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Introduction

The existence of APN permutations in even dimension is an interesting problem,
for which only a partial answer is known. While for odd dimensions we know
many APN permutations — for example Gold functions:

fla) =2+,

for ged(i,n) = 1, but for even dimensions Gold functions are still APN, but they
are not permutations.

The fact that no APN permutation in even dimension could be found led many
people to conjecture, that actually no such function exist. This belief was then
strengthened when it was found than in Fys, there indeed is no APN permutation,
as noted by Hou in [I]. However in [2] Dillon presents a new algorithm for checking
whether an APN function is CCZ-equivalent to a permutation and used it on
known APN functions in even dimensions up to dimension 10. This approach
was successful in finding an APN permutation in dimension 6. The function that
was found to be CCZ—equivalent to a permutation is Kim function:

k(r) =2 + 20 + uz®,

where u is the primitive element whose primitive polynomial over Fy is 2% + 2% +
23 + 2 + 1. The APN permutation found is then of the form ¢ = f, o f;!, for
fi = Li(z) + Lo(k(x)), f1 = Ls(x)+ L4(k(x)), where Ly, Ly, Ly and L4 are linear
functions on Fas. Specifically:

fl :’LU38£L’48 4 w33x40 + w28:c34 4 U)25£IZ'33 4 w43x32

+w5x24 +w42$20 +x17+w2x16 +w4x12

+w7x10 + wtz® + w28 + w’x® + w304

4wt + wa? + Wz
Fy =218 0090 16,31 40,83 | 61,2
5124 53 .20 61 17 5416 55 12

+w Tt +wrr +wr Fwtr +w
T+ 210 438 41928 405 Pt
+ w2 + W + w¥x

for w = v~2. And it is up to equivalence the only known APN permutation in
even dimensions.

A really interesting is the case Fos. AES (Advanced Encryption Standard)
uses an 8-bit substitution function, but as not a single APN permutation on field
Fys is known, it uses the inverse function, which is resilient against known attack,
e.g. differential and linear cryptanalysis, but it is not APN, and therefore not
optimally resilient. So the existence of APN permutation on 8 bits would mean,
that the substitution function of AES is not optimal.

The algorithm given by Dillon in [2] is very slow for higher dimensions. This
thesis is concerned with improving it to be usable in higher dimensions. For this
we present a new condition for a function to be CCZ—inequivalent to a permuta-
tion, along with some ideas to further speed up the checking process.



In first chapter we cover the basics of finite fields, vectorial Boolean functions
and characters. The second chapter is then concerned with the previous work,
done in this area. We show the algorithm used by Dillon, and reprove the condi-
tion that is used in [2] using the terminology we will use for our own condition.
In the third chapter we then present our approach, along with the computational
results we have got, and compare our condition with the condition used by Dillon
in [2]. Additionally we present a proof of the fact, that the functions of the form

2%+ a7 (a2?)

cannot be CCZ-equivalent to a permutation on fields Foun for n € N.



1. Preliminaries

This thesis deals with the theory of vectorial Boolean functions. Therefore it
is important for the reader to have at least a basic knowledge of finite fields,
Boolean functions, coding theory, and their importance in cryptology. This brief
introduction should cover all the theory used in the thesis.

1.1 Finite fields

7

Definition 1 (Group). Let G be a set, and let us have an operation ” -7 from

G x G to G. We call (G,-) a group if the following holds:
e associativity: Ya,b,c € G : (a-b)-c=a-(b-c),
e cxistence of neutral element: de € GVa € G:a-e=e€-a = a,
e cxistence of inverse element: Ya € Gdbe G:a-b=0b-a=ce.

Moreover if the operation - is commutative (VYa,b € G :a-b="b-a), then (G,-)
is called a commutative group or an abelian group.

Definition 2 (Field). Let F be a nonempty set with at least two elements, and
let us have two operations: ” +7 : F x F — F (addition) and”-" :F xF — F
(multiplication). We call (F,+,-) a field if the following holds:

o (F,+) is an abelian group,
e (F\{0},-) is an abelian group (where 0 is the neutral element of (F,+)),
o distributivity: Va,b,c € F: (a+b)-c=a-c+b-c.

IfF is finite, then we call (F,+,-) a finite field. For the sake of brevity from now
on we write just F instead of (F,+,-) when appropriate.

It can be shown, that a finite field with ¢ elements exist if and only if ¢ is a
prime power. Moreover for a given prime power p™ the finite field is unique (up
to isomorphism). Therefore by F,» we shall denote the unique finite field with p"
elements. The prime p is called the characteristic of the field.

Now why are we even interested in finite fields? Every vector space over
field IF, can be interpreted as a finite field of characteristic p. Since computers
operate on vectors over Fy (they are called registers) and 2 is a prime, we can
interpret these operations as operations over a finite field. Now finite fields have
nice properties that make our life easier — all functions defined over a finite field
can be written as polynomials and generally fields have richer structure that can
be used, compared to just vector spaces.

As finite fields have one-to—one correspondence to vector spaces over [F,, we
can see a finite field as a vector space and vice—versa. Therefore in the thesis we
use notation like F}~ meaning F} without an all-zero vector as motivated by the
theory of finite fields (the all-zero vector in the vector space corresponds to the
zero element of the finite field).

Another property of finite fields is the so-called freshman’s dream.

4



Remark 1 (freshman’s dream). Let F, be a finite field, with ¢ = p™ for some
n € N. Then for every a,b € F, and for every k € N it holds, that:

(a+ b =a" + "

The case when k = 1 is easily seen from the binomial theorem, and from the
fact, that a finite field of characteristic p is a vector space over F, where 0 = p.
For other k € N the proof can then be done by induction.

1.2 Boolean functions

Boolean and vectorial Boolean functions are functions, that are defined on a finite
field of characteristic 2 (or on a vector space over Fy). Therefore they are of great
interest in modern computer—oriented cryptology.

Definition 3 (Boolean function). Let f be a function. We call f a Boolean
function if there is n € N such that: Dom(f) =Ty and Im(f) = Fs.

Definition 4 (Vectorial Boolean function). Let f be a function. We say, that f
is a vectorial Boolean function if there are n,m € N such that: Dom(f) = F}
and Im(f) = Fy.

We can write every Boolean function in its algebraic normal form. That is in
a form:

f(x) = f(z1,20,...,00) = Y auX",

ueFy
where x" = [, z;*, and a, € Fy. Moreover by a simple counting argument
it can be shown, that there is a one—to—one correspondence between algebraic
normal forms, and Boolean functions over the same vector space (or field). As
the vectorial Boolean function from [} to F3' can be seen as an m-dimensional
vector of Boolean functions, the algebraic normal form of a vectorial Boolean
function is:

f(x) = f(z1,20,...,20) = Y auX",
uelFy
where a,, € FJ'.

This means that the all functions, we can be interested in, are in fact polyno-
mials.

Nevertheless, as we noted before there is a connection between this notation
is more vector space oriented (it is called multivariate for obvious reasons). But
we can fix a basis fi,..., 3, of the finite field Fon» over Fy, and see, that each
basis element ; corresponds to a vector, whose i—th coordinate is 1,and the rest
is zero. Note, that this correspondence is dependent on the given basis.

Therefore in this univariate notation all functions can be expressed as poly-
nomials from Fyn of degree less then or equal to 2" — 1 (since " = a for every
a € Fon by the order of its multiplicative group). So in univariate notation the
algebraic normal form of a vectorial Boolean function becomes:

n—1
f#)= Y a',
i=0

5



for a; € Fon.

Since vectorial Boolean functions are still a relatively hard to deal with, we
want to divide them into parts, and study each part separately. For this we will
use the notions of coordinante and component functions.

Definition 5 (Coordinate and component functions). Let f : Fy — F5 be a
vectorial Boolean function. Then f(x) can be written as (fi(z), f2(x), ..., fm(x)),
where f1,..., fm are Boolean functions from F3'. The functions fi,..., fm are
called the coordinate functions of f. Any nontrivial linear combination of fi, ...,
fm is then called a component function (or component) of f.

Note that, all component functions can be expressed as < f(x)|u >, where
< x|y > denotes a scalar product, and u € F§ — different u give different linear
combinations of coordinate functions. To be able to use these terms even while
using univariate notation (and much more) we will need to use the trace function.

Definition 6 (Trace). Let n > m, m|n. Then we call the function from Fan to
Fom such that:
n_y

m

t(0) = 3 o,

=0

the trace function from Fan to Fom.

Remark 2 (Linearity of trace). The trace from Fyn to Fom is a Fom—linear function:
tr? (ax + by) =t (ax) + tr] (by) = a trl (x) + bt (y),

for every a,b € Fom and every x,y € Fon.

Another easy observation is that:

for any d € N.

So we know, that for all g is Lg(z) = tr}(8x) a linear mapping from Fon to Fs.
They are also pairwise different. Actually the trace map satisfies all conditions
for being a scalar product. Now we recall, that every element in Fy» can be
represented in terms of a base of Fon over Fy. Therefore we see, that there is
one-to-one correspondence between mappings < f(z)lu > and tr}(af(z)) and
therefore we see, that all component functions of f(z) are of the form tr}(af(z))
for some o € Fon, and that in this way we indeed get all component functions of
f.

An important characteristic of (vectorial) Boolean functions is their degree.
Since we can see these function in two ways (over a field and over a vector space),
we have two different notions of their degree.

Definition 7 (Univariate degree). Let f = Y% ;' a;2' be a vectorial Boolean
function. We say that the univariate degree of f is d if ag # 0, and for all j > d
it holds that a; = 0.

Definition 8 (Multivariate degree). Let f = Z?lal a;z" be a vectorial Boolean
function. We say that the multivariate degree of f is d if there exists 1 such that
wt(i) = d and a; # 0, and for all j such that wt(j) > d it holds that a; = 0.

6



The multivariate degree can be deduced using the freshman’s dream property
mentioned earlier — it can be seen that squaring, or iterated squaring (taking 2%
powers for some k € N) is a linear operation. Which motivates the following
definitions:

Definition 9 (Linearized polynomial). We say that a polynomial f € Fonlz| is

linearized if it is of the form:

n—1 )
L(z) =Y az”,
i=0

such that all a; € Fon.

Definition 10 (Quadratic function). We say that a (vectorial) Boolean function
f from Fan is quadratic if it is of the form:

n_l . .
f(z) = Z am-mz”rw + L(x),
1,j=0,i#£j

where L(x) is a linearized polynomial and all a; ; € Fon.

Therefore from now on when we will talk about degree, or call a function linear,
or quadratic, we will mean linear or quadratic with respect to its multivariate
degree.

A useful property of linear mappings, which we will later use is the existence
of an adjoint mapping.

Definition 11 (Adjoint polynomial). Let L be a linearized polynomial. We call
a polynomial L* such that:

try (zf(y)) = trf (yf*(2)),
an adjoint polynomial of L.

More generally we could define an adjoint polynomial by < L(z)|y > =
< L*(y)|z >. We get our definition by choosing trace as the scalar product.

Lemma 1 (Existence and form of adjoint polynomial). Let L be a linearized
polynomial over Fon of the form:

n—1 )
L(z) =Y az”.
=0

Then there exists a linearized polynomial L* over Fon of the form:

such that for all x,y € Fon it holds that:

trf (zL(y)) = try (yL*(2).



Proof. We will check whether:

(2 L(y)) = ] (yL*(2)).
We have that:
try(zL(y)) = tr}(z Z ay”

By using distributivity, and by reordering of the terms of the polynomial f we
get:

n—1

try (z Z ay®) = tr}( Zxan_iyym).

1=0

Now by utilizing the freshman’s dream property we rewrite as follows:

n—1 n—1 o »
try Z Tan— zyQ ) = try( (x2 ai—iy)Q ).
=0 1=0

Finally we now use the linearity of trace to check the equality term by term.
Therefore we are now asking whether:

(2% a2_y)*"") = (2% a2 yy).

Which is, as we have observed before, true. O

We will also be using the following linear algebra lemmata about the dimen-
sions of spaces defined by linear mapping. These are well know, and along with
their proofs they can be found in almost any linear algebra textbook.

Lemma 2 (Dimension of the kernel of the adjoint). Let L be a linearized poly-
nomial, and let d = dim(Ker(L)). Then the d = dim(Ker(L")).

Lemma 3 (Sum of the dimension of the kernel and of the image). Let f be a
linear mapping defined on Fon. Then dim(Im(f)) + dim(Ker(f)) = n.

Another lemma we will later use is about connection of the kernel of a linear
mapping, and the image of its adjoint.

Lemma 4. Let A be a linear mapping. Then (Ker(A))t = Im(A*).

Proof. By the definition of Ker(A) we have:

try (z(A(u))) =0,

forall z € F and u € Ker(A). Now by the definition of adjoint mapping we have,
that:
0 = tr}(zA(u)) = tr}(uA*(x)).

This means, that:
Ker(A) = (Im(A*))*.

Which is equivalent to:
(Ker(A))* = Im(A").



It can be also seen, by a simple counting argument, that there is a one—to—
one correspondence between linearized polynomials from Fan, and n—dimensional
matrices with coefficients from Fy. Indeed, there are (2")™ linearized polynomials
on Fy., and they all correspond to different linear mappings. And we know,
that every linear mapping on F§ can be expressed as an n x n matrix with
coefficients from Fy. Indeed, there is (2")" of these matrices, which gives us the
correspondence.

An important tool to work with vectorial Boolean functions is the Walsh
transform which has some nice properties.

Definition 12 (Walsh transform). Let f be a (vectorial) Boolean function from
F% to F5'. We shall call the function that satisfies:

f(u, v) = Z<—1)<”|f(1)>+<u\x>’

zclF
where u € Fy, v € F"" the Walsh transform of f. .

Now the trace function is the scalar product of our choice, so from now on, we
are going to use it. Therefore we can rewrite the Walsh transform in the following
way:
flu,v) = 3 (—1)u s @) g (u)

zelF
where u € Fon,v € 5.

Now, since the functions trf(uzx) are linear functions, we can see, that the
Walsh transform measures how similar are the components of f(z) to linear
functions. Indeed (—1)%7 (®f(@)+tiwe) — 1 if and only if the component func-
tion tr"(vf(x)) and the linear function tr}(uz) are equal when evaluated at a.
Therefore the higher the value f (u,v) is, the more similar these two Boolean
functions are. For Boolean functions f and g we can define the distance between
f and g as a number of inputs such that f(z) # g(z). It is then only natural to
be interested in functions that are as far as possible from both linear and affine
functions. Therefore it does make sense to define nonlinearity as max(|f(u,v)|).

If we are considering the Walsh transform of Boolean functions defined over
F%, then the following holds:

Lemma 5 (Fundamental equalities of Walsh transform).

> flu) =27 (=),

uelFy

> (f(u))? = 22" (Parseval’s relation).

uely

Proof. For the first equality we have:

> flu) = 3 3 (- -

u€ly ueFy xelfy
— Z (_1)tr?(f(x)) Z (_1)tr?(w:) - (_1)f(0)2n’
z€Fy uelFy



where the last equality comes from the fact that for x # 0 ZueFS(—l)tﬂf(““) =0,
because nonzero linear functions have exactly half of values equal to one (from
linearity).

The second one is then proved as follows:

Z (f(u))2 _ Z Z (_1)tr7f(f(x)+ux) Z (_1)tr?(f(x+y)+ux+uy) _

u€Fy u€F} z€Fy yEFy
— Z Z (_1)tr’f(f(w)) Z (_1)tr?(f(w+y)+uy) —
ueFy xelfy yery
— Z (—1)tri @) Z (—1)b1(Flety) Z (—1)b (),
z€Fy yeFy uerF?

Now the innermost sum is nonzero if and only if y = 0. Then we can rewrite as:

S (f@)? = I (—1)H U@ (L)) S (qyut)

ueFy z€Fp u€F?
and after cancellations we get:

Z (_1)02n — 2n2n — 22n7

z€Fy

which completes the proof.
O

Definition 13 (Extended Walsh spectrum). By the extended Walsh spectrum
of f we shall mean the multiset of values of f(u,v). We will denote is as Wy.

Wy = {xf(u,v) : u € Fon,v € Fhnk}.

As we noted, the values of the extended Walsh spectrum measure exactly how
similar are the component functions of f to linear functions. We will be interested
in functions that are as nonlinear as possible. That is, we want for them to be as
far as possible from both linear and affine functions. So we will be interested in
functions Walsh spectra values will be in absolute value as low as possible.

By utilizing Lemma [5| we know, that there is a limit on how nonlinear a
function can be.

Lemma 6. Let f be a Boolean function. Then max(|W;|) > 2/2.

Proof. This follows from Lemma[5] As we have:
> (flu)? =2,

uelFy
it follows, that maz((f(u))?) > 22"/2" = 2", Therefore
maz(|Wy|) = \'maz((f(u)?) = 2",

[]

For even n it is possible to achieve equality in Lemma [6] We will call the
functions, that achieve this equality bent.

10



Definition 14 (Bent function). Let f be a Boolean function on F%, where n is
even. We say that f is bent if the only values in its Walsh spectrum are £2"/2.

One bent function is the quadratic bent function that can be given in multi-
variate notation as:
T1T9 + T3Tg + -+ + Tp1ZTh.

Even vectorial quadratic functions are of great interest, since their low algebraic
degree makes their analysis easier. Note that we will study functions from Table
[1.2] and all of them are quadratic. Therefore we want to find functions that have
similar properties to quadratic functions, which would make their study easier.
This motivates the following definition.

Definition 15 (Plateaued function). Let f be a Boolean function on Fj§. We
say that f is plateaued if there exist k € N such there are no other values in the
Walsh spectrum of f than 0 and £2F.

Note that by this definition bent functions are plateaued as well.
To see that quadratic functions are plateaued, and that we have found a class
of functions that generalize quadratics, we will use the following;:

Definition 16 (Derivative). Let f be a (vectorial) Boolean function. We call a
function the derivative of f in the direction of a a function for which it holds:

Dof(x) = f(z) + f(z + a).

Lemma 7 (3, Proposition 28). Let f be a Boolean function on F. Then f is
plateaued if and only if there exists A such that for every x € F:

Z (_1)Danf(x) _ )\2

a,beF
Therefore we can now say the following:

Lemma 8 (Quadratic functions are plateaued). Let f be a quadratic function on
F. Then f is plateaued.

Proof. In the case of a quadratic function we will have, that its second derivative
is a constant, and therefore by the Lemma [7] they must be plateaued. O

A proof of Lemma [7] along with a more detailed proof of Lemma [§ can be
found in [3].

Now as we defined plateaued functions, because of their relation to quadratic
functions, we can also be interested in vectorial functions that have all their
components plateaued.

Definition 17 (Component—wise plateaued function). Let f be a vectorial Boolean]
function. We say that f is component—wise plateaued if all its components are
plateaued.

Now, using the Walsh spectra, we define sets corresponding to a function, that
will be utilized in later chapters.

11



Definition 18 (Zeroes of Walsh transform). Let f be a vectorial boolean function.
We will denote Z; the set:

Z; = {(u,v) eFxTF: f(u,v)=0}.

Note that now we allow v = 0. That is because we will later search for
subspaces in Z;U{(0,0)}.

Definition 19 (Bent set of f). Let f be a vectorial Boolean function. We call
the set .
By ={veF: f(0,v) #+2"?},

the bent set of f. We will write By.

Definition 20 (Nonbent set of f). Let f be a vectorial Boolean function. We
call the set A
NB; = {v € F: f(0,0) = £2"/?} =T\ By,

the nonbent set of f. We will write NBy.

Later we will use the following:

Lemma 9. For x(z) = (—1)"1/@ the following holds:

{Oz’foz?é()

Sdan) =4, o

z€elF

Proof. Follows from the fact, that all nonzero Boolean linear functions are bal-
anced (they evaluate to 1 exactly half of the time). ]

We will also use the following theorem that gives a necessary and sufficient
condition for a vectorial Boolean function to be a permutation.

Theorem 10 (Necessary and sufficient condition for permutations on finite
fields(4, Theorem 7.7)). Let f be a function on F. Then f is a permutation
if and only if

Va e F*: > x(af(z)) =0,

zelF
where x(af(x)) = (1)@ @)

1.3 APN functions

1.3.1 Motivation

The APN (Almost Perfect Nonlinear) functions are interesting from a crypto-
graphic point of view. Two of the most general and powerful attacks against
block ciphers are linear cryptanalysis and differential cryptanalysis. Both of these
attacks somehow exploit the fact, that the functions used in ciphers are linear, or
almost linear. It is the one of the reasons we are interested in nonlinear functions
is simply for better ciphers. For this reason we want to quantify the nonlinearity
of functions with respect to these attacks.

12



Table 1.1: Known infinite families of APN monomial functions on Fan

Family Monomial Conditions References
Gold X2+t ged(i,n) =1 | 5]
. X221 4 aven .
Niho X2t+2(3t+1)/2_17 t odd n=2t+1 [f)]
Kasami X2 ged(i,n) =1 | [7]
Welch X3 n=2+1 |[8
Dobbertin | X227 +27+2'~1 n = bt [9]
Inverse X2t n=2t+1 [10]

Table 1.2: Known infinite families of APN multinomial functions on Fy2n

Polynomial Conditions References
n = 3t, ged(t,3) = ged(s,3t) = 1
X2 A2 xR t>3,i=st (mod3), r=3-—1, [T
A € F is primitive
n = 4t, ged(t,2) = ged(s,2t) = 1
X2HL AL xR t>3,i=st (mod 4), r=4—i, 2
A € F is primitive
n =2m, m odd, ¢; € Fom,
AXZHL p 27 XN gL g gL 2T ged(s,m) =1, s odd, [13]
A, B € F is primitive
gn—t_ gt+s 9t v 2541 gt+sos n = 3t, ged(t,3) = ged(s, 3t) = 1, .
AXFTIEE  ARXET + bXETE 3|t +s, A €F is primitive, b € Far 113)
2t yan—tygtts s on—t n = 3t, ged(t,3) = ged(s, 3t) = 1,
AZXETEE 4 AXP b X 3|t + s, A € F is primitive, b € For B4
n = 3t, ged(t, 3) = ged(s, 3t) = 1,
A2 XTI AN HL p p X2 AR X2 3|t +s, A € F is primitive, [11)
b,c € For, be # 1
n = 2m, m odd,
X2t gxatt 4 o X e Cis a (¢ — 1)st power but not a (¢ — 1)(2' + 1)st power, | [15]
CB"+B
X(XZ 4 X4 OX20) 4 X (CaX1 4 AXZ) 4 X100 n = 2m, god(n k) =1, 5
C satisfies X2+ + CX? +C?"X 41, A € F\Fy, ’
X3+ a 0 (a®X") [16] [I7
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The differential cryptanalysis [18] tries to find output difference b such that
the equation

Dof(x) = f(2) + f(z +a) =D

holds for as many input differences a as possible, and use it for attacking. Sup-
posing f is linear there exist only one such b and for this b the equation holds for
every a. Therefore we can use the number of solution of the equation above to
measure the nonlinearity of f.

The linear cryptanalysis [19] tries to find linear relations between bits of plain-
text, ciphertext and key, that hold with a high probability. An example would
be:

Pl@Pg@Cl@C5@K2@K3:1

where P; are bits of plaintext, C; bits of ciphertext, K; bits of key and the &
operation is the addition modulo 2. Clearly if all the functions in a cipher were
linear, it would be easy to find relations, that hold with probability 1, and then
use Gaussian elimination to recover the key. This usually isn’t the case, but it is
possible to recover the key from relations which hold with lower probability than
1 at the cost of requiring more plaintext-ciphertext pairs. We can deduce how
resilient is a function against linear cryptanalysis by its Walsh transform.

These attacks are therefore the reasons that in ciphers we want to use functions
that are highly nonlinear, functions for which all such relations hold with as small
probability as possible.

Since modern ciphers are used almost exclusively on computers, to use the
computational resources effectively the ciphers need to operate on bits. Therefore
they can be defined over a finite-dimensional vector space over a binary field,
which we can identify with a finite field. Here it holds that f(x) + f(x +a) =
flx+a)+ flr+a+a) = f(xr +a)+ f(x) and so the number of solutions of
D, f(x) will always be even. Which motivates us to define APN functions in the
following way.

Definition 21 (APN function). We call a vectorial Boolean function f : Fon —
Fom APN if the equation

Dof(x) = f(x) + f(x +a) =b
has either 0 or 2 solutions for all a € F5,,b € Fom.

The APN functions are defined in such a way, that they are optimal with
respect to differential cryptanalysis. Moreover it is known, that all APN functions
from Table have the same extended Walsh spectrum [20]. As such it is called
the classical Walsh spectrum. It looks like this [20]:

{*2”(1), 2n/2+1(;<2n . 1)(21173 + 2(17#4)/2))7

PR - 1)@ 2002, (2 D 1)),

_2n/2(§(2n . 1)(2n—3 . 2(n—4)/2))7 _2n/2+1<;)(2n . 1)(2n—3 . 2(n—4)/2))*}.

Note that in [20] v = 0 is allowed in the extended Walsh spectrum. We see,
that in the classical Walsh spectrum the number of bent coefficients is quite high.
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And we see most of the numbers in the absolute value are quite small. Therefore
quadratic APN functions from the Table are resilient even with respect to
linear cryptanalysis.

The values in Wy are not just a lucky coincidence. In [2I] the following is
proven:

Lemma 11 (21, Corrolary 3). Let f be a wvectorial Boolean function, that is
component-wise plateaued. Then if f is APN, |Bf| > 2(2" —1)/3.

It is also shown in [21], that no component—wise plateaued APN function can
be a permutation.

But for usage in symmetric cryptography, it is beneficial for these nonlinear
functions to be permutations. Moreover it would be nice for the dimension of the
field where such a function is defined to divide the length of the computer register
used (for optimal usage of computational resources). This implies that APN
permutations over fields of even dimension are of great interest. Unfortunately,
while many APN permutations over fields of odd dimension are known, in the
even case there is only one known example (up to equivalence) — the Dillon
permutation in dimension 6. The existence of APN permutations in higher even
dimensions is still an open problem.

For better understanding, we will show the following classical example:

Ezample. We will show that 23 is APN, that
NB,s = {2 : z € F},

which means NB,s is set of cubes in I, and we will also show that 22 is a permu-
tation if and only if n is odd.
To see, that 22 is APN we will need to find the number of solutions to:

f(x)+f($+a)=$3+Ig+x2a+xa2+a3:b,

Therefore let us consider two solutions and find what conditions they must
fulfill:

f@)+ flx+a)=2"+2° +2’a+za® + a® =
v +y’ +ytatya® +a’ = fy) + fly+a),
which after cancellations is:
220 + za® = y?a + ya®.
Therefore we may rewrite in the following way:
r%a + y*a = ya* + va’.
Now we may do a substitution z — wva and y — wa to get:

2 3 3

vea +w2a 3

= wa® + va®.
As we require a # 0 we may divide, and get:

02+w2:v+w.
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Therefore we see, that the only possibilities for v and w — 0 and 1. Therefore
when the equation has a solution, it must have exactly 2. Which proves the fact,

that z® is APN.
To find NB,s we will try to find B,s. We will try to find solutions to:

> x(ax®) = £27/2

z€elF

where x(z) = (—1)"1(®) as before. As we are only concerned with the absolute
value of £2"2, we shall square both sides of the equation:

> x(az®) > x(ay®) = 2"

z€eR y€eF

Now instead of y we will write x + 2, and we will multiply the sums:

> x(az® + ax’z + axz®) = 2™

z,z€F

Now we shall rewrite:

> x(a2®) Y- x(a(az + 22%)) = 2.

z€F z€elF

Now we can rewrite the inner sum as follows:

> xla(@®z +22%) = 3 x(a(a’2))x(ax2?)) =

%X(a(:ﬂzz))x(a%%“)) = %X(wz(az +a’2")).

Therefore we get:

3 x(0z%) Y xla(a’z +22%) = 3 w(az®) 3 x(o(az + a*24) = 2.

z€F z€eF z€F z€eF

Now using Lemma [9] we know that to compute this sum we only need to know
when z%(az + a®2*) = 0. As x = 0 is a solution, we do not want any other.
Another solution exists exactly when az = a?2*, and therefore a = 273. So we
see, that NB,s = {a® : a € F}.

Now to show when is 2% a permutation. It is clear that 2 is a permutation if
and only if ged(d, 2™ —1) = 1. The proof of this can be found in |4, Theorem 7.8.].
Therefore 23 is a permutation if and only if n is odd.

1.3.2 Equivalence of Boolean functions

When a new interesting function is found we want it to really be new, and not
similar to another already known function in some sense. For example we consider
functions z* and z* + 1 to be similar: % + 1 is just a bitwise complement of z*.
And therefore if * has some interesting properties, be it its Walsh spectrum, or
the maximal number of solutions to f(z)+ f(x+a) = b, we do not need to bother
checking them for 2* + 1 since we already know the answer we can derive it from
the properties of z*. Therefore we would not consider z* + 1 to be new. Apart
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from the bitwise complement (or more generally an addition of a constant), we
also consider functions to be similar if we can get one from the other by changing
the basis. Which motivates the following notion of equivalence.

Since we want to study permutations, we will only be interested in functions
f i Fon — Fon. That is functions whose domain and codomain is the same.

Definition 22 (EA-equivalence (Extended Affine)). We say, that functions f
and g are EA—equivalent, if f = L1(g(Ls)) + L3, where Ly, Ly and L3 are affine
permutations. We will write g =~pa f.

This notion of equivalence is useful, but it is still not as general as we would
want it to be. We would want for a permutation to be equivalent to its inverse —
clearly for symmetric ciphers the encryption and decryption are similarly difficult
and are the same with respect to linear and differential cryptanalysis. Indeed, if
we have an APN permutation, then its inverse is also APN. If

rt+y=a
fl)+ fly) =0

have only 0 or 2 solutions and f is a permutation then by substituing x < f~(s),
y < fH(t) we get
)+ ) =a
s+t=0»

also have only 0 or 2 solutions. Also we see, that the Wy = W;-1 (if allowing
v = 0 as in [20]) is the same for a function and its inverse. Indeed if we take

r = f1(y) we get:
f(u,v) Z(_l)tr{”(vf(r)-l-ux) _ Z(_l)tr?(vy—&-uf—l(y)) _ fil(v,u)

zelF zeF
Nevertheless it is still powerful enough to allow us to deal only with such functions
for which f(0) = 0, which we will now do. To find a more powerful notion of
equivalence it is useful to understand the relationship between Boolean functions
and linear codes.

1.3.3 APN functions and coding theory

Definition 23 (Error correcting code). We say that an M -element subset C' of
Fy, such that the minimum Hamming distance between its elements is d, is a
q—ary (n, M,d) error correcting code. We say, that C' has length n, cardinality
M and distance d. The elements of C' are called codewords.

The error correction comes from the fact, that if we send a codeword ¢ over
a channel and the receivers receives a message ¢, then if at most d/2 errors
happen, they are able to recover the sent codeword — it is the one that minimizes
the Hamming distance between ¢ and ¢'.

Definition 24 (Linear code). A linear code is such an g—ary error correcting
code, that its codewords are closed under addition and multiplication by a constant
Jrom Fy. It is therefore a subspace of Fy. We say that a linear code C' is q-ary
[n,k,d] code, if it is over [y, its dimension as a subspace is k, and minimum
distance between its codewords is d.

17



Because a linear code is a subspace of ' we can use matrices to represent it.

Definition 25 (Generating and parity check matrices). A generating matrix of
a q-ary [n,k,d] linear code C is such a k x n matric G, that Im(GE) = C.
A parity check matriz of a linear code C' is such a n — k x n matrix He, that
Ker(Hg) =C.

Definition 26 (Dual code). We say that a code is the dual code of C' if its
generator matrix is Ho and its parity check matriz is Go. We will denote such a
code O+

Remark 3. We have a bijection between the elements of the finite field F,», and
the elements of the vector space Fy. For the sake of brevity, when we consider
linear codes (and their matrices) over the field F,, we will often describe them
with the images of the elements of F,n. Therefore if we write a generator matrix
of a linear code over [, in this form:

GC:<.%'1 Lan),

where z; are pairwise different elements of Fy, we mean that G¢ is an n x ¢"
matrix whose columns are the elements of Fy» taken as vectors from Fy.

Definition 27 (Linear code corresponding to a function). We say, that a linear
code C' is corresponding to a function f if the code’s generating matriz can be

written in o form:
G — ( 1 . Lgn )
ST\ fl@) o flag))

where x; are pairwise different elements of F.

As we are interested in vectorial Boolean functions, from now on we will be
only considering codes over [y

Definition 28 (Permutation equivalence). We say, that codes C' and D are per-
mutation equivalent if there exists a bijection between the sets of their respective
codewords, that is a just permutation of the coordinates of the codewords.

Definition 29 (Hamming code). We call binary [2" —1,n,3] code C' o Hamming
code, if its generator matriz can be written in form:

GC = ($1 v Cl,’gn_1> s
where x; are pairwise different elements of F% apart from zero vector.

Definition 30 (Simplex code). We say a code is a simplex code if it is a dual
code of a Hamming code.

Definition 31 (Double simplex code). We say a code C' is a double simplex code
if it is a direct sum of two simplex codes. Therefore its parity check matriz can

be written in form:
I’l .. :,U2’VL
HA —
¢ <y1 ygn>’

where x;, y; are pairwise different elements of 7.
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One can now give another definition of an APN function:

Definition 32 (APN function (code-based definition)). We say that a function f
such that f(0) =0 is APN if the code C’fl is double error correcting (its distance
is at least 5).

Definition 33 (Extended code corresponding to a function). We say that a code
C' is an extended code corresponding to a function f if its generating matriz is
of the form:
1 o 1
dc = Ty e Lgn s

flry) o fag)

It can be shown, that these definitions of APN functions are equivalent. Indeed
if a function is APN, then there exist no a, b, ¢, d such that

a+b=c+d

and
fla)+ f(b) = f(c) + f(d).

This can be seen both from the fact, that equation

f@)+ flz+a)=0b

cannot have four solutions for f APN, and the fact, that the sum of four columns
of the parity check matrix of a double simplex code cannot vanish. Thus we
see, that the extended codes have a direct connection to resilience against linear
cryptanalysis.

Moreover it can be shown that the extended codes have also a connection to
linear cryptanalysis. Their weight distribution has a connection with W as noted
in [22].

If two functions f and g have the same corresponding code, than f is APN
if and only if g is APN. Moreover it suffices if C; is permutation equivalent to
C'y Which motivates the following notion of equivalence. Note that the usage of
extended codes will give us a larger equivalence class.

Definition 34 (CCZ-equivalence (Carlet, Charpin, Zinoviev)). We say, that
functions f and g are CCZ-equivalent, if Cy and Cy are permutation equivalent.
We will write g ~ccz f-

Remark 4. We can see that this means, that for f and g are CCZ—-equivalent if
and only if there exists an invertible linear function L such that:

i) ()

for x;, x; iterating over the whole field.

It is easy to see, that for all permutations f it holds that f ~ccz fL
To switch between C; and Cy-1 we only need to rearange the columns of the
generating matrices.
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Furthermore it holds, that if an APN function is a permutation, then its
corresponding code is a double simplex code. Actually for the code to be a double
simplex code, it is only necessary for the APN function to only be CCZ-equivalent
to a permutation.

But the extended codes are not the nicest objects to work with. Fortunately
in [23] the following is proven:

Theorem 12 (23, Theorem 6.2). Let f and g be APN functions, that vanish at 0.
Let g ~ccz [, and let their CCZ-equivalence class contain a quadratic function.
Then their corresponding codes are equivalent.

The power of Theorem [12]is that as we are only considering quadratic APN
functions that fix 0 we can work with the corresponding codes, and not the
extended ones.

Motivated by the code definition of CCZ-equivalence we can also try to see
the equivalence more as a characteristic of functions instead of codes. To do this
we shall define a graph of a function. Moreover this definition encompasses even
the functions that do not fix zero.

Definition 35 (Graph of a function). Let f be a (vectorial) Boolean function
defined on Fon. We call a set {(x, f(x)) : x € Fon} a graph of f.

It is straightforward to see a connection between the code of a function and
the graph of a function. Therefore it is easy to reformulate the CCZ—equivalence
with graphs.

Definition 36 (CCZ-equivalence (graph based definition)). Let Gry be the graph
of f, and Gr, the graph of g. We say, that f and g are CCZ—equivalent if there
exist an affine automorphism L from Gry to Gr, (L(Gry) = Gr,). That is

’ (é ﬁ) | <> | (g()) B (31 g) (fés)) ! () |

where x and x' iterate over the whole field.

Remark 5. If we have g a permutation, then A(z)+ B(f(x)) and C(x)+ D(f(z))
must be permutations. For A(z)+ B(f(z)) this is required from the Definition
(CCZ—equivalence), and for C'(x)+D(f(x)) it follows from ¢ being a permutation.

Now we see, that CCZ—equivalence is more general, than EA—equivalence.
EA—-equivalence just introduces additional constraints on function L.
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2. Dillon’s approach

In [2] a deterministic algorithm for deciding whether an APN function is CCZ-
equivalent to a permutation is provided. With this algorithm, Dillon was able to
check functions defined over Faon for n < 10 even.

As the only known APN multinomials are quadratic and vanish at 0, Dillon
proves the following theorem in [23]:

Theorem 13 (Theorem 6.2 in [23]). Let f and g be APN maps which vanish
at 0. If f and g are CCZ-equivalent and their CCZ-equivalence class contains a
quadratic function, then the codes Cy and Cy are equivalent.

Therefore if a quadratic APN function f is not a permutation, but is CCZ—
equivalent to one, its corresponding code Cf is still a double simplex code — its

fo()
f1 and f> are permutations such that f1(0) = f2(0) = 0. Now if we consider a
function g = f, o fi!, then it is certainly a permutation — it is a composition of
permutations. And it is definitely APN — it is CCZ-equivalent to f. So if for
any APN f we could find such f; and f, permutations we would actually have
found an APN permutation. For this we need to find an invertible linear function

L= <L1> defined on Fy» x Fan, such that

Ly
Hst) = ()

That is to find linear functions Lq, Ly : such that

L; (f(x@) = fi(z),
fori—1,2.

Dillon observed, that it is sufficient to use the Algorithm [1}

parity check matrix can be written in the form <f 1(95)) for all x € F*, where

Algorithm 1 Algorithm for deciding whether an APN function is CCZ-
equivalent to a permutation
INPUT: Hy, a parity check matrix of Cy
OUTPUT: TRUE if f is CCZ—equivalent to a permutation, FALSE otherwise
1. Generate a list of all codes with parity check matrix of the form LHy, for L
full-rank in reduced row echelon form.
2: if in the resulting list there are two codes with trivial intersection then return
TRUE
3: else return FALSE
4. end if

As Dillon notes, it really is only necessary to consider full-rank matrices (by
the definition of CCZ-equivalence), and we can consider only those in reduced
row echelon forms, because for S invertible S(L;Hy) = (SL;)Hy), and the codes
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with generating matrices L;Hy and SL;Hy are the same. The matrix S can then
be chosen to make SL; in row reduced echelon form — indeed we could get S it
by Gaussian elimination of L;. Moreover when generating the matrices one can
also subject them to additional constraint — f; and fs need to be permutations,
therefore L; cannot vanish on any sum of any two columns from Hy. Therefore
Dillon used these constraints while generating the matrices L; one column at a
time.

It is possible to start with an identity matrix of appropriate dimension, and
then add columns. The columns need to be added in such a way, that while
adding j-th column (denoted I;), solutions to:

(L) =0

are avoided for all vectors s that are a sum of two vectors from Hy, or more
precisely which are the first j coordinates of the respective sum.

Dillon notes, that for low dimensions it is actually possible to generate all
the simplex codes and try to find two with trivial intersection — if the search
is successful it gives an APN permutation. Unfortunately this procedure does
not scale well with the dimension since the code parameters of simplex codes are
(2" — 1,m, 2" 1. Still it is powerful enough to check functions up to dimension 10.
Moreover it is thanks to this algorithm that the only known APN permutation
over a binary field of even dimension was found.

In Section 6 of [2] another randomized algorithm for checking whether an APN
function is CCZ—equivalent to a permutation. To understand the idea behind the
algorithm we will need the following lemma.

Lemma 14 (Sufficient and necessary condition for being CCZ-equivalent to a
permutation). A function f is CCZ-equivalent to a permutation, if and only
if there exist two spaces U,V C Z;U{(0,0)}, such that UNV = {(0,0)} and
dim(U) = dim(V') = n.

Proof. Let us recall the graph definition of CCZ-equivalence (Definition it
says, that f ~ccz g requires an affine automorphism given by A, B,C, D, u,v

such that: 1B /
(o) (@ 5) () +(0) = ufe)

where 2’ = 7(x) and 7 is a permutation on F. And we know, that the matrix (é g)l

must be full-rank to give us an automorphism. Let us have g a permutation and
g ~ccz f. Therefore for some 7, a permutation of F, we can write:

A(z) + B(f(2)) +u = 7(z),

C(z) + D(f(2)) +v = g(n(z)).
Now by Remark [5| we know that A(x) + B(f(z)) and C(z) + D(f(z)) are

permutations. Using the Theorem we have that f is CCZ-equivalent to a
permutation if and only if both of the following hold:
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> x(aA(z) + aB(f(z))) =0,

z€elF

and
> \(aC(x) +aD(f())) =0
z€elF
for all a € F*.
Now, we can rewrite these conditions using the adjoint mappings of A, B, C,
and D, and our condition for f to be CCZ—-equivalent to a permutation transforms
into the following equivalent one:

X;FX(QJA*(&) + f(z)B*(a)) = f(A*(a), B*(a)) = 0, (2.1)
and .
> x(xC*(a) + f(z)D*(a)) = f(C*(a), D*(a)) = 0, (2.2)

for all a € F*

Now let U = {(A*(a),B*(a)}, V = {(C*(a),D*(«)}. These are spaces
as their are images of linear mappings, and clearly U,V C Z;U{(0,0)}, and
dim(U),dim(V) < n.

To see, that U has dimension n it suffices to consider what it would mean

if it were not the case. Clearly there would need to exist a« € F such that
(A*(a), B*(«r)) = (0,0) For this o would the Equation [2.1| become:

> x(0) =2"#0,
z€eF
which would contradict the assumption that A(x) + B(f(z)) is a permutation.
The proof of existence of another subspace V' is analogous using C', D and
Equation [2.2] instead of A, B and [2.1] respectively.
The fact, that UNV = {(0,0)}, follows from the fact, that the matrix
A B
C D
not trivial. That is, that there exists («, ) € UNV. Then:

must be of a full rank. Indeed, let us suppose, that their intersection is

(A*(a), B*(a)) = (a, B) = (C*(b), D*(b)),
for some (a,b) # (0,0), which means:
A*(a) + C*(b) = 0= B*(a) + D*(b).
And, as trace is a scalar product, that is equivalent with:
try (z(A™(a) + C7(b)) = 0,

and
try (y(B*(a) + D*()) = 0,

for all z,y € F. Rewriting these using adjoint mappings gives:

tr} (aA(z) +0C(x)) = 0,
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and
try (a(B(y) +bD(y)) = 0,

for all =,y € F, which we can rewrite using matrix notation as:

(8 £))-o

for some (a,b) # (0,0) and for all z,y € F. This means, that a nontrivial linear

é, lB; adds up to zero, and therefore it cannot be
full-rank, which completes the proof.

combination of rows of

]

The algorithm simply searches for two n—dimensional subspaces in Z ;=

{(a,b) : f(a,b) = 0} with trivial intersection. It is this algorithm that we modify
in the next chapter. We will rewrite this algorithm from [2] as Algorithm 2]

It can be seen, that Algorithm [2 has less memory requirement than Algorithm
1 as Algorithm 2] only keeps two subspaces of F x F in memory at a time, instead
of keeping a long list of codes like the previous algorithm. Moreover it is faster
— generating subspaces instead of generating matrices, and then comparing all
resulting codes.
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Algorithm 2 Algorithm for deciding whether an APN function is CCZ-
equivalent to a permutation

A

INPUT: B = {(a,b) : f(a,b) = 0}, s a parameter for restarting the search, a
parameter for avoiding infinite loop
OUTPUT: PROVEN if it manages to prove, that f is CCZ—equivalent to a
permutation, INCONCLUSIVE otherwise
B, = B, g+ 1
Choose by € By randomly, 1 <— 1, ¢+ 1
while i # n and ¢ # s do
Choose b; 1 randomly
if b11 ¢ B1\ <by,...,b; > then
11+ 1
end if
c+—c+1
end while
if ¢ = a then
return INCONCLUSIVE
. end if
- if i #n + 1 then
qg<—q+1
goto 3
- end if
: BQZB\<b1,...,bn>
: Choose 0} € B, randomly, i <— 1, ¢ <1
: while i # n and ¢ # s do
Choose b;; randomly
if 0, ¢ B\ <b,...,0, > then
14 1+1
end if
c+—c+1
: end while
. if ¢ = a then
return INCONCLUSIVE
: end if
. if 1 £n+ 1 then
g=q+1
goto 18
: end if
: return PROVEN

e N akwne
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3. The results

In this chapter we show another deterministic algorithm (Algorithm |3) that is
faster then Algorithms [1] and [2| in proving that a component—wise plateaued
function is not CCZ-equivalent to a permutation. We present the results we
obtained for functions over Fa. for n € {6,8,10,12}.

Moreover we also present a theoretical proof of the fact, that functions from
Family 9 in Table[I.2)are not CCZ-equivalent to a permutation for infinite number
of dimensions, that is for doubly even dimensions, i.e. 4|n.

For Families 1, 2, 4, 5 and 9 from the Table[I.2] we managed to computationally
prove that no member of these families can be CCZ equivalent to a permutation
in even extensions of Fy up to Fqi2 — an improvement over previous results that
were up to dimension 10.

3.1 Computational search

3.1.1 Modified condition

We will give a deterministic version of the randomized Algorithm [2]first presented
in the Section 6 of [2]. That algorithm searches for two subspaces of dimension
n with trivial intersection in Z;U{(0,0)} € F x F. We use a deterministic
version and show that it is sufficient to search for subspaces of dimension n/2 in
NBy C F. Note that by examining the classical Walsh spectrum and by using
Lemma ? , it can be deduced, that for functions we are interested in, it holds
that [INBy| < /|Z;|. For this Algorithm [3{ we will use the following result from

[24]:

Theorem 15. If a component—wise plateaued function f is CCZ—equivalent to a
permutation, then there ewxist two subspaces U,V C NBy, such that utnvt =
{0}, and dim(U) + dim (V') > n.

The fact, that f is component—wise plateaued, means that all non—bent com-
ponents of f lack values +2"2 in their Walsh spectra. Therefore if we consider
the linear mappings A, B, C, D from the definition of CCZ—-equivalence, then if
f(A* (@), B*(a)) = 0, then f(0, B*(a)) # +2"2. So definitely Im(B*) C NB;
and analogously Im(D*) C NBjy.

Proof. Let f be a component—wise plateaued function that is CCZ—equivalent to
a permutation g. Recall the definition of CCZ—-equivalence (Definition . There

. . (A B
exists a full-rank matrix < C D)’ such that

(& ) (i) * ()= (o)

for some permutation 7. As we have noticed before Im(B*), Im(D*) C NBy. Let
U = Im(B*), and V = Im(D").
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From Lemma [4| we have U+ = Ker(B), and V+ = Ker(D). And since the
matrix (é g) is full-rank, there cannot be a # 0 such that:

£90-0

U-\V* =Im(B*)"(Im(D*)*" = {0}.

which means, that

It also means, that
dim(Im(B*)*) + dim(Im(D*)*) < n,

" dim(Ker(B)) 4+ dim(Ker(D)) < n,

which is
dim(U*Y) + dim(V+) < n,

which is equivalent to

dim(U) + dim(V') > n,
which completes the proof. O]

From this lemma we immediately get the following corollary:

Corollary 1. If a component—wise plateaued function is CCZ—-equivalent to a
permutation, then in NBy there exists at least one subspace of dimension n/2.

Proof. Since we have dim(Im(B*)) + dim(Im(D*)) > n, then either
dim(Im(B*)) > n/2 or dim(Im(D*)) > n/2, which is exactly what we want. [

Thanks to this theorem and its corollary we only need to calculate the NB; and
try to find a subspace of dimension n/2, instead of searching for the subspaces
of dimension n in F x F. Based on our calculations which are summed up in
Table 3.1} it is apparent, that for most functions we cannot find even a single
n/2-dimensional subspace of NB;. Indeed, by Lemma the NBy, is rather
small, and so it is unlikely to contain high dimensional subspaces. On the other
way it makes it rather easy to prove CCZ-inequivalence to a permutation.

Moreover we can show, that the maximal subspace dimension in NB; is an
E A invariant.

Lemma 16 (For plateaued functions NBy is an EA invariant). Let g ~ga f, then

the maximal subspace dimension in NBy equals the mazimal subspace dimension
i NB,.

Proof. Let g = Li(f(L2(2))) + Ls(z), and U be a maximal subspace in NB,.
Then for o € U we have:

Z(_l)tr?(ag(ﬂﬂ)) = 4on/2.

z€F
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By rewriting g we get:

Z (— 1)“? ((L1(f(L2(x)))+Ls(x))) = Jon/2.
z€eF

By substitution y = Ly () it is:

S (1)@ @)L W) 2 on/2,

zeF
and rewriting using adjoint mapping gives:

3 (= 1) O E@+(Eala) ™) @) 4 yon/2,
z€elF

Now since g is plateaued we have:

Z(_l)tr{l(f(y)(!l’{(a) £ 49n/2

z€elF
Therefore U C NB, is mapped to L;(U) C NBy, which completes the proof. [

Now we will use the following result by Yoshiara, to prove that for quadratic
APN functions the EA invariant from Lemma [16]is even a CCZ invariant.

Theorem 17 (EA/CCZ-equivalence for quadratic APN functions [25, Theorem
1). | Let f and g be quadratic APN functions on Fon, n > 2 € N. Then g =pa f

if and only if g ~ccz f-

Lemma 18 (CCZ invariant for quadratic APN functions). Let f,g be quadratic
APN functions such that g =~ccz f. Then the maximal subspace dimension in
NBy equals the mazimal subspace dimension in NB,.

Proof. This lemma is a direct consequence of Lemma [I6] and Theorem [I7] O

Now we can search in NBy which is much smaller than Z;. As mentioned in
the Subsection 3.1.3 of [26] we know, that for quadratic APN functions the size
of NBy is always less than or equal to 3(2" — 1) + 1.

Below we present our algorithm that we actually use for proving
CCZ-inequivalence to a permutation. The full Sage code can be found in the
attachments. The algorithm is basically a depth-first search, with some modifi-
cations to not visit the searched nodes multiple times. That is we use the fact,
that if S =< UU{v} >, then we can get S as a linear span of U J{s} for every
s € S\ U. Therefore when we generate S from U using v € S\ U, we skip
generating S from U using other elements of S\ U.

We considered even a breadth-first like approach for guaranteeing that every
possible space will be considered just once, but this approach quickly proved itself
unusable in higher dimension because of memory reasons.

The reason for including the F' in the Algorithm |3| set is the one explained
in more detail above — it is a set of forbidden elements that we do not need to
consider, since they will not give us a new space.
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Algorithm 3 Algorithm for finding the dimension of the biggest possible sub-
spaces in a set
INPUT: S set where we search for subspaces
OUTPUT: n maximal possible dimension of a subspace of S
1: function SEARCH(S # set where we search for subspaces,
C' # current subspace of S5,
F # set of already searched elements,
m # dimension of C)

2: if m >nthenn<+ m

3: end if

4: for all element in S do

5: if element in F' then continue
6: end if

7 N < C' + element

8: if NCSand NONF =0 then SEARCH(S, CUN, FUN, m+ 1)
9: end if

10: F+~ FUN

11: end for

12: end function

13: n<+0

14: SEARCH(S, {0}, {0}, 0)

15: return n

3.1.2 Reducing the number of polynomials

Looking at the list of APN functions [1.2| one realizes, that in some families in
higher dimensions there are simply too many functions to check for their CCZ—
equivalence to a permutation even with our algorithm. While there are compu-
tational proofs (for example in [27]), that for small n all APN functions in the
Table are CCZ-equivalent to each other within their respective families and
therefore for these small fields, it would only be necessary to run our algorithm
for one polynomial from each family only, for larger fields we have no such result,
and checking CCZ—equivalence between all members of a family is a rather time—
consuming task. The only approach we are aware of is just generating a whole
CCZ-equivalence class and then checking whether there is a function within the
CCZ—equivalence class that is also in the APN function family. So we would
generate a large number a functions that we would not even use. SO for proving
CCZ—(in)equivalence to a permutation for each polynomial within a class, we
must use our algorithm on each polynomial within a class.

As mentioned earlier, for small n we can prove computationally that all poly-
nomials within a family from the Table are from the same CCZ-equivalence
class. Therefore it is natural to expect, that for higher families there will also
be relatively small number of CCZ-equivalence classes, if not only one. As we
want to provide an actual computational proof of CCZ-(in)equivalence we cannot
settle with the randomized approach, but it seems, that if there is only a small
number of CCZ-equivalence classes, then it should be easy to prove theoreti-
cally, for at least some functions within a class, that they are indeed in the same
CCZ-equivalence class.
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To do this we choose an easy to analyze subset of linear mappings. We are def-
initely not pretending to select only one polynomial from each CCZ-equivalence
class within a family. This would sped up our search dramatically, but as it is
noted in [20] we do not know much about these intrafamily CCZ-equivalence
classes as these results are hard to prove — hence the purely computational na-
ture of the results in [27] in this area. But we are simply trying to select as
few functions from one CCZ-equivalence class as possible while still having our
code run fast. This is important, since if we had an amazing condition on CCZ—
equivalence that would make our code run 1000000 times slower, then it would
render our algorithm unusable. Luckily we are successful in finding ways to dis-
card some functions even before the generation of the lists of functions to check
for CCZ—-equivalence to a permutation (as opposed to generating all functions
from a family, and then deleting them from the list).

Below are notions of equivalence, that we used for the reduction of the number
of polynomials to check for being CCZ—-equivalent to a permutation. It is easy
to see (the mapping used are linear) that they all are less general then CCZ-
equivalence (actually even more than EA—equivalence).

Definition 37 (Frobenius equivalence). We say, that f and g are Frobenius
equivalent if f(z) = (g(2?"))? for somei,j € N.

Definition 38 (Left translation equivalence). We say, that f and g are left
translation equivalent if f(x) = ag(bx) for some a,b € F.

Remark 6 (Subfield trick). If f is of the form: f(x) = A%z’ 4+ Ax7 4 ba¢, where

A is primitive and b # 0 is from a subfield of 2¢ elements, then b~ f(x) is of the
A A2t A2t A 2t

same form (since - = 5+ = (7))

The usage of Frobenius equivalence is straightforward — if we can use it, we
simply take an element a from a list of possible choices for a parameter p, and
erase from the list all elements of the form a*,1 < ¢ < n. Using the Family 1
from [1.2) we have a function f(x) of the form, £ +! 4 A2 ~122"+2"""  Now for
every 1 < k < n we can take a function g(z) = (f(22 *))2". Thanks to the

freshman’s dream property we get:

1

. t_ .
_ x(23+1)2k7k _|_ A(2t71)2kx(21t+27‘t+s)2k7k _ x25+1 + A2k2 $21t+27‘t+s

9(x)
And so we need only one element from the list A2”, 42", ... A2"”", which helps since
if A is primitive, then all elements from the list A%, A2', ... A2""" are primitive
as well.

The usage of left translation equivalence is a little bit more complex. We shall
provide an example of how it is done. We will use the Family 1 from the table
L2

We have a function f(z) of the form: x
into a function g(z) = f(cx). Therefore we have:

s t_ it rt+s .
24l L A2 12727 We transform it

s s t_ it rt+s it rt+s
g([L’) :C2 +1{L'2 +1+A2 102 +2 172 +2 )

Since we know that the first coefficient corresponding to x should be 1, we mul-
tiply the whole function by its inverse. We get a function h(z) = =D&+ g(z) =
A=V £(cx). Therefore we have:

s t_ it rt4+s_o9s__ it rt+s
h(x):xQJrl_i_AZ 1C2 +2 2 1X2 +2 )

2541
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It follows, that for a given exponent 2° + 1 we can look if in the list of pos-
sible choices for the parameter A there are some choices A" A” such that A’ =
AT =21 AN for some ¢ € F. If that is a case we can remove one of them. Now
this method cannot be used on a family as a whole, but the reduction must be
done for each possible exponent from the family separately. In the list of reduc-
tions we will list just the found exponents. In this case it will be 2% 4275 25 1,
Because of the inversion this reduction is most useful (most probable to be used)
for binomials.

Now to show the usage of the subfield trick, we will use the Family 4. Therefore
we have f(z) = AX?" 277 4 A X2+ L pX 2742 Let us suppose, that b # 0.
We will consider a function g(z) = b~'f(x). Therefore we get:

g(z) = éXQ"*erQHS + £X2S+1 + X242
b b '

As b is from the subfield Fo: we know, that b = b?". So we get:

A n—t t+s AZt s t+s s
g($)23X2 +2tF +ﬁX2+1+X2+ +2°

Which for the primitive element A" = % equals:

2t
g(x) _ A/X2”7t+2t+s + 12;15 XQS-‘r-l +X2t+3+25'
Therefore every function from the Family 4 with b # 0 is EA—equivalent to
another function from the Family 4 with b = 1.
Here we present the list of all means we used to reduce the number of poly-
nomials within each APN family to check for being CCZ-equivalent to a permu-
tation:

Family 1: Frobenius equivalence with respect to A can be used, and we can also
use left translation equivalence. We will find an exponent 2% 42715 —25 — 1,

Family 2: Frobenius equivalence with respect to A can be used, and we can also
use left translation equivalence. We will find an exponent 2% + 27+ — 25 1
(same as with family 1).

Family 3: Frobenius equivalence with respect to A can be used, and we can also
use subfield trick to force ¢,,—1 € 5.

Family 4: Frobenius equivalence with respect to A can be used, and we can also
use the subfield trick to force b € Fy. Moreover left translation equivalence
can be used to find exponent 2"t — 2%,

Family 5: Frobenius equivalence with respect to A can be used, and we can also
use the subfield trick to force b € 5. Moreover left translation equivalence
can be used to find exponent 2"~ — 2% (same as with family 4).

Family 6: We can use the subfield trick to force ¢ € Fy. Moreover when ¢ = 0, we
get exactly polynomials from family 5. Therefore we can set ¢ = 1. Thus
we can omit polynomials where b = 1.
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Table 3.1: Calculated maximal dimensions of subspaces in NB;

#In=6n=8|n=10|n=12
1 | N/JA | N/A | N/A 4

2 | N/JA | N/JA | N/A 4
312 N/A |4 N/A
4 | 3t N/A | N/A 4

5 |3 N/A | N/A 4

6 | 3 N/A | N/A 3*
712 N/A |4 N/A

8 |2 2 4 3*

9 |3 3 5%° 4

9% )

— we managed to check only some polynomials from the given family in the
given dimension and therefore there is a small possibility that the number can
be higher.

1" — in this family in this dimension there are functions which are equivalent to
the APN permutation found in [2].

7°” — while there are subspaces of high enough dimension, in this particular
dimension this function is actually just 2% which is not CCZ-equivalent to a
permutation.

7e°” — while there is a subspace of high enough dimension, there is only one —
the subfield Fy./2, and therefore by Theorem [15]it is not CCZ—-equivalent to a
permutation.

"N/A” — functions from the given family are not defined in this dimension

Family 7: We can use Frobenius equivalence with respect to C'. Since the allowed
Cs differ between exponents the reduction must be done for each exponent
separately.

Family 8: No reductions were found.

Family 9: No reductions were found.

3.1.3 Results of computation

By applying the algorithm described above to functions from the Table we
have got results, that we summarized in the Table [3.1]

Now, using the corollary of Theorem [15| we can prove with the Table [3.1] that
no polynomial from families 1,2,4,5 and 9 from the Table are CCZ—equivalent
to a permutation in even extensions up to dimension 12. For functions in other
families we conjecture that they also are not CCZ-equivalent to a permutation.
While we did not manage to try every single one, from each family we tried at
least 20, and the maximal found dimension remained constant. In addition to
this kind of results we have found, that in dimension 12 for Families 1,4 and 5, for
exactly 50% of polynomials the maximal subspace dimension in NB; was 4 and
for the rest it was 3. Therefore since by Lemma (16| we know, that the maximal
dimension of a subspace in NB; is EA-invariant, and that for quadratic functions
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Table 3.2: Running speed of Algorithm |3
# n=6n=8|n=10|n=12
time | 2 s 10 s 3min | 2,5h

are the notions of EA—equivalence and CCZ—equivalence the same, we conclude,
that in these Families in these dimensions there are at least two CCZ—-equivalence
classes.

The reason we were not able to run the algorithm for some families in higher
dimensions is the fact, that the number of those functions was to high. Neverthe-
less while checking the correctness of some parts of the Sage implementation using
Magma, it became apparent that Sage is perhaps not the fastest environment for
this kind of computation. Therefore one of the ways how to improve these results
can be simply implementing the whole algorithm using Magma. Or rewriting it
into C++, since there are also specialized libraries for finite field computations.
The other way is proving better CCZ-equivalence results. For illustration we
provide the approximate running time of our algorithm. For benchmarking we
used a function from the Family 9 with a = 1, as functions from this family are
defined over every Fa2., and the found dimensions are quite high.

3.2 A theoretical result

We find, that for doubly even extensions maximal found dimension for polyno-
mials in Family 9 is never greater than n/2 — 1. This is the first result of such
kind for a non—monomial function.

Theorem 19. An APN function of the form x® + a tr}(az®) is not CCZ-
equivalent to a permutation in any field Foyim.

For the proof we will use the fact, that NB,s is the set of cubes in F (as shown
in the first chapter), and the following result that appeared in [24]:

Theorem 20. Let C' = {a® : a € Fou} and U C C a subspace in C' of mazimal

dimension. Then
=n/2 if n/2 is odd
dim(U)
<n/2—2 ifn/2 is even
Corollary 2. Let F be a doubly even extension of Fy. Let C = {a® : o € F}, and
let H. = {a: tr}(ca) =0}. Let U C CN He. Then dim(U) <n/2 — 2.

Proof. This can be seen from the fact, that for every subspace U C C| for every
r,y € U\ H. x +y € UN H,.. Indeed:

tri(c(z +y)) = tri(cz) + tri(cy) =14+ 1=0.

And as x,y € U, v +y € U. Therefore in U H, there can be only a half of
elements of U. [

Let f denote 23 +a~*tr}(ax®). For f to be CCZ-equivalent to a permutation,
by the Corrolary [1] of the Theorem [I5] there would need to exist a subspace of
dimension n/2 in the NBy. We will show, that in Fj = F5™ there exists none.
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Proof. Let f denote x* + a'tr}(a®sz”). Let us suppose, that there is U C N By
such that dim(U) = n/2. Then we know, that dim(U (N H,-1) has dimension at
least n/2 — 1. So it is sufficient to show, that there is no big enough subspace in
NB;NH,-:. We will show NBy N H,-1 = NB;3s (N H,-1. Then by using Corrolary
2 of Theorem R0 we will show ther is no such U.

Let us have o € NBf (N H,-1. Then it holds that:

Z (_ 1)tr?(a(x?’—ﬁ—a*ltr?(a?’xg))) 7& :i:2n/2

z€elF

Now using the linearity of the trace we know that:

Z (_1)tr?(a(:c3+a’1tr’f(a3xg))) _ Z (_ 1)tr?(oz(x3))+tr?(aa’ltr?(a:“xg)) ]
z€elF z€F

Using the fact, that tr7(a®z%) is an element of Fy only we need to consider
two possibilities: tr(a’z?) = 0 and tr}(a®2”) = 1. In the former case we get

tr] (a7 (a’2?)) = 1} (0aa™) = t7(0) = 0,
and in the latter case we get
tr (aa” 1} (a’2?)) = tr} (laa™) = tr}(aa™) =0

since o € H, ,. Therefore we get that:

Z(_l)tr;‘(a(:v?’))—i—tr;‘(aa_ltr;‘(a3m9)) _ Z(_l)tr?(a(r3))7
z€F z€eF
which means that NB; N H,-1 = NB,s (| H,-1 and therefore completes the proof.
n

Therefore we managed to prove that the APN function 2% + a'tr}(a®z?)
cannot be a permutation in infinite number of extension. To our knowledge the
only similar results to this date are ones dealing only with monomials [24]. In [24]
the inequivalence result is proved for Gold exponents. Indeed for Gold exponents
NBj; = C (2% is a function with a Gold exponent).

So, we have a proof for when the field is Foum. But what about the other (still
even) case? The function seems to behave nicely with respect to dimension of its
NB; (except for dimension 6 where it is actually the function z*). Therefore one
would think it should be possible to proof the CCZ—-inequivalence result for every
Fa2m. We conjecture the same:

Conjecture 1. The APN function x® + a='tr7(a®z?) is not CCZ-equivalent to a
permutation in any field Fozm.

Nevertheless our conjecture cannot be proven in similar way, since for Foam+2,
there is at least one subspace in C'( H; of dimension n/2 — the finite field Fazm+1.
Fozmi1 as a subfield of Fyums2 is set of elements {a2"" 1 : ¢ € Faims2}, and for
k odd we have that 3|2 + 1, s0 Fg2m+1 C C. And as for a € Faom+1 it holds that
a®""" = a, then all terms in the trZsmi; cancel out, so Fymi1 € Hy. And indeed
it is easy to see, that the dimension of Fyami1 is 22+,

But whether our conjecture will turn out to be right or wrong remains to be
seen.
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Conclusion

In the thesis we presented a new condition for checking whether an APN function
is CCZ—-inequivalent to a permutation. We used this condition to implement an
algorithm to check known APN functions on Fyn for n even for being CCZ-
equivalent to a permutation.

While we did not find an APN permutation, we managed to computationally
prove, that in some families in Fyi2, there is no function that is CCZ—-equivalent
to a permutation. This is an improvement over the previous work done by Dillon
in [2].

Also we found an EA—invariant and used it with [25] Theorem 1] to see, that
in some families of APN functions in Fs12, there are at least 2 CCZ-equivalence
classes.

Moreover we managed to prove, that the functions of the form:

23+ a7 (a2?)

cannot be CCZ-equivalent to a permutation in any field Fosn for n € N. These
kinds of results have been proved before only for monomials.

In the future work, it is then possible to speed up the algorithm by rewriting
at least a part of it into C/C++. We believe, that by rewriting the program it
should be possible to check all known APN functions in Fy12 and Fy14 in reasonable
time.
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