U∗ may be different

objects (after the transitive collapse).
42Alternatively, we can use Lemma 3.39 and work with the complete embedding k in (7.15) and use the

quotient analysis for complete embeddings as discussed in (3.8).
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where we identify h∗x with the generic filter for the associated complete Boolean algebra.

The following product analysis reformulates the analysis in Section 7.1.2 in a quotient
setting.

Define:

(7.20) Cσ = {((p, ∅), r) | ((p, ∅), r) ∈ Qσ},

The ordering is the one inherited from Qσ.

Define:

(7.21) Tσ = {(∅, q) ∈ M∗ | (∅, q)↾λ ∈ h}.

The ordering is the one inherited from M∗.

Define a function π from Cσ × Tσ to Qσ as follows: π applied to the pair composed of
((p, ∅), r) and (∅, q) is equal to the condition ((p, q), r). Note that if ((p, ∅), r) is in Cσ and
(∅, q) is in Tσ, then ((p, q), r) is a condition in the quotient Qσ since σ((p, q), r) is the
infimum of σ((p, ∅), r) and ((∅, q)↾λ, 1PrkCol(U̇ ,Ġg)) in RO+(M ∗ PrkCol(U̇ , Ġg)).

Lemma 7.14 is proved exactly as Lemma 7.5(i):

Lemma 7.14. π is a projection from Cσ × Tσ onto Qσ.

The following lemma is obvious:

Lemma 7.15. Tσ is κ+-closed in N [h].

Finally, we analyse the chain condition of (Cσ)2 in N [h][x].

Lemma 7.16. (Cσ)2 is κ+-cc in N [h][x].

Proof. Assume for contradiction that A is an antichain in (Cσ)2 in N [h][x] of size
κ+. Denote the elements of A by (1ai, 2ai) for i < κ+. By thinning out the antichain if
necessary, we can choose a condition ((p, q), r) in h ∗ x which forces that A is an antichain
and also forces that stems of all conditions 1ai, i < κ+, are the same and the stems of
all conditions 2ai, i < κ+, are the same (they may not equal each other, but they are
compatible; denote them 1t, and 2t). Now choose ((pi, qi), ri) in h ∗ x which decide the
1ai’s and 2ai’s; let us write 1ai = ((1p∗

i , ∅), 1r∗
i ) and 2ai = ((2p∗

i , ∅), 2r∗
i ), i < κ+.

By further thinning and extending the stems if necessary, we may assume that the stems
of ((p, q), r) and ((pi, qi), ri), i < κ+, are all the same; denote this stem s. Note that s
extends both 1t and 2t.

Now, we need to handle together 1ai and 2ai, for all i < κ+, to get mutual compatibility in
Claim 7.19 below: Let ((1p∗∗

i , 1q∗∗
i ), 1r∗∗

i ) be a lower bound of ((1p∗
i , ∅), 1r∗

i ), ((pi, qi), ri),
and ((p, q), r) with stem s such that σ(1p∗∗

i )43 is in the Cohen part of the generic h ∗ x
(this can be done since such conditions are dense). Analogously, let ((2p∗∗

i , 2q∗∗
i ), 2r∗∗

i ) be
a lower bound of ((2p∗

i , ∅), 2r∗
i ), ((pi, qi), ri), and ((p, q), r) with stem s such that σ(2p∗∗

i )
is in the Cohen part of the generic h ∗ x. Note that in particular σ(1p∗∗

i ) is compatible
with σ(2p∗∗

i ).
43See (7.18) for definition.
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Using a ∆-system argument, find i < j such that 1p∗∗
i is compatible with 1p∗∗

j and 2p∗∗
i

is compatible with 2p∗∗
j . Let us define:

(7.22) 1(∗) is the greatest lower bound (glb) of((1p∗∗
i , ∅), 1r∗∗

i ) and ((1p∗∗
j , ∅), 1r∗∗

j )

and

(7.23) 2(∗) is the greatest lower bound (glb) of((2p∗∗
i , ∅), 2r∗∗

i ) and ((2p∗∗
j , ∅), 2r∗∗

j ).

Note that both 1(∗) and 2(∗) have the same stem s.

Denote

(7.24) p′ = σ(1p∗∗
i ) ∪ σ(1p∗∗

j ) ∪ σ(2p∗∗
i ) ∪ σ(2p∗∗

j ).

Note that p′ is correctly defined by the construction of the 1p∗∗
i ’s and 2p∗∗

i ’s. Let ((p̄, q̄), r̄)
denote the glb of the conditions ((p′, ∅), ∅), ((p, q), r), ((pi, qi), ri), ((pj , qj), rj). Note that
((p̄, q̄), r̄) has stem s.

We need the following claims to finish the proof.

Claim 7.17. Assume ((p, q), r) is a condition in M∗PrkCol(U̇ , Ġg) and ((p∗, ∅), r∗) is a
condition in M∗ ∗ PrkCol(U̇∗, Ġ∗g) and the following conditions are satisfied:

(i) Stems of r and r∗ are checked names,
(ii) p ≤ σ(p∗),

(iii) The length of the stems of r and r∗ is the same and the ordinals on the stems
coincide,

(iv) The collapsing information in the stem of r extends the collapsing information in
the stem of r∗.

Then ((p, q), r) does not force ((p∗, ∅), r∗) out of the quotient Cσ.

Proof. It suffices to find a generic filter h′ ∗ x′ for M∗ ∗ PrkCol(U̇∗, Ġ∗g) such that
σ((p, q), r) is in the M ∗ PrkCol(U̇ , Ġg)-generic filter obtained by σ from h′ ∗ x′. Any filter
h′ ∗ x′ containing a lower bound of ((p, q), r) and ((p∗, ∅), r∗) (such a lower bound exists
by conditions (i)-(iv)) satisfies this. □

Recall that Prikry forcing with collapses satisfies the Prikry condition: any statement in
the forcing language is decidable by a direct extension (note that a direct extension does
not lengthen the stem, but is allowed to extend the collapsing information).

Claim 7.18. Let ((p, q), r) and ((p∗, ∅), r∗) are as in Claim 7.17. Then there is a direct
extension ((p′, q′), r′) of ((p, q), r) which forces ((p∗, ∅), r∗) into Cσ.

Proof. By the Prikry property, there is a direct extension of ((p, q), r) which decides
the statement “((p∗, ∅), r∗) is in Cσ”. The negative decision contradicts Claim 7.17 (when
applied to the direct extension); it follows that the decision must be positive. □

Returning to our proof, we get:

Claim 7.19. There is a direct extension of ((p̄, q̄), r̄) which forces 1(∗) and 2(∗) into Cσ.
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Proof. ((p̄, q̄), r̄) and 1(∗) satisfy the conditions in Claim 7.17, and therefore by Claim
7.18, there is a direct extension a1 ≤ ((p̄, q̄), r̄) which forces 1(∗) into Cσ. a1 and 2(∗)
satisfy the conditions in Claim 7.17, and therefore by Claim 7.18 there is a direct extension
a2 ≤ a1 as desired. □

This finishes the proof since a2 forces that (1(∗), 2(∗)) is in Cσ a witness for compatibility
of (1ai, 2ai) and (1aj , 2aj) in the antichain A. As a2 is below ((p, q), r), it also forces that
A is an antichain. Contradiction. □

The good chain condition of (Cσ)2 and the closure of Tσ are enough to argue that Cσ ×Tσ,
and therefore Qσ, do not add branches to λ-trees, finishing the argument in the standard
way.

Suppose T is a λ-tree in the model N [h][x], where λ = κ++. By Lemma 7.16 and Fact
4.5, Cσ does not add new branches to T . As PrkCol(U, Gg) ∗ Cσ has the κ+-cc in N [h],
we can apply Fact 4.6 over N [h] (with Q being Tσ), and conclude that Tσ does not add
branches to trees in N [h][PrkCol(U, Gg) ∗ Cσ], and therefore Cσ × Tσ does not add new
branches to trees in N [h][x].

This finishes the proof of Theorem 7.13.

7.4 The tree property with a finite gap

We would like to generalise the result of the previous section to a finite gap m, i.e. obtain
the tree property at ℵω+2 and have 2ℵω = ℵω+m for any 2 < m < ω. To this end, we
need to do some straightforward modifications to the definitions and lemmas we used to
obtain gap 3. To simplify indexing of the forcing notions, we will use the index n, where
m = n + 2 (thus gap 3 is obtained with n = 1).

As in the previous section, let κ be the large cardinal which will be collapsed to ℵω, and
λ the least weakly compact cardinal above κ.

We now list the modifications we need to do:

• In Section 7.2.1, we choose µ = λ+n so that the preparation, which we now call Qn,
ensures that κ stays measurable after adding µ-many Cohen subsets of κ. Let us
denote the resulting model as V 1.

• The definition of Pκ in (7.5) is to be modified as follows:

(7.25) P n
κ = ⟨(P n

α , Q̇n
α) | α < κ is measurable⟩,

where Q̇n
α denotes the forcing M(α, λα, λ+n

α ).

• Let Gκ ∗ H be a generic filter for P n
κ ∗ M(κ, λ, λ+n), and let j : V 1[Gκ ∗ H] →

M1(j(Gκ ∗ H)) be the lifting of j as in Theorem 7.8.

• Let Colln denote the forcing Coll((κ+3+n, < j(κ)))M1[j(Gκ∗H)]. As in Lemma 7.11,
we can fix a guiding generic Gg for Colln over M1[j(Gκ ∗ H)].

• The definition of the forcing P in (7.10) is modified as follows:

(7.26) Pn = Qn ∗ P n
κ ∗ M(κ, λ, λ+n) ∗ PrkCol(U̇ , Ġg),
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where U̇ is a name for a normal measure and Ġg is a name for a guiding generic
(defined with respect to U̇).

Now we get the following generalisation of Theorem 7.13:

Theorem 7.20. (GCH) Let 1 ≤ n < ω be fixed and assume that κ is H(λ+n)-strong,
where λ > κ is the least weakly compact cardinal above κ. The forcing Pn in (7.26) forces
κ = ℵω, ℵω strong limit, 2ℵω = ℵω+2+n, and the tree property holds at λ = ℵω+2.

Proof. The basic strategy of the proof is to reduce the general case to a configuration
essentially identical to the argument for the gap 3 (see Remark 7.21).

Recall that the whole forcing in V looks as follows:

(7.27) Pn = Qn ∗ P n
κ ∗ M(κ, λ, λ+n) ∗ PrkCol(U̇ , Ġg),

where Qn is the preparation i(Add(κ, λ+n))N = (Add(i(κ), λ+n)N (i is the normal mea-
sure embedding derived from j which witnesses the H(λ+n)-strongness of κ). Let us
denote by Qn

β the natural truncation of Qn to length β < λ+n. Note that the forcing
(7.27) is λ-cc.

Suppose for contradiction that the forcing in (7.27) adds a λ-Aronszajn tree Ṫ (and assume
for simplicity that the weakest condition forces it).

Let A be an elementary substructure of large enough H(θ)V which has size λ+, is closed
under λ-sequences, and contains the name Ṫ and other relevant data. Let c : A → Ā be
the transitive collapse. Then the following hold:

(i) c(λ+n) is an ordinal between λ+ and λ++, let us denote this ordinal as β.
(ii) c(Qn) is isomorphic to Qn

β.
(iii) The name c(P n

κ ) interprets in V [Qn
β] as P n

κ does in V [Qn].
(iv) The name c(M(κ, λ, λ+n)) interprets in V [Qn

β∗P n
κ ] as a forcing equivalent to M(κ, λ, β)

as interpreted in V [Qn ∗ P n
κ ].

(v) The name c(U̇) interprets in V [Qn
β ∗ P n

κ ∗ M(κ, λ, β)] as a normal ultrafilter on κ

generating some guiding generic c(Ġg), and therefore Qn
κ ∗P n

κ ∗M(κ, λ, β) forces that
PrkCol(c(U̇), c(Ġg)) is a Prikry forcing with collapses.

(vi) c(Ṫ ) is forced (over Ā ) by

Qn
β ∗ P n

κ ∗ M(κ, λ, β) ∗ PrkCol(c(U̇), c(Ġg))

to be a λ-Aronszajn tree.

In contrast to the analogous construction in Section 7.3.2, we cannot claim now that c(Ṫ )
is equal to Ṫ . However, since this time the model Ā has size λ+ and is closed under
λ-sequences, the forcing Qn

β ∗ P n
κ ∗ M(κ, λ, β) ∗ PrkCol(c(U̇), c(Ġg)) (which is λ-cc) adds

a λ-Aronszajn tree not only over Ā (which follows by elementarity), but also over V .
The reason is that by λ-closure of Ā , a name for a cofinal branch in c(Ṫ ) would appear
already in Ā .

Let us work in V [Qn
β∗P n

κ ] and let f be any bijection between β and λ+ which is the identity
on λ. This bijection extends into an isomorphism between M(κ, λ, β)∗PrkCol(c(U̇), c(Ġg))
and M(κ, λ, λ+) ∗ PrkCol(U̇λ+ , Ġg

λ+), where U̇λ+ and Ġg
λ+ are names obtained naturally

from f .
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This is a contradiction since we can argue as in Theorem 7.13 that the forcing M(κ, λ, λ+)∗
PrkCol(U̇λ+ , Ġg

λ+) does not add a λ-Aronszajn tree over V [Qn
β ∗ P n

κ ]. □

Remark 7.21. Strictly speaking, the forcing M(κ, λ, λ+) ∗ PrkCol(U̇λ+ , Ġg
λ+) in the pre-

vious proof is not of the type considered in Theorem 7.13: Instead of Pκ, we now have P n
κ ,

and the guiding generic Ġg
λ+ is generic for the forcing Coll(κ+3+n, < j(κ)) of the measure

ultrapower generated by U̇λ+ , and not for Coll(κ+4, < j(κ)) as in Theorem 7.13 (where j
is generated by U̇λ+). However, it is easy to check that the argument for the tree property
at ℵω+2 only uses the chain condition and closure properties of the relevant forcings, and
these are not affected by these modifications.
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8 Further progress and open questions

By way of conclusion, we discuss topics for future research and mention some open ques-
tions.

Let us start by introducing some other principles which are similar to the tree property
in the sense that they postulate a variant of compactness at a successor cardinal. We will
then formulate open questions and problems in this more general framework.

Let κ be an uncountable cardinal in what follows (unless said otherwise).

We say that κ+ satisfies the stationary reflection, and we write it as SR(κ+), if every
stationary subset of κ+∩cof(<κ) reflects at a point of cofinality κ, i.e. for every stationary
S ⊆ κ+ ∩ cof(<κ) there is γ < κ+ of cofinality κ such that S ∩ γ is stationary in γ.
Stationary reflection has been extensively studied in literature, see for instance [3, 12, 45,
61, 11, 13, 14].

If we require that the stationary subsets reflect simultaneously, we get stronger principles
introduced in Magidor [53]: We say that κ+ satisfies the simultaneous stationary reflection,
and we write it as SSR(κ+), if every two stationary subsets of κ+ ∩ cof(<κ) reflect at a
common point of cofinality κ. An even stronger principle is the following: We say that
κ+ satisfies the club stationary reflection, and we write it as CSR(κ+), if every stationary
subset of κ+ ∩ cof(<κ) reflects on a κ-club subset of κ+ (an unbounded subset of κ+

closed at limit stages of cofinality κ).

Fact 8.1. Let κ be an uncountable cardinal. CSR(κ+) → SSR(κ+) → SR(κ+).

Recall the definition of the approachability ideal I[κ+]. Let ⟨aα | α < κ+⟩ be some sequence
of bounded subsets of κ+. We say that a limit ordinal γ < κ+ is approachable with
respect to the sequence if there is an unbounded subset A of γ of ordertype cf(γ) such
that {A ∩ β | β < γ} ⊆ {aβ | β < γ}. We define I[κ+] as the collection of all S ⊆ κ+ for
which there is a sequence ⟨aα | α < κ+⟩ as above and a club subset C of κ such that every
γ ∈ S ∩ C is approachable with respect to the sequence.

The ideal I[κ+] has proved to be closely connected with many topics in combinatorial
set theory, for example PCF theory in Shelah’s [62], saturated ideals in Foreman’s and
Magidor’s [20], and the extent of diamond in Rinot’s [59] (see also [34] and [36]).

We say that κ+ has the approachability property if κ+ ∈ I[κ+], and we write it as AP(κ+).
AP(κ+) is a weak form of the square principle on κ, and therefore we consider ¬AP(κ+)
as a compactness property of κ+.

We list some fact related to these notions (for more details see [8]).

Fact 8.2. Let κ be an uncountable cardinal.

(i) □κ → ¬SR(κ+).
(ii) □∗

κ → AP(κ+).
(iii) A Mahlo cardinal suffices to get SR(κ+) (and it is necessary). See Harrington and

Shelah [39].
(iv) A weakly compact cardinal suffices to get SSR(κ+) and CSR(κ+) (and it is necessary).

See Magidor [53].
(v) A Mahlo cardinal suffices to get ¬AP(κ+) (and it is necessary). See Cummings and

others [15].

81



8 Further progress and open questions 8.1 The continuum function

Let us know mention some open problems and areas of future research.

8.1 The continuum function

Let us first consider direct generalisations of the problems we studied in this thesis.

Q1. Is it possible to show that TP(ℵn) holds for each 1 < n < ω while the continuum
function is arbitrary (subject to the condition that GCH must fail below ℵω)?
It seems natural to start with the model constructed in [10] by Cummings and
Foreman and use Cohen forcings to control the continuum function.

Q2. Let ℵn for 1 < n < ω be fixed. Is it possible show that ¬AP(ℵn) and SR(ℵn)
pose no restriction on the continuum function (except for the restriction exerted by
¬AP(ℵn) as we discussed above)?
A challenging extension of this problem adds the requirement to control the value of
2ℵω with ℵω strong limit (see [35] for more details) while having some compactness
principles below ℵω.

Q3. The above two questions can also be studied on ℵω+2. In particular, is it possible
to show that the compactness principles at ℵω+2 are consistent with an arbitrary
finite gap at ℵω, i.e. with 2ℵω = ℵω+n for any 2 ≤ n < ω?
Notice that the results in this thesis show that this is possible for the tree property.

Q4. The previous question can be formulated with an infinite gap, i.e. with ℵω strong
limit and 2ℵω = ℵα+1 for some countable α. More specifically, one can ask whether
we can get (to start modestly) the tree property at ℵω+2 with 2ℵω = ℵω+ω+1.
Note that an infinite gap was first shown by Magidor in [52] (for α = ω) and gen-
eralised by Shelah in [60]. These methods use supercompact cardinals and collapse
cardinals above the large cardinal which gets collapsed to ℵω so we presume that
the proofs would be quite different from those in this thesis.

8.2 Mixing the compactness principles

Let us now mention questions which study the interactions between the various compact-
ness principles.

By the results of [15] by Cummings and others, it is possible to force any Boolean com-
bination of truth and falsity of the principles TP(κ+), SR(κ+) and AP(κ+) for a fixed
cardinal κ+ in the set {ℵn | 2 ≤ n < ω} ∪ {ℵω+2}.44

With ℵω strong limit, we can ask the following:

Q5. Is it possible to generalise the results of [15] by Cummings and others to include the
variants of the principles TP(κ+) and SR(κ+) which we introduced above? As a test
case, is it possible to achieve TP(ℵn) + CSR(ℵn) + ¬AP(ℵn) for some 1 < n < ω?

44In fact, they showed it for any κ+ such that κ is a successor cardinal; we apply their result here in
the context of the cardinals close to ℵω on which we focus.
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Note that the known method to obtain CSR(κ+) (see Magidor [53]) requires an
additional forcing over a model of SSR(κ+), hence it is not obvious how this combines
with the methods to obtain for instance TP(κ+).

Q6. One might ask whether a Mahlo cardinal is sufficient to obtain certain configurations
of the compactness principles at ℵn for some 1 < n < ω. In particular, is it possible
to force ¬AP(ℵn) + SR(ℵn) from a Mahlo cardinal? The latter configuration was
achieved in [15] by Cummings and others using a weakly compact cardinal (both
with ¬TP(ℵn) and with TP(ℵn)).
Note that the fact that ¬AP(ℵn) and SR(ℵn) require by themselves just a Mahlo car-
dinal does not necessarily imply that their combinations do. However, we conjecture
it is the case and that a Mahlo cardinal should be sufficient.

Q7. We may consider compactness principles holding at successive cardinals, or on an
interval of regular cardinals.
We reviewed the existing results for the tree property and the weak tree property in
Section 4.1. Stationary reflection on multiple cardinals was studied in papers by Jech
and Shelah [45] and Shelah [61]. Recently, Unger [77] considers successive failures
of AP (ℵω is not strong limit in his model). It is natural to study this question for
other compactness principles and their combinations. In particular, is it consistent
to combine the tree property on cardinals below ℵω with SR(ℵn), SSR(ℵn) and
CSR(ℵn) for 1 < n < ω, and if so, under which large cardinal assumptions?
This question can be extended to the context where SCH fails at ℵω, a first step
to obtaining compactness principles at ℵω+2 (which imply the failure of SCH). A
paper by Unger [75] shows that this is possible for the tree property; it is worth
asking this question for SR and ¬AP.

With ℵω1 strong limit, we may analogously ask:

Q8. Is it possible to force compactness principles at ℵω1+2?

We think it is possible, using a suitable version of the Radin forcing.

8.3 Generalised cardinal invariants

The cardinal invariants of the continuum provide as a finer classification of the properties
relevant for the real numbers (identified with 2ℵ0). The invariants are an interesting topic
of study if CH fails (if CH holds they are typically equal to 2ℵ0). Since both wTP and
¬AP imply the negation of CH it is natural to ask what cardinal invariants patterns can
be realised in models where they hold at ℵ2.

There are more forcings available to force TP(ℵ2) in addition to Mitchell forcing: for
instance Sacks forcing (see [47] or [26]) and its variants (see [43] or [70]) and forcings with
side conditions such as [57]. It is also known by the result of Friedman and Torres [29]
that MA can hold with TP(ℵ2), starting just from a weakly compact cardinal.45

45In the model constructed in [29] the continuum has size ℵ2. It is open whether the size of the
continuum can be larger with MA and TP(ℵ2) (note in this context that PFA implies MA + TP(ℵ2) but
also 2ℵ0 = ℵ2).
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Q9. What is the structure of the cardinal invariants in the models with compactness
principles at ℵ2, where 2ℵ0 = ℵ2?

Cardinal invariants generalise to larger cardinals (see [16], [63] or [5]).

Q10. What is the structure of the generalised cardinal invariants in the models with
compactness principles at ℵn, for 1 < n < ω?

8.4 Definability

Finally let us consider the question of definability. It is known that SCH can fail definable
at ℵω in the sense that there is a lightface definable wellorder of the subsets of ℵω in
H(ℵω+1) with ℵω strong limit and 2ℵω = ℵω+2 (see [25]).

It is natural to ask whether the definability can be combined with the tree property at
ℵω+2.

Q11. Is it possible for SCH to fail definably at ℵω (in the above sense) with the tree
property at ℵω+2?

Notice that in this context Mitchell forcing will probably not work as the coding of the
wellorder usually requires an iteration. One may conjecture that the method of the proof
in [25] might be modified to yield the desired result since it is based on a coding using a
variant of Sacks forcing (which is known to force the tree property, see [47] and [26] for
more details).
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