
Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR THESIS

Rastislav Wartiak

Performance Testing Tool for Web Applications

Department of Software Engineering

Supervisor: RNDr. Tomáᘐ Kalibera, Ph.D.

Study Program: Computer Science, Programming

2007



2

I would like to thank my supervisor, Tomáᘐ Kalibera, for numerous pieces of advice, 
corrections, and the time he spent while guiding me during the writing of this thesis.

Furthermore, I would like to thank my colleague, Zbynᆰk ᘀlégl, who gave me 
the idea for this thesis, and my friend Charles A. Dunbar, who reviewed the text.

I hereby declare that I wrote the thesis myself using only the referenced sources. 
I agree with lending the thesis.

Prague, May 29, 2007 Rastislav Wartiak



3

Contents

1 Introduction .................................................................................................... 7
1.1 Performance testing .................................................................................. 7
1.2 Motivation ................................................................................................ 7

2 Project objectives............................................................................................ 9
2.1 Web-application performance-testing........................................................ 9

2.2 Requirements............................................................................................ 9
2.3 Interaction with web application ............................................................. 10

2.4 Overview of the following document ...................................................... 10

3 Analysis: Tool-Driven Web Testing............................................................. 11
3.1 Load generation ...................................................................................... 11

Connection ..................................................................................................... 11
Request........................................................................................................... 12
Response ........................................................................................................ 13
Caching .......................................................................................................... 14
Sessions.......................................................................................................... 15
Authentication ................................................................................................ 16
Virtual users ................................................................................................... 16

3.2 Reporting................................................................................................ 18
Measurements ................................................................................................ 18
Time measurement ......................................................................................... 18
Resource monitoring....................................................................................... 20
Content of the reports ..................................................................................... 21

3.3 Test definition......................................................................................... 21
Environment and language ............................................................................. 21
Test data......................................................................................................... 23

4 Basic Usage Explained on Example ............................................................. 25
4.1 Description ............................................................................................. 25

4.2 Test script ............................................................................................... 25
4.3 Test configuration................................................................................... 26

4.4 Test run................................................................................................... 27
4.5 Test report .............................................................................................. 27

5 Implementation............................................................................................. 30
5.1 Design .................................................................................................... 30

5.2 Components............................................................................................ 31
5.3 Classes.................................................................................................... 31



4

5.4 Process flow ........................................................................................... 34

5.5 Decisions made....................................................................................... 34
5.6 Problems encountered............................................................................. 34

Spin lock ........................................................................................................ 34
Stack size ....................................................................................................... 36

5.7 Code Metrics .......................................................................................... 36
5.8 License ................................................................................................... 36

6 Evaluation ..................................................................................................... 38
6.1 Slovak Cadastral Portal........................................................................... 38

Description ..................................................................................................... 38
Tests............................................................................................................... 38
Results............................................................................................................ 40

6.2 RUBiS benchmark site............................................................................ 43
Description ..................................................................................................... 43
Tests............................................................................................................... 43
Results............................................................................................................ 43

6.3 Summary ................................................................................................ 47

7 Related projects ............................................................................................ 48
7.1 OpenSTA................................................................................................ 48

7.2 JMeter..................................................................................................... 48
7.3 Web Application Stress Tool .................................................................. 48

7.4 Tsung...................................................................................................... 48
7.5 LoadRunner ............................................................................................ 49

7.6 Comparison matrix ................................................................................. 49

8 Conclusion..................................................................................................... 54

9 Bibliography ................................................................................................. 55

10 Appendices ................................................................................................ 57
Appendix A WebStress specification............................................................... 57
Appendix B User’s Guide ............................................................................... 57

Appendix C User’s Reference ......................................................................... 57
Appendix D Test configurations and scripts used ............................................ 57

Appendix E WebStress distribution................................................................. 57



5

Název práce: Nástroj pro výkonnostní testování webových aplikací
Autor: Rastislav Wartiak
Katedra: Katedra softwarového in០enýrství
Vedoucí bakaláᖐské práce: RNDr. Tomáᘐ Kalibera, Ph.D.
e-mail vedoucího: tomas.kalibera@dsrg.mff.cuni.cz

Abstrakt: Bᆰhem vývoje webových aplikací je splnᆰní výkonnostních po០adavkᛰ 
klíაové pro akceptaci aplikace zákazníkem. Výkonnostní testování je proto dᛰle០itou 
souაástí jejich vývoje. Tato práce se vᆰnuje implementaci nástroje pro výkonnostní 
testování, který by umo០nil testování webových aplikací popsaného pomocí skriptᛰ, 
v úrovni porovnatelné s dostupnými komerაními nástroji a s mo០nostmi, které nejsou 
u tᆰchto aplikací bᆰ០né, jako napᖐíklad automatické generování hlaviაek po០adavkᛰ 
nebo rᛰzné vᆰtvení provádᆰní skriptu. Po០adovaná funkcionalita byla odvozena 
z analýzy vybraných webových aplikací a implementovaný nástroj umo០ᒀuje 
simulovat u០ivatele pracující s tᆰmito aplikacemi. Toto bylo potvrzeno sérií testᛰ na 
aplikaci Katastrálny portál Slovenskej republiky a testovací aplikaci RUBiS, jejich០ 
výsledky jsou obsa០eny v této práci.

Klíაová slova: výkonnostní testování, webová aplikace, zátᆰ០ové testování, mᆰᖐení 
výkonu, WebStress

Title: Performance Testing Tool for Web Applications
Author: Rastislav Wartiak
Department: Department of Software Engineering
Supervisor: RNDr. Tomáᘐ Kalibera, Ph.D.
Supervisor's e-mail address: tomas.kalibera@dsrg.mff.cuni.cz

Abstract: When developing web applications, meeting performance requirements is 
vital to customer acceptance of the applications. Therefore, performance testing is an 
important part of their development. This thesis focuses on the implementation of a 
performance testing tool that would cover the functionality needed to test web 
applications, would be comparable with commercially available tools, would have 
the ability to generate load defined by scripts, and would offer functionality that is 
not widely offered by such tools, such as automatic request headers generation or 
variable script branching. The desired functionality was derived from the analysis of 
selected web applications, and the implemented tool is capable of simulating users 
interacting with these applications. This was proved by the creation of series of tests 
on Slovak Cadastral Portal and RUBiS benchmark site, whose results are included in 
the thesis.

Keywords: performance testing, web application, stress testing, benchmarking, 
WebStress



6

Preface

During the implementation of projects with large-scale web applications in Ness 
Czech, the company for which I work, the need arose for a performance-testing tool 
that would suit our needs without burdening project budgets. After reviewing some 
well-known open-source performance testing tools, I realized there is no such tool 
that would cover all the functionality we considered as important.

That is why I decided to define requirements for a tool we could use for 
performance testing and possibly for capacity planning in our web-application-
implementation projects. All requirements and the global design were gathered in the 
tool specification document (47 pages), based on which I have developed a new tool. 
With the support of documentation (User’s Guide, 48 pages, and User’s Reference, 
22 pages), this tool can be used as an alternative to commercial tools on some of our 
projects. All the mentioned documents can be found on the enclosed CD.

One of the expected uses of the tool was to test the performance of the Slovak 
Cadastral Portal, a web application run by the Geodetic and Cartographic Institute of 
Slovak Republic. This application uses modern web technologies (like AJAX), and 
the tool was able to simulate user load. The test results are included in the thesis.



7

1 Introduction

1.1 Performance testing
Webster's New Millennium Dictionary of English defines performance testing as 
“testing conducted to evaluate the compliance of a system or component with 
specified performance requirements.” Performance testing covers a wide range of 
activities, and the thesis in the following text deals only with one variety of software 
performance-testing: web application performance testing. Other names used for 
similar activities are stress testing and benchmarking.

Performance testing can be carried out as a benchmark test or load test, or it can 
be used for capacity planning. Benchmark testing is performed with applications 
running on target systems (hardware and standard software) to get information about 
the highest load of users working with the application it can handle, to check whether 
it reaches the limits that were set in a contract, or it is used during the application 
design phase. This is a short-term test and can last up to a couple of hours.

Load tests (sometimes called soak tests) identify possible performance issues in 
a longer time period. Most common are memory issues that are often not detected 
during short-term testing. During this type of performance test, the application must 
be able to handle the generated load and its performance should not degrade over 
time.

Capacity planning depends on performance testing, and its purpose is to find out 
how the application can scale. Given the application and a test system, one can 
gather information about highest load this test system can handle and then interpolate 
these findings to design target system that should handle the requested target load 
and not spend more than is really needed.

Other types of performance testing exist, such as determining how the 
application can recover from a high load or a hardware failure.

1.2 Motivation
Existing web-application performance-testing tools offer a broad variety of 
functionality. However, none of them combines all the functionality we expected to 
use in our projects. This resulted in my decision to define and implement such a tool.

License fees for existing performance testing tools vary from zero to thousands 
of U.S. dollars. For projects that are tight on budget, the tool must be free. The only 
expenses allowed are for test preparation, execution, and reporting. To keep these 
expenses down, a test definition must be easy to maintain not only during the project, 
but it must be available for reuse on future projects. The tool must be able to perform 
as much of the common activities as possible. Such activities are request-header 
generation or automatic retrieval of images included in the page.

Most web applications this tool would test depend heavily on user input;
therefore, the tool must offer easy manipulation of user data and requests that are 
sent to the application server. User input is not only data a user enters into web 
forms, but the selection of functionality as well. In web applications, this means 
clicking on links displayed on page. Not all functionality is used equally; thus, it 
must be possible to branch in test execution randomly, having different weights for 
individual actions.



8

Based on user input, applications generate responses, and under very high load,
they can fail either by collapsing and sending nothing or only an error code or by 
responding with a page that has an error message inside. The desired tool must be 
able to parse the response and check for user-defined data. In fact, it must 
incorporate some functionality that covers functional testing to be able to detect the 
application errors. According to its finding, it must be able to branch in test 
execution.

Target systems running our web applications are always off-site, either at the 
customer's location or in hosting centers. Because clients for performance testing in 
such installations are mostly only servers running on Linux or UNIX, the 
performance-testing tool must run on such systems.

In an ideal world, everything works perfectly when the test is run. In reality, first 
runs often show problems in server configuration or in application itself. To identify 
such flaws, data gathered during the test can be helpful. In such a case, pre-defined 
reports and graphs might be not enough. If the tool were able to generate data for 
statistics software, it would be possible to mine the data and help to find the 
application bottleneck.



9

2 Project objectives

2.1 Web-application performance-testing
The primary task of a web-application performance-testing tool is to generate load. 
Load is represented by number of users accessing the tested application 
simultaneously. Because the testing tool only simulates these users, they are called 
virtual users. Each virtual user represents one individual user working with the 
application.

The interaction of such a user with the application consists of actions like 
clicking on a link or submitting data in a web form. The description of the user 
interaction that should be reproduced during the test is called a test scenario. Test 
scenarios can combine all actions a user would perform during the visit to the 
application, e.g., displaying the main page, browsing on the site, and possibly login 
and logout, or only small part of it, e.g., entering data into a multi-page web form.

The whole test session consists of many virtual users performing one or more 
test scenarios and possibly submitting some data to the application. The number of 
users is usually increased during the test session, and the session finishes after a 
defined time elapses or the application behavior will become unacceptable according 
to criteria defined in the test.

Another important task of a web-application performance-testing tool is to create
a report of what happened during the test session after the session finishes. This 
report should contain information about the load the tool generated and information 
about the application's behavior. At a minimum, the load is described by the number 
of virtual users used for the generation or the number of requests sent to the 
application server. The application behavior is at least described by response times 
and number of errors encountered.

2.2 Requirements
The implemented tool will be used to simulate users working with web applications, 
to measure the limits of tested applications, and to test their behavior under extreme 
loads. The results of such tests will be used to improve the performance of the 
application and to prove that the implementation projects met required limits.

As this is a performance-testing tool, it has to be able to generate load and to 
create a report of the test session afterwards. Generating load to a web application 
means to simulate user browsers requesting files from the application server(s) and 
submitting data back to the application. What files will be requested, what data will 
be submitted and how the response should be handled is described in test scenarios. 
These scenarios must be in a form that allows versioning, i.e., storage in a 
development repository with the possibility to compare and merge versions.

As users have different ways of using tested applications, the tool must allow for
branching in the test execution depending on the test data and the responses retrieved 
from the tested application. Test scenarios must allow for random branching as well.

The results of the performance testing of web applications that depend on a 
database are sensitive to submitted data because of caching in the database. Good 
load, therefore, has to contain as much various data as possible in order to force the 
database to use a different part of data files. Because data are submitted to the 



10

application via web forms, the tool must be able to easily manipulate individual 
fields and load test data into them. This will allow the shortening of the time needed 
to prepare test scenarios and make them easier to read and maintain.

Reports created after the test session finishes contain information about 
generated load and the application behavior. This usually means couple of pre-
defined graphs or lists of values. To analyze irregular patterns in test results, it will 
help to load gathered data into statistical software and mine the data.

Apart from general requirements, it was expected that this tool would be used to 
test specific web applications. One of those applications is described and tested in 
chapter 6.1 – Slovak Cadastral Portal. The possibility to test this web application was 
one of the main goals for the implementation of this tool.

A complete and detailed list of requirements can be found in the specification 
document in Appendix A on the enclosed CD. Functional and non-functional 
requirements are formulated in chapter 3 of the specification.

2.3 Interaction with web application
Even though the process of web browsing might seem easy and straightforward for 
the user, it covers various communications between the browser and the server.

Web browsers interact with web application servers using requests and 
responses. To display a page in the browser, one request and response is usually not 
enough. The browser has to retrieve at least one (X)HTML1 page (or more, if frames 
are used) and then to retrieve attached files, as images, scripts, or styles. To speed up 
the process and to save bandwidth, browsers often cache files in the client’s cache 
and store their modification dates and times.

Modern web applications go even further. When the page is displayed and user 
is reading the text, it is possible to send asynchronous requests in the background, 
without user’s explicit activity. Data retrieved can be used to update dynamically the 
content of displayed page without the need for a complete page refresh, as was the 
practice in the past.

A performance-testing tool for web applications must be able to simulate such 
communications while keeping test scenarios simple and readable.

2.4 Overview of the following document
In chapter 3, a tool driven web application testing is analyzed, discussing possible 
approaches to fulfill the abovementioned requirements and defining the functionality 
that the implemented tool will have. Next, chapter 4 presents a simple test session, 
using the implemented tool, starting from the test definition up to the execution and 
test result presentation. The defined tool-implementation details are described in 
chapter 5, and the tool itself is then evaluated in chapter 6. Chapter 7 is dedicated to 
the description of selected other test tools and their comparison with the 
implemented tool. Finally, chapter 8 wraps up this thesis.

  
1 (Extensible) Hypertext Markup Language ((X)HTML) – language used for the creation of web 
pages.



11

3 Analysis: Tool-Driven Web Testing

Web applications are usually designed to sustain load of hundreds or even thousands 
of simultaneous users. Performance testing of such applications cannot be made by 
real users; such tests would be very hard to manage and the results would not be 
reproducible. In such a situation, tool-driven tests are an option. This chapter 
examines what has to be done to implement such a tool and the approaches used in 
the implementation of the WebStress tool.

3.1 Load generation
Primary task of a web-application performance-testing tool is to generate load. Load 
to a web application is generated by simulating network interaction between the 
client browser and the application server.

Connection
Communication between a user – client browser – and an application – application 
server – is through a TCP network connection. The client browser connects to the 
application server defined in requested URL2.

Connection closing. When connection is made, the client browser sends a 
request and waits for a response. The application server processes the request and 
sends back the response to the client browser. After the response is transferred, the 
connection can be closed or left open for subsequent requests. Creating a connection 
consumes network and application resources. If the client browser expects to send 
more requests to the application server, it can be faster to reuse an existing open 
connection for that. The most common situation for connection reuse is to request 
files referenced by a downloaded HTML page (called attached files in this text), such 
as images or styles.

The possible approaches are (1) close the connection after each request, (2) keep 
the connection open to request attached files and close immediately afterwards, or (3) 
keep the connection open for a longer time and reuse it if a user requests a new page 
from the same server during this time. Web browsers that implement persistent 
connections in HTTP3/1.1 or the Keep-Alive extension to HTTP/1.0, i.e. all common 
browsers nowadays, keep connections open. As this has an impact on the application 
server's performance, a testing tool should be able to keep and reuse connections to 
the application server. The same approach is used by default in WebStress with the 
possibility to close connections automatically after each request or manually as a 
command in the test definition.

Web application servers have limits set for the maximum time between requests 
and for the maximum number of requests sent using one connection to avoid 
problems with high number of server processes waiting for idle clients. For example, 
the default values for the Apache web server (version 2.0) are 15 seconds and 100 

  
2 Uniform Resource Locator (URL) – address of a web page, in this context
3 Hypertext Transfer Protocol (HTTP) – communication protocol between web browsers and web 
servers, defined in RFC 2616 [1]



12

requests, respectively. If connections are kept open, the testing tool must be able to 
detect a closed connection after such a limit is met without reporting an error.

Multiple network connections. As another way of speeding up the process of 
presenting (or rendering, as it is often called) a web page to the user, web browsers 
can open multiple network connections. A browser can parse the response on the fly,
and when only partial content is retrieved, it can request attached files. Browsers then 
open simultaneous connections and combine this with multiple requests using one 
connection, as mentioned earlier. According to RFC4 2616 [1], clients that use 
persistent connections should limit the number of simultaneous connections that they 
maintain to any server – not more than 2 connections. This limit is not always 
obeyed, and it can be usually changed in the browser configuration. The number of 
open connections can affect the application server's performance, so testing tools that 
allow multiple connections for one virtual user can better simulate real user load. 
Because of more complicated response parsing and connection pool management, 
WebStress uses only one network connection for a virtual user.

Traffic shaping. Users working with the application are connected to it either 
using the Internet or intranet network lines. Especially in case of the Internet, 
available network bandwidth may differ between real users and the testing 
environment. The slower the connection, the longer the response time, noticeably for 
larger files. As this may have an impact on measured application response times, the 
testing tool may limit the network transfer for individual virtual users. This is called 
traffic shaping. This can be implemented by measuring the network throughput for 
individual virtual users in regular intervals, e.g., one second. The test definition can 
contain the specification of the network bandwidth for individual users, e.g., as a 
number of kilobytes per second. When the measured throughput for newly received 
data would be higher than the specified bandwidth, only part of the data should be 
read from the network leaving the rest for later, i.e., the next measured interval.

Without traffic shaping, the testing tool connecting to the tested application by 
local or another high-speed network may report shorter response times than the same 
load generated by real users spread out on the Internet. WebStress does not support 
traffic shaping because the applications that it was used to test so far have short 
responses; thus, the impact would be low.

Request
As mentioned earlier, communication between the client browser and the application 
server consists of requests sent from the browser to the server and responses that are 
sent in the opposite direction. This communication uses the HTTP protocol, current 
version 1.1. This version was first published by RFC 2068 in January 1997 and then 
updated by RFC 2616 in June 1999. Since then, it has been implemented widely in 
web browsers. Version 1.0, which still is used sometimes, was defined by RFC 1945 
in May 1996. As most web browsers use version 1.1, the testing tool should 
implement this version. In fact, not supporting this version might result in 
impossibility to test web applications that are set up as virtual hosts5. WebStress 
implements version 1.1.

  
4 Request for Comments (RFC) – formalized memoranda addressing Internet standards
5 Virtual hosts – multiple web applications that share the same IP address



13

Structure. A request is a plain-text message, finished by one empty line (CRLF) 
and optionally with extra user data that are sent to the application. The first line of 
the request specifies the method to be performed, URL, and the version of the 
protocol. Possible methods are GET, POST, HEAD, OPTIONS, PUT, DELETE, 
TRACE, and CONNECT, where only first two (or three) are used in regular 
communication between users and applications. The GET and POST methods are 
required for almost all web applications; therefore, the testing tool must implement 
them. The difference between GET and POST is that the first sends the user data as a 
part of URL, whereas POST adds the data to the end of the request. Apart from these 
two methods, WebStress implements the HEAD method too, which has the same 
header as GET.

Headers. Starting with the second line, requests can contain header fields. The 
request header fields allow the client to pass additional information about the request, 
and about the client itself, to the server. These fields act as request modifiers. The 
current HTTP version defines more than 40 various header fields that control the 
connection, sessions, content, caching and authorization. Individual fields are 
discussed in the appropriate part of the text in this chapter.

User data. Optional data that can be sent with the GET or POST requests are 
created from the user input entered into web forms. This data consist of name=value 
pairs, where the names are taken from the web form in the response HTML page and 
the values are appropriate data entered by the user. How this data can be prepared is 
discussed later in this chapter.

Response
After the request is processed by the application, the response is sent back. It is 
similar to the request – status code, headers, empty line and the data (response body). 
The status code defines whether the request was processed successfully, further 
activity is required from the client, e.g., redirection, or an error occurred. As a 
minimum, the testing tool must be able to detect status code 200 (OK) to allow the 
test to continue in its execution, as specified in test definition. Furthermore, it should 
process 301 (Moved Permanently), 302 (Found), and 303 (See Other) codes to 
automatically request the page these redirects point to because these codes are often 
used in web applications. The 4xx (client errors) and 5xx (server errors) codes 
indicate that there is a problem with the test definition, with the application, or with 
the tool itself, and they should be reported to the user and/or counted as test errors.

Error detection. Correct responses (with 200 status code) contain the body with 
requested file, either an HTML page or an attached file. Even though on an HTTP 
level this means success, the application might fail in such a case. If the application 
caught an error or an exception, it would send a correct response that would contain a 
description of that problem. Deciding only on the status code, whether the request 
was processed successfully, can be considered only as a very basic testing tool 
functionality.

A more advanced level is to store the response to be available for the following 
test commands to inspect its content. Such an inspection can search for specific data 
in the response, like expected result or for a sign of an error. This search does not 
have to understand the meaning of the data; it can simply search for a substring or a 
regular expression. WebStress allows searching for a substring in the response.



14

Compression. To save the network bandwidth, HTTP allows compression of the 
response for the transfer. The client browser can inform the application server in the 
request headers about the methods with which it can decompress (gzip, compress, or 
deflate), and the server can then compress the response using one of those methods 
prior sending it back to the client. Web browsers usually support at least one of the 
compression methods and if the application server is configured to compress the 
responses, it will be used in communication with the real users. The compression 
process can have an impact on the application server performance, so the testing tool 
should support it. This means sending appropriate request-header fields and 
decompressing the data if they are offered to the test commands. WebStress supports 
the gzip and deflate methods.

Parsing. Responses that are HTML, JavaScript6 or CSS7 files can reference
other (attached) files. Web browsers automatically request these attached files, unless 
explicitly configured not to do so. Therefore, during the performance tests, this 
should be done the same. This can be achieved either by including all requests of 
such files in the test definition or by instructing the testing tool to parse the response 
and request them automatically. The first possibility does not require any extra 
functionality from the testing tool, but the second one requires that the tool 
understand the data. As it can be predicted what files will be attached to the response, 
a testing tool that cannot parse the response will still be able to test web applications. 
Parsing and automatically requesting can simplify test definition creation, but the test 
execution will require more resources from the client – parsing the response 
consumes some resources. Therefore, parsing should be done only when needed and 
requested by the test definition. WebStress is able to parse automatically HTML 
responses and request attached files, if instructed to do so.

Parsing HTML responses can go even further – the testing tool can allow the test 
commands to access whole response as a DOM structured document. This can be 
useful to use specific data from the response in subsequent test execution. WebStress 
does not allow this.

Caching
Web applications consist of two types of content – static and dynamic. Static content 
is usually stored as files on the application server, and dynamic content is 
represented by scripts (CGI, PHP, ASP, JSP, etc.). The application server sends the 
modification time of static content with each response, and because it does not 
change between requests, it can be cached on the client. Web browsers usually do so,
and when cached content if requested, the request-header field is included with the 
cached modification time. If the server does not have newer content, it responds with 
304 (Not Modified) status code. This saves the server performance and the network 
bandwidth.

Caching is very common for attached files – images, scripts and styles. HTML 
pages are often generated, as it the core of interactive web applications. In such a 
case, web browsers of real users retrieve the static content only once, and subsequent 
responses do not contain the content again. As this may affect the application server's

  
6 JavaScript – a scripting language most often used for client-side web development
7 Cascading Style Sheets (CSS) – a stylesheet language used to describe the presentation of a 
document written in a markup language (e.g. HTML)



15

performance, the testing tool will generate a more realistic load with the ability to 
cache static content. Unfortunately, the combination of response parsing and caching 
can pose a problem: while for non-parsed content it is enough to store the 
modification time, a parsed response must be stored in its entirety (raw or parsed). 
Otherwise, it would be impossible to process a test command accessing data that 
were retrieved only for the first time. The basic approach would be to store data 
separately for each virtual user. However, as they all work with the same application, 
they should retrieve the same static content. This content then can be shared among 
them, thus limiting the amount of data stored. Each of the virtual users would still 
have its own cache with a list of files that it has already cached and references to the 
files stored in the global cache to be able to get the content of those files.

WebStress does not store the data, and because of this it supports only caching 
of non-parsed data, i.e., all the non-HTML data. The applications it was used to test 
so far generate HTML pages on the fly, so none of them can be cached. With the 
implementation of the parsing of JavaScript or CSS in the future, storing this data 
would be reasonable, but as they are not parsed yet, there is no need to store them. 
Yet, their modification times are stored, and during the load generation, they are sent 
to the application server. The tool, with respect to the application, therefore behaves 
as real users’ browsers.

Sessions
HTTP communication is state-less by definition. Because many web applications 
need to track the users working with the application (sessions), three main 
approaches were developed: (1) hidden form fields, (2) URL rewriting, and (3) 
cookies8. This allows maintaining a relation between successive requests made to the 
application server by one user. The first time a user requests data from the 
application, a unique session identifier is assigned to him/her.

Hidden form fields. The hidden-form-fields method is used for simple web 
applications and servers that do not offer other methods. It requires that to keep track 
of a user, s/he has to navigate between pages using web forms. Each time a user 
submits the form, the application generates a new page containing another form 
(apart from regular content), with a hidden field containing the session identifier. 
Usage of this method is very limited and is used only to track a few consecutive 
requests, not the whole session. If the testing tool is able to process the web form and 
use the data in the following request (as WebStress is), it supports this type of 
session tracking.

URL rewriting. Another method for session tracking is called URL rewriting. 
In this method, session identifier is transferred as a parameter of GET requests. Each 
URL in the response that requires session tracking contains the session identifier, 
e.g., page.jsp?sessionid=xxx. This allows tracking the session without the 
need of web forms, even though the session identified is transferred as a web form 
parameter. To support URL rewriting, the test tool must either identify the session 
identifier automatically and append it to all requests or the navigation has to be done 
using parsed links from the response. If the test definition contains the name of the 
session identifier, automatic detection is not complicated to implement. If the testing 

  
8 cookie – text sent by a server to a web browser and then sent back unchanged by the browser each 
time it accesses that server



16

tool is able to parse the HTML response and allow the test definition to access the 
list of links in the response, URL rewriting can be supported too. WebStress uses this 
approach.

Cookies. A very common method of session tracking nowadays is to use 
cookies. This does not require any changes to the generated HTML and usually is 
implemented in the server code. Once a user requests the data from the application 
server, a cookie containing the session identified is sent in the response header. The 
web browser then stores it and sends it in all subsequent requests to the server. The 
application can then access the cookie value and identify the session and the user. A 
testing tool without the support of cookies will not be able to test the majority of web 
applications that depend on session tracking. WebStress supports cookies.

Authentication
Many web applications offer or even require the user to authenticate (log in) to work 
with the application. Authentication can be implemented in HTTP or at the 
application level. HTTP authentication is set up in the application server's
configuration. If a protected URL is requested, the server responds with 401 
(Unauthorized) status code and the web browser ask the user to enter the credentials. 
The browser will then add a request-header field with it. There are different ways of 
HTTP authentication – Basic, Digest, and NTLM, to name a few. Because the 
browser caches the credentials until closed, preventing users from logging out, the 
application has no control over the username and password input and optional 
authentication and single sign-on is not possible, so this method is not found often in 
interactive web applications [20].

Application level authentication is in fact a regular web form that is submitted to 
the application and the access is then tracked with a session identifier. If the testing 
tool supports web forms and the session tracking type used by the application, it can 
authenticate to it.

As there are different types of authentication and session tracking, the testing 
tool must be able to simulate the same types as the application uses. The most 
common type used is application level authentication, and this type is supported by 
WebStress.

Virtual users
A web-application testing tool simulates real users simultaneously running many 
such simulations. Each of them is called virtual user. These virtual users share a 
common test definition with each bunch of virtual users working as specified in one 
of the test scenarios. Because the testing tool must execute the test for all virtual 
users in parallel, it can depend on the multitasking capabilities of the operating 
system or it can implement its own “task switching.”

Processes and threads. Operating systems usually offer two ways of 
multitasking – multiple processes and multiple threads in one process. The processes 
approach is easier to port between platforms, but the synchronization and 
communication between processes is more complicated. Multiple processes can be 
easier to distribute to more computers. The threads approach can save resources, e.g., 
by sharing memory, but its implementation usually requires extra libraries that can 
limit the tool portability. Communication between threads limits its usage to only one 
computer, but it is faster than many inter-process communication methods.



17

One process, one thread. Implementation using one process and one thread 
requires that the tool keeps track of all network connections and time-outs together. 
This complicates the implementation, but it can be faster than other approaches 
because it can wait on all events using one system call and needs no inter-process or 
inter-thread communication and synchronization. This approach has an important 
drawback: non-blocking system calls must be used and all longer-lasting actions 
must be cut into smaller pieces and planned separately. Otherwise the measured 
response times might not be accurate because the tool will process the responses later 
then they arrived. Another problem is that the tool will not be able to use more than 
one CPU core, which limits its ability to generate higher loads.

From all three possible approaches, WebStress uses threads. Multiple processes 
require more complicated inter-process communication and consume more resources,
and the one-process-one-thread approach would be very complicated to implement, 
so the implementation would in fact not focus on performance testing, but on task 
switching and planning.

Distributed load. To generate very high loads, one computer may not be 
enough. Load then has to be generated using more computers and this implies more 
processes. All the processes have to be synchronized and the results have to be 
completed together. In distributed testing, one computer is usually dedicated to 
control the execution of other so-called agents that generate the load. The test 
definition can be processed at one place, e.g., user desktop computer, and then 
distributed to the agents, e.g., remote computers. To save the network bandwidth and 
reduce the CPU utilization of the agents, it may be better to store the results during 
the test execution locally and transfer them to the controlling process after the load 
generation finishes. This requires that the computer times be synchronized, e.g.,
using NTP9.

Think-times. During the test execution, requests are not generated all the time –
real users read the content of the pages displayed or enter the data into web forms. 
These pauses are called think-times. These think-times can be defined in the test 
definition as the same between all requests or used as specific commands in the test 
definition, with the user deciding when the think-time should be inserted. This 
definition can be static with the same think-time for each virtual user and test 
execution or it can be dynamic with a specified probability distribution. Distributions 
used by the test tools evaluated in chapter 7 are uniform, exponential, and Gaussian. 
Apart from these, a normal distribution can be used, especially by the tools that 
record the test definition by monitoring real user activity. Measured think-times can 
then be used as the means. Which of the probability distributions describes best the 
real user and should be used in the test definition is up the creator of the test. The 
testing tool must have a way of defining the think-time and should implement at least 
dynamic think-times. Otherwise, all the virtual users will keep the same pace and the 
load will not vary, as it would with real users.

Ramp-up period. When generating the load of hundreds or thousands virtual 
users, they cannot be started all at the same time. This could cause a performance 
problems for the tool itself, but more importantly, for the tested application itself. In 

  
9 Network Time Protocol (NTP) – protocol for synchronizing the clocks of computer systems over 
packet-switched, variable-latency data networks



18

real life, the load increases steadily, as new users are connecting to the application. 
The testing tool must be therefore able to reach the desired number of virtual users 
over a period of time. This controlled increase of the number of virtual users is called 
ramp-up period. It can be implemented by defining the final number of virtual users 
combined either with the length of the ramp-up period or by the increase in the 
number of virtual users in time, e.g., three new virtual users every two seconds. The 
tool would then continuously increase the number of virtual users until reaching the 
final number. If the test definition allows stopping the test execution after pre-
defined time or when number of errors or the response time reaches a certain limit, 
the test can be started without setting the upper limit on the number of virtual users. 
This approach can be used to find the maximum number of users the application can 
handle, while still keeping reasonable response time or error rate.

3.2 Reporting
Another important task of a web-application performance tool is to create a report of 
what happened during the test session. Based on this report, it is possible to evaluate 
the test session and the behavior of the tested application under the load.

Measurements
A test report is created from values measured during the test session. These values 
either describe the load generated or the behavior of the application. While the first is 
controlled by the tool and the test definition, the second depends on the application 
and the test environment, e.g., network lines. A combination of values of both types 
and their possible dependency describes the application performance.

Generated load. Load generated by a performance-testing tool can be described 
with elapsed time since the start of the test, number of virtual users, number of open 
connections, number of requests sent, or number of requests simultaneously waiting 
for a response.

Application behavior. The basic value that describes the behavior of the tested 
application is response time. How it can be measured is analyzed in the following 
paragraph. Other values that can be measured are number of errors that occurred 
during the test session or size of a response. Errors can be counted by checking the 
status codes of the responses and by checking the response body, as described in the 
previous text.

Time measurement
As described in the previous text, communication between the client browser and the 
application server consists of network connection opening, request, response and 
possibly network connection closing. As the connection closing cannot be perceived
by the user and is not important for him/her, it does not have to be measured. When 
going into more details, the following important points in time are interesting:
§ Name-lookup time: The time it takes from the start (the moment the tool is 

going to request a file) until the host name of the application server is 
resolved.

§ Connect time: The time it takes until the connection to the remote host is 
created.



19

§ Pre-transfer time: The time it takes until the request is sent completely to 
the server.

§ Start-of-transfer time: The time it takes until the first byte of response 
arrives.

§ Total time: The time it takes until the whole response is transferred.
All these times are represented graphically in Figure 3.1. As web browsers start to 
display the content of the response already during the transfer when they have 
enough information, a user can perceive the start-of-transfer time and the total time. 
These two times affect the user's perception of the application and, therefore, should 
be measured by the testing tool. If a connection is reused, name-lookup time and 
connect time are zero because this was already done by a previous request.

Name-lookup time, connect time, and pre-transfer time are part of 
start-of-transfer time for the user, and when of one these three times increases, it will 
affect the times that follow afterwards. Measuring these times can help find problems 
in the underlying layers of the application, such as the server or operating system 
configuration. For example, a long connect time might indicate the test is hitting 
limits for open network connections or number of processes. Measuring these times 
is an added value for the testing tool. WebStress measures all the five mentioned 
times.

Name lookup time

Connect time

Pre-transfer time

Start of transfer time

Total time

Start Name resolved Connected Data transferedStart of body
transferHeader sent

Figure 3.1: Important points in time during the network communication

Page-load time. In the previous text, time measurements were described for 
individual pairs of requests and responses, i.e., times from opening a connection to 
retrieving one response. When a web browser displays a page, it uses not only the 
file with the page content itself, but the attached files too. Time to retrieve the page 
and all attached files is called page-load or transaction time. Testing tools that parse 
the response and automatically request the attached files can measure this time, 
because of the knowledge that the subsequent requests are related to the request for 
the page itself. Other tools have to provide the user with specific commands that can 
be used to define the range of requests related together – a transaction, to be able to 
measure it. Another option is to use a different command to request manually 
attached files and the tool can then combine the request for the page and the 
subsequent requests for the attached files. This can, in fact, automatically define a 
transaction. WebStress does not measure page-load times, but automatic requesting 
of attached files or separate command to request them manually, which WebStress 



20

offers, can be used to implement automatic definition of transactions. In case of 
need, a separate command defining a transaction can be implemented too.

Exact time measurement. Some of the times measured can be only a few 
milliseconds long. Even though the regular system call for time measurement, 
gettimeofday, should have the precision of 1 microsecond, at least on Windows 
it is about 10 milliseconds, as explained in [14] and [15]. Better accuracy can be 
achieved by using processor ticks – time stamp counters. With processors running at
gigahertz speeds, the achievable accuracy is in nanoseconds. Many architectures 
offer the possibility to read these counters, as can be seen in the list of platforms 
supported by PAPI library – one of libraries that can be used to read the counters.
WebStress uses RDTSC instruction of Intel/AMD x86 systems to read the counter or 
regular system call on other architectures. As many operating systems on other 
platforms offer accuracy of at least 1 millisecond, it is enough to use system calls to 
measure the time on such systems.

Time is measured internally by the operating system and system libraries for 
application sleeps too. When the testing tool waits a think-time period, it may sleep 
using a system call. Sleep-time resolution is based on the system timer resolution, 
e.g., 10 milliseconds for Linux 2.4 kernel and 1 millisecond for Linux 2.6 kernel (see 
[25]). Extra time has to be counted for the call to return, according to [26] it can last 
about 10-30 milliseconds for the x86 architecture. Tools that use a separate thread 
can easily work with a resolution of 10 milliseconds or even worse, as the think-
times will probably in a rank of seconds or more. Tools that execute more virtual 
users in one thread have shorter sleeps, as they will wait for the time period between 
two consecutive requests of two different virtual users. With a higher number of 
virtual users, there can be a time in milliseconds, so the tool must use high-resolution 
timer. Possible implementations are described in [26].

Resource monitoring
The response times of the tested application include the time needed to transfer the 
requests and responses through the network and to process them by the tool. When 
the network is not congested and the computer running the tool is responding 
quickly, this overhead creates only a very small part of the response time. As the 
generated load increases, so does the network, CPU, and memory usage on the client. 
To avoid affecting the results of the test with the performance of the network or the 
client, these resources should be monitored. If the CPU, memory, or network 
bandwidth usage is reaching its limits, e.g., is consuming more than 80 percent of the 
resource, the test results may be affected and the test should be repeated with a lower 
load or in an environment with a faster CPU, more CPUs or memory, or a faster 
network connection.

The application server(s) is monitored by response times. However, if the 
application does not perform as expected, it can be helpful to monitor server 
resources too. Server monitoring can help to identify the hardware bottlenecks of the 
application server(s), such as the lack of the system memory. If the implementation 
team decides to improve application performance by a hardware upgrade, server 
monitoring can advise which part of the system should be upgraded.

Ways of monitoring. Monitoring can be done by the user running the test or by 
the tool itself. User can monitor the client or the server by operating system tools like 
sar [17] or taskmgr. Common way of monitoring network-attached devices is to 



21

use SNMP10. SNMP exposes management data in the form of variables on the 
managed systems, which describe the system configuration. These variables, e.g., 
CPU utilization, physical and virtual memory allocation or network usage can then
be queried by managing applications. As there exists an SNMP implementation for a 
lot of platforms (see the list of supported operating systems for Net-SNMP [18]), it 
can be used to monitor most web applications and test clients. Net-SNMP offers a 
complex library that can be used in the testing tools. WebStress does not monitor 
client or server resources, but its architecture is prepared to do so in the coming 
releases.

Content of the reports
Measured values have to be presented to the user. This can be done in a form of 
statistical numbers, such as mean and standard deviation, or in a form of a graph 
(also called plot or chart). 2D graphs can show a measured value changing in respect 
to another one, e.g., how the response time was changing with an increasing number 
of virtual users. Measured values and their division into two groups are described on 
page 18.

Meaningful combinations of values to display are:
§ one of application behavior values versus one of generated load values, e.g., 

response time versus number of virtual users
§ one of application behavior values versus one of resource monitoring values, 

e.g., number of errors (application time-outs) versus server CPU utilization
§ one of resource monitoring values versus one of generated load values, e.g., 

server memory usage versus number of open connections
§ one of generated load values versus another generated load value, e.g., 

number of virtual users versus test execution time
Values describing a possible effect versus a possible cause should be combined 
because as the report is looking for relationships and correlations between measured 
values.

Graph types. Common graph charts (according to [19]) are a scatter plot, a 
histogram, a bar chart, a pie chart, and a line chart. Another graph useful in statistics 
is a box plot. Relationships that change continuously, e.g., the number of virtual 
users versus test-session time, can be displayed using a line graph. Such a 
visualization can reveal physical relationships, and one can quickly and intuitively 
understand the behavior described by the data. In contrast, discrete measurements are 
better displayed using a scatter plot, histogram, or box plot. Box plots in particular 
are useful for displaying statistical information about the data, such as smallest 
observation, lower quartile, median, upper quartile, and largest observation, as for 
example for the response time versus test session time.

3.3 Test definition

Environment and language
The load to the tested web application is generated based on a test definition. A test 
definition is a formalized test scenario, i.e., a sequence of actions and decisions that 

  
10 Simple Network Management Protocol (SNMP) – protocol used by network management systems 
to monitor network-attached devices for conditions that warrant administrative attention



22

describe the user working with the application. This formalization transforms a test 
scenario into a form readable by the testing tool; it creates a test definition.

A test definition can be created explicitly by the user using a language or edited 
graphically, created by monitoring sample user activity as a proxy, or created from a 
stored application server log. Explicit definition can leverage all the load-generation 
functionality a testing tool can have: it can define requests, check the response, 
branch, use variable test data, and others. However, preparing a test definition this 
way can take more time because the user has to learn the syntax of the language or 
the usage of the test-definition part of the tool.

Monitoring user activity or using the server log from the past creates a test 
definition that merely replays a fixed test with no possibilities to vary. Usage of such 
a tool is simpler and can be used for basic performance tests. To create a test 
definition based on log of an application using URL rewrite mechanism, the tool has 
to identify the session identifier in the URLs. Another problem is that servers do not 
log the user data for POST requests by default because this may reduce the server’s 
performance and pose a security risk.

To overcome the limitations of both approaches, the testing tool can combine the 
functionality of the both. The user is then able to create the draft of the test definition 
by monitoring the real activity or using the log and then manually completing it with 
other commands, as a response content check. The problems of such an approach can 
be that the tool does not know which of the data gathered is important for the test and 
the created test definition can then be very detailed and thus complicated to read and 
maintain.

Language or a graphical test definition interface. A test definition can be 
represented as a text in a defined language (script) or as commands entered and 
displayed graphically by the tool. The text form can be maintained in any text editor 
and easily stored and versioned in a software repository, but it is harder to learn to 
work with the tool. The language for the script can created specifically for the testing 
tool itself or extensions (libraries) to an existing language can be created. When 
using an existing language, it is enough to implement the libraries offering all the 
testing tool commands, and, when combined with internal or other external routines, 
the created test definition can be compiled with the language's native compiler into 
separate executable or dynamically linked to the tool. As this approach is very 
complicated to implement, testing tools usually use their own language and process 
the test definition internally (see Table 7.1: Web test tools comparison matrix).

Creating and maintaining the test definition graphically by the tool can offer the 
user support during the process – he/she can browse in a list of available commands 
and their parameters. The disadvantage is that the user does not see all the details of 
the test definition in one piece, but has to go through individual commands. Such test 
definitions can be edited only by the tool itself and it is hard to version them or 
merge two test definitions together. Again, it is possible to take the good parts of 
both approaches, and the graphical interface can read and write the test definition 
from/to a script.

Testing tools that can only generate the load from a server log do not have to 
have any specific test definition because the log itself is the definition. Tools that can 
only monitor the activity and replay the actions without any possibility for the user to 
alter the created test definition can use internal (binary) formats.

WebStress defines the test definition by a script with its own language. One of 
the goals before the implementation was the possibility to store the test definitions in 



23

a software repository and to allow concurrent changes to it with merging. A 
graphical interface that reads/writes the script can be implemented that would be 
compatible with current format and syntax.

Test data
Users working with web applications read the data retrieved from the application and 
often send back user data too. This data can be for example login information or 
queries. To send (or submit) the data, users enter them into input boxes or use list 
boxes, check buttons, and radio buttons. All these elements are grouped together in 
web forms.

Therefore, the testing tool has to send user data. During the test, the tool can 
either send the same (static) data all the time or send different (dynamic) data with 
every request. Static data can be defined directly in the test definition, but not 
dynamic data. Static data can be used in cases when the application performance 
does not depend on the data (user name, comments, etc.). Using static data for 
queries could result in irrelevant test results because caching would probably apply 
on either a database or a file system level. The tested application could then perform 
very well during the tests, but not in the production with real users.

Dynamic data. To get relevant results in performance tests, dynamic data is 
needed in most cases. Therefore, data for queries must be prepared in advance, for 
example, from the application data, i.e., its database. This preparation can be in form 
of a text, such as CSV or XML, a binary file that is read by the tool during the test 
execution, or an SQL query to the database. If a database is used, it should not be the 
same database the application uses or running on the same system because it may 
affect the performance of the application and, therefore, the test results.

Sometimes, the applications performance does not depend on the data submitted, 
but static data cannot be used. This can happen when the application requires unique 
input from the user every time. Prepared data, as in the previous paragraph, can be 
used, but they have to be prepared for every test again. In such situations, the testing 
tool may generate the data automatically. A user can define a template and the tool 
will generate the input based on it. The simplest form of a template is a sequence of 
numbers to be generated. When combined with a static string, the tool can, for 
example, generate user names to be registered in the tested application.

WebStress supports static and dynamic data in CSV format. Parsing XML files 
takes more time and can slow down the tool performance when reading the external 
file during the test execution. In the test definition, it is possible to specify, whether 
the data should be loaded into memory or read from the file all the time, and in the 
second case, this could cause problems. Using a binary format can cause problems 
for the users to create it, so it is not used. Large sets of data probably would be 
probably from the application database, and it is not possible to create binary output 
with standard SQL queries.

Application-generated data. One type of data sent from the application to the 
user and then sent back to the application has been previously mentioned, i.e., the 
session identifier. A web application can send other data to the user that it expects to 
be returned back, e.g., when the user enters data into one page of a web form and 
then moves to the next page. In such a case, the application can use hidden form 
fields and temporarily store the data until all the required data are entered. A testing 
tool that is not able to parse the response from the application and retrieve those data 



24

to be used in subsequent request cannot be used to test such an application. The 
testing tool must either allow the user to get the data during the test to prepare the 
request or automatically prepare the request using the hidden fields and default 
values of fields that are displayed. This second approach, implemented in WebStress, 
allows the user to concentrate on user-entered data only and leave the work that is 
normally done by a web browser to the testing tool.



25

4 Basic Usage Explained on Example

4.1 Description
The following is a very simple test to show the usage of WebStress' basic commands
for the test definition. Detailed usage of WebStress is described in User’s Guide in 
Appendix B and User’s Reference in Appendix C, both on the enclosed CD.

Test consists of one scenario and this is intended to do the following:
§ Test the performance of the Google web server, by continuously fetching its 

main page and then performing a query. Queries use a list of predefined 
words.

§ Images, scripts, and external styles are fetched too, if referenced by the 
retrieved page.

§ Test starts with three virtual users, and each second one new virtual user is
added.

§ When the virtual user execution finishes, it starts over again.
§ Test execution finishes after 10 seconds or after 60 requests sent to the server.
§ Test report contains two graphs – server response time in test execution time

and distribution of response times of the main page and the query.

Test scenario is divided into two states. First state requests the main page and the 
second state performs the query and checks the response.

State Description Next state
START Wait for 0-1 seconds, get main page. SEARCHFOR
SEARCHFOR Wait for 0-2 seconds, randomly select from a list 

of prepared words and perform a query. Check 
that response is correct.

The description of the test is then transformed into the test script and the test 
configuration. The test script contains commands for the virtual users, e.g., requests 
that should be made. The test configuration defines the test limits, e.g., the number of 
virtual users and how long should be the test executed, and the graphs that should be 
included in the test report.

4.2 Test script
The test script is a test scenario transformed into a language that can be processed by 
the tool.

// file name: test-google.script

// all URLs in this script will be prepended with Google address
BASE_URL "http://www.google.com/"
// images, scripts and external styles will be fetched automatically
SGET TYPE AUTO

// test data, randomly selected for each query
DATA QUERY RANDOM
{



26

Q
 
"music"
"sport"
"nature"

}

// every script execution starts in state START
STATE START
{
// wait for random time between 0 and 1 seconds
WAIT RANGE 0 1
// fetch main page, English version
GET "/intl/en/"
// when page is retrieved, continue in state SEARCHFOR
NEXT STATE SEARCHFOR

}

// will perform query in this state
STATE SEARCHFOR
{
// wait for random time between 0 and 2 seconds
WAIT RANGE 0 2

// get data for the query
LOAD DATA QUERY INTO d_query
// parse last retrieved page and prepare web form to submit
LOAD FORM
// enter query into the form
ENTER FROM d_query USING q
// submit the form to the server
SUBMIT FORM
 
// check that response contains specified string
// execute code in the block if not
NSEARCH " seconds)" {
// log server response, can be useful to check what happened
LOGDATA
// finish the test and report an error
FAIL

}
// finish the test and report success

}

4.3 Test configuration
The test configuration defines test-session parameters, i.e., test scripts used, number 
of virtual users, how long the test should be performed, and what should be included 
in the test report. Generally, more scenarios can be tested simultaneously and the test 
configuration would contain a reference for each of the test scripts describing its 
scenario. Each of the scripts must have its own definition of the number of virtual 
users.

// file name: test-google.conf

// use defined file as a script for test
SCRIPT[]=test-google.script
// start with 3 virtual users and add one more every second
LOAD[]=START 3 INCREASE 1 IN 1
// restart finished scripts



27

RESTART=YES

// stop after 60 requests sent
STOP_REQUESTS=60
// stop after 10 seconds
STOP_TIME=10

// create a test report with specified name
PAGE=test-google.html

// create a graph and include it in the test report
// use results from all scripts used in this test
TESTS[]=ALL
// horizontal axis will contain test execution time
AXIS_X[]=TIME
// vertical axis will contain server response time
AXIS_Y[]=RESPONSE_TIME_ALL

// create a graph and include it in the test report
// use results from first scripts only
TESTS[]=1
// horizontal axis will contain test script states
AXIS_X[]=STATES
// vertical axis will contain server response time
AXIS_Y[]=RESPONSE_TIME_ALL

4.4 Test run
Once the test configuration and the test scripts are prepared, the test can be executed. 
This example is started as:
./webstress -s test-google

The tool displays the information about the test definition, the test scripts, and the 
test data it uses, and if everything is correct, the test execution starts. During the test, 
the tool displays information about the virtual users that started and finished and 
reports all errors. All this information is stored in the log too.

4.5 Test report
At the end of the test session, the tool creates input files for the R statistical tool and 
runs it. The created graphs are then automatically included in the test report. Once 
the tool finishes, it is possible to open the HTML test report in the browser. The 
content of the report from this example test session follows.

Configuration file: test-google.conf
Test start: Sat May 12 12:40:23 2007 
Test finish: Sat May 12 12:40:35 2007 
Finish reason: TIME
Running time before stop: 10 seconds
Total requests: 43
Total errors: 0 (0 %)
Total runs: 28
Total users: 12

← configuration used for the test
← test start time
← test finish time
← reason, why the test finished
← time before stopping the test
← number of requests sent to the server
← errors encountered (+ ratio to requests)
← number of the script executions
← maximum number of virtual users reached



28

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

Test session time (s)

R
es

po
ns

e 
tim

e 
(s

)

0.
0

0.
5

1.
0

1.
5

Mean value: 0.344625

0.
0

0.
5

1.
0

1.
5

R
es

po
ns

e 
tim

e 
(s

)

0.
0

0.
5

1.
0

1.
5

S
TA

R
T

S
E

A
R

C
H

FO
R

Test states (test-google.script)

Mean value: 0.344625

Created by WebStress 0.3

This sample test report contains two graphs: (1) a line graph of the response time 
versus the test session time, and (2) a box plot of the response time versus test script 
states. The first graph depicts all measured response times of the tested application 
during the test, and individual points are connected with lines. The horizontal line on 
the graph represents the mean value of all measured response times, i.e., “average” 
response time. The test-report header says that 43 requests were sent, and according 
to the graph, 11 of them took longer than the mean.

The second graph depicts, for each of the states used in the test script, the five-
number summary, which consists of the smallest observation, lower (first) quartile11, 
median12, upper (third) quartile, and largest observation. The box plot is sometimes 
called box-and-whisker diagram, because the vertical lines that extend from the box 
are called whiskers. The lower and upper ends of the box represent the lower and

  
11 a quartile is any of the three values which divide the sorted data set into four equal parts, so that 
each part represents ¼th of the sample or population; 1st quartile cuts off lowest 25% of data and 3rd

quartile cuts of highest 25% of data
12 a median is a number dividing the higher half of a sample, a population, or a probability 
distribution, from the lower half; it is equal to the second quartile

mean value
$

boxplot
'  (



29

upper quartiles respectively, and the thick line in between represents the median.
Whiskers represent the smallest and largest non-outlier13 observations. In addition, 
the box plot indicates which observations, if any, are considered unusual, or outliers.
From the graph, it can be seen that the medians of response times to requests in both 
states are almost equal. However, while the maximum response time for the START 
state is about 250 milliseconds, more than a third of the responses to requests in the 
state SEARCHFOR took longer than half a second. That is because the third quartile 
is about 600 milliseconds. A few responses took even more than 1.5 second.

  
13 an outlier is an observation that is numerically distant from the rest of the data



30

5 Implementation

5.1 Design
WebStress is implemented in C++ and using STL14, compliant with the ISO/ANSI 
C++ 1998 standard [29], with the exception of the use of a va_copy macro [30], 
which was included later in ISO/IEC 9899:1999 C standard [31]. The tool links the 
libcurl library [11] for the network communication and depends on the R statistical 
tool for the graph generation [12]. During the implementation, Code::Blocks IDE, 
GNU C++ compiler, and its MinGW port to Windows were used.

The tool consists of one binary executable. The architecture comprises the 
following components: controller, test configuration processor, test script executor, 
and graph generator. The components access the following external objects: test 
configuration, test script, test data, log, report, graph, web server, and statistics. This 
logical model is depicted in Figure 5.1, and individual components are described 
further in section 5.2. These components are mapped to the classes described in 
section 5.3 and Figure 3.1. Communication between the classes is captured in section 
5.4 and Figure 5.3.

A detailed description of the original architecture prepared before the 
implementation of WebStress is included in Appendix A on the enclosed CD. The 
implemented tool very closely follows the specification. Only minor changes to the 
design were needed.

id Components

WebStress

Test configuration 
processor

Controller

Test script 
executor

Graph generator

«file»
Test configuration

«file»
Test script

«file»
Statistics

Web serv er

HTTP

«file»
Graph

«file»
Report

«file»
Log

«file»
Test data

finish

«use»

start

«generate» «generate»

«reference» 0..*

«generate»

«communicate»

1

«use»«generate»

«start» 0..*

«use»

«start»

0..*

«reference»

«use»

«reference» «use»

«use»

Figure 5.1: Logical model of WebStress implementation components

  
14 Standard Template Library (STL) is a software library included in the C++, providing containers, 
iterators, and algorithms.



31

5.2 Components
Controller. This component prepares the test session, e.g., by calling the test 

configuration processor and initializing the log, and starts the test script processors 
for individual virtual users. It gathers all the information about the test during its 
execution and checks for the limit conditions. When at least one of them is met, it 
finishes the test session. In the end, it generates the report, with the graphs generated 
by the graph generator included in it.

Test configuration processor. This component processes the test configuration
including the test scripts and the test data. It reads all these files, compiles the 
individual test scripts, and stores the test data or references to them into the memory.

Test script executor. This component executes the compiled test scripts 
simultaneously for each of the virtual users. The test data are either used from the 
memory or read directly from the external file, depending on the test scripts. Load 
generation, HTTP communication, and HTML processing are the tasks of this 
component. It communicates with the tested application, creating connections, 
sending requests, and receiving responses. It generates the test statistics for the graph
generator from information about this communication. When needed, it parses the 
received responses and provides the test scripts with the gathered data.

Graph generator. This component generates the graphs used in the test report.
Graphs are defined in the test configuration and are created based on statistics 
generated by the test script executor. Statistics are transformed into CSV files, and 
the R statistical tool is then run to process these files.

5.3 Classes
The mapping of the components defined in section 5.1 to the appropriate classes is in 
Table 5.1. The relationships between the classes are depicted in Figure 5.2.

Module Classes
Controller Dispatcher

Logger
Test configuration processor CommandFile

TestScript
Test script executor TestScript

VirtualUser
WebConnector
HTMLParser
ScriptState
ScriptData

Graph generator Chart
Table 5.1: Mapping of the modules to the classes

CommandFile parses the test configuration and fills in the internal structures of 
the Dispatcher. Only one instance of this object exists and is initialized by the 
Dispatcher after the tool is started.



32

cd Classes

«struct»
CurlMemoryStruct

+ active:  bool
+ ajax:  bool
+ ajaxBody:  char*
+ ajaxBodySize:  size_t
+ ajaxData:  map<string, string>
+ ajaxHeader:  char*
+ ajaxHeaderSize:  size_t
+ body:  char*
+ bodySize:  size_t
+ expTime:  time_t
+ formParams:  FormParams
+ handle:  CURL*
+ header:  char*
+ headers:  curl_slist*
+ headerSize:  size_t
+ lastRequests:  int
+ modTime:  char ([40])
+ modTimes:  map<string, string>
+ numRequests:  int
+ parsedBody:  bool
+ post:  char*
+ postData:  map<string, string>
+ postSize:  size_t
+ referrer:  char ([255])
+ reportRate:  int
+ sget:  bool
+ wurl :  char ([1000])

«enumeration»
WC_RESP

+ HTTP_OK:  
+ HTTP_ERROR:  

WebConnector

- ajaxReqType:  REQ_TYPE
- ajaxURL:  char*
- logger:  Logger*

+ addAjaxField(char*, char*, VirtualUser*) : void
+ addField(char*, char*, VirtualUser*) : void
- addPost(char*, char*, VirtualUser*) : void
+ autoSget(VirtualUser*) : bool
+ cacheHeader(char*, VirtualUser*) : void
- clean(VirtualUser*) : void
+ closeConnection(VirtualUser*) : void
+ copyForm(char*, VirtualUser*) : bool
- createPost(VirtualUser*) : void
- createURL(char*, VirtualUser*) : char *
+ finishVU(VirtualUser*) : void
+ getField(char*, VirtualUser*) : char *
+ getHeader(char*, VirtualUser*) : char *
+ getLinkFromNum(unsigned int, VirtualUser*) : char *
+ getStringAfter(char*, VirtualUser*) : string
+ getURL(char*, VirtualUser*) : WC_RESP
+ hasData(VirtualUser*) : bool
+ headURL(char*, VirtualUser*) : WC_RESP
+ initVU(VirtualUser*) : void
+ linkInfo(char*, char*, bool, VirtualUser*) : char *
+ logData(VirtualUser*) : void
+ pageReload(VirtualUser*) : WC_RESP
- parseBody(VirtualUser*) : bool
+ prepareAjax(REQ_TYPE, char*, VirtualUser*) : void
- processResponse(VirtualUser*, bool) : bool
+ reportRequests(VirtualUser*) : void
+ resetVU(VirtualUser*) : void
+ searchBody(char*, VirtualUser*) : bool
- setReferrer(char*, VirtualUser*) : void
+ sgetURL(char*, VirtualUser*) : WC_RESP
+ submitAjax(VirtualUser*) : WC_RESP
+ submitForm(char*, VirtualUser*) : WC_RESP
+ WebConnector(Logger*)
+ ~WebConnector()

Chart

- cmdFile:  CommandFile*
- dispatcher:  Dispatcher*
- globalStats:  ScriptStats*
- logger:  Logger*

- applyFilter(vector<int>&, string&, string&, string&) : void
- axis(AXIS_NUM, AXIS_TYPE, SOURCE_TYPE&, string&, string&, string&, LINE_TYPE&, string&) : bool
+ Chart(Dispatcher*, Logger*, CommandFile*, ScriptStats*)
+ ~Chart()
- createInputR(bool) : bool
+ generate(bool, time_t, time_t, int) : bool

CommandFile

# charts:  map<int, ChartStruct>
# cmdFileName:  string
# debug:  bool
# globals:  ParamStruct
# logcFileName:  string
# logFileName:  string
- max_script:  int
# params:  map<int, ParamStruct>
# resultsPage:  string
# scripts:  map<int, string>
# statFileName:  string
# statistics:  STAT_TYPE
# statType:  int
# timeFileName:  string

+ CommandFile(string&, char*)
+ ~CommandFile()
# numScripts() : int
- parse(char*, char*&, int&, char*&) : bool

«enumeration»
TS_COMMAND

+ TSCMD_BASE_URL:  
+ TSCMD_CACHE_ON:  
+ TSCMD_CACHE_OFF:  
+ TSCMD_CALL_PROC:  
+ TSCMD_CHECK:  
+ TSCMD_CHOOSE_LINK_SEARCHL:  
+ TSCMD_CHOOSE_LINK_SEARCHT:  
+ TSCMD_CHOOSE_STATE:  
+ TSCMD_CLOSE_AUTO:  
+ TSCMD_CLOSE_CONN:  
+ TSCMD_CLOSE_NOAUTO:  
+ TSCMD_DEBUG_ON:  
+ TSCMD_DEBUG_OFF:  
+ TSCMD_ELSE:  
+ TSCMD_ENTER_AJAX_FROM:  
+ TSCMD_ENTER_AJAX_TO:  
+ TSCMD_ENTER_FROM:  
+ TSCMD_ENTER_SET_FROM:  
+ TSCMD_ENTER_SET_TO:  
+ TSCMD_FINISH:  
+ TSCMD_FAIL:  
+ TSCMD_GET_URL:  
+ TSCMD_HEAD_URL:  
+ TSCMD_HEAD_LINK:  
+ TSCMD_IN_STATE:  
+ TSCMD_LINK_LIKE:  
+ TSCMD_LINK_NUM:  
+ TSCMD_LINK_SEARCHL:  
+ TSCMD_LINK_SEARCHT:  
+ TSCMD_LOAD_AJAX:  
+ TSCMD_LOAD_FIELD:  
+ TSCMD_LOAD_FORM:  
+ TSCMD_LOAD_HEADER:  
+ TSCMD_LOAD_DATA:  
+ TSCMD_LOG:  
+ TSCMD_LOGDATA:  
+ TSCMD_LOGN:  
+ TSCMD_NAME:  
+ TSCMD_NCHECK:  
+ TSCMD_NEXT_STATE:  
+ TSCMD_NOOP:  
+ TSCMD_NSEARCH:  
+ TSCMD_PAGE_RELOAD:  
+ TSCMD_RANDOM:  
+ TSCMD_REFERRER_ON:  
+ TSCMD_REFERRER_OFF:  
+ TSCMD_RETR_AFTER:  
+ TSCMD_RETURN:  
+ TSCMD_SEARCH:  
+ TSCMD_SET:  
+ TSCMD_SGET_ALL:  
+ TSCMD_SGET_URL:  
+ TSCMD_SGET_LINK:  
+ TSCMD_SGET_TYPE_MANUAL:  
+ TSCMD_SGET_TYPE_AUTO:  
+ TSCMD_SUBMIT_AJAX:  
+ TSCMD_SUBMIT_FORM:  
+ TSCMD_TIMEOUT:  
+ TSCMD_URL:  
+ TSCMD_USER_AGENT:  
+ TSCMD_WAIT:  
+ TSCMD_WAIT_RANGE:  
+ TSCMD_WAIT_UNIT:  

Dispatcher

# chart:  Chart
- cmdFile:  CommandFile
# conn:  WebConnector
- finishReason:  FINISH_TYPE
# globalStats:  ScriptStats
# logger:  Logger
- logsig:  Logger*
- me:  Dispatcher*
# numScripts:  int
- params:  map<int, ParamStruct>*
# scripts:  vector<TestScript*>
- scriptStats:  map<int, ScriptStats>
- scriptStatsCV:  pthread_cond_t
- scriptStatsMutex:  pthread_mutex_t
# sessionName:  string
- shouldCreate:  map<int, int>
- shouldRun:  volatile bool
- shouldStart:  map<TestScript*, int>
- signal_thread:  pthread_t
- startTime:  time_t
- startTimer:  timeval
- stopTime:  time_t
- timer_thread:  pthread_t

- activateUsers(TestScript*, int) : int
+ Dispatcher(string&, char*, bool)
+ ~Dispatcher()
+ generateCharts(bool) : bool
+ generateStats() : bool
+ run() : int
- sighandler(int) : void
+ signal(SignalStruct*) : int
- sigthread(void*) : void *
- timer(void*) : void *

Logger

- firstTick:  uint64_t
- firstTime:  timeval
- inUse:  pthread_t
- lastTick:  uint64_t
- lastTime:  timeval
- logcFile:  FILE*
- logcMutex:  pthread_mutex_t
- logFile:  FILE*
- loggingc:  bool
- logMutex:  pthread_mutex_t
- namec:  char*
- names:  char*
- namet:  char*
- noLog:  bool

+ initReadc() : bool
+ log(char*, ...) : void
+ log(VirtualUser*, char*, ...) : void
+ logc(VirtualUser*, char*, ...) : void
+ Logger(char*, char*, char*, char*, bool)
+ ~Logger()
+ logn(char*, ...) : void
+ readc() : char *

«enumeration»
SD_TYPE

+ SEQUENTIAL:  
+ RANDOM:  
+ RANDOM_UNIQUE:  

ScriptData

- dataFile:  ifstream
# dataFileName:  string
# dataName:  char*
- dataNum:  int
- dataSize:  int
# dataType:  SD_TYPE
# dataValues:  vector<vector<string> >
- fetchSpin:  pthread_spinlock_t
# fields:  vector<string>
- fileOffsets:  map<int, streampos>
# hasFile:  bool
- testScript:  TestScript*
- used:  set<int>

# addField(char*) : void
# addValues(char*) : bool
+ fetchNext(DataInfo*, unsigned*) : bool
# loadInto(string&, DataInfo*, int) : void
# prepareFileOffsets(bool) : bool
+ ScriptData(char*, SD_TYPE, TestScript*, int)
+ ~ScriptData()
# setupUser(DataInfo*) : void

ScriptState

# amProc:  bool
- stateCmds:  vector<TS_COMMAND>
- stateLength:  int
# stateName:  char*
# stateNum:  int
- stateStrings:  vector<string>
# stateVariables:  map<string, int>
- testScript:  TestScript*

+ addCmd(TS_COMMAND) : int
+ addString(char*) : TS_COMMAND
# getCommand(int) : TS_COMMAND
# getString(int, char*) : char*
+ lastCmdNum() : int
+ operator <<(TS_COMMAND) : ScriptState&
+ ScriptState(char*, TestScript*, bool)
+ ~ScriptState()

«enumeration»
VAR_TYPE

+ VAR_SCALAR:  
+ VAR_ARRAY:  
+ VAR_STRUCT:  

«struct»
VariableType

+ fields:  vector<VariableType>
+ name:  string
+ type:  VAR_TYPE

StateVariable

+ StateVariable()
+ ~StateVariable()

«enumeration»
CMD_RESULT

+ OK:  
+ NOT_RECOGNIZED:  
+ NOT_ALLOWED:  
+ WRONG_SYNTAX:  
+ DUPLICATE_NAME:  
+ MEMORY_ERROR:  

StateReloc

+ position:  int
+ stateFrom:  ScriptState*
+ stateToName:  string

+ StateReloc(ScriptState*, int, char*)

TestScript

- chooseNum:  int
- choosePos:  int
- chooseStrings:  bool
- chooseTotal:  int
# connector:  WebConnector*
- currentParseState:  ScriptState*
# dataPos:  vector<int>
+ debug:  bool
- elses:  list<pair<int, int> >
# globals:  ParamStruct*
- globalState:  ScriptState*
- levelChoose:  int
- levelCode:  int
- levelElse:  int
# logger:  Logger*
# numActivate:  int
# numUsers:  int
# numUsersCV:  pthread_cond_t
# numUsersMutex:  pthread_mutex_t
- scriptData:  vector<ScriptData*>
# scriptNum:  int
- scriptStates:  vector<ScriptState*>
# scriptVariables:  vector<VariableType>
- stateReloc:  vector<StateReloc>
- stopFlag:  bool
# virtualUsers:  list<VirtualUser*>

# activateUsers(int) : bool
- addData(char*, SD_TYPE) : ScriptData*
# addFieldsToState(ScriptState*, int) : int
- addRelocState(char*) : void
- addState(char*, bool) : ScriptState*
# addUsers(int) : bool
- addVariable(char*, VAR_TYPE) : int
- addVariableField(int, char*) : int
- createFields(int, int) : void
# findData(char*) : ScriptData*
# findDataNum(char*) : int
# findState(char*) : ScriptState*
# findStateNum(char*) : int
# findVariableField(int, char*, bool) : int
# findVariableNum(char*, VAR_TYPE, bool, ScriptState*) : int
+ l istStates(string&) : int
- parse(char*) : bool
- parseCommand(vector<char*>&, bool, bool) : PARSE_RESULT
- parseDataSection(ifstream&, vector<char*>&, bool&) : PARSE_RESULT
- parseStateSection(ifstream&, vector<char*>&, bool) : PARSE_RESULT
- popElse() : int
- populateData(VirtualUser*) : void
- populateVariables(VirtualUser*) : void
- processCommand(VirtualUser*) : RUN_RESULT
- pushElse() : void
- resolveStates() : bool
+ run(VirtualUser*) : RUN_RESULT
+ stop() : void
+ TestScript(int, char*, Logger*, WebConnector*, ParamStruct*, int, bool)
+ ~TestScript()
+ waitFinish() : void

«struct»
ScriptPos

+ pos:  int
+ state:  ScriptState*

«struct»
DataInfo

+ data:  ScriptData*
+ pos:  int

VirtualUser

# curl:  CurlMemoryStruct
# data:  vector<DataInfo>
# funcValue:  string
# gBaseURL:  string
# gCache:  bool
# gClose:  bool
# gDebug:  bool
# gReferrer:  bool
# gSgetType:  bool
# gTimeout:  int
# gUserAgent:  string
# gWaitUnit:  int
# inState:  bool
# parser:  HTMLParser*
- running:  volatile bool
# scriptStack:  list<ScriptPos>
# scriptState:  ScriptState*
# seed:  unsigned
# statePos:  int
# stopFlag:  volatile bool
# testScript:  TestScript*
- threadAttr:  pthread_attr_t
- threadID:  pthread_t
# userNum:  int
# variables:  map<int, string>

+ restart() : bool
+ run(void*) : void*
+ stop() : void
+ VirtualUser(TestScript*, int)
+ ~VirtualUser()
+ waitFinish() : void

HTMLParser

- currentForm:  string
- currentSelect:  string
- formNum:  int
+ formParams:  map<string, FormParams>
+ forms:  map<string, map<string, string> >
- html:  char*
- inTag:  map<HTML_TAG, int>
+ links:  vector<pair<string, string> >
- processTags:  vector <HTML_TAG>
+ refs:  vector<string>
- tagInside:  char*
- tagParams:  char*
- tagValues:  map<string, string>

+ addAllTags() : void
+ addElementCallback(bool) : bool
+ addTag(HTML_TAG) : bool
- element(HTML_TAG, TAG_ENCLOSE, char*, char*, char*) : bool
+ getForm(char*) : char *
+ getFormItems(char*) : map<string, string> *
+ getParamsValue(char*) : char *
+ HTMLParser()
+ ~HTMLParser()
+ listInternals() : void
+ parse(char*) : bool
- parseParams(HTML_TAG, char*) : bool
+ resetTags() : bool

«struct»
FormParams

+ action:  string
+ method:  string

«struct»
ParamStruct

+ lastIncreaseTime:  int
+ loadIncrease:  int
+ loadInTime:  int
+ loadStart:  int
+ loadType:  LOAD_TYPE
+ reportRate:  int
+ restart:  bool
+ stopErrorsPerc:  int
+ stopErrorsVal:  int
+ stopRequests:  int
+ stopRuns:  int
+ stopUsers:  int

«struct»
ScriptStats

+ numErrors:  int
+ numRequests:  int
+ numRuns:  int
+ numUsers:  int
+ runningUsers:  int

«struct»
SignalStruct

+ script:  TestScript*
+ type:  SIGNAL_TYPE
+ userNum:  int
+ value:  int

«enumeration»
HTML_TAG

+ A:  
+ BODY:  
+ BUTTON:  
+ FORM:  
+ IMG:  
+ INPUT:  
+ LINK:  
+ OPTION:  
+ SCRIPT:  
+ SELECT:  

«enumeration»
LOAD_TYPE

+ LOAD_FIX:  
+ LOAD_INCREASE:  

«enumeration»
PARSE_RESULT

+ OK:  
+ NOT_RECOGNIZED:  
+ NOT_ALLOWED:  
+ WRONG_SYNTAX:  
+ DUPLICATE_NAME:  
+ MEMORY_ERROR:  

«enumeration»
RUN_RESULT

+ RUN_OK:  
+ RUN_ERROR:  
+ RUN_FINISH:  
+ RUN_FAIL:  

«enumeration»
SIGNAL_TYPE

+ SIGNAL_ERROR:  
+ SIGNAL_FINISH:  
+ SIGNAL_FAIL:  
+ SIGNAL_REQUESTS:  
+ SIGNAL_TIMER:  

«enumeration»
STAT_TYPE

+ STAT_NONE:  
+ STAT_SIMPLE:  
+ STAT_DETAILED:  

«enumeration»
TAG_ENCLOSE

+ SINGLE:  
+ OPEN:  
+ CLOSE:  

+type

#curl

+data

+state

#logger

-globalState

-currentParseState

-logger

+stateFrom

+loadType

-testScript

-testScript

#dataType

#logger

#conn

-cmdFile

#connector

-globals

-logger

-globalStats

-dispatcher

-cmdFile

-me

#chart

#scriptState

+formParams

-testScript

-logsig

#globalStats

+type

+script

#statistics

#globals

#parser

+parser

Figure 5.2: WebStress class diagram



33

Dispatcher is the main class of the tool. It performs the following actions:
1. Parse the test configuration – create an instance of the CommandFile.
2. Create the Logger, the WebConnector, and the Chart.
3. Parse and compile the test scripts – create an instance of the TestScript for 

each of the test scripts mentioned in the test configuration.
4. According to the test configuration, create multiple instances of the 

VirtualUser. The first virtual users are created just when the test
execution starts, and the rest of them are created later during the test.

5. Process the information from the virtual users about the test execution, 
such as the number of requests or errors.

6. Check the limit conditions and finalize the test session when at least one 
of them is met.

7. Instruct the Chart to process the statistics generated by the virtual users 
and create the graphs based on this information.

8. Generate the report that includes the test-session information and the 
generated graphs.

Logger is responsible for creating the log files. All instances of all the classes,
executed in multiple threads use only one common instance of the Logger.
Therefore, concurrent access is managed by this class.

TestScript is created for each of the test scripts. Upon initialization, it parses the
given test script and creates a compiled version of it in the memory. Individual 
commands are represented as byte codes, and variables and constants are defined and 
referenced by indexes in the created arrays. The test script is divided into test states,
with each state stored separately in an instance of the ScriptState. The TestScript
class uses the WebConnector class to communicate with the tested application and to 
access the data in retrieved responses.

ScriptState is merely a container for the compiled test script's commands and 
the constants used in the script, i.e., numbers and strings.

ScriptData stores the prepared test data. Each set of the data is stored in a 
separate instance, and these data are shared between virtual users executing the same 
test script that contains this data. Sharing allows offering sequential access to the 
data by all the virtual users without repeating the same data.

VirtualUser holds all the data specific to the virtual users – test script variables, 
statistics, current state in the script, the data about communication with the 
application, and the last response retrieved by that particular virtual user. When 
initialized, it starts its own thread and returns back to the caller (Dispatcher). All the 
test execution and load generation is performed by these threads.

WebConnector is responsible for the HTTP communication. All requests to the 
application web server(s) are made through a single instance of this class, but in the 
threads of virtual users. The VirtualUser instances store all the data. The most 
important tasks of this class are the connection management, request generation 
including headers, file caching, and the preparation of the data that is submitted to 
the tested application.



34

HTMLParser is responsible for parsing the HTML files retrieved as the 
responses from the tested application. It supports only the HTML tags that are used 
for web-form generation or to reference the attached files, such as images and styles. 
Parsing is event-driven and the internal callback function is called for the recognized 
tags. The information about the forms, links, and images is stored in arrays
accessible by the test script.

Chart is responsible for the generation of the graphs included in the test report. 
Based on the combinations of the measurements specified in the test configuration, 
the source file for the R statistical tool is created, and then the R is executed on the 
statistics gathered during the test execution. Graphs are generated as PNG images.

5.4 Process flow
Important parts of the execution inside of the tool are depicted in the UML sequence 
diagram in Figure 5.3. Individual calls are accompanied by a short description.

5.5 Decisions made
As the implementation was focusing on performance testing, parts of the tool that 
were not related to it were implemented using libraries and external applications. 
This sped the implementation and (hopefully) decreased the occurrence of bugs.

Network communication was implemented using libcurl communication library 
[11]. This library offers very flexible HTTP communication with automatic redirects 
processing, compression, cookies support, header generation, and it is thread-safe. It 
even supports SSL15, which can be implemented in WebStress in the future.

To parse HTML response, libwww library was tested during WebStress’
implementation. However, its usage was complicated and the results were not 
satisfactory, so simple SAX parsed was developed for the usage in WebStress.

The preferred way of implementing multiple virtual users were threads. When 
talking about threads and portability, pthread [13] is usually the choice. There is no 
full implementation for Windows, so the usage was limited only to routines available 
there.

One of the goals for WebStress’ implementation was to generate data about the 
test session to be readable by a sophisticated statistics tool. One such tool is R [12],
and WebStress uses it to generate graphs for the report. At the end of the session, 
data is prepared in CSV format and a source script is prepared for R. Based on this, R 
generates graph images that are then included in the report.

5.6 Problems encountered
During later stages of the tool implementation, when the tool prototype was tested to 
generate higher loads, there were problems with resource consumption – CPU and 
memory.

Spin lock
Because the tool is implemented as a multi-threaded application, access to the log 
file and statistics generated during the test execution must be synchronized. From the 

  
15 Secure Sockets Layer (SSL) – cryptographic protocols which provide secure communications on 
the Internet



35

sd Main flow

:Dispatcher

:CommandFile

:Chart

:HTMLParser

:Logger

:TestScript

:VirtualUser

:WebConnector

CommandFile()

Logger()

WebConnector()

Chart()

*TestScript()
Called for each of the test 
script used.

parse()
Parses and compiles the test 
script.

run()
Starts the test session.

HTMLParser()

addUsers()
Creates a new virtual users.

*VirtualUser()
Initializes the instance and 
creates a new thread invoking 
the run method.

run()
It is running in a separate 
thread for each of the virtual 
users.

run()

processCommand()
Executes the next command 
from the test script. Called in a 
loop until the test script 
execution finishes.

log()
Start of a user is logged.

*getURL()
Called for the GET HTTP 
method.

processResponse()
Checks the response status 
code and stores the response 
time.

reportRequests()

signal()
Report the actual number of 
requests and their results.

logc()
The result of the request is 
logged.

*copyForm()
Called for the LOAD FORM 
command. It is used to 
prepare the data for the next 
request from the web-form 
fields of the previous response.

parseBody()
Retrieved HTML page is 
parsed.

parse()

*element()
SAX-like parser, the element 
method is called for every 
recognized HTML tag.

getForm()
Prepares the request from the 
parsed data.

*submitForm()
Called for the SUBMIT HTTP 
method.

createPost()
Creates the request headers.

Test script finishes, either the 
whole test script was processed 
or an error occurred.

signal()
Report the end of the script 
execution and its result.

Stop the test when a limit 
condition is met.

stop()

stop()

generateStats()
Transforms the statistics to a 
form readable by the R 
statistical tool. readc()

generateCharts()
Generates the graphs, with the 
help of the R statistical tool.

generate()

createInputR()
Creates the source code file 
for the R statistical tool.

~Dispatcher()

Figure 5.3: WebStress process flow (important parts)



36

analysis of the problem, it seemed that using a spin lock (active waiting) would 
minimize the time spent waiting for a shared resource.

When the tool was using hundreds of threads or when no think-times were used 
in the test scripts, threads wanted to lock the resource very often. Because of the 
design of a spin lock, this resulted in high CPU usage. When replaced by regular 
mutexes (passive waiting), CPU usage dropped noticeably.

Stack size
To implement threads in the tool, the pthread (POSIX threads) library was used. 
Each thread has its own stack that is allocated when the thread is created. Its size can 
be adjusted prior its creation, but the default value varies between platforms. The 
Linux default value is 10 MB. With up to a few hundred threads, this posses no 
problem because this memory is only virtual and it is physically allocated only when 
needed. However, this setting does not allow more than approximately 400 threads 
on 32-bit architectures because of the limitation of the size of the virtual addressing 
space. After decreasing the stack size to 1 MB, it is possible to create a couple 
thousand threads, if the operating system will allow it.

5.7 Code Metrics
Table 5.2 contains CCCC Software Metrics Report. CCCC [28] is a tool which 
analyzes C++ files and generates a report on various metrics of the code. Metrics 
supported include lines of code, McCabe's complexity, and metrics proposed by 
Chidamber and Kemerer and Henry and Kafura.

5.8 License
WebStress is implemented using the libcurl [11] and pthread [13] libraries. libcurl is 
distributed under an MIT/X derivate license [21], and pthread library is distributed 
under various licenses, usually with the operating system. The Windows 
implementation of pthread library called pthreads-win32 [24], which is used to build 
the binary in the Windows distribution of the tool, is distributed under GNU Lesser 
General Public License (LGPL) [22]. The R statistical tool that WebStress uses for 
the graph generation, but is not built with it, is distributed under GNU General Public 
License (GPL) [23].

WebStress itself is distributed under GNU General Public License (GPL) [23].
Source code and binary distribution(s) are available for free at the project website: 
http://webstress.tereus.eu/.



37

Metric Tag Overall Per 
Module

Number of modules
Number of non-trivial modules identified by the 
analyzer. Non-trivial modules include all classes, and 
any other module for which member functions are 
identified.

NOM 31

Lines of Code
Number of non-blank, non-comment lines of source 
code counted by the analyzer.

LOC 3106 100.194

McCabe's Cyclomatic Number
A measure of the decision complexity of the functions 
which make up the program. The strict definition of 
this measure is that it is the number of linearly 
independent routes through a directed acyclic graph 
which maps the flow of control of a subprogram. The 
analyzer counts this by recording the number of 
distinct decision outcomes contained within each 
function, which yields a good approximation to the 
formally defined version of the measure.

MVG 1200 38.710

Lines of Comment
Number of lines of comment identified by the 
analyzer.

COM 960 30.968

Lines of code per line of comment
Indicates density of comments with respect to textual 
size of program.

L_C 3.235

Cyclomatic Complexity per line of comment
Indicates density of comments with respect to logical 
complexity of program.

M_C 1.250

Information Flow measure (inclusive)
Measure of information flow between modules 
suggested by Henry and Kafura. The analyzer makes 
an approximate count of this by counting inter-module 
couplings identified in the module interfaces.

IF4 594 19.161

Information Flow measure (visible)
IF4 calculated using only relationships in the visible 
part of the module interface.

IF4v 594 19.161

Information Flow measure (concrete)
IF4 calculated using only those relationships which 
imply that changes to the client must be recompiled of 
the supplier's definition changes.

IF4c 0 0.000

Table 5.2: Code metrics



38

6 Evaluation

To evaluate the functionality of WebStress, I tested several web applications using 
this tool. This chapter provides a description of two of the tests, the Slovak Cadastral 
Portal and RUBiS benchmark site. The test results are included. These applications 
cover many of the possible architectures used in today’s web applications. In fact, 
WebStress was specifically designed to test Slovak Cadastral Portal. Tests of other 
applications, specifically the Czech Cadastral Data Look-up and OpenSTA demo 
site, are included as examples in the WebStress distribution, in Appendix E on the 
enclosed CD.

The applications described in this chapter use web forms with input boxes, lists, 
radio buttons, simple buttons, and buttons represented by an image, and they 
sometimes even perform background queries after a user enters the data. Test data 
with only a couple of records are stored inline in the script, and data with hundreds of 
records are stored in separate files. They require users to log in for most if not all 
actions and use cookies or URL parameters to track a session.

6.1 Slovak Cadastral Portal

Description
The Slovak Cadastral Portal is a web application used by citizens and private and 
public organizations to access the data of the Slovak cadastral offices (real estate 
register). It has been in operation since 2004, but it currently is undergoing a massive 
software and hardware upgrade. The application allows querying for information 
about land, buildings, apartments, and owners. It consists of two parts: (1) 
descriptive (text) data access, and (2) cadastral map browsing. Users can either 
display the results of their queries inside the browser or generate PDF documents that 
copy paper documents available at cadastral offices. The list of possible queries is 
based on user authorization, e.g., some government agencies can query on the social 
security number of a real estate owner. A snapshot of a web page used in the 
application to query information about land is in Figure 6.1.

The Slovak Cadastral Portal is available only in Slovak, but the following test 
uses English terminology for queries and data. Only the descriptive data part of the 
application is tested because map browsing is implemented as an ActiveX 
component, i.e., application code that is executed on the client, similar to Java 
applets. Maps can be tested by specific software from the browsing component 
vendor.

The test was performed on the target hardware that was being prepared to go 
into production. The whole application runs on an IBM p590 machine with 8 dual-
core 2.1 GHz Power5 CPUs and two additional dual-core Intel Xeon 3 GHz 
machines. Oracle 10g database software on AIX and Oracle J2EE application servers 
on Red Hat Enterprise Linux were used to run the descriptive part of the application.

Tests
This test simulates users with basic user rights, which are the vast majority of users 
working with the application. It covers querying based on the identification of a plot 



39

Figure 6.1: Preview of Slovak Cadastral Portal

of land, the title16, the real estate owner, building, apartment, and any proceedings
(registration of a change). It does not cover working with generated PDF documents. 
These documents are processed by separate servers and are benchmarked differently.

Each query specifies a region in which it should be performed, the cadastral unit 
for real estate, and the district for proceedings. Because most users do not know the 
exact names of cadastral units, it is possible to select a province using a dropdown 
list and then continue by selecting a district, city/village, and finally the name of the 
desired cadastral unit. Each query is performed in the background using AJAX17, and 
the page is updated without the need to reload it all.

After a region is selected, the identification of a piece of real estate or a 
proceeding is entered. Generally, it is a combination of numbers and letters. The 
whole query is then sent to the application server, and the response is checked. Test 
data were generated from the application database, and they consist of approximately 
600 different records for each type of query. Specific data that should be contained in 
the response were enclosed with each record to be able to check that the response 
was correct. This, in fact, represents simple functional testing performed together 
with performance testing.

The application contains built-in restrictions for fast queries. One of them is to 
limit the number of queries sent by one user in one minute. Therefore, more accounts 
were pre-created, and virtual users use them randomly. Another restriction is that 

  
16 title – owner's interest in a piece of property, represented by a document
17 Asynchronous JavaScript and XML (AJAX) – a development technique for creating interactive web 
applications by exchanging small amounts of data with the server behind the scenes, so that the entire 
web page does not have to be reloaded each time the user requests a change.



40

each request is delayed by at least half a second. Real users will not notice, but it 
slows down robots rapidly. This delay is not applied to background (AJAX) queries, 
making them faster. This is because only the public code lists, e.g., list of districts or 
cadastral units, can be requested this way. If the application does not respond in 10 
seconds, it is considered as an error.

The test starts with 15 virtual users, and then three new virtual users are started
each second, until 800 virtual users is started. This is the ramp-up period.

The description of the actions performed in this test is in Table 6.1. All the 
think-times are randomly generated from the specified range using a uniform 
distribution. In some of states, more requests are sent and different think-times are 
used in between them. The complete test configuration and test script can be found in
Appendix D on the enclosed CD.

State Description Think-
time

Next state

START Display the home page, welcome 
information, and login form.

none LOGIN

LOGIN Log into the application, use one of 
the pre-created accounts.

6-20 s WORK

WORK Randomly decide what information 
to query. One of the options is to log 
out and finish.

LAND, TITLE, 
OWNER, 
BUILDING, 
APARTMENT, 
PROCEEDING, 
LOGOUT

LAND Query information about a plot of 
land.

0-5/1-3/
1-3/2-5/
3-12 s

WORK

TITLE Query information about a specific 
title.

0-5/1-3/
1-3/2-5/
3-10 s

WORK

OWNER Query information about real estate 
owned by a specific person.

0-5/1-3/
1-3/2-5/
4-15 s

WORK

BUILDING Query information about a building. 0-5/1-3/
1-3/2-5/
3-10 s

WORK

APARTMENT Query information about an 
apartment.

0-5/1-3/
1-3/2-5/
3-17 s

WORK

PROCEEDING Query information about a specific 
proceeding.

0-5/1-3/
1-3/

3-10 s

WORK

LOGOUT Log out of the application and finish. 10-40 s
Table 6.1: List of states used in Slovak Cadastral Portal test script

Results
The test was performed on a live system before entering production mode. Thus, it 
was possible to measure peak performance without interfering with real users' 



41

activity. To generate the load, one separate computer connected to the system's 
internal LAN was used.

Configuration file: kapor.conf
Test start: Sun May 13 21:39:30 2007 
Test finish: Sun May 13 21:48:07 2007 
Finish reason: TIME
Running time before stop: 480 seconds
Total requests: 27654
Total errors: 288 (1 %)
Total runs: 1437
Total users: 800

0 100 200 300 400

0
2

4
6

8
10

Test session time (s)

R
es

po
ns

e 
tim

e 
(s

)

U
se

rs

0
20

0
40

0
60

0
80

0

Mean value: 0.7452555

0
2

4
6

8
10

R
es

po
ns

e 
tim

e 
(s

)

0
2

4
6

8
10

S
TA

R
T

LO
G

IN

LO
G

O
U

T

LA
N

D

TI
TL

E

O
W

N
E

R

B
U

IL
D

IN
G

A
P

A
R

TM
E

N
T

P
R

O
C

E
E

D
IN

G

Test states (kapor.script)

Mean value: 0.7452555



42

0 80 160 240 320 400 480 560 640 720 800

0
2

4
6

8
10

Users

R
es

po
ns

e 
tim

e 
(s

)

0
2

4
6

8
10

Mean value: 0.7452555

0 100 200 300 400

0
50

10
0

20
0

Test session time (s)

Er
ro

rs

U
se

rs

0
20

0
40

0
60

0
80

0
Mean value: 69.4392

Created by WebStress 0.3

The test report consists of a header and four diagrams: (1) a line graph of the 
response time versus the test session time, (2) a box plot of the response time versus 
test script states, (3) a box plot of the response time versus number of virtual users 
divided into 10 groups, and (4) a line graph of the number of errors and number of 
virtual users versus the test session time. Notation in these graphs and terms used in 
the following text are defined in chapter 4.5.

In the first graph, the number of virtual users starts at zero and steadily increases 
up to 800 virtual users, with the ramp-up period lasting 4 minutes and 20 seconds. 
The response times measured were increasing with increasing load. Combining the 
results with the third graph reveals that the median of response times for different 
numbers of virtual users is about the same. However, the third quartile and the 
number of outliers were increasing. Adding information from the fourth graph that 
some of the requests were timing-out with higher load shows that the application 
appears not to handle the load of 800 users very well.



43

This test was set to slowly raise the load up to 800 virtual users and then keep a 
steady load for a few minutes. Before the tool achieved this load limit, the 
application did not respond to some requests before the specified time-out (errors in 
the last graph). The error rate was approximately one error per second. Apart from 
these time-outs, 75 percent of the responses under a load of 800 virtual users were 
retrieved in less than three seconds (upper-rightmost whisker in the third graph).

The test results in the second graph show that requesting the main page, logging 
in, and especially logging out of the application takes more time compared with other 
requests. This is because the application servers are connected to a cluster that is 
distributing information about sessions to allow seamless take-over in case of a 
malfunction of one of them. All the other queries take approximately the same time, 
with slightly longer times for querying information based on real-estate owner.

6.2 RUBiS benchmark site

Description
RUBiS [9] is an auction site application modeled after eBay.com that is used for 
performance-testing of application servers and their performance scalability. It 
implements the core functionality of an auction site: selling, browsing, and bidding. 
It distinguishes between three kinds of user sessions: visitor, buyer, and seller. For a 
visitor session, users need not register, but they are only allowed to browse. Buyer 
and seller sessions require registration. Snapshot of a web page used in the 
application to display information about an item for sale is in Figure 6.2.

This application defines 26 interactions that can be performed from the client’s 
Web browser. Among the most important ones are browsing items by category or 
region, bidding, buying or selling items, leaving comments on other users and 
consulting one’s own user page. Browsing items also includes consulting the bid 
history and the seller’s information. The test definition in this test uses all 26 
interactions; the only difference from the original tests is that it uses different think-
times and probabilities of transitions between interactions.

The test was performed on the PHP version of RUBiS, installed on AMD Duron 
1.1 GHz machine running Gentoo Linux. Apache with the PHP module was used as 
a web server, and a MySQL database was used as back-end storage for the 
application data.

Tests
This test simulates users that are browsing items on sale, bidding information,
information about sellers, users bidding on items, and users selling their items. It 
covers all the functionality of the application. To log in, pre-created accounts are 
used. If the application does not respond in 20 seconds, it is considered an error.

A description of actions performed in this test is in Table 6.2. All the think-times 
are randomly generated from the specified range using a uniform distribution. The 
complete test configuration and test script can be found in Appendix D on the 
enclosed CD.

Results
The test was performed using an old and slow server and one faster client computer. 
To better simulate real application behavior, the application database was loaded



44

Figure 6.2: Preview of RUBiS benchmark site

State Description Think-
time

Next state

START Retrieve the home page;
decide what to do with 
the application.

0-5 s BROWSE, 
LOGIN_SELL, 
LOGIN_ABOUT

BROWSE Browse items, either by 
category or by region.

1-3 s BROWSE_CAT, 
BROWSE_REGION

BROWSE_CAT Browse by categories, 
select randomly from a 
list.

3-10 s LIST_ITEMS

BROWSE_REGION Browse by regions, 
select randomly from a 
list.

2-8 s BROWSE_CAT

LIST_ITEMS List items in specified 
category/region.

5-20 s ITEM_DET, 
LOGIN_BID, 
LIST_ITEMS_PREV, 
LIST_ITEMS_NEXT

LIST_ITEMS_PREV Display previous page of 
list of items.

5-20 s LIST_ITEMS

LIST_ITEMS_NEXT Display next page of list 
of items.

5-20 s LIST_ITEMS

ITEM_DET Display specific item 
description.

6-30 s BID_HIST, 
USER_DET, 
LOGIN_COMM, 
LOGIN_BUY, 
LOGIN_BID



45

State Description Think-
time

Next state

BID_HIST Display bid history for 
specified item.

4-12 s USER_DET

USER_DET Display user details and 
comments; decide 
whether to display 
information about users 
that entered a comment.

7-18 s USER_DET, START

LOGIN_COMM Log in to enter user 
comment.

2-4 s ENTER_COMM, 
LOGIN_ERR

LOGIN_ERR Login error, fail. none
ENTER_COMM Enter user comment. 5-10 s START
LOGIN_BUY Log in to buy an item 

directly.
2-4 s ENTER_BUY, 

LOGIN_ERR
ENTER_BUY Buy an item. 1-3 s START
LOGIN_BID Log in to bid on an item. 2-4 s ENTER_BID, 

LOGIN_ERR
ENTER_BID Bid on an item. 2-5 s START
LOGIN_SELL Log in to sell an item. 2-4 s SELL_CAT, 

LOGIN_ERR
SELL_CAT Select category in which 

to sell an item.
3-10 s ENTER_SELL

ENTER_SELL Sell an item, enter all 
required details.

5-10 s START

LOGIN_ABOUT Log in to see own user
information.

2-4 s ABOUT, 
LOGIN_ERR

ABOUT Display own user
information, list of items
on sale, bids, etc.

4-20 s ITEM_DET, 
USER_DET, 
ENTER_BID

REGISTER Enter registration data 
and create a new user.

7-15 s START

Table 6.2: List of states used in RUBiS test script

with test data available at the application web site [27] prior the test. I had to update 
the loaded data, because the application creates auctions lasting only up to 7 days, 
and they were created in year 2001. This amount of data allowed load generation that 
was beyond the server’s capabilities.

Configuration file: rubis.conf
Test start: Sun May 13 11:28:05 2007 
Test finish: Sun May 13 11:31:40 2007 
Finish reason: TIME
Running time before stop: 195 seconds
Total requests: 5096
Total errors: 214 (4 %)
Total runs: 350
Total users: 50



46

0 50 100 150 200

0
5

10
15

20

Test session time (s)

R
es

po
ns

e 
tim

e 
(s

)

U
se

rs

0
10

20
30

40
50

Mean value: 0.323407

0
5

10
15

20

R
es

po
ns

e 
tim

e 
(s

)

0
5

10
15

20

S
TA

R
T

B
R

O
W

S
E

B
R

O
W

S
E

_C
A

T

B
R

O
W

S
E

_R
E

G
IO

N

LI
S

T_
IT

E
M

S
_P

R
E

V

LI
S

T_
IT

E
M

S
_N

E
X

T

U
S

E
R

_D
E

T

LO
G

IN
_B

ID

E
N

TE
R

_B
ID

LO
G

IN
_S

E
LL

S
E

LL
_C

A
T

E
N

TE
R

_S
E

LL

LO
G

IN
_A

B
O

U
T

Test states (rubis.script)

Mean value: 0.323407

0 50 100 150 200

0
10

20
30

40
50

Test session time (s)

U
se

rs

Er
ro

rs

0
50

10
0

15
0

Mean value: 34.4724

Created by WebStress 0.3



47

The test report consists of a header and three diagrams: (1) a line graph of the 
response time versus the test session time, (2) a box plot of the response time versus 
test script states, and (3) a line graph of the number of errors and number of virtual 
users versus the test session time. The notation in these graphs and the terms used in 
the following text are defined in chapter 4.5.

From the combination of the results in all three graphs, it can be seen that the 
increased load had only a marginal impact on most of the responses of the 
application. Most of the requests were either processed in a short time, up to one or 
two seconds, or took longer than 20 seconds and were considered as time-outs. Only 
a small part of the requests was processed in the time between 5 and 20 seconds. The 
number of time-outs started to increase after one minute, or when the load reached 25 
virtual users. With the load of 50 virtual users, the error rate was about two errors per 
second, which is equal to one error in 25 seconds for each virtual user.

The hardware used for the test was able to process from 30 to 40 users working 
with the application as specified in the test script. With a higher load, the number of 
errors increases. Most of the responses are sent back to the client in tenths of second. 
On average, the longest responses are for actions that write data into the application 
database – bidding or selling an item.

6.3 Summary
The implemented tool was used to test four web applications, and the results of two 
of such tests were presented in this chapter. A scripting language allowed the 
description of scenarios of users working with these applications, and test execution 
showed that increased load had an impact on tested applications. RUBiS was 
developed to be tested by web-application performance-testing tools, and this tool 
was able to simulate all the interaction of the application as the standard tests. These
are included in the RUBiS distribution and are used to performance-test underlying 
software, i.e., the application server.

During these tests, tested applications were limiting the load generation and not 
the tool itself. Even during the test of Slovak Cadastral Portal, where 800 virtual 
users were used to interact with the application running on the target hardware, client 
CPU (Power5, 2.1 GHz, dual-core) utilization was only a few percent.



48

7 Related projects

In this chapter, four open-source and one commercial web-application performance-
testing tools are compared to WebStress. Each tool is presented by short description 
and with one column in a detailed comparison matrix in Table 7.1.

7.1 OpenSTA
OpenSTA stands for Open System Testing Architecture. It is a toolset for distributed 
software testing, currently with capability of generating load in HTTP(S) protocol. 
As a first step in test definition, user sessions are recorded using an internal proxy 
server and the tool generates static script. This script is usually modified by user in 
order to use different test data. Apart from load generation, the tool is able to monitor 
clients and servers running Microsoft Windows or an SNMP daemon.

OpenSTA offers very precise control over connections to the server and supports
multiple connections with the possibility to define which requests will use individual 
connections. At the same time, this complicates script maintenance because of most 
the actions have to be defined manually.

7.2 JMeter
Apache JMeter is a Java desktop application designed to load test functional 
behavior and measure performance. Apart from web applications, it allows the 
testing of databases (using JDBC), FTP and LDAP servers, and JMS services. A test 
scenario is defined as a tree of elements edited in a GUI that then can be executed 
either in the GUI or using command-line utilities. Its functionality can be extended 
with plug-ins that communicate via the documented interface.

JMeter offers easy-to-understand user interface and the fast definition of simple 
test scenarios. However, when it comes to dynamic text execution and web-form 
processing, it gets more complicated.

7.3 Web Application Stress Tool
Microsoft Web Application Stress (WAS) Tool is a very simple tool, offering only 
static tests, still with some possibilities to use prepared test data. A test scenario is 
defined by a list of requests and a delay between them. This can be created manually, 
recorded using a built-in proxy or generated for an Internet Information Server log 
file. When submitting data to the application, it is possible to work with individual 
form fields and these can be imported from an HTML file. Client and server can be 
monitored using Windows NT/2K/XP performance counters.

WAS Tool offers simple record/replay functionality that can be used as a first 
round of performance testing. Bandwidth for individual virtual users can be limited, 
but only to analog or ISDN modem speeds. The last and only version of this tool is 
from December 2002.

7.4 Tsung
Tsung (formerly IDX-Tsunami) is a distributed load-testing tool that currently 
supports the HTTP, PostgreSQL, and Jabber protocols. Tsung is developed in Erlang,



49

a concurrency-oriented programming language that gives it powerful distributed 
capabilities. A test scenario is defined with XML and can be extended by Erlang 
modules. Servers can be monitored by Erlang agents or SNMP.

Tsung offers load generation of thousands of virtual users, running on many
computers simultaneously under a single control. Above common response time 
reporting, it is possible to measure time of user-defined groups of actions, e.g., to 
process a multi-page web form. As a drawback, test definition does not offer many 
possibilities to branch test execution. Another handicap is that version for Windows 
is not publicly available, but it seems it might be possible to compile it from source.

7.5 LoadRunner
Mercury LoadRunner is the only commercial product in this comparison. It is very 
mature, supports more than 40 protocols, and can be used not only to test 
performance, but to analyze problems in tested applications too. With the help of its 
monitors, the performance of all layers of the application can be analyzed and it is 
possible to drill down to such details as SQL statements. Test scenarios are defined 
using C-style syntax, and C libraries can be linked to the test, which allows every 
possible variation in the test execution.

LoadRunner offers a lot of the functionality a performance-testing tool might 
offer – powerful language for test definition, detailed monitoring of all components 
of tested systems, and highly customizable reporting. According to [10], it has 
market share of 77 percent in load testing. The license for such a tool can, depending 
on the protocols and virtual users used, cost tens of thousands of U.S. dollars.

7.6 Comparison matrix
In chapter 3, the requirements for a web-application performance-testing tool were
outlined and the possible approaches discussed. These criteria are used in Table 7.1
to compare presented tools with each other and with WebStress.

WebStress loses to other tools in some of the criteria. However, the intention 
was not implement a tool that would be better in all aspects. The purpose was to offer 
functionality that would be useful during the tests of the web applications with which
I work, and the available tools do not cover them.



50

WebStress OpenSTA JMeter WAS Tool Tsung LoadRunner
Cost / License Free Free Free Free Free Thousands of U.S. 

dollars
Supported 
platforms

Unix/Linux, 
Windows

Windows Unix/Linux, 
Windows,
OpenVMS, 
requires JVM

Windows Linux, Solaris, 
*BSD, MacOS X

Windows for 
administration, 
Unix/Linux for 
load generation

Load generation
Connection 
closing

Can be left open, 
or closed 
automatically or 
manually.

Controlled 
manually.

Can be left open
or closed 
automatically.

Can be left open, 
with extra request 
header.

Kept open during 
the execution of a 
virtual user.

Can be left open 
or closed 
automatically.

Simultaneous 
connections

No Yes, user defined. No No No Yes, automatically 
or user defined.

Proxy server 
support

Yes Yes Yes No No Yes

Traffic shaping No No Number of 
requests.

Fixed modem 
speeds or T1 line.

No Arbitrary 
bandwidth.

HTTP methods GET, POST, 
HEAD

GET, HEAD, 
POST

GET, POST GET, HEAD, 
POST

GET, POST GET, POST, and 
custom methods

Request headers 
generated 
automatically

If-Modified-Since, 
Referer, and User-
Agent

None Default values for 
all requests can be 
set.

User-Agent User-Agent Accept, 
Accept-Encoding, 
If-Modified-Since, 
Referer, and 
User-Agent

Compressed 
response

Yes No Yes N/A, response is 
not processed.

N/A, response is 
not processed.

Yes



51

WebStress OpenSTA JMeter WAS Tool Tsung LoadRunner
Parsing of 
HTML response

Images, style 
sheets, external 
scripts, 
background, 
images, and 
web-forms.

Accessible as 
DOM.

Images, applets,
style sheets, 
external scripts,
frames, 
background 
images, and 
sounds.

No No Images, applets, 
external scripts, 
and frames.

Files caching Only attached 
files and no
HTML data.

No No No If-Modified-Since 
header can be set 
manually.

Yes, with various 
settings. The 
cache can be 
stored and then 
loaded later.

Pre-created 
response from 
form fields

Yes, prepared 
from default 
values.

No, query string 
has to be created 
manually.

No, but fields can 
be entered 
separately.

No, but fields can 
be entered 
separately.

No, query string 
has to be created 
manually.

No, but fields can 
be entered 
separately.

Cookies support Processed 
automatically.

Manually Processed 
automatically.

Processed 
automatically.

Processed 
automatically.

Processed 
automatically, 
script can 
manipulate them.

Authentication No Basic method 
header can be 
created manually.

Basic Yes Basic Basic, NTLM, 
Digest

Virtual users 
implementation

Single user per 
thread.

Single user pre 
thread and a 
thread pool.

Single user per 
thread.

Multiple users per
thread, multiple 
threads.

Erlang internal 
threads, no OS 
threads.

Single user per 
thread, or per 
process.

Distributed load No Yes Yes No Yes Yes



52

WebStress OpenSTA JMeter WAS Tool Tsung LoadRunner
Think-time Constant or 

uniform random.
Constant Constant,

Gaussian, or 
uniform random.

Constant Exponential Constant or 
uniform random.

Reporting
Page-load or 
transaction time

No Manually defined 
transactions.

No No Page-load time, 
pages are divided 
with think-times.

Manually defined 
transactions.

Resource 
monitoring

No SNMP, Windows 
NT

Tomcat 5 status 
servlet

Windows NT SNMP, Erlang 
agents

Yes

Report format HTML, with PNG 
images. Results 
can be further 
analyzed with a 
statistical tool.

Displayed in GUI. Displayed in GUI, 
graphs can be 
saved to file.

Displayed in GUI. HTML Displayed in GUI, 
and can be stored 
as HTML or MS 
Word DOC.

Test definition
Test definition Script,

Own language
Script,
Own language 
(SCL)

Graphical,
Tree, JavaScript

List of requests. Script,
XML, Erlang 
extra modules

Script,
C, Java, Visual 
Basic

Recording 
capability

No Yes Yes Yes Yes Yes

Log sampling No No Access log format 
(e.g. Apache)

IIS format No No

Searching in 
response

Substring Only explicit 
addressing using 
DOM.

Yes No Regular 
expression

Substring



53

WebStress OpenSTA JMeter WAS Tool Tsung LoadRunner
Branching Random (with

weights) or based 
on response.

According to a 
variable value, 
e.g., loaded from 
the response.

Random link 
selection and
loops.

No Only to loop 
requests or abort 
test session.

Yes, it is a fully 
featured 
programming 
language.

User-prepared 
data

Scalars and 
structures, inline,
or in external CSV 
file.

Scalars, inline. 
Structures have to 
use mutexes.

Scalars and 
structures, in 
external CSV or 
XML file.

Scalars, inline, or 
structures from a 
database.

Yes, inline using 
Erlang or one 
external file.

Scalars and 
structures, in 
external CSV file 
or from a database 
query.

Tool-generated 
data

No Integer range. Number counter, 
random radio 
button selection.

No Unique ID 
generation.

What is allowed in 
the programming 
language used.

Table 7.1: Web test tools comparison matrix



54

8 Conclusion

WebStress, the web-application performance-testing tool implemented, fulfils the 
functional and non-functional requirements set out in the specification. These 
requirements were to generate HTTP load with many virtual users, specified by a 
text script and to be able to generate common headers in requests, including referrers 
and cookies, process web forms, allow for branching of test execution, parse the 
retrieved response, request attached files, and cache the files once retrieved. With 
this range of functionality, it can be used for performance testing of many web 
applications.

Because one of the main goals was to use this tool for performance tests of 
Slovak Cadastral Portal, the implementation was successful – the tool was able to 
test the application on the target hardware and the results helped to improve its 
performance before going into production. During the tests, the tool generated the 
load of up to 1,000 virtual users and did not fully utilize the resources of the 
computer on which it ran. The application consists of a cluster of three application 
servers and used software load-balancing during the tests. The load-balancing 
process with such a number of users was slowing down the application, so the tests 
will be repeated later when a hardware load-balancer is installed.

The implemented tool automatically pre-creates a request to the tested 
application from the web form fields contained in the previous response. Creating a 
test definition to test an application that uses many web forms or stores the 
application data in hidden form fields is then much easier and the user can 
concentrate on the test preparation without bothering with details. Tools publicly 
available on the Internet do not offer such functionality.

Even though one computer to generate the load was enough so far for the tests, 
one of the possible future improvements is to offer distributed load generation. This 
cannot only allow generating higher loads, but it can make the load more realistic 
because it could come from more sources. Another improvement would be to offer a 
more sophisticated grammar for the test definition language and new commands, 
such as expression evaluation. This probably would result in a formalization of the 
grammar and the use of a lexical analysis.

Tests performed so far show that the tool is stable, and it is expected that it will 
be used to test other web applications developed in other projects. Apart from these 
plans, the driving force for the new development will be the tool usage, and new 
features will be added as needed by the tested applications.



55

9 Bibliography

[1] RFC2616, http://www.faqs.org/rfcs/rfc2616.html
[2] OpenSTA – Open Systems Testing Architecture, Performance testing of web 

applications, open source,  http://www.opensta.org/
[3] Apache JMeter, Java desktop application designed to load test functional 

behavior and measure performance, open source, 
http://jakarta.apache.org/jmeter/

[4] Microsoft Web Application Stress Tool, Simulation of multiple browsers 
requesting pages from a Web site, Microsoft Corporation, 
http://support.microsoft.com/kb/231282/

[5] Tsung, Multi-protocol distributed load testing tool, open source, 
http://tsung.erlang-projects.org/

[6] Mercury LoadRunner, Enterprise-class performance testing tool, supporting 
many various protocols, Hewlett-Packard, 
http://www.mercury.com/us/products/performance-center
/loadrunner/

[7] Webster's New Millennium Dictionary of English, Preview Edition, Lexico 
Publishing Group, LLC, Long Beach, California, U.S.A.

[8] Google search engine, http://www.google.com/
[9] RUBiS, Auction site prototype, PHP, Java servlets or EJB, 

http://rubis.objectweb.org/
[10] Application Load Testing Report, Yankee Group, July 2005
[11] libcurl - the multi-protocol file transfer library, 

http://curl.haxx.se/libcurl/
[12] The R Project for Statistical Computing, http://www.r-project.org/
[13] POSIX Threads, http://wikipedia.org/wiki/POSIX_Threads
[14] Windows Time, Microsoft Developer Network, 

http://msdn2.microsoft.com/en-
us/library/ms725496.aspx

[15] Time is the Simplest thing..., The Joseph M. Newcomer Co., 
http://www.flounder.com/time.htm

[16] Performance Application Programming Interface, 
http://icl.cs.utk.edu/papi/

[17] Linux / Unix sar command, 
http://www.computerhope.com/unix/usar.htm

[18] Net-SNMP library, http://www.net-snmp.org/
[19] Chart (or graph), http://en.wikipedia.org/wiki/Chart
[20] HTTP Authentication Woes, Bill Venners, April 6, 2006, 

http://www.artima.com/weblogs/viewpost.jsp?thread=155
252

[21] libcurl license, a MIT/X derivate, 
http://curl.haxx.se/docs/copyright.html

[22] GNU Lesser General Public License (LGPL), 
http://www.gnu.org/licenses/lgpl.html

[23] GNU General Public License (GPL), 
http://www.gnu.org/licenses/gpl.html



56

[24] POSIX Threads for Win32, 
http://sourceware.org/pthreads-win32/

[25] A Peek Inside the Clock, The Linux Magazine, September 15th, 2001, 
http://www.linux-mag.com/id/866/

[26] High-resolution timing, Linux I/O port programming mini-HOWTO, Riku 
Saikkonen,
http://tldp.org/HOWTO/IO-Port-Programming-4.html

[27] The database dump used for the experimental performance tests of RUBiS, 
113 MB, http://rubis.objectweb.org/results.html

[28] CCCC - C and C++ Code Counter, http://cccc.sourceforge.net/
[29] International Standard 14882 - Programming Language C++, September 28, 

1998, http://www.ncits.org/cplusplus.htm
[30] va_copy macro, manual page, 

http://www.g00gle.net/man/man3/va_copy.3.html
[31] ISO/IEC 9899 - Programming languages – C, 

http://www.open-std.org/jtc1/sc22/wg14/www/standards



57

10 Appendices

All the appendices can be found on the enclosed CD, in their respective directories.

Appendix A WebStress specification
webstress_specs.pdf – version 1.0, May 9, 2006

Appendix B User’s Guide
users_guide.pdf – version 0.3, May 28, 2007

Appendix C User’s Reference
users_reference.pdf – version 0.3, May 28, 2007

Appendix D Test configurations and scripts used
Slovak Cadastral Portal

kapor.conf
kapor.script
apartment.txt
building.txt
land.txt
owner.txt
proceeding.txt
title.txt

RUBiS
rubis.conf
rubis.script

Appendix E WebStress distribution
webstress_0.3.tar.gz – version 0.3


